1
|
Liang D, Liu C, Zhang X. Association between dietary selenium intake and the risk of cardiovascular disease in US adults: a population-based study. Sci Rep 2025; 15:13427. [PMID: 40251378 PMCID: PMC12008176 DOI: 10.1038/s41598-025-97867-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Accepted: 04/08/2025] [Indexed: 04/20/2025] Open
Abstract
The relationship of dietary selenium intake and CVD remains unestablished. Our study aimed to investigate the relationship between dietary selenium intake and the risk of CVD in American adults. This cross-sectional study used data of 39,372 participants from the NHANES 2003-2018. We employed multivariable logistic regression and restricted cubic splines (RCS) to explore the association between dietary selenium intake and CVD risk. Subgroup analysis and interaction tests were also conducted to assess the influence of various covariates. For 39,372 individuals recruited in this study. The overall prevalence of CVD was 8.57%, and this prevalence decreased with increasing dietary selenium intake across tertiles. In the fully adjusted models, Tertile 2 of dietary selenium intake showed a 16% reduced risk of CVD. Subgroup analysis revealed that the association between dietary selenium intake and CVD risk remained consistent across different status. However, notably, the negative association between dietary selenium intake and the risk of ASCVD was significantly influenced by hypertension status. Dietary selenium intake could reduce the risk of CVD. A nonlinear association of dietary selenium intake with CVD risk was also revealed. These findings have important implications for establishing recommended dietary selenium intake levels to benefit public cardiovascular health.
Collapse
Affiliation(s)
- Dan Liang
- Department of Endocrine, People's Hospital of Chongqing Liangjiang New Area, Chongqing, China
| | - Chang Liu
- School of Medicine, Nankai University, Tianjin, China.
| | - Xingyu Zhang
- Department of Endocrine, People's Hospital of Chongqing Liangjiang New Area, Chongqing, China.
| |
Collapse
|
2
|
Liu T, Bai H, Wang H, Li Y, Wang Z. Anti-inflammatory effects and mechanism of Plantago asiatica L. and Lonicera japonica Thunb. extracts based on canine and feline kidney cell models. JOURNAL OF ETHNOPHARMACOLOGY 2025; 338:119069. [PMID: 39528117 DOI: 10.1016/j.jep.2024.119069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 10/24/2024] [Accepted: 11/07/2024] [Indexed: 11/16/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Stone symptoms are one of the most common health problems in pets. Inflammation in the kidneys causes the pet's urine to form a hard substance that blocks the urinary tract. Plantago asiatica L. and Lonicera japonica Thunb., as traditional Chinese diuretics, have remarkable effects on anti-inflammatory and analgesia. However, their mechanism of action remains unclear. PURPOSE The alleviating effect of Plantago asiatica and Lonicera japonica extracts upon lipopolysaccharide (LPS)-induced inflammation in canine and feline kidney cells was investigated in this work. MATERIALS AND METHODS Inflammatory factor concentrations and oxidative stress indicators were used to evaluate the inflammatory response. The mechanism by which two extracts reduced inflammation was explored using quantitative real-time polymerase chain reaction (RT-qPCR) and high performance liquid chromatography tandem mass spectrometry (HPLC-MS/MS) metabolome assay. RESULTS The results demonstrated that Plantago asiatica or Lonicera japonica extract at safe concentration (25-200 μg/mL for canine kidney cell and 1-20 μg/mL for feline kidney cell, respectively) could significantly reduce the release of nitric oxide (p < 0.05) and oxidative damage (p < 0.05) after LPS stimulation, inhibit the production of inflammatory factors (p < 0.05), and improve cell migration ability (p < 0.05). The RT-qPCR results confirmed that Plantago asiatica and Lonicera japonica extracts significantly reduced the mRNA expressions of TLR4, MyD88, NF-kB, Caspase9 and Bax (p < 0.05), and enhanced the mRNA expression of Bcl-2 (p < 0.05). Non-targeted metabolomics results indicated that the cells treated with two extracts raised the contents of allopurinol, further inhibited uric acid and gout and lowered the contents of adenosine and adenine. Moreover, it was revealed that the Plantago asiatica and Lonicera japonica participated in purine metabolism, glycerophospholipid metabolism, protein digestion and absorption, nucleotide metabolism pathways to alleviate kidney cell inflammation. CONCLUSIONS The interaction mechanism was revealed to reduce the content of inflammatory factors by inhibiting TLR4-MyD88-NF-kB signaling pathway, and participate in purine metabolism to reduce the inflammation of kidney cells. These findings could provide significant insight into alleviating nephritis in canine and feline, and strategies for preventing urinary tract and kidney stones using Plantago asiatica and Lonicera japonica extracts.
Collapse
Affiliation(s)
- Tong Liu
- Nourse Science Centre for Pet Nutrition, Wuhu, 241200, China
| | - Huasong Bai
- Nourse Science Centre for Pet Nutrition, Wuhu, 241200, China
| | - Hengyan Wang
- Nourse Science Centre for Pet Nutrition, Wuhu, 241200, China
| | - Yunliang Li
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, 212013, China.
| | - Zhanzhong Wang
- Nourse Science Centre for Pet Nutrition, Wuhu, 241200, China.
| |
Collapse
|
3
|
Lim GY, Grosicka-Maciąg E, Szumiło M, Graska D, Rahden-Staroń I, Kurpios-Piec D. The Modulatory Effect of Selol (Se IV) on Pro-Inflammatory Pathways in RAW 264.7 Macrophages. Int J Mol Sci 2025; 26:559. [PMID: 39859275 PMCID: PMC11764829 DOI: 10.3390/ijms26020559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Revised: 12/06/2024] [Accepted: 01/07/2025] [Indexed: 01/27/2025] Open
Abstract
Selol is a semi-synthetic mixture of selenized triglycerides. The results of biological studies revealed that Selol exhibits several anticancer effects. However, studies on its potential anti-inflammatory activity are scarce, and underlying signaling pathways are unknown. The aim of our study was to investigate the ability of Selol to exert anti-inflammatory effects in a RAW 264.7 cell line model of LPS (lipopolysaccharide)-induced inflammation. Cells were treated either with Selol 5% (4 or 8 µg Se/mL) or LPS (1 µg/mL) alone or with Selol given concomitantly with LPS. The parameters studied were reactive oxygen species (ROS) production, glutathione and thioredoxin (Txn) levels, and nuclear factor kappa B (NF-κB) activation, as well as nitric oxide/prostaglandin E2 (NO/PGE2) production. The presented research also included the effect of Selol and/or LPS on glucose (Glc) catabolism; for this purpose, the levels of key enzymes of the glycolysis pathway were determined. The results showed that Selol exhibited pro-oxidative properties. It induced ROS generation with a significant increase in the level of Txn; however, it did not affect the reduced glutathione/oxidized glutathione (GSH/GSSG) ratio. Selol moderately activated NF-κB but failed to affect NO/PGE2 production. The effect of Selol on glucose catabolism was not significant. However, the simultaneous administration of Selol with LPS exerted a statistically significant anti-inflammatory effect via a decrease in the production of pro-inflammatory mediators and NF-κB activation. Our study also showed that as a result of LPS action in cells, the anaerobic glycolysis activity was increased, and incubation with Selol caused a partial reprogramming of Glc metabolism towards aerobic metabolism. This may indicate different pharmacological and molecular effects of Selol action in physiological and pathological conditions.
Collapse
Affiliation(s)
- Gwan Yong Lim
- Chair and Department of Biochemistry, Medical University of Warsaw, Banacha 1, 02-097 Warszawa, Poland; (G.Y.L.); (M.S.); (D.G.); (I.R.-S.); (D.K.-P.)
| | - Emilia Grosicka-Maciąg
- Department of Biochemistry and Laboratory Diagnostics, Faculty of Medicine, University of Cardinal Stefan Wyszyński, Wóycickiego 1/3, 01-938 Warszawa, Poland
| | - Maria Szumiło
- Chair and Department of Biochemistry, Medical University of Warsaw, Banacha 1, 02-097 Warszawa, Poland; (G.Y.L.); (M.S.); (D.G.); (I.R.-S.); (D.K.-P.)
| | - Daniel Graska
- Chair and Department of Biochemistry, Medical University of Warsaw, Banacha 1, 02-097 Warszawa, Poland; (G.Y.L.); (M.S.); (D.G.); (I.R.-S.); (D.K.-P.)
| | - Iwonna Rahden-Staroń
- Chair and Department of Biochemistry, Medical University of Warsaw, Banacha 1, 02-097 Warszawa, Poland; (G.Y.L.); (M.S.); (D.G.); (I.R.-S.); (D.K.-P.)
| | - Dagmara Kurpios-Piec
- Chair and Department of Biochemistry, Medical University of Warsaw, Banacha 1, 02-097 Warszawa, Poland; (G.Y.L.); (M.S.); (D.G.); (I.R.-S.); (D.K.-P.)
| |
Collapse
|
4
|
Nooriani N, Saeedirad Z, Shekari S, Nami S, Mahmoudi Z, Abbasi Mobarakeh K, Adabi SB, Khodarahmi S, Bahmani P, Doaei S, Ajami M, Gholamalizadeh M. The interactions of spontaneous abortion, dietary intake of selenium, and fat mass and obesity associated (FTO) genotype: a case-control study in Iran. Front Nutr 2024; 11:1428648. [PMID: 39758312 PMCID: PMC11697289 DOI: 10.3389/fnut.2024.1428648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Accepted: 11/26/2024] [Indexed: 01/07/2025] Open
Abstract
Background Spontaneous abortion (SA) is reported to be associated with Fat Mass And Obesity-Associated FTO genotype and dietary intake of selenium. This research assessed the potential interactions between the risk of SA, dietary selenium intake, and the FTO rs9939609 polymorphism. Methods This case-control study encompassed 192 women who experienced SA and 347 control participants. Dietary selenium intake was evaluated using a comprehensive food frequency questionnaire (FFQ) and Nutritionist IV software. The FTO gene was genotyped for rs9939609 polymorphism. Result The findings showed that there were no significant variations in the case and control groups' dietary selenium intake. A lower selenium intake was inversely associated with SA only among individuals with the TT genotype of the FTO gene (β = -0.19, p = 0.04). The results remained unchanged when age, BMI, physical activity, smoking, alcohol consumption, and calorie intake were taken into account. Conclusion A link may exist between selenium consumption and SA, especially in individuals with the TT genotype in the FTO gene. These findings underline the influence of genetic factors on how dietary intake impacts SA. Further investigation is required to validate these conclusions.
Collapse
Affiliation(s)
- Narjes Nooriani
- Department of Community Nutrition, School of Nutrition and Food Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Zahra Saeedirad
- Department of Clinical Nutrition and Dietetics, Faculty of Nutrition and Food Technology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Soheila Shekari
- Department of Nutrition, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Sheyda Nami
- Department of Clinical Biochemistry, Iran University of Medical Sciences, Tehran, Iran
| | - Zahra Mahmoudi
- Department of Nutrition, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Khadijeh Abbasi Mobarakeh
- Department of Community Nutrition, Nutrition and Food Security Research Center, School of Nutrition and Food Science, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Somayyeh Bararnia Adabi
- Student Research Committee, Department of Nutrition, Faculty of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| | - Shiva Khodarahmi
- School of Nursing and Midwifery, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- School of Nursing and Midwifery, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Parsa Bahmani
- Department of Community Nutrition, Faculty of Nutrition Sciences and Food Technology, National Nutrition and Food Technology Research Institute, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Saeid Doaei
- Department of Community Nutrition, Faculty of Nutrition Sciences and Food Technology, National Nutrition and Food Technology Research Institute, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Reproductive Health Research Center, Department of Obstetrics and Gynecology, School of Medicine, Al-Zahra Hospital, Guilan University of Medical Sciences, Rasht, Iran
| | - Marjan Ajami
- Department of Food and Nutrition Policy and Planning, School of Nutrition Sciences and Food Technology, National Nutrition and Food Technology Research Institute, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Maryam Gholamalizadeh
- Cancer Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
5
|
Saadh MJ, Khaleel AQ, Merza MS, Hassan H, Tomar BS, Singh M, Kumar AV, Hasaanzadeh S. The effects of selenium supplementation on lipid profile in adults: A systematic review and meta-analysis of randomized controlled trials. Prostaglandins Other Lipid Mediat 2024; 175:106901. [PMID: 39260819 DOI: 10.1016/j.prostaglandins.2024.106901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Revised: 08/31/2024] [Accepted: 09/06/2024] [Indexed: 09/13/2024]
Abstract
INTRODUCTION Dyslipidemia with a considerable progression rate is a primary risk factor for CVDs if left untreated. Dietary interventions have explored the health influences of selenium on lipid profiles in adults, yet the findings remain contentious. This study seeks to determine if selenium supplementation can positively modify the lipid profile (total cholesterol (TC), triglyceride (TG), low-density lipoprotein cholesterol (LDL-C), very-low-density lipoprotein cholesterol (VLDL), and high-density lipoprotein cholesterol (HDL-C) in adults. METHODS Using predefined keywords, we searched online databases, including Scopus, PubMed, Web of Science Core Collection, and Google Scholar, for relevant studies published from inception through July 2024. A random-effects meta-analysis was then employed to pool the weighted mean differences (WMD) and 95 % CI for outcomes assessed by a minimum of three studies. RESULTS Initially 1205 studies were obtained out of which 25 RCTs were decided to be included for further analyses. Selenium supplementation reduced VLDL (WMD: -1.53; 95 % CI: -2.86, -0.20), but did not change TG (WMD: 1.12; 95 % CI: -4.51, 6.74), TC (WMD: -2.25; 95 % CI: -6.80, 2.29), LDL-C (WMD: 1.60; 95 % CI: -4.26, 7.46), and HDL-C levels (WMD: 0.98; 95 % CI: - 0.02, 1.98). CONCLUSION Our study showed significantly reduced VLDL but limited effects were observed in other lipid indexes. More extensive RCTs are required globally to achieve a holistic comprehension of the connection between selenium and lipid profile.
Collapse
Affiliation(s)
- Mohamed J Saadh
- Faculty of Pharmacy, Middle East University, Amman 11831, Jordan
| | - Abdulrahman Qais Khaleel
- Department of Medical Instruments Engineering, College of Engineering, University of Al Maarif, AlAnbar, 31001, Iraq.
| | - Muna S Merza
- Prosthetic Dental Techniques Department, Al-Mustaqbal University College, Babylon 51001, Iraq
| | - Halijah Hassan
- Management and Science University, Shah Alam, Selangor, Malaysia
| | - Balvir S Tomar
- Institute of Pediatric Gastroenterology and Hepatology, National Institute of Medical Sciences, NIMS University Rajasthan, Jaipur, India
| | - Manmeet Singh
- Department of Applied Sciences, Chandigarh Engineering College, Chandigarh Group of Colleges-Jhanjeri, Mohali, Punjab 140307, India
| | - Ambati Vijay Kumar
- Department of Allied Healthcare and Sciences, Vivekananda Global University, Jaipur, Rajasthan-303012, India
| | - Shirin Hasaanzadeh
- Department of Nutrition, School of Public Health, Shahid Sadoughi University of Medical Sciences, Yazd, Iran.
| |
Collapse
|
6
|
Sousa JA, McKay DM, Raman M. Selenium, Immunity, and Inflammatory Bowel Disease. Nutrients 2024; 16:3620. [PMID: 39519453 PMCID: PMC11547411 DOI: 10.3390/nu16213620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Revised: 10/20/2024] [Accepted: 10/22/2024] [Indexed: 11/16/2024] Open
Abstract
Dietary intervention is a subject of growing interest in the management of inflammatory bowel disease (IBD), as new incident cases across the globe are rapidly rising, suggesting environmental factors as contributing elements. Dietary components and micronutrients have been associated with IBD pathogenesis or reductions in disease severity. Selenium, a diet-derived essential micronutrient that is important for proper immune system function, has received limited attention in the context of IBD. Selenium deficiency is a common finding in patients with IBD, but few clinical trials have been published to address the consequences of this deficiency. Here, we review the physiological and immunological roles of selenium and its putative role in IBD, and draw attention to knowledge gaps and unresolved issues, with the goal of stimulating more research on selenium in IBD.
