1
|
Wang L, Wang Z, Zhang H, Jin Q, Fan S, Liu Y, Huang X, Guo J, Cai C, Zhang JR, Wu H. A novel esterase regulates Klebsiella pneumoniae hypermucoviscosity and virulence. PLoS Pathog 2024; 20:e1012675. [PMID: 39480904 PMCID: PMC11556721 DOI: 10.1371/journal.ppat.1012675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 11/12/2024] [Accepted: 10/18/2024] [Indexed: 11/02/2024] Open
Abstract
Klebsiella pneumoniae, an emerging multidrug-resistant pathogen, exhibits hypermucoviscosity (HMV) as a critical virulence trait mediated by its capsular polysaccharide (CPS). Recent discoveries have determined acetylation as a significant modification for CPS, although its impact on HMV and virulence was previously unknown. This study elucidates the roles of two enzymes: Klebsiella pneumoniae Acetylated CPS Esterase (KpACE), an esterase that removes acetyl groups from CPS, and WcsU, an acetyltransferase that adds acetyl groups to CPS. KpACE is highly upregulated in an ompR-deficient mutant lacking HMV, and its overexpression consistently reduces HMV and diminishes virulence in a mouse model of pneumonia. The esterase domain-containing KpACE effectively deacetylates model sugar substrates and CPS-K2. Site-directed mutagenesis of the conserved catalytic histidine residue at position 370 significantly reduces its enzymatic activity. This reduction correlates with decreased HMV, affecting key virulence traits including biofilm formation and serum resistance. Similarly, a deficiency in the wcsU gene abolishes CPS acetylation, and reduces HMV and virulence. These results highlight the importance of the delicate balance between CPS acetylation by WcsU and deacetylation by KpACE in regulating the pathogenicity of K. pneumoniae. Understanding this balance provides new insights into the modulation of virulence traits and potential therapeutic targets for combating K. pneumoniae infections.
Collapse
Affiliation(s)
- Lijun Wang
- Department of Laboratory Medicine, Beijing Xiaotangshan Hospital, Beijing, China
- Center for Infectious Disease Research, School of Basic Medical Sciences, Tsinghua Medicine, Tsinghua University, Beijing, China
| | - Zhe Wang
- Shandong Key Laboratory of Glycoscience and Glycotherapeutics, School of Medicine and Pharmacy, Ocean University of China, Qingdao, China
| | - Hua Zhang
- Oregon Health and Science University School of Dentistry, Portland, Oregon, United States of America
| | - Qian Jin
- Center for Infectious Disease Research, School of Basic Medical Sciences, Tsinghua Medicine, Tsinghua University, Beijing, China
| | - Shuaihua Fan
- Tsinghua Medicine, Tsinghua University, Department of Respiratory and Critical Care Medicine, Beijing Tsinghua Changgung Hospital, Beijing, China
| | - Yanni Liu
- Center for Infectious Disease Research, School of Basic Medical Sciences, Tsinghua Medicine, Tsinghua University, Beijing, China
| | - Xueting Huang
- Center for Infectious Disease Research, School of Basic Medical Sciences, Tsinghua Medicine, Tsinghua University, Beijing, China
| | - Jun Guo
- Department of Geriatric Medicine, Beijing Tsinghua Changgung Hospital, Tsinghua Medicine, Tsinghua University, Beijing, China
| | - Chao Cai
- Shandong Key Laboratory of Glycoscience and Glycotherapeutics, School of Medicine and Pharmacy, Ocean University of China, Qingdao, China
| | - Jing-Ren Zhang
- Center for Infectious Disease Research, School of Basic Medical Sciences, Tsinghua Medicine, Tsinghua University, Beijing, China
| | - Hui Wu
- Oregon Health and Science University School of Dentistry, Portland, Oregon, United States of America
| |
Collapse
|
2
|
Lund SJ, Del Rosario PGB, Honda A, Caoili KJ, Hoeksema MA, Nizet V, Patras KA, Prince LS. Sialic Acid-Siglec-E Interactions Regulate the Response of Neonatal Macrophages to Group B Streptococcus. Immunohorizons 2024; 8:384-396. [PMID: 38809232 PMCID: PMC11150127 DOI: 10.4049/immunohorizons.2300076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 04/24/2024] [Indexed: 05/30/2024] Open
Abstract
The mammalian Siglec receptor sialoadhesin (Siglec1, CD169) confers innate immunity against the encapsulated pathogen group B Streptococcus (GBS). Newborn lung macrophages have lower expression levels of sialoadhesin at birth compared with the postnatal period, increasing their susceptibility to GBS infection. In this study, we investigate the mechanisms regulating sialoadhesin expression in the newborn mouse lung. In both neonatal and adult mice, GBS lung infection reduced Siglec1 expression, potentially delaying acquisition of immunity in neonates. Suppression of Siglec1 expression required interactions between sialic acid on the GBS capsule and the inhibitory host receptor Siglec-E. The Siglec1 gene contains multiple STAT binding motifs, which could regulate expression of sialoadhesin downstream of innate immune signals. Although GBS infection reduced STAT1 expression in the lungs of wild-type newborn mice, we observed increased numbers of STAT1+ cells in Siglece-/- lungs. To test if innate immune activation could increase sialoadhesin at birth, we first demonstrated that treatment of neonatal lung macrophages ex vivo with inflammatory activators increased sialoadhesin expression. However, overcoming the low sialoadhesin expression at birth using in vivo prenatal exposures or treatments with inflammatory stimuli were not successful. The suppression of sialoadhesin expression by GBS-Siglec-E engagement may therefore contribute to disease pathogenesis in newborns and represent a challenging but potentially appealing therapeutic opportunity to augment immunity at birth.
Collapse
MESH Headings
- Animals
- Mice
- Streptococcus agalactiae/immunology
- Animals, Newborn
- N-Acetylneuraminic Acid/metabolism
- Sialic Acid Binding Ig-like Lectin 1/metabolism
- Streptococcal Infections/immunology
- Streptococcal Infections/microbiology
- STAT1 Transcription Factor/metabolism
- STAT1 Transcription Factor/genetics
- Mice, Knockout
- Immunity, Innate
- Mice, Inbred C57BL
- Lung/immunology
- Lung/microbiology
- Lung/metabolism
- Macrophages, Alveolar/immunology
- Macrophages, Alveolar/metabolism
- Female
- Macrophages/immunology
- Macrophages/metabolism
- Lectins/metabolism
- Lectins/genetics
- Sialic Acid Binding Immunoglobulin-like Lectins/metabolism
- Sialic Acid Binding Immunoglobulin-like Lectins/genetics
- Antigens, CD/metabolism
- Antigens, CD/genetics
- Antigens, Differentiation, B-Lymphocyte
Collapse
Affiliation(s)
- Sean J. Lund
- Department of Pediatrics, University of California, San Diego, La Jolla, CA
| | - Pamela G. B. Del Rosario
- Department of Pediatrics, University of California, San Diego, La Jolla, CA
- Rady Children’s Hospital, San Diego, CA
| | - Asami Honda
- Department of Pediatrics, University of California, San Diego, La Jolla, CA
| | | | - Marten A. Hoeksema
- Department of Medical Biochemistry, Amsterdam University Medical Center, Amsterdam Zuidoost, the Netherlands
| | - Victor Nizet
- Department of Pediatrics, University of California, San Diego, La Jolla, CA
| | - Kathryn A. Patras
- Department of Molecular Virology and Microbiology, Alkek Center for Metagenomics and Microbiome Research, Baylor College of Medicine, Houston, TX
| | | |
Collapse
|
3
|
Tang J, Guo M, Chen M, Xu B, Ran T, Wang W, Ma Z, Lin H, Fan H. A link between STK signalling and capsular polysaccharide synthesis in Streptococcus suis. Nat Commun 2023; 14:2480. [PMID: 37120581 PMCID: PMC10148854 DOI: 10.1038/s41467-023-38210-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Accepted: 04/20/2023] [Indexed: 05/01/2023] Open
Abstract
Synthesis of capsular polysaccharide (CPS), an important virulence factor of pathogenic bacteria, is modulated by the CpsBCD phosphoregulatory system in Streptococcus. Serine/threonine kinases (STKs, e.g. Stk1) can also regulate CPS synthesis, but the underlying mechanisms are unclear. Here, we identify a protein (CcpS) that is phosphorylated by Stk1 and modulates the activity of phosphatase CpsB in Streptococcus suis, thus linking Stk1 to CPS synthesis. The crystal structure of CcpS shows an intrinsically disordered region at its N-terminus, including two threonine residues that are phosphorylated by Stk1. The activity of phosphatase CpsB is inhibited when bound to non-phosphorylated CcpS. Thus, CcpS modulates the activity of phosphatase CpsB thereby altering CpsD phosphorylation, which in turn modulates the expression of the Wzx-Wzy pathway and thus CPS production.
Collapse
Affiliation(s)
- Jinsheng Tang
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China
| | - Mengru Guo
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China
| | - Min Chen
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China
| | - Bin Xu
- National Research Center of Veterinary Biologicals Engineering and Technology, Jiangsu Academy of Agricultural Sciences, Nanjing, 210000, China
| | - Tingting Ran
- Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Weiwu Wang
- Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Zhe Ma
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China
- Jiangsu Coinnovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, China
| | - Huixing Lin
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China
- Jiangsu Coinnovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, China
| | - Hongjie Fan
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China.
- Jiangsu Coinnovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, China.
| |
Collapse
|
4
|
de Jong H, Wösten MMSM, Wennekes T. Sweet impersonators: Molecular mimicry of host glycans by bacteria. Glycobiology 2022; 32:11-22. [PMID: 34939094 PMCID: PMC8881735 DOI: 10.1093/glycob/cwab104] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 09/03/2021] [Accepted: 09/28/2021] [Indexed: 12/02/2022] Open
Abstract
All bacteria display surface-exposed glycans that can play an important role in their interaction with the host and in select cases mimic the glycans found on host cells, an event called molecular or glycan mimicry. In this review, we highlight the key bacteria that display human glycan mimicry and provide an overview of the involved glycan structures. We also discuss the general trends and outstanding questions associated with human glycan mimicry by bacteria. Finally, we provide an overview of several techniques that have emerged from the discipline of chemical glycobiology, which can aid in the study of the composition, variability, interaction and functional role of these mimicking glycans.
