1
|
Silva A, Prior R, D'Antonio M, Swinnen JV, Van Den Bosch L. Lipid metabolism alterations in peripheral neuropathies. Neuron 2025:S0896-6273(25)00262-4. [PMID: 40311611 DOI: 10.1016/j.neuron.2025.04.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2025] [Revised: 03/14/2025] [Accepted: 04/07/2025] [Indexed: 05/03/2025]
Abstract
Alterations in lipid metabolism are increasingly recognized as central pathological hallmarks of inherited and acquired peripheral neuropathies. Correct lipid balance is critical for cellular homeostasis. However, the mechanisms linking lipid disturbances to cellular dysfunction and whether these changes are primary drivers or secondary effects of disease remain unresolved. This is particularly relevant in the peripheral nervous system, where the lipid-rich myelin integrity is critical for axonal function, and even subtle perturbations can cause widespread effects. This review explores the role of lipids as structural components as well as signaling molecules, emphasizing their metabolic role in peripheral neurons and Schwann cells. Additionally, we explore the genetic and environmental connections in both inherited and acquired peripheral neuropathies, respectively, which are known to affect lipid metabolism in peripheral neurons or Schwann cells. Overall, we highlight how understanding lipid-centric mechanisms could advance biomarker discovery and therapeutic interventions for peripheral nerve disorders.
Collapse
Affiliation(s)
- Alessio Silva
- KU Leuven, University of Leuven, Department of Neurosciences, Experimental Neurology and Leuven Brain Institute (LBI), Leuven, Belgium; VIB, Center for Brain & Disease Research, Laboratory of Neurobiology, Leuven, Belgium.
| | - Robert Prior
- KU Leuven, University of Leuven, Department of Neurosciences, Experimental Neurology and Leuven Brain Institute (LBI), Leuven, Belgium; VIB, Center for Brain & Disease Research, Laboratory of Neurobiology, Leuven, Belgium; Department of Ophthalmology, University Hospital Bonn, Medical Faculty, Bonn, Germany
| | - Maurizio D'Antonio
- Biology of Myelin Unit, Division of Genetics and Cell Biology, IRCCS Ospedale San Raffaele, Milan, Italy
| | - Johannes V Swinnen
- Laboratory of Lipid Metabolism and Cancer, Department of Oncology, KU Leuven, Leuven, Belgium
| | - Ludo Van Den Bosch
- KU Leuven, University of Leuven, Department of Neurosciences, Experimental Neurology and Leuven Brain Institute (LBI), Leuven, Belgium; VIB, Center for Brain & Disease Research, Laboratory of Neurobiology, Leuven, Belgium.
| |
Collapse
|
2
|
Zhu L, Fang Z, Huang M, He L, Xu M, Yu Y, Jin Y, Chen Y, Yao Y. Association Between ERBB2 and ERBB3 Polymorphisms and Dyslipidaemia and Serum Lipid Levels in a Chinese Population. Biochem Genet 2025:10.1007/s10528-025-11048-9. [PMID: 39921768 DOI: 10.1007/s10528-025-11048-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Accepted: 01/29/2025] [Indexed: 02/10/2025]
Abstract
Dyslipidaemia, characterised by abnormal lipid levels in the blood, is an important risk factor for cardiovascular disease. In this case-control study, the association between single-nucleotide polymorphisms in ERBB2 and ERBB3 genes and the risk of dyslipidaemia in a population from Northern Anhui, China was evaluated. Particularly, we analysed samples from 543 patients with dyslipidaemia and 648 healthy controls for five potentially functional polymorphisms using TaqMan assays. Multivariate logistic regression was used to assess the relationship between genotype and dyslipidaemia, adjusting for confounding variables. The ERBB2 rs2517955 and rs1058808 single-nucleotide polymorphisms were significantly associated with dyslipidaemia. The rs2517955 variant showed a protective effect against dyslipidaemia in males, individuals aged 55 years or younger, and those without diabetes. Similarly, the rs1058808 variant decreased the risk of dyslipidaemia in these stratified groups. Conversely, ERBB3 rs2292238 was associated with an increased risk of dyslipidaemia in patients with diabetes. Compared with the corresponding wild-type alleles, variant alleles of rs2517955 and rs1058808 were associated with a reduced risk of decreased high-density lipoprotein cholesterol levels. Additionally, ERBB2 rs2517955 variants were significantly linked to total cholesterol levels, whereas ERBB3 rs3741499 and rs877636 variants were significantly associated with low-density lipoprotein cholesterol levels. Our findings suggest that ERBB2 and ERBB3 polymorphisms are closely associated with the risk of dyslipidaemia in the Chinese population. These results provide valuable insights for further genetic studies of dyslipidaemia and the identification of potential therapeutic targets.
Collapse
Affiliation(s)
- Lijun Zhu
- Department of Epidemiology and Health Statistics, School of Public Health, Institute of Chronic Disease Prevention and Control, Wannan Medical College, No. 22 Wenchang Road, Wuhu, 241002, Anhui, China
| | - Zhengmei Fang
- Department of Epidemiology and Health Statistics, School of Public Health, Institute of Chronic Disease Prevention and Control, Wannan Medical College, No. 22 Wenchang Road, Wuhu, 241002, Anhui, China
| | - Mengyun Huang
- Department of Clinical Medicine, Anhui College of Traditional Chinese Medicine, Wuhu, 241003, China
| | - Lianping He
- School of Medicine, Taizhou University, Taizhou, 318000, China
| | - Miao Xu
- Department of Epidemiology and Health Statistics, School of Public Health, Institute of Chronic Disease Prevention and Control, Wannan Medical College, No. 22 Wenchang Road, Wuhu, 241002, Anhui, China
| | - Yue Yu
- Department of Epidemiology and Health Statistics, School of Public Health, Institute of Chronic Disease Prevention and Control, Wannan Medical College, No. 22 Wenchang Road, Wuhu, 241002, Anhui, China
| | - Yuelong Jin
- Department of Epidemiology and Health Statistics, School of Public Health, Institute of Chronic Disease Prevention and Control, Wannan Medical College, No. 22 Wenchang Road, Wuhu, 241002, Anhui, China.
| | - Yan Chen
- Department of Epidemiology and Health Statistics, School of Public Health, Institute of Chronic Disease Prevention and Control, Wannan Medical College, No. 22 Wenchang Road, Wuhu, 241002, Anhui, China.
| | - Yingshui Yao
- Department of Epidemiology and Health Statistics, School of Public Health, Institute of Chronic Disease Prevention and Control, Wannan Medical College, No. 22 Wenchang Road, Wuhu, 241002, Anhui, China.
| |
Collapse
|
3
|
Chen B, Bao R, Pan J, Zhu Z, Chen Q, Wang D, Wu Y, Yu H, Zhang Y, Wang T. Taurine alleviates dysfunction of cholesterol metabolism under hyperuricemia by inhibiting A2AR-SREBP-2/CREB/HMGCR axis. J Lipid Res 2025; 66:100746. [PMID: 39848583 PMCID: PMC11875148 DOI: 10.1016/j.jlr.2025.100746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Revised: 12/24/2024] [Accepted: 01/13/2025] [Indexed: 01/25/2025] Open
Abstract
Dysfunctional cholesterol metabolism is highly prevalent in patients with hyperuricemia. Both uric acid and cholesterol are independent risk factors for atherosclerosis, contributing to an increased incidence of cardiovascular disease in hyperuricemia. Investigating the pathological mechanisms underlying cholesterol metabolism dysfunction in hyperuricemia is essential. This study identified adenosine and inosine, two major purine metabolites, as key regulators of cholesterol biosynthesis. These metabolites upregulate 3-hydroxy-3-methylglutaryl-CoA. Further mechanistic studies revealed that adenosine/inosine up-regulated the expression of 3-hydroxy-3-methylglutaryl-CoA by activating adenosine A2A receptor via the Srebp-2/Creb axis in hyperuricemia. Additionally, we found that taurine deficiency contributes to cholesterol metabolism dysfunction in hyperuricemia. Taurine administration in hyperuricemia mice significantly reduced cholesterol elevation by inhibiting adenosine A2A receptor. This study provides a promising strategy for treating comorbid hypercholesterolemia and hyperuricemia.
Collapse
Affiliation(s)
- Beibei Chen
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Ruixia Bao
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Jujie Pan
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Zicheng Zhu
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Qian Chen
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Dan Wang
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yuzheng Wu
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Haiyang Yu
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China.
| | - Yi Zhang
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China.
| | - Tao Wang
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China; State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| |
Collapse
|
4
|
Li C, Ling Y, Kuang H. Research progress on FSH-FSHR signaling in the pathogenesis of non-reproductive diseases. Front Cell Dev Biol 2024; 12:1506450. [PMID: 39633710 PMCID: PMC11615068 DOI: 10.3389/fcell.2024.1506450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2024] [Accepted: 11/05/2024] [Indexed: 12/07/2024] Open
Abstract
Follicle-stimulating hormone (FSH), a glycoprotein hormone synthesized and secreted by the anterior pituitary gland, plays a critical role in reproductive development and regulation by binding to FSH receptor (FSHR). Beyond reproductive tissue, FSHRs have been identified in various non-reproductive tissues, indicating broader functions. FSH levels chronically rise during menopause and remain elevated in postmenopausal life. This increase in FSH level has been indicated to be associated with heightened risk of several non-reproductive diseases, including osteoporosis, hypercholesterolemia, type 2 diabetes mellitus, obesity, cardiovascular disease, Alzheimer's disease, and certain cancers. In this review, we will examine the role of FSH-FSHR signaling in the pathogenesis of these non-reproductive diseases and explore therapeutic strategies targeting FSH-FSHR signaling pathways.
Collapse
Affiliation(s)
- Chenhe Li
- Department of Clinical Medicine, School of Queen Mary, Nanchang University, Nanchang, Jiangxi, China
- Department of Physiology, School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| | - Yan Ling
- Department of Obstetrics and Gynecology, Jiangxi provincial People’s Hospital, Nanchang, Jiangxi, China
| | - Haibin Kuang
- Department of Physiology, School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| |
Collapse
|
5
|
Prior R, Silva A, Vangansewinkel T, Idkowiak J, Tharkeshwar AK, Hellings TP, Michailidou I, Vreijling J, Loos M, Koopmans B, Vlek N, Agaser C, Kuipers TB, Michiels C, Rossaert E, Verschoren S, Vermeire W, de Laat V, Dehairs J, Eggermont K, van den Biggelaar D, Bademosi AT, Meunier FA, vandeVen M, Van Damme P, Mei H, Swinnen JV, Lambrichts I, Baas F, Fluiter K, Wolfs E, Van Den Bosch L. PMP22 duplication dysregulates lipid homeostasis and plasma membrane organization in developing human Schwann cells. Brain 2024; 147:3113-3130. [PMID: 38743588 PMCID: PMC11370802 DOI: 10.1093/brain/awae158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 04/08/2024] [Accepted: 04/19/2024] [Indexed: 05/16/2024] Open
Abstract
Charcot-Marie-Tooth disease type 1A (CMT1A) is the most common inherited peripheral neuropathy caused by a 1.5 Mb tandem duplication of chromosome 17 harbouring the PMP22 gene. This dose-dependent overexpression of PMP22 results in disrupted Schwann cell myelination of peripheral nerves. To obtain better insights into the underlying pathogenic mechanisms in CMT1A, we investigated the role of PMP22 duplication in cellular homeostasis in CMT1A mouse models and in patient-derived induced pluripotent stem cells differentiated into Schwann cell precursors (iPSC-SCPs). We performed lipidomic profiling and bulk RNA sequencing (RNA-seq) on sciatic nerves of two developing CMT1A mouse models and on CMT1A patient-derived iPSC-SCPs. For the sciatic nerves of the CMT1A mice, cholesterol and lipid metabolism was downregulated in a dose-dependent manner throughout development. For the CMT1A iPSC-SCPs, transcriptional analysis unveiled a strong suppression of genes related to autophagy and lipid metabolism. Gene ontology enrichment analysis identified disturbances in pathways related to plasma membrane components and cell receptor signalling. Lipidomic analysis confirmed the severe dysregulation in plasma membrane lipids, particularly sphingolipids, in CMT1A iPSC-SCPs. Furthermore, we identified reduced lipid raft dynamics, disturbed plasma membrane fluidity and impaired cholesterol incorporation and storage, all of which could result from altered lipid storage homeostasis in the patient-derived CMT1A iPSC-SCPs. Importantly, this phenotype could be rescued by stimulating autophagy and lipolysis. We conclude that PMP22 duplication disturbs intracellular lipid storage and leads to a more disordered plasma membrane owing to an alteration in the lipid composition, which might ultimately lead to impaired axo-glial interactions. Moreover, targeting lipid handling and metabolism could hold promise for the treatment of patients with CMT1A.