Collapse
Affiliation(s)
- James A. Sousa
- Gastrointestinal Research Group, Inflammation Research Network, Department of Physiology and Pharmacology, Calvin, Phoebe and Joan Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 1N4, Canada; (J.A.S.); (D.M.M.)
| | - Derek M. McKay
- Gastrointestinal Research Group, Inflammation Research Network, Department of Physiology and Pharmacology, Calvin, Phoebe and Joan Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 1N4, Canada; (J.A.S.); (D.M.M.)
| | - Maitreyi Raman
- Department of Medicine, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 1N4, Canada
- Department of Community Health Science, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 1N4, Canada
| |
Collapse
|
7
|
Yu H, Fan J, Zhang Y, Zhao Z, Lin Z, Jiang P. Syndecan-3 inhibits LPS-induced Inflammation of Bovine Mammary Epithelial Cells through the NF-κB Signal Transduction Pathway. J Dairy Sci 2024:S0022-0302(24)01164-0. [PMID: 39343222 DOI: 10.3168/jds.2024-25212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 08/20/2024] [Indexed: 10/01/2024]
Abstract
In mastitis, excessive inflammation caused by lipopolysaccharide (LPS) is an important factor leading to mammary tissue damage. Therefore, exploring the regulatory factors that can inhibit the widespread inflammation caused by LPS is crucial. Syndecan-3 (SDC3) has been found to play an active role in anti-inflammatory infection by inhibiting leukocyte adhesion, reducing the accumulation of inflammatory products, such as reactive oxygen species, and competing with chemokines; however, the role and regulatory mechanism of SDC3 in mastitis remains unknown. Therefore, this study aimed to reveal the effect of SDC3 on LPS-induced inflammation in bovine mammary epithelial cells (BMECs) and explore its possible molecular mechanisms. First, we constructed a BMEC inflammatory model. It was found that cells stimulated with 10 μg/mL LPS for 24 h strongly induced the expression of inflammatory cytokines and had no toxic effect on cells, which was the best condition to simulate the BMECs inflammatory response in vitro. Subsequently, we used overexpression and RNAi interference, Real Time Quantitative PCR (RT-qPCR), and Western blot assays to explore the effects of SDC3 on LPS-induced inflammatory factors and their mechanisms. The results showed that overexpression of SDC3 could inhibit the transcriptional levels of inflammatory cytokines IL-6, IL-1β, and TNFα induced by LPS and inhibit the activation of the NF-κB inflammatory pathway by inhibiting the expression of NF-κB p50 and p-IκBα and promoting the expression of IκBα. Our results suggest that SDC3 inhibits the LPS-induced inflammatory response of BMECs through the NF-κB pathway, in which NF-κB p50 may be an important target of SDC3. These findings lay the foundation for elucidating the molecular regulatory mechanisms of dairy cow mastitis.
Collapse
Affiliation(s)
- Haibin Yu
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, China; The Key Laboratory of Animal Resources and Breed Innovation in Western Guangdong Province, Zhanjiang 524088, China
| | - Jing Fan
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, China; The Key Laboratory of Animal Resources and Breed Innovation in Western Guangdong Province, Zhanjiang 524088, China
| | - Yongliang Zhang
- College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Zhihui Zhao
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, China; The Key Laboratory of Animal Resources and Breed Innovation in Western Guangdong Province, Zhanjiang 524088, China
| | - Ziwei Lin
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, China; The Key Laboratory of Animal Resources and Breed Innovation in Western Guangdong Province, Zhanjiang 524088, China.
| | - Ping Jiang
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, China; The Key Laboratory of Animal Resources and Breed Innovation in Western Guangdong Province, Zhanjiang 524088, China.
| |
Collapse
|
8
|
Reda FM, Alagawany M, Salah AS, Mahmoud MA, Azzam MM, Di Cerbo A, El-Saadony MT, Elnesr SS. Biological Selenium Nanoparticles in Quail Nutrition: Biosynthesis and its Impact on Performance, Carcass, Blood Chemistry, and Cecal Microbiota. Biol Trace Elem Res 2024; 202:4191-4202. [PMID: 38110606 DOI: 10.1007/s12011-023-03996-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 12/03/2023] [Indexed: 12/20/2023]
Abstract
This study was conducted to examine the influence of dietary supplementation of biological nano-selenium (BNSe) on productive performance, hematology, blood chemistry, antioxidant status, immune response, cecal microbiota, and carcass traits of quails. In total, 180 Japanese quails (1 week old) were randomly allocated into four groups, with five replicates of nine chicks each in a complete randomized design. The 1st group was fed a control diet without BNSe, and the 2nd, 3rd, and 4th treatments were fed diets supplemented with BNSe (0.2, 0.4, and 0.6 g /kg feed, respectively). The best level of BNSe in body weight (BW) and body weight gain (BWG) parameters was 0.4 g/kg diet. Feed conversion was improved (P < 0.01) by adding BNSe in quail feed compared with the basal diet without any supplementation. The inclusion of different BNSe levels (0.2, 0.4, 0.6 g/kg) exhibited an insignificant influence on all carcass traits. The dietary addition of BNSe (0.4 and 0.6 g/kg) significantly augmented aspartate aminotransferase (AST) activity (P = 0.0127), total protein and globulin (P < 0.05), white blood cells (WBCs) (P = 0.031), and red blood cells (RBCs) (P = 0.0414) compared with the control. The dietary BNSe supplementation significantly improved lipid parameters, antioxidant and immunological indices, and increased selenium level in the blood (P < 0.05). BNSe significantly increased (P = 0.0003) lactic acid bacteria population number and lowered the total number of yeasts, molds, total bacterial count, E. coli, Coliform, Salmonella, and Enterobacter (P < 0.0001). In conclusion, adding BNSe up to 0.4 and 0.6 g/kg can boost the growth, lactic acid bacteria population number, hematology, immunological indices, antioxidant capacity, and lipid profile, as well as decline intestinal pathogens in growing quail.
Collapse
Affiliation(s)
- Fayiz M Reda
- Poultry Department, Faculty of Agriculture, Zagazig University, Zagazig, 44511, Egypt
| | - Mahmoud Alagawany
- Poultry Department, Faculty of Agriculture, Zagazig University, Zagazig, 44511, Egypt.
| | - Ayman S Salah
- Department of Animal Nutrition and Clinical Nutrition, Faculty of Veterinary Medicine, New Valley University, El-Kharga, Egypt
| | - Mohamed A Mahmoud
- Department of Physiology, Faculty of Veterinary Medicine, New Valley University, El-Kharga, New Valley, Egypt
| | - Mahmoud M Azzam
- Department of Animal Production, College of Food and Agricultural Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Alessandro Di Cerbo
- School of Biosciences and Veterinary Medicine, University of Camerino, 62024, Milan, Matelica, Italy
| | - Mohamed T El-Saadony
- Department of Agricultural Microbiology, Faculty of Agriculture, Zagazig University, Zagazig, 44511, Egypt
| | - Shaaban S Elnesr
- Poultry Production Department, Faculty of Agriculture, Fayoum University, Fayoum, 63514, Egypt
| |
Collapse
|
9
|
Chen T, Jin N, Zhang Q, Li Z, Wang Q, Fang X. Auraptene Mitigates Colitis Induced by Dextran Sulfate Sodium in Mice by Regulating Specific Intestinal Flora and Repairing the Intestinal Barrier. Inflammation 2024; 47:1127-1141. [PMID: 38236384 DOI: 10.1007/s10753-023-01965-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Revised: 12/11/2023] [Accepted: 12/29/2023] [Indexed: 01/19/2024]
Abstract
Auraptene (AUT) is widely known to possess both antioxidant and anti-inflammatory properties. This study attempted to evaluate the protective effects of AUT in dextran sodium sulfate (DSS)-induced colitis in mice and to determine the underlying molecular mechanisms. Our results suggest that AUT substantially minimizes the severity and worsening of DSS-induced colitis in mice, indicated by the lengthening of the colon, lower disease activity index, reduced oxidation levels, and attenuated inflammatory factors. Molecular studies revealed that AUT reduces the nuclear translocation of nuclear factor-κB (NF-κB), thereby inhibiting the expression of inflammatory factors. Additionally, AUT promotes the diversity of the intestinal flora in mice with colitis by increasing the number of beneficial bacteria such as Lactobacillaceae and lowering the number of harmful bacteria. In conclusion, AUT mitigates DSS-induced colitis by maintaining the integrity of the intestinal barrier and modulating the levels of the intestinal microbial species.
Collapse
Affiliation(s)
- Tong Chen
- Department of Gastrointestinal Colorectal Surgery, China-Japan Union Hospital of Jilin University, Changchun, 130033, China
| | - Naizhong Jin
- Department of Gastrointestinal Colorectal Surgery, China-Japan Union Hospital of Jilin University, Changchun, 130033, China
| | - Qi Zhang
- Department of Gastrointestinal Colorectal Surgery, China-Japan Union Hospital of Jilin University, Changchun, 130033, China
| | - Zhongming Li
- Department of Gastrointestinal Colorectal Surgery, China-Japan Union Hospital of Jilin University, Changchun, 130033, China
| | - Qiutao Wang
- Department of Gastrointestinal Colorectal Surgery, China-Japan Union Hospital of Jilin University, Changchun, 130033, China
| | - Xuedong Fang
- Department of Gastrointestinal Colorectal Surgery, China-Japan Union Hospital of Jilin University, Changchun, 130033, China.
| |
Collapse
|
10
|
Mathakala V, Ullakula T, Palempalli UMD. Seagrass as a potential nutraceutical to decrease pro-inflammatory markers. BMC Complement Med Ther 2024; 24:260. [PMID: 38987758 PMCID: PMC11234661 DOI: 10.1186/s12906-024-04532-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 06/04/2024] [Indexed: 07/12/2024] Open
Abstract
BACKGROUND The Pro-inflammatory mediators such as prostaglandin E2, nitric oxide and TNF-α are the key players in the stimulation of the inflammatory responses. Thus, the pro-inflammatory mediators are considered to be potential targets for screening nutraceutical with anti-inflammatory activity. METHODS In this context, we explored the anti-inflammatory potency of seagrass extract with western blot (Bio-Rad) analysis by using LPS induced RAW macrophages as in-vitro models, western blot analysis, In-silico methods using Mastero 13.0 software. RESULTS The anti-inflammatory activity of Seagrass was demonstrated through down regulation of Pro-inflammatory markers such as Cyclooxygenase-2, induced Nitric oxide synthase and prostaglandin E synthase-1. The results were validated by docking the phytochemical constituents of seagrass namely Isocoumarin, Hexadecanoic acid, and Cis-9 Octadecenoic acid, 1,2 Benzene dicarboxylic acid and beta-sitosterol with TNF-alpha, COX-2, iNOS and PGES-1. CONCLUSION The methanolic extract of seagrass Halophila beccarii is a potential nutraceutical agent for combating against inflammation with a significant anti-inflammatory activity.
Collapse
Affiliation(s)
- Vani Mathakala
- Department of Applied Microbiology & Biochemistry, Sri Padmavati Mahila Visvavidyalayam (Women's University, Tirupati, 517 502, A.P, India
| | - Tejaswini Ullakula
- Department of Applied Microbiology & Biochemistry, Sri Padmavati Mahila Visvavidyalayam (Women's University, Tirupati, 517 502, A.P, India
| | - Uma Maheswari Devi Palempalli
- Department of Applied Microbiology & Biochemistry, Sri Padmavati Mahila Visvavidyalayam (Women's University, Tirupati, 517 502, A.P, India.
| |
Collapse
|
11
|
Khazdouz M, Daryani NE, Cheraghpour M, Alborzi F, Hasani M, Ghavami SB, Shidfar F. The effect of selenium supplementation on disease activity and immune-inflammatory biomarkers in patients with mild-to-moderate ulcerative colitis: a randomized, double-blind, placebo-controlled clinical trial. Eur J Nutr 2023; 62:3125-3134. [PMID: 37525068 DOI: 10.1007/s00394-023-03214-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Accepted: 07/14/2023] [Indexed: 08/02/2023]
Abstract
PURPOSE Selenium (Se) supplementation may help reduce inflammation and disease activity in ulcerative colitis (UC) patients. We investigated the therapeutic effects of Se administration in cases with mild-to-moderate active UC. METHODS A multicenter, double-blind, randomized clinical trial (RCT) was conducted on 100 cases with active mild-to-moderate UC. The patients were randomly allocated to be given an oral selenomethionine capsule (200 mcg/day, n = 50) or a placebo capsule (n = 50) for 10 weeks. The primary outcome was defined as disease activity via the Simple Clinical Colitis Activity Index (SCCAI), and secondary outcomes were measured at the end of the study. RESULTS After 10 weeks, the SCCAI score's mean was reduced in the Se group (P < 0.001). At the end of the intervention, clinical improvement (decline of 3 ≥ score from baseline score) was observed in 19 patients (38%) of the Se group and 3 patients (6%) of the placebo group. The patients with clinical remission (defined as SCCAI ≤ 2) were assigned in the Se group (P = 0.014). The Se group's quality of life and Se serum levels were enhanced at the end of the study (P < 0/001). In the Se group, the mean concentration of interleukin-17 decreased (P < 0/001). However, the levels of interleukin-10 showed no considerable change between the two groups in the 10th week (P = 0.23). CONCLUSION Se supplementation as add-on therapy with medical management induced remission and improved the quality of life in patients with active mild-to-moderate UC. TRIAL REGISTRATION NUMBER AND DATE OF REGISTRATION IRCT20091114002709N51; 2020-04-13.
Collapse
Affiliation(s)
- Maryam Khazdouz
- Department of Nutrition, School of Public Health, Iran University of Medical Sciences, Tehran, Iran
- Growth and Development Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Naser Ebrahimi Daryani
- Department of Gastroenterology and Hepatology, Imam Khomeini Hospital, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Makan Cheraghpour
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Foroogh Alborzi
- Department of Gastroenterology and Hepatology, Imam Khomeini Hospital, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Motahareh Hasani
- Department of Nutrition, School of Public Health, Golestan University of Medical Sciences, Gorgan, Iran
| | - Shaghayegh Baradaran Ghavami
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Farzad Shidfar
- Department of Nutrition, School of Public Health, Iran University of Medical Sciences, Tehran, Iran.