Collapse
Affiliation(s)
- Hanna de Jong
- Department of Chemical Biology and Drug Discovery, Utrecht Institute for Pharmaceutical Sciences, and Bijvoet Center for Biomedical Research, Utrecht University, Universiteitsweg 99, Utrecht 3584 CG, The Netherlands
- Department of Biomolecular Health Sciences, Utrecht University, Yalelaan 1, Utrecht 3584 CL, The Netherlands
| | - Marc M S M Wösten
- Department of Biomolecular Health Sciences, Utrecht University, Yalelaan 1, Utrecht 3584 CL, The Netherlands
| | - Tom Wennekes
- Department of Chemical Biology and Drug Discovery, Utrecht Institute for Pharmaceutical Sciences, and Bijvoet Center for Biomedical Research, Utrecht University, Universiteitsweg 99, Utrecht 3584 CG, The Netherlands
| |
Collapse
|
5
|
Ji Y, Sasmal A, Li W, Oh L, Srivastava S, Hargett AA, Wasik BR, Yu H, Diaz S, Choudhury B, Parrish CR, Freedberg DI, Wang LP, Varki A, Chen X. Reversible O-Acetyl Migration within the Sialic Acid Side Chain and Its Influence on Protein Recognition. ACS Chem Biol 2021; 16:1951-1960. [PMID: 33769035 DOI: 10.1021/acschembio.0c00998] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
O-Acetylation is a common naturally occurring modification of carbohydrates and is especially widespread in sialic acids, a family of nine-carbon acidic monosaccharides. O-Acetyl migration within the exocyclic glycerol-like side chain of mono-O-acetylated sialic acid reported previously was from the C7- to C9-hydroxyl group with or without an 8-O-acetyl intermediate, which resulted in an equilibrium that favors the formation of the 9-O-acetyl sialic acid. Herein, we provide direct experimental evidence demonstrating that O-acetyl migration is bidirectional, and the rate of equilibration is influenced predominantly by the pH of the sample. While the O-acetyl group on sialic acids and sialoglycans is stable under mildly acidic conditions (pH < 5, the rate of O-acetyl migration is extremely low), reversible O-acetyl migration is observed readily at neutral pH and becomes more significant when the pH increases to slightly basic. Sialoglycan microarray studies showed that esterase-inactivated porcine torovirus hemagglutinin-esterase bound strongly to sialoglycans containing a more stable 9-N-acetylated sialic acid analog, but these compounds were less resistant to periodate oxidation treatment compared to their 9-O-acetyl counterparts. Together with prior studies, the results support the possible influence of sialic acid O-acetylation and O-acetyl migration to host-microbe interactions and potential application of the more stable synthetic N-acetyl mimics.
Collapse
Affiliation(s)
- Yang Ji
- Glycobiology Research and Training Center, Departments of Medicine and Cellular and Molecular Medicine, University of California, San Diego, California 92093, United States
| | - Aniruddha Sasmal
- Glycobiology Research and Training Center, Departments of Medicine and Cellular and Molecular Medicine, University of California, San Diego, California 92093, United States
| | - Wanqing Li
- Department of Chemistry, University of California, Davis, California 95616, United States
| | - Lisa Oh
- Department of Chemistry, University of California, Davis, California 95616, United States
| | - Saurabh Srivastava
- Glycobiology Research and Training Center, Departments of Medicine and Cellular and Molecular Medicine, University of California, San Diego, California 92093, United States
| | - Audra A. Hargett
- Laboratory of Bacterial Polysaccharides, Food and Drug Administration (FDA), Silver Spring, Maryland 20993, United States
| | - Brian R. Wasik
- Baker Institute for Animal Health, College of Veterinary Medicine, Cornell University, Ithaca, New York 14853, United States
| | - Hai Yu
- Department of Chemistry, University of California, Davis, California 95616, United States
| | - Sandra Diaz
- Glycobiology Research and Training Center, Departments of Medicine and Cellular and Molecular Medicine, University of California, San Diego, California 92093, United States
| | - Biswa Choudhury
- Glycobiology Research and Training Center, Departments of Medicine and Cellular and Molecular Medicine, University of California, San Diego, California 92093, United States
| | - Colin R. Parrish
- Baker Institute for Animal Health, College of Veterinary Medicine, Cornell University, Ithaca, New York 14853, United States
| | - Darón I. Freedberg
- Laboratory of Bacterial Polysaccharides, Food and Drug Administration (FDA), Silver Spring, Maryland 20993, United States
| | - Lee-Ping Wang
- Department of Chemistry, University of California, Davis, California 95616, United States
| | - Ajit Varki
- Glycobiology Research and Training Center, Departments of Medicine and Cellular and Molecular Medicine, University of California, San Diego, California 92093, United States
| | - Xi Chen
- Department of Chemistry, University of California, Davis, California 95616, United States
| |
Collapse
|
6
|
Visser EA, Moons SJ, Timmermans SBPE, de Jong H, Boltje TJ, Büll C. Sialic acid O-acetylation: From biosynthesis to roles in health and disease. J Biol Chem 2021; 297:100906. [PMID: 34157283 PMCID: PMC8319020 DOI: 10.1016/j.jbc.2021.100906] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 06/16/2021] [Accepted: 06/18/2021] [Indexed: 02/06/2023] Open
Abstract
Sialic acids are nine-carbon sugars that frequently cap glycans at the cell surface in cells of vertebrates as well as cells of certain types of invertebrates and bacteria. The nine-carbon backbone of sialic acids can undergo extensive enzymatic modification in nature and O-acetylation at the C-4/7/8/9 position in particular is widely observed. In recent years, the detection and analysis of O-acetylated sialic acids have advanced, and sialic acid-specific O-acetyltransferases (SOATs) and O-acetylesterases (SIAEs) that add and remove O-acetyl groups, respectively, have been identified and characterized in mammalian cells, invertebrates, bacteria, and viruses. These advances now allow us to draw a more complete picture of the biosynthetic pathway of the diverse O-acetylated sialic acids to drive the generation of genetically and biochemically engineered model cell lines and organisms with altered expression of O-acetylated sialic acids for dissection of their roles in glycoprotein stability, development, and immune recognition, as well as discovery of novel functions. Furthermore, a growing number of studies associate sialic acid O-acetylation with cancer, autoimmunity, and infection, providing rationale for the development of selective probes and inhibitors of SOATs and SIAEs. Here, we discuss the current insights into the biosynthesis and biological functions of O-acetylated sialic acids and review the evidence linking this modification to disease. Furthermore, we discuss emerging strategies for the design, synthesis, and potential application of unnatural O-acetylated sialic acids and inhibitors of SOATs and SIAEs that may enable therapeutic targeting of this versatile sialic acid modification.
Collapse
Affiliation(s)
- Eline A Visser
- Institute for Molecules and Materials, Department of Synthetic Organic Chemistry, Radboud University Nijmegen, Nijmegen, the Netherlands
| | - Sam J Moons
- Institute for Molecules and Materials, Department of Synthetic Organic Chemistry, Radboud University Nijmegen, Nijmegen, the Netherlands
| | - Suzanne B P E Timmermans
- Institute for Molecules and Materials, Department of Synthetic Organic Chemistry, Radboud University Nijmegen, Nijmegen, the Netherlands
| | - Heleen de Jong
- Institute for Molecules and Materials, Department of Synthetic Organic Chemistry, Radboud University Nijmegen, Nijmegen, the Netherlands
| | - Thomas J Boltje
- Institute for Molecules and Materials, Department of Synthetic Organic Chemistry, Radboud University Nijmegen, Nijmegen, the Netherlands.
| | - Christian Büll
- Copenhagen Center for Glycomics, Departments of Cellular and Molecular Medicine, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark; Hubrecht Institute, Utrecht, the Netherlands.
| |
Collapse
|
7
|
Yang H, Lu L, Chen X. An overview and future prospects of sialic acids. Biotechnol Adv 2020; 46:107678. [PMID: 33285252 DOI: 10.1016/j.biotechadv.2020.107678] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2020] [Revised: 11/11/2020] [Accepted: 11/30/2020] [Indexed: 12/21/2022]
Abstract
Sialic acids (Sias) are negatively charged functional monosaccharides present in a wide variety of natural sources (plants, animals and microorganisms). Sias play an important role in many life processes, which are widely applied in the medical and food industries as intestinal antibacterials, antivirals, anti-oxidative agents, food ingredients, and detoxification agents. Most Sias are composed of N-acetylneuraminic acid (Neu5Ac, >99%), and Sia is its most commonly used name. In this article, we review Sias in terms of their structures, applications, determination methods, metabolism, and production strategies. In particular, we summarise and compare different production strategies, including extraction from natural sources, chemical synthesis, polymer decomposition, enzymatic synthesis, whole-cell catalysis, and de novo biosynthesis via microorganism fermentation. We also discuss research on their physiological functions and applications, barriers to efficient production, and strategies for overcoming these challenges. We focus on efficient de novo biosynthesis strategies for Neu5Ac via microbial fermentation using novel synthetic biology tools and methods that may be applied in future. This work provides a comprehensive overview of recent advances on Sias, and addresses future challenges regarding their functions, applications, and production.
Collapse
Affiliation(s)
- Haiquan Yang
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Liping Lu
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China; College of life Science and Engineering, Northwest Minzu University, Lanzhou 730030, China
| | - Xianzhong Chen
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China.
| |
Collapse
|
8
|
Xu Z, Lu Z, Soteyome T, Chen L, Liang Y, Bai C, Huang T, Liu J, Harro JM, Kjellerup BV. Resistome and virulome study on pathogenic Streptococcus agalactiae Guangzhou-SAG036. Microb Pathog 2020; 147:104258. [PMID: 32422334 DOI: 10.1016/j.micpath.2020.104258] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 05/10/2020] [Accepted: 05/11/2020] [Indexed: 02/05/2023]
Abstract
Streptococcus agalactiae is considered as a leading case of bacterial infection among neonates. Although relative protection strategies have been performed in many high-income countries, resulting in a massive reduction in the occurrences of early-onset GBS disease, the late-onset disease has not affected. Here, the whole genome of S. agalactiae Guangzhou-SAG036 was sequenced by the Pacific Biosciences Sequel using the P4-C2 chemistry and the continuous long reads were used for de novo assembly using HGAP. Besides, genes prediction and multiply annotation were performed by comparing it with diverse databases. The whole genome has a length of 2,206,504 bp and contains 2162 predicted genes with an average G + C content of 35.85%. Based on the whole genome sequence, 2 large prophages, 20 virulence factors genes, and 8 antibiotic resistant genes were identified. MLST analysis revealed S. agalactiae Guangzhou-SAG036 was identified as ST-17. The virulence factors genes were identified with different functions including adherence, antiphagocytosis, spreading factor, immune evasion, invasion, toxin. Besides, the antibiotic-resistant genes may provide S. agalactiae with resistance to multi-drugs including erythromycin, streptomycin, azithromycin, spiramycin, ampicillin, kanamycin, cationic peptides, and tetracycline. Therefore, the infection of S. agalactiae Guangzhou-SAG036 ST-17 strain maybe caused by the complex virulence factors and multi-drugs resistance. These results contribute to further understand GBS epidemiology and surveillance targets.
