1
|
Wang J, Ma Q, Tian S. Against Clostridioides difficile Infection: An Update on Vaccine Development. Toxins (Basel) 2025; 17:222. [PMID: 40423305 DOI: 10.3390/toxins17050222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2025] [Revised: 04/28/2025] [Accepted: 04/29/2025] [Indexed: 05/28/2025] Open
Abstract
Clostridioides difficile (C. difficile) is a major pathogen responsible for antibiotic-associated diarrhea, frequently observed in hospital settings. Due to the widespread use of antibiotics, the incidence and severity of C. difficile infection (CDI) are rising across the world. CDI is primarily driven by two homologous protein exotoxins, toxin A (TcdA) and toxin B (TcdB). Other putative virulence factors include binary toxin CDT, surface layer proteins, phosphorylated polysaccharides, and spore coat proteins. These C. difficile virulence factors are potential targets for vaccine development. Although several C. difficile vaccines have entered clinical trials, there is currently no approved vaccine on the market. This review outlines the intoxication mechanism during CDI, emphasizing the potential antigens that can be used for vaccine development. We aim to provide a comprehensive overview of the current status of research and development of C. difficile vaccines.
Collapse
Affiliation(s)
- Jingyao Wang
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Molecular and Cellular Pharmacology, School of Pharmaceutical Sciences, Peking University, 38 Xueyuan Road, Beijing 100191, China
| | - Qianquan Ma
- Department of Neurosurgery, Peking University Third Hospital, Beijing 100191, China
| | - Songhai Tian
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Molecular and Cellular Pharmacology, School of Pharmaceutical Sciences, Peking University, 38 Xueyuan Road, Beijing 100191, China
| |
Collapse
|
2
|
Finn LM, Cummer R, Castagner B, Keller BG. Allosterically switchable network orients β-flap in Clostridioides difficile toxins. Proc Natl Acad Sci U S A 2025; 122:e2419263122. [PMID: 40172960 PMCID: PMC12002228 DOI: 10.1073/pnas.2419263122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2024] [Accepted: 02/25/2025] [Indexed: 04/04/2025] Open
Abstract
Allosteric proteins exhibit a functional response upon ligand binding far from the active site. Clostridioides difficile toxins use allosteric binding by the endogenous cofactor myo-inositol hexakisphosphate to orchestrate self-cleavage from within the target cell. This binding event induces a conformational shift, primarily effecting a lever-like β-flap region, with two known orientations. We uncovered a mechanism for this allosteric transition using extensive atomistic molecular dynamics simulations and computational and experimental mutagenesis. The mechanism relies on a switchable interaction network. The most prominent interaction pair is K600-E743, with K600 interactions explaining ∼70% of the allosteric effect. Rather than gradually morphing between two end states, the interaction network adopts two mutually exclusive configurations in the active and inactive state. Similar switchable networks may explain allostery more broadly. This mechanism in particular could aid in drug development targeting the C. difficile toxins autoproteolysis.
Collapse
Affiliation(s)
- Lauren M. Finn
- Department of Biology, Chemistry, and Pharmacy, Freie Universität Berlin, Berlin14195, Germany
| | - Rebecca Cummer
- Department of Pharmacology and Therapeutics, Faculty of Medicine and Health Sciences, McGill University, Montreal, QCH3G 1Y6, Canada
| | - Bastien Castagner
- Department of Pharmacology and Therapeutics, Faculty of Medicine and Health Sciences, McGill University, Montreal, QCH3G 1Y6, Canada
| | - Bettina G. Keller
- Department of Biology, Chemistry, and Pharmacy, Freie Universität Berlin, Berlin14195, Germany
| |
Collapse
|
3
|
Rodrigues Rodrigues R, Alves MLF, Bilhalva MA, Kremer FS, Junior CM, Ferreira MRA, Galvão CC, Quatrin PHDN, Conceição FR. Large Clostridial Toxins: A Brief Review and Insights into Antigen Design for Veterinary Vaccine Development. Mol Biotechnol 2024:10.1007/s12033-024-01303-6. [PMID: 39472390 DOI: 10.1007/s12033-024-01303-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Accepted: 10/08/2024] [Indexed: 12/18/2024]
Abstract
The group of large clostridial toxins (LCTs) includes toxins A (TcdA) and B (TcdB) from Clostridioides difficile, hemorrhagic and lethal toxins from Paeniclostridium sordellii, alpha toxin from Clostridium novyi (TcnA), and cytotoxin from Clostridium perfringens. These toxins are associated with severe pathologies in livestock, including gas gangrene (P. sordellii and C. novyi), infectious necrotic hepatitis (C. novyi), avian necrotic enteritis (C. perfringens), and enterocolitis (C. difficile). Immunoprophylaxis is crucial for controlling these diseases, but traditional vaccines face production challenges, such as labor-intensive processes, and often exhibit low immunogenicity. This has led to increased interest in recombinant vaccines. While TcdA and TcdB are well-studied for human immunization, other LCTs remain poorly characterized and require further investigation. Therefore, this study emphasizes the importance of understanding lesser-explored toxins and proposes using immunoinformatics to identify their immunodominant regions. By mapping these regions using silico tools and considering their homology with TcdA and TcdB, the study aims to guide future research in veterinary vaccinology. It also explores alternatives to overcome the limitations of conventional and recombinant vaccines, offering guidelines for developing more effective vaccination strategies against severe infections in animals.
Collapse
Affiliation(s)
- Rafael Rodrigues Rodrigues
- Centro de Desenvolvimento Tecnológico, Biotecnologia, Universidade Federal de Pelotas - Campus Universitário, Capão do Leão, Rio Grande Do Sul, CEP 96160-000, Brazil.
| | - Mariliana Luiza Ferreira Alves
- Centro de Desenvolvimento Tecnológico, Biotecnologia, Universidade Federal de Pelotas - Campus Universitário, Capão do Leão, Rio Grande Do Sul, CEP 96160-000, Brazil
- Instituto Federal Sul-Rio-Grandense, IFSul, Campus Pelotas, Pelotas, Rio Grande Do Sul, Brasil
| | - Miguel Andrade Bilhalva
- Centro de Desenvolvimento Tecnológico, Biotecnologia, Universidade Federal de Pelotas - Campus Universitário, Capão do Leão, Rio Grande Do Sul, CEP 96160-000, Brazil
| | - Frederico Schmitt Kremer
- Centro de Desenvolvimento Tecnológico, Biotecnologia, Universidade Federal de Pelotas - Campus Universitário, Capão do Leão, Rio Grande Do Sul, CEP 96160-000, Brazil
| | - Clóvis Moreira Junior
- Centro de Desenvolvimento Tecnológico, Biotecnologia, Universidade Federal de Pelotas - Campus Universitário, Capão do Leão, Rio Grande Do Sul, CEP 96160-000, Brazil
| | - Marcos Roberto Alves Ferreira
- Centro de Desenvolvimento Tecnológico, Biotecnologia, Universidade Federal de Pelotas - Campus Universitário, Capão do Leão, Rio Grande Do Sul, CEP 96160-000, Brazil
| | - Cleideanny Cancela Galvão
- Centro de Desenvolvimento Tecnológico, Biotecnologia, Universidade Federal de Pelotas - Campus Universitário, Capão do Leão, Rio Grande Do Sul, CEP 96160-000, Brazil
| | - Pedro Henrique Dala Nora Quatrin
- Centro de Desenvolvimento Tecnológico, Biotecnologia, Universidade Federal de Pelotas - Campus Universitário, Capão do Leão, Rio Grande Do Sul, CEP 96160-000, Brazil
| | - Fabricio Rochedo Conceição
- Centro de Desenvolvimento Tecnológico, Biotecnologia, Universidade Federal de Pelotas - Campus Universitário, Capão do Leão, Rio Grande Do Sul, CEP 96160-000, Brazil
| |
Collapse
|
4
|
Kempher ML, Shadid TM, Larabee JL, Ballard JD. A sequence invariable region in TcdB2 is required for toxin escape from Clostridioides difficile. J Bacteriol 2024; 206:e0009624. [PMID: 38888328 PMCID: PMC11323933 DOI: 10.1128/jb.00096-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 05/23/2024] [Indexed: 06/20/2024] Open
Abstract
Sequence differences among the subtypes of Clostridioides difficile toxin TcdB (2,366 amino acids) are broadly distributed across the entire protein, with the notable exception of 76 residues at the protein's carboxy terminus. This sequence invariable region (SIR) is identical at the DNA and protein level among the TcdB variants, suggesting this string of amino acids has undergone selective pressure to prevent alterations. The functional role of the SIR domain in TcdB has not been determined. Analysis of a recombinantly constructed TcdB mutant lacking the SIR domain did not identify changes in TcdB's enzymatic or cytopathic activities. To further assess the SIR region, we constructed a C. difficile strain with the final 228 bp deleted from the tcdB gene, resulting in the production of a truncated form of TcdB lacking the SIR (TcdB2∆2291-2366). Using a combination of approaches, we found in the absence of the SIR sequence TcdB2∆2291-2366 retained cytotoxic activity but was not secreted from C. difficile. TcdB2∆2291-2366 was not released from the cell under autolytic conditions, indicating the SIR is involved in a more discrete step in toxin escape from the bacterium. Fractionation experiments combined with antibody detection found that TcdB2∆2291-2366 accumulates at the cell membrane but is unable to complete steps in secretion beyond this point. These data suggest conservation of the SIR domain across variants of TcdB could be influenced by the sequence's role in efficient escape of the toxin from C. difficile. IMPORTANCE Clostridioides difficile is a leading cause of antibiotic associated disease in the United States. The primary virulence factors produced by C. difficile are two large glucosylating toxins TcdA and TcdB. To date, several sequence variants of TcdB have been identified that differ in various functional properties. Here, we identified a highly conserved region among TcdB subtypes that is required for release of the toxin from C. difficile. This study reveals a putative role for the longest stretch of invariable sequence among TcdB subtypes and provides new details regarding toxin release into the extracellular environment. Improving our understanding of the functional roles of the conserved regions of TcdB variants aids in the development of new, broadly applicable strategies to treat CDI.
Collapse
Affiliation(s)
- Megan L. Kempher
- Department of
Microbiology and Immunology, University of Oklahoma Health Sciences
Center, Oklahoma City,
Oklahoma, USA
- Department of
Chemistry and Biochemistry, University of
Oklahoma, Norman,
Oklahoma, USA
| | - Tyler M. Shadid
- Department of
Microbiology and Immunology, University of Oklahoma Health Sciences
Center, Oklahoma City,
Oklahoma, USA
| | - Jason L. Larabee
- Department of
Microbiology and Immunology, University of Oklahoma Health Sciences
Center, Oklahoma City,
Oklahoma, USA
| | - Jimmy D. Ballard
- Department of
Microbiology and Immunology, University of Oklahoma Health Sciences
Center, Oklahoma City,
Oklahoma, USA
| |
Collapse
|
5
|
Doyle DA, DeAngelis PL, Ballard JD. CSPG4-dependent cytotoxicity for C. difficile TcdB is influenced by extracellular calcium and chondroitin sulfate. mSphere 2024; 9:e0009424. [PMID: 38470254 PMCID: PMC11036797 DOI: 10.1128/msphere.00094-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 02/21/2024] [Indexed: 03/13/2024] Open
Abstract
TcdB is an intracellular bacterial toxin indispensable to Clostridioides difficile infections. The ability to use chondroitin sulfate proteoglycan 4 (CSPG4) as a primary cell surface receptor is evolutionarily conserved by the two major variants of TcdB. As CSPG4 does not typically undergo receptor-mediated endocytosis, we sought to identify environmental factors that stabilize interactions between TcdB and CSPG4 to promote cell binding and entry into the cytosol. Using a series of TcdB receptor-binding mutants and cell lines with various receptor expression profiles, we discovered that extracellular Ca2+ promotes receptor-specific interactions with TcdB. Specifically, TcdB exhibits preferential binding to CSPG4 in the presence of Ca2+, with the absence of Ca2+ resulting in CSPG4-independent cell surface interactions. Furthermore, Ca2+ did not enhance TcdB binding to chondroitin sulfate (CS), the sole glycosaminoglycan of CSPG4. Instead, CS was found to impact the rate of cell entry by TcdB. Collectively, results from this study indicate that Ca2+ enhances cell binding by TcdB and CS interactions contribute to subsequent steps in cell entry. IMPORTANCE Clostridioides difficile is a leading cause of antibiotic-associated gastrointestinal illness, and many disease pathologies are caused by the toxin TcdB. TcdB engages multiple cell surface receptors, with receptor tropisms differing among the variants of the toxin. Chondroitin sulfate proteoglycan 4 (CSPG4) is a critical receptor for multiple forms of TcdB, and insights into TcdB-CSPG4 interactions are applicable to many disease-causing strains of C. difficile. CSPG4 is modified by chondroitin sulfate (CS) and contains laminin-G repeats stabilized by Ca2+, yet the relative contributions of CS and Ca2+ to TcdB cytotoxicity have not been determined. This study demonstrates distinct roles in TcdB cell binding and cell entry for Ca2+ and CS, respectively. These effects are specific to CSPG4 and contribute to the activities of a prominent isoform of TcdB that utilizes this receptor. These findings advance an understanding of factors contributing to TcdB's mechanism of action and contribution to C. difficile disease.
Collapse
Affiliation(s)
- D. Annie Doyle
- Department of Microbiology and Immunology, The University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| | - Paul L. DeAngelis
- Department of Biochemistry and Physiology, The University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| | - Jimmy D. Ballard
- Department of Microbiology and Immunology, The University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| |
Collapse
|
6
|
Zhou R, He L, Zhang J, Zhang X, Li Y, Zhan X, Tao L. Molecular basis of TMPRSS2 recognition by Paeniclostridium sordellii hemorrhagic toxin. Nat Commun 2024; 15:1976. [PMID: 38438396 PMCID: PMC10912200 DOI: 10.1038/s41467-024-46394-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 02/26/2024] [Indexed: 03/06/2024] Open
Abstract
Hemorrhagic toxin (TcsH) is a major virulence factor produced by Paeniclostridium sordellii, which is a non-negligible threat to women undergoing childbirth or abortions. Recently, Transmembrane Serine Protease 2 (TMPRSS2) was identified as a host receptor of TcsH. Here, we show the cryo-EM structures of the TcsH-TMPRSS2 complex and uncover that TcsH binds to the serine protease domain (SPD) of TMPRSS2 through the CROP unit-VI. This receptor binding mode is unique among LCTs. Five top surface loops of TMPRSS2SPD, which also determine the protease substrate specificity, constitute the structural determinants recognized by TcsH. The binding of TcsH inhibits the proteolytic activity of TMPRSS2, whereas its implication in disease manifestations remains unclear. We further show that mutations selectively disrupting TMPRSS2-binding reduce TcsH toxicity in the intestinal epithelium of the female mice. These findings together shed light on the distinct molecular basis of TcsH-TMPRSS2 interactions, which expands our knowledge of host recognition mechanisms employed by LCTs and provides novel targets for developing therapeutics against P. sordellii infections.
Collapse
Affiliation(s)
- Ruoyu Zhou
- College of Life Sciences, Fudan University, Shanghai, 200433, China
- Center for Infectious Disease Research, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, 310024, China
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, 310024, China
- Westlake Institute for Advanced Study, Hangzhou, 310024, China
| | - Liuqing He
- Center for Infectious Disease Research, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, 310024, China
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, 310024, China
- Westlake Institute for Advanced Study, Hangzhou, 310024, China
- Research Center for Industries of the Future, Westlake University, Hangzhou, 310024, China
| | - Jiahao Zhang
- Center for Infectious Disease Research, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, 310024, China
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, 310024, China
- Westlake Institute for Advanced Study, Hangzhou, 310024, China
| | - Xiaofeng Zhang
- Center for Infectious Disease Research, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, 310024, China
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, 310024, China
- Westlake Institute for Advanced Study, Hangzhou, 310024, China
| | - Yanyan Li
- Center for Infectious Disease Research, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, 310024, China
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, 310024, China
- Westlake Institute for Advanced Study, Hangzhou, 310024, China
| | - Xiechao Zhan
- Center for Infectious Disease Research, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, 310024, China.