- Colorectal Research Center, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
12
|
Li G, Feng X, Wang W, Li J, Shi Y, Wang L, Hu C. Synthesis and biological evaluation of chromanone-based derivatives as potential anti-neuroinflammatory agents. Bioorg Chem 2023; 139:106767. [PMID: 37552914 DOI: 10.1016/j.bioorg.2023.106767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 07/29/2023] [Accepted: 08/03/2023] [Indexed: 08/10/2023]
Abstract
As a privileged scaffold, chromanone has been extensively introduced in the design of drug leads with diverse pharmacological features, particularly in the area of inflammatory diseases. Herein, the preparation of chromanone-based derivatives (4a-4i) was smoothly achieved, and their structures were characterized using 1H NMR, 13C NMR, and ESI-HRMS spectroscopy techniques. Out of them, analogue 4e exhibited the most potent inhibitory capacity against the NO release and iNOS expression, without apparent cytotoxicity. Our observations showed that 4e could dramatically prevent the translocation of NF-κB from the cytoplasm to nucleus, and decrease the production of proinflammatory cytokines TNF-α, IL-6 and IL-1β in LPS-induced BV-2 cells. Mechanistically, 4e significantly deactivated NF-κB by disturbing TLR4-mediated TAK1/NF-κB and PI3K/Akt signaling cascades. Consistent with the in vitro study, 4e could effectively mitigate the inflammation response of hippocampal tissue in LPS-induced mouse model by inhibiting microglial activation. Collectively, these results revealed 4e as a prospective neuroprotective candidate for the therapy of neuroinflammation-related disorders.
Collapse
Affiliation(s)
- Guoxun Li
- School of Pharmacy, Changzhou University, Changzhou, Jiangsu 213164, China
| | - Xiaoqing Feng
- School of Pharmacy, Changzhou University, Changzhou, Jiangsu 213164, China
| | - Wenqian Wang
- School of Pharmacy, Changzhou University, Changzhou, Jiangsu 213164, China
| | - Jian Li
- School of Pharmacy, Changzhou University, Changzhou, Jiangsu 213164, China; Analysis and Testing Center, NERC Biomass of Changzhou University, Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, Changzhou University, Changzhou, Jiangsu 213164, China
| | - Yeye Shi
- School of Pharmacy, Changzhou University, Changzhou, Jiangsu 213164, China
| | - Lin Wang
- College of Life Science and Biopharmaceutics, Shenyang Pharmaceutical University, Shenyang 110016, China.
| | - Caijuan Hu
- School of Pharmacy, Changzhou University, Changzhou, Jiangsu 213164, China.
| |
Collapse
|
13
|
Miyazaki J, Ikehara S, Tanigawa K, Kimura T, Ueda K, Ozono K, Kimura T, Kobayashi Y, Yamazaki S, Kamijima M, Sobue T, Iso H. Prenatal exposure to selenium, mercury, and manganese during pregnancy and allergic diseases in early childhood: The Japan Environment and Children's study. ENVIRONMENT INTERNATIONAL 2023; 179:108123. [PMID: 37595534 DOI: 10.1016/j.envint.2023.108123] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 07/23/2023] [Accepted: 07/28/2023] [Indexed: 08/20/2023]
Abstract
BACKGROUND Prenatal exposure to metallic elements may adversely affect early childhood health. However, more evidence is needed as population-based cohort studies are currently limited. OBJECTIVES We aimed to examine the associations between prenatal metallic (mercury, selenium, and manganese) exposure and the risk of allergic diseases in early childhood until three years of age. METHODS The data from 94,794 mother-infant pairs, who participated in the Japan Environment and Children's study, were used in this study. Prenatal metallic element exposure was measured in maternal blood collected during mid-pregnancy. The incidence of atopic dermatitis, food allergies, asthma, and allergic rhinitis during the first three years of life was prospectively investigated using self-reports of physician-diagnosed allergies. A multivariable modified Poisson regression model was used to estimate the cumulative incidence ratio and their 95% confidence intervals of allergic diseases associated with prenatal exposure to mercury, selenium, and manganese. We further evaluated the interaction between mercury and selenium exposures in this association. RESULTS We confirmed 26,238 cases of childhood allergic diseases: atopic dermatitis, food allergies, asthma, and allergic rhinitis in 9,715 (10.3%), 10,897 (11.5%), and 9,857 (10.4%), 4,630 (4.9%), respectively. No association was found between prenatal mercury or manganese exposure and the risk of allergic diseases. Prenatal selenium exposure was inversely associated with atopic dermatitis, food allergies, allergic rhinitis, and any allergic diseases, but not with asthma. These inverse associations were more pronounced for lower mercury exposures than for higher exposures. CONCLUSIONS Our findings suggest that prenatal exposure to selenium may be beneficial for reducing the risk of atopic dermatitis, food allergies, allergic rhinitis, and any allergic diseases in early childhood, especially with lower prenatal mercury exposure.
Collapse
Affiliation(s)
- Junji Miyazaki
- Division of Environmental Medicine and Population Sciences, Department of Social Medicine, Osaka University Graduate School of Medicine, 2-2, Yamadaoka, Suita-shi, Osaka 565-0871, Japan; Osaka Regional Center for Japan Environment and Children's Study (JECS), Osaka University, 1-3, Yamadaoka, Suita-shi, Osaka 565-0871, Japan; Department of Preventive Medicine and Public Health, School of Medicine, Keio University, 35, Shinano-cho, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Satoyo Ikehara
- Division of Environmental Medicine and Population Sciences, Department of Social Medicine, Osaka University Graduate School of Medicine, 2-2, Yamadaoka, Suita-shi, Osaka 565-0871, Japan; Osaka Regional Center for Japan Environment and Children's Study (JECS), Osaka University, 1-3, Yamadaoka, Suita-shi, Osaka 565-0871, Japan
| | - Kanami Tanigawa
- Division of Environmental Medicine and Population Sciences, Department of Social Medicine, Osaka University Graduate School of Medicine, 2-2, Yamadaoka, Suita-shi, Osaka 565-0871, Japan; Osaka Regional Center for Japan Environment and Children's Study (JECS), Osaka University, 1-3, Yamadaoka, Suita-shi, Osaka 565-0871, Japan; Osaka Maternal and Child Health Information Center, Osaka Women's and Children's Hospital, 840, Murodo-cho, Izumi-shi, Osaka 594-1101, Japan
| | - Takashi Kimura
- Department of Public Health, Faculty of Medicine, Hokkaido University, North 15, West 7, Kita-ku, Sapporo-shi, Hokkaido 060-8638, Japan
| | - Kimiko Ueda
- Division of Environmental Medicine and Population Sciences, Department of Social Medicine, Osaka University Graduate School of Medicine, 2-2, Yamadaoka, Suita-shi, Osaka 565-0871, Japan; Osaka Regional Center for Japan Environment and Children's Study (JECS), Osaka University, 1-3, Yamadaoka, Suita-shi, Osaka 565-0871, Japan; Faculty of Health and Well-being, Kansai University, 1-11-1 Kaorigaoka-cho, Sakai-ku, Sakai, Osaka, 590-8515, Japan
| | - Keiichi Ozono
- Department of Pediatrics, Osaka University Graduate School of Medicine, 2-2, Yamadaoka, Suita-shi, Osaka 565-0871, Japan
| | - Tadashi Kimura
- Department of Obstetrics and Gynecology, Osaka University Graduate School of Medicine, 2-2, Yamadaoka, Suita-shi, Osaka 565-0871, Japan
| | - Yayoi Kobayashi
- Japan Environment and Children's Study Programme Office, National Institute for Environmental Studies, 16-2, Onogawa, Tsukuba-shi, Ibaraki 305-8506, Japan
| | - Shin Yamazaki
- Japan Environment and Children's Study Programme Office, National Institute for Environmental Studies, 16-2, Onogawa, Tsukuba-shi, Ibaraki 305-8506, Japan
| | - Michihiro Kamijima
- Department of Occupational and Environmental Health, Graduate School of Medical Sciences, Nagoya City University, 1, Kawasumi, Mizuho-Cho, Mizuho-ku, Nagoya 467-8601, Japan
| | - Tomotaka Sobue
- Division of Environmental Medicine and Population Sciences, Department of Social Medicine, Osaka University Graduate School of Medicine, 2-2, Yamadaoka, Suita-shi, Osaka 565-0871, Japan; Osaka Regional Center for Japan Environment and Children's Study (JECS), Osaka University, 1-3, Yamadaoka, Suita-shi, Osaka 565-0871, Japan
| | - Hiroyasu Iso
- Osaka Regional Center for Japan Environment and Children's Study (JECS), Osaka University, 1-3, Yamadaoka, Suita-shi, Osaka 565-0871, Japan; Institute for Global Health Policy Research, Bureau of International Health Cooperation, National Center for Global Health and Medicine, 1-21-1, Toyama, Shinjuku-ku, Tokyo 162-8655, Japan.
| |
Collapse
|
14
|
Kazempour R, Abedi P, Siahkal SF, Sharifipour F, Zahedian M. Effect of Selenium Supplementation on Biochemical Markers of Women with Polycystic Ovarian Syndrome: A Systematic Review. Prev Nutr Food Sci 2023; 28:121-133. [PMID: 37416789 PMCID: PMC10321446 DOI: 10.3746/pnf.2023.28.2.121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 04/15/2023] [Accepted: 04/17/2023] [Indexed: 07/08/2023] Open
Abstract
Polycystic ovary syndrome (PCOS) is a widespread endocrine disorder among fertile women and may be induced by nutritional deficiencies. In this study, we assess the impact of selenium supplementation (SS) on biochemical markers in women with PCOS. To gather relevant literature, we searched the Web of Science, Cochrane Library, Scopus, Embase, and MEDLINE databases from inception up to July 24, 2022. Subsequently, we included all published full-text randomized clinical trials examining the effects of SS versus placebo on biochemical changes in women with PCOS. Review Manager 5.3 was used to collect and analyze data and assess the risk of bias. Seven articles, comprising 413 women, were ultimately involved in the study. According to the results, SS could increase the level of quantitative insulin sensitivity check index [standardized mean difference (SMD)=0.34, 95% confidence interval (CI)=0.04∼0.65], total antioxidant capacity (SMD=0.89 mmol/L, 95% CI=0.52∼1.26), and glutathione (SMD=1.00 μmol/L, 95% CI=0.22∼1.78). Conversely, SS could decrease triglyceride, cholesterol, fasting plasma glucose, insulin, and the homeostasis model of assessment-insulin resistance levels compared with the placebo. Furthermore, there were no significant differences regarding sex hormone-binding globulin level, testosterone level, malondialdehyde, and body mass index between the two groups. In addition, the results suggest that SS improves biochemical markers in women with PCOS and thus is recommended for treating biochemical disorders among these women in addition to standard treatment.
Collapse
Affiliation(s)
- Robab Kazempour
- Department of Midwifery, Marand Branch, Islamic Azad University, Marand 5418916571, Iran
| | - Parvin Abedi
- Reproductive Health Promotion Research Center, Department of Midwifery, Ahvaz Jundishapur University of Medical Sciences, Ahvaz 6135715794, Iran
| | - Shahla Faal Siahkal
- Department of Midwifery, Marand Branch, Islamic Azad University, Marand 5418916571, Iran
| | - Foruzan Sharifipour
- Department of Midwifery, School of Nursing and Midwifery, Kermanshah University of Medical Sciences, Kermanshah 6715847141, Iran
| | - Maryam Zahedian
- Librarian of Nursing and Midwifery Department, Ahvaz Jundishapur University of Medical Sciences, Ahvaz 6135715794, Iran
| |
Collapse
|
15
|
Gholizadeh M, Khalili A, Roodi PB, Saeedy SAG, Najafi S, Keshavarz Mohammadian M, Djafarian K. Selenium supplementation decreases CRP and IL-6 and increases TNF-alpha: A systematic review and meta-analysis of randomized controlled trials. J Trace Elem Med Biol 2023; 79:127199. [PMID: 37257335 DOI: 10.1016/j.jtemb.2023.127199] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 05/05/2023] [Accepted: 05/12/2023] [Indexed: 06/02/2023]
Abstract
Inflammation is an initiating cause of infectious and non-infectious diseases. Studies have shown that selenium (Se) has anti-inflammatory effects. However, its' effects on serum c-reactive protein (CRP), interleukin-6 (IL-6), and tumor necrosis factor-alpha (TNF-α) plasma concentrations are equivocal. Therefore, we performed a systematic review and meta-analysis of randomized controlled trials (RCTs), evaluating the effects of per oral (PO) and intravenous (IV) Se supplementation on CRP, TNF-α, and IL-6. A systematic search was conducted using four databases, including PubMed, Google Scholar, Cochrane Library, and Scopus to find randomized clinical trials, published up to April 2023. From 19476 papers, after screening and removing duplicate articles, 24 studies were analyzed in the present meta-analysis. In the pooled analysis, PO Se administration showed no significant effect on CRP (WMD: 0.12; 95 % CI -0.11, 0.38; P-value= 0.30). However, IV Se supplementation had a significant negative association with CRP concentration (-2.24; 95 % CI: -4.24, -0.24; p-value: 0.02). Se administration had no significant association with TNF-α plasma concentration (9.64, 95 % CI: -0.59, 19.88, p-value= 0.06; and heterogeneity: 98 %). However, a significant positive association was present between Se and plasma TNF-α concentrations (0.15, 95 % CI: 0.14, 0.17, P-value<0.0001). Moreover, Se supplementation had a significant negative correlation with IL-6 plasma concentration in PO (-0.54; 95 % CI: -1.61, 0.52; P-value = 0.31) and IV administrations (-4.77; 95 % CI: -7.61, -1.93; P-value<0.0001), respectively. This study demonstrated that IV Se administration reduced CRP and IL-6 plasma concentrations. Conversely, IV Se supplementation increased TNF-α plasma concentration. It is evident that further, well-controlled clinical trials are required.
Collapse
Affiliation(s)
- Mohammad Gholizadeh
- Department of Clinical Nutrition, Faculty of Nutrition Sciences and Food Industries, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Atefeh Khalili
- Department of Food Sciences and Technology, Branch, Islamic Azad University, Gonbad Kavoos, Golestan, Iran
| | - Poorya Basafa Roodi
- Department of Nutrition, School of Public Health, Iran University of Medical Sciences, Tehran, Iran
| | | | - Samaneh Najafi
- Department of Medical Sciences, Islamic Azad University, Arak Branch, Arak, Iran
| | | | - Kurosh Djafarian
- Department of Clinical Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical sciences, Tehran, Iran.
| |
Collapse
|
16
|
Nettleford SK, Liao C, Short SP, Rossi RM, Singh V, Prabhu KS. Selenoprotein W Ameliorates Experimental Colitis and Promotes Intestinal Epithelial Repair. Antioxidants (Basel) 2023; 12:850. [PMID: 37107231 PMCID: PMC10134982 DOI: 10.3390/antiox12040850] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 03/23/2023] [Accepted: 03/27/2023] [Indexed: 04/05/2023] Open
Abstract
Selenoprotein W (Selenow) is a ~9 kDa selenoprotein suggested to play a beneficial role in resolving inflammation. However, the underlying mechanisms are poorly understood. SELENOW expression in the human GI tract using ScRNAseq Gut Cell Atlas and Gene Expression Omnibus (GEO) databases revealed its expression in the small intestine and colonic epithelial, endothelial, mesenchymal, and stem cells and correlated with a protective effect in ulcerative colitis patients. Selenow KO mice treated with 4% dextran sodium sulfate (DSS) showed exacerbated acute colitis, with greater weight loss, shorter colons, and increased fecal occult blood compared to the WT counterparts. Selenow KO mice expressed higher colonic Tnfα, increased Tnfα+ macrophages in the colonic lamina propria, and exhibited loss in epithelial barrier integrity and decreased zonula occludens 1 (Zo-1) expression following DSS treatment. Expression of epithelial cellular adhesion marker (EpCam), yes-associated protein 1 (Yap1), and epidermal growth factor receptor (Egfr) were decreased along with CD24lo cycling epithelial cells in Selenow KO mice. Colonic lysates and organoids confirmed a crosstalk between Egfr and Yap1 that was regulated by Selenow. Overall, our findings suggest Selenow expression is key for efficient resolution of inflammation in experimental colitis that is mediated through the regulation of Egfr and Yap1.