Collapse
Affiliation(s)
- Robert Prior
- Department of Neurosciences, Experimental Neurology and Leuven Brain Institute (LBI), KU Leuven—University of Leuven, Leuven 3000, Belgium
- Laboratory of Neurobiology, VIB, Center for Brain & Disease Research, Leuven 3000, Belgium
- Department of Ophthalmology, Medical Faculty, University of Bonn, Bonn 53127, Germany
| | - Alessio Silva
- Department of Neurosciences, Experimental Neurology and Leuven Brain Institute (LBI), KU Leuven—University of Leuven, Leuven 3000, Belgium
- Laboratory of Neurobiology, VIB, Center for Brain & Disease Research, Leuven 3000, Belgium
| | - Tim Vangansewinkel
- Laboratory of Neurobiology, VIB, Center for Brain & Disease Research, Leuven 3000, Belgium
- UHasselt—Hasselt University, Biomedical Research Institute, Diepenbeek 3590, Belgium
| | - Jakub Idkowiak
- Laboratory of Lipid Metabolism and Cancer, Department of Oncology, KU Leuven, Leuven 3000, Belgium
- Department of Analytical Chemistry, Faculty of Chemical Technology, University of Pardubice, Pardubice 532 10, Czech Republic
| | - Arun Kumar Tharkeshwar
- Department of Neurosciences, Experimental Neurology and Leuven Brain Institute (LBI), KU Leuven—University of Leuven, Leuven 3000, Belgium
- Laboratory of Neurobiology, VIB, Center for Brain & Disease Research, Leuven 3000, Belgium
| | - Tom P Hellings
- Department of Clinical Genetics, Leiden University Medical Center, Leiden 2333 ZA, The Netherlands
| | - Iliana Michailidou
- Department of Clinical Genetics, Leiden University Medical Center, Leiden 2333 ZA, The Netherlands
| | - Jeroen Vreijling
- Department of Clinical Genetics, Leiden University Medical Center, Leiden 2333 ZA, The Netherlands
| | - Maarten Loos
- InnoSer Nederland B.V., 2333 CK Leiden, The Netherlands
| | | | - Nina Vlek
- InnoSer Nederland B.V., 2333 CK Leiden, The Netherlands
| | - Cedrick Agaser
- Department of Biomedical Data Sciences, Sequencing Analysis Support Core, Leiden University Medical Center, Leiden 2333 ZA, The Netherlands
| | - Thomas B Kuipers
- Department of Biomedical Data Sciences, Sequencing Analysis Support Core, Leiden University Medical Center, Leiden 2333 ZA, The Netherlands
| | - Christine Michiels
- Department of Neurosciences, Experimental Neurology and Leuven Brain Institute (LBI), KU Leuven—University of Leuven, Leuven 3000, Belgium
- Laboratory of Neurobiology, VIB, Center for Brain & Disease Research, Leuven 3000, Belgium
| | - Elisabeth Rossaert
- Department of Neurosciences, Experimental Neurology and Leuven Brain Institute (LBI), KU Leuven—University of Leuven, Leuven 3000, Belgium
- Laboratory of Neurobiology, VIB, Center for Brain & Disease Research, Leuven 3000, Belgium
| | - Stijn Verschoren
- Department of Neurosciences, Experimental Neurology and Leuven Brain Institute (LBI), KU Leuven—University of Leuven, Leuven 3000, Belgium
- Laboratory of Neurobiology, VIB, Center for Brain & Disease Research, Leuven 3000, Belgium
| | - Wendy Vermeire
- Department of Neurosciences, Experimental Neurology and Leuven Brain Institute (LBI), KU Leuven—University of Leuven, Leuven 3000, Belgium
- Laboratory of Neurobiology, VIB, Center for Brain & Disease Research, Leuven 3000, Belgium
| | - Vincent de Laat
- Laboratory of Lipid Metabolism and Cancer, Department of Oncology, KU Leuven, Leuven 3000, Belgium
| | - Jonas Dehairs
- Laboratory of Lipid Metabolism and Cancer, Department of Oncology, KU Leuven, Leuven 3000, Belgium
| | - Kristel Eggermont
- Department of Neurosciences, Experimental Neurology and Leuven Brain Institute (LBI), KU Leuven—University of Leuven, Leuven 3000, Belgium
- Laboratory of Neurobiology, VIB, Center for Brain & Disease Research, Leuven 3000, Belgium
| | - Diede van den Biggelaar
- Department of Neurosciences, Experimental Neurology and Leuven Brain Institute (LBI), KU Leuven—University of Leuven, Leuven 3000, Belgium
- Laboratory of Neurobiology, VIB, Center for Brain & Disease Research, Leuven 3000, Belgium
| | - Adekunle T Bademosi
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Frederic A Meunier
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, The University of Queensland, Brisbane, QLD 4072, Australia
- School of Biomedical Sciences, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Martin vandeVen
- UHasselt—Hasselt University, Biomedical Research Institute, Diepenbeek 3590, Belgium
| | - Philip Van Damme
- Department of Neurosciences, Experimental Neurology and Leuven Brain Institute (LBI), KU Leuven—University of Leuven, Leuven 3000, Belgium
- Laboratory of Neurobiology, VIB, Center for Brain & Disease Research, Leuven 3000, Belgium
- Department of Neurology, University Hospitals Leuven, Leuven 3000, Belgium
| | - Hailiang Mei
- Department of Biomedical Data Sciences, Sequencing Analysis Support Core, Leiden University Medical Center, Leiden 2333 ZA, The Netherlands
| | - Johannes V Swinnen
- Laboratory of Lipid Metabolism and Cancer, Department of Oncology, KU Leuven, Leuven 3000, Belgium
| | - Ivo Lambrichts
- UHasselt—Hasselt University, Biomedical Research Institute, Diepenbeek 3590, Belgium
| | - Frank Baas
- Department of Clinical Genetics, Leiden University Medical Center, Leiden 2333 ZA, The Netherlands
| | - Kees Fluiter
- Department of Clinical Genetics, Leiden University Medical Center, Leiden 2333 ZA, The Netherlands
| | - Esther Wolfs
- UHasselt—Hasselt University, Biomedical Research Institute, Diepenbeek 3590, Belgium
| | - Ludo Van Den Bosch
- Department of Neurosciences, Experimental Neurology and Leuven Brain Institute (LBI), KU Leuven—University of Leuven, Leuven 3000, Belgium
- Laboratory of Neurobiology, VIB, Center for Brain & Disease Research, Leuven 3000, Belgium
| |
Collapse
|
6
|
Stefanski KM, Wilkinson MC, Sanders CR. Roles for PMP22 in Schwann cell cholesterol homeostasis in health and disease. Biochem Soc Trans 2024; 52:1747-1756. [PMID: 38979632 PMCID: PMC11574964 DOI: 10.1042/bst20231359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 06/03/2024] [Accepted: 06/13/2024] [Indexed: 07/10/2024]
Abstract
Underexpression, overexpression, and point mutations in peripheral myelin protein 22 (PMP22) cause most cases of Charcot-Marie-Tooth disease (CMTD). While its exact functions remain unclear, PMP22 is clearly essential for formation and maintenance of healthy myelin in the peripheral nervous system. This review explores emerging evidence for roles of PMP22 in cholesterol homeostasis. First, we highlight dysregulation of lipid metabolism in PMP22-based forms of CMTD and recently-discovered interactions between PMP22 and cholesterol biosynthesis machinery. We then examine data that demonstrates PMP22 and cholesterol co-traffic in cells and co-localize in lipid rafts, including how disease-causing PMP22 mutations result in aberrations in cholesterol localization. Finally, we examine roles for interactions between PMP22 and ABCA1 in cholesterol efflux. Together, this emerging body of evidence suggests that PMP22 plays a role in facilitating enhanced cholesterol synthesis and trafficking necessary for production and maintenance of healthy myelin.
Collapse
Affiliation(s)
- Katherine M Stefanski
- Department of Biochemistry and Medicine, Vanderbilt University School of Medicine, Nashville, TN 37240-7917, U.S.A
| | - Mason C Wilkinson
- Department of Biochemistry and Medicine, Vanderbilt University School of Medicine, Nashville, TN 37240-7917, U.S.A
| | - Charles R Sanders
- Department of Biochemistry and Medicine, Vanderbilt University School of Medicine, Nashville, TN 37240-7917, U.S.A
| |
Collapse
|
7
|
Follis RM, Tep C, Genaro-Mattos TC, Kim ML, Ryu JC, Morrison VE, Chan JR, Porter N, Carter BD, Yoon SO. Metabolic Control of Sensory Neuron Survival by the p75 Neurotrophin Receptor in Schwann Cells. J Neurosci 2021; 41:8710-8724. [PMID: 34507952 PMCID: PMC8528492 DOI: 10.1523/jneurosci.3243-20.2021] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 08/28/2021] [Accepted: 08/30/2021] [Indexed: 11/21/2022] Open
Abstract
We report that the neurotrophin receptor p75 contributes to sensory neuron survival through the regulation of cholesterol metabolism in Schwann cells. Selective deletion of p75 in mouse Schwann cells of either sex resulted in a 30% loss of dorsal root ganglia (DRG) neurons and diminished thermal sensitivity. P75 regulates Schwann cell cholesterol biosynthesis in response to BDNF, forming a co-receptor complex with ErbB2 and activating ErbB2-mediated stimulation of sterol regulatory element binding protein 2 (SREBP2), a master regulator of cholesterol synthesis. Schwann cells lacking p75 exhibited decreased activation of SREBP2 and a reduction in 7-dehydrocholesterol (7-DHC) reductase (DHCR7) expression, resulting in accumulation of the neurotoxic intermediate, 7-dehyrocholesterol in the sciatic nerve. Restoration of DHCR7 in p75 null Schwann cells in mice significantly attenuated DRG neuron loss. Together, these results reveal a mechanism by which the disruption of lipid metabolism in glial cells negatively influences sensory neuron survival, which has implications for a wide range of peripheral neuropathies.SIGNIFICANCE STATEMENT Although expressed in Schwann cells, the role of p75 in myelination has remained unresolved in part because of its dual expression in sensory neurons that Schwann cells myelinate. When p75 was deleted selectively among Schwann cells, myelination was minimally affected, while sensory neuron survival was reduced by 30%. The phenotype is mainly due to dysregulation of cholesterol biosynthesis in p75-deficient Schwann cells, leading to an accumulation of neurotoxic cholesterol precursor, 7-dehydrocholesterol (7-DHC). Mechanism-wise, we discovered that in response to BDNF, p75 recruits and activates ErbB2 independently of ErbB3, thereby stimulating the master regulator, sterol regulatory element binding protein 2 (SREBP2). These results together highlight a novel role of p75 in Schwann cells in regulating DRG neuron survival by orchestrating proper cholesterol metabolism.