Collapse
Affiliation(s)
- Zhenbo Xu
- School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, South China University of Technology, Guangzhou, 510640, China; Department of Clinical Pharmacy and Translational Science, College of Pharmacy, University of Tennessee Health Science Center, Memphis, TN, 38103, USA; Department of Laboratory Medicine, The Second Affiliated Hospital of Shantou University Medical College, Shantou, China; Home Economics Technology, Rajamangala University of Technology Phra Nakhon, Bangkok, Thailand
| | - Zerong Lu
- School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, South China University of Technology, Guangzhou, 510640, China
| | - Thanapop Soteyome
- Home Economics Technology, Rajamangala University of Technology Phra Nakhon, Bangkok, Thailand
| | - Ling Chen
- School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, South China University of Technology, Guangzhou, 510640, China
| | - Yi Liang
- Guangdong Zhongqing Font Biochemical Science and Technology Co. Ltd., Maoming, Guangdong, 525427, China
| | - Caiying Bai
- Guangdong Women and Children Hospital, Guangzhou, 510010, China
| | - Tengyi Huang
- Department of Laboratory Medicine, The Second Affiliated Hospital of Shantou University Medical College, Shantou, China.
| | - Junyan Liu
- Department of Civil and Environmental Engineering, University of Maryland, College Park, MD, 20742, USA.
| | - Janette M Harro
- Department of Microbial Pathogenesis, School of Dentistry, University of Maryland, Baltimore, MD, 21201, USA
| | - Birthe V Kjellerup
- Department of Civil and Environmental Engineering, University of Maryland, College Park, MD, 20742, USA
| |
Collapse
|
9
|
Glycan cross-feeding supports mutualism between Fusobacterium and the vaginal microbiota. PLoS Biol 2020; 18:e3000788. [PMID: 32841232 PMCID: PMC7447053 DOI: 10.1371/journal.pbio.3000788] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Accepted: 07/10/2020] [Indexed: 12/14/2022] Open
Abstract
Women with bacterial vaginosis (BV), an imbalance of the vaginal microbiome, are more likely to be colonized by potential pathogens such as Fusobacterium nucleatum, a bacterium linked with intrauterine infection and preterm birth. However, the conditions and mechanisms supporting pathogen colonization during vaginal dysbiosis remain obscure. We demonstrate that sialidase activity, a diagnostic feature of BV, promoted F. nucleatum foraging and growth on mammalian sialoglycans, a nutrient resource that was otherwise inaccessible because of the lack of endogenous F. nucleatum sialidase. In mice with sialidase-producing vaginal microbiotas, mutant F. nucleatum unable to consume sialic acids was impaired in vaginal colonization. These experiments in mice also led to the discovery that F. nucleatum may also “give back” to the community by reinforcing sialidase activity, a biochemical feature of human dysbiosis. Using human vaginal bacterial communities, we show that F. nucleatum supported robust outgrowth of Gardnerella vaginalis, a major sialidase producer and one of the most abundant organisms in BV. These results illustrate that mutually beneficial relationships between vaginal bacteria support pathogen colonization and may help maintain features of dysbiosis. These findings challenge the simplistic dogma that the mere absence of “healthy” lactobacilli is the sole mechanism that creates a permissive environment for pathogens during vaginal dysbiosis. Given the ubiquity of F. nucleatum in the human mouth, these studies also suggest a possible mechanism underlying links between vaginal dysbiosis and oral sex. Bacterial mutualism involving the prominent oral bacterium Fusobacterium nucleatum may drive vaginal dysbiosis in women and could help to explain the clinical correlations between vaginal dysbiosis and oral sex.
Collapse
|
10
|
Robinson LS, Schwebke J, Lewis WG, Lewis AL. Identification and characterization of NanH2 and NanH3, enzymes responsible for sialidase activity in the vaginal bacterium Gardnerella vaginalis. J Biol Chem 2019; 294:5230-5245. [PMID: 30723162 DOI: 10.1074/jbc.ra118.006221] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Revised: 01/29/2019] [Indexed: 11/06/2022] Open
Abstract
Gardnerella vaginalis is abundant in bacterial vaginosis (BV), a condition associated with adverse reproductive health. Sialidase activity is a diagnostic feature of BV and is produced by a subset of G. vaginalis strains. Although its genetic basis has not been formally identified, sialidase activity is presumed to derive from the sialidase A gene, named here nanH1 In this study, BLAST searches predicted two additional G. vaginalis sialidases, NanH2 and NanH3. When expressed in Escherichia coli, NanH2 and NanH3 both displayed broad abilities to cleave sialic acids from α2-3- and α2-6-linked N- and O-linked sialoglycans, including relevant mucosal substrates. In contrast, recombinant NanH1 had limited activity against synthetic and mucosal substrates under the conditions tested. Recombinant NanH2 was much more effective than NanH3 in cleaving sialic acids bearing a 9-O-acetyl ester. Similarly, G. vaginalis strains encoding NanH2 cleaved and foraged significantly more Neu5,9Ac2 than strains encoding only NanH3. Among a collection of 34 G. vaginalis isolates, nanH2, nanH3, or both were present in all 15 sialidase-positive strains but absent from all 19 sialidase-negative isolates, including 16 strains that were nanH1-positive. We conclude that NanH2 and NanH3 are the primary sources of sialidase activity in G. vaginalis and that these two enzymes can account for the previously described substrate breadth cleaved by sialidases in human vaginal specimens of women with BV. Finally, PCRs of nanH2 or nanH3 from human vaginal specimens had 81% sensitivity and 78% specificity in distinguishing between Lactobacillus dominance and BV, as determined by Nugent scoring.
Collapse
Affiliation(s)
- Lloyd S Robinson
- From the Departments of Molecular Microbiology and.,Center for Women's Infectious Disease Research, Washington University School of Medicine, St. Louis, Missouri 63110 and
| | - Jane Schwebke
- the Division of Infectious Diseases, University of Alabama, Birmingham, Alabama 35294
| | - Warren G Lewis
- From the Departments of Molecular Microbiology and.,Center for Women's Infectious Disease Research, Washington University School of Medicine, St. Louis, Missouri 63110 and
| | - Amanda L Lewis
- From the Departments of Molecular Microbiology and .,Center for Women's Infectious Disease Research, Washington University School of Medicine, St. Louis, Missouri 63110 and.,Obstetrics and Gynecology and
| |
Collapse
|
11
|
Dong J, Wei Y, Sun C, Tian Y, Hu J, Shi H, Zhang D, Lu M, Ye X. Interaction of Group B Streptococcus sialylated capsular polysaccharides with host Siglec-like molecules dampens the inflammatory response in tilapia. Mol Immunol 2018; 103:182-190. [PMID: 30291999 DOI: 10.1016/j.molimm.2018.09.014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Revised: 09/20/2018] [Accepted: 09/21/2018] [Indexed: 01/09/2023]
Abstract
Group B Streptococcus (GBS, S. agalactiae) infection in tilapia (Oreochromis niloticus) causes widespread death of this species and is a significant issue for the aquaculture industry. The major virulence factor for GBS is its sialylated capsular polysaccharides (CPs). These CPs interact with sialic acid-binding immunoglobulin-like lectins (Siglecs) on the host immune cells to regulate the downstream inflammatory response and evade detection. Previously, we cloned multiple Siglec-like molecules from an O. niloticus cDNA library, all of which were shown to interact with the sialylated CPs of GBS. In the present study, we investigated the effects of GBS infection on the expression of pro- and anti-inflammatory cytokines in O. niloticus as well as OnSiglec-like-transfected macrophage cells. Eukaryotic expression vectors containing full-length OnSiglec-1-like, -4b-like, -14-like were constructed and used to transfect RAW264 macrophages in vitro as well as live tilapia in vivo prior to GBS infection. The expression of the anti-inflammatory cytokine interleukin (IL)-10 and the pro-inflammatory cytokines tumor necrosis factor (TNF)-α, IL-6, and interferon (INF)-β were then analyzed by qPCR. Our results indicate that as infection progressed, IL-10 expression was significantly upregulated, while that of TNF-α and IL-6 were significantly downregulated in the OnSiglec-like-transfected cells. INF-β expression was also downregulated in cells transfected with OnSiglec-1-like and -4b-like, but was not significantly effected in OnSiglec-14-like-transfected cells. Notably, the magnitude of these cytokine expression changes was greatly decreased when a ΔneuA GBS mutant was used to infect the OnSiglec-1-like-transfected cells. In GBS-infected tilapia, IL-10 expression was significantly upregulated in all tissues, whereas INF-β expression in the spleen, kidney, and gills was significantly downregulated at 12 hpi. While the expression of TNF-α was slightly upregulated, this change was not significant. In GBS ΔneuA mutant-infected O. niloticus, IL-10 expression in all of the tissues was significantly lower than that observed for the wild-type GBS group, while TNF-α expression was higher in the mutant infected group. There was no significant difference in INF-β expression between the two groups. Taken together, sialylated CPs on GBS appear to interact with host OnSiglec-like molecules to transmit negative regulatory signals via enhanced anti-inflammatory cytokine IL-10 production and reduced pro-inflammatory cytokine production, ultimately leading to dampening of the host immune response. The results of this study further elucidate the molecular mechanism underlying GBS infection in tilapia and also provide candidate drug target molecules.
Collapse
Affiliation(s)
- Junjian Dong
- Key Laboratory of Tropical and Subtropical Fisheries Resource, Application and Cultivation, Ministry of Agriculture, Pearl River Fisheries Institute, Chinese Academy of Fishery Sciences, Guangzhou, 510380, China
| | - Yuanzheng Wei
- Guangdong Laboratory Animals Monitoring Institute, Guangzhou, 510663, China
| | - Chengfei Sun
- Key Laboratory of Tropical and Subtropical Fisheries Resource, Application and Cultivation, Ministry of Agriculture, Pearl River Fisheries Institute, Chinese Academy of Fishery Sciences, Guangzhou, 510380, China
| | - Yuanyuan Tian
- Key Laboratory of Tropical and Subtropical Fisheries Resource, Application and Cultivation, Ministry of Agriculture, Pearl River Fisheries Institute, Chinese Academy of Fishery Sciences, Guangzhou, 510380, China
| | - Jie Hu
- Key Laboratory of Tropical and Subtropical Fisheries Resource, Application and Cultivation, Ministry of Agriculture, Pearl River Fisheries Institute, Chinese Academy of Fishery Sciences, Guangzhou, 510380, China
| | - Hongya Shi
- Key Laboratory of Tropical and Subtropical Fisheries Resource, Application and Cultivation, Ministry of Agriculture, Pearl River Fisheries Institute, Chinese Academy of Fishery Sciences, Guangzhou, 510380, China; College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, 201306, China
| | - Dengfeng Zhang
- Key Laboratory of Tropical and Subtropical Fisheries Resource, Application and Cultivation, Ministry of Agriculture, Pearl River Fisheries Institute, Chinese Academy of Fishery Sciences, Guangzhou, 510380, China
| | - Maixin Lu
- Key Laboratory of Tropical and Subtropical Fisheries Resource, Application and Cultivation, Ministry of Agriculture, Pearl River Fisheries Institute, Chinese Academy of Fishery Sciences, Guangzhou, 510380, China; College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, 201306, China
| | - Xing Ye
- Key Laboratory of Tropical and Subtropical Fisheries Resource, Application and Cultivation, Ministry of Agriculture, Pearl River Fisheries Institute, Chinese Academy of Fishery Sciences, Guangzhou, 510380, China; College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, 201306, China.