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, 310024, China.
- Westlake Institute for Advanced Study, Hangzhou, 310024, China.
| | - Liang Tao
- College of Life Sciences, Fudan University, Shanghai, 200433, China.
- Center for Infectious Disease Research, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, 310024, China.
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, 310024, China.
- Westlake Institute for Advanced Study, Hangzhou, 310024, China.
- Research Center for Industries of the Future, Westlake University, Hangzhou, 310024, China.
| |
Collapse
|
7
|
Papatheodorou P, Minton NP, Aktories K, Barth H. An Updated View on the Cellular Uptake and Mode-of-Action of Clostridioides difficile Toxins. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1435:219-247. [PMID: 38175478 DOI: 10.1007/978-3-031-42108-2_11] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
Research on the human gut pathogen Clostridioides (C.) difficile and its toxins continues to attract much attention as a consequence of the threat to human health posed by hypervirulent strains. Toxin A (TcdA) and Toxin B (TcdB) are the two major virulence determinants of C. difficile. Both are single-chain proteins with a similar multidomain architecture. Certain hypervirulent C. difficile strains also produce a third toxin, namely binary toxin CDT (C. difficile transferase). C. difficile toxins are the causative agents of C. difficile-associated diseases (CDADs), such as antibiotics-associated diarrhea and pseudomembranous colitis. For that reason, considerable efforts have been expended to unravel their molecular mode-of-action and the cellular mechanisms responsible for their uptake. Many of these studies have been conducted in European laboratories. Here, we provide an update on our previous review (Papatheodorou et al. Adv Exp Med Biol, 2018) on important advances in C. difficile toxins research.
Collapse
Affiliation(s)
- Panagiotis Papatheodorou
- Institute of Experimental and Clinical Pharmacology, Toxicology and Pharmacology of Natural Products, Ulm University Medical Center, Ulm, Germany.
| | - Nigel P Minton
- BBSRC/EPSRC Synthetic Biology Research Centre, University of Nottingham, Nottingham, UK
| | - Klaus Aktories
- Institute of Experimental and Clinical Pharmacology and Toxicology, University of Freiburg, Freiburg, Germany
| | - Holger Barth
- Institute of Experimental and Clinical Pharmacology, Toxicology and Pharmacology of Natural Products, Ulm University Medical Center, Ulm, Germany
| |
Collapse
|
8
|
Zhou Y, Zhan X, Luo J, Li D, Zhou R, Zhang J, Pan Z, Zhang Y, Jia T, Zhang X, Li Y, Tao L. Structural dynamics of the CROPs domain control stability and toxicity of Paeniclostridium sordellii lethal toxin. Nat Commun 2023; 14:8426. [PMID: 38114525 PMCID: PMC10730571 DOI: 10.1038/s41467-023-44169-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 12/04/2023] [Indexed: 12/21/2023] Open
Abstract
Paeniclostridium sordellii lethal toxin (TcsL) is a potent exotoxin that causes lethal toxic shock syndrome associated with fulminant bacterial infections. TcsL belongs to the large clostridial toxin (LCT) family. Here, we report that TcsL with varied lengths of combined repetitive oligopeptides (CROPs) deleted show increased autoproteolysis as well as higher cytotoxicity. We next present cryo-EM structures of full-length TcsL, at neutral (pH 7.4) and acidic (pH 5.0) conditions. The TcsL at neutral pH exhibits in the open conformation, which resembles reported TcdB structures. Low pH induces the conformational change of partial TcsL to the closed form. Two intracellular interfaces are observed in the closed conformation, which possibly locks the cysteine protease domain and hinders the binding of the host receptor. Our findings provide insights into the structure and function of TcsL and reveal mechanisms for CROPs-mediated modulation of autoproteolysis and cytotoxicity, which could be common across the LCT family.
Collapse
Affiliation(s)
- Yao Zhou
- Center for Infectious Disease Research, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, 310024, China
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, 310024, China
- Westlake Institute for Advanced Study, Hangzhou, Zhejiang, 310024, China
- Research Center for Industries of the Future, Westlake University, Hangzhou, Zhejiang, 310024, China
| | - Xiechao Zhan
- Center for Infectious Disease Research, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, 310024, China.
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, 310024, China.
- Westlake Institute for Advanced Study, Hangzhou, Zhejiang, 310024, China.
| | - Jianhua Luo
- Center for Infectious Disease Research, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, 310024, China
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, 310024, China
- Westlake Institute for Advanced Study, Hangzhou, Zhejiang, 310024, China
- Research Center for Industries of the Future, Westlake University, Hangzhou, Zhejiang, 310024, China
| | - Diyin Li
- Center for Infectious Disease Research, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, 310024, China
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, 310024, China
- Westlake Institute for Advanced Study, Hangzhou, Zhejiang, 310024, China
- Research Center for Industries of the Future, Westlake University, Hangzhou, Zhejiang, 310024, China
| | - Ruoyu Zhou
- Center for Infectious Disease Research, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, 310024, China
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, 310024, China
- Westlake Institute for Advanced Study, Hangzhou, Zhejiang, 310024, China
| | - Jiahao Zhang
- Center for Infectious Disease Research, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, 310024, China
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, 310024, China
- Westlake Institute for Advanced Study, Hangzhou, Zhejiang, 310024, China
| | - Zhenrui Pan
- Center for Infectious Disease Research, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, 310024, China
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, 310024, China
- Westlake Institute for Advanced Study, Hangzhou, Zhejiang, 310024, China
| | - Yuanyuan Zhang
- Center for Infectious Disease Research, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, 310024, China
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, 310024, China
- Westlake Institute for Advanced Study, Hangzhou, Zhejiang, 310024, China
| | - Tianhui Jia
- Center for Infectious Disease Research, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, 310024, China
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, 310024, China
- Westlake Institute for Advanced Study, Hangzhou, Zhejiang, 310024, China
- Research Center for Industries of the Future, Westlake University, Hangzhou, Zhejiang, 310024, China
| | - Xiaofeng Zhang
- Center for Infectious Disease Research, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, 310024, China
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, 310024, China
- Westlake Institute for Advanced Study, Hangzhou, Zhejiang, 310024, China
| | - Yanyan Li
- Center for Infectious Disease Research, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, 310024, China
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, 310024, China
- Westlake Institute for Advanced Study, Hangzhou, Zhejiang, 310024, China
| | - Liang Tao
- Center for Infectious Disease Research, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, 310024, China.
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, 310024, China.
- Westlake Institute for Advanced Study, Hangzhou, Zhejiang, 310024, China.
- Research Center for Industries of the Future, Westlake University, Hangzhou, Zhejiang, 310024, China.
| |
Collapse
|
9
|
Belyy A, Heilen P, Hagel P, Hofnagel O, Raunser S. Structure and activation mechanism of the Makes caterpillars floppy 1 toxin. Nat Commun 2023; 14:8226. [PMID: 38086871 PMCID: PMC10716152 DOI: 10.1038/s41467-023-44069-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 11/29/2023] [Indexed: 12/18/2023] Open
Abstract
The bacterial Makes caterpillars floppy 1 (Mcf1) toxin promotes apoptosis in insects, leading to loss of body turgor and death. The molecular mechanism underlying Mcf1 intoxication is poorly understood. Here, we present the cryo-EM structure of Mcf1 from Photorhabdus luminescens, revealing a seahorse-like shape with a head and tail. While the three head domains contain two effectors, as well as an activator-binding domain (ABD) and an autoprotease, the tail consists of two putative translocation and three putative receptor-binding domains. Rearrangement of the tail moves the C-terminus away from the ABD and allows binding of the host cell ADP-ribosylation factor 3, inducing conformational changes that position the cleavage site closer to the protease. This distinct activation mechanism that is based on a hook-loop interaction results in three autocleavage reactions and the release of two toxic effectors. Unexpectedly, the BH3-like domain containing ABD is not an active effector. Our findings allow us to understand key steps of Mcf1 intoxication at the molecular level.
Collapse
Affiliation(s)
- Alexander Belyy
- Department of Structural Biochemistry, Max Planck Institute of Molecular Physiology, Otto-Hahn-Str. 11, 44227, Dortmund, Germany
| | - Philipp Heilen
- Department of Structural Biochemistry, Max Planck Institute of Molecular Physiology, Otto-Hahn-Str. 11, 44227, Dortmund, Germany
| | - Philine Hagel
- Department of Structural Biochemistry, Max Planck Institute of Molecular Physiology, Otto-Hahn-Str. 11, 44227, Dortmund, Germany
| | - Oliver Hofnagel
- Department of Structural Biochemistry, Max Planck Institute of Molecular Physiology, Otto-Hahn-Str. 11, 44227, Dortmund, Germany
| | - Stefan Raunser
- Department of Structural Biochemistry, Max Planck Institute of Molecular Physiology, Otto-Hahn-Str. 11, 44227, Dortmund, Germany.
| |
Collapse
|
10
|
Braune-Yan M, Jia J, Wahba M, Schmid J, Papatheodorou P, Barth H, Ernst K. Domperidone Protects Cells from Intoxication with Clostridioides difficile Toxins by Inhibiting Hsp70-Assisted Membrane Translocation. Toxins (Basel) 2023; 15:384. [PMID: 37368685 DOI: 10.3390/toxins15060384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 05/31/2023] [Accepted: 06/02/2023] [Indexed: 06/29/2023] Open
Abstract
Clostridioides difficile infections cause severe symptoms ranging from diarrhea to pseudomembranous colitis due to the secretion of AB-toxins, TcdA and TcdB. Both toxins are taken up into cells through receptor-mediated endocytosis, autoproteolytic processing and translocation of their enzyme domains from acidified endosomes into the cytosol. The enzyme domains glucosylate small GTPases such as Rac1, thereby inhibiting processes such as actin cytoskeleton regulation. Here, we demonstrate that specific pharmacological inhibition of Hsp70 activity protected cells from TcdB intoxication. In particular, the established inhibitor VER-155008 and the antiemetic drug domperidone, which was found to be an Hsp70 inhibitor, reduced the number of cells with TcdB-induced intoxication morphology in HeLa, Vero and intestinal CaCo-2 cells. These drugs also decreased the intracellular glucosylation of Rac1 by TcdB. Domperidone did not inhibit TcdB binding to cells or enzymatic activity but did prevent membrane translocation of TcdB's glucosyltransferase domain into the cytosol. Domperidone also protected cells from intoxication with TcdA as well as CDT toxin produced by hypervirulent strains of Clostridioides difficile. Our results reveal Hsp70 requirement as a new aspect of the cellular uptake mechanism of TcdB and identified Hsp70 as a novel drug target for potential therapeutic strategies required to combat severe Clostridioides difficile infections.
Collapse
Affiliation(s)
- Maria Braune-Yan
- Institute of Experimental and Clinical Pharmacology, Toxicology and Pharmacology of Natural Products, Ulm University Medical Center, 89081 Ulm, Germany
| | - Jinfang Jia
- Institute of Experimental and Clinical Pharmacology, Toxicology and Pharmacology of Natural Products, Ulm University Medical Center, 89081 Ulm, Germany
| | - Mary Wahba
- Institute of Experimental and Clinical Pharmacology, Toxicology and Pharmacology of Natural Products, Ulm University Medical Center, 89081 Ulm, Germany
| | - Johannes Schmid
- Institute of Experimental and Clinical Pharmacology, Toxicology and Pharmacology of Natural Products, Ulm University Medical Center, 89081 Ulm, Germany
| | - Panagiotis Papatheodorou
- Institute of Experimental and Clinical Pharmacology, Toxicology and Pharmacology of Natural Products, Ulm University Medical Center, 89081 Ulm, Germany
| | - Holger Barth
- Institute of Experimental and Clinical Pharmacology, Toxicology and Pharmacology of Natural Products, Ulm University Medical Center, 89081 Ulm, Germany
| | - Katharina Ernst
- Institute of Experimental and Clinical Pharmacology, Toxicology and Pharmacology of Natural Products, Ulm University Medical Center, 89081 Ulm, Germany
| |
Collapse
|
11
|
Aktories K. From signal transduction to protein toxins-a narrative review about milestones on the research route of C. difficile toxins. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2023; 396:173-190. [PMID: 36203094 PMCID: PMC9831965 DOI: 10.1007/s00210-022-02300-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 09/22/2022] [Indexed: 01/29/2023]
Abstract
Selected findings about Clostridioides difficile (formerly Clostridium difficile) toxins are presented in a narrative review. Starting with a personal view on research about G proteins, adenylyl cyclase, and ADP-ribosylating toxins in the laboratory of Günter Schultz in Heidelberg, milestones of C. difficile toxin research are presented with the focus on toxin B (TcdB), covering toxin structure, receptor binding, toxin up-take and refolding, the intracellular actions of TcdB, and the treatment of C. difficile infection.
Collapse
Affiliation(s)
- Klaus Aktories
- Institute of Experimental and Clinical Pharmacology and Toxicology, Medical Faculty, University of Freiburg, Albertstr. 25, 79104, Freiburg, Germany.
| |
Collapse
|
12
|
Chen B, Perry K, Jin R. Neutralizing epitopes on Clostridioides difficile toxin A revealed by the structures of two camelid VHH antibodies. Front Immunol 2022; 13:978858. [PMID: 36466927 PMCID: PMC9709291 DOI: 10.3389/fimmu.2022.978858] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Accepted: 10/31/2022] [Indexed: 11/18/2022] Open
Abstract
Toxin A (TcdA) and toxin B (TcdB) are two key virulence factors secreted by Clostridioides difficile, which is listed as an urgent threat by the CDC. These two large homologous exotoxins are mainly responsible for diseases associated with C. difficile infection (CDI) with symptoms ranging from diarrhea to life threatening pseudomembranous colitis. Single-domain camelid antibodies (VHHs) AH3 and AA6 are two potent antitoxins against TcdA, which when combined with two TcdB-targeting VHHs showed effective protection against both primary and recurrent CDI in animal models. Here, we report the co-crystal structures of AH3 and AA6 when they form complexes with the glucosyltransferase domain (GTD) and a fragment of the delivery and receptor-binding domain (DRBD) of TcdA, respectively. Based on these structures, we find that AH3 binding enhances the overall stability of the GTD and interferes with its unfolding at acidic pH, and AA6 may inhibit the pH-dependent conformational changes in the DRBD that is necessary for pore formation of TcdA. These studies reveal two functionally critical epitopes on TcdA and shed new insights into neutralizing mechanisms and potential development of epitope-focused vaccines against TcdA.