Collapse
Affiliation(s)
- Rose M Follis
- Department of Biochemistry, Vanderbilt Brain Institute, Vanderbilt University School of Medicine, Nashville, Tennessee 37232
| | - Chhavy Tep
- Department of Biological Chemistry and Pharmacology, Ohio State University, Columbus, Ohio
| | - Thiago C Genaro-Mattos
- Department of Chemistry, Vanderbilt University School of Arts and Sciences, Nashville, Tennessee 37232
| | - Mi Lyang Kim
- Department of Biological Chemistry and Pharmacology, Ohio State University, Columbus, Ohio
| | - Jae Cheon Ryu
- Department of Biological Chemistry and Pharmacology, Ohio State University, Columbus, Ohio
| | - Vivianne E Morrison
- Department of Biochemistry, Vanderbilt Brain Institute, Vanderbilt University School of Medicine, Nashville, Tennessee 37232
| | - Jonah R Chan
- Department of Neurology, University of California San Francisco, San Francisco, California 94158
| | - Ned Porter
- Department of Chemistry, Vanderbilt University School of Arts and Sciences, Nashville, Tennessee 37232
| | - Bruce D Carter
- Department of Biochemistry, Vanderbilt Brain Institute, Vanderbilt University School of Medicine, Nashville, Tennessee 37232
| | - Sung Ok Yoon
- Department of Biological Chemistry and Pharmacology, Ohio State University, Columbus, Ohio
| |
Collapse
|
8
|
Zhou Y, Bazick H, Miles JR, Fethiere AI, Salihi MOA, Fazio S, Tavori H, Notterpek L. A neutral lipid-enriched diet improves myelination and alleviates peripheral nerve pathology in neuropathic mice. Exp Neurol 2019; 321:113031. [DOI: 10.1016/j.expneurol.2019.113031] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2019] [Revised: 07/27/2019] [Accepted: 08/02/2019] [Indexed: 12/13/2022]
|
9
|
Taneja C, Gera S, Kim S, Iqbal J, Yuen T, Zaidi M. FSH-metabolic circuitry and menopause. J Mol Endocrinol 2019; 63:R73-R80. [PMID: 31454787 PMCID: PMC6992500 DOI: 10.1530/jme-19-0152] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2019] [Accepted: 08/27/2019] [Indexed: 01/02/2023]
Abstract
FSH has a primary function in procreation, wherein it induces estrogen production in females and regulates spermatogenesis in males. However, in line with our discoveries over the past decade of non-unitary functions of pituitary hormones, we and others have described hitherto uncharacterized functions of FSH. Through high-affinity receptors, some of which are variants of the ovarian FSH receptor (FSHR), FSH regulates bone mass, adipose tissue function, energy metabolism, and cholesterol production in both sexes. These newly described actions of FSH may indeed be relevant to the pathogenesis of bone loss, dysregulated energy homeostasis, and disordered lipid metabolism that accompany the menopause in females and aging in both genders. We are therefore excited about the possibility of modulating circulating FSH levels toward a therapeutic benefit for a host of age-associated diseases, including osteoporosis, obesity and dyslipidemia, among other future possibilities.
Collapse
Affiliation(s)
- Charit Taneja
- The Mount Sinai Bone Program, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York 10029, USA
| | - Sakshi Gera
- The Mount Sinai Bone Program, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York 10029, USA
| | - Se–Min Kim
- The Mount Sinai Bone Program, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York 10029, USA
| | - Jameel Iqbal
- The Mount Sinai Bone Program, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York 10029, USA
| | - Tony Yuen
- The Mount Sinai Bone Program, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York 10029, USA
| | - Mone Zaidi
- The Mount Sinai Bone Program, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York 10029, USA
| |
Collapse
|
10
|
Guo Y, Zhao M, Bo T, Ma S, Yuan Z, Chen W, He Z, Hou X, Liu J, Zhang Z, Zhu Q, Wang Q, Lin X, Yang Z, Cui M, Liu L, Li Y, Yu C, Qi X, Wang Q, Zhang H, Guan Q, Zhao L, Xuan S, Yan H, Lin Y, Wang L, Li Q, Song Y, Gao L, Zhao J. Blocking FSH inhibits hepatic cholesterol biosynthesis and reduces serum cholesterol. Cell Res 2019; 29:151-166. [PMID: 30559440 PMCID: PMC6355920 DOI: 10.1038/s41422-018-0123-6] [Citation(s) in RCA: 77] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2018] [Accepted: 11/15/2018] [Indexed: 12/19/2022] Open
Abstract
Menopause is associated with dyslipidemia and an increased risk of cardio-cerebrovascular disease. The classic view assumes that the underlying mechanism of dyslipidemia is attributed to an insufficiency of estrogen. In addition to a decrease in estrogen, circulating follicle-stimulating hormone (FSH) levels become elevated at menopause. In this study, we find that blocking FSH reduces serum cholesterol via inhibiting hepatic cholesterol biosynthesis. First, epidemiological results show that the serum FSH levels are positively correlated with the serum total cholesterol levels, even after adjustment by considering the effects of serum estrogen. In addition, the prevalence of hypercholesterolemia is significantly higher in peri-menopausal women than that in pre-menopausal women. Furthermore, we generated a mouse model of FSH elevation by intraperitoneally injecting exogenous FSH into ovariectomized (OVX) mice, in which a normal level of estrogen (E2) was maintained by exogenous supplementation. Consistently, the results indicate that FSH, independent of estrogen, increases the serum cholesterol level in this mouse model. Moreover, blocking FSH signaling by anti-FSHβ antibody or ablating the FSH receptor (FSHR) gene could effectively prevent hypercholesterolemia induced by FSH injection or high-cholesterol diet feeding. Mechanistically, FSH, via binding to hepatic FSHRs, activates the Gi2α/β-arrestin-2/Akt pathway and subsequently inhibits the binding of FoxO1 with the SREBP-2 promoter, thus preventing FoxO1 from repressing SREBP-2 gene transcription. This effect, in turn, results in the upregulation of SREBP-2, which drives HMGCR nascent transcription and de novo cholesterol biosynthesis, leading to the increase of cholesterol accumulation. This study uncovers that blocking FSH signaling might be a new strategy for treating hypercholesterolemia during menopause, particularly for women in peri-menopause characterized by FSH elevation only.
Collapse
Affiliation(s)
- Yanjing Guo
- Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong University, 250021, Jinan, Shandong, China
- Shandong Key Laboratory of Endocrinology and Lipid Metabolism, 250021, Jinan, Shandong, China
- Institute of Endocrinology and metabolism, Shandong Academy of Clinical Medicine, 250021, Jinan, Shandong, China
| | - Meng Zhao
- Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong University, 250021, Jinan, Shandong, China
- Shandong Key Laboratory of Endocrinology and Lipid Metabolism, 250021, Jinan, Shandong, China
- Institute of Endocrinology and metabolism, Shandong Academy of Clinical Medicine, 250021, Jinan, Shandong, China
| | - Tao Bo
- Scientific Center, Shandong Provincial Hospital Affiliated to Shandong University, 250021, Jinan, Shandong, China
| | - Shizhan Ma
- Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong University, 250021, Jinan, Shandong, China
- Shandong Key Laboratory of Endocrinology and Lipid Metabolism, 250021, Jinan, Shandong, China
- Institute of Endocrinology and metabolism, Shandong Academy of Clinical Medicine, 250021, Jinan, Shandong, China
| | - Zhongshang Yuan
- Department of Biostatistics, School of Public Health, Shandong University, 250012, Jinan, Shandong, China
| | - Wenbin Chen
- Scientific Center, Shandong Provincial Hospital Affiliated to Shandong University, 250021, Jinan, Shandong, China
| | - Zhao He
- Shandong Key Laboratory of Endocrinology and Lipid Metabolism, 250021, Jinan, Shandong, China
- Institute of Endocrinology and metabolism, Shandong Academy of Clinical Medicine, 250021, Jinan, Shandong, China
| | - Xu Hou
- Scientific Center, Shandong Provincial Hospital Affiliated to Shandong University, 250021, Jinan, Shandong, China
| | - Jun Liu
- Department of Hepatobiliary Surgery, Shandong Provincial Hospital Affiliated to Shandong University, 250021, Jinan, Shandong, China
| | - Zhenhai Zhang
- Department of Hepatobiliary Surgery, Shandong Provincial Hospital Affiliated to Shandong University, 250021, Jinan, Shandong, China
| | - Qiang Zhu
- Department of Gastroenterology, Shandong Provincial Hospital Affiliated to Shandong University, 250021, Jinan, Shandong, China
| | - Qiangxiu Wang
- Department of Pathology, Shandong Provincial Hospital Affiliated to Shandong University, 250021, Jinan, Shandong, China
| | - Xiaoyan Lin
- Department of Pathology, Shandong Provincial Hospital Affiliated to Shandong University, 250021, Jinan, Shandong, China
| | - Zhongli Yang
- Department of Gynecology, Shandong Provincial Hospital Affiliated to Shandong University, 250021, Jinan, Shandong, China
| | - Min Cui
- Department of Gynecology, Shandong Provincial Hospital Affiliated to Shandong University, 250021, Jinan, Shandong, China
| | - Lu Liu
- Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong University, 250021, Jinan, Shandong, China
- Shandong Key Laboratory of Endocrinology and Lipid Metabolism, 250021, Jinan, Shandong, China
- Institute of Endocrinology and metabolism, Shandong Academy of Clinical Medicine, 250021, Jinan, Shandong, China
| | - Yujie Li
- Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong University, 250021, Jinan, Shandong, China
- Shandong Key Laboratory of Endocrinology and Lipid Metabolism, 250021, Jinan, Shandong, China
- Institute of Endocrinology and metabolism, Shandong Academy of Clinical Medicine, 250021, Jinan, Shandong, China
| | - Chunxiao Yu
- Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong University, 250021, Jinan, Shandong, China
- Shandong Key Laboratory of Endocrinology and Lipid Metabolism, 250021, Jinan, Shandong, China
- Institute of Endocrinology and metabolism, Shandong Academy of Clinical Medicine, 250021, Jinan, Shandong, China
| | - Xiaoyi Qi
- Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong University, 250021, Jinan, Shandong, China
- Shandong Key Laboratory of Endocrinology and Lipid Metabolism, 250021, Jinan, Shandong, China
- Institute of Endocrinology and metabolism, Shandong Academy of Clinical Medicine, 250021, Jinan, Shandong, China
| | - Qian Wang
- Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong University, 250021, Jinan, Shandong, China
- Shandong Key Laboratory of Endocrinology and Lipid Metabolism, 250021, Jinan, Shandong, China
- Institute of Endocrinology and metabolism, Shandong Academy of Clinical Medicine, 250021, Jinan, Shandong, China
| | - Haiqing Zhang
- Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong University, 250021, Jinan, Shandong, China
- Shandong Key Laboratory of Endocrinology and Lipid Metabolism, 250021, Jinan, Shandong, China
- Institute of Endocrinology and metabolism, Shandong Academy of Clinical Medicine, 250021, Jinan, Shandong, China
| | - Qingbo Guan
- Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong University, 250021, Jinan, Shandong, China
- Shandong Key Laboratory of Endocrinology and Lipid Metabolism, 250021, Jinan, Shandong, China
- Institute of Endocrinology and metabolism, Shandong Academy of Clinical Medicine, 250021, Jinan, Shandong, China
| | - Lifang Zhao
- Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong University, 250021, Jinan, Shandong, China
- Shandong Key Laboratory of Endocrinology and Lipid Metabolism, 250021, Jinan, Shandong, China
- Institute of Endocrinology and metabolism, Shandong Academy of Clinical Medicine, 250021, Jinan, Shandong, China
| | - Shimeng Xuan
- Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong University, 250021, Jinan, Shandong, China
- Shandong Key Laboratory of Endocrinology and Lipid Metabolism, 250021, Jinan, Shandong, China
- Institute of Endocrinology and metabolism, Shandong Academy of Clinical Medicine, 250021, Jinan, Shandong, China
| | - Huili Yan
- Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong University, 250021, Jinan, Shandong, China
- Shandong Key Laboratory of Endocrinology and Lipid Metabolism, 250021, Jinan, Shandong, China
- Institute of Endocrinology and metabolism, Shandong Academy of Clinical Medicine, 250021, Jinan, Shandong, China
| | - Yanliang Lin
- Scientific Center, Shandong Provincial Hospital Affiliated to Shandong University, 250021, Jinan, Shandong, China
| | - Li Wang
- Department of Physiology and Neurobiology, and Institute for Systems Genomics, University of Connecticut, Storrs, CT, 06269, USA
| | - Qihang Li
- Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong University, 250021, Jinan, Shandong, China
- Shandong Key Laboratory of Endocrinology and Lipid Metabolism, 250021, Jinan, Shandong, China
- Institute of Endocrinology and metabolism, Shandong Academy of Clinical Medicine, 250021, Jinan, Shandong, China
| | - Yongfeng Song
- Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong University, 250021, Jinan, Shandong, China.