| |
Collapse
|
12
|
Jeswin J, Joo MS, Jeong JM, Bae JS, Choi KM, Cho DH, Park SI, Park CI. The first report of siglec-3/CD33 gene in a teleost (rock bream, Oplegnathus fasciatus): An analysis of its spatial expression during stimulation to red seabream iridovirus (RSIV) and two bacterial pathogens. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2018; 84:117-122. [PMID: 29427600 DOI: 10.1016/j.dci.2018.02.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Revised: 02/06/2018] [Accepted: 02/06/2018] [Indexed: 06/08/2023]
Abstract
Siglec-3/CD33 is a myeloid-specific inhibitory receptor that is expressed on cells of the immune system, where it is believed to play a regulatory role, modulating the inflammatory and immune responses. We characterized CD33 (RbCD33) in rock bream which is a transmembrane protein with two IG-like domains and a cytoplasmic tail. It has a deduced amino acid sequence of 390 residues and has tyrosine-based signaling motifs in the cytoplasmic tail. The RbCD33 mRNA was highly expressed in peripheral blood leukocytes and was also detected in the muscle, spleen, skin, head kidney, gills, trunk kidney, heart, stomach, brain, intestine and liver by quantitative real-time PCR. A temporal variation in expression of RbCD33 was observed in different tissues after stimulating with E. tarda, S. iniae and red seabream iridovirus (RSIV). In the head kidney tissue, E. tarda and S. iniae induced RbCD33, while a down regulation was observed with RSIV. In addition, in spleen tissue, S. iniae caused a very high induction of RbCD33 in comparison with an E. tarda and RSIV challenge. In the liver and gill tissues, all three pathogens induced a high expression of RbCD33. The expression pattern in various tissues and its high induction after pathogen stimulation suggests that RbCD33 plays an important role in initiating the immune response via the inhibition of signal transduction of the myeloid lineage cells.
Collapse
Affiliation(s)
- Joseph Jeswin
- Department of Marine Biology & Aquaculture, College of Marine Science, Gyeongsang National University, Tongyeong, 53064, Republic of Korea
| | - Min-Soo Joo
- Department of Marine Biology & Aquaculture, College of Marine Science, Gyeongsang National University, Tongyeong, 53064, Republic of Korea
| | - Ji-Min Jeong
- Department of Marine Biology & Aquaculture, College of Marine Science, Gyeongsang National University, Tongyeong, 53064, Republic of Korea
| | - Jin-Sol Bae
- Department of Marine Biology & Aquaculture, College of Marine Science, Gyeongsang National University, Tongyeong, 53064, Republic of Korea
| | - Kwang-Min Choi
- Department of Marine Biology & Aquaculture, College of Marine Science, Gyeongsang National University, Tongyeong, 53064, Republic of Korea
| | - Dong-Hee Cho
- Department of Marine Biology & Aquaculture, College of Marine Science, Gyeongsang National University, Tongyeong, 53064, Republic of Korea
| | - Son-Il Park
- College of Veterinary Medicine and Institute of Veterinary Science, Kangwon National University, Chuncheon, 24341, Republic of Korea
| | - Chan-Il Park
- Department of Marine Biology & Aquaculture, College of Marine Science, Gyeongsang National University, Tongyeong, 53064, Republic of Korea.
| |
Collapse
|
13
|
Robinson LS, Lewis WG, Lewis AL. The sialate O-acetylesterase EstA from gut Bacteroidetes species enables sialidase-mediated cross-species foraging of 9- O-acetylated sialoglycans. J Biol Chem 2017; 292:11861-11872. [PMID: 28526748 PMCID: PMC5512079 DOI: 10.1074/jbc.m116.769232] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2016] [Revised: 05/18/2017] [Indexed: 12/16/2022] Open
Abstract
The gut harbors many symbiotic, commensal, and pathogenic microbes that break down and metabolize host carbohydrates. Sialic acids are prominent outermost carbohydrates on host glycoproteins called mucins and protect underlying glycan chains from enzymatic degradation. Sialidases produced by some members of the colonic microbiota can promote the expansion of several potential pathogens (e.g. Clostridium difficile, Salmonella, and Escherichia coli) that do not produce sialidases. O-Acetyl ester modifications of sialic acids help resist the action of many sialidases and are present at high levels in the mammalian colon. However, some gut bacteria, in turn, produce sialylate-O-acetylesterases to remove them. Here, we investigated O-acetyl ester removal and sialic acid degradation by Bacteroidetes sialate-O-acetylesterases and sialidases, respectively, and subsequent utilization of host sialic acids by both commensal and pathogenic E. coli strains. In vitro foraging studies demonstrated that sialidase-dependent E. coli growth on mucin is enabled by Bacteroides EstA, a sialate O-acetylesterase acting on glycosidically linked sialylate-O-acetylesterase substrates, particularly at neutral pH. Biochemical studies suggested that spontaneous migration of O-acetyl esters on the sialic acid side chain, which can occur at colonic pH, may serve as a switch controlling EstA-assisted sialic acid liberation. Specifically, EstA did not act on O-acetyl esters in their initial 7-position. However, following migration to the 9-position, glycans with O-acetyl esters became susceptible to the sequential actions of bacterial esterases and sialidases. We conclude that EstA specifically unlocks the nutritive potential of 9-O-acetylated mucus sialic acids for foraging by bacteria that otherwise are prevented from accessing this carbon source.
Collapse
Affiliation(s)
- Lloyd S Robinson
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri 63110
| | - Warren G Lewis
- Department of Medicine, Center for Women's Infectious Disease Research, Washington University School of Medicine, St. Louis, Missouri 63110.
| | - Amanda L Lewis
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri 63110.
| |
Collapse
|
14
|
Lewis AL, Robinson LS, Agarwal K, Lewis WG. Discovery and characterization of de novo sialic acid biosynthesis in the phylum Fusobacterium. Glycobiology 2016; 26:1107-1119. [PMID: 27613803 DOI: 10.1093/glycob/cww068] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2016] [Revised: 06/15/2016] [Accepted: 06/16/2016] [Indexed: 12/15/2022] Open
Abstract
Sialic acids are nine-carbon backbone carbohydrates found in prominent outermost positions of glycosylated molecules in mammals. Mimicry of sialic acid (N-acetylneuraminic acid, Neu5Ac) enables some pathogenic bacteria to evade host defenses. Fusobacterium nucleatum is a ubiquitous oral bacterium also linked with invasive infections throughout the body. We employed multidisciplinary approaches to test predictions that F. nucleatum engages in de novo synthesis of sialic acids. Here we show that F. nucleatum sbsp. polymorphum ATCC10953 NeuB (putative Neu5Ac synthase) restores Neu5Ac synthesis to an Escherichia coli neuB mutant. Moreover, purified F. nucleatum NeuB participated in synthesis of Neu5Ac from N-acetylmannosamine and phosphoenolpyruvate in vitro Further studies support the interpretation that F. nucleatum ATCC10953 NeuA encodes a functional CMP-sialic acid synthetase and suggest that it may also contain a C-terminal sialic acid O-acetylesterase. We also performed BLAST queries of F. nucleatum genomes, revealing that only 4/31 strains encode a complete pathway for de novo Neu5Ac synthesis. Biochemical studies including mass spectrometry were consistent with the bioinformatic predictions, showing that F. nucleatum ATCC10953 synthesizes high levels of Neu5Ac, whereas ATCC23726 and ATCC25586 do not express detectable levels above background. While there are a number of examples of sialic acid mimicry in other phyla, these experiments provide the first biochemical and genetic evidence that a member of the phylum Fusobacterium can engage in de novo Neu5Ac synthesis.
Collapse
Affiliation(s)
- Amanda L Lewis
- Department of Molecular Microbiology .,Department of Obstetrics and Gynecology
| | | | | | - Warren G Lewis
- Department of Medicine, Center for Women's Infectious Disease Research, 660 South Euclid Ave, Washington University School of Medicine, St. Louis, MO, USA
| |
Collapse
|
15
|
Liu C, Jiang S, Wang M, Wang L, Chen H, Xu J, Lv Z, Song L. A novel siglec (CgSiglec-1) from the Pacific oyster (Crassostrea gigas) with broad recognition spectrum and inhibitory activity to apoptosis, phagocytosis and cytokine release. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2016; 61:136-144. [PMID: 27032602 DOI: 10.1016/j.dci.2016.03.026] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Revised: 02/24/2016] [Accepted: 03/24/2016] [Indexed: 06/05/2023]
Abstract
Sialic acid binding immunoglobulin-type lectin (siglec) belongs to the immunoglobulin superfamily (IgSF), which acts as regulator involved in glycan recognition and signal transduction in the immune and nervous systems. In the present study, a siglec gene (designated CgSiglec-1) was characterized from the Pacific oyster, Crassostrea gigas. The cDNA of CgSiglec-1 was of 1251 bp encoding a predicted polypeptide of 416 amino acids. CgSiglec-1 was composed of two I-set immunoglobulin (Ig) domains, one transmembrane (TM) domain and two ITIM motifs, sharing a sequence similarity with vertebrate CD22 homologs. The mRNA expression of CgSiglec-1 could be detected in all the selected tissues, with the highest level in hemocytes and labial palps. The confocal analysis revealed that CgSiglec-1 mainly distributed on the cytoplasmic membrane of the oyster hemocytes. In addition, the mRNA transcripts of CgSiglec-1 in hemocytes increased significantly (4.29-fold to that of control group, p < 0.05) after Vibrio splendidus stimulation. The recombinant CgSiglec-1 protein (rCgSiglec-1) could bind to poly sialic acid (pSIAS), lipopolysaccharides (LPS) and peptidoglycan (PGN) in a dose-dependent manner. The blockade of CgSiglec-1 by specific polyclonal antibodies could enhance the LPS-induced cell apoptosis, phagocytosis towards V. splendidus and the release of cytokines, such as CgTNF-1, CgIFNLP and CgIL-17. The results collectively indicated that CgSiglec-1 could act as a bridge molecule between invader recognition and signal transduction cascade, and modulate the immune response by inhibiting various important processes of immunity in oyster.
Collapse
Affiliation(s)
- Conghui Liu
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shuai Jiang
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
| | - Mengqiang Wang
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
| | - Lingling Wang
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
| | - Hao Chen
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jiachao Xu
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhao Lv
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Linsheng Song
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture, Dalian Ocean University, Dalian 116023, China.
| |
Collapse
|
16
|
Sellmeier M, Weinhold B, Münster-Kühnel A. CMP-Sialic Acid Synthetase: The Point of Constriction in the Sialylation Pathway. Top Curr Chem (Cham) 2015; 366:139-67. [PMID: 24141690 DOI: 10.1007/128_2013_477] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Sialoglycoconjugates form the outermost layer of animal cells and play a crucial role in cellular communication processes. An essential step in the biosynthesis of sialylated glycoconjugates is the activation of sialic acid to the monophosphate diester CMP-sialic acid. Only the activated sugar is transported into the Golgi apparatus and serves as a substrate for the linkage-specific sialyltransferases. Interference with sugar activation abolishes sialylation and is embryonic lethal in mammals. In this chapter we focus on the enzyme catalyzing the activation of sialic acid, the CMP-sialic acid synthetase (CMAS), and compare the enzymatic properties of CMASs isolated from different species. Information concerning the reaction mechanism and active site architecture is included. Moreover, the unusual nuclear localization of vertebrate CMASs as well as the biotechnological application of bacterial CMAS enzymes is addressed.