Collapse
Affiliation(s)
- Baohua Chen
- Department of Physiology and Biophysics, School of Medicine, University of California, Irvine, CA, United States
| | - Kay Perry
- NE-CAT, Advanced Photon Source, Argonne National Laboratory, Argonne, IL, United States,Department of Chemistry and Chemical Biology, Cornell University, Argonne, IL, United States
| | - Rongsheng Jin
- Department of Physiology and Biophysics, School of Medicine, University of California, Irvine, CA, United States,*Correspondence: Rongsheng Jin,
| |
Collapse
|
13
|
Wood TE, Westervelt KA, Yoon JM, Eshleman HD, Levy R, Burnes H, Slade DJ, Lesser CF, Goldberg MB. The Shigella Spp. Type III Effector Protein OspB Is a Cysteine Protease. mBio 2022; 13:e0127022. [PMID: 35638611 PMCID: PMC9239218 DOI: 10.1128/mbio.01270-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Accepted: 05/05/2022] [Indexed: 11/20/2022] Open
Abstract
The type III secretion system is required for virulence of many pathogenic bacteria. Bacterial effector proteins delivered into target host cells by this system modulate host signaling pathways and processes in a manner that promotes infection. Here, we define the activity of the effector protein OspB of the human pathogen Shigella spp., the etiological agent of shigellosis and bacillary dysentery. Using the yeast Saccharomyces cerevisiae as a model organism, we show that OspB sensitizes cells to inhibition of TORC1, the central regulator of growth and metabolism. In silico analyses reveal that OspB bears structural homology to bacterial cysteine proteases that target mammalian cell processes, and we define a conserved cysteine-histidine catalytic dyad required for OspB function. Using yeast genetic screens, we identify a crucial role for the arginine N-degron pathway in the yeast growth inhibition phenotype and show that inositol hexakisphosphate is an OspB cofactor. We find that a yeast substrate for OspB is the TORC1 component Tco89p, proteolytic cleavage of which generates a C-terminal fragment that is targeted for degradation via the arginine N-degron pathway; processing and degradation of Tco89p is required for the OspB phenotype. In all, we demonstrate that the Shigella T3SS effector OspB is a cysteine protease and decipher its interplay with eukaryotic cell processes. IMPORTANCEShigella spp. are important human pathogens and among the leading causes of diarrheal mortality worldwide, especially in children. Virulence depends on the Shigella type III secretion system (T3SS). Definition of the roles of the bacterial effector proteins secreted by the T3SS is key to understanding Shigella pathogenesis. The effector protein OspB contributes to a range of phenotypes during infection, yet the mechanism of action is unknown. Here, we show that S. flexneri OspB possesses cysteine protease activity in both yeast and mammalian cells, and that enzymatic activity of OspB depends on a conserved cysteine-histidine catalytic dyad. We determine how its protease activity sensitizes cells to TORC1 inhibition in yeast, finding that OspB cleaves a component of yeast TORC1, and that the degradation of the C-terminal cleavage product is responsible for OspB-mediated hypersensitivity to TORC1 inhibitors. Thus, OspB is a cysteine protease that depends on a conserved cysteine-histidine catalytic dyad.
Collapse
Affiliation(s)
- Thomas E. Wood
- Department of Medicine, Division of Infectious Diseases, Massachusetts General Hospital, Boston, Massachusetts, USA
- Department of Microbiology, Blavatnik Institute, Harvard Medical School, Boston, Massachusetts, USA
| | - Kathleen A. Westervelt
- Department of Medicine, Division of Infectious Diseases, Massachusetts General Hospital, Boston, Massachusetts, USA
- Department of Immunology and Infectious Diseases, Harvard T. H. Chan School of Public Health, Boston, Massachusetts, USA
| | - Jessica M. Yoon
- Department of Medicine, Division of Infectious Diseases, Massachusetts General Hospital, Boston, Massachusetts, USA
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, Massachusetts, USA
| | - Heather D. Eshleman
- Department of Medicine, Division of Infectious Diseases, Massachusetts General Hospital, Boston, Massachusetts, USA
- Department of Microbiology, Blavatnik Institute, Harvard Medical School, Boston, Massachusetts, USA
| | - Roie Levy
- Department of Medicine, Division of Infectious Diseases, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Henry Burnes
- Department of Medicine, Division of Infectious Diseases, Massachusetts General Hospital, Boston, Massachusetts, USA
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts, USA
| | - Daniel J. Slade
- Department of Biochemistry, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, USA
| | - Cammie F. Lesser
- Department of Medicine, Division of Infectious Diseases, Massachusetts General Hospital, Boston, Massachusetts, USA
- Department of Microbiology, Blavatnik Institute, Harvard Medical School, Boston, Massachusetts, USA
| | - Marcia B. Goldberg
- Department of Medicine, Division of Infectious Diseases, Massachusetts General Hospital, Boston, Massachusetts, USA
- Department of Microbiology, Blavatnik Institute, Harvard Medical School, Boston, Massachusetts, USA
- Department of Immunology and Infectious Diseases, Harvard T. H. Chan School of Public Health, Boston, Massachusetts, USA
| |
Collapse
|
14
|
Chen B, Liu Z, Perry K, Jin R. Structure of the glucosyltransferase domain of TcdA in complex with RhoA provides insights into substrate recognition. Sci Rep 2022; 12:9028. [PMID: 35637242 PMCID: PMC9151644 DOI: 10.1038/s41598-022-12909-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 05/17/2022] [Indexed: 01/05/2023] Open
Abstract
Clostridioides difficile is one of the most common causes of antibiotic-associated diarrhea in developed countries. As key virulence factors of C. difficile, toxin A (TcdA) and toxin B (TcdB) act by glucosylating and inactivating Rho and Ras family small GTPases in host cells, which leads to actin cytoskeleton disruption, cell rounding, and ultimately cell death. Here we present the co-crystal structure of the glucosyltransferase domain (GTD) of TcdA in complex with its substrate human RhoA at 2.60-angstrom resolution. This structure reveals that TcdA GTD grips RhoA mainly through its switch I and switch II regions, which is complemented by interactions involving RhoA's pre-switch I region. Comprehensive structural comparisons between the TcdA GTD-RhoA complex and the structures of TcdB GTD in complex with Cdc42 and R-Ras reveal both the conserved and divergent features of these two toxins in terms of substrate recognition. Taken together, these findings establish the structural basis for TcdA recognition of small GTPases and advance our understanding of the substrates selectivity of large clostridial toxins.
Collapse
Affiliation(s)
- Baohua Chen
- Department of Physiology and Biophysics, School of Medicine, University of California, Irvine, CA, 92697, USA
| | - Zheng Liu
- Department of Physiology and Biophysics, School of Medicine, University of California, Irvine, CA, 92697, USA
| | - Kay Perry
- NE-CAT and Department of Chemistry and Chemical Biology, Argonne National Laboratory, Cornell University, Argonne, IL, 60439, USA
| | - Rongsheng Jin
- Department of Physiology and Biophysics, School of Medicine, University of California, Irvine, CA, 92697, USA.
| |
Collapse
|
15
|
Kordus SL, Thomas AK, Lacy DB. Clostridioides difficile toxins: mechanisms of action and antitoxin therapeutics. Nat Rev Microbiol 2022; 20:285-298. [PMID: 34837014 PMCID: PMC9018519 DOI: 10.1038/s41579-021-00660-2] [Citation(s) in RCA: 100] [Impact Index Per Article: 33.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/21/2021] [Indexed: 01/03/2023]
Abstract
Clostridioides difficile is a Gram-positive anaerobe that can cause a spectrum of disorders that range in severity from mild diarrhoea to fulminant colitis and/or death. The bacterium produces up to three toxins, which are considered the major virulence factors in C. difficile infection. These toxins promote inflammation, tissue damage and diarrhoea. In this Review, we highlight recent biochemical and structural advances in our understanding of the mechanisms that govern host-toxin interactions. Understanding how C. difficile toxins affect the host forms a foundation for developing novel strategies for treatment and prevention of C. difficile infection.
Collapse
Affiliation(s)
- Shannon L. Kordus
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA,Center for Structural Biology, Vanderbilt University, Nashville, TN, USA,These authors contributed equally: Shannon L. Kordus, Audrey K. Thomas
| | - Audrey K. Thomas
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA,Center for Structural Biology, Vanderbilt University, Nashville, TN, USA,These authors contributed equally: Shannon L. Kordus, Audrey K. Thomas
| | - D. Borden Lacy
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA,Center for Structural Biology, Vanderbilt University, Nashville, TN, USA,The Veterans Affairs, Tennessee Valley Healthcare, System, Nashville, TN, USA,
| |
Collapse
|
16
|
Human α-Defensin-6 Neutralizes Clostridioides difficile Toxins TcdA and TcdB by Direct Binding. Int J Mol Sci 2022; 23:ijms23094509. [PMID: 35562899 PMCID: PMC9101188 DOI: 10.3390/ijms23094509] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 04/14/2022] [Accepted: 04/14/2022] [Indexed: 02/04/2023] Open
Abstract
Rising incidences and mortalities have drawn attention to Clostridioides difficile infections (CDIs) in recent years. The main virulence factors of this bacterium are the exotoxins TcdA and TcdB, which glucosylate Rho-GTPases and thereby inhibit Rho/actin-mediated processes in cells. This results in cell rounding, gut barrier disruption and characteristic clinical symptoms. So far, treatment of CDIs is limited and mainly restricted to some antibiotics, often leading to a vicious circle of antibiotic-induced disease recurrence. Here, we demonstrate the protective effect of the human antimicrobial peptide α-defensin-6 against TcdA, TcdB and the combination of both toxins in vitro and in vivo and unravel the underlying molecular mechanism. The defensin prevented toxin-mediated glucosylation of Rho-GTPases in cells and protected human cells, model epithelial barriers as well as zebrafish embryos from toxic effects. In vitro analyses revealed direct binding to TcdB in an SPR approach and the rapid formation of TcdB/α-defensin-6 complexes, as analyzed with fluorescent TcdB by time-lapse microscopy. In conclusion, the results imply that α-defensin-6 rapidly sequesters the toxin into complexes, which prevents its cytotoxic activity. These findings extend the understanding of how human peptides neutralize bacterial protein toxins and might be a starting point for the development of novel therapeutic options against CDIs.
Collapse
|
17
|
Chen B, Basak S, Chen P, Zhang C, Perry K, Tian S, Yu C, Dong M, Huang L, Bowen ME, Jin R. Structure and conformational dynamics of Clostridioides difficile toxin A. Life Sci Alliance 2022; 5:5/6/e202201383. [PMID: 35292538 PMCID: PMC8924006 DOI: 10.26508/lsa.202201383] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 02/25/2022] [Accepted: 02/28/2022] [Indexed: 01/05/2023] Open
Abstract
This study presents a complete structural model of TcdA holotoxin and sheds new lights into the conformational dynamics of TcdA and its roles in TcdA intoxication. Clostridioides difficile toxin A and B (TcdA and TcdB) are two major virulence factors responsible for diseases associated with C. difficile infection (CDI). Here, we report the 3.18-Å resolution crystal structure of a TcdA fragment (residues L843–T2481), which advances our understanding of the complete structure of TcdA holotoxin. Our structural analysis, together with complementary single molecule FRET and limited proteolysis studies, reveal that TcdA adopts a dynamic structure and its CROPs domain can sample a spectrum of open and closed conformations in a pH-dependent manner. Furthermore, a small globular subdomain (SGS) and the CROPs protect the pore-forming region of TcdA in the closed state at neutral pH, which could contribute to modulating the pH-dependent pore formation of TcdA. A rationally designed TcdA mutation that trapped the CROPs in the closed conformation showed drastically reduced cytotoxicity. Taken together, these studies shed new lights into the conformational dynamics of TcdA and its roles in TcdA intoxication.
Collapse
Affiliation(s)
- Baohua Chen
- Department of Physiology and Biophysics, School of Medicine, University of California, Irvine, Irvine, CA, USA
| | - Sujit Basak
- Department of Physiology and Biophysics, Stony Brook University, Stony Brook, NY, USA
| | - Peng Chen
- Department of Physiology and Biophysics, School of Medicine, University of California, Irvine, Irvine, CA, USA
| | - Changcheng Zhang
- Department of Physiology and Biophysics, Stony Brook University, Stony Brook, NY, USA
| | - Kay Perry
- NE-CAT and Department of Chemistry and Chemical Biology, Cornell University, Argonne National Laboratory, Argonne, IL, USA
| | - Songhai Tian
- Department of Urology, Boston Children's Hospital, Department of Microbiology and Department of Surgery, Harvard Medical School, Boston, MA, USA
| | - Clinton Yu
- Department of Physiology and Biophysics, School of Medicine, University of California, Irvine, Irvine, CA, USA
| | - Min Dong
- Department of Urology, Boston Children's Hospital, Department of Microbiology and Department of Surgery, Harvard Medical School, Boston, MA, USA
| | - Lan Huang
- Department of Physiology and Biophysics, School of Medicine, University of California, Irvine, Irvine, CA, USA
| | - Mark E Bowen
- Department of Physiology and Biophysics, Stony Brook University, Stony Brook, NY, USA
| | - Rongsheng Jin
- Department of Physiology and Biophysics, School of Medicine, University of California, Irvine, Irvine, CA, USA
| |
Collapse
|
18
|
Heber S, Barthold L, Baier J, Papatheodorou P, Fois G, Frick M, Barth H, Fischer S. Inhibition of Clostridioides difficile Toxins TcdA and TcdB by Ambroxol. Front Pharmacol 2022; 12:809595. [PMID: 35058787 PMCID: PMC8764291 DOI: 10.3389/fphar.2021.809595] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Accepted: 12/10/2021] [Indexed: 02/04/2023] Open
Abstract
Clostridioides (C.) difficile produces the exotoxins TcdA and TcdB, which are the predominant virulence factors causing C. difficile associated disease (CDAD). TcdA and TcdB bind to target cells and are internalized via receptor-mediated endocytosis. Translocation of the toxins’ enzyme subunits from early endosomes into the cytosol depends on acidification of endosomal vesicles, which is a prerequisite for the formation of transmembrane channels. The enzyme subunits of the toxins translocate into the cytosol via these channels where they are released after auto-proteolytic cleavage. Once in the cytosol, both toxins target small GTPases of the Rho/Ras-family and inactivate them by mono-glucosylation. This in turn interferes with actin-dependent processes and ultimately leads to the breakdown of the intestinal epithelial barrier and inflammation. So far, therapeutic approaches to treat CDAD are insufficient, since conventional antibiotic therapy does not target the bacterial protein toxins, which are the causative agents for the clinical symptoms. Thus, directly targeting the exotoxins represents a promising approach for the treatment of CDAD. Lately, it was shown that ambroxol (Ax) prevents acidification of intracellular organelles. Therefore, we investigated the effect of Ax on the cytotoxic activities of TcdA and TcdB. Ax significantly reduced toxin-induced morphological changes as well as the glucosylation of Rac1 upon intoxication with TcdA and TcdB. Most surprisingly, Ax, independent of its effects on endosomal acidification, decreased the toxins’ intracellular enzyme activity, which is mediated by a catalytic glucosyltransferase domain. Considering its undoubted safety profile, Ax might be taken into account as therapeutic option in the context of CDAD.
Collapse
Affiliation(s)
- Sebastian Heber
- Institute of Pharmacology and Toxicology, Ulm University Medical Center, Ulm, Germany
| | - Lara Barthold
- Institute of Pharmacology and Toxicology, Ulm University Medical Center, Ulm, Germany
| | - Jan Baier
- Institute of Pharmacology and Toxicology, Ulm University Medical Center, Ulm, Germany
| | | | - Giorgio Fois
- Institute of General Physiology, Ulm University, Ulm, Germany
| | - Manfred Frick
- Institute of General Physiology, Ulm University, Ulm, Germany
| | - Holger Barth
- Institute of Pharmacology and Toxicology, Ulm University Medical Center, Ulm, Germany
| | - Stephan Fischer
- Institute of Pharmacology and Toxicology, Ulm University Medical Center, Ulm, Germany
| |
Collapse
|
19
|
Aminzadeh A, Larsen CE, Boesen T, Jørgensen R. High-resolution structure of native toxin A from Clostridioides difficile. EMBO Rep 2022; 23:e53597. [PMID: 34817920 PMCID: PMC8728606 DOI: 10.15252/embr.202153597] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 11/09/2021] [Accepted: 11/10/2021] [Indexed: 01/07/2023] Open
Abstract
Clostridioides difficile infections have emerged as the leading cause of healthcare-associated infectious diarrhea. Disease symptoms are mainly caused by the virulence factors, TcdA and TcdB, which are large homologous multidomain proteins. Here, we report a 2.8 Å resolution cryo-EM structure of native TcdA, unveiling its conformation at neutral pH. The structure uncovers the dynamic movement of the CROPs domain which is induced in response to environmental acidification. Furthermore, the structure reveals detailed information about the interaction area between the CROPs domain and the tip of the delivery and receptor-binding domain, which likely serves to shield the C-terminal part of the hydrophobic pore-forming region from solvent exposure. Similarly, extensive interactions between the globular subdomain and the N-terminal part of the pore-forming region suggest that the globular subdomain shields the upper part of the pore-forming region from exposure to the surrounding solvent. Hence, the TcdA structure provides insights into the mechanism of preventing premature unfolding of the pore-forming region at neutral pH, as well as the pH-induced inter-domain dynamics.