- Shandong Key Laboratory of Endocrinology and Lipid Metabolism, 250021, Jinan, Shandong, China.
- Institute of Endocrinology and metabolism, Shandong Academy of Clinical Medicine, 250021, Jinan, Shandong, China.
- Department of Physiology and Neurobiology, and Institute for Systems Genomics, University of Connecticut, Storrs, CT, 06269, USA.
| | - Ling Gao
- Institute of Endocrinology and metabolism, Shandong Academy of Clinical Medicine, 250021, Jinan, Shandong, China.
- Scientific Center, Shandong Provincial Hospital Affiliated to Shandong University, 250021, Jinan, Shandong, China.
| | - Jiajun Zhao
- Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong University, 250021, Jinan, Shandong, China.
- Shandong Key Laboratory of Endocrinology and Lipid Metabolism, 250021, Jinan, Shandong, China.
- Institute of Endocrinology and metabolism, Shandong Academy of Clinical Medicine, 250021, Jinan, Shandong, China.
| |
Collapse
|
11
|
Ma S, Sun W, Gao L, Liu S. Therapeutic targets of hypercholesterolemia: HMGCR and LDLR. Diabetes Metab Syndr Obes 2019; 12:1543-1553. [PMID: 31686875 PMCID: PMC6709517 DOI: 10.2147/dmso.s219013] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Accepted: 07/25/2019] [Indexed: 12/14/2022] Open
Abstract
Cholesterol homeostasis is critical and necessary for the body's functions. Hypercholesterolemia can lead to significant clinical problems, such as cardiovascular disease (CVD). 3-Hydroxy-3-methylglutaryl coenzyme A reductase (HMGCR) and low-density lipoprotein cholesterol receptor (LDLR) are major points of control in cholesterol homeostasis. We summarize the regulatory mechanisms of HMGCR and LDLR, which may provide insight for new drug design and development.
Collapse
Affiliation(s)
- Shizhan Ma
- Department of Endocrinology and Metabolism, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan250021, People’s Republic of China
- Department of Endocrinology and Metabolism, Shandong Provincial Hospital Affiliated to Shandong University, Jinan250021, People’s Republic of China
| | - Wenxiu Sun
- Department of Pharmacy, Taishan Vocational College of Nursing, Taian271000, People’s Republic of China
| | - Ling Gao
- Department of Endocrinology and Metabolism, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan250021, People’s Republic of China
- Scientific Center, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan250021, People’s Republic of China
- Scientific Center, Shandong Provincial Hospital Affiliated to Shandong University, Jinan250021, People’s Republic of China
- Correspondence: Ling GaoScientific Center, Shandong Provincial Hospital Affiliated to Shandong University, 324 Jing 5 Road, Jinan, Shandong Province250021, People’s Republic of ChinaTel +86 531 6877 6910Email
| | - Shudong Liu
- Department of Endocrinology, Shandong Rongjun General Hospital, Jinan250013, People’s Republic of China
- Shudong LiuDepartment of Endocrinology, Shandong Rongjun General Hospital, 23 Jiefang Road, Jinan, Shandong Province250013, People’s Republic of ChinaTel +86 531 8238 2351Email
| |
Collapse
|
12
|
Cho JH, Oh AY, Park S, Kang SM, Yoon MH, Woo TG, Hong SD, Hwang J, Ha NC, Lee HY, Park BJ. Loss of NF2 Induces TGFβ Receptor 1–mediated Noncanonical and Oncogenic TGFβ Signaling: Implication of the Therapeutic Effect of TGFβ Receptor 1 Inhibitor on NF2 Syndrome. Mol Cancer Ther 2018; 17:2271-2284. [DOI: 10.1158/1535-7163.mct-17-1210] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Revised: 05/08/2018] [Accepted: 08/16/2018] [Indexed: 11/16/2022]
|
13
|
Fledrich R, Abdelaal T, Rasch L, Bansal V, Schütza V, Brügger B, Lüchtenborg C, Prukop T, Stenzel J, Rahman RU, Hermes D, Ewers D, Möbius W, Ruhwedel T, Katona I, Weis J, Klein D, Martini R, Brück W, Müller WC, Bonn S, Bechmann I, Nave KA, Stassart RM, Sereda MW. Targeting myelin lipid metabolism as a potential therapeutic strategy in a model of CMT1A neuropathy. Nat Commun 2018; 9:3025. [PMID: 30072689 PMCID: PMC6072747 DOI: 10.1038/s41467-018-05420-0] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Accepted: 06/28/2018] [Indexed: 01/17/2023] Open
Abstract
In patients with Charcot-Marie-Tooth disease 1A (CMT1A), peripheral nerves display aberrant myelination during postnatal development, followed by slowly progressive demyelination and axonal loss during adult life. Here, we show that myelinating Schwann cells in a rat model of CMT1A exhibit a developmental defect that includes reduced transcription of genes required for myelin lipid biosynthesis. Consequently, lipid incorporation into myelin is reduced, leading to an overall distorted stoichiometry of myelin proteins and lipids with ultrastructural changes of the myelin sheath. Substitution of phosphatidylcholine and phosphatidylethanolamine in the diet is sufficient to overcome the myelination deficit of affected Schwann cells in vivo. This treatment rescues the number of myelinated axons in the peripheral nerves of the CMT rats and leads to a marked amelioration of neuropathic symptoms. We propose that lipid supplementation is an easily translatable potential therapeutic approach in CMT1A and possibly other dysmyelinating neuropathies.
Collapse
Affiliation(s)
- R Fledrich
- Department of Neurogenetics, Max-Planck-Institute of Experimental Medicine, Göttingen, 37075, Germany.
- Institute of Anatomy, University of Leipzig, Leipzig, 04103, Germany.
- Department of Neuropathology, University Hospital Leipzig, Leipzig, 04103, Germany.
| | - T Abdelaal
- Department of Neurogenetics, Max-Planck-Institute of Experimental Medicine, Göttingen, 37075, Germany
- Department of Clinical Neurophysiology, University Medical Center Göttingen, Göttingen, 37075, Germany
- Chemistry of Natural and Microbial Products Department, Pharmaceutical and Drug Industries Division, National Research Centre, Giza, 12622, Egypt
| | - L Rasch
- Department of Neurogenetics, Max-Planck-Institute of Experimental Medicine, Göttingen, 37075, Germany
- Department of Clinical Neurophysiology, University Medical Center Göttingen, Göttingen, 37075, Germany
| | - V Bansal
- Center for Molecular Neurobiology, Institute of Medical Systems Biology, University Medical Center Hamburg-Eppendorf, Hamburg, 20251, Germany
| | - V Schütza
- Department of Neurogenetics, Max-Planck-Institute of Experimental Medicine, Göttingen, 37075, Germany
- Department of Neuropathology, University Hospital Leipzig, Leipzig, 04103, Germany
| | - B Brügger
- Heidelberg University Biochemistry Center (BZH), Heidelberg, 69120, Germany
| | - C Lüchtenborg
- Heidelberg University Biochemistry Center (BZH), Heidelberg, 69120, Germany
| | - T Prukop
- Department of Neurogenetics, Max-Planck-Institute of Experimental Medicine, Göttingen, 37075, Germany
- Department of Clinical Neurophysiology, University Medical Center Göttingen, Göttingen, 37075, Germany
- Institute of Clinical Pharmacology, University Medical Center Göttingen, Göttingen, 37075, Germany
| | - J Stenzel
- Department of Neurogenetics, Max-Planck-Institute of Experimental Medicine, Göttingen, 37075, Germany
- Department of Clinical Neurophysiology, University Medical Center Göttingen, Göttingen, 37075, Germany
| | - R U Rahman
- Center for Molecular Neurobiology, Institute of Medical Systems Biology, University Medical Center Hamburg-Eppendorf, Hamburg, 20251, Germany
| | - D Hermes
- Department of Neurogenetics, Max-Planck-Institute of Experimental Medicine, Göttingen, 37075, Germany
- Department of Clinical Neurophysiology, University Medical Center Göttingen, Göttingen, 37075, Germany
| | - D Ewers
- Department of Neurogenetics, Max-Planck-Institute of Experimental Medicine, Göttingen, 37075, Germany
- Department of Clinical Neurophysiology, University Medical Center Göttingen, Göttingen, 37075, Germany
| | - W Möbius
- Department of Neurogenetics, Max-Planck-Institute of Experimental Medicine, Göttingen, 37075, Germany
- Center for Nanoscale Microscopy and Molecular Physiology of the Brain (CNMPB), Göttingen, 37075, Germany
| | - T Ruhwedel
- Department of Neurogenetics, Max-Planck-Institute of Experimental Medicine, Göttingen, 37075, Germany
| | - I Katona
- Institute of Neuropathology, University Hospital Aachen, Aachen, 52074, Germany
| | - J Weis
- Institute of Neuropathology, University Hospital Aachen, Aachen, 52074, Germany
| | - D Klein
- Department of Neurology, Section of Developmental Neurobiology, University Hospital Wuerzburg, Wuerzburg, 97080, Germany
| | - R Martini
- Department of Neurology, Section of Developmental Neurobiology, University Hospital Wuerzburg, Wuerzburg, 97080, Germany
| | - W Brück
- Institute of Neuropathology, University Medical Center Göttingen, Göttingen, 37075, Germany
| | - W C Müller
- Department of Neuropathology, University Hospital Leipzig, Leipzig, 04103, Germany
| | - S Bonn
- Center for Molecular Neurobiology, Institute of Medical Systems Biology, University Medical Center Hamburg-Eppendorf, Hamburg, 20251, Germany
- German Center for Neurodegenerative Diseases, Tübingen, 72076, Germany
| | - I Bechmann
- Institute of Anatomy, University of Leipzig, Leipzig, 04103, Germany
| | - K A Nave
- Department of Neurogenetics, Max-Planck-Institute of Experimental Medicine, Göttingen, 37075, Germany.
| | - R M Stassart
- Department of Neurogenetics, Max-Planck-Institute of Experimental Medicine, Göttingen, 37075, Germany.
- Department of Neuropathology, University Hospital Leipzig, Leipzig, 04103, Germany.
- Institute of Neuropathology, University Medical Center Göttingen, Göttingen, 37075, Germany.
| | - M W Sereda
- Department of Neurogenetics, Max-Planck-Institute of Experimental Medicine, Göttingen, 37075, Germany.
- Department of Clinical Neurophysiology, University Medical Center Göttingen, Göttingen, 37075, Germany.
| |
Collapse
|
14
|
Barros S, Montes R, Quintana JB, Rodil R, André A, Capitão A, Soares J, Santos MM, Neuparth T. Chronic environmentally relevant levels of simvastatin disrupt embryonic development, biochemical and molecular responses in zebrafish (Danio rerio). AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2018; 201:47-57. [PMID: 29879595 DOI: 10.1016/j.aquatox.2018.05.014] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Revised: 05/16/2018] [Accepted: 05/22/2018] [Indexed: 06/08/2023]
Abstract
Simvastatin (SIM), a hypocholesterolaemic compound, is among the most prescribed pharmaceuticals for cardiovascular disease prevention worldwide. Several studies have shown that acute exposure to SIM causes multiple adverse effects in aquatic organisms. However, uncertainties still remain regarding the chronic effects of SIM in aquatic ecosystems. Therefore, the present study aimed to investigate the effects of SIM in the model freshwater teleost zebrafish (Danio rerio) following a chronic exposure (90 days) to environmentally relevant concentrations ranging from 8 ng/L to 1000 ng/L. This study used a multi-parameter approach integrating distinct ecologically-relevant endpoints, i.e. survival, growth, reproduction and embryonic development, with biochemical markers (cholesterol and triglycerides). Real Time PCR was used to analyse the transcription levels of key genes involved in the mevalonate pathway (hmgcra, cyp51, and dhcr7). Globally, SIM induced several effects that did not follow a dose-response relationship; embryonic development, biochemical and molecular markers, were significantly impacted in the lower concentrations, 8 ng/L, 40 ng/L and/or 200 ng/L, whereas no effects were recorded for the highest tested SIM levels (1000 ng/L). Taken together, these findings expand our understanding of statin effects in teleosts, demonstrating significant impacts at environmentally relevant concentrations and highlight the importance of addressing the effects of chemicals under chronic low-level concentrations.