Collapse
Affiliation(s)
- Shaneice K. Nettleford
- Department of Veterinary and Biomedical Sciences, The Pennsylvania State University, University Park, PA 16802, USA
| | - Chang Liao
- Department of Medicine-Infectious Diseases, University of California, San Francisco, CA 94143, USA
| | - Sarah P. Short
- Department of Medicine, Department of Gastroenterology, Hepatology, and Nutrition, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Randall M. Rossi
- Mouse Transgenic Core Facility, Huck Institute of the Life Sciences, The Pennsylvania State University, University Park, PA 16802, USA
| | - Vishal Singh
- Department of Nutritional Sciences, The Pennsylvania State University, University Park, PA 16802, USA
| | - K. Sandeep Prabhu
- Department of Veterinary and Biomedical Sciences, The Pennsylvania State University, University Park, PA 16802, USA
| |
Collapse
|
17
|
Abstract
In this review, the relevance of selenium (Se) to viral disease will be discussed paying particular attention to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and coronavirus disease (COVID-19). Se, the active centre in selenoproteins has an ongoing history of reducing the incidence and severity of viral infections. Host Se deficiency increased the virulence of RNA viruses such as influenza A and coxsackievirus B3, the latter of which is implicated in the development of Keshan disease in north-east China. Significant clinical benefits of Se supplementation have been demonstrated in HIV-1, in liver cancer linked to hepatitis B, and in Chinese patients with hantavirus that was successfully treated with oral sodium selenite. China is of particular interest because it has populations that have both the lowest and the highest Se status in the world. We found a significant association between COVID-19 cure rate and background Se status in Chinese cities; the cure rate continued to rise beyond the Se intake required to optimise selenoproteins, suggesting an additional mechanism. Se status was significantly higher in serum samples from surviving than non-surviving COVID-19 patients. As regards mechanism, SARS-CoV-2 may interfere with the human selenoprotein system; selenoproteins are important in scavenging reactive oxygen species, controlling immunity, reducing inflammation, ferroptosis and endoplasmic reticulum (ER) stress. We found that SARS-CoV-2 significantly suppressed mRNA expression of GPX4, of the ER selenoproteins, SELENOF, SELENOM, SELENOK and SELENOS and down-regulated TXNRD3. Based on the available data, both selenoproteins and redox-active Se species (mimicking ebselen, an inhibitor of the main SARS-CoV-2 protease that enables viral maturation within the host) could employ their separate mechanisms to attenuate virus-triggered oxidative stress, excessive inflammatory responses and immune-system dysfunction, thus improving the outcome of SARS-CoV-2 infection.
Collapse
|
18
|
Golin A, Tinkov AA, Aschner M, Farina M, da Rocha JBT. Relationship between selenium status, selenoproteins and COVID-19 and other inflammatory diseases: A critical review. J Trace Elem Med Biol 2023; 75:127099. [PMID: 36372013 PMCID: PMC9630303 DOI: 10.1016/j.jtemb.2022.127099] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 10/19/2022] [Accepted: 11/01/2022] [Indexed: 11/06/2022]
Abstract
The antioxidant effects of selenium as a component of selenoproteins has been thought to modulate host immunity and viral pathogenesis. Accordingly, the association of low dietary selenium status with inflammatory and immunodeficiency has been reported in the literature; however, the causal role of selenium deficiency in chronic inflammatory diseases and viral infection is still undefined. The COVID-19, characterized by acute respiratory syndrome and caused by the novel coronavirus 2, SARS-CoV-2, has infected millions of individuals worldwide since late 2019. The severity and mortality from COVID-19 have been associated with several factor, including age, sex and selenium deficiency. However, available data on selenium status and COVID-19 are limited, and a possible causative role for selenium deficiency in COVID-19 severity has yet to be fully addressed. In this context, we review the relationship between selenium, selenoproteins, COVID-19, immune and inflammatory responses, viral infection, and aging. Regardless of the role of selenium in immune and inflammatory responses, we emphasize that selenium supplementation should be indicated after a selenium deficiency be detected, particularly, in view of the critical role played by selenoproteins in human health. In addition, the levels of selenium should be monitored after the start of supplementation and discontinued as soon as normal levels are reached. Periodic assessment of selenium levels after supplementation is a critical issue to avoid over production of toxic metabolites of selenide because under normal conditions, selenoproteins attain saturated expression levels that limits their potential deleterious metabolic effects.
Collapse
Affiliation(s)
- Anieli Golin
- Departamento de Bioquímica e Biologia Molecular, Centro de Ciências Naturais e Exatas, Universidade Federal de Santa Maria, RS, Brazil
| | - Alexey A Tinkov
- Yaroslavl State University, Yaroslavl, Russia; Institute of Cellular and Intracellular Symbiosis, Russian Academy of Sciences, Orenburg, Russia; Institute of Bioelementology, Orenburg, Russia
| | - Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Marcelo Farina
- Departamento de Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil
| | - João Batista Teixeira da Rocha
- Departamento de Bioquímica e Biologia Molecular, Centro de Ciências Naturais e Exatas, Universidade Federal de Santa Maria, RS, Brazil; Departamento de Bioquímica, Instituto Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil.
| |
Collapse
|
19
|
Kelishadi MR, Ashtary-Larky D, Davoodi SH, Clark CCT, Asbaghi O. The effects of selenium supplementation on blood lipids and blood pressure in adults: A systematic review and dose-response meta-analysis of randomized control trials. J Trace Elem Med Biol 2022; 74:127046. [PMID: 35963054 DOI: 10.1016/j.jtemb.2022.127046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 07/04/2022] [Accepted: 07/19/2022] [Indexed: 11/21/2022]
Abstract
BACKGROUND Previous studies evaluating the effects of selenium supplementation on lipid profile and blood pressure (BP) offer contradictory findings. This systematic review and meta-analysis assessed the effects of selenium supplementation on these lipid profile and BP. METHODS In order to identify interrelated clinical trials, we performed a comprehensive literature search in the online databases, including PubMed, Scopus, Embase, and ISI web of science, up to December 2021. RESULTS The analysis of the data established that selenium supplementation did not significantly affect TG level (WMD: -0.84 mg/dL; 95 % CI: -4.74, 3.05, p = 0.671), LDL-C (WMD: 0.86 mg/dL; 95 % CI: -1.21, 2.95, p = 0.416), and HDL-C (WMD: 0.3 mg/dL; 95 % CI: -0.66, 1.27, p = 0.535). however, there was a significant reduction in TC levels following selenium supplementation (WMD: -2.11 mg/dL; 95 % CI: -4.09, -0.13, p = 0.037). After subgroup analysis, when the baseline levels of LDL-C were < 130 mg/dL, selenium supplementation elicited a significant increase in LDL-C levels (WMD: 2.89 mg/dL; 95 % CI: 0.26, 5.51, p = 0.031). For BP, selenium supplementation significantly increased SBP (WMD: 2.02 mmHg; 95 % CI: 0.50, 3.55, p = 0.009), while it had no significant effect on DBP (WMD: 0.39 mmHg; 95 % CI: (-0.89, 1.68, p = 0.551)). CONCLUSION Although our findings suggest selenium may have possible therapeutic effects in improving TC and VLDL, because of its negative effects on LDL and BP, selenium supplementation for cardiovascular protection should be recommended with caution.
Collapse
Affiliation(s)
- Mahnaz Rezaei Kelishadi
- Department of Community Nutrition, School of Nutrition and Food Science, Isfahan University of Medical Sciences, Isfahan, Iran.
| | - Damoon Ashtary-Larky
- Nutrition and Metabolic Diseases Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
| | - Sayed Hosein Davoodi
- National Nutrition and Food Technology Research Institute, Faculty of Nutrition Sciences and Food Technology, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Cancer Research Center, Shahid Beheshti University of Medical sciences, Tehran, Iran.
| | - Cain C T Clark
- Centre for Intelligent Healthcare, Coventry University, Coventry CV1 5FB, UK.
| | - Omid Asbaghi
- Cancer Research Center, Shahid Beheshti University of Medical sciences, Tehran, Iran.
| |
Collapse
|
20
|
Steinmetz-Späh J, Liu J, Singh R, Ekoff M, Boddul S, Tang X, Bergqvist F, Idborg H, Heitel P, Rönnberg E, Merk D, Wermeling F, Haeggström JZ, Nilsson G, Steinhilber D, Larsson K, Korotkova M, Jakobsson PJ. Biosynthesis of prostaglandin 15dPGJ 2 -glutathione and 15dPGJ 2-cysteine conjugates in macrophages and mast cells via MGST3. J Lipid Res 2022; 63:100310. [PMID: 36370807 PMCID: PMC9792570 DOI: 10.1016/j.jlr.2022.100310] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 10/26/2022] [Accepted: 11/02/2022] [Indexed: 11/11/2022] Open
Abstract
Inhibition of microsomal prostaglandin E synthase-1 (mPGES-1) results in decreased production of proinflammatory PGE2 and can lead to shunting of PGH2 into the prostaglandin D2 (PGD2)/15-deoxy-Δ12,14-prostaglandin J2 (15dPGJ2) pathway. 15dPGJ2 forms Michael adducts with thiol-containing biomolecules such as GSH or cysteine residues on target proteins and is thought to promote resolution of inflammation. We aimed to elucidate the biosynthesis and metabolism of 15dPGJ2 via conjugation with GSH, to form 15dPGJ2-glutathione (15dPGJ2-GS) and 15dPGJ2-cysteine (15dPGJ2-Cys) conjugates and to characterize the effects of mPGES-1 inhibition on the PGD2/15dPGJ2 pathway in mouse and human immune cells. Our results demonstrate the formation of PGD2, 15dPGJ2, 15dPGJ2-GS, and 15dPGJ2-Cys in RAW264.7 cells after lipopolysaccharide stimulation. Moreover, 15dPGJ2-Cys was found in lipopolysaccharide-activated primary murine macrophages as well as in human mast cells following stimulation of the IgE-receptor. Our results also suggest that the microsomal glutathione S-transferase 3 is essential for the formation of 15dPGJ2 conjugates. In contrast to inhibition of cyclooxygenase, which leads to blockage of the PGD2/15dPGJ2 pathway, we found that inhibition of mPGES-1 preserves PGD2 and its metabolites. Collectively, this study highlights the formation of 15dPGJ2-GS and 15dPGJ2-Cys in mouse and human immune cells, the involvement of microsomal glutathione S-transferase 3 in their biosynthesis, and their unchanged formation following inhibition of mPGES-1. The results encourage further research on their roles as bioactive lipid mediators.
Collapse
Affiliation(s)
- Julia Steinmetz-Späh
- Division of Rheumatology, Department of Medicine, Karolinska Institutet and Karolinska University Hospital, Stockholm, Sweden
| | - Jianyang Liu
- Division of Rheumatology, Department of Medicine, Karolinska Institutet and Karolinska University Hospital, Stockholm, Sweden
| | - Rajkumar Singh
- Division of Physiological Chemistry 2, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Maria Ekoff
- Division of Immunology and Allergy, Department of Medicine, Karolinska Institutet and Karolinska University Hospital, Stockholm, Sweden
| | - Sanjaykumar Boddul
- Division of Rheumatology, Department of Medicine, Karolinska Institutet and Karolinska University Hospital, Stockholm, Sweden
| | - Xiao Tang
- Division of Physiological Chemistry 2, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Filip Bergqvist
- Division of Rheumatology, Department of Medicine, Karolinska Institutet and Karolinska University Hospital, Stockholm, Sweden
| | - Helena Idborg
- Division of Rheumatology, Department of Medicine, Karolinska Institutet and Karolinska University Hospital, Stockholm, Sweden
| | - Pascal Heitel
- Institute of Pharmaceutical Chemistry, Goethe-University Frankfurt, Frankfurt, Germany
| | - Elin Rönnberg
- Division of Immunology and Allergy, Department of Medicine, Karolinska Institutet and Karolinska University Hospital, Stockholm, Sweden
| | - Daniel Merk
- Institute of Pharmaceutical Chemistry, Goethe-University Frankfurt, Frankfurt, Germany
| | - Fredrik Wermeling
- Division of Rheumatology, Department of Medicine, Karolinska Institutet and Karolinska University Hospital, Stockholm, Sweden
| | - Jesper Z. Haeggström
- Division of Physiological Chemistry 2, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Gunnar Nilsson
- Division of Immunology and Allergy, Department of Medicine, Karolinska Institutet and Karolinska University Hospital, Stockholm, Sweden
| | - Dieter Steinhilber
- Institute of Pharmaceutical Chemistry, Goethe-University Frankfurt, Frankfurt, Germany
| | - Karin Larsson
- Division of Rheumatology, Department of Medicine, Karolinska Institutet and Karolinska University Hospital, Stockholm, Sweden
| | - Marina Korotkova
- Division of Rheumatology, Department of Medicine, Karolinska Institutet and Karolinska University Hospital, Stockholm, Sweden
| | - Per-Johan Jakobsson
- Division of Rheumatology, Department of Medicine, Karolinska Institutet and Karolinska University Hospital, Stockholm, Sweden,For correspondence: Per-Johan Jakobsson
| |
Collapse
|
21
|
Impact of selenium nanoparticles in the regulation of inflammation. Arch Biochem Biophys 2022; 732:109466. [DOI: 10.1016/j.abb.2022.109466] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 11/09/2022] [Accepted: 11/11/2022] [Indexed: 11/18/2022]
|
22
|
Bellastella G, Scappaticcio L, Caiazzo F, Tomasuolo M, Carotenuto R, Caputo M, Arena S, Caruso P, Maiorino MI, Esposito K. Mediterranean Diet and Thyroid: An Interesting Alliance. Nutrients 2022; 14:4130. [PMID: 36235782 PMCID: PMC9571437 DOI: 10.3390/nu14194130] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 09/26/2022] [Accepted: 09/29/2022] [Indexed: 11/30/2022] Open
Abstract
The Mediterranean diet, recognized as being cultural heritage by UNESCO, is mostly plant-based and includes a high consumption of whole-grain, fruit, and vegetables with a moderate consumption of alcohol during meals. Thus, it provides a small amount of saturated fatty acids and a high quantity of antioxidants and fiber. For this reason, it has been considered to have an important role in preventing cardiovascular diseases, chronic kidney diseases, type 2 diabetes mellitus, and cancer, but its relationship with thyroid function and diseases is still under debate. The aim of this review was to search for the possible correlation between the Mediterranean diet and thyroid function, and to critically evaluate the pathophysiological link between selected food intake and thyroid disorders.