Collapse
Affiliation(s)
- Melanie Sellmeier
- Institute for Cellular Chemistry, Hannover Medical School (MHH), Hannover, 30625, Germany
| | | | | |
Collapse
|
17
|
Whitfield GB, Marmont LS, Howell PL. Enzymatic modifications of exopolysaccharides enhance bacterial persistence. Front Microbiol 2015; 6:471. [PMID: 26029200 PMCID: PMC4432689 DOI: 10.3389/fmicb.2015.00471] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2015] [Accepted: 04/29/2015] [Indexed: 12/25/2022] Open
Abstract
Biofilms are surface-attached communities of bacterial cells embedded in a self-produced matrix that are found ubiquitously in nature. The biofilm matrix is composed of various extracellular polymeric substances, which confer advantages to the encapsulated bacteria by protecting them from eradication. The matrix composition varies between species and is dependent on the environmental niche that the bacteria inhabit. Exopolysaccharides (EPS) play a variety of important roles in biofilm formation in numerous bacterial species. The ability of bacteria to thrive in a broad range of environmental settings is reflected in part by the structural diversity of the EPS produced both within individual bacterial strains as well as by different species. This variability is achieved through polymerization of distinct sugar moieties into homo- or hetero-polymers, as well as post-polymerization modification of the polysaccharide. Specific enzymes that are unique to the production of each polymer can transfer or remove non-carbohydrate moieties, or in other cases, epimerize the sugar units. These modifications alter the physicochemical properties of the polymer, which in turn can affect bacterial pathogenicity, virulence, and environmental adaptability. Herein, we review the diversity of modifications that the EPS alginate, the Pel polysaccharide, Vibrio polysaccharide, cepacian, glycosaminoglycans, and poly-N-acetyl-glucosamine undergo during biosynthesis. These are EPS produced by human pathogenic bacteria for which studies have begun to unravel the effect modifications have on their physicochemical and biological properties. The biological advantages these polymer modifications confer to the bacteria that produce them will be discussed. The expanding list of identified modifications will allow future efforts to focus on linking these modifications to specific biosynthetic genes and biofilm phenotypes.
Collapse
Affiliation(s)
- Gregory B Whitfield
- Program in Molecular Structure and Function, Research Institute, The Hospital for Sick Children Toronto, ON, Canada ; Department of Biochemistry, Faculty of Medicine, University of Toronto Toronto, ON, Canada
| | - Lindsey S Marmont
- Program in Molecular Structure and Function, Research Institute, The Hospital for Sick Children Toronto, ON, Canada ; Department of Biochemistry, Faculty of Medicine, University of Toronto Toronto, ON, Canada
| | - P Lynne Howell
- Program in Molecular Structure and Function, Research Institute, The Hospital for Sick Children Toronto, ON, Canada ; Department of Biochemistry, Faculty of Medicine, University of Toronto Toronto, ON, Canada
| |
Collapse
|
18
|
Berg TO, Gurung MK, Altermark B, Smalås AO, Ræder ILU. Characterization of the N-acetylneuraminic acid synthase (NeuB) from the psychrophilic fish pathogen Moritella viscosa. Carbohydr Res 2015; 402:133-45. [DOI: 10.1016/j.carres.2014.10.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2014] [Revised: 09/23/2014] [Accepted: 10/14/2014] [Indexed: 02/04/2023]
|
19
|
Kline KA, Schwartz DJ, Gilbert NM, Lewis AL. Impact of host age and parity on susceptibility to severe urinary tract infection in a murine model. PLoS One 2014; 9:e97798. [PMID: 24835885 PMCID: PMC4024022 DOI: 10.1371/journal.pone.0097798] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2013] [Accepted: 04/24/2014] [Indexed: 01/04/2023] Open
Abstract
The epidemiology and bacteriology of urinary tract infection (UTI) varies across the human lifespan, but the reasons for these differences are poorly understood. Using established monomicrobial and polymicrobial murine UTI models caused by uropathogenic Escherichia coli (UPEC) and/or Group B Streptococcus (GBS), we demonstrate age and parity as inter-related factors contributing to UTI susceptibility. Young nulliparous animals exhibited 10–100-fold higher bacterial titers compared to older animals. In contrast, multiparity was associated with more severe acute cystitis in older animals compared to age-matched nulliparous controls, particularly in the context of polymicrobial infection where UPEC titers were ∼1000-fold higher in the multiparous compared to the nulliparous host. Multiparity was also associated with significantly increased risk of chronic high titer UPEC cystitis and ascending pyelonephritis. Further evidence is provided that the increased UPEC load in multiparous animals required TLR4-signaling. Together, these data strongly suggest that the experience of childbearing fundamentally and permanently changes the urinary tract and its response to pathogens in a manner that increases susceptibility to severe UTI. Moreover, this murine model provides a system for dissecting these and other lifespan-associated risk factors contributing to severe UTI in at-risk groups.
Collapse
Affiliation(s)
- Kimberly A. Kline
- Singapore Centre on Environmental Life Sciences Engineering, School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
- Department of Molecular Microbiology, Center for Women’s Infectious Disease Research, Washington University School of Medicine, St. Louis, Missouri, United States of America
- * E-mail: (KK); (AL)
| | - Drew J. Schwartz
- Department of Molecular Microbiology, Center for Women’s Infectious Disease Research, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Nicole M. Gilbert
- Department of Molecular Microbiology, Center for Women’s Infectious Disease Research, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Amanda L. Lewis
- Department of Molecular Microbiology, Center for Women’s Infectious Disease Research, Washington University School of Medicine, St. Louis, Missouri, United States of America
- * E-mail: (KK); (AL)
| |
Collapse
|
20
|
Deng L, Chen X, Varki A. Exploration of sialic acid diversity and biology using sialoglycan microarrays. Biopolymers 2013; 99:650-65. [PMID: 23765393 PMCID: PMC7161822 DOI: 10.1002/bip.22314] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2013] [Accepted: 06/04/2013] [Indexed: 12/13/2022]
Abstract
Sialic acids (Sias) are a group of α-keto acids with a nine-carbon backbone, which display many types of modifications in nature. The diversity of natural Sia presentations is magnified by a variety of glycosidic linkages to underlying glycans, the sequences and classes of such glycans, as well as the spatial organization of Sias with their surroundings. This diversity is closely linked to the numerous and varied biological functions of Sias. Relatively large libraries of natural and unnatural Sias have recently been chemically/chemoenzymatically synthesized and/or isolated from natural sources. The resulting sialoglycan microarrays have proved to be valuable tools for the exploration of diversity and biology of Sias. Here we provide an overview of Sia diversity in nature, the approaches used to generate sialoglycan microarrays, and the achievements and challenges arising.
Collapse
Affiliation(s)
- Lingquan Deng
- Departments of Medicine and Cellular & Molecular MedicineGlycobiology Research and Training Center, University of CaliforniaSan Diego, La JollaCA92093‐0687
| | - Xi Chen
- Department of ChemistryUniversity of CaliforniaDavisCA95616
| | - Ajit Varki
- Departments of Medicine and Cellular & Molecular MedicineGlycobiology Research and Training Center, University of CaliforniaSan Diego, La JollaCA92093‐0687
| |
Collapse
|
21
|
Lewis WG, Robinson LS, Gilbert NM, Perry JC, Lewis AL. Degradation, foraging, and depletion of mucus sialoglycans by the vagina-adapted Actinobacterium Gardnerella vaginalis. J Biol Chem 2013; 288:12067-79. [PMID: 23479734 DOI: 10.1074/jbc.m113.453654] [Citation(s) in RCA: 114] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Bacterial vaginosis (BV) is a polymicrobial imbalance of the vaginal microbiota associated with reproductive infections, preterm birth, and other adverse health outcomes. Sialidase activity in vaginal fluids is diagnostic of BV and sialic acid-rich components of mucus have protective and immunological roles. However, whereas mucus degradation is believed to be important in the etiology and complications associated with BV, the role(s) of sialidases and the participation of individual bacterial species in the degradation of mucus barriers in BV have not been investigated. Here we demonstrate that the BV-associated bacterium Gardnerella vaginalis uses sialidase to break down and deplete sialic acid-containing mucus components in the vagina. Biochemical evidence using purified sialoglycan substrates supports a model in which 1) G. vaginalis extracellular sialidase hydrolyzes mucosal sialoglycans, 2) liberated sialic acid (N-acetylneuraminic acid) is transported into the bacterium, a process inhibited by excess N-glycolylneuraminic acid, and 3) sialic acid catabolism is initiated by an intracellular aldolase/lyase mechanism. G. vaginalis engaged in sialoglycan foraging in vitro, in the presence of human vaginal mucus, and in vivo, in a murine vaginal model, in each case leading to depletion of sialic acids. Comparison of sialic acid levels in human vaginal specimens also demonstrated significant depletion of mucus sialic acids in women with BV compared with women with a "normal" lactobacilli-dominated microbiota. Taken together, these studies show that G. vaginalis utilizes sialidase to support the degradation, foraging, and depletion of protective host mucus barriers, and that this process of mucus barrier degradation and depletion also occurs in the clinical setting of BV.
Collapse
Affiliation(s)
- Warren G Lewis
- Departments of Medicine, Washington University School of Medicine, St Louis, Missouri 63110, USA.
| | | | | | | | | |
Collapse
|
22
|
Gurung MK, Ræder ILU, Altermark B, Smalås AO. Characterization of the sialic acid synthase from Aliivibrio salmonicida suggests a novel pathway for bacterial synthesis of 7-O-acetylated sialic acids. Glycobiology 2013; 23:806-19. [PMID: 23481098 DOI: 10.1093/glycob/cwt018] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Resolving the enzymatic pathways leading to sialic acids (Sias) in bacteria are vitally important for understanding their roles in pathogenesis and for subsequent development of tools to combat infections. A detailed characterization of the involved enzymes is also essential due to the highly applicable properties of Sias, i.e., as used in a wide range of medical applications and human nutrition. Bacterial strains that produce Sias display them mainly on their cell surface to mimic animal cells thereby evading the host's immune system. Despite several studies, little is known about the virulence mechanisms of the fish pathogen Aliivibrio salmonicida. The genome of A. salmonicida LFI1238 contains a gene cluster homologous to the Escherichia coli neuraminic acid (Neu) gene cluster involved in biosynthesis of Sias found in the E. coli capsule. This cluster is probably responsible for the biosynthesis of Neu found in A. salmonicida. In this work, we have produced and characterized the sialic acid (Sia) synthase NeuB1, the key enzyme in the pathway. The Sia synthase is an enzyme producing N-acetylneuraminic acid by the condensation of N-acetylmannosamine and phosphoenolpyruvate. Genome content, kinetic data obtained, together with structural considerations, have led us to the prediction that the substrate for NeuB1 from A. salmonicida, E. coli and Streptococcus agalactiae among others, is 4-O-acetyl-N-acetylmannosamine. This means that the product of its enzymatic reaction is 7-O-acetyl-N-acetylneuraminic acid. We propose a pathway for production of this Sia in A. salmonicida, and present evidence for the presence of diacetylated Neu in the bacterium.