Collapse
Affiliation(s)
- Aria Aminzadeh
- Department of Bacteria, Parasites and FungiStatens Serum InstitutCopenhagenDenmark
| | - Christian Engelbrecht Larsen
- Interdisciplinary Nanoscience Center (iNANO)Aarhus UniversityAarhusDenmark
- Department of Molecular Biology and GeneticsAarhus UniversityAarhusDenmark
| | - Thomas Boesen
- Interdisciplinary Nanoscience Center (iNANO)Aarhus UniversityAarhusDenmark
- Department of Molecular Biology and GeneticsAarhus UniversityAarhusDenmark
| | - René Jørgensen
- Department of Bacteria, Parasites and FungiStatens Serum InstitutCopenhagenDenmark
- Department of Science and EnvironmentUniversity of RoskildeRoskildeDenmark
| |
Collapse
|
20
|
Klepka C, Sandmann M, Tatge H, Mangan M, Arens A, Henkel D, Gerhard R. Impairment of lysosomal function by Clostridioides difficile TcdB. Mol Microbiol 2021; 117:493-507. [PMID: 34931374 DOI: 10.1111/mmi.14864] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Accepted: 12/11/2021] [Indexed: 11/30/2022]
Abstract
TcdB is a potent cytotoxin produced by pathogenic Clostridioides difficile that inhibits Rho GTPases by mono-glucosylation. TcdB enters cells via receptor-mediated endocytosis. The pathogenic glucosyltransferase domain (GTD) egresses endosomes by pH-mediated conformational changes, and is subsequently released in an autoproteolytic manner. We here investigated the uptake, localization and degradation of TcdB. TcdB colocalized with lysosomal marker protein LAMP1, verifying the endosomal-lysosomal route of the toxin. In pulse assays endocytosed TcdB declined to a limit of detection within 2 hr, whereas the released GTD accumulated for up to 8 hr. We observed that autoproteolytic deficient TcdB NXN C698S was degraded significantly faster than wildtype TcdB, suggesting interference of TcdB with lysosomal degradation process. In fact, TcdB reduced lysosomal degradation of endosome cargo as tested with DQ-Green BSA. Lysosomal dysfunction was accompanied by perinuclear accumulation of LAMP1 and a weaker detection in immunoblots. Galectin-8 or galectin-3 was not recruited to lysosomes speaking against lysosome membrane damage. Changes in the autophagosomal marker LC3B suggested additional indirect effect of lysosomal dysfunction on the autophagic flux. In contrast to necrotic signaling induced in by TcdB, lysosomal dysfunction was not abolished by calcium channel blocker nifedipin, indicating separate cytopathogenic effects induced by TcdB during endo-lysosomal trafficking.
Collapse
Affiliation(s)
- Carmen Klepka
- Institute of Toxicology, Hannover Medical School, Hannover, Germany
| | - Moritz Sandmann
- Institute of Toxicology, Hannover Medical School, Hannover, Germany
| | - Helma Tatge
- Institute of Toxicology, Hannover Medical School, Hannover, Germany
| | - Matthew Mangan
- Institute of Innate Immunology, Biomedical Center, University of Bonn, Bonn, Germany.,German Center for Neurodegenerative Diseases, Bonn, Germany
| | - Annabel Arens
- Institute of Toxicology, Hannover Medical School, Hannover, Germany
| | - Daniel Henkel
- Institute of Toxicology, Hannover Medical School, Hannover, Germany
| | - Ralf Gerhard
- Institute of Toxicology, Hannover Medical School, Hannover, Germany
| |
Collapse
|
21
|
Activity of Lymphostatin, A Lymphocyte Inhibitory Virulence Factor of Pathogenic Escherichia coli, is Dependent on a Cysteine Protease Motif. J Mol Biol 2021; 433:167200. [PMID: 34400181 PMCID: PMC8505758 DOI: 10.1016/j.jmb.2021.167200] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 07/16/2021] [Accepted: 08/09/2021] [Indexed: 11/23/2022]
Abstract
LifA shares a cysteine protease motif with bacterial toxins and secreted effectors. C1480A substituted LifA has reduced inhibitory activity against T cells. LifA is cleaved in T cells and this requires C1480 and endosome acidification.
Lymphostatin (LifA) is a 366 kDa protein expressed by attaching & effacing Escherichia coli. It plays an important role in intestinal colonisation and inhibits the mitogen- and antigen-stimulated proliferation of lymphocytes and the synthesis of proinflammatory cytokines. LifA exhibits N-terminal homology with the glycosyltransferase domain of large clostridial toxins (LCTs). A DTD motif within this region is required for lymphostatin activity and binding of the sugar donor uridine diphosphate N-acetylglucosamine. As with LCTs, LifA also contains a cysteine protease motif (C1480, H1581, D1596) that is widely conserved within the YopT-like superfamily of cysteine proteases. By analogy with LCTs, we hypothesised that the CHD motif may be required for intracellular processing of the protein to release the catalytic N-terminal domain after uptake and low pH-stimulated membrane insertion of LifA within endosomes. Here, we created and validated a C1480A substitution mutant in LifA from enteropathogenic E. coli strain E2348/69. The purified protein was structurally near-identical to the wild-type protein. In bovine T lymphocytes treated with wild-type LifA, a putative cleavage product of approximately 140 kDa was detected. Appearance of the putative cleavage product was inhibited in a concentration-dependent manner by bafilomycin A1 and chloroquine, which inhibit endosome acidification. The cleavage product was not observed in cells treated with the C1480A mutant of LifA. Lymphocyte inhibitory activity of the purified C1480A protein was significantly impaired. The data indicate that an intact cysteine protease motif is required for cleavage of lymphostatin and its activity against T cells.
Collapse
|
22
|
Roth KDR, Wenzel EV, Ruschig M, Steinke S, Langreder N, Heine PA, Schneider KT, Ballmann R, Fühner V, Kuhn P, Schirrmann T, Frenzel A, Dübel S, Schubert M, Moreira GMSG, Bertoglio F, Russo G, Hust M. Developing Recombinant Antibodies by Phage Display Against Infectious Diseases and Toxins for Diagnostics and Therapy. Front Cell Infect Microbiol 2021; 11:697876. [PMID: 34307196 PMCID: PMC8294040 DOI: 10.3389/fcimb.2021.697876] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Accepted: 06/21/2021] [Indexed: 12/30/2022] Open
Abstract
Antibodies are essential molecules for diagnosis and treatment of diseases caused by pathogens and their toxins. Antibodies were integrated in our medical repertoire against infectious diseases more than hundred years ago by using animal sera to treat tetanus and diphtheria. In these days, most developed therapeutic antibodies target cancer or autoimmune diseases. The COVID-19 pandemic was a reminder about the importance of antibodies for therapy against infectious diseases. While monoclonal antibodies could be generated by hybridoma technology since the 70ies of the former century, nowadays antibody phage display, among other display technologies, is robustly established to discover new human monoclonal antibodies. Phage display is an in vitro technology which confers the potential for generating antibodies from universal libraries against any conceivable molecule of sufficient size and omits the limitations of the immune systems. If convalescent patients or immunized/infected animals are available, it is possible to construct immune phage display libraries to select in vivo affinity-matured antibodies. A further advantage is the availability of the DNA sequence encoding the phage displayed antibody fragment, which is packaged in the phage particles. Therefore, the selected antibody fragments can be rapidly further engineered in any needed antibody format according to the requirements of the final application. In this review, we present an overview of phage display derived recombinant antibodies against bacterial, viral and eukaryotic pathogens, as well as microbial toxins, intended for diagnostic and therapeutic applications.
Collapse
Affiliation(s)
- Kristian Daniel Ralph Roth
- Institut für Biochemie, Biotechnologie und Bioinformatik, Abteilung Biotechnologie, Technische Universität Braunschweig, Braunschweig, Germany
| | - Esther Veronika Wenzel
- Institut für Biochemie, Biotechnologie und Bioinformatik, Abteilung Biotechnologie, Technische Universität Braunschweig, Braunschweig, Germany.,Abcalis GmbH, Braunschweig, Germany
| | - Maximilian Ruschig
- Institut für Biochemie, Biotechnologie und Bioinformatik, Abteilung Biotechnologie, Technische Universität Braunschweig, Braunschweig, Germany
| | - Stephan Steinke
- Institut für Biochemie, Biotechnologie und Bioinformatik, Abteilung Biotechnologie, Technische Universität Braunschweig, Braunschweig, Germany
| | - Nora Langreder
- Institut für Biochemie, Biotechnologie und Bioinformatik, Abteilung Biotechnologie, Technische Universität Braunschweig, Braunschweig, Germany
| | - Philip Alexander Heine
- Institut für Biochemie, Biotechnologie und Bioinformatik, Abteilung Biotechnologie, Technische Universität Braunschweig, Braunschweig, Germany
| | - Kai-Thomas Schneider
- Institut für Biochemie, Biotechnologie und Bioinformatik, Abteilung Biotechnologie, Technische Universität Braunschweig, Braunschweig, Germany
| | - Rico Ballmann
- Institut für Biochemie, Biotechnologie und Bioinformatik, Abteilung Biotechnologie, Technische Universität Braunschweig, Braunschweig, Germany
| | - Viola Fühner
- Institut für Biochemie, Biotechnologie und Bioinformatik, Abteilung Biotechnologie, Technische Universität Braunschweig, Braunschweig, Germany
| | | | | | | | - Stefan Dübel
- Institut für Biochemie, Biotechnologie und Bioinformatik, Abteilung Biotechnologie, Technische Universität Braunschweig, Braunschweig, Germany.,Abcalis GmbH, Braunschweig, Germany.,YUMAB GmbH, Braunschweig, Germany
| | - Maren Schubert
- Institut für Biochemie, Biotechnologie und Bioinformatik, Abteilung Biotechnologie, Technische Universität Braunschweig, Braunschweig, Germany
| | | | - Federico Bertoglio
- Institut für Biochemie, Biotechnologie und Bioinformatik, Abteilung Biotechnologie, Technische Universität Braunschweig, Braunschweig, Germany
| | - Giulio Russo
- Institut für Biochemie, Biotechnologie und Bioinformatik, Abteilung Biotechnologie, Technische Universität Braunschweig, Braunschweig, Germany.,Abcalis GmbH, Braunschweig, Germany
| | - Michael Hust
- Institut für Biochemie, Biotechnologie und Bioinformatik, Abteilung Biotechnologie, Technische Universität Braunschweig, Braunschweig, Germany.,YUMAB GmbH, Braunschweig, Germany
| |
Collapse
|
23
|
Abstract
Large clostridial toxins (LCTs) are a family of bacterial exotoxins that infiltrate and destroy target cells. Members of the LCT family include Clostridioides difficile toxins TcdA and TcdB, Paeniclostridium sordellii toxins TcsL and TcsH, Clostridium novyi toxin TcnA, and Clostridium perfringens toxin TpeL. Since the 19th century, LCT-secreting bacteria have been isolated from the blood, organs, and wounds of diseased individuals, and LCTs have been implicated as the primary virulence factors in a variety of infections, including C. difficile infection and some cases of wound-associated gas gangrene. Clostridia express and secrete LCTs in response to various physiological signals. LCTs invade host cells by binding specific cell surface receptors, ultimately leading to internalization into acidified vesicles. Acidic pH promotes conformational changes within LCTs, which culminates in translocation of the N-terminal glycosyltransferase and cysteine protease domain across the endosomal membrane and into the cytosol, leading first to cytopathic effects and later to cytotoxic effects. The focus of this review is on the role of LCTs in infection and disease, the mechanism of LCT intoxication, with emphasis on recent structural work and toxin subtyping analysis, and the genomic discovery and characterization of LCT homologues. We provide a comprehensive review of these topics and offer our perspective on emerging questions and future research directions for this enigmatic family of toxins.
Collapse
|
24
|
The Human Gut Microbe Bacteroides thetaiotaomicron Suppresses Toxin Release from Clostridium difficile by Inhibiting Autolysis. Antibiotics (Basel) 2021; 10:antibiotics10020187. [PMID: 33671889 PMCID: PMC7918992 DOI: 10.3390/antibiotics10020187] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 02/11/2021] [Accepted: 02/13/2021] [Indexed: 01/05/2023] Open
Abstract
Disruption of the human gut microbiota by antibiotics can lead to Clostridium difficile (CD)-associated diarrhea. CD overgrowth and elevated CD toxins result in gut inflammation. Herein, we report that a gut symbiont, Bacteroides thetaiotaomicron (BT), suppressed CD toxin production. The suppressive components are present in BT culture supernatant and are both heat- and proteinase K-resistant. Transposon-based mutagenesis indicated that the polysaccharide metabolism of BT is involved in the inhibitory effect. Among the genes identified, we focus on the methylerythritol 4-phosphate pathway gene gcpE, which supplies the isoprenoid backbone to produce the undecaprenyl phosphate lipid carrier that transports oligosaccharides across the membrane. Polysaccharide fractions prepared from the BT culture suppressed CD toxin production in vitro; the inhibitory effect of polysaccharide fractions was reduced in the gcpE mutant (ΔgcpE). The inhibitory effect of BT-derived polysaccharide fraction was abrogated by lysozyme treatment, indicating that cellwall-associated glycans are attributable to the inhibitory effect. BT-derived polysaccharide fraction did not affect CD toxin gene expression or intracellular toxin levels. An autolysis assay showed that CD cell autolysis was suppressed by BT-derived polysaccharide fraction, but the effect was reduced with that of ΔgcpE. These results indicate that cell wall-associated glycans of BT suppress CD toxin release by inhibiting cell autolysis.
Collapse
|
25
|
Korbmacher M, Fischer S, Landenberger M, Papatheodorou P, Aktories K, Barth H. Human α-Defensin-5 Efficiently Neutralizes Clostridioides difficile Toxins TcdA, TcdB, and CDT. Front Pharmacol 2020; 11:1204. [PMID: 32903430 PMCID: PMC7435013 DOI: 10.3389/fphar.2020.01204] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Accepted: 07/23/2020] [Indexed: 12/21/2022] Open
Abstract
Infections with the pathogenic bacterium Clostridioides (C.) difficile are coming more into focus, in particular in hospitalized patients after antibiotic treatment. C. difficile produces the exotoxins TcdA and TcdB. Since some years, hypervirulent strains are described, which produce in addition the binary actin ADP-ribosylating toxin CDT. These strains are associated with more severe clinical presentations and increased morbidity and frequency. Once in the cytosol of their target cells, the catalytic domains of TcdA and TcdB glucosylate and thereby inactivate small Rho-GTPases whereas the enzyme subunit of CDT ADP-ribosylates G-actin. Thus, enzymatic activity of the toxins leads to destruction of the cytoskeleton and breakdown of the epidermal gut barrier integrity. This causes clinical symptoms ranging from mild diarrhea to life-threatening pseudomembranous colitis. Therefore, pharmacological inhibition of the secreted toxins is of peculiar medical interest. Here, we investigated the neutralizing effect of the human antimicrobial peptide α-defensin-5 toward TcdA, TcdB, and CDT in human cells. The toxin-neutralizing effects of α-defensin-5 toward TcdA, TcdB, and CDT as well as their medically relevant combination were demonstrated by analyzing toxins-induced changes in cell morphology, intracellular substrate modification, and decrease of trans-epithelial electrical resistance. For TcdA, the underlying mode of inhibition is most likely based on the formation of inactive toxin-defensin-aggregates whereas for CDT, the binding- and transport-component might be influenced. The application of α-defensin-5 delayed intoxication of cells in a time- and concentration-dependent manner. Due to its effect on the toxins, α-defensin-5 should be considered as a candidate to treat severe C. difficile-associated diseases.