Collapse
Affiliation(s)
- Giuseppe Bellastella
- Department of Advanced Medical and Surgical Sciences, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy
- Unit of Endocrinology and Metabolic Diseases, University Hospital, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy
| | - Lorenzo Scappaticcio
- Department of Advanced Medical and Surgical Sciences, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy
| | - Francesco Caiazzo
- Unit of Endocrinology and Metabolic Diseases, University Hospital, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy
| | - Maria Tomasuolo
- Department of Advanced Medical and Surgical Sciences, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy
| | - Raffaela Carotenuto
- Unit of Endocrinology and Metabolic Diseases, University Hospital, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy
| | - Mariangela Caputo
- Unit of Endocrinology and Metabolic Diseases, University Hospital, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy
| | - Stefania Arena
- Department of Advanced Medical and Surgical Sciences, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy
| | - Paola Caruso
- Unit of Endocrinology and Metabolic Diseases, University Hospital, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy
| | - Maria Ida Maiorino
- Department of Advanced Medical and Surgical Sciences, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy
- Unit of Endocrinology and Metabolic Diseases, University Hospital, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy
| | - Katherine Esposito
- Department of Advanced Medical and Surgical Sciences, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy
- Unit of Endocrinology and Metabolic Diseases, University Hospital, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy
| |
Collapse
|
23
|
Campo-Sabariz J, García-Vara A, Moral-Anter D, Briens M, Hachemi MA, Pinloche E, Ferrer R, Martín-Venegas R. Hydroxy-Selenomethionine, an Organic Selenium Source, Increases Selenoprotein Expression and Positively Modulates the Inflammatory Response of LPS-Stimulated Macrophages. Antioxidants (Basel) 2022; 11:antiox11101876. [PMID: 36290599 PMCID: PMC9598155 DOI: 10.3390/antiox11101876] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 09/17/2022] [Accepted: 09/17/2022] [Indexed: 11/16/2022] Open
Abstract
The role of 2-hydroxy-(4-methylseleno)butanoic acid (OH-SeMet), a form of organic selenium (Se), in selenoprotein synthesis and inflammatory response of THP1-derived macrophages stimulated with lipopolysaccharide (LPS) has been investigated. Glutathione peroxidase (GPX) activity, GPX1 gene expression, selenoprotein P (SELENOP) protein and gene expression, and reactive oxygen species (ROS) production were studied in Se-deprived conditions (6 and 24 h). Then, macrophages were supplemented with OH-SeMet for 72 h and GPX1 and SELENOP gene expression were determined. The protective effect of OH-SeMet against oxidative stress was studied in H2O2-stimulated macrophages, as well as the effect on GPX1 gene expression, oxidative stress, cytokine production (TNFα, IL-1β and IL-10), and phagocytic and killing capacities after LPS stimulation. Se deprivation induced a reduction in GPX activity, GPX1 gene expression, and SELENOP protein and gene expression at 24 h. OH-SeMet upregulated GPX1 and SELENOP gene expression and decreased ROS production after H2O2 treatment. In LPS-stimulated macrophages, OH-SeMet upregulated GPX1 gene expression, enhanced phagocytic and killing capacities, and reduced ROS and cytokine production. Therefore, OH-SeMet supplementation supports selenoprotein expression and controls oxidative burst and cytokine production while enhancing phagocytic and killing capacities, modulating the inflammatory response, and avoiding the potentially toxic insult produced by highly activated macrophages.
Collapse
Affiliation(s)
- Joan Campo-Sabariz
- Departament de Bioquímica i Fisiologia, Facultat de Farmàcia i Ciències de l’Alimentació, Universitat de Barcelona (UB), Institut de Recerca en Nutrició i Seguretat Alimentària (INSA-UB), 08028 Barcelona, Spain
| | - Adriana García-Vara
- Departament de Bioquímica i Fisiologia, Facultat de Farmàcia i Ciències de l’Alimentació, Universitat de Barcelona (UB), Institut de Recerca en Nutrició i Seguretat Alimentària (INSA-UB), 08028 Barcelona, Spain
| | - David Moral-Anter
- Departament de Bioquímica i Fisiologia, Facultat de Farmàcia i Ciències de l’Alimentació, Universitat de Barcelona (UB), Institut de Recerca en Nutrició i Seguretat Alimentària (INSA-UB), 08028 Barcelona, Spain
| | | | | | | | - Ruth Ferrer
- Departament de Bioquímica i Fisiologia, Facultat de Farmàcia i Ciències de l’Alimentació, Universitat de Barcelona (UB), Institut de Recerca en Nutrició i Seguretat Alimentària (INSA-UB), 08028 Barcelona, Spain
| | - Raquel Martín-Venegas
- Departament de Bioquímica i Fisiologia, Facultat de Farmàcia i Ciències de l’Alimentació, Universitat de Barcelona (UB), Institut de Recerca en Nutrició i Seguretat Alimentària (INSA-UB), 08028 Barcelona, Spain
- Correspondence:
| |
Collapse
|
24
|
Seo HR, Han HJ, Lee Y, Noh YW, Cho SJ, Kim JH. Human Pluripotent Stem Cell-Derived Alveolar Organoid with Macrophages. Int J Mol Sci 2022; 23:ijms23169211. [PMID: 36012471 PMCID: PMC9409017 DOI: 10.3390/ijms23169211] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 08/07/2022] [Accepted: 08/10/2022] [Indexed: 11/25/2022] Open
Abstract
Alveolar organoids (AOs), derived from human pluripotent stem cells (hPSCs) exhibit lung-specific functions. Therefore, the application of AOs in pulmonary disease modeling is a promising tool for understanding disease pathogenesis. However, the lack of immune cells in organoids limits the use of human AOs as models of inflammatory diseases. In this study, we generated AOs containing a functional macrophage derived from hPSCs based on human fetal lung development using biomimetic strategies. We optimized culture conditions to maintain the iMACs (induced hPSC-derived macrophages) AOs for up to 14 days. In lipopolysaccharide (LPS)-induced inflammatory conditions, IL-1β, MCP-1 and TNF-α levels were significantly increased in iMAC-AOs, which were not detected in AOs. In addition, chemotactic factor IL-8, which is produced by mononuclear phagocytic cells, was induced by LPS treatment in iMACs-AOs. iMACs-AOs can be used to understand pulmonary infectious diseases and is a useful tool in identifying the mechanism of action of therapeutic drugs in humans. Our study highlights the importance of immune cell presentation in AOs for modeling inflammatory pulmonary diseases.
Collapse
Affiliation(s)
- Ha-Rim Seo
- Division of Drug Evaluation, New Drug Development Center, Osong Medical Innovation Foundation, Cheongju-si 28160, Korea
| | - Hyeong-Jun Han
- Division of Intractable Diseases, Department of Chronic Diseases Convergence Research, Korea National Institute of Health, Cheongju-si 28159, Korea
- Korea National Stem Cell Bank, Cheongju-si 28159, Korea
| | - Youngsun Lee
- Division of Intractable Diseases, Department of Chronic Diseases Convergence Research, Korea National Institute of Health, Cheongju-si 28159, Korea
- Korea National Stem Cell Bank, Cheongju-si 28159, Korea
| | - Young-Woock Noh
- Division of Drug Evaluation, New Drug Development Center, Osong Medical Innovation Foundation, Cheongju-si 28160, Korea
| | - Seung-Ju Cho
- Division of Drug Evaluation, New Drug Development Center, Osong Medical Innovation Foundation, Cheongju-si 28160, Korea
- Correspondence: (S.-J.C.); (J.-H.K.)
| | - Jung-Hyun Kim
- Division of Intractable Diseases, Department of Chronic Diseases Convergence Research, Korea National Institute of Health, Cheongju-si 28159, Korea
- Korea National Stem Cell Bank, Cheongju-si 28159, Korea
- Correspondence: (S.-J.C.); (J.-H.K.)
| |
Collapse
|
25
|
Nguyen-Ngo C, Perkins AV, Lappas M. Selenium Prevents Inflammation in Human Placenta and Adipose Tissue In Vitro: Implications for Metabolic Diseases of Pregnancy Associated with Inflammation. Nutrients 2022; 14:nu14163286. [PMID: 36014792 PMCID: PMC9416138 DOI: 10.3390/nu14163286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 08/08/2022] [Accepted: 08/10/2022] [Indexed: 11/16/2022] Open
Abstract
Gestational diabetes mellitus (GDM) and maternal obesity are significant metabolic complications increasingly prevalent in pregnancy. Of major concern, both GDM and maternal obesity can have long-term detrimental impacts on the health of both mother and offspring. Recent research has shown that increased inflammation and oxidative stress are two features central to the pathophysiology of these metabolic conditions. Evidence suggests selenium supplementation may be linked to disease prevention in pregnancy; however, the specific effects of selenium on inflammation and oxidative stress associated with GDM and maternal obesity are unknown. Therefore, this study aimed to investigate the effect of selenium supplementation on an in vitro model of GDM and maternal obesity. Human placental tissue, visceral adipose tissue (VAT) and subcutaneous adipose tissue (SAT) were stimulated with either the bacterial product lipopolysaccharide (LPS) or the pro-inflammatory cytokine TNF-α. Selenium pre-treatment blocked LPS and TNF-α induced mRNA expression and secretion of pro-inflammatory cytokines and chemokines, while increasing anti-inflammatory cytokine and antioxidant mRNA expression in placenta, VAT and SAT. Selenium pre-treatment was also found to inhibit LPS- and TNF-α induced phosphorylation of ERK in placenta, VAT and SAT. These findings indicate that selenium may be able to prevent inflammation and oxidative stress associated with GDM and maternal obesity. Additional in vivo studies are required to identify the efficacy of selenium supplementation in preventing inflammatory pathways activated by GDM and maternal obesity and to elucidate the mechanism involved.
Collapse
Affiliation(s)
- Caitlyn Nguyen-Ngo
- Obstetrics, Nutrition and Endocrinology Group, Department of Obstetrics and Gynaecology, University of Melbourne, Parkville 3010, Australia
- Mercy Perinatal Research Centre, Melbourne 3084, Australia
| | - Anthony V. Perkins
- School of Pharmacy and Medical Sciences, Gold Coast Campus, Griffith University, Adelaide 9726, Australia
- Correspondence:
| | - Martha Lappas
- Obstetrics, Nutrition and Endocrinology Group, Department of Obstetrics and Gynaecology, University of Melbourne, Parkville 3010, Australia
- Mercy Perinatal Research Centre, Melbourne 3084, Australia
| |
Collapse
|
26
|
Niu R, Yang Q, Dong Y, Hou Y, Liu G. Selenium metabolism and regulation of immune cells in immune-associated diseases. J Cell Physiol 2022; 237:3449-3464. [PMID: 35788930 DOI: 10.1002/jcp.30824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 06/01/2022] [Accepted: 06/17/2022] [Indexed: 11/06/2022]
Abstract
Selenium, as one of the essential microelements, plays an irreplaceable role in metabolism regulation and cell survival. Selenium metabolism and regulation have great effects on physiological systems especially the immune system. Therefore, selenium is tightly related to various diseases like cancer. Although recent research works have revealed much about selenium metabolism, the ways in which selenium regulates immune cells' functions and immune-associated diseases still remain much unclear. In this review, we will briefly introduce the regulatory role of selenium metabolism in immune cells and immune-associated diseases.
Collapse
Affiliation(s)
- Ruiying Niu
- Key Laboratory of Cell Proliferation and Regulation Biology, Ministry of Education, College of Life Sciences, Beijing Normal University, Beijing, China
| | - Qiuli Yang
- Key Laboratory of Cell Proliferation and Regulation Biology, Ministry of Education, College of Life Sciences, Beijing Normal University, Beijing, China
| | - Yingjie Dong
- Key Laboratory of Cell Proliferation and Regulation Biology, Ministry of Education, College of Life Sciences, Beijing Normal University, Beijing, China
| | - Yueru Hou
- Key Laboratory of Cell Proliferation and Regulation Biology, Ministry of Education, College of Life Sciences, Beijing Normal University, Beijing, China
| | - Guangwei Liu
- Key Laboratory of Cell Proliferation and Regulation Biology, Ministry of Education, College of Life Sciences, Beijing Normal University, Beijing, China
| |
Collapse
|
27
|
Xu L, Lu Y, Wang N, Feng Y. The Role and Mechanisms of Selenium Supplementation on Fatty Liver-Associated Disorder. Antioxidants (Basel) 2022; 11:922. [PMID: 35624786 PMCID: PMC9137657 DOI: 10.3390/antiox11050922] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 04/28/2022] [Accepted: 05/05/2022] [Indexed: 01/08/2023] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is the most frequent chronic liver disease without effective therapy. Selenium, as an essential trace element for humans, is notable for its antioxidant properties. The previous study shows that selenium levels in NAFLD patients are lower than normal ones. Selenium supplementation can effectively alleviate metabolic disorders by relieving anti-oxidative stress and anti-inflammatory regulation. However, the correlation between selenium and NAFLD has not been fully clarified. Herein, we review the current studies on selenium in regulating the different stages of NAFLD and summarize relevant clinical trials to highlight the potential roles of selenium in NAFLD treatment.
Collapse
Affiliation(s)
| | | | | | - Yibin Feng
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong 999077, China; (L.X.); (Y.L.); (N.W.)
| |
Collapse
|
28
|
Muhammad AI, Dalia AM, Loh TC, Akit H, Samsudin AA. Effects of bacterial organic selenium, selenium yeast and sodium selenite on antioxidant enzymes activity, serum biochemical parameters, and selenium concentration in Lohman brown-classic hens. Vet Res Commun 2021; 46:431-445. [PMID: 34845583 DOI: 10.1007/s11259-021-09867-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Accepted: 11/21/2021] [Indexed: 02/05/2023]
Abstract
This study compares the effects of sodium selenite, selenium yeast, and enriched bacterial organic selenium protein on antioxidant enzyme activity, serum biochemical profiles, and egg yolk, serum, and tissue selenium concentration in laying hens. In a 112-d experiment, 144 Lohman Brown Classic hens, 23-wks old were divided into four equal groups, each has six replicates. They were assigned to 4 treatments: 1) a basal diet (Con), 2) Con plus 0.3 mg/kg feed sodium selenite (SS); 3) Con plus 0.3 mg/kg feed Se-yeast (SY): 4) Con plus 0.3 mg/kg feed bacterial enriched organic Se protein (ADS18) from Stenotrophomonas maltophilia bacteria. On d 116, hens were euthanized (slaughtered) to obtain blood (serum), liver organ, and breast tissue to measure antioxidant enzyme activity, biochemical profiles, and selenium concentration. The results show that antioxidant enzyme activity of hens was increased when fed bacterial organic Se (ADS18), resulting in a significant (P < 0.05) increase in serum GSH-Px, SOD, and CAT activity compared to other treatment groups. However, ADS18 and SY supplementation increase (P < 0.05) hepatic TAC, GSH-Px, and CAT activity, unlike the SS and Con group. Similarly, dietary Se treatment reduced total cholesterol and serum triglycerides concentrations significantly (P < 0.05) compared to the Con group. At 16 and 18 weeks, selenium concentration in hen egg yolks supplemented with dietary Se was higher (P < 0.05) than in Con, with similar patterns in breast tissue and serum. Supplementation with bacterial organic Se (ADS18) improved antioxidant enzyme activity, decreased total serum cholesterol and serum lipids, and increased Se deposition in egg yolk, tissue, and serum. Hence, organic Se may be considered a viable source of Se in laying hens.