Collapse
Affiliation(s)
- Man K Gurung
- Department of Chemistry, The Norwegian Structural Biology Center NorStruct, University of Tromsø, N-9037 Tromsø, Norway
| | | | | | | |
Collapse
|
23
|
Attenuation of Streptococcus suis virulence by the alteration of bacterial surface architecture. Sci Rep 2012; 2:710. [PMID: 23050094 PMCID: PMC3464449 DOI: 10.1038/srep00710] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2012] [Accepted: 09/14/2012] [Indexed: 01/09/2023] Open
Abstract
NeuB, a sialic acid synthase catalyzes the last committed step of the de novo biosynthetic pathway of sialic acid, a major element of bacterial surface structure. Here we report a functional NeuB homologue of Streptococcus suis, a zoonotic agent, and systematically address its molecular and immunological role in bacterial virulence. Disruption of neuB led to thinner capsules and more susceptibility to pH, and cps2B inactivation resulted in complete absence of capsular polysaccharides. These two mutants both exhibited increased adhesion and invasion to Hep-2 cells and improved sensibility to phagocytosis. Not only do they retain the capability of inducing the release of host pro-inflammatory cytokines, but also result in the faster secretion of IL-8. Easier cleaning up of the mutant strains in whole blood is consistent with virulence attenuation seen with experimental infections of both mice and SPF-piglets. Therefore we concluded that altered architecture of S. suis surface attenuates its virulence.
Collapse
|
24
|
Immune modulation by group B Streptococcus influences host susceptibility to urinary tract infection by uropathogenic Escherichia coli. Infect Immun 2012; 80:4186-94. [PMID: 22988014 DOI: 10.1128/iai.00684-12] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Urinary tract infection (UTI) is most often caused by uropathogenic Escherichia coli (UPEC). UPEC inoculation into the female urinary tract (UT) can occur through physical activities that expose the UT to an inherently polymicrobial periurethral, vaginal, or gastrointestinal flora. We report that a common urogenital inhabitant and opportunistic pathogen, group B Streptococcus (GBS), when present at the time of UPEC exposure, undergoes rapid UPEC-dependent exclusion from the murine urinary tract, yet it influences acute UPEC-host interactions and alters host susceptibility to persistent outcomes of bladder and kidney infection. GBS presence results in increased UPEC titers in the bladder lumen during acute infection and reduced inflammatory responses of murine macrophages to live UPEC or purified lipopolysaccharide (LPS), phenotypes that require GBS mimicry of host sialic acid residues. Taken together, these studies suggest that despite low titers, the presence of GBS at the time of polymicrobial UT exposure may be an overlooked risk factor for chronic pyelonephritis and recurrent UTI in susceptible groups, even if it is outcompeted and thus absent by the time of diagnosis.
Collapse
|
25
|
Sialic acid metabolism and sialyltransferases: natural functions and applications. Appl Microbiol Biotechnol 2012; 94:887-905. [PMID: 22526796 DOI: 10.1007/s00253-012-4040-1] [Citation(s) in RCA: 210] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2012] [Revised: 03/16/2012] [Accepted: 03/16/2012] [Indexed: 12/17/2022]
Abstract
Sialic acids are a family of negatively charged monosaccharides which are commonly presented as the terminal residues in glycans of the glycoconjugates on eukaryotic cell surface or as components of capsular polysaccharides or lipooligosaccharides of some pathogenic bacteria. Due to their important biological and pathological functions, the biosynthesis, activation, transfer, breaking down, and recycle of sialic acids are attracting increasing attention. The understanding of the sialic acid metabolism in eukaryotes and bacteria leads to the development of metabolic engineering approaches for elucidating the important functions of sialic acid in mammalian systems and for large-scale production of sialosides using engineered bacterial cells. As the key enzymes in biosynthesis of sialylated structures, sialyltransferases have been continuously identified from various sources and characterized. Protein crystal structures of seven sialyltransferases have been reported. Wild-type sialyltransferases and their mutants have been applied with or without other sialoside biosynthetic enzymes for producing complex sialic acid-containing oligosaccharides and glycoconjugates. This mini-review focuses on current understanding and applications of sialic acid metabolism and sialyltransferases.
Collapse
|
26
|
Abstract
Sialic acids have a pivotal functional impact in many biological interactions such as virus attachment, cellular adhesion, regulation of proliferation, and apoptosis. A common modification of sialic acids is O-acetylation. O-Acetylated sialic acids occur in bacteria and parasites and are also receptor determinants for a number of viruses. Moreover, they have important functions in embryogenesis, development, and immunological processes. O-Acetylated sialic acids represent cancer markers, as shown for acute lymphoblastic leukemia, and they are known to play significant roles in the regulation of ganglioside-mediated apoptosis. Expression of O-acetylated sialoglycans is regulated by sialic acid-specific O-acetyltransferases and O-acetylesterases. Recent developments in the identification of the enigmatic sialic acid-specific O-acetyltransferase are discussed.
Collapse
Affiliation(s)
- Chitra Mandal
- Cancer and Cell Biology, Council of Scientific and Industrial Research - Indian Institute of Chemical Biology, 4 Raja S.C. Mallick Road, Kolkata, 700 032 India
| | - Reinhard Schwartz-Albiez
- Department of Translational Immunology, German Cancer Research Center, 69120 Heidelberg, Germany
| | - Reinhard Vlasak
- Department of Molecular Biology, University Salzburg, Billrothstr 11, 5020 Salzburg, Austria
| |
Collapse
|
27
|
Segura M. Fisher scientific award lecture - the capsular polysaccharides of Group B Streptococcus and Streptococcus suis differently modulate bacterial interactions with dendritic cells. Can J Microbiol 2012; 58:249-60. [PMID: 22356626 DOI: 10.1139/w2012-003] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Infections with encapsulated bacteria cause serious clinical problems. Besides being poorly immunogenic, the bacterial capsular polysaccharide (CPS) cloaks antigenic proteins, allowing bacterial evasion of the host immune system. Despite the clinical significance of bacterial CPS and its suggested role in the pathogenesis of the infection, the mechanisms underlying innate and, critically, adaptive immune responses to encapsulated bacteria have not been fully elucidated. As such, we became interested in studying the CPS of two similar, but unique, streptococcal species: Group B Streptococcus (GBS) and Streptococcus suis . Both streptococci are well encapsulated, some capsular types are more virulent than others, and they can cause severe meningitis and septicemia. For both pathogens, the CPS is considered the major virulence factor. Finally, these two streptococci are the sole Gram-positive bacteria possessing sialic acid in their capsules. GBS type III is a leading cause of neonatal invasive infections. Streptococcus suis type 2 is an important swine and emerging zoonotic pathogen in humans. We recently characterized the S. suis type 2 CPS. It shares common structural elements with GBS, but sialic acid is α2,6-linked to galactose rather than α2,3-linked. Differential sialic acid expression by pathogens might result in modulation of immune cell activation and, consequently, may affect the immuno-pathogenesis of these bacterial infections. Here, we review and compare the interactions of these two sialylated encapsulated bacteria with dendritic cells, known as the most potent antigen-presenting cells linking innate and adaptive immunity. We further address differences between dendritic cells and professional phagocytes, such as macrophages and neutrophils, in their interplay with these encapsulated pathogens. Elucidation of the molecular and cellular basis of the impact of CPS composition on bacterial interactions with immune cells is critical for mechanistic understanding of anti-CPS responses. Knowledge generated will help to advance the development of novel, more effective anti-CPS vaccines and improved immunotherapies.
Collapse
Affiliation(s)
- Mariela Segura
- Laboratory of Immunology, Department of Pathology and Microbiology, Faculty of Veterinary Medicine, Université de Montréal, 3200 rue Sicotte, St-Hyacinthe, QC J2S 2M2, Canada.
| |
Collapse
|
28
|
Abstract
Sialic acids, also known as neuraminic acids, are a family of negatively charged α-keto acids with a nine-carbon backbone. These unique sugars have been found at the termini of many glycan chains of vertebrate cell surface, which play pivotal roles in mediating or modulating a variety of physiological and pathological processes. This brief review covers general approaches for synthesizing sialic acid containing structures. Recently developed synthetic methods along with structural diversities and biological functions of sialic acid are discussed.
Collapse
Affiliation(s)
- Hongzhi Cao
- National Glycoengineering Research Center, Shandong University, Jinan, Shandong 250012, P. R. China
| | - Xi Chen
- Department of Chemistry, University of California-Davis, One Shields Avenue, CA 95616, USA
| |
Collapse
|
29
|
Ho JY, Lin TL, Li CY, Lee A, Cheng AN, Chen MC, Wu SH, Wang JT, Li TL, Tsai MD. Functions of some capsular polysaccharide biosynthetic genes in Klebsiella pneumoniae NTUH K-2044. PLoS One 2011; 6:e21664. [PMID: 21765903 PMCID: PMC3134468 DOI: 10.1371/journal.pone.0021664] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2011] [Accepted: 06/05/2011] [Indexed: 11/24/2022] Open
Abstract
The growing number of Klebsiella pneumoniae infections, commonly acquired in hospitals, has drawn great concern. It has been shown that the K1 and K2 capsular serotypes are the most detrimental strains, particularly to those with diabetes. The K1 cps (capsular polysaccharide) locus in the NTUH-2044 strain of the pyogenic liver abscess (PLA) K. pneumoniae has been identified recently, but little is known about the functions of the genes therein. Here we report characterization of a group of cps genes and their roles in the pathogenesis of K1 K. pneumoniae. By sequential gene deletion, the cps gene cluster was first re-delimited between genes galF and ugd, which serve as up- and down-stream ends, respectively. Eight gene products were characterized in vitro and in vivo to be involved in the syntheses of UDP-glucose, UDP-glucuronic acid and GDP-fucose building units. Twelve genes were identified as virulence factors based on the observation that their deletion mutants became avirulent or lost K1 antigenicity. Furthermore, deletion of kp3706, kp3709 or kp3712 (ΔwcaI, ΔwcaG or Δatf, respectively), which are all involved in fucose biosynthesis, led to a broad range of transcriptional suppression for 52 upstream genes. The genes suppressed include those coding for unknown regulatory membrane proteins and six multidrug efflux system proteins, as well as proteins required for the K1 CPS biosynthesis. In support of the suppression of multidrug efflux genes, we showed that these three mutants became more sensitive to antibiotics. Taken together, the results suggest that kp3706, kp3709 or kp3712 genes are strongly related to the pathogenesis of K. pneumoniae K1.