Collapse
Affiliation(s)
- Susana Barros
- CIMAR/CIIMAR-Interdisciplinary Centre of Marine and Environmental Research, Endocrine Disruptors and Emerging Contaminants Group, University of Porto, Avenida General Norton de Matos, S/N, 4450-208 Matosinhos, Portugal
| | - Rosa Montes
- Department of Analytical Chemistry, Nutrition and Food Sciences, IIAA-Institute for Food Analysis and Research, University of Santiago de Compostela, Constantino Candeira S/N, 15782 Santiago de Compostela, Spain
| | - José Benito Quintana
- Department of Analytical Chemistry, Nutrition and Food Sciences, IIAA-Institute for Food Analysis and Research, University of Santiago de Compostela, Constantino Candeira S/N, 15782 Santiago de Compostela, Spain
| | - Rosario Rodil
- Department of Analytical Chemistry, Nutrition and Food Sciences, IIAA-Institute for Food Analysis and Research, University of Santiago de Compostela, Constantino Candeira S/N, 15782 Santiago de Compostela, Spain
| | - Ana André
- CIMAR/CIIMAR-Interdisciplinary Centre of Marine and Environmental Research, Endocrine Disruptors and Emerging Contaminants Group, University of Porto, Avenida General Norton de Matos, S/N, 4450-208 Matosinhos, Portugal
| | - Ana Capitão
- CIMAR/CIIMAR-Interdisciplinary Centre of Marine and Environmental Research, Endocrine Disruptors and Emerging Contaminants Group, University of Porto, Avenida General Norton de Matos, S/N, 4450-208 Matosinhos, Portugal
| | - Joana Soares
- CIMAR/CIIMAR-Interdisciplinary Centre of Marine and Environmental Research, Endocrine Disruptors and Emerging Contaminants Group, University of Porto, Avenida General Norton de Matos, S/N, 4450-208 Matosinhos, Portugal
| | - Miguel M Santos
- CIMAR/CIIMAR-Interdisciplinary Centre of Marine and Environmental Research, Endocrine Disruptors and Emerging Contaminants Group, University of Porto, Avenida General Norton de Matos, S/N, 4450-208 Matosinhos, Portugal; FCUP - Department of Biology, Faculty of Sciences, University of Porto (U. Porto), Porto, Portugal.
| | - Teresa Neuparth
- CIMAR/CIIMAR-Interdisciplinary Centre of Marine and Environmental Research, Endocrine Disruptors and Emerging Contaminants Group, University of Porto, Avenida General Norton de Matos, S/N, 4450-208 Matosinhos, Portugal.
| |
Collapse
|
15
|
Hepatocyte specific TIMP3 expression prevents diet dependent fatty liver disease and hepatocellular carcinoma. Sci Rep 2017; 7:6747. [PMID: 28751722 PMCID: PMC5532242 DOI: 10.1038/s41598-017-06439-x] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Accepted: 06/13/2017] [Indexed: 12/13/2022] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) encompasses a broad spectrum of conditions, ranging from non-progressive bland steatosis to hepatocarcinoma. Tissue inhibitor of metalloproteinase 3 (Timp3) has a role in the pathogenesis of fatty liver disease associated with obesity and is silenced during metabolic disorders and liver cancer. We generated an hepatocyte-specific TIMP3 'gain-of-function' mouse model under the control of the Albumin promoter (AlbT3) and investigated its effects during high-fat diet (HFD). After 16 weeks of HFD, TIMP3 overexpression significantly improved glucose metabolism, hepatic fatty acid oxidation and cholesterol homeostasis. In AlbT3 mice CYP7A1, MDR3 and MRP2 gene expressions were observed, consistent with higher bile acid synthesis and export. Next, to evaluate the role of A Disintegrin and Metalloproteinase 17 (ADAM17), a crucial target of TIMP3, in these processes, we created mice deficient in Adam17 specifically in hepatocyte (A17LKO) or in myeloid lineage (A17MKO), founding that only A17LKO showed improvement in liver steatosis induced by HFD. Moreover, both, AlbT3 and A17LKO significantly reduced diethylnitrosamine-initiated, HFD-promoted hepatic tumorigenesis assessed by tumor multiplicity and total tumor area. Taken together, these data indicate that hepatic TIMP3 can slow progression of NAFLD, and tumorigenesis, at least in part, through the regulation of ADAM17 activity.
Collapse
|
16
|
Heffernan C, Jain MR, Liu T, Kim H, Barretto K, Li H, Maurel P. Nectin-like 4 Complexes with Choline Transporter-like Protein-1 and Regulates Schwann Cell Choline Homeostasis and Lipid Biogenesis in Vitro. J Biol Chem 2017; 292:4484-4498. [PMID: 28119456 DOI: 10.1074/jbc.m116.747816] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2016] [Revised: 01/13/2017] [Indexed: 11/06/2022] Open
Abstract
Nectin-like 4 (NECL4, CADM4) is a Schwann cell-specific cell adhesion molecule that promotes axo-glial interactions. In vitro and in vivo studies have shown that NECL4 is necessary for proper peripheral nerve myelination. However, the molecular mechanisms that are regulated by NECL4 and affect peripheral myelination currently remain unclear. We used an in vitro approach to begin identifying some of the mechanisms that could explain NECL4 function. Using mass spectrometry and Western blotting techniques, we have identified choline transporter-like 1 (CTL1) as a putative complexing partner with NECL4. We show that intracellular choline levels are significantly elevated in NECL4-deficient Schwann cells. The analysis of extracellular d9-choline uptake revealed a deficit in the amount of d9-choline found inside NECL4-deficient Schwann cells, suggestive of either reduced transport capabilities or increased metabolization of transported choline. An extensive lipidomic screen of choline derivatives showed that total phosphatidylcholine and phosphatidylinositol (but not diacylglycerol or sphingomyelin) are significantly elevated in NECL4-deficient Schwann cells, particularly specific subspecies of phosphatidylcholine carrying very long polyunsaturated fatty acid chains. Finally, CTL1-deficient Schwann cells are significantly impaired in their ability to myelinate neurites in vitro To our knowledge, this is the first demonstration of a bona fide cell adhesion molecule, NECL4, regulating choline homeostasis and lipid biogenesis. Phosphatidylcholines are major myelin phospholipids, and several phosphorylated phosphatidylinositol species are known to regulate key aspects of peripheral myelination. Furthermore, the biophysical properties imparted to plasma membranes are regulated by fatty acid chain profiles. Therefore, it will be important to translate these in vitro observations to in vivo studies of NECL4 and CTL1-deficient mice.
Collapse
Affiliation(s)
- Corey Heffernan
- From the Department of Biological Sciences, Rutgers, the State University of New Jersey, Newark, New Jersey 07102-1814 and
| | - Mohit R Jain
- the Center for Advanced Proteomics Research, New Jersey Medical School, Newark, New Jersey 07103
| | - Tong Liu
- the Center for Advanced Proteomics Research, New Jersey Medical School, Newark, New Jersey 07103
| | - Hyosung Kim
- From the Department of Biological Sciences, Rutgers, the State University of New Jersey, Newark, New Jersey 07102-1814 and
| | - Kevin Barretto
- From the Department of Biological Sciences, Rutgers, the State University of New Jersey, Newark, New Jersey 07102-1814 and
| | - Hong Li
- the Center for Advanced Proteomics Research, New Jersey Medical School, Newark, New Jersey 07103
| | - Patrice Maurel
- From the Department of Biological Sciences, Rutgers, the State University of New Jersey, Newark, New Jersey 07102-1814 and
| |
Collapse
|
17
|
Ashikawa Y, Nishimura Y, Okabe S, Sasagawa S, Murakami S, Yuge M, Kawaguchi K, Kawase R, Tanaka T. Activation of Sterol Regulatory Element Binding Factors by Fenofibrate and Gemfibrozil Stimulates Myelination in Zebrafish. Front Pharmacol 2016; 7:206. [PMID: 27462272 PMCID: PMC4939524 DOI: 10.3389/fphar.2016.00206] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2016] [Accepted: 06/28/2016] [Indexed: 01/01/2023] Open
Abstract
Oligodendrocytes are major myelin-producing cells and play essential roles in the function of a healthy nervous system. However, they are also one of the most vulnerable neural cell types in the central nervous system (CNS), and myelin abnormalities in the CNS are found in a wide variety of neurological disorders, including multiple sclerosis, adrenoleukodystrophy, and schizophrenia. There is an urgent need to identify small molecular weight compounds that can stimulate myelination. In this study, we performed comparative transcriptome analysis to identify pharmacodynamic effects common to miconazole and clobetasol, which have been shown to stimulate myelination by mouse oligodendrocyte progenitor cells (OPCs). Of the genes differentially expressed in both miconazole- and clobetasol-treated mouse OPCs compared with untreated cells, we identified differentially expressed genes (DEGs) common to both drug treatments. Gene ontology analysis revealed that these DEGs are significantly associated with the sterol biosynthetic pathway, and further bioinformatics analysis suggested that sterol regulatory element binding factors (SREBFs) might be key upstream regulators of the DEGs. In silico screening of a public database for chemicals associated with SREBF activation identified fenofibrate, a peroxisome proliferator-activated receptor α (PPARα) agonist, as a drug that increases the expression of known SREBF targets, raising the possibility that fenofibrate may also stimulate myelination. To test this, we performed in vivo imaging of zebrafish expressing a fluorescent reporter protein under the control of the myelin basic protein (mbp) promoter. Treatment of zebrafish with fenofibrate significantly increased expression of the fluorescent reporter compared with untreated zebrafish. This increase was attenuated by co-treatment with fatostatin, a specific inhibitor of SREBFs, confirming that the fenofibrate effect was mediated via SREBFs. Furthermore, incubation of zebrafish with another PPARα agonist, gemfibrozil, also increased expression of the mbp promoter-driven fluorescent reporter in an SREBF-dependent manner. These results suggest that activation of SREBFs by small molecular weight compounds may be a feasible therapeutic approach to stimulate myelination.