Collapse
Affiliation(s)
- A I Muhammad
- Department of Animal Science, Faculty of Agriculture, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia.,Department of Animal Science, Faculty of Agriculture, Federal University Dutse, P.M.B. 7156, Dutse, Jigawa State, Nigeria
| | - A M Dalia
- Department of Animal Nutrition, Faculty of Animal Production, University of Khartoum, P.O. Box 321, Khartoum, Sudan
| | - T C Loh
- Department of Animal Science, Faculty of Agriculture, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia
| | - H Akit
- Department of Animal Science, Faculty of Agriculture, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia
| | - Anjas A Samsudin
- Department of Animal Science, Faculty of Agriculture, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia.
| |
Collapse
|
29
|
A Protective Role for Arachidonic Acid Metabolites against Advanced Colorectal Adenoma in a Phase III Trial of Selenium. Nutrients 2021; 13:nu13113877. [PMID: 34836131 PMCID: PMC8621008 DOI: 10.3390/nu13113877] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 10/26/2021] [Accepted: 10/26/2021] [Indexed: 12/11/2022] Open
Abstract
Oxylipins derived from arachidonic acid (ARA) have been implicated in the development of colorectal adenomas and colorectal cancer. The primary purpose of this work was to determine the relationship between plasma levels of oxylipins and colorectal adenoma characteristics at study entry, as well as with the development of a new adenoma during follow-up within a Phase III adenoma prevention clinical trial with selenium (Sel). Secondarily, we sought to determine whether the selenium intervention influenced plasma oxylipin levels. Four oxylipins were quantified in stored plasma samples from a subset of Sel study subjects (n = 256) at baseline and at 12-months. There were significantly lower odds of an advanced adenoma at baseline with higher prostaglandin E2 (PGE2), with an OR (95% CI) of 0.55 (0.33–0.92), and with 5-hydroxyeicosatetraenoic acid (5-HETE) ((0.53 (0.33–0.94)); and of a large adenoma with higher PGE2 ((0.52 (0.31–0.87)). In contrast, no associations were observed between any oxylipin and the development of a new adenoma during follow-up. Selenium supplementation was associated with a significantly smaller increase in 5-HETE after 12 months compared to the placebo, though no other results were statistically significant. The ARA-derived oxylipins may have a role in the progression of non-advanced adenoma to advanced, but not with the development of a new adenoma.
Collapse
|
30
|
Markley RL, Restori KH, Katkere B, Sumner SE, Nicol MJ, Tyryshkina A, Nettleford SK, Williamson DR, Place DE, Dewan KK, Shay AE, Carlson BA, Girirajan S, Prabhu KS, Kirimanjeswara GS. Macrophage Selenoproteins Restrict Intracellular Replication of Francisella tularensis and Are Essential for Host Immunity. Front Immunol 2021; 12:701341. [PMID: 34777335 PMCID: PMC8586653 DOI: 10.3389/fimmu.2021.701341] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Accepted: 09/24/2021] [Indexed: 12/13/2022] Open
Abstract
The essential micronutrient Selenium (Se) is co-translationally incorporated as selenocysteine into proteins. Selenoproteins contain one or more selenocysteines and are vital for optimum immunity. Interestingly, many pathogenic bacteria utilize Se for various biological processes suggesting that Se may play a role in bacterial pathogenesis. A previous study had speculated that Francisella tularensis, a facultative intracellular bacterium and the causative agent of tularemia, sequesters Se by upregulating Se-metabolism genes in type II alveolar epithelial cells. Therefore, we investigated the contribution of host vs. pathogen-associated selenoproteins in bacterial disease using F. tularensis as a model organism. We found that F. tularensis was devoid of any Se utilization traits, neither incorporated elemental Se, nor exhibited Se-dependent growth. However, 100% of Se-deficient mice (0.01 ppm Se), which express low levels of selenoproteins, succumbed to F. tularensis-live vaccine strain pulmonary challenge, whereas 50% of mice on Se-supplemented (0.4 ppm Se) and 25% of mice on Se-adequate (0.1 ppm Se) diet succumbed to infection. Median survival time for Se-deficient mice was 8 days post-infection while Se-supplemented and -adequate mice was 11.5 and >14 days post-infection, respectively. Se-deficient macrophages permitted significantly higher intracellular bacterial replication than Se-supplemented macrophages ex vivo, corroborating in vivo observations. Since Francisella replicates in alveolar macrophages during the acute phase of pneumonic infection, we hypothesized that macrophage-specific host selenoproteins may restrict replication and systemic spread of bacteria. F. tularensis infection led to an increased expression of several macrophage selenoproteins, suggesting their key role in limiting bacterial replication. Upon challenge with F. tularensis, mice lacking selenoproteins in macrophages (TrspM) displayed lower survival and increased bacterial burden in the lung and systemic tissues in comparison to WT littermate controls. Furthermore, macrophages from TrspM mice were unable to restrict bacterial replication ex vivo in comparison to macrophages from littermate controls. We herein describe a novel function of host macrophage-specific selenoproteins in restriction of intracellular bacterial replication. These data suggest that host selenoproteins may be considered as novel targets for modulating immune response to control a bacterial infection.
Collapse
Affiliation(s)
- Rachel L. Markley
- Pathobiology Graduate Program, The Pennsylvania State University, University Park, PA, United States,Department of Veterinary and Biomedical Sciences, The Pennsylvania State University, University Park, PA, United States,Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, United States
| | - Katherine H. Restori
- Department of Veterinary and Biomedical Sciences, The Pennsylvania State University, University Park, PA, United States
| | - Bhuvana Katkere
- Department of Veterinary and Biomedical Sciences, The Pennsylvania State University, University Park, PA, United States
| | - Sarah E. Sumner
- Pathobiology Graduate Program, The Pennsylvania State University, University Park, PA, United States,Department of Veterinary and Biomedical Sciences, The Pennsylvania State University, University Park, PA, United States
| | - McKayla J. Nicol
- Pathobiology Graduate Program, The Pennsylvania State University, University Park, PA, United States,Department of Veterinary and Biomedical Sciences, The Pennsylvania State University, University Park, PA, United States
| | - Anastasia Tyryshkina
- Neuroscience Graduate Program, Huck Institute of the Life Sciences, The Pennsylvania State University, University Park, PA, United States,Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA, United States
| | - Shaneice K. Nettleford
- Pathobiology Graduate Program, The Pennsylvania State University, University Park, PA, United States,Department of Veterinary and Biomedical Sciences, The Pennsylvania State University, University Park, PA, United States
| | - David R. Williamson
- Department of Veterinary and Biomedical Sciences, The Pennsylvania State University, University Park, PA, United States
| | - David E. Place
- Department of Veterinary and Biomedical Sciences, The Pennsylvania State University, University Park, PA, United States,Department of Immunology, St. Jude Children’s Research Hospital, Memphis, TN, United States
| | - Kalyan K. Dewan
- Department of Veterinary and Biomedical Sciences, The Pennsylvania State University, University Park, PA, United States,Department of Infectious Diseases, The University of Georgia, Athens, GA, United States
| | - Ashley E. Shay
- Department of Veterinary and Biomedical Sciences, The Pennsylvania State University, University Park, PA, United States,Center for Experimental Therapeutics and Reperfusion Injury, Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, United States
| | - Bradley A. Carlson
- Office of Research Support, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States
| | - Santhosh Girirajan
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA, United States
| | - K. Sandeep Prabhu
- Department of Veterinary and Biomedical Sciences, The Pennsylvania State University, University Park, PA, United States,Center for Molecular Immunology and Infectious Disease, The Pennsylvania State University, University Park, PA, United States
| | - Girish S. Kirimanjeswara
- Department of Veterinary and Biomedical Sciences, The Pennsylvania State University, University Park, PA, United States,Center for Molecular Immunology and Infectious Disease, The Pennsylvania State University, University Park, PA, United States,*Correspondence: Girish S. Kirimanjeswara,
| |
Collapse
|
31
|
Xiao J, Li N, Xiao S, Wu Y, Liu H. Comparison of Selenium Nanoparticles and Sodium Selenite on the Alleviation of Early Atherosclerosis by Inhibiting Endothelial Dysfunction and Inflammation in Apolipoprotein E-Deficient Mice. Int J Mol Sci 2021; 22:ijms222111612. [PMID: 34769040 PMCID: PMC8583811 DOI: 10.3390/ijms222111612] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 10/19/2021] [Accepted: 10/24/2021] [Indexed: 01/14/2023] Open
Abstract
Atherosclerosis and related cardiovascular diseases represent the greatest threats to human health, worldwide. Previous animal studies showed that selenium nanoparticles (SeNPs) and Na2SeO3 might have anti-atherosclerotic activity, but the underlying mechanisms are poorly elucidated. This study compared the anti-atherosclerotic activity of SeNPs stabilized with chitosan (CS-SeNPs) and Na2SeO3 and the related mechanism in a high-fat-diet-fed apolipoprotein E-deficient mouse model of atherosclerosis. The results showed that oral administration of both CS-SeNPs and Na2SeO3 (40 μg Se/kg/day) for 10 weeks significantly reduced atherosclerotic lesions in mouse aortae. Mechanistically, CS-SeNPs and Na2SeO3 not only alleviated vascular endothelial dysfunction, as evidenced by the increase of serum nitric oxide level and the decrease of aortic adhesion molecule expression, but also vascular inflammation, as evidenced by the decrease of macrophage recruitment as well as the expression of proinflammatory molecules. Importantly, these results were replicated within in-vivo experiments on the cultured human endothelial cell line EA.hy926. Overall, CS-SeNPs had a comparable effect with Na2SeO3 but might have more potential in atherosclerosis prevention due to its lower toxicity. Together, these results provide more insights into the mechanisms of selenium against atherosclerosis and further highlight the potential of selenium supplementation as a therapeutic strategy for atherosclerosis.
Collapse
Affiliation(s)
- Junying Xiao
- Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China; (J.X.); (N.L.); (S.X.); (Y.W.)
| | - Na Li
- Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China; (J.X.); (N.L.); (S.X.); (Y.W.)
| | - Shengze Xiao
- Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China; (J.X.); (N.L.); (S.X.); (Y.W.)
| | - Yuzhou Wu
- Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China; (J.X.); (N.L.); (S.X.); (Y.W.)
- Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, Wuhan 430074, China
| | - Hongmei Liu
- Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China; (J.X.); (N.L.); (S.X.); (Y.W.)
- Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, Wuhan 430074, China
- Correspondence: ; Tel.: +86-27-87543032
| |
Collapse
|
32
|
Wolfram T, Weidenbach LM, Adolf J, Schwarz M, Schädel P, Gollowitzer A, Werz O, Koeberle A, Kipp AP, Koeberle SC. The Trace Element Selenium Is Important for Redox Signaling in Phorbol Ester-Differentiated THP-1 Macrophages. Int J Mol Sci 2021; 22:11060. [PMID: 34681720 PMCID: PMC8539332 DOI: 10.3390/ijms222011060] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 10/09/2021] [Accepted: 10/11/2021] [Indexed: 12/27/2022] Open
Abstract
Physiological selenium (Se) levels counteract excessive inflammation, with selenoproteins shaping the immunoregulatory cytokine and lipid mediator profile. How exactly differentiation of monocytes into macrophages influences the expression of the selenoproteome in concert with the Se supply remains obscure. THP-1 monocytes were differentiated with phorbol 12-myristate 13-acetate (PMA) into macrophages and (i) the expression of selenoproteins, (ii) differentiation markers, (iii) the activity of NF-κB and NRF2, as well as (iv) lipid mediator profiles were analyzed. Se and differentiation affected the expression of selenoproteins in a heterogeneous manner. GPX4 expression was substantially decreased during differentiation, whereas GPX1 was not affected. Moreover, Se increased the expression of selenoproteins H and F, which was further enhanced by differentiation for selenoprotein F and diminished for selenoprotein H. Notably, LPS-induced expression of NF-κB target genes was facilitated by Se, as was the release of COX- and LOX-derived lipid mediators and substrates required for lipid mediator biosynthesis. This included TXB2, TXB3, 15-HETE, and 12-HEPE, as well as arachidonic acid (AA), eicosapentaenoic acid (EPA), and docosahexaenoic acid (DHA). Our results indicate that Se enables macrophages to accurately adjust redox-dependent signaling and thereby modulate downstream lipid mediator profiles.
Collapse
Affiliation(s)
- Theresa Wolfram
- Department of Nutritional Physiology, Institute of Nutritional Sciences, Friedrich Schiller University Jena, 07743 Jena, Germany; (T.W.); (L.M.W.); (J.A.); (M.S.)
| | - Leonie M. Weidenbach
- Department of Nutritional Physiology, Institute of Nutritional Sciences, Friedrich Schiller University Jena, 07743 Jena, Germany; (T.W.); (L.M.W.); (J.A.); (M.S.)
| | - Johanna Adolf
- Department of Nutritional Physiology, Institute of Nutritional Sciences, Friedrich Schiller University Jena, 07743 Jena, Germany; (T.W.); (L.M.W.); (J.A.); (M.S.)
| | - Maria Schwarz
- Department of Nutritional Physiology, Institute of Nutritional Sciences, Friedrich Schiller University Jena, 07743 Jena, Germany; (T.W.); (L.M.W.); (J.A.); (M.S.)
| | - Patrick Schädel
- Department of Pharmaceutical/Medicinal Chemistry, Institute of Pharmacy, University of Jena, 07743 Jena, Germany; (P.S.); (O.W.)
| | - André Gollowitzer
- Michael Popp Institute and Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, 6020 Innsbruck, Austria; (A.G.); (A.K.)
| | - Oliver Werz
- Department of Pharmaceutical/Medicinal Chemistry, Institute of Pharmacy, University of Jena, 07743 Jena, Germany; (P.S.); (O.W.)
| | - Andreas Koeberle
- Michael Popp Institute and Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, 6020 Innsbruck, Austria; (A.G.); (A.K.)
| | - Anna P. Kipp
- Department of Nutritional Physiology, Institute of Nutritional Sciences, Friedrich Schiller University Jena, 07743 Jena, Germany; (T.W.); (L.M.W.); (J.A.); (M.S.)
| | - Solveigh C. Koeberle
- Department of Nutritional Physiology, Institute of Nutritional Sciences, Friedrich Schiller University Jena, 07743 Jena, Germany; (T.W.); (L.M.W.); (J.A.); (M.S.)
- Institute of Pharmacy/Pharmacognosy and Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Innrain 80-82, 6020 Innsbruck, Austria
| |
Collapse
|
33
|
Ali MS, Lee EB, Lee SJ, Lee SP, Boby N, Suk K, Birhanu BT, Park SC. Aronia melanocarpa Extract Fermented by Lactobacillus plantarum EJ2014 Modulates Immune Response in Mice. Antioxidants (Basel) 2021; 10:antiox10081276. [PMID: 34439524 PMCID: PMC8389331 DOI: 10.3390/antiox10081276] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Revised: 08/06/2021] [Accepted: 08/07/2021] [Indexed: 12/14/2022] Open
Abstract
The present study aimed to assess the immunomodulatory effects of fermented Aronia melanocarpa extract (FAME) on RAW 264.7 cells and BALB/c mice. Aronia melanocarpa fruit was fermented with Lactobacillus plantarum EJ2014 by adding yeast extract and monosodium glutamate for 9 days at 30 °C to produce γ-aminobutyric acid (GABA). After fermentation, significant GABA production was noted, along with minerals, polyphenols, and flavonoids (p < 0.05). The polyphenol content was confirmed by liquid chromatography with tandem mass spectrometry (LC-MS/MS) analysis. RAW 264.7 cells were stimulated with lipopolysaccharide (LPS, 1 μg/mL) in the presence or absence of FAME, and proinflammatory cytokine contents were measured by qPCR. In the in vivo experiment, female BALB/c mice were administered 125, 250, and 500 mg/kg of FAME for 21 days. FAME treatment increased neutrophil migration and phagocytosis (p < 0.05). It also increased splenocyte proliferation, CD4+ and CD8+ T-cell expression, and lymphocyte proliferation. Furthermore, it increased IFN-γ, IL-2, and IL-4 cytokine levels in a dose-dependent manner (p < 0.05). However, it decreased TNF-α and IL-6 levels (p < 0.05). These results indicate that FAME fortified with GABA including bioactive compounds exerts anti-inflammatory effects by inhibiting proinflammatory cytokines in RAW 264.7 cells and modulates immune response in mice. Thus, FAME could be a potential therapeutic agent for inflammatory disorders.