Collapse
Affiliation(s)
- Jin-Yuan Ho
- Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan
- Genomics Research Center, Academia Sinica, Taipei, Taiwan
- Chemical Biology and Molecular Biophysics Program, Taiwan International Graduate Program, Institute of Biochemistry, Academia Sinica, Taipei, Taiwan
- Institute of Biochemical Science, National Taiwan University, Taipei, Taiwan
| | - Tzu-Lung Lin
- Department of Microbiology, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Chun-Yen Li
- Genomics Research Center, Academia Sinica, Taipei, Taiwan
| | - Arwen Lee
- Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan
- Genomics Research Center, Academia Sinica, Taipei, Taiwan
| | - An-Ning Cheng
- Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan
- Institute of Bioinformatics and Structure Biology, National Tsing Hua University, Hsinchu, Taiwan
| | - Ming-Chuan Chen
- Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan
- Genomics Research Center, Academia Sinica, Taipei, Taiwan
| | - Shih-Hsiung Wu
- Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan
| | - Jin-Town Wang
- Department of Microbiology, National Taiwan University College of Medicine, Taipei, Taiwan
- Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
- * E-mail: (JW); (TL); (MT)
| | - Tsung-Lin Li
- Genomics Research Center, Academia Sinica, Taipei, Taiwan
- Chemical Biology and Molecular Biophysics Program, Taiwan International Graduate Program, Institute of Biochemistry, Academia Sinica, Taipei, Taiwan
- * E-mail: (JW); (TL); (MT)
| | - Ming-Daw Tsai
- Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan
- Genomics Research Center, Academia Sinica, Taipei, Taiwan
- Chemical Biology and Molecular Biophysics Program, Taiwan International Graduate Program, Institute of Biochemistry, Academia Sinica, Taipei, Taiwan
- Institute of Biochemical Science, National Taiwan University, Taipei, Taiwan
- * E-mail: (JW); (TL); (MT)
| |
Collapse
|
30
|
NeuA O-acetylesterase activity is specific for CMP-activated O-acetyl sialic acid in Streptococcus suis serotype 2. Biochem Biophys Res Commun 2011; 410:212-7. [DOI: 10.1016/j.bbrc.2011.05.092] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2011] [Accepted: 05/15/2011] [Indexed: 11/17/2022]
|
31
|
Knirel YA, Shevelev SD, Perepelov AV. Higher aldulosonic acids: components of bacterial glycans. MENDELEEV COMMUNICATIONS 2011. [DOI: 10.1016/j.mencom.2011.07.001] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
32
|
Immune activation and suppression by group B streptococcus in a murine model of urinary tract infection. Infect Immun 2011; 79:3588-95. [PMID: 21690238 DOI: 10.1128/iai.00122-11] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Group B streptococcus (GBS) is a common commensal of the gastrointestinal and vaginal mucosa and a leading cause of serious infections in newborns, the elderly, and immunocompromised populations. GBS also causes infections of the urinary tract. However, little is known about host responses to GBS urinary tract infection (UTI) or GBS virulence factors that participate in UTI. Here we describe a novel murine model of GBS UTI that may explain some features of GBS urinary tract association in the human host. We observed high titers and heightened histological signs of inflammation and leukocyte recruitment in the GBS-infected kidney. However, extensive inflammation and leukocyte recruitment were not observed in the bladder, suggesting that GBS may suppress bladder inflammation during cystitis. Acute GBS infection induced the localized expression of proinflammatory cytokines interleukin-1α (IL-1α), macrophage inflammatory protein-1α (MIP-1α), MIP-1β, and IL-9, as well as IL-10, more commonly considered an anti-inflammatory cytokine. Using isogenic GBS strains with different capsule structures, we show that capsular sialic acid residues contribute to GBS urinary tract pathogenesis, while high levels of sialic acid O-acetylation attenuate GBS pathogenesis in the setting of UTI, particularly in direct competition experiments. In vitro studies demonstrated that GBS sialic acids participate in the suppression of murine polymorphonuclear leukocyte (PMN) bactericidal activities, in addition to reducing levels of IL-1α, tumor necrosis factor alpha, IL-1β, MIP-1α, and KC produced by PMNs. These studies define several basic molecular and cellular events characterizing GBS UTI in an animal model, showing that GBS participates simultaneously in the activation and suppression of host immune responses in the urinary tract.
Collapse
|
33
|
Rangarajan ES, Ruane KM, Proteau A, Schrag JD, Valladares R, Gonzalez CF, Gilbert M, Yakunin AF, Cygler M. Structural and enzymatic characterization of NanS (YjhS), a 9-O-Acetyl N-acetylneuraminic acid esterase from Escherichia coli O157:H7. Protein Sci 2011; 20:1208-19. [PMID: 21557376 DOI: 10.1002/pro.649] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2010] [Revised: 04/15/2011] [Accepted: 04/18/2011] [Indexed: 11/08/2022]
Abstract
There is a high prevalence of sialic acid in a number of different organisms, resulting in there being a myriad of different enzymes that can exploit it as a fermentable carbon source. One such enzyme is NanS, a carbohydrate esterase that we show here deacetylates the 9 position of 9-O-sialic acid so that it can be readily transported into the cell for catabolism. Through structural studies, we show that NanS adopts a SGNH hydrolase fold. Although the backbone of the structure is similar to previously characterized family members, sequence comparisons indicate that this family can be further subdivided into two subfamilies with somewhat different fingerprints. NanS is the founding member of group II. Its catalytic center contains Ser19 and His301 but no Asp/Glu is present to form the classical catalytic triad. The contribution of Ser19 and His301 to catalysis was confirmed by mutagenesis. In addition to structural characterization, we have mapped the specificity of NanS using a battery of substrates.
Collapse
|
34
|
Weiman S, Uchiyama S, Lin FYC, Chaffin D, Varki A, Nizet V, Lewis AL. O-Acetylation of sialic acid on Group B Streptococcus inhibits neutrophil suppression and virulence. Biochem J 2010; 428:163-8. [PMID: 20334627 PMCID: PMC3640289 DOI: 10.1042/bj20100232] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
GBS (Group B Streptococcus) requires capsular Sia (sialic acid) for virulence and partially modifies this sugar by O-acetylation. In the present paper we describe serotype-specific patterns of GBS Sia O-acetylation that can be manipulated by genetic and biochemical means. In vitro and in vivo assays demonstrate that this subtle modification attenuates GBS Sia-mediated neutrophil suppression and animal virulence.
Collapse
Affiliation(s)
- Shannon Weiman
- Department of Pediatrics, Glycobiology Research and Training Center, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA 92093-0687, U.S.A
| | | | | | | | | | | | | |
Collapse
|
35
|
Kulkarni AA, Weiss AA, Iyer SS. Glycan-based high-affinity ligands for toxins and pathogen receptors. Med Res Rev 2010; 30:327-93. [DOI: 10.1002/med.20196] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
36
|
Srinivasan GV, Schauer R. Assays of sialate-O-acetyltransferases and sialate-O-acetylesterases. Glycoconj J 2009; 26:935-44. [PMID: 18566887 DOI: 10.1007/s10719-008-9131-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2008] [Revised: 03/20/2008] [Accepted: 03/26/2008] [Indexed: 10/21/2022]
Abstract
The O-acetylation of sialic acids is one of the most frequent modifications of these monosaccharides and modulates many cell biological and pathological events. Sialic acid-specific O-acetyltransferases and O-acetylesterases are responsible for the metabolism of esterified sialic acids. Assays were developed for the analysis of the activities and specificities of these enzymes. The methods had to be varied in dependence on the substrate assayed, the kind of biological source, and the state of enzyme purity. With the new techniques the primary site of O-acetyl incorporation at C-7, catalyzed by the animal sialate-O-acetyltransferases studied, was ascertained. Correspondingly, this enzyme, for example from bovine submandibular gland, can be denominated as AcCoA:sialate-7-O-acetyltransferase (EC 2.3.1.45). Methods for assaying the activity of esterases de-O-acetylating sialic acids and their metabolic cooperation with the O-acetyltransferases are presented.
Collapse
Affiliation(s)
- G Vinayaga Srinivasan
- Biochemisches Institut, Christian-Albrechts-Universität, Olshausenstr. 40, 24098 Kiel, Germany
| | | |
Collapse
|
37
|
Demendi M, Creuzenet C. Cj1123c (PglD), a multifaceted acetyltransferase from Campylobacter jejuni. Biochem Cell Biol 2009; 87:469-83. [PMID: 19448740 DOI: 10.1139/o09-002] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Campylobacter jejuni produces both N- and O-glycosylated proteins. Because protein glycosylation contributes to bacterial virulence, a thorough characterization of the enzymes involved in protein glycosylation is warranted to assess their potential use as therapeutic targets and as glyco-engineering tools. We performed a detailed biochemical analysis of the molecular determinants of the substrate and acyl-donor specificities of Cj1123c (also known as PglD), an acetyltransferase of the HexAT superfamily involved in N-glycosylation of proteins. We show that Cj1123c has acetyl-CoA-dependent N-acetyltransferase activity not only on the UDP-4-amino-4,6-dideoxy-GlcNAc intermediate of the N-glycosylation pathway but also on the UDP-4-amino-4,6-dideoxy-AltNAc intermediate of the O-glycosylation pathway, implying functional redundancy between both pathways. We further demonstrate that, despite its somewhat relaxed substrate specificity for N-acetylation, Cj1123c cannot acetylate aminoglycosides, indicating a preference for sugar-nucleotide substrates. In addition, we show that Cj1123c can O-acetylate UDP-GlcNAc and that Cj1123c is very versatile in terms of acyl-CoA donors as it can use propionyl- and butyryl-CoA instead of acetyl-CoA. Finally, using structural information available for Cj1123c and related enzymes, we identify three residues (H125, G143, and G173) involved in catalysis and (or) acyl-donor specificity, opening up possibilities of tailoring the specificity of Cj1123c for the synthesis of novel sugars.