Collapse
Affiliation(s)
- Yoshifumi Ashikawa
- Department of Molecular and Cellular Pharmacology, Pharmacogenomics and Pharmacoinformatics, Mie University Graduate School of Medicine Tsu, Japan
| | - Yuhei Nishimura
- Department of Molecular and Cellular Pharmacology, Pharmacogenomics and Pharmacoinformatics, Mie University Graduate School of MedicineTsu, Japan; Department of Systems Pharmacology, Mie University Graduate School of MedicineTsu, Japan; Mie University Medical Zebrafish Research CenterTsu, Japan; Department of Omics Medicine, Mie University Industrial Technology Innovation InstituteTsu, Japan; Department of Bioinformatics, Mie University Life Science Research CenterTsu, Japan
| | - Shiko Okabe
- Department of Molecular and Cellular Pharmacology, Pharmacogenomics and Pharmacoinformatics, Mie University Graduate School of Medicine Tsu, Japan
| | - Shota Sasagawa
- Department of Systems Pharmacology, Mie University Graduate School of Medicine Tsu, Japan
| | - Soichiro Murakami
- Department of Molecular and Cellular Pharmacology, Pharmacogenomics and Pharmacoinformatics, Mie University Graduate School of Medicine Tsu, Japan
| | - Mizuki Yuge
- Department of Molecular and Cellular Pharmacology, Pharmacogenomics and Pharmacoinformatics, Mie University Graduate School of Medicine Tsu, Japan
| | - Koki Kawaguchi
- Department of Systems Pharmacology, Mie University Graduate School of Medicine Tsu, Japan
| | - Reiko Kawase
- Department of Systems Pharmacology, Mie University Graduate School of Medicine Tsu, Japan
| | - Toshio Tanaka
- Department of Systems Pharmacology, Mie University Graduate School of MedicineTsu, Japan; Mie University Medical Zebrafish Research CenterTsu, Japan; Department of Omics Medicine, Mie University Industrial Technology Innovation InstituteTsu, Japan; Department of Bioinformatics, Mie University Life Science Research CenterTsu, Japan
| |
Collapse
|
18
|
Li Y, Liu G, Li H, Bi Y. Neuregulin-1β Regulates the migration of Different Neurochemical Phenotypic Neurons from Organotypically Cultured Dorsal Root Ganglion Explants. Cell Mol Neurobiol 2016; 36:69-81. [PMID: 26093851 PMCID: PMC11482311 DOI: 10.1007/s10571-015-0221-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2015] [Accepted: 06/02/2015] [Indexed: 10/24/2022]
Abstract
Neuregulin-1β (NRG-1β) has multiple roles in the development and function in the nervous system and exhibits potent neuroprotective properties. In the present study, organotypically cultured dorsal root ganglion (DRG) explants were used to evaluate the effects of NRG-1β on migration of two major phenotypic classes of DRG neurons. The signaling pathways involved in these effects were also determined. Organotypically cultured DRG explants were exposed to NRG-1β (20 nmol/L), the phosphatidylinositol 3-kinase inhibitor LY294002 (10 μmol/L) plus NRG-1β (20 nmol/L), the extracellular signal-regulated protein kinase (ERK1/2) inhibitor PD98059 (10 μmol/L) plus NRG-1β (20 nmol/L), and LY294002 (10 μmol/L) plus PD98059 (10 μmol/L) plus NRG-1β (20 nmol/L), respectively, for 3 days. The DRG explants were continuously exposed to culture media as a control. After that, all above cultures were processed for detecting the mRNA levels of calcitonin gene-related peptide (CGRP) and neurofilament-200 (NF-200) by real-time PCR analysis. CGRP and NF-200 expression in situ was determined by fluorescent labeling technique. The results showed that NRG-1β elevated the mRNA and protein levels of CGRP and NF-200. NRG-1β also increased the number and the percentage of CGRP-immunoreactive (IR) migrating neurons and NF-200-IR migrating neurons. Inhibitors (LY294002, PD98059) either alone or in combination blocked the effects of NRG-1β. The contribution of NRG-1β on modulating distinct neurochemical phenotypic plasticity of DRG neurons suggested that NRG-1β signaling system might play an important role on the biological effects of primary sensory neurons.
Collapse
Affiliation(s)
- Yunfeng Li
- Department of Cardiosurgery, Shandong University Qilu Hospital, 107 West Wenhua Xi Road, Jinan, 250012, Shandong Province, China.
| | - Guixiang Liu
- Department of Histology and Embryology, Binzhou Medical College, Binzhou, 256603, China.
| | - Hao Li
- Department of Orthopaedics, Shandong University Qilu Hospital, Jinan, 250012, China.
| | - Yanwen Bi
- Department of Cardiosurgery, Shandong University Qilu Hospital, 107 West Wenhua Xi Road, Jinan, 250012, Shandong Province, China.
| |
Collapse
|
19
|
Schmitt S, Castelvetri LC, Simons M. Metabolism and functions of lipids in myelin. Biochim Biophys Acta Mol Cell Biol Lipids 2014; 1851:999-1005. [PMID: 25542507 DOI: 10.1016/j.bbalip.2014.12.016] [Citation(s) in RCA: 171] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2014] [Revised: 12/08/2014] [Accepted: 12/16/2014] [Indexed: 12/16/2022]
Abstract
Rapid conduction of nerve impulses requires coating of axons by myelin sheaths, which are lipid-rich and multilamellar membrane stacks. The lipid composition of myelin varies significantly from other biological membranes. Studies in mutant mice targeting various lipid biosynthesis pathways have shown that myelinating glia have a remarkable capacity to compensate the lack of individual lipids. However, compensation fails when it comes to maintaining long-term stability of myelin. Here, we summarize how lipids function in myelin biogenesis, axon-glia communication and in supporting long-term maintenance of myelin. We postulate that change in myelin lipid composition might be relevant for our understanding of aging and demyelinating diseases. This article is part of a Special Issue titled Brain Lipids.
Collapse
Affiliation(s)
- Sebastian Schmitt
- Max-Planck-Institute for Experimental Medicine, Hermann-Rein-Str. 3, Göttingen, Germany; Department of Neurology, Robert-Koch-Str. 40, University of Göttingen, Göttingen, Germany
| | - Ludovici Cantuti Castelvetri
- Max-Planck-Institute for Experimental Medicine, Hermann-Rein-Str. 3, Göttingen, Germany; Department of Neurology, Robert-Koch-Str. 40, University of Göttingen, Göttingen, Germany
| | - Mikael Simons
- Max-Planck-Institute for Experimental Medicine, Hermann-Rein-Str. 3, Göttingen, Germany; Department of Neurology, Robert-Koch-Str. 40, University of Göttingen, Göttingen, Germany.
| |
Collapse
|
20
|
Norrmén C, Figlia G, Lebrun-Julien F, Pereira JA, Trötzmüller M, Köfeler HC, Rantanen V, Wessig C, van Deijk ALF, Smit AB, Verheijen MHG, Rüegg MA, Hall MN, Suter U. mTORC1 controls PNS myelination along the mTORC1-RXRγ-SREBP-lipid biosynthesis axis in Schwann cells. Cell Rep 2014; 9:646-60. [PMID: 25310982 DOI: 10.1016/j.celrep.2014.09.001] [Citation(s) in RCA: 98] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2014] [Revised: 04/05/2014] [Accepted: 08/28/2014] [Indexed: 11/26/2022] Open
Abstract
Myelin formation during peripheral nervous system (PNS) development, and reformation after injury and in disease, requires multiple intrinsic and extrinsic signals. Akt/mTOR signaling has emerged as a major player involved, but the molecular mechanisms and downstream effectors are virtually unknown. Here, we have used Schwann-cell-specific conditional gene ablation of raptor and rictor, which encode essential components of the mTOR complexes 1 (mTORC1) and 2 (mTORC2), respectively, to demonstrate that mTORC1 controls PNS myelination during development. In this process, mTORC1 regulates lipid biosynthesis via sterol regulatory element-binding proteins (SREBPs). This course of action is mediated by the nuclear receptor RXRγ, which transcriptionally regulates SREBP1c downstream of mTORC1. Absence of mTORC1 causes delayed myelination initiation as well as hypomyelination, together with abnormal lipid composition and decreased nerve conduction velocity. Thus, we have identified the mTORC1-RXRγ-SREBP axis controlling lipid biosynthesis as a major contributor to proper peripheral nerve function.
Collapse
Affiliation(s)
- Camilla Norrmén
- Institute of Molecular Health Sciences, Department of Biology, Swiss Federal Institute of Technology Zurich, ETH Zürich, CH-8093 Zurich, Switzerland.
| | - Gianluca Figlia
- Institute of Molecular Health Sciences, Department of Biology, Swiss Federal Institute of Technology Zurich, ETH Zürich, CH-8093 Zurich, Switzerland
| | - Frédéric Lebrun-Julien
- Institute of Molecular Health Sciences, Department of Biology, Swiss Federal Institute of Technology Zurich, ETH Zürich, CH-8093 Zurich, Switzerland
| | - Jorge A Pereira
- Institute of Molecular Health Sciences, Department of Biology, Swiss Federal Institute of Technology Zurich, ETH Zürich, CH-8093 Zurich, Switzerland
| | - Martin Trötzmüller
- Core Facility for Mass Spectrometry, Center for Medical Research, Medical University of Graz, 8010 Graz, Austria
| | - Harald C Köfeler
- Core Facility for Mass Spectrometry, Center for Medical Research, Medical University of Graz, 8010 Graz, Austria
| | - Ville Rantanen
- Research Programs Unit, Genome-Scale Biology, and Institute of Biomedicine, Biochemistry and Developmental Biology, University of Helsinki, 00014 Helsinki, Finland
| | - Carsten Wessig
- Department of Neurology, University of Würzburg, 97080 Würzburg, Germany
| | - Anne-Lieke F van Deijk
- Department of Molecular and Cellular Neurobiology, Center for Neurogenomics and Cognitive Research, Neuroscience Campus Amsterdam, VU University, 1081HV Amsterdam, the Netherlands
| | - August B Smit
- Department of Molecular and Cellular Neurobiology, Center for Neurogenomics and Cognitive Research, Neuroscience Campus Amsterdam, VU University, 1081HV Amsterdam, the Netherlands
| | - Mark H G Verheijen
- Department of Molecular and Cellular Neurobiology, Center for Neurogenomics and Cognitive Research, Neuroscience Campus Amsterdam, VU University, 1081HV Amsterdam, the Netherlands
| | - Markus A Rüegg
- Biozentrum, University of Basel, 4056 Basel, Switzerland
| | - Michael N Hall
- Biozentrum, University of Basel, 4056 Basel, Switzerland
| | - Ueli Suter
- Institute of Molecular Health Sciences, Department of Biology, Swiss Federal Institute of Technology Zurich, ETH Zürich, CH-8093 Zurich, Switzerland.
| |
Collapse
|
21
|
Ghahramani Seno MM, Gwadry FG, Hu P, Scherer SW. Neuregulin 1-alpha regulates phosphorylation, acetylation, and alternative splicing in lymphoblastoid cells. Genome 2013; 56:619-25. [DOI: 10.1139/gen-2013-0068] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Neuregulins (NRGs) are signaling molecules involved in various cellular and developmental processes. Abnormal expression and (or) genomic variations of some of these molecules, such as NRG1, have been associated with disease conditions such as cancer and schizophrenia. To gain a comprehensive molecular insight into possible pathways/networks regulated by NRG1-alpha, we performed a global expression profiling analysis on lymphoblastoid cell lines exposed to NRG1-alpha. Our data show that this signaling molecule mainly regulates coordinated expression of genes involved in three processes: phosphorylation, acetylation, and alternative splicing. These processes have fundamental roles in proper development and function of various tissues including the central nervous system (CNS)—a fact that may explain conditions associated with NRG1 dysregulations such as schizophrenia. The data also suggest NRG1-alpha regulates genes (FBXO41) and miRNAs (miR-33) involved in cholesterol metabolism. Moreover, RPN2, a gene already shown to be dysregulated in breast cancer cells, is also differentially regulated by NRG1-alpha treatment.
Collapse
Affiliation(s)
- Mohammad M. Ghahramani Seno
- The Centre for Applied Genomics, Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, ON M5G 1L7, Canada
- Department of Basic Sciences, School of Veterinary Medicine, Ferdowsi University of Mashhad, Mashhad, Iran
- Department of Pathobiology, School of Veterinary Medicine, Shiraz University, Shiraz, Iran
| | - Fuad G. Gwadry
- The Centre for Applied Genomics, Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, ON M5G 1L7, Canada
| | - Pingzhao Hu
- The Centre for Applied Genomics, Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, ON M5G 1L7, Canada
| | - Stephen W. Scherer
- The Centre for Applied Genomics, Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, ON M5G 1L7, Canada
- McLaughlin Centre and Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada
| |
Collapse
|
22
|
A role for Schwann cell-derived neuregulin-1 in remyelination. Nat Neurosci 2012; 16:48-54. [PMID: 23222914 DOI: 10.1038/nn.3281] [Citation(s) in RCA: 208] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2012] [Accepted: 11/15/2012] [Indexed: 02/06/2023]
Abstract
After peripheral nerve injury, axons regenerate and become remyelinated by resident Schwann cells. However, myelin repair never results in the original myelin thickness, suggesting insufficient stimulation by neuronal growth factors. Upon testing this hypothesis, we found that axonal neuregulin-1 (NRG1) type III and, unexpectedly, also NRG1 type I restored normal myelination when overexpressed in transgenic mice. This led to the observation that Wallerian degeneration induced de novo NRG1 type I expression in Schwann cells themselves. Mutant mice lacking a functional Nrg1 gene in Schwann cells are fully myelinated but exhibit impaired remyelination in adult life. We suggest a model in which loss of axonal contact triggers denervated Schwann cells to transiently express NRG1 as an autocrine/paracrine signal that promotes Schwann cell differentiation and remyelination.