Collapse
Affiliation(s)
- Michael Korbmacher
- Institute of Pharmacology and Toxicology, University of Ulm Medical Center, Ulm, Germany
| | - Stephan Fischer
- Institute of Pharmacology and Toxicology, University of Ulm Medical Center, Ulm, Germany
| | - Marc Landenberger
- Institute of Pharmacology and Toxicology, University of Ulm Medical Center, Ulm, Germany
| | | | - Klaus Aktories
- Institute of Experimental and Clinical Pharmacology and Toxicology, University of Freiburg, Freiburg, Germany
| | - Holger Barth
- Institute of Pharmacology and Toxicology, University of Ulm Medical Center, Ulm, Germany
| |
Collapse
|
26
|
Liu M, Wang J, Chang Y, Zhang Q, Chang D, Hui CY, Brennan JD, Li Y. In Vitro Selection of a DNA Aptamer Targeting Degraded Protein Fragments for Biosensing. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202000025] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Meng Liu
- School of Environmental Science and Technology Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education) Dalian University of Technology Dalian 116024 China
| | - Jiayi Wang
- School of Environmental Science and Technology Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education) Dalian University of Technology Dalian 116024 China
| | - Yangyang Chang
- School of Environmental Science and Technology Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education) Dalian University of Technology Dalian 116024 China
| | - Qiang Zhang
- School of Bioengineering Dalian University of Technology Dalian 116024 China
| | - Dingran Chang
- Department of Biochemistry and Biomedical Sciences Michael G. DeGroote Institute of Infectious Disease Research (IIDR) McMaster University 1280 Main Street West Hamilton Ontario L8S4K1 Canada
| | - Christy Y. Hui
- Biointerfaces Institute McMaster University 1280 Main Street West Hamilton Ontario L8S4O3 Canada
| | - John D. Brennan
- Biointerfaces Institute McMaster University 1280 Main Street West Hamilton Ontario L8S4O3 Canada
| | - Yingfu Li
- Biointerfaces Institute McMaster University 1280 Main Street West Hamilton Ontario L8S4O3 Canada
- Department of Biochemistry and Biomedical Sciences Michael G. DeGroote Institute of Infectious Disease Research (IIDR) McMaster University 1280 Main Street West Hamilton Ontario L8S4K1 Canada
| |
Collapse
|
27
|
Liu M, Wang J, Chang Y, Zhang Q, Chang D, Hui CY, Brennan JD, Li Y. In Vitro Selection of a DNA Aptamer Targeting Degraded Protein Fragments for Biosensing. Angew Chem Int Ed Engl 2020; 59:7706-7710. [PMID: 32155319 DOI: 10.1002/anie.202000025] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2020] [Indexed: 12/15/2022]
Abstract
Protein biomarkers often exist as degradation fragments in biological samples, and affinity agents derived using a purified protein may not recognize them, limiting their value for clinical diagnosis. Herein, we present a method to overcome this issue, by selecting aptamers against a degraded form of the toxin B protein, which is a marker for diagnosing toxigenic Clostridium difficile infections. This approach has led to isolation of a DNA aptamer that recognizes degraded toxin B, fresh toxin B, and toxin B spiked into human stool samples. DNA aptamers selected using intact recombinant toxin B failed to recognize degraded toxin B, which is the form present in stored stool samples. Using this new aptamer, we produced a simple paper-based analytical device for colorimetric detection of toxin B in stool samples, or in the NAP1 strain of Clostridium difficile. The combined aptamer-selection and paper-sensing strategy can expand the practical utility of DNA aptamers in clinical diagnosis.
Collapse
Affiliation(s)
- Meng Liu
- School of Environmental Science and Technology, Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), Dalian University of Technology, Dalian, 116024, China
| | - Jiayi Wang
- School of Environmental Science and Technology, Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), Dalian University of Technology, Dalian, 116024, China
| | - Yangyang Chang
- School of Environmental Science and Technology, Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), Dalian University of Technology, Dalian, 116024, China
| | - Qiang Zhang
- School of Bioengineering, Dalian University of Technology, Dalian, 116024, China
| | - Dingran Chang
- Department of Biochemistry and Biomedical Sciences, Michael G. DeGroote Institute of Infectious Disease Research (IIDR), McMaster University, 1280 Main Street West, Hamilton, Ontario, L8S4K1, Canada
| | - Christy Y Hui
- Biointerfaces Institute, McMaster University, 1280 Main Street West, Hamilton, Ontario, L8S4O3, Canada
| | - John D Brennan
- Biointerfaces Institute, McMaster University, 1280 Main Street West, Hamilton, Ontario, L8S4O3, Canada
| | - Yingfu Li
- Biointerfaces Institute, McMaster University, 1280 Main Street West, Hamilton, Ontario, L8S4O3, Canada.,Department of Biochemistry and Biomedical Sciences, Michael G. DeGroote Institute of Infectious Disease Research (IIDR), McMaster University, 1280 Main Street West, Hamilton, Ontario, L8S4K1, Canada
| |
Collapse
|
28
|
Fischer S, Ückert AK, Landenberger M, Papatheodorou P, Hoffmann-Richter C, Mittler AK, Ziener U, Hägele M, Schwan C, Müller M, Kleger A, Benz R, Popoff MR, Aktories K, Barth H. Human peptide α-defensin-1 interferes with Clostridioides difficile toxins TcdA, TcdB, and CDT. FASEB J 2020; 34:6244-6261. [PMID: 32190927 DOI: 10.1096/fj.201902816r] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Revised: 12/23/2019] [Accepted: 02/27/2020] [Indexed: 12/15/2022]
Abstract
The human pathogenic bacterium Clostridioides difficile produces two exotoxins TcdA and TcdB, which inactivate Rho GTPases thereby causing C. difficile-associated diseases (CDAD) including life-threatening pseudomembranous colitis. Hypervirulent strains produce additionally the binary actin ADP-ribosylating toxin CDT. These strains are hallmarked by more severe forms of CDAD and increased frequency and severity. Once in the cytosol, the toxins act as enzymes resulting in the typical clinical symptoms. Therefore, targeting and inactivation of the released toxins are of peculiar interest. Prompted by earlier findings that human α-defensin-1 neutralizes TcdB, we investigated the effects of the defensin on all three C. difficile toxins. Inhibition of TcdA, TcdB, and CDT was demonstrated by analyzing toxin-induced changes in cell morphology, substrate modification, and decrease in transepithelial electrical resistance. Application of α-defensin-1 protected cells and human intestinal organoids from the cytotoxic effects of TcdA, TcdB, CDT, and their combination which is attributed to a direct interaction between the toxins and α-defensin-1. In mice, the application of α-defensin-1 reduced the TcdA-induced damage of intestinal loops in vivo. In conclusion, human α-defensin-1 is a specific and potent inhibitor of the C. difficile toxins and a promising agent to develop novel therapeutic options against C. difficile infections.
Collapse
Affiliation(s)
- Stephan Fischer
- Institute of Pharmacology and Toxicology, University of Ulm Medical Center, Ulm, Germany
| | - Anna-Katharina Ückert
- Institute of Pharmacology and Toxicology, University of Ulm Medical Center, Ulm, Germany
| | - Marc Landenberger
- Institute of Pharmacology and Toxicology, University of Ulm Medical Center, Ulm, Germany
| | | | | | - Ann-Katrin Mittler
- Institute of Pharmacology and Toxicology, University of Ulm Medical Center, Ulm, Germany
| | - Ulrich Ziener
- Institute of Organic Chemistry III, Ulm University, Ulm, Germany
| | - Marlen Hägele
- Department of Internal Medicine I, University of Ulm Medical Center, Ulm, Germany
| | - Carsten Schwan
- Institute of Experimental and Clinical Pharmacology and Toxicology, University of Freiburg, Freiburg, Germany
| | - Martin Müller
- Department of Internal Medicine I, University of Ulm Medical Center, Ulm, Germany
| | - Alexander Kleger
- Department of Internal Medicine I, University of Ulm Medical Center, Ulm, Germany
| | - Roland Benz
- Department of Life Sciences and Chemistry, Jacobs University Bremen, Bremen, Germany
| | - Michel R Popoff
- Department of Anaerobic Bacteria, Pasteur Institute, Paris, France
| | - Klaus Aktories
- Institute of Experimental and Clinical Pharmacology and Toxicology, University of Freiburg, Freiburg, Germany
| | - Holger Barth
- Institute of Pharmacology and Toxicology, University of Ulm Medical Center, Ulm, Germany
| |
Collapse
|
29
|
Ost GS, Wirth C, Bogdanović X, Kao WC, Schorch B, Aktories PJK, Papatheodorou P, Schwan C, Schlosser A, Jank T, Hunte C, Aktories K. Inverse control of Rab proteins by Yersinia ADP-ribosyltransferase and glycosyltransferase related to clostridial glucosylating toxins. SCIENCE ADVANCES 2020; 6:eaaz2094. [PMID: 32195351 PMCID: PMC7065874 DOI: 10.1126/sciadv.aaz2094] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Accepted: 12/17/2019] [Indexed: 05/20/2023]
Abstract
We identified a glucosyltransferase (YGT) and an ADP-ribosyltransferase (YART) in Yersinia mollaretii, highly related to glucosylating toxins from Clostridium difficile, the cause of antibiotics-associated enterocolitis. Both Yersinia toxins consist of an amino-terminal enzyme domain, an autoprotease domain activated by inositol hexakisphosphate, and a carboxyl-terminal translocation domain. YGT N-acetylglucosaminylates Rab5 and Rab31 at Thr52 and Thr36, respectively, thereby inactivating the Rab proteins. YART ADP-ribosylates Rab5 and Rab31 at Gln79 and Gln64, respectively. This activates Rab proteins by inhibiting GTP hydrolysis. We determined the crystal structure of the glycosyltransferase domain of YGT (YGTG) in the presence and absence of UDP at 1.9- and 3.4-Å resolution, respectively. Thereby, we identified a previously unknown potassium ion-binding site, which explains potassium ion-dependent enhanced glycosyltransferase activity in clostridial and related toxins. Our findings exhibit a novel type of inverse regulation of Rab proteins by toxins and provide new insights into the structure-function relationship of glycosyltransferase toxins.
Collapse
Affiliation(s)
- G. Stefan Ost
- Institut für Experimentelle und Klinische Pharmakologie und Toxikologie, Medizinische Fakultät, Albert-Ludwigs-Universität Freiburg, 79104 Freiburg, Germany
- Institut für Biologie, Fakultät für Biologie, Albert-Ludwigs-Universität Freiburg, 79104 Freiburg, Germany
| | - Christophe Wirth
- Institut für Biochemie und Molekularbiologie, ZBMZ, Medizinische Fakultät, Albert-Ludwigs-Universität Freiburg, 79104 Freiburg, Germany
| | - Xenia Bogdanović
- Institut für Biochemie und Molekularbiologie, ZBMZ, Medizinische Fakultät, Albert-Ludwigs-Universität Freiburg, 79104 Freiburg, Germany
| | - Wei-Chun Kao
- Institut für Biochemie und Molekularbiologie, ZBMZ, Medizinische Fakultät, Albert-Ludwigs-Universität Freiburg, 79104 Freiburg, Germany
| | - Björn Schorch
- Institut für Experimentelle und Klinische Pharmakologie und Toxikologie, Medizinische Fakultät, Albert-Ludwigs-Universität Freiburg, 79104 Freiburg, Germany
| | - Philipp J. K. Aktories
- Institut für Experimentelle und Klinische Pharmakologie und Toxikologie, Medizinische Fakultät, Albert-Ludwigs-Universität Freiburg, 79104 Freiburg, Germany
| | - Panagiotis Papatheodorou
- Institut für Experimentelle und Klinische Pharmakologie und Toxikologie, Medizinische Fakultät, Albert-Ludwigs-Universität Freiburg, 79104 Freiburg, Germany
| | - Carsten Schwan
- Institut für Experimentelle und Klinische Pharmakologie und Toxikologie, Medizinische Fakultät, Albert-Ludwigs-Universität Freiburg, 79104 Freiburg, Germany
| | - Andreas Schlosser
- Rudolf-Virchow-Zentrum für Experimentelle Biomedizin, Universität Würzburg, 97080 Würzburg, Germany
| | - Thomas Jank
- Institut für Experimentelle und Klinische Pharmakologie und Toxikologie, Medizinische Fakultät, Albert-Ludwigs-Universität Freiburg, 79104 Freiburg, Germany
| | - Carola Hunte
- Institut für Biochemie und Molekularbiologie, ZBMZ, Medizinische Fakultät, Albert-Ludwigs-Universität Freiburg, 79104 Freiburg, Germany
- Centre for Biological Signalling Studies (BIOSS), Albert-Ludwigs-Universität Freiburg, 79104 Freiburg, Germany
- CIBSS–Centre for Integrative Biological Signalling Studies, University of Freiburg, 79104 Freiburg, Germany
| | - Klaus Aktories
- Institut für Experimentelle und Klinische Pharmakologie und Toxikologie, Medizinische Fakultät, Albert-Ludwigs-Universität Freiburg, 79104 Freiburg, Germany
- Centre for Biological Signalling Studies (BIOSS), Albert-Ludwigs-Universität Freiburg, 79104 Freiburg, Germany
- Corresponding author.
| |
Collapse
|
30
|
di Masi A, Leboffe L, Polticelli F, Tonon F, Zennaro C, Caterino M, Stano P, Fischer S, Hägele M, Müller M, Kleger A, Papatheodorou P, Nocca G, Arcovito A, Gori A, Ruoppolo M, Barth H, Petrosillo N, Ascenzi P, Di Bella S. Human Serum Albumin Is an Essential Component of the Host Defense Mechanism Against Clostridium difficile Intoxication. J Infect Dis 2019; 218:1424-1435. [PMID: 29868851 DOI: 10.1093/infdis/jiy338] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2017] [Accepted: 06/01/2018] [Indexed: 01/05/2023] Open
Abstract
Background The pathogenic effects of Clostridium difficile are primarily attributable to the production of the large protein toxins (C difficile toxins [Tcd]) A (TcdA) and B (TcdB). These toxins monoglucosylate Rho GTPases in the cytosol of host cells, causing destruction of the actin cytoskeleton with cytotoxic effects. Low human serum albumin (HSA) levels indicate a higher risk of acquiring and developing a severe C difficile infection (CDI) and are associated with recurrent and fatal disease. Methods We used a combined approach based on docking simulation and biochemical analyses that were performed in vitro on purified proteins and in human epithelial colorectal adenocarcinoma cells (Caco-2), and in vivo on stem cell-derived human intestinal organoids and zebrafish embryos. Results Our results show that HSA specifically binds via its domain II to TcdA and TcdB and thereby induces their autoproteolytic cleavage at physiological concentrations. This process impairs toxin internalization into the host cells and reduces the toxin-dependent glucosylation of Rho proteins. Conclusions Our data provide evidence for a specific HSA-dependent self-defense mechanism against C difficile toxins and provide an explanation for the clinical correlation between CDI severity and hypoalbuminemia.