Collapse
Affiliation(s)
- Md. Sekendar Ali
- Department of Biomedical Science and Department of Pharmacology, School of Medicine, Brain Science and Engineering Institute, Kyungpook National University, Daegu 41944, Korea; (M.S.A.); (K.S.)
- Laboratory of Veterinary Pharmacokinetics and Pharmacodynamics, College of Veterinary Medicine, Kyungpook National University, Daegu 41566, Korea; (E.-B.L.); (N.B.)
- Department of Pharmacy, International Islamic University Chittagong, Kumira, Chittagong 4318, Bangladesh
| | - Eon-Bee Lee
- Laboratory of Veterinary Pharmacokinetics and Pharmacodynamics, College of Veterinary Medicine, Kyungpook National University, Daegu 41566, Korea; (E.-B.L.); (N.B.)
| | - Seung-Jin Lee
- Development and Reproductive Toxicology Research Group, Korea Institute of Toxicology, Daejeon 34114, Korea;
| | - Sam-Pin Lee
- Department of Food Science and Technology, Keimyung University, Daegu 42601, Korea;
| | - Naila Boby
- Laboratory of Veterinary Pharmacokinetics and Pharmacodynamics, College of Veterinary Medicine, Kyungpook National University, Daegu 41566, Korea; (E.-B.L.); (N.B.)
| | - Kyoungho Suk
- Department of Biomedical Science and Department of Pharmacology, School of Medicine, Brain Science and Engineering Institute, Kyungpook National University, Daegu 41944, Korea; (M.S.A.); (K.S.)
| | - Biruk Tesfaye Birhanu
- Laboratory of Veterinary Pharmacokinetics and Pharmacodynamics, College of Veterinary Medicine, Kyungpook National University, Daegu 41566, Korea; (E.-B.L.); (N.B.)
- Correspondence: (B.T.B.); (S.-C.P.); Tel.: +82-10-5105-5545 (B.T.B.); +82-53-950-5964 (S.-C.P.)
| | - Seung-Chun Park
- Laboratory of Veterinary Pharmacokinetics and Pharmacodynamics, College of Veterinary Medicine, Kyungpook National University, Daegu 41566, Korea; (E.-B.L.); (N.B.)
- Correspondence: (B.T.B.); (S.-C.P.); Tel.: +82-10-5105-5545 (B.T.B.); +82-53-950-5964 (S.-C.P.)
| |
Collapse
|
34
|
Kalansuriya DM, Lim R, Lappas M. In vitro selenium supplementation suppresses key mediators involved in myometrial activation and rupture of fetal membranes. Metallomics 2021; 12:935-951. [PMID: 32373896 DOI: 10.1039/d0mt00063a] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Spontaneous preterm birth, which can affect up to 20% of all pregnancies, is the greatest contributor to perinatal morbidity and mortality. Infection is the leading pathological cause of spontaneous preterm birth. Infection activates the maternal immune system, resulting in the upregulation of pro-inflammatory and pro-labor mediators that activate myometrial contractions and rupture of fetal membranes. Anti-inflammatory agents therefore have the potential for the prevention of spontaneous preterm birth. Selenium, an essential micronutrient, has been shown to be a potent anti-inflammatory regulator. Notably, clinical and epidemiological studies have suggested a link between selenium and preterm birth. Thus, the aim of this study was to assess the effect of selenite (an inorganic form of selenium) on the expression of pro-inflammatory and pro-labor mediators in human gestational tissues. Human fetal membranes and myometrium were pre-incubated with or without selenite before incubation with the bacterial product lipopolysaccharide (LPS) to stimulate inflammation associated with preterm birth. Selenite blocked LPS-induced expression of pro-inflammatory cytokines and chemokines and enzymes involved in remodelling of myometrium and degradation of fetal membranes. Of note, selenite also suppressed myometrial activation induced by inflammation as evidenced by a decrease in LPS-induced prostaglandin signalling and myometrial cell contractility. These effects of selenite were mediated by the MAPK protein ERK as selenite blunted LPS induced activation of ERK. In conclusion, selenite suppresses key mediators involved in inflammation induced activation of mediators involved in active labor in human fetal membranes and myometrium. These findings support recent clinical studies demonstrating selenium supplementation is associated with decreased incidence of spontaneous preterm birth.
Collapse
Affiliation(s)
- Dineli Matheesha Kalansuriya
- Obstetrics, Nutrition and Endocrinology Group, Department of Obstetrics and Gynaecology, University of Melbourne, Level 4/163 Studley Road, Heidelberg, 3084, Victoria, Australia.
| | - Ratana Lim
- Obstetrics, Nutrition and Endocrinology Group, Department of Obstetrics and Gynaecology, University of Melbourne, Level 4/163 Studley Road, Heidelberg, 3084, Victoria, Australia. and Mercy Perinatal Research Centre, Mercy Hospital for Women, Heidelberg, Victoria, Australia
| | - Martha Lappas
- Obstetrics, Nutrition and Endocrinology Group, Department of Obstetrics and Gynaecology, University of Melbourne, Level 4/163 Studley Road, Heidelberg, 3084, Victoria, Australia. and Mercy Perinatal Research Centre, Mercy Hospital for Women, Heidelberg, Victoria, Australia
| |
Collapse
|
35
|
Rehman A, John P, Bhatti A. Biogenic Selenium Nanoparticles: Potential Solution to Oxidative Stress Mediated Inflammation in Rheumatoid Arthritis and Associated Complications. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:2005. [PMID: 34443836 PMCID: PMC8401564 DOI: 10.3390/nano11082005] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 04/22/2021] [Accepted: 04/26/2021] [Indexed: 12/17/2022]
Abstract
Rheumatoid arthritis (RA) is a common chronic inflammation-mediated disorder having systematic complications. RA triggers a self-directed inflammatory and immunological cascade that culminates in joint destruction. Though a range of treatment options are available, none of them are without adverse effects and this has led researchers to search for alternative solutions. Nanomedicine has emerged as a powerful therapeutic alternative, and selenium (Se) is an essential micronutrient trace element that has a crucial role in human health and disease. Selenium nanoparticles (SeNPs) derived from biological sources, such as plants, bacteria, fungi, and proteins, have exhibited remarkable candidate properties and toxicological profiles, and hence have shown potential to be used as antirheumatic agents. The potential of SeNPs can be attributed to the effect of functional groups bound to them, concentration, and most importantly to their nano range size. The antirheumatic effect of SeNPs is considerable due to its potential in amelioration of oxidative stress-mediated inflammation via downregulation of radical and nonradical species, markers of inflammation, and upregulation of inherent antioxidant defenses. The size and concentration impact of SeNPs has been shown in the subsequent antioxidant and anti-inflammatory properties. Moreover, the article emphasizes the role of these biogenic SeNPs as a notable option in the nanomedicine arena that needs to be further studied as a prospective remedial alternative to cure RA and medication-related adverse events.
Collapse
Affiliation(s)
| | - Peter John
- Department of Healthcare Biotechnology, Atta-ur-Rahman School of Applied Biosciences, National University of Sciences and Technology, Islamabad 44000, Pakistan; (A.R.); (A.B.)
| | | |
Collapse
|
36
|
Qin F, Wang FF, Wang CG, Chen Y, Li MS, Zhu YK, Huang XC, Fan CW, Wang HS. The neurotrophic and antineuroinflammatory effects of phenylpropanoids from Zanthoxylum nitidum var. tomentosum (Rutaceae). Fitoterapia 2021; 153:104990. [PMID: 34246746 DOI: 10.1016/j.fitote.2021.104990] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 07/05/2021] [Accepted: 07/05/2021] [Indexed: 11/28/2022]
Abstract
Three novel lignans (1, 5 and 6) and two novel quinic acids (16 and 17) along with 15 known phenylpropanoids were obtained from the ethanol extract of Zanthoxylum nitidum var. tomentosum (Rutaceae). Their structures were confirmed by comprehensive spectroscopic data (NMR and HRESIMS), and the absolute configurations of all novel compounds were elucidated based on electronic circular dichroism (ECD) spectroscopic data. The production of nitric oxide (NO) in BV-2 microglial cells induced through lipopolysaccharide (LPS) was used to evaluate in vitro anti-neuroinflammatory activity of compounds 1-20. Compound 2, 3, 7 and 16 showed excellent inhibition of LPS-induced NO production. The structure-activity relationships of the isolates were investigated. In addition, the mechanism of action of 2 was elucidated by RT-PCR and Western blotting analysis, which indicated that it reduced neuroinflammatory mainly through NLRP3/caspase1 signaling pathways in LPS-induced BV2 microglial cells.
Collapse
Affiliation(s)
- Feng Qin
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, People's Republic of China
| | - Fan-Fan Wang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, People's Republic of China
| | - Chun-Gu Wang
- Department of Pharmaceutical Engineering, School of Chemistry and Chemical Engineering and Jiangsu Province Hi-Tech Key Laboratory for Biomedical Research, Southeast University, Nanjing 211189, China
| | - Yao Chen
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, People's Republic of China
| | - Mei-Shan Li
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, People's Republic of China
| | - Yan-Kui Zhu
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, People's Republic of China
| | - Xiao-Chao Huang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, People's Republic of China; Jiangsu Key Laboratory of Regional Resource Exploitation and Medicinal Research, and Key Laboratory for Palygorskite Science and Applied Technology of Jiangsu, Huaiyin Institute of Technology, Huaian 223003, China
| | - Cai-Wen Fan
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, People's Republic of China
| | - Heng-Shan Wang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, People's Republic of China.
| |
Collapse
|
37
|
Capelle CM, Zeng N, Danileviciute E, Rodrigues SF, Ollert M, Balling R, He FQ. Identification of VIMP as a gene inhibiting cytokine production in human CD4+ effector T cells. iScience 2021; 24:102289. [PMID: 33851102 PMCID: PMC8024663 DOI: 10.1016/j.isci.2021.102289] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 02/08/2021] [Accepted: 03/05/2021] [Indexed: 12/14/2022] Open
Abstract
Many players regulating the CD4+ T cell-mediated inflammatory response have already been identified. However, the critical nodes that constitute the regulatory and signaling networks underlying CD4 T cell responses are still missing. Using a correlation-network-guided approach, here we identified VIMP (VCP-interacting membrane protein), one of the 25 genes encoding selenoproteins in humans, as a gene regulating the effector functions of human CD4 T cells, especially production of several cytokines including IL2 and CSF2. We identified VIMP as an endogenous inhibitor of cytokine production in CD4 effector T cells via both the E2F5 transcription regulatory pathway and the Ca2+/NFATC2 signaling pathway. Our work not only indicates that VIMP might be a promising therapeutic target for various inflammation-associated diseases but also shows that our network-guided approach can significantly aid in predicting new functions of the genes of interest.
Collapse
Affiliation(s)
- Christophe M. Capelle
- Department of Infection and Immunity, Luxembourg Institute of Health (LIH), 29, rue Henri Koch, 4354 Esch-sur-Alzette, Luxembourg
- Faculty of Science, Technology and Medicine, University of Luxembourg, 2, avenue de Université, 4365 Esch-sur-Alzette, Luxembourg
| | - Ni Zeng
- Department of Infection and Immunity, Luxembourg Institute of Health (LIH), 29, rue Henri Koch, 4354 Esch-sur-Alzette, Luxembourg
| | - Egle Danileviciute
- Department of Infection and Immunity, Luxembourg Institute of Health (LIH), 29, rue Henri Koch, 4354 Esch-sur-Alzette, Luxembourg
- Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, 6, avenue du Swing, 4367 Belvaux, Luxembourg
| | - Sabrina Freitas Rodrigues
- Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, 6, avenue du Swing, 4367 Belvaux, Luxembourg
| | - Markus Ollert
- Department of Infection and Immunity, Luxembourg Institute of Health (LIH), 29, rue Henri Koch, 4354 Esch-sur-Alzette, Luxembourg
- Department of Dermatology and Allergy Center, Odense Research Center for Anaphylaxis (ORCA), University of Southern Denmark, Odense, 5000 C, Denmark
| | - Rudi Balling
- Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, 6, avenue du Swing, 4367 Belvaux, Luxembourg
| | - Feng Q. He
- Department of Infection and Immunity, Luxembourg Institute of Health (LIH), 29, rue Henri Koch, 4354 Esch-sur-Alzette, Luxembourg
- Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, 6, avenue du Swing, 4367 Belvaux, Luxembourg
- Institute of Medical Microbiology, University Hospital Essen, University of Duisburg-Essen, 45122 Essen, Germany
| |
Collapse
|
38
|
Muhammad AI, Mohamed DAA, Chwen LT, Akit H, Samsudin AA. Effect of Sodium Selenite, Selenium Yeast, and Bacterial Enriched Protein on Chicken Egg Yolk Color, Antioxidant Profiles, and Oxidative Stability. Foods 2021; 10:foods10040871. [PMID: 33923439 PMCID: PMC8073331 DOI: 10.3390/foods10040871] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 04/05/2021] [Accepted: 04/10/2021] [Indexed: 12/11/2022] Open
Abstract
The chicken egg is one of nature's flawlessly preserved biological products, recognized as an excellent source of nutrients for humans. Selenium (Se) is an essential micro-element that plays a key role in biological processes. Organic selenium can be produced biologically by the microbial reduction of inorganic Se (sodium selenite). Therefore, the possibility of integrating Se enriched bacteria as a supplement in poultry feed can provide an interesting source of organic Se, thereby offering health-related advantages to humans. In this study, bacterial selenoproteins from Stenotrophomonas maltophilia was used as a dietary supplement with other Se sources in Lohman brown Classic laying hens to study the egg yolk color, egg yolk and breast antioxidant profile, oxidative stability, and storage effect for fresh and stored egg yolk at 4 ± 2 °C for 14-days. The results showed that dietary Se supplementation significantly (p < 0.05) improved egg yolk color, the antioxidant profile of egg yolk, and breast meat (total carotenoid and phenol content). When the Se treated groups were compared to control groups, there was a significant (p < 0.05) decrease in total cholesterol in fresh and stored egg yolk and breast muscle. In hens that were fed ADS18-Se, the primary oxidation products (MDA) concentrations in the eggs, breast, and thigh muscle, and plasma were significantly (p < 0.05) lower. However, the MDA content increased (p < 0.05) with an extended storage time in egg yolk. In comparison to inorganic Se and basal diets, egg yolk from hens fed organic Se remained fresh for two weeks. The egg yolk color, antioxidant profile, and oxidative status of egg yolk and tissue improve with dietary Se organic supplementation (ADS18 > Se-Yeast). The source of supplemented organic Se is critical for egg enrichment and antioxidant properties. As a result, ''functional eggs'' enriched with organic Se becomes possible to produce.