Collapse
|
23
|
Yue W, Song L, Fu G, Li Y, Liu H. Neuregulin-1β regulates tyrosine kinase receptor expression in cultured dorsal root ganglion neurons with excitotoxicity induced by glutamate. ACTA ACUST UNITED AC 2012; 180:33-42. [PMID: 23142316 DOI: 10.1016/j.regpep.2012.10.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2012] [Revised: 09/08/2012] [Accepted: 10/17/2012] [Indexed: 01/14/2023]
Abstract
Neuregulin-1 (NRG-1) signaling regulates neuronal development, migration, myelination, and synaptic maintenance. Three members of tyrosine kinase receptor (Trk) family, TrkA, TrkB, and TrkC, have been identified in DRG neurons. Whether NRG-1β and its signaling pathways influence the expression of these Trk receptors in DRG neurons is still unclear. In the present study, primary cultured DRG neurons were used to determine the effects of NRG-1β on TrkA, TrkB, and TrkC expression in DRG neurons with excitotoxicity induced by glutamate (Glu). The involvement of phosphatidylinositol 3-kinase (PI3K)/Akt and the effects of extracellular signal-regulated protein kinase (ERK1/2) signaling pathways on NRG-1β were also determined. DRG neurons were cultured for 48h and then exposed to Glu, Glu plus NRG-1β, LY294002 plus Glu plus NRG-1β, PD98059 plus Glu plus NRG-1β, and PD98059 plus LY294002 plus Glu plus NRG-1β for an additional 24h. The DRG neurons were continuously exposed to culture media as a control. After that, all cultures were processed for detection of mRNA levels of TrkA, TrkB, and TrkC using real time-PCR analysis. Protein levels of TrkA, TrkB, and TrkC were detected using a Western blot assay. The expression of TrkA, TrkB, and TrkC in situ was determined by a fluorescent labeling technique. The levels of phosphorylated Akt (pAkt), phosphorylated ERK1/2 (pERK1/2), total protein levels of Akt and ERK1/2 were detected using a Western blot assay. The results indicated that in primary cultured DRG neurons with excitotoxicity induced by Glu, NRG-1β increased the expression of TrkA and TrkB their mRNAs, but not TrkC and its mRNA. Inhibitors (LY294002, PD98059) either alone or in combination blocked the effects of NRG-1β. NRG-1β may play an important role in regulating the expression of different Trk receptors in DRG neurons through the PI3K/Akt and ERK1/2 signaling pathways.
Collapse
Affiliation(s)
- Weiming Yue
- Department of Thoracic Surgery, Shandong University Qilu Hospital, Jinan 250012, China.
| | | | | | | | | |
Collapse
|
24
|
Donier E, Gomez-Sanchez JA, Grijota-Martinez C, Lakomá J, Baars S, Garcia-Alonso L, Cabedo H. L1CAM binds ErbB receptors through Ig-like domains coupling cell adhesion and neuregulin signalling. PLoS One 2012; 7:e40674. [PMID: 22815787 PMCID: PMC3398014 DOI: 10.1371/journal.pone.0040674] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2012] [Accepted: 06/12/2012] [Indexed: 01/14/2023] Open
Abstract
During nervous system development different cell-to-cell communication mechanisms operate in parallel guiding migrating neurons and growing axons to generate complex arrays of neural circuits. How such a system works in coordination is not well understood. Cross-regulatory interactions between different signalling pathways and redundancy between them can increase precision and fidelity of guidance systems. Immunoglobulin superfamily proteins of the NCAM and L1 families couple specific substrate recognition and cell adhesion with the activation of receptor tyrosine kinases. Thus it has been shown that L1CAM-mediated cell adhesion promotes the activation of the EGFR (erbB1) from Drosophila to humans. Here we explore the specificity of the molecular interaction between L1CAM and the erbB receptor family. We show that L1CAM binds physically erbB receptors in both heterologous systems and the mammalian developing brain. Different Ig-like domains located in the extracellular part of L1CAM can support this interaction. Interestingly, binding of L1CAM to erbB enhances its response to neuregulins. During development this may synergize with the activation of erbB receptors through L1CAM homophilic interactions, conferring diffusible neuregulins specificity for cells or axons that interact with the substrate through L1CAM.
Collapse
Affiliation(s)
- Emanuelle Donier
- Instituto de Neurociencias de Alicante, Universidad Miguel Hernández-Spanish National Research Council, San Juan de Alicante, Spain
| | - Jose Antonio Gomez-Sanchez
- Instituto de Neurociencias de Alicante, Universidad Miguel Hernández-Spanish National Research Council, San Juan de Alicante, Spain
- Fundación de la Comunidad Valenciana para la Investigación en el Hospital General Universitario de Alicante, Alicante, Spain
| | - Carmen Grijota-Martinez
- Instituto de Neurociencias de Alicante, Universidad Miguel Hernández-Spanish National Research Council, San Juan de Alicante, Spain
| | - Jarmila Lakomá
- Instituto de Neurociencias de Alicante, Universidad Miguel Hernández-Spanish National Research Council, San Juan de Alicante, Spain
| | - Sigrid Baars
- Instituto de Neurociencias de Alicante, Universidad Miguel Hernández-Spanish National Research Council, San Juan de Alicante, Spain
| | - Luis Garcia-Alonso
- Instituto de Neurociencias de Alicante, Universidad Miguel Hernández-Spanish National Research Council, San Juan de Alicante, Spain
- * E-mail: (LGA); (HC)
| | - Hugo Cabedo
- Instituto de Neurociencias de Alicante, Universidad Miguel Hernández-Spanish National Research Council, San Juan de Alicante, Spain
- Fundación de la Comunidad Valenciana para la Investigación en el Hospital General Universitario de Alicante, Alicante, Spain
- * E-mail: (LGA); (HC)
| |
Collapse
|
25
|
Rutten MJ, Janes MA, Chang IR, Gregory CR, Gregory KW. Development of a functional schwann cell phenotype from autologous porcine bone marrow mononuclear cells for nerve repair. Stem Cells Int 2012; 2012:738484. [PMID: 22792117 PMCID: PMC3388598 DOI: 10.1155/2012/738484] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2012] [Accepted: 03/29/2012] [Indexed: 01/10/2023] Open
Abstract
Adult bone marrow mononuclear cells (BM-MNCs) are a potential resource for making Schwann cells to repair damaged peripheral nerves. However, many methods of producing Schwann-like cells can be laborious with the cells lacking a functional phenotype. The objective of this study was to develop a simple and rapid method using autologous BM-MNCs to produce a phenotypic and functional Schwann-like cell. Adult porcine bone marrow was collected and enriched for BM-MNCs using a SEPAX device, then cells cultured in Neurobasal media, 4 mM L-glutamine and 20% serum. After 6-8 days, the cultures expressed Schwann cell markers, S-100, O4, GFAP, were FluoroMyelin positive, but had low p75(NGF) expression. Addition of neuregulin (1-25 nM) increased p75(NGF) levels at 24-48 hrs. We found ATP dose-dependently increased intracellular calcium [Ca(2+)](i), with nucleotide potency being UTP = ATP > ADP > AMP > adenosine. Suramin blocked the ATP-induced [Ca(2+)](i) but α, β,-methylene-ATP had little effect suggesting an ATP purinergic P2Y2 G-protein-coupled receptor is present. Both the Schwann cell markers and ATP-induced [Ca(2+)](i) sensitivity decreased in cells passaged >20 times. Our studies indicate that autologous BM-MNCs can be induced to form a phenotypic and functional Schwann-like cell which could be used for peripheral nerve repair.
Collapse
Affiliation(s)
- Michael J. Rutten
- Providence Health and Services, 9555 SW Barnes Rd., Portland, OR 97225, USA
- OHSU Center for Regenerative Medicine, Oregon Health & Science University, 3181 S.W. Sam Jackson Park Road, Portland, OR 97239, USA
| | - Michael Ann Janes
- Providence Health and Services, 9555 SW Barnes Rd., Portland, OR 97225, USA
| | - Ivy R. Chang
- Providence Health and Services, 9555 SW Barnes Rd., Portland, OR 97225, USA
| | - Cynthia R. Gregory
- OHSU Center for Regenerative Medicine, Oregon Health & Science University, 3181 S.W. Sam Jackson Park Road, Portland, OR 97239, USA
- Oregon Biomedical Engineering Institute, 25999 SW Canyon Creek Rd., Wilsonville, OR 97070, USA
- Portland VA Medical Center, 3710 SW U.S. Veterans Hospital Rd., Portland, OR 97239, USA
| | - Kenton W. Gregory
- Providence Health and Services, 9555 SW Barnes Rd., Portland, OR 97225, USA
- OHSU Center for Regenerative Medicine, Oregon Health & Science University, 3181 S.W. Sam Jackson Park Road, Portland, OR 97239, USA
- Oregon Biomedical Engineering Institute, 25999 SW Canyon Creek Rd., Wilsonville, OR 97070, USA
| |
Collapse
|
26
|
Liu Z, Li H, Zhang W, Li Y, Liu H, Li Z. Neuregulin-1β prevents Ca(2+) overloading and apoptosis through PI3K/Akt activation in cultured dorsal root ganglion neurons with excitotoxicity induced by glutamate. Cell Mol Neurobiol 2011; 31:1195-201. [PMID: 21671003 PMCID: PMC11498606 DOI: 10.1007/s10571-011-9721-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2011] [Accepted: 05/30/2011] [Indexed: 10/18/2022]
Abstract
Neuregulin (NRG) plays an important role on the genesis and differentiation of neurons in the dorsal root ganglion (DRG). Whether NRG-1β regulates Ca(2+) homeostasis and apoptosis of cultured DRG neurons with excitotoxicity induced by Glu remains unknown. In this study, primary cultured DRG neurons were used to determine the effects of NRG-1β on Ca(2+) overload and apoptosis of DRG sensory neurons with excitotoxicity induced by Glu. The primary cultured DRG neurons at 48 h of culture age were then exposed to Glu (0.2 mmol/l), Glu (0.2 mmol/l) plus NRG-1β (20 nmol/l), or Glu (0.2 mmol/l) plus NRG-1β (20 nmol/l) and phosphatidylinositol 3-kinase (PI3K) inhibitor LY294002 (10 μmol/l) for additional 12 h. After that, intracellular Ca(2+) concentration ([Ca(2+)](i)) in isolated DRG neurons using the fluorescent Ca(2+) indicator fluo-3 was measured by confocal laser scanning microscope. Apoptotic neurons were monitored by Hoechst 33342 staining. Expression of caspase-3, procaspase-3, and pAkt was detected by Western blot assay. Administration of 0.2 mmol/l Glu evoked an increase in [Ca(2+)](i), confirming the excitatory effect of Glu. Compared with the control group, apoptotic (condensed and fragmented nuclei) neurons were observed in Glu-treated cells after Hoechst 33342 staining. The increase caspase-3 of and decrease of procaspase-3 expression levels after administration of 0.2 mmol/l Glu suggested the apoptotic effects of Glu. These effects could be inhibited by the presence of NRG-1β. The effects of NRG-1β could be blocked by PI3K inhibitor LY294002. These results implicated that NRG-1β could prevents Ca(2+) overload and apoptosis by activating PI3K/Akt pathway of primary cultured DRG neurons with excitotoxicity induced by Glu.