Collapse
Affiliation(s)
- Melinda Demendi
- Department of Microbiology and Immunology, Infectious Diseases Research Group, University of Western Ontario, London, ON, Canada
| | | |
Collapse
|
38
|
Weiman S, Dahesh S, Carlin AF, Varki A, Nizet V, Lewis AL. Genetic and biochemical modulation of sialic acid O-acetylation on group B Streptococcus: phenotypic and functional impact. Glycobiology 2009; 19:1204-13. [PMID: 19643844 DOI: 10.1093/glycob/cwp111] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Group B Streptococcus (GBS) is an important human pathogen and a model system for studying the roles of bacterial glycosylation in host-microbe interactions. Sialic acid (Sia), expressed prominently in the GBS capsular polysaccharide (CPS), mimics mammalian cell surface Sia and can interact with host Sia-binding proteins to subvert immune clearance mechanisms. Our earlier work has shown that GBS partially O-acetylates CPS Sia residues and employs an intracellular O-acetylation/de-O-acetylation cycle to control the final level of this surface Sia modification. Here, we examine the effects of point mutations in the NeuD O-acetyltransferase and NeuA O-acetylesterase on specific glycosylation phenotypes of GBS, pinpointing an isogenic strain pair that differs dramatically in the degree of the O-acetyl modification (80% versus 5%) while still expressing comparable levels of overall sialylation. Using these strains, higher levels of O-acetylation were found to protect GBS CPS Sia against enzymatic removal by microbial sialidases and to impede engagement of human Siglec-9, but not to significantly alter the ability of GBS to restrict complement C3b deposition on its surface. Additional experiments demonstrated that pH-induced migration of the O-acetyl modification from the 7- to 9-carbon position had a substantial impact on GBS-Siglec-9 interactions, with 7-O-acetylation exhibiting the strongest interference. These studies show that both the degree and position of the GBS O-acetyl modification influence Sia-specific interactions relevant to the host-pathogen relationship. We conclude that native GBS likely expresses a phenotype of intermediate Sia O-acetylation to strike a balance between competing selective pressures present in the host environment.
Collapse
Affiliation(s)
- Shannon Weiman
- Department of Pediatrics, University of California, San Diego, La Jolla, CA 92093-0687, USA
| | | | | | | | | | | |
Collapse
|
39
|
Carlin AF, Chang YC, Areschoug T, Lindahl G, Hurtado-Ziola N, King CC, Varki A, Nizet V. Group B Streptococcus suppression of phagocyte functions by protein-mediated engagement of human Siglec-5. ACTA ACUST UNITED AC 2009; 206:1691-9. [PMID: 19596804 PMCID: PMC2722167 DOI: 10.1084/jem.20090691] [Citation(s) in RCA: 132] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Group B Streptococcus (GBS) is a leading cause of invasive bacterial infections in human newborns. A key GBS virulence factor is its capsular polysaccharide (CPS), displaying terminal sialic acid (Sia) residues which block deposition and activation of complement on the bacterial surface. We recently demonstrated that GBS Sia can bind human CD33-related Sia-recognizing immunoglobulin (Ig) superfamily lectins (hCD33rSiglecs), a family of inhibitory receptors expressed on the surface of leukocytes. We report the unexpected discovery that certain GBS strains may bind one such receptor, hSiglec-5, in a Sia-independent manner, via the cell wall-anchored beta protein, resulting in recruitment of SHP protein tyrosine phosphatases. Using a panel of WT and mutant GBS strains together with Siglec-expressing cells and soluble Siglec-Fc chimeras, we show that GBS beta protein binding to Siglec-5 functions to impair human leukocyte phagocytosis, oxidative burst, and extracellular trap production, promoting bacterial survival. We conclude that protein-mediated functional engagement of an inhibitory host lectin receptor promotes bacterial innate immune evasion.
Collapse
Affiliation(s)
- Aaron F Carlin
- Department of Pediatrics, University of California, San Diego, La Jolla, CA 92093, USA
| | | | | | | | | | | | | | | |
Collapse
|
40
|
Rajagopal L. Understanding the regulation of Group B Streptococcal virulence factors. Future Microbiol 2009; 4:201-21. [PMID: 19257847 DOI: 10.2217/17460913.4.2.201] [Citation(s) in RCA: 138] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Bacterial infections remain a significant threat to the health of newborns and adults. Group B Streptococci (GBS) are Gram-positive bacteria that are common asymptomatic colonizers of healthy adults. However, this opportunistic organism can also subvert suboptimal host defenses to cause severe invasive disease and tissue damage. The increasing emergence of antibiotic-resistant GBS raises more concerns for sustained measures in treatment of the disease. A number of factors that are important for virulence of GBS have been identified. This review summarizes the functions of some well-characterized virulence factors, with an emphasis on how GBS regulates their expression. Regulatory and signaling molecules are attractive drug targets in the treatment of bacterial infections. Consequently, understanding signaling responses of GBS is essential for elucidation of pathogenesis of GBS infection and for the identification of novel therapeutic agents.
Collapse
Affiliation(s)
- Lakshmi Rajagopal
- Department of Pediatric Infectious Diseases, University of Washington & Seattle Children's Hospital Research Institute, 1900 Ninth Avenue, Seattle, WA 98101-91304, USA.
| |
Collapse
|
41
|
Molecular mimicry of host sialylated glycans allows a bacterial pathogen to engage neutrophil Siglec-9 and dampen the innate immune response. Blood 2009; 113:3333-6. [PMID: 19196661 DOI: 10.1182/blood-2008-11-187302] [Citation(s) in RCA: 301] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Human neutrophil Siglec-9 is a lectin that recognizes sialic acids (Sias) via an amino-terminal V-set Ig domain and possesses tyrosine-based inhibitory motifs in its cytoplasmic tail. We hypothesized that Siglec-9 recognizes host Sias as "self," including in cis interactions with Sias on the neutrophil's own surface, thereby dampening unwanted neutrophil reactivity. Here we show that neutrophils presented with immobilized multimerized Siaalpha2-3Galbeta1-4GlcNAc units engage them in trans via Siglec-9. The sialylated capsular polysaccharide of group B Streptococcus (GBS) also presents terminal Siaalpha2-3Galbeta1-4GlcNAc units, and similarly engages neutrophil Siglec-9, dampening neutrophil responses in a Sia- and Siglec-9-dependent manner. Reduction in the neutrophil oxidative burst, diminished formation of neutrophil extracellular DNA traps, and increased bacterial survival are also facilitated by GBS sialylated capsular polysaccharide interactions with Siglec-9. Thus, GBS can impair neutrophil defense functions by coopting a host inhibitory receptor via sialoglycan molecular mimicry, a novel mechanism of bacterial immune evasion.
Collapse
|
42
|
Mizanur RM, Pohl NL. Bacterial CMP-sialic acid synthetases: production, properties, and applications. Appl Microbiol Biotechnol 2008; 80:757-65. [PMID: 18716769 DOI: 10.1007/s00253-008-1643-7] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2008] [Revised: 07/25/2008] [Accepted: 07/30/2008] [Indexed: 12/01/2022]
Abstract
Sialic acids are abundant nine-carbon sugars expressed terminally on glycoconjugates of eukaryotic cells and are crucial for a variety of cell biological functions such as cell-cell adhesion, intracellular signaling, and in regulation of glycoproteins stability. In bacteria, N-acetylneuraminic acid (Neu5Ac) polymers are important virulence factors. Cytidine 5'-monophosphate (CMP)-N-acetylneuraminic acid synthetase (CSS; EC 2.7.7.43), the key enzyme that synthesizes CMP-N-acetylneuraminic acid, the donor molecule for numerous sialyltransferase reactions, is present in both prokaryotes and eukaryotic systems. Herein, we emphasize the source, function, and biotechnological applications of CSS enzymes from bacterial sources. To date, only a few CSS from pathogenic bacterial species such as Neisseria meningitidis, Escherichia coli, group B streptococci, Haemophilus ducreyi, and Pasteurella hemolytica and an enzyme from nonpathogenic bacterium, Clostridium thermocellum, have been described. Overall, the enzymes from both Gram-positive and Gram-negative bacteria share common catalytic properties such as their dependency on divalent cation, temperature and pH profiles, and catalytic mechanisms. The enzymes, however, can be categorized as smaller and larger enzymes depending on their molecular weight. The larger enzymes in some cases are bifunctional; they have exhibited acetylhydrolase activity in addition to their sugar nucleotidyltransferase activity. The CSSs are important enzymes for the chemoenzymatic synthesis of various sialooligosaccharides of significance in biotechnology.
Collapse
Affiliation(s)
- Rahman M Mizanur
- Center for Biologics Evaluation and Research, Food and Drug Administration, Bethesda, MD 20892, USA.
| | | |
Collapse
|
43
|
Rauvolfova J, Venot A, Boons GJ. Chemo-enzymatic synthesis of C-9 acetylated sialosides. Carbohydr Res 2008; 343:1605-11. [PMID: 18508039 PMCID: PMC2522311 DOI: 10.1016/j.carres.2008.05.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2008] [Revised: 05/01/2008] [Accepted: 05/04/2008] [Indexed: 11/01/2022]
Abstract
A chemo-enzymatic synthesis of [(5-acetamido-9-O-acetyl-3,5-dideoxy-D-glycero-alpha-D-galacto-2-nonulopyranosylonic acid)-(2-->3)-O-(beta-D-galactopyranosyl)-(1-->3)-O-(2-acetamido-2-deoxy-alpha-D-galactopyranosyl)]-l-serine acetate (1) has been accomplished by a regioselective chemical acetylation of Neu5Ac (2) to give 9-O-acetylated sialic acid 3, which was enzymatically converted into CMP-Neu5,9Ac(2) (4) employing a recombinant CMP-sialic acid synthetase from Neisseria meningitis [EC 2.7.7.43]. The resulting compound was then employed for the enzymatic glycosylation of the C-3' hydroxyl of chemically prepared glycosylated amino acid 10 using recombinant rat alpha-(2-->3)-O-sialyltransferase expressed in Spodooptera frugiperda [EC 2.4.99.4] to give, after deprotection of the N(alpha)-benzyloxycarbonyl (CBz)-protecting group of serine, target compound 1. The N(alpha)-CBz-protected intermediate 11 can be employed for the synthesis of glycolipopeptides for immunization purposes.
Collapse
Affiliation(s)
- Jana Rauvolfova
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA 30602, USA
| | | | | |
Collapse
|
44
|
Isolation and properties of two sialate-O-acetylesterases from horse liver with 4- and 9-O-acetyl specificities. Glycoconj J 2008; 25:625-32. [PMID: 18246423 DOI: 10.1007/s10719-008-9109-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2007] [Revised: 12/11/2007] [Accepted: 01/14/2008] [Indexed: 10/22/2022]
Abstract
Sialate-O-acetylesterase was purified almost 900-fold from particle-free supernatants of horse liver by gel filtration, ion-exchange chromatography and isoelectric focussing. The native enzyme on gel filtration exhibits a molecular weight of 54,000 Da. It was separated by isoelectric focussing into two forms with pI values of 4.8 and 5.7, respectively. The esterase with a lower pI hydrolyses only 9-O-acetyl groups from sialic acids (K(M) 1.1 mM), while that with the higher pI esterifies both 4- and 9-O-acetylated monosaccharides at similar rates (K(M) 0.3 M and 1.3 mM, respectively). Both forms are inactive with 7-O-acetylated N-acetylneuraminic acid. Enzyme assays were carried out at the pH optimum (pH 8.4-8.6) using free O-acetylated sialic acids followed by direct analysis of the reaction products by isocratic anion-exchange HPLC. Glycosidically bound sialic acids can also be de-O-acetylated. Horse liver esterase seems to be an essential enzyme for the catabolism of 4-O-acetylated sialoglycoconjugates, since sialidase from this tissue cannot act on 4-O-acetylated sialic acids.
Collapse
|