Collapse
Affiliation(s)
| | - Loris Leboffe
- Department of Sciences, Roma Tre University, Roma, Italy
| | - Fabio Polticelli
- Department of Sciences, Roma Tre University, Roma, Italy.,National Institute of Nuclear Physics, Roma Tre Section, Roma, Italy
| | - Federica Tonon
- Department of Medical, Surgery and Health Sciences, University of Trieste, Trieste, Italy
| | - Cristina Zennaro
- Department of Medical, Surgery and Health Sciences, University of Trieste, Trieste, Italy
| | - Marianna Caterino
- Department of Molecular Medicine and Medical Biotechnology, University of Napoli "Federico II", Napoli, Italy.,Associazione Culturale DiSciMuS RCF, Casoria, Napoli, Italy
| | - Pasquale Stano
- Department of Sciences, Roma Tre University, Roma, Italy
| | - Stephan Fischer
- Institute of Pharmacology and Toxicology, University of Ulm Medical Center, Ulm, Germany
| | - Marlen Hägele
- Department of Internal Medicine I, University of Ulm Medical Center, Germany
| | - Martin Müller
- Department of Internal Medicine I, University of Ulm Medical Center, Germany
| | - Alexander Kleger
- Department of Internal Medicine I, University of Ulm Medical Center, Germany
| | - Panagiotis Papatheodorou
- Institute of Pharmacology and Toxicology, University of Ulm Medical Center, Ulm, Germany.,Institute of Experimental and Clinical Pharmacology and Toxicology, University of Freiburg, Freiburg, Germany
| | - Giuseppina Nocca
- Institute of Biochemistry and Clinical Biochemistry, Catholic University of Sacred Heart, Roma, Italy.,Institute of Chemistry of Molecular Recognition, CNR, Roma, Italy
| | - Alessandro Arcovito
- Institute of Biochemistry and Clinical Biochemistry, Catholic University of Sacred Heart, Roma, Italy
| | - Andrea Gori
- Clinic of Infectious Diseases, San Gerardo Hospital, University of Milano-Bicocca, Monza, Italy
| | - Margherita Ruoppolo
- Department of Molecular Medicine and Medical Biotechnology, University of Napoli "Federico II", Napoli, Italy.,Associazione Culturale DiSciMuS RCF, Casoria, Napoli, Italy.,CEINGE Biotecnologie Avanzate, Napoli, Italy
| | - Holger Barth
- Institute of Pharmacology and Toxicology, University of Ulm Medical Center, Ulm, Germany
| | - Nicola Petrosillo
- 2nd Infectious Diseases Division, National Institute for Infectious Diseases "L. Spallanzani", Roma, Italy
| | - Paolo Ascenzi
- Department of Sciences, Roma Tre University, Roma, Italy
| | - Stefano Di Bella
- 2nd Infectious Diseases Division, National Institute for Infectious Diseases "L. Spallanzani", Roma, Italy
| |
Collapse
|
31
|
Chen P, Lam KH, Liu Z, Mindlin FA, Chen B, Gutierrez CB, Huang L, Zhang Y, Hamza T, Feng H, Matsui T, Bowen ME, Perry K, Jin R. Structure of the full-length Clostridium difficile toxin B. Nat Struct Mol Biol 2019; 26:712-719. [PMID: 31308519 PMCID: PMC6684407 DOI: 10.1038/s41594-019-0268-0] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Accepted: 06/07/2019] [Indexed: 01/07/2023]
Abstract
Clostridium difficile is an opportunistic pathogen that establishes in the colon when the gut microbiota are disrupted by antibiotics or disease. C. difficile infection (CDI) is largely caused by two virulence factors, TcdA and TcdB. Here, we report a 3.87-Å-resolution crystal structure of TcdB holotoxin that captures a unique conformation of TcdB at endosomal pH. Complementary biophysical studies suggest that the C-terminal combined repetitive oligopeptides (CROPs) domain of TcdB is dynamic and can sample open and closed conformations that may facilitate modulation of TcdB activity in response to environmental and cellular cues during intoxication. Furthermore, we report three crystal structures of TcdB-antibody complexes that reveal how antibodies could specifically inhibit the activities of individual TcdB domains. Our studies provide novel insight into the structure and function of TcdB holotoxin and identify intrinsic vulnerabilities that could be exploited to develop new therapeutics and vaccines for the treatment of CDI.
Collapse
Affiliation(s)
- Peng Chen
- Department of Physiology and Biophysics, University of California, Irvine, Irvine, CA, USA
| | - Kwok-Ho Lam
- Department of Physiology and Biophysics, University of California, Irvine, Irvine, CA, USA
| | - Zheng Liu
- Department of Physiology and Biophysics, University of California, Irvine, Irvine, CA, USA
| | - Frank A Mindlin
- Department of Physiology and Biophysics, Stony Brook University, Stony Brook, NY, USA
| | - Baohua Chen
- Department of Physiology and Biophysics, University of California, Irvine, Irvine, CA, USA
| | - Craig B Gutierrez
- Department of Physiology and Biophysics, University of California, Irvine, Irvine, CA, USA
| | - Lan Huang
- Department of Physiology and Biophysics, University of California, Irvine, Irvine, CA, USA
| | - Yongrong Zhang
- Department of Microbial Pathogenesis, University of Maryland Baltimore, Baltimore, MD, USA
| | - Therwa Hamza
- Department of Microbial Pathogenesis, University of Maryland Baltimore, Baltimore, MD, USA
| | - Hanping Feng
- Department of Microbial Pathogenesis, University of Maryland Baltimore, Baltimore, MD, USA
| | - Tsutomu Matsui
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Stanford University, Menlo Park, CA, USA
| | - Mark E Bowen
- Department of Physiology and Biophysics, Stony Brook University, Stony Brook, NY, USA
| | - Kay Perry
- NE-CAT and Department of Chemistry and Chemical Biology, Cornell University, Argonne National Laboratory, Argonne, IL, USA
| | - Rongsheng Jin
- Department of Physiology and Biophysics, University of California, Irvine, Irvine, CA, USA.
| |
Collapse
|
32
|
Simeon R, Jiang M, Chamoun-Emanuelli AM, Yu H, Zhang Y, Meng R, Peng Z, Jakana J, Zhang J, Feng H, Chen Z. Selection and characterization of ultrahigh potency designed ankyrin repeat protein inhibitors of C. difficile toxin B. PLoS Biol 2019; 17:e3000311. [PMID: 31233493 PMCID: PMC6590788 DOI: 10.1371/journal.pbio.3000311] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Accepted: 05/20/2019] [Indexed: 12/18/2022] Open
Abstract
Clostridium difficile infection (CDI) is a major nosocomial disease associated with significant morbidity and mortality. The pathology of CDI stems primarily from the 2 C. difficile-secreted exotoxins-toxin A (TcdA) and toxin B (TcdB)-that disrupt the tight junctions between epithelial cells leading to the loss of colonic epithelial barrier function. Here, we report the engineering of a series of monomeric and dimeric designed ankyrin repeat proteins (DARPins) for the neutralization of TcdB. The best dimeric DARPin, DLD-4, inhibited TcdB with a half maximal effective concentration (EC50) of 4 pM in vitro, representing an approximately 330-fold higher potency than the Food and Drug Administration (FDA)-approved anti-TcdB monoclonal antibody bezlotoxumab in the same assay. DLD-4 also protected mice from a toxin challenge in vivo. Cryo-electron microscopy (cryo-EM) studies revealed that the 2 constituent DARPins of DLD-4-1.4E and U3-bind the central and C-terminal regions of the delivery domain of TcdB. Competitive enzyme-linked immunosorbent assay (ELISA) studies showed that the DARPins 1.4E and U3 interfere with the interaction between TcdB and its receptors chondroitin sulfate proteoglycan 4 (CSPG4) and frizzled class receptor 2 (FZD2), respectively. Our cryo-EM studies revealed a new conformation of TcdB (both apo- and DARPin-bound at pH 7.4) in which the combined repetitive oligopeptides (CROPS) domain points away from the delivery domain. This conformation of the CROPS domain is in stark contrast to that seen in the negative-stain electron microscopy (EM) structure of TcdA and TcdB at the same pH, in which the CROPS domain bends toward and "kisses" the delivery domain. The ultrapotent anti-TcdB molecules from this study serve as candidate starting points for CDI drug development and provide new biological tools for studying the pathogenicity of C. difficile. The structural insights regarding both the "native" conformation of TcdB and the putative sites of TcdB interaction with the FZD2 receptor, in particular, should help accelerate the development of next-generation anti-C. difficile toxin therapeutics.
Collapse
Affiliation(s)
- Rudo Simeon
- Department of Microbial Pathogenesis and Immunology, Texas A&M University Health Science Center, College Station, Texas, United States of America
| | - Mengqiu Jiang
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas, United States of America
| | - Ana M. Chamoun-Emanuelli
- Department of Microbial Pathogenesis and Immunology, Texas A&M University Health Science Center, College Station, Texas, United States of America
| | - Hua Yu
- Department of Microbial Pathogenesis, University of Maryland Dental School, Baltimore, Maryland, United Sates of America
| | - Yongrong Zhang
- Department of Microbial Pathogenesis, University of Maryland Dental School, Baltimore, Maryland, United Sates of America
| | - Ran Meng
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas, United States of America
| | - Zeyu Peng
- Department of Microbial Pathogenesis and Immunology, Texas A&M University Health Science Center, College Station, Texas, United States of America
| | - Joanita Jakana
- National Center for Macromolecular Imaging, Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, Texas, United States of America
| | - Junjie Zhang
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas, United States of America
| | - Hanping Feng
- Department of Microbial Pathogenesis, University of Maryland Dental School, Baltimore, Maryland, United Sates of America
| | - Zhilei Chen
- Department of Microbial Pathogenesis and Immunology, Texas A&M University Health Science Center, College Station, Texas, United States of America
| |
Collapse
|
33
|
Deletion of a 19-Amino-Acid Region in Clostridioides difficile TcdB2 Results in Spontaneous Autoprocessing and Reduced Cell Binding and Provides a Nontoxic Immunogen for Vaccination. Infect Immun 2019; 87:IAI.00210-19. [PMID: 31138612 DOI: 10.1128/iai.00210-19] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Accepted: 05/17/2019] [Indexed: 11/20/2022] Open
Abstract
Clostridioides difficile toxin B (TcdB) is an intracellular toxin responsible for many of the pathologies of C. difficile infection. The two variant forms of TcdB (TcdB1 and TcdB2) share 92% sequence identity but have reported differences in rates of cell entry, autoprocessing, and overall toxicity. This 2,366-amino-acid, multidomain bacterial toxin glucosylates and inactivates small GTPases in the cytosol of target cells, ultimately leading to cell death. Successful cell entry and intoxication by TcdB are known to involve various conformational changes in the protein, including a proteolytic autoprocessing event. Previous studies found that amino acids 1753 to 1852 influence the conformational states of the proximal carboxy-terminal domain of TcdB and could contribute to differences between TcdB1 and TcdB2. In the current study, a combination of approaches was used to identify sequences within the region from amino acids 1753 to 1852 that influence the conformational integrity and cytotoxicity of TcdB2. Four deletion mutants with reduced cytotoxicity were identified, while one mutant, TcdB2Δ1769-1787, exhibited no detectable cytotoxicity. TcdB2Δ1769-1787 underwent spontaneous autoprocessing and was unable to interact with CHO-K1 or HeLa cells, suggesting a potential change in the conformation of the mutant protein. Despite the putative alteration in structural stability, vaccination with TcdB2Δ1769-1787 induced a TcdB2-neutralizing antibody response and protected against C. difficile disease in a mouse model. These findings indicate that the 19-amino-acid region spanning residues 1769 to 1787 in TcdB2 is crucial to cytotoxicity and the structural regulation of autoprocessing and that TcdB2Δ1769-1787 is a promising candidate for vaccination.
Collapse
|
34
|
Mileto S, Das A, Lyras D. Enterotoxic Clostridia: Clostridioides difficile Infections. Microbiol Spectr 2019; 7:10.1128/microbiolspec.gpp3-0015-2018. [PMID: 31124432 PMCID: PMC11026080 DOI: 10.1128/microbiolspec.gpp3-0015-2018] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Indexed: 12/17/2022] Open
Abstract
Clostridioides difficile is a Gram-positive, anaerobic, spore forming pathogen of both humans and animals and is the most common identifiable infectious agent of nosocomial antibiotic-associated diarrhea. Infection can occur following the ingestion and germination of spores, often concurrently with a disruption to the gastrointestinal microbiota, with the resulting disease presenting as a spectrum, ranging from mild and self-limiting diarrhea to severe diarrhea that may progress to life-threating syndromes that include toxic megacolon and pseudomembranous colitis. Disease is induced through the activity of the C. difficile toxins TcdA and TcdB, both of which disrupt the Rho family of GTPases in host cells, causing cell rounding and death and leading to fluid loss and diarrhea. These toxins, despite their functional and structural similarity, do not contribute to disease equally. C. difficile infection (CDI) is made more complex by a high level of strain diversity and the emergence of epidemic strains, including ribotype 027-strains which induce more severe disease in patients. With the changing epidemiology of CDI, our understanding of C. difficile disease, diagnosis, and pathogenesis continues to evolve. This article provides an overview of the current diagnostic tests available for CDI, strain typing, the major toxins C. difficile produces and their mode of action, the host immune response to each toxin and during infection, animal models of disease, and the current treatment and prevention strategies for CDI.
Collapse
Affiliation(s)
- S Mileto
- Infection and Immunity Program, Monash Biomedicine Discovery Institute and Department of Microbiology, Monash University, Clayton, Victoria, Australia, 3800
| | - A Das
- Infection and Immunity Program, Monash Biomedicine Discovery Institute and Department of Microbiology, Monash University, Clayton, Victoria, Australia, 3800
| | - D Lyras
- Infection and Immunity Program, Monash Biomedicine Discovery Institute and Department of Microbiology, Monash University, Clayton, Victoria, Australia, 3800
| |
Collapse
|
35
|
Ivarsson ME, Durantie E, Huberli C, Huwiler S, Hegde C, Friedman J, Altamura F, Lu J, Verdu EF, Bercik P, Logan SM, Chen W, Leroux JC, Castagner B. Small-Molecule Allosteric Triggers of Clostridium difficile Toxin B Auto-proteolysis as a Therapeutic Strategy. Cell Chem Biol 2019; 26:17-26.e13. [DOI: 10.1016/j.chembiol.2018.10.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2017] [Revised: 06/27/2018] [Accepted: 09/28/2018] [Indexed: 01/19/2023]
|
36
|
Fühner V, Heine PA, Helmsing S, Goy S, Heidepriem J, Loeffler FF, Dübel S, Gerhard R, Hust M. Development of Neutralizing and Non-neutralizing Antibodies Targeting Known and Novel Epitopes of TcdB of Clostridioides difficile. Front Microbiol 2018; 9:2908. [PMID: 30574127 PMCID: PMC6291526 DOI: 10.3389/fmicb.2018.02908] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Accepted: 11/13/2018] [Indexed: 12/18/2022] Open
Abstract
Clostridioides difficile is the causative bacterium in 15-20% of all antibiotic associated diarrheas. The symptoms associated with C. difficile infection (CDI) are primarily induced by the two large exotoxins TcdA and TcdB. Both toxins enter target cells by receptor-mediated endocytosis. Although different toxin receptors have been identified, it is no valid therapeutic option to prevent receptor endocytosis. Therapeutics, such as neutralizing antibodies, directly targeting both toxins are in development. Interestingly, only the anti-TcdB antibody bezlotoxumab but not the anti-TcdA antibody actoxumab prevented recurrence of CDI in clinical trials. In this work, 31 human antibody fragments against TcdB were selected by antibody phage display from the human naive antibody gene libraries HAL9/10. These antibody fragments were further characterized by in vitro neutralization assays. The epitopes of the neutralizing and non-neutralizing antibody fragments were analyzed by domain mapping, TcdB fragment phage display, and peptide arrays, to identify neutralizing and non-neutralizing epitopes. A new neutralizing epitope within the glucosyltransferase domain of TcdB was identified, providing new insights into the relevance of different toxin regions in respect of neutralization and toxicity.