Collapse
Affiliation(s)
- Zhen Liu
- Department of Anatomy, Shandong University School of Medicine, 44 Wenhua Xi Road, Jinan, 250012 Shandong China
| | - Hao Li
- Department of Anatomy, Shandong University School of Medicine, 44 Wenhua Xi Road, Jinan, 250012 Shandong China
| | - Weiwei Zhang
- Department of Anatomy, Shandong University School of Medicine, 44 Wenhua Xi Road, Jinan, 250012 Shandong China
| | - Yizhao Li
- Jinan e-Join Science and Technology Co., Ltd, Jinan, 250100 China
| | - Huaxiang Liu
- Department of Rheumatology, Shandong University Qilu Hospital, 107 Wenhua Xi Road, Jinan, 250012 Shandong Province China
| | - Zhenzhong Li
- Department of Anatomy, Shandong University School of Medicine, 44 Wenhua Xi Road, Jinan, 250012 Shandong China
| |
Collapse
|
27
|
Saher G, Quintes S, Nave KA. Cholesterol: a novel regulatory role in myelin formation. Neuroscientist 2011; 17:79-93. [PMID: 21343408 DOI: 10.1177/1073858410373835] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Myelin consists of tightly compacted membranes that form an insulating sheath around axons. The function of myelin for rapid saltatory nerve conduction is dependent on its unique composition, highly enriched in glycosphingolipids and cholesterol. Cholesterol emerged as the only integral myelin component that is essential and rate limiting for the development of CNS and PNS myelin. Experiments with conditional mouse mutants that lack cholesterol biosynthesis in oligodendrocytes revealed that only minimal changes of the CNS myelin lipid composition are tolerated. In Schwann cells of the PNS, protein trafficking and myelin compaction depend on cholesterol. In this review, the authors summarize the role of cholesterol in myelin biogenesis and myelin disease.
Collapse
Affiliation(s)
- Gesine Saher
- Max Planck Institute of Experimental Medicine, Neurogenetics, Göttingen, Germany.
| | | | | |
Collapse
|
28
|
Abstract
The myelination of axons by glial cells was the last major step in the evolution of cells in the vertebrate nervous system, and white-matter tracts are key to the architecture of the mammalian brain. Cell biology and mouse genetics have provided insight into axon-glia signalling and the molecular architecture of the myelin sheath. Glial cells that myelinate axons were found to have a dual role by also supporting the long-term integrity of those axons. This function may be independent of myelin itself. Myelin abnormalities cause a number of neurological diseases, and may also contribute to complex neuropsychiatric disorders.
Collapse
Affiliation(s)
- Klaus-Armin Nave
- Department of Neurogenetics, Max Planck Institute of Experimental Medicine, Hermann-Rein-Strasse 3, 37075 Göttingen, Germany.
| |
Collapse
|
29
|
Tian L, Song Y, Xing M, Zhang W, Ning G, Li X, Yu C, Qin C, Liu J, Tian X, Sun X, Fu R, Zhang L, Zhang X, Lu Y, Zou J, Wang L, Guan Q, Gao L, Zhao J. A novel role for thyroid-stimulating hormone: up-regulation of hepatic 3-hydroxy-3-methyl-glutaryl-coenzyme A reductase expression through the cyclic adenosine monophosphate/protein kinase A/cyclic adenosine monophosphate-responsive element binding protein pathway. Hepatology 2010; 52:1401-9. [PMID: 20648556 DOI: 10.1002/hep.23800] [Citation(s) in RCA: 119] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/07/2022]
Abstract
Elevated thyroid-stimulating hormone (TSH) and hypercholesterolemia commonly coexist, as typically seen in hypothyroidism, but there is no known mechanism directly linking the two. Here, we demonstrated that in liver cells, TSH promoted the expression of 3-hydroxy-3-methyl-glutaryl coenzyme A reductase (HMGCR), a rate-limiting enzyme in cholesterol synthesis, by acting on the TSH receptor in hepatocyte membranes and stimulating the cyclic adenosine monophosphate / protein kinase A / cyclic adenosine monophosphate-responsive element binding protein (cAMP/PKA/CREB) signaling system. In thyroidectomized rats, the production of endogenous thyroid hormone was eliminated and endogenous TSH was suppressed through pituitary suppression with constant administration of exogenous thyroid hormone, and hepatic HMGCR expression was increased by administration of exogenous TSH. These results suggested that TSH could up-regulate hepatic HMGCR expression, which indicated a potential mechanism for hypercholesterolemia involving direct action of TSH on the liver.
Collapse
Affiliation(s)
- Limin Tian
- Endocrinology, Provincial Hospital affiliated to Shandong University, Jinan, China
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Quintes S, Goebbels S, Saher G, Schwab MH, Nave KA. Neuron-glia signaling and the protection of axon function by Schwann cells. J Peripher Nerv Syst 2010; 15:10-6. [DOI: 10.1111/j.1529-8027.2010.00247.x] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
31
|
Abstract
Myelin consists of several layers of tightly compacted membranes wrapped around axons in the nervous system. The main function of myelin is to provide electrical insulation around the axon to ensure the rapid propagation of nerve conduction. As the myelinating glia terminally differentiates, they begin to produce myelin membranes on a remarkable scale. This membrane is unique in its composition being highly enriched in lipids, in particular galactosylceramide and cholesterol. In this review we will summarize the role of cholesterol in myelin biogenesis in the central and peripheral nervous system.
Collapse
Affiliation(s)
- Gesine Saher
- Department of Neurogenetics, Max-Planck-Institute for Experimental Medicine, Hermann-Rein-Str. 3, Göttingen, Germany
| | | |
Collapse
|
32
|
On the biogenesis of myelin membranes: sorting, trafficking and cell polarity. FEBS Lett 2009; 584:1760-70. [PMID: 19896485 DOI: 10.1016/j.febslet.2009.10.085] [Citation(s) in RCA: 115] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2009] [Revised: 10/29/2009] [Accepted: 10/30/2009] [Indexed: 11/22/2022]
Abstract
In the central nervous system, a multilayered membrane layer known as the myelin sheath enwraps axons, and is required for optimal saltatory signal conductance. The sheath develops from membrane processes that extend from the plasma membrane of oligodendrocytes and displays a unique lipid and protein composition. Myelin biogenesis is carefully regulated, and multiple transport pathways involving a variety of endosomal compartments are involved. Here we briefly summarize how the major myelin proteins proteolipid protein and myelin basic protein reach the sheath, and highlight potential mechanisms involved, including the role of myelin specific lipids and cell polarity related transport pathways.
Collapse
|
33
|
Bartzokis G. Alzheimer's disease as homeostatic responses to age-related myelin breakdown. Neurobiol Aging 2009; 32:1341-71. [PMID: 19775776 DOI: 10.1016/j.neurobiolaging.2009.08.007] [Citation(s) in RCA: 402] [Impact Index Per Article: 25.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2008] [Revised: 08/13/2009] [Accepted: 08/17/2009] [Indexed: 12/11/2022]
Abstract
The amyloid hypothesis (AH) of Alzheimer's disease (AD) posits that the fundamental cause of AD is the accumulation of the peptide amyloid beta (Aβ) in the brain. This hypothesis has been supported by observations that genetic defects in amyloid precursor protein (APP) and presenilin increase Aβ production and cause familial AD (FAD). The AH is widely accepted but does not account for important phenomena including recent failures of clinical trials to impact dementia in humans even after successfully reducing Aβ deposits. Herein, the AH is viewed from the broader overarching perspective of the myelin model of the human brain that focuses on functioning brain circuits and encompasses white matter and myelin in addition to neurons and synapses. The model proposes that the recently evolved and extensive myelination of the human brain underlies both our unique abilities and susceptibility to highly prevalent age-related neuropsychiatric disorders such as late onset AD (LOAD). It regards oligodendrocytes and the myelin they produce as being both critical for circuit function and uniquely vulnerable to damage. This perspective reframes key observations such as axonal transport disruptions, formation of axonal swellings/sphenoids and neuritic plaques, and proteinaceous deposits such as Aβ and tau as by-products of homeostatic myelin repair processes. It delineates empirically testable mechanisms of action for genes underlying FAD and LOAD and provides "upstream" treatment targets. Such interventions could potentially treat multiple degenerative brain disorders by mitigating the effects of aging and associated changes in iron, cholesterol, and free radicals on oligodendrocytes and their myelin.
Collapse
Affiliation(s)
- George Bartzokis
- Department of Psychiatry and Biobehavioral Sciences, The David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA.
| |
Collapse
|
34
|
Cholesterol regulates the endoplasmic reticulum exit of the major membrane protein P0 required for peripheral myelin compaction. J Neurosci 2009; 29:6094-104. [PMID: 19439587 DOI: 10.1523/jneurosci.0686-09.2009] [Citation(s) in RCA: 90] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Rapid impulse conduction requires electrical insulation of axons by myelin, a cholesterol-rich extension of the glial cell membrane with a characteristic composition of proteins and lipids. Mutations in several myelin protein genes cause endoplasmic reticulum (ER) retention and disease, presumably attributable to failure of misfolded proteins to pass the ER quality control. Because many myelin proteins partition into cholesterol-rich membrane rafts, their interaction with cholesterol could potentially be part of the ER quality control system. Here, we provide in vitro and in vivo evidence that the major peripheral myelin protein P0 requires cholesterol for exiting the ER and reaching the myelin compartment. Cholesterol dependency of P0 trafficking in heterologous cells is mediated by a cholesterol recognition/interaction amino acid consensus (CRAC) motif. Mutant mice lacking cholesterol biosynthesis in Schwann cells suffer from severe hypomyelination with numerous uncompacted myelin stretches. This demonstrates that high-level cholesterol coordinates P0 export with myelin membrane synthesis, which is required for the correct stoichiometry of myelin components and for myelin compaction.
Collapse
|
35
|
Yu C, Rouen S, Dobrowsky RT. Hyperglycemia and downregulation of caveolin-1 enhance neuregulin-induced demyelination. Glia 2008; 56:877-87. [PMID: 18338795 PMCID: PMC2553896 DOI: 10.1002/glia.20662] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Neuregulins (NRGs) are growth factors which bind to Erb receptor tyrosine kinases that localize to Schwann cells (SCs). Although NRGs can promote cell survival, mitogenesis, and myelination in undifferentiated SCs, they also induce demyelination of myelinated co-cultures of SCs and dorsal root ganglion (DRG) neurons. We have shown previously that Erb B2 activity increased in premyelinating SCs in response to hyperglycemia, and that this correlated with the downregulation of the protein caveolin-1 (Cav-1). As myelinated SCs undergo substantial degeneration in diabetic neuropathy, we used myelinated SC/DRG neuron co-cultures to determine if hyperglycemia and changes in Cav-1 expression could enhance NRG-induced demyelination. In basal glucose, NRG1 caused a 2.4-fold increase in the number of damaged myelin segments. This damage reached 3.8-fold under hyperglycemic conditions, and was also associated with a robust decrease in the expression of Cav-1 and compact myelin proteins. The loss of Cav-1 and compact myelin proteins following hyperglycemia and NRG treatment was not due to neuronal loss, since the axons remained intact and there was no loss of PGP 9.5, an axonal marker protein. To examine if changes in Cav-1 were sufficient to alter the extent of NRG-induced demyelination, SC/DRG neurons co-cultures were infected with antisense or dominant-negative Cav-1(P132L) adenoviruses. Either antisense-mediated downregulation or mis-localization of endogenous Cav-1 by Cav-1(P132L) resulted in a 1.5- to 2.4-fold increase in NRG-induced degeneration compared to that present in control cultures. These data support that hyperglycemia and changes in Cav-1 are sufficient to sensitize myelinated SC/DRG co-cultures to NRG-induced demyelination.
Collapse
Affiliation(s)
- Cuijuan Yu
- Department of Pharmacology and Toxicology, University of Kansas, Lawrence, Kansas 66045, USA
| | | | | |
Collapse
|