Collapse
Affiliation(s)
- Viola Fühner
- Department Biotechnology, Institute for Biochemistry, Biotechnology and Bioinformatics, Technische Universität Braunschweig, Braunschweig, Germany
| | - Philip Alexander Heine
- Department Biotechnology, Institute for Biochemistry, Biotechnology and Bioinformatics, Technische Universität Braunschweig, Braunschweig, Germany
| | - Saskia Helmsing
- Department Biotechnology, Institute for Biochemistry, Biotechnology and Bioinformatics, Technische Universität Braunschweig, Braunschweig, Germany
| | - Sebastian Goy
- Institute for Toxicology, Hannover Medical School, Hannover, Germany
| | - Jasmin Heidepriem
- Department Synthetic Array Technologies, Max Planck Institute of Colloids and Interfaces, Potsdam, Germany
| | - Felix F. Loeffler
- Department Synthetic Array Technologies, Max Planck Institute of Colloids and Interfaces, Potsdam, Germany
| | - Stefan Dübel
- Department Biotechnology, Institute for Biochemistry, Biotechnology and Bioinformatics, Technische Universität Braunschweig, Braunschweig, Germany
| | - Ralf Gerhard
- Institute for Toxicology, Hannover Medical School, Hannover, Germany
| | - Michael Hust
- Department Biotechnology, Institute for Biochemistry, Biotechnology and Bioinformatics, Technische Universität Braunschweig, Braunschweig, Germany
| |
Collapse
|
37
|
Bogdanovic X, Schneider S, Levanova N, Wirth C, Trillhaase C, Steinemann M, Hunte C, Aktories K, Jank T. A cysteine protease-like domain enhances the cytotoxic effects of the Photorhabdus asymbiotica toxin PaTox. J Biol Chem 2018; 294:1035-1044. [PMID: 30478175 DOI: 10.1074/jbc.ra118.005043] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Revised: 11/21/2018] [Indexed: 01/07/2023] Open
Abstract
The nematode mutualistic bacterium Photorhabdus asymbiotica produces a large virulence-associated multifunctional protein toxin named PaTox. A glycosyltransferase domain and a deamidase domain of this large toxin function as effectors that specifically target host Rho GTPases and heterotrimeric G proteins, respectively. Modification of these intracellular regulators results in toxicity toward insects and mammalian cells. In this study, we identified a cysteine protease-like domain spanning PaTox residues 1844-2114 (PaToxP), upstream of these two effector domains and characterized by three conserved amino acid residues (Cys-1865, His-1955, and Asp-1975). We determined the crystal structure of the PaToxP C1865A variant by native single-wavelength anomalous diffraction of sulfur atoms (sulfur-SAD). At 2.0 Å resolution, this structure revealed a catalytic site typical for papain-like cysteine proteases, comprising a catalytic triad, oxyanion hole, and typical secondary structural elements. The PaToxP structure had highest similarity to that of the AvrPphB protease from Pseudomonas syringae classified as a C58-protease. Furthermore, we observed that PaToxP shares structural homology also with non-C58-cysteine proteases, deubiquitinases, and deamidases. Upon delivery into insect larvae, PaToxP alone without full-length PaTox had no toxic effects. Yet, PaToxP expression in mammalian cells was toxic and enhanced the apoptotic phenotype induced by PaTox in HeLa cells. We propose that PaToxP is a C58-like cysteine protease module that is essential for full PaTox activity.
Collapse
Affiliation(s)
- Xenia Bogdanovic
- From the Institute for Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, University of Freiburg, D-79104 Freiburg, Germany
| | - Silvia Schneider
- the Institute for Experimental and Clinical Pharmacology and Toxicology, Faculty of Medicine, University of Freiburg, D-79104 Freiburg, Germany, and
| | - Nadezhda Levanova
- the Institute for Experimental and Clinical Pharmacology and Toxicology, Faculty of Medicine, University of Freiburg, D-79104 Freiburg, Germany, and
| | - Christophe Wirth
- From the Institute for Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, University of Freiburg, D-79104 Freiburg, Germany
| | - Christoph Trillhaase
- the Institute for Experimental and Clinical Pharmacology and Toxicology, Faculty of Medicine, University of Freiburg, D-79104 Freiburg, Germany, and
| | - Marcus Steinemann
- the Institute for Experimental and Clinical Pharmacology and Toxicology, Faculty of Medicine, University of Freiburg, D-79104 Freiburg, Germany, and
| | - Carola Hunte
- From the Institute for Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, University of Freiburg, D-79104 Freiburg, Germany, .,the Centre for Biological Signalling Studies (BIOSS), University of Freiburg, D-79106 Freiburg, Germany
| | - Klaus Aktories
- the Institute for Experimental and Clinical Pharmacology and Toxicology, Faculty of Medicine, University of Freiburg, D-79104 Freiburg, Germany, and .,the Centre for Biological Signalling Studies (BIOSS), University of Freiburg, D-79106 Freiburg, Germany
| | - Thomas Jank
- the Institute for Experimental and Clinical Pharmacology and Toxicology, Faculty of Medicine, University of Freiburg, D-79104 Freiburg, Germany, and
| |
Collapse
|
38
|
Dar Y, Salomon D, Bosis E. The Antibacterial and Anti-Eukaryotic Type VI Secretion System MIX-Effector Repertoire in Vibrionaceae. Mar Drugs 2018; 16:md16110433. [PMID: 30400344 PMCID: PMC6267618 DOI: 10.3390/md16110433] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Revised: 10/31/2018] [Accepted: 11/01/2018] [Indexed: 12/12/2022] Open
Abstract
Vibrionaceae is a widespread family of aquatic bacteria that includes emerging pathogens and symbionts. Many Vibrionaceae harbor a type VI secretion system (T6SS), which is a secretion apparatus used to deliver toxins, termed effectors, into neighboring cells. T6SSs mediate both antibacterial and anti-eukaryotic activities. Notably, antibacterial effectors are encoded together with a gene that encodes a cognate immunity protein so as to antagonize the toxicity of the effector. The MIX (Marker for type sIX effectors) domain has been previously defined as a marker of T6SS effectors carrying polymorphic C-terminal toxins. Here, we set out to identify the Vibrionaceae MIX-effector repertoire and to analyze the various toxin domains they carry. We used a computational approach to search for the MIX-effectors in the Vibrionaceae genomes, and grouped them into clusters based on the C-terminal toxin domains. We classified MIX-effectors as either antibacterial or anti-eukaryotic, based on the presence or absence of adjacent putative immunity genes, respectively. Antibacterial MIX-effectors carrying pore-forming, phospholipase, nuclease, peptidoglycan hydrolase, and protease activities were found. Furthermore, we uncovered novel virulence MIX-effectors. These are encoded by “professional MIXologist” strains that employ a cocktail of antibacterial and anti-eukaryotic MIX-effectors. Our findings suggest that certain Vibrionaceae adapted their antibacterial T6SS to mediate interactions with eukaryotic hosts or predators.
Collapse
Affiliation(s)
- Yasmin Dar
- Department of Clinical Microbiology and Immunology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel.
| | - Dor Salomon
- Department of Clinical Microbiology and Immunology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel.
| | - Eran Bosis
- Department of Biotechnology Engineering, ORT Braude College of Engineering, Karmiel 2161002, Israel.
| |
Collapse
|
39
|
The chaperonin TRiC/CCT is essential for the action of bacterial glycosylating protein toxins like Clostridium difficile toxins A and B. Proc Natl Acad Sci U S A 2018; 115:9580-9585. [PMID: 30181275 DOI: 10.1073/pnas.1807658115] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Various bacterial protein toxins, including Clostridium difficile toxins A (TcdA) and B (TcdB), attack intracellular target proteins of host cells by glucosylation. After receptor binding and endocytosis, the toxins are translocated into the cytosol, where they modify target proteins (e.g., Rho proteins). Here we report that the activity of translocated glucosylating toxins depends on the chaperonin TRiC/CCT. The chaperonin subunits CCT4/5 directly interact with the toxins and enhance the refolding and restoration of the glucosyltransferase activities of toxins after heat treatment. Knockdown of CCT5 by siRNA and HSF1A, an inhibitor of TRiC/CCT, blocks the cytotoxic effects of TcdA and TcdB. In contrast, HSP90, which is involved in the translocation and uptake of ADP ribosylating toxins, is not involved in uptake of the glucosylating toxins. We show that the actions of numerous glycosylating toxins from various toxin types and different species depend on TRiC/CCT. Our data indicate that the TRiC/CCT chaperonin system is specifically involved in toxin uptake and essential for the action of various glucosylating protein toxins acting intracellularly on target proteins.
Collapse
|
40
|
Popoff MR. Clostridium difficile and Clostridium sordellii toxins, proinflammatory versus anti-inflammatory response. Toxicon 2018; 149:54-64. [DOI: 10.1016/j.toxicon.2017.11.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2017] [Revised: 11/07/2017] [Accepted: 11/09/2017] [Indexed: 12/17/2022]
|
41
|
Beer LA, Tatge H, Reich N, Tenspolde M, Olling A, Goy S, Rottner K, Alekov AK, Gerhard R. Early cell death induced by Clostridium difficile TcdB: Uptake and Rac1-glucosylation kinetics are decisive for cell fate. Cell Microbiol 2018; 20:e12865. [PMID: 29904993 DOI: 10.1111/cmi.12865] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Revised: 05/23/2018] [Accepted: 05/26/2018] [Indexed: 12/29/2022]
Abstract
Toxin A and Toxin B (TcdA/TcdB) are large glucosyltransferases produced by Clostridium difficile. TcdB but not TcdA induces reactive oxygen species-mediated early cell death (ECD) when applied at high concentrations. We found that nonglucosylated Rac1 is essential for induction of ECD since inhibition of Rac1 impedes this effect. ECD only occurs when TcdB is rapidly endocytosed. This was shown by generation of chimeras using the trunk of TcdB from a hypervirulent strain. TcdB from hypervirulent strain has been described to translocate from endosomes at higher pH values and thus, meaning faster than reference type TcdB. Accordingly, intracellular delivery of the glucosyltransferase domain of reference TcdB by the trunk of TcdB from hypervirulent strain increased ECD. Furthermore, proton transporters such as sodium/proton exchanger (NHE) or the ClC-5 anion/proton exchanger, both of which contribute to endosomal acidification, also affected cytotoxic potency of TcdB: Specific inhibition of NHE reduced cytotoxicity, whereas transfection of cells with the endosomal anion/proton exchanger ClC-5 increased cytotoxicity of TcdB. Our data suggest that both the uptake rate of TcdB into the cytosol and the status of nonglucosylated Rac1 are key determinants that are decisive for whether ECD or delayed apoptosis is triggered.
Collapse
Affiliation(s)
| | - Helma Tatge
- Institute of Toxicology, Hannover Medical School, Hannover, Germany
| | - Nicole Reich
- Institute of Toxicology, Hannover Medical School, Hannover, Germany
| | - Michel Tenspolde
- Institute of Toxicology, Hannover Medical School, Hannover, Germany
| | - Alexandra Olling
- Institute of Toxicology, Hannover Medical School, Hannover, Germany
| | - Sebastian Goy
- Institute of Toxicology, Hannover Medical School, Hannover, Germany
| | - Klemens Rottner
- Division of Molecular Cell Biology, Zoological Institute, Braunschweig, Germany.,Molecular Cell Biology Group, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | | | - Ralf Gerhard
- Institute of Toxicology, Hannover Medical School, Hannover, Germany
| |
Collapse
|
42
|
Zhang Y, Li S, Yang Z, Shi L, Yu H, Salerno-Goncalves R, Saint Fleur A, Feng H. Cysteine Protease-Mediated Autocleavage of Clostridium difficile Toxins Regulates Their Proinflammatory Activity. Cell Mol Gastroenterol Hepatol 2018; 5:611-625. [PMID: 29930981 PMCID: PMC6009800 DOI: 10.1016/j.jcmgh.2018.01.022] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Accepted: 01/30/2018] [Indexed: 02/04/2023]
Abstract
BACKGROUND & AIMS Clostridium difficile toxin A (TcdA) and C difficile toxin toxin B (TcdB), the major virulence factors of the bacterium, cause intestinal tissue damage and inflammation. Although the 2 toxins are homologous and share a similar domain structure, TcdA is generally more inflammatory whereas TcdB is more cytotoxic. The functional domain of the toxins that govern the proinflammatory activities of the 2 toxins is unknown. METHODS Here, we investigated toxin domain functions that regulate the proinflammatory activity of C difficile toxins. By using a mouse ilea loop model, human tissues, and immune cells, we examined the inflammatory responses to a series of chimeric toxins or toxin mutants deficient in specific domain functions. RESULTS Blocking autoprocessing of TcdB by mutagenesis or chemical inhibition, while reducing cytotoxicity of the toxin, significantly enhanced its proinflammatory activities in the animal model. Furthermore, a noncleavable mutant TcdB was significantly more potent than the wild-type toxin in the induction of proinflammatory cytokines in human colonic tissues and immune cells. CONCLUSIONS In this study, we identified a novel mechanism of regulating the biological activities of C difficile toxins in that cysteine protease-mediated autoprocessing regulates toxins' proinflammatory activities. Our findings provide new insight into the pathogenesis of C difficile infection and the design of therapeutics against the disease.
Collapse
Key Words
- 3D, 3-dimensional
- ACPD, CPD domain of TcdA
- Autoprocessing
- Bgt, GTD of TcdB
- Br, RBD of TcdB
- C difficile
- CDI, Clostridium difficile infection
- CPD, cysteine protease domain
- Cysteine Protease
- GT, glucosyltransferase
- GTD, glucosyltransferase domain
- IL, interleukin
- Inflammation
- InsP6, inositol hexakisphosphate
- MPO, myeloperoxidase
- PBMC, peripheral blood mononuclear cell
- PBS, phosphate-buffered saline
- PCR, polymerase chain reaction
- RBD, receptor binding domain
- TER, transepithelial electrical resistance
- TcdA, Clostridium difficile toxin A
- TcdB, Clostridium difficile toxin B
- Toxins
- aTcdA, GTD deficient TcdA
Collapse
Affiliation(s)
- Yongrong Zhang
- Department of Microbial Pathogenesis, School of Dentistry, University of Maryland, Baltimore, Maryland
| | - Shan Li
- Department of Microbial Pathogenesis, School of Dentistry, University of Maryland, Baltimore, Maryland
| | - Zhiyong Yang
- Department of Microbial Pathogenesis, School of Dentistry, University of Maryland, Baltimore, Maryland
| | - Lianfa Shi
- Department of Microbial Pathogenesis, School of Dentistry, University of Maryland, Baltimore, Maryland
| | - Hua Yu
- Department of Microbial Pathogenesis, School of Dentistry, University of Maryland, Baltimore, Maryland
| | - Rosangela Salerno-Goncalves
- Department of Pediatrics and Center for Vaccine Development, School of Medicine, University of Maryland, Baltimore, Maryland
| | - Ashley Saint Fleur
- Department of Microbial Pathogenesis, School of Dentistry, University of Maryland, Baltimore, Maryland
| | - Hanping Feng
- Department of Microbial Pathogenesis, School of Dentistry, University of Maryland, Baltimore, Maryland,Correspondence Address correspondence to: Hanping Feng, PhD, 650 W Baltimore Street, Room 7211, Baltimore, Maryland 21201. fax: (410) 706-6511.
| |
Collapse
|
43
|
Cellular Uptake and Mode-of-Action of Clostridium difficile Toxins. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1050:77-96. [DOI: 10.1007/978-3-319-72799-8_6] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
44
|
Chandrasekaran R, Lacy DB. The role of toxins in Clostridium difficile infection. FEMS Microbiol Rev 2017; 41:723-750. [PMID: 29048477 PMCID: PMC5812492 DOI: 10.1093/femsre/fux048] [Citation(s) in RCA: 237] [Impact Index Per Article: 29.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Accepted: 10/10/2017] [Indexed: 02/06/2023] Open
Abstract
Clostridium difficile is a bacterial pathogen that is the leading cause of nosocomial antibiotic-associated diarrhea and pseudomembranous colitis worldwide. The incidence, severity, mortality and healthcare costs associated with C. difficile infection (CDI) are rising, making C. difficile a major threat to public health. Traditional treatments for CDI involve use of antibiotics such as metronidazole and vancomycin, but disease recurrence occurs in about 30% of patients, highlighting the need for new therapies. The pathogenesis of C. difficile is primarily mediated by the actions of two large clostridial glucosylating toxins, toxin A (TcdA) and toxin B (TcdB). Some strains produce a third toxin, the binary toxin C. difficile transferase, which can also contribute to C. difficile virulence and disease. These toxins act on the colonic epithelium and immune cells and induce a complex cascade of cellular events that result in fluid secretion, inflammation and tissue damage, which are the hallmark features of the disease. In this review, we summarize our current understanding of the structure and mechanism of action of the C. difficile toxins and their role in disease.
Collapse
Affiliation(s)
- Ramyavardhanee Chandrasekaran
- Department of Pathology, Microbiology and Immunology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - D. Borden Lacy
- Department of Pathology, Microbiology and Immunology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
- The Veterans Affairs Tennessee Valley Healthcare System, Nashville, TN 37232, USA
| |
Collapse
|
45
|
Gribenko A, Severina E, Sidhu MK, Jansen KU, Green BA, Matsuka YV. Development of a subunit vaccine for prevention of Clostridium difficile associated diseases: Biophysical characterization of toxoids A and B. Biochem Biophys Rep 2017; 9:193-202. [PMID: 28956005 PMCID: PMC5614615 DOI: 10.1016/j.bbrep.2016.12.015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2016] [Revised: 12/07/2016] [Accepted: 12/20/2016] [Indexed: 11/20/2022] Open
Abstract
Inactivation of bacterial toxins for use in human vaccines traditionally is achieved by treatment with formaldehyde. In contrast, the bivalent experimental vaccine for the prevention of C. difficile infections (CDI) that is currently being evaluated in clinical trials was produced using a different strategy. C. difficile toxins A and B were inactivated using site-directed mutagenesis and treatment with 1-ethyl-3-[3-dimethylaminopropyl]carbodiimide hydrochloride/N-hydroxysulfosuccinimide (EDC/NHS). In the present work we investigate the effect of genetic and chemical modifications on the structure of inactivated toxins (toxoids) A and B. The far-UV circular dichroism (CD) spectra of wild type toxins, mutated toxins, and EDC/NHS-inactivated toxoids reveal that the secondary structure of all proteins is very similar. The near-UV CD spectra show that aromatic residues of all proteins are in a unique asymmetric environment, indicative of well-defined tertiary structure. These results along with the fluorescence emission maxima of 335 nm observed for all proteins suggest that the tertiary structure of toxoids A and B is preserved as well. Analytical ultracentrifugation data demonstrate that all proteins are predominantly monomeric with small fractions of higher molecular weight oligomeric species present in toxoids A and B. Differential scanning calorimetry data reveal that genetic mutations induce thermal destabilization of protein structures. Subsequent treatment with EDC/NHS results either in a minimal (1 °C) increase of apparent thermostability (toxoid B) or no change at all (toxoid A). Therefore, our two-step inactivation strategy is an effective approach for the preparation of non-toxic proteins maintaining native-like structure and conformation.
Collapse
Key Words
- ANS, 1-anilinonaphtalene-8-sulfonic acid
- Biophysical characterization
- C. difficile
- CD, circular dichroism spectroscopy
- DSC, differential scanning calorimetry
- EDC, 1-ethyl-3-[3–dimethylaminopropyl]carbodiimide hydrochloride
- NHS, N-hydroxysulfosuccinimide
- PBS, Phosphate buffered saline
- PM TcdB, D286A/D288A/C698A/E970K/E976K toxin B penta mutant
- Subunit vaccine
- TM TcdA, D285A/D287A/C700A toxin A triple mutant
- TM TcdB, D286A/D288A/C698A toxin B triple mutant
- TcdA, wild type toxin A
- TcdB, wild type toxin B
- Toxins/toxoids A and B
- TxdA, EDC/NHS-treated D285A/D287A/C700A toxoid A triple mutant
- TxdB, EDC/NHS-treated D286A/D288A/C698A toxoid B triple mutant
Collapse
|
46
|
Abstract
Clostridium difficile is the cause of antibiotics-associated diarrhea and pseudomembranous colitis. The pathogen produces three protein toxins: C. difficile toxins A (TcdA) and B (TcdB), and C. difficile transferase toxin (CDT). The single-chain toxins TcdA and TcdB are the main virulence factors. They bind to cell membrane receptors and are internalized. The N-terminal glucosyltransferase and autoprotease domains of the toxins translocate from low-pH endosomes into the cytosol. After activation by inositol hexakisphosphate (InsP6), the autoprotease cleaves and releases the glucosyltransferase domain into the cytosol, where GTP-binding proteins of the Rho/Ras family are mono-O-glucosylated and, thereby, inactivated. Inactivation of Rho proteins disturbs the organization of the cytoskeleton and affects multiple Rho-dependent cellular processes, including loss of epithelial barrier functions, induction of apoptosis, and inflammation. CDT, the third C. difficile toxin, is a binary actin-ADP-ribosylating toxin that causes depolymerization of actin, thereby inducing formation of the microtubule-based protrusions. Recent progress in understanding of the toxins' actions include insights into the toxin structures, their interaction with host cells, and functional consequences of their actions.
Collapse
Affiliation(s)
- Klaus Aktories
- Institute of Experimental and Clinical Pharmacology and Toxicology, University of Freiburg, 79104 Freiburg, Germany; , ,
| | - Carsten Schwan
- Institute of Experimental and Clinical Pharmacology and Toxicology, University of Freiburg, 79104 Freiburg, Germany; , ,
| | - Thomas Jank
- Institute of Experimental and Clinical Pharmacology and Toxicology, University of Freiburg, 79104 Freiburg, Germany; , ,
| |
Collapse
|
47
|
Larabee JL, Bland SJ, Hunt JJ, Ballard JD. Intrinsic Toxin-Derived Peptides Destabilize and Inactivate Clostridium difficile TcdB. mBio 2017; 8:e00503-17. [PMID: 28512094 PMCID: PMC5433098 DOI: 10.1128/mbio.00503-17] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Accepted: 04/24/2017] [Indexed: 01/05/2023] Open
Abstract
Clostridium difficile infection (CDI) is a major cause of hospital-associated, antibiotic-induced diarrhea, which is largely mediated by the production of two large multidomain clostridial toxins, TcdA and TcdB. Both toxins coordinate the action of specific domains to bind receptors, enter cells, and deliver a catalytic fragment into the cytosol. This results in GTPase inactivation, actin disassembly, and cytotoxicity. TcdB in particular has been shown to encode a region covering amino acids 1753 to 1851 that affects epitope exposure and cytotoxicity. Surprisingly, studies here show that several peptides derived from this region, which share the consensus sequence 1769NVFKGNTISDK1779, protect cells from the action of TcdB. One peptide, PepB2, forms multiple interactions with the carboxy-terminal region of TcdB, destabilizes TcdB structure, and disrupts cell binding. We further show that these effects require PepB2 to form a higher-order polymeric complex, a process that requires the central GN amino acid pair. These data suggest that TcdB1769-1779 interacts with repeat sequences in the proximal carboxy-terminal domain of TcdB (i.e., the CROP domain) to alter the conformation of TcdB. Furthermore, these studies provide insights into TcdB structure and functions that can be exploited to inactivate this critical virulence factor and ameliorate the course of CDI.IMPORTANCEClostridium difficile is a leading cause of hospital-associated illness that is often associated with antibiotic treatment. To cause disease, C. difficile secretes toxins, including TcdB, which is a multidomain intracellular bacterial toxin that undergoes conformational changes during cellular intoxication. This study describes the development of peptide-based inhibitors that target a region of TcdB thought to be critical for structural integrity of the toxin. The results show that peptides derived from a structurally important region of TcdB can be used to destabilize the toxin and prevent cellular intoxication. Importantly, this work provides a novel means of toxin inhibition that could in the future develop into a C. difficile treatment.
Collapse
Affiliation(s)
- Jason L Larabee
- Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| | - Sarah J Bland
- Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| | - Jonathan J Hunt
- Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| | - Jimmy D Ballard
- Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| |
Collapse
|
48
|
Chen S, Sun C, Gu H, Wang H, Li S, Ma Y, Wang J. Salubrinal protects against Clostridium difficile toxin B-induced CT26 cell death. Acta Biochim Biophys Sin (Shanghai) 2017; 49:228-237. [PMID: 28119311 DOI: 10.1093/abbs/gmw139] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2016] [Indexed: 12/18/2022] Open
Abstract
Clostridium difficile (C. difficile) is considered to be the major cause of the antibiotic-associated diarrhea and pseudomembranous colitis in animals and humans. The prevalence of C. difficile infections (CDI) has been increasing since 2000. Two exotoxins of C. difficile, Toxin A (TcdA) and Toxin B (TcdB), are the main virulence factors of CDI, which can induce glucosylation of Rho GTPases in host cytosol, leading to cell morphological changes, cell apoptosis, and cell death. The mechanism of TcdB-induced cell death has been investigated for decades, but it is still not completely understood. It has been reported that TcdB induces endoplasmic reticulum stress via PERK-eIF2α signaling pathway in CT26 cell line (BALB/C mouse colon tumor cells). In this study, we found that salubrinal, a selective inhibitor of eIF2α dephosphorylation, efficiently protects CT26 cell line against TcdB-induced cell death and tried to explore the mechanism underlying in this protective effect. Our results demonstrated that salubrinal protects CT26 cells from TcdB-mediated cytotoxic and cytopathic effect, inhibits apoptosis and death of the toxin-exposed cells via caspase-9-dependent pathway, eIF2α signaling pathway, and autophagy. These findings will be helpful for the development of CDI therapies.
Collapse
Affiliation(s)
- Shuyi Chen
- School of Bioscience and Bioengineering, South China University of Technology, Guangzhou 510006, China
| | - Chunli Sun
- School of Bioscience and Bioengineering, South China University of Technology, Guangzhou 510006, China
| | - Huawei Gu
- School of Bioscience and Bioengineering, South China University of Technology, Guangzhou 510006, China
| | - Haiying Wang
- School of Bioscience and Bioengineering, South China University of Technology, Guangzhou 510006, China
| | - Shan Li
- School of Bioscience and Bioengineering, South China University of Technology, Guangzhou 510006, China
| | - Yi Ma
- School of Bioscience and Bioengineering, South China University of Technology, Guangzhou 510006, China
| | - Jufang Wang
- School of Bioscience and Bioengineering, South China University of Technology, Guangzhou 510006, China
| |
Collapse
|
49
|
Secore S, Wang S, Doughtry J, Xie J, Miezeiewski M, Rustandi RR, Horton M, Xoconostle R, Wang B, Lancaster C, Kristopeit A, Wang SC, Christanti S, Vitelli S, Gentile MP, Goerke A, Skinner J, Strable E, Thiriot DS, Bodmer JL, Heinrichs JH. Development of a Novel Vaccine Containing Binary Toxin for the Prevention of Clostridium difficile Disease with Enhanced Efficacy against NAP1 Strains. PLoS One 2017; 12:e0170640. [PMID: 28125650 PMCID: PMC5268477 DOI: 10.1371/journal.pone.0170640] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2016] [Accepted: 01/06/2017] [Indexed: 12/18/2022] Open
Abstract
Clostridium difficile infections (CDI) are a leading cause of nosocomial diarrhea in the developed world. The main virulence factors of the bacterium are the large clostridial toxins (LCTs), TcdA and TcdB, which are largely responsible for the symptoms of the disease. Recent outbreaks of CDI have been associated with the emergence of hypervirulent strains, such as NAP1/BI/027, many strains of which also produce a third toxin, binary toxin (CDTa and CDTb). These hypervirulent strains have been associated with increased morbidity and higher mortality. Here we present pre-clinical data describing a novel tetravalent vaccine composed of attenuated forms of TcdA, TcdB and binary toxin components CDTa and CDTb. We demonstrate, using the Syrian golden hamster model of CDI, that the inclusion of binary toxin components CDTa and CDTb significantly improves the efficacy of the vaccine against challenge with NAP1 strains in comparison to vaccines containing only TcdA and TcdB antigens, while providing comparable efficacy against challenge with the prototypic, non-epidemic strain VPI10463. This combination vaccine elicits high neutralizing antibody titers against TcdA, TcdB and binary toxin in both hamsters and rhesus macaques. Finally we present data that binary toxin alone can act as a virulence factor in animal models. Taken together, these data strongly support the inclusion of binary toxin in a vaccine against CDI to provide enhanced protection from epidemic strains of C. difficile.
Collapse
Affiliation(s)
- Susan Secore
- Vaccine Basic Research, Merck Research Laboratories, Merck and Company, Incorporated, West Point, Pennsylvania, United States of America
| | - Su Wang
- Vaccine Basic Research, Merck Research Laboratories, Merck and Company, Incorporated, West Point, Pennsylvania, United States of America
| | - Julie Doughtry
- Vaccine Basic Research, Merck Research Laboratories, Merck and Company, Incorporated, West Point, Pennsylvania, United States of America
| | - Jinfu Xie
- Vaccine Basic Research, Merck Research Laboratories, Merck and Company, Incorporated, West Point, Pennsylvania, United States of America
| | - Matt Miezeiewski
- Eurofins Laboratories, Lancaster, Pennsylvania, United States of America
| | - Richard R. Rustandi
- Vaccine Analytical Development, Merck Research Laboratories, Merck and Company, Incorporated, West Point, Pennsylvania, United States of America
| | - Melanie Horton
- Vaccine Basic Research, Merck Research Laboratories, Merck and Company, Incorporated, West Point, Pennsylvania, United States of America
| | - Rachel Xoconostle
- Vaccine Basic Research, Merck Research Laboratories, Merck and Company, Incorporated, West Point, Pennsylvania, United States of America
| | - Bei Wang
- Vaccine Drug Product Development, Merck Research Laboratories, Merck and Company, Incorporated, West Point, Pennsylvania, United States of America
| | - Catherine Lancaster
- Vaccine Analytical Development, Merck Research Laboratories, Merck and Company, Incorporated, West Point, Pennsylvania, United States of America
| | - Adam Kristopeit
- Vaccine Process Development, Merck Research Laboratories, Merck and Company, Incorporated, West Point, Pennsylvania, United States of America
| | - Sheng-Ching Wang
- Vaccine Process Development, Merck Research Laboratories, Merck and Company, Incorporated, West Point, Pennsylvania, United States of America
| | - Sianny Christanti
- Vaccine Process Development, Merck Research Laboratories, Merck and Company, Incorporated, West Point, Pennsylvania, United States of America
| | - Salvatore Vitelli
- Vaccine Analytical Development, Merck Research Laboratories, Merck and Company, Incorporated, West Point, Pennsylvania, United States of America
| | - Marie-Pierre Gentile
- Vaccine Process Development, Merck Research Laboratories, Merck and Company, Incorporated, West Point, Pennsylvania, United States of America
| | - Aaron Goerke
- Vaccine Process Development, Merck Research Laboratories, Merck and Company, Incorporated, West Point, Pennsylvania, United States of America
| | - Julie Skinner
- Vaccine Basic Research, Merck Research Laboratories, Merck and Company, Incorporated, West Point, Pennsylvania, United States of America
| | - Erica Strable
- Vaccine Drug Product Development, Merck Research Laboratories, Merck and Company, Incorporated, West Point, Pennsylvania, United States of America
| | - David S. Thiriot
- Vaccine Drug Product Development, Merck Research Laboratories, Merck and Company, Incorporated, West Point, Pennsylvania, United States of America
| | - Jean-Luc Bodmer
- Vaccine Basic Research, Merck Research Laboratories, Merck and Company, Incorporated, West Point, Pennsylvania, United States of America
| | - Jon H. Heinrichs
- Vaccine Basic Research, Merck Research Laboratories, Merck and Company, Incorporated, West Point, Pennsylvania, United States of America
| |
Collapse
|
50
|
Lambert GS, Baldwin MR. Evidence for dual receptor-binding sites in Clostridium difficile toxin A. FEBS Lett 2016; 590:4550-4563. [PMID: 27861794 DOI: 10.1002/1873-3468.12487] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2016] [Revised: 10/10/2016] [Accepted: 10/24/2016] [Indexed: 12/24/2022]
Abstract
TcdA (308 kDa) and TcdB (270 kDa) disrupt the integrity of the intestinal epithelial barrier and provide an environment favorable for Clostridium difficile colonization. Recent evidence suggests that entry of TcdA into cells is mediated by at least two domains. Here, we report the characterization of a second receptor-binding domain (RBD2) for TcdA. While both the isolated combined repetitive oligopeptides (CROPs) and RBD2 fragments are rapidly internalized into cells under physiologic conditions, only the CROPs domain appreciably accumulates at the cell surface. Once internalized, CROPs and RBD2 are trafficked to late endosomal compartments. An internal deletion of RBD2 from TcdA holotoxin ablated toxicity in HT29 cells. These data are consistent with the recently proposed dual receptor model of cellular entry.
Collapse
Affiliation(s)
- Gregory S Lambert
- Department of Molecular Microbiology and Immunology, University of Missouri School of Medicine, Columbia, MO, USA
| | - Michael R Baldwin
- Department of Molecular Microbiology and Immunology, University of Missouri School of Medicine, Columbia, MO, USA
| |
Collapse
|