Collapse
Affiliation(s)
- Aliyu Ibrahim Muhammad
- Department of Animal Science, Faculty of Agriculture, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia; (A.I.M.); (L.T.C.); (H.A.)
- Department of Animal Science, Faculty of Agriculture, Federal University Dutse, Dutse P.M.B. 7156, Jigawa State, Nigeria
| | - Dalia Abd Alla Mohamed
- Department of Animal Nutrition, Faculty of Animal Production, University of Khartoum, P.O. Box 321, Khartoum 11115, Sudan;
| | - Loh Teck Chwen
- Department of Animal Science, Faculty of Agriculture, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia; (A.I.M.); (L.T.C.); (H.A.)
| | - Henny Akit
- Department of Animal Science, Faculty of Agriculture, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia; (A.I.M.); (L.T.C.); (H.A.)
| | - Anjas Asmara Samsudin
- Department of Animal Science, Faculty of Agriculture, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia; (A.I.M.); (L.T.C.); (H.A.)
- Correspondence: ; Tel.: +60-389474878; Fax: +63-89432954
| |
Collapse
|
39
|
Rakib A, Nain Z, Sami SA, Mahmud S, Islam A, Ahmed S, Siddiqui ABF, Babu SMOF, Hossain P, Shahriar A, Nainu F, Emran TB, Simal-Gandara J. A molecular modelling approach for identifying antiviral selenium-containing heterocyclic compounds that inhibit the main protease of SARS-CoV-2: an in silico investigation. Brief Bioinform 2021; 22:1476-1498. [PMID: 33623995 PMCID: PMC7929402 DOI: 10.1093/bib/bbab045] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 01/28/2021] [Accepted: 01/29/2021] [Indexed: 12/17/2022] Open
Abstract
Coronavirus disease 2019 (COVID-19), an infectious disease caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has been declared a global pandemic by the World Health Organization, and the situation worsens daily, associated with acute increases in case fatality rates. The main protease (Mpro) enzyme produced by SARS-CoV-2 was recently demonstrated to be responsible for not only viral reproduction but also impeding host immune responses. The element selenium (Se) plays a vital role in immune functions, both directly and indirectly. Thus, we hypothesised that Se-containing heterocyclic compounds might curb the activity of SARS-CoV-2 Mpro. We performed a molecular docking analysis and found that several of the selected selenocompounds showed potential binding affinities for SARS-CoV-2 Mpro, especially ethaselen (49), which exhibited a docking score of -6.7 kcal/mol compared with the -6.5 kcal/mol score for GC376 (positive control). Drug-likeness calculations suggested that these compounds are biologically active and possess the characteristics of ideal drug candidates. Based on the binding affinity and drug-likeness results, we selected the 16 most effective selenocompounds as potential anti-COVID-19 drug candidates. We also validated the structural integrity and stability of the drug candidate through molecular dynamics simulation. Using further in vitro and in vivo experiments, we believe that the targeted compound identified in this study (ethaselen) could pave the way for the development of prospective drugs to combat SARS-CoV-2 infections and trigger specific host immune responses.
Collapse
Affiliation(s)
- Ahmed Rakib
- Department of Pharmaceutical Sciences, College of Pharmacy, 881 Madison Ave, Memphis, TN 38163, USA
| | - Zulkar Nain
- Department of Biotechnology and Genetic Engineering, Islamic University, Bangladesh
| | - Saad Ahmed Sami
- Department of Biotechnology and Genetic Engineering, Islamic University, Bangladesh
| | - Shafi Mahmud
- Department of Genetic Engineering and Biotechnology, University of Rajshahi, Bangladesh
| | - Ashiqul Islam
- Department of Pharmacy, Mawlana Bhashani Science and Technology University, Bangladesh
| | - Shahriar Ahmed
- Department of Pharmacy, University of Chittagong, Bangladesh
| | | | | | - Payar Hossain
- Bachelor of Pharmacy professional degree focused in Pharmacy from University of Chittagong, Bangladesh
| | - Asif Shahriar
- Department of Immunology and Microbiology, School of Medicine, University of Texas Rio Grande Valley, USA
| | - Firzan Nainu
- Faculty of Pharmacy Universitas Hasanuddin, Indonesia
| | | | | |
Collapse
|
40
|
Kim EH, Kim SJ, Na HK, Han W, Kim NJ, Suh YG, Surh YJ. 15-Deoxy-Δ 12,14-prostaglandin J 2 Upregulates VEGF Expression via NRF2 and Heme Oxygenase-1 in Human Breast Cancer Cells. Cells 2021; 10:cells10030526. [PMID: 33801351 PMCID: PMC8002112 DOI: 10.3390/cells10030526] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2021] [Revised: 02/23/2021] [Accepted: 02/25/2021] [Indexed: 12/12/2022] Open
Abstract
There is a plethora of evidence to support that inflammation is causally linked to carcinogenesis. Cyclooxygenase-2 (COX-2), a rate-limiting enzyme in the biosynthesis of prostaglandins, is inappropriately overexpressed in various cancers and hence recognized as one of the hallmarks of chronic inflammation-associated malignancies. However, the mechanistic role of COX-2 as a link between inflammation and cancer remains largely undefined. In this study, we found that 15-deoxy-Δ12,14-prostaglandin J2 (15d-PGJ2), one of the final products of COX-2, induced upregulation of vascular endothelial growth factor (VEGF) and capillary formation and migration through nuclear factor erythroid 2-related factor 2 (NRF2)-dependent heme oxygenase-1 (HO-1) induction in MCF-7 cells. Analysis of the publicly available TCGA data set showed that high mRNA levels of both COX-2 and NRF2 correlated with the poor clinical outcomes in breast cancer patients. Moreover, human tissue analysis showed that the levels of 15d-PGJ2 as well the expression of COX-2, NRF2, and HO-1 were found to be increased in human breast cancer tissues. In conclusion, the elevated levels of 15d-PGJ2 during inflammatory response activate VEGF expression through NRF2-driven induction of HO-1 in human breast cancer cells, proposing a novel mechanism underlying the oncogenic function of 15d-PGJ2.
Collapse
Affiliation(s)
- Eun-Hee Kim
- College of Pharmacy and Institute of Pharmaceutical Sciences, CHA University, Seongnam 13488, Korea;
- Correspondence: (E.-H.K.); (Y.-J.S.); Tel.: +82-31-881-7179 (E.-H.K.); +82-2-880-7845 (Y.-J.S.)
| | - Su-Jung Kim
- Tumor Microenvironment Global Core Research Center, College of Pharmacy, Seoul National University, Seoul 08826, Korea;
| | - Hye-Kyung Na
- Department of Food Science and Biotechnology, College of Knowledge-Based Services Engineering, Sungshin Women’s University, Seoul 01133, Korea;
| | - Wonshik Han
- Cancer Research Institute, Seoul National University, Seoul 03080, Korea;
- Department of Surgery, Seoul National University College of Medicine, Seoul 03080, Korea
| | - Nam-Jung Kim
- College of Pharmacy, Kyung Hee University, Seoul 02447, Korea;
| | - Young-Ger Suh
- College of Pharmacy and Institute of Pharmaceutical Sciences, CHA University, Seongnam 13488, Korea;
| | - Young-Joon Surh
- Tumor Microenvironment Global Core Research Center, College of Pharmacy, Seoul National University, Seoul 08826, Korea;
- Cancer Research Institute, Seoul National University, Seoul 03080, Korea;
- Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, Seoul National University, Seoul 08826, Korea
- Correspondence: (E.-H.K.); (Y.-J.S.); Tel.: +82-31-881-7179 (E.-H.K.); +82-2-880-7845 (Y.-J.S.)
| |
Collapse
|
41
|
Kong L, Wu Q, Liu B. The impact of selenium administration on severe sepsis or septic shock: a meta-analysis of randomized controlled trials. Afr Health Sci 2021; 21:277-285. [PMID: 34394308 PMCID: PMC8356584 DOI: 10.4314/ahs.v21i1.36] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Introduction The efficacy of selenium administration to treat severe sepsis or septic shock remains controversial. We conduct a systematic review and meta-analysis to explore the impact of selenium administration on severe sepsis or septic shock. Methods We search PubMed, EMbase, Web of science, EBSCO, and Cochrane library databases through May 2020 for randomized controlled trials (RCTs) assessing the effect of selenium administration on severe sepsis or septic shock. Meta-analysis is performed using the random-effect model. Results Five RCTs involving 1482 patients are included in the meta-analysis. Overall, compared with control group in septic patients, selenium administration is not associated with reduced 28-day mortality (RR=0.93; 95% CI=0.73 to 1.19; P=0.58), but results in substantially decreased all-cause mortality (RR=0.78; 95% CI=0.63 to 0.98; P=0.03) and length of hospital stay (MD=-3.09; 95% CI=-5.68 to -0.50; P=0.02). Conclusion Selenium administration results in notable decrease in all-cause mortality and length of hospital stay, but shows no substantial influence on the 28-day mortality, length of ICU stay, duration of vasopressor therapy, the incidence of acute renal failure, adverse events, and serious adverse events for septic patients.
Collapse
Affiliation(s)
- Lin Kong
- Department of Clinical Nutrition, Children's Hospital of Chongqing Medical University, Chongqing 400014, China
- Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation base of Child development and Critical Disorders, Chongqing Key Laboratory of Pediatrics, Children's Hospital of Chongqing Medical University Chongqing 400014, China
| | - Qing Wu
- Department of Pharmacy, Children's Hospital of Chongqing Medical University, Chongqing 400014, China
- Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation base of Child development and Critical Disorders, Chongqing Key Laboratory of Pediatrics, Children's Hospital of Chongqing Medical University Chongqing 400014, China
| | - Bo Liu
- Department of Gastroenterology, Children's Hospital of Chongqing Medical University, Chongqing 400014, China
- Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation base of Child development and Critical Disorders, Chongqing Key Laboratory of Pediatrics, Children's Hospital of Chongqing Medical University Chongqing 400014, China
| |
Collapse
|
42
|
Solovyev N, Drobyshev E, Blume B, Michalke B. Selenium at the Neural Barriers: A Review. Front Neurosci 2021; 15:630016. [PMID: 33613188 PMCID: PMC7892976 DOI: 10.3389/fnins.2021.630016] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Accepted: 01/20/2021] [Indexed: 12/12/2022] Open
Abstract
Selenium (Se) is known to contribute to several vital physiological functions in mammals: antioxidant defense, fertility, thyroid hormone metabolism, and immune response. Growing evidence indicates the crucial role of Se and Se-containing selenoproteins in the brain and brain function. As for the other essential trace elements, dietary Se needs to reach effective concentrations in the central nervous system (CNS) to exert its functions. To do so, Se-species have to cross the blood-brain barrier (BBB) and/or blood-cerebrospinal fluid barrier (BCB) of the choroid plexus. The main interface between the general circulation of the body and the CNS is the BBB. Endothelial cells of brain capillaries forming the so-called tight junctions are the primary anatomic units of the BBB, mainly responsible for barrier function. The current review focuses on Se transport to the brain, primarily including selenoprotein P/low-density lipoprotein receptor-related protein 8 (LRP8, also known as apolipoprotein E receptor-2) dependent pathway, and supplementary transport routes of Se into the brain via low molecular weight Se-species. Additionally, the potential role of Se and selenoproteins in the BBB, BCB, and neurovascular unit (NVU) is discussed. Finally, the perspectives regarding investigating the role of Se and selenoproteins in the gut-brain axis are outlined.
Collapse
Affiliation(s)
| | - Evgenii Drobyshev
- Institut für Ernährungswissenschaft, Universität Potsdam, Potsdam, Germany
| | - Bastian Blume
- Research Unit Analytical BioGeoChemistry, Helmholtz Center Munich – German Research Center for Environmental Health (GmbH), Neuherberg, Germany
| | - Bernhard Michalke
- Research Unit Analytical BioGeoChemistry, Helmholtz Center Munich – German Research Center for Environmental Health (GmbH), Neuherberg, Germany
| |
Collapse
|
43
|
Di Stefano A, Maniscalco M, Balbi B, Ricciardolo FLM. Oxidative and Nitrosative Stress in the Pathogenesis of Obstructive Lung Diseases of Increasing Severity. Curr Med Chem 2021; 27:7149-7158. [PMID: 32496983 DOI: 10.2174/0929867327666200604165451] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Revised: 03/14/2020] [Accepted: 03/16/2020] [Indexed: 11/22/2022]
Abstract
The imbalance between increased oxidative agents and antioxidant defence mechanisms is central in the pathogenesis of obstructive lung diseases such as asthma and COPD. In these patients, there are increased levels of reactive oxygen species. Superoxide anions (O2 -), Hydrogen Peroxide (H2O2) and hydroxyl radicals (•OH) are critical for the formation of further cytotoxic radicals in the bronchi and lung parenchyma. Chronic inflammation, partly induced by oxidative stress, can further increase the oxidant burden through activated phagocytic cells (neutrophils, eosinophils, macrophages), particularly in severer disease states. Antioxidants and anti-inflammatory genes are, in fact, frequently downregulated in diseased patients. Nrf2, which activates the Antioxidant Response Element (ARE) leading to upregulation of GPx, thiol metabolism-associated detoxifying enzymes (GSTs) and stressresponse genes (HO-1) are all downregulated in animal models and patients with asthma and COPD. An exaggerated production of Nitric Oxide (NO) in the presence of oxidative stress can promote the formation of oxidizing reactive nitrogen species, such as peroxynitrite (ONO2 -), leading to nitration and DNA damage, inhibition of mitochondrial respiration, protein dysfunction, and cell damage in the biological systems. Protein nitration also occurs by activation of myeloperoxidase and H2O2, promoting oxidation of nitrite (NO2 -). There is increased nitrotyrosine and myeloperoxidase in the bronchi of COPD patients, particularly in severe disease. The decreased peroxynitrite inhibitory activity found in induced sputum of COPD patients correlates with pulmonary function. Markers of protein nitration - 3- nitrotyrosine, 3-bromotyrosine, and 3-chlorotyrosine - are increased in the bronchoalveolar lavage of severe asthmatics. Targeting the oxidative, nitrosative stress and associated lung inflammation through the use of either denitration mechanisms or new drug delivery strategies for antioxidant administration could improve the treatment of these chronic disabling obstructive lung diseases.
Collapse
Affiliation(s)
- Antonino Di Stefano
- Divisione di Pneumologia e Laboratorio di Immunopatologia dell'Apparato Cardio Respiratorio, Istituti Clinici Scientifici Maugeri SpA, Societa Benefit, IRCCS, Veruno, Italy
| | - Mauro Maniscalco
- Divisione di Pneumologia, Istituti Clinici Scientifici Maugeri SpA, Societa Benefit, IRCCS, Telese, Italy
| | - Bruno Balbi
- Divisione di Pneumologia e Laboratorio di Immunopatologia dell'Apparato Cardio Respiratorio, Istituti Clinici Scientifici Maugeri SpA, Societa Benefit, IRCCS, Veruno, Italy
| | - Fabio L M Ricciardolo
- Dipartimento di Scienze Cliniche e Biologiche, AOU, San Luigi, Orbassano, Universita di Torino, Torino, Italy
| |
Collapse
|
44
|
Liu PJ, Yao A, Ma L, Chen XY, Yu SL, Liu Y, Hou YX. Associations of Serum Selenium Levels in the First Trimester of Pregnancy with the Risk of Gestational Diabetes Mellitus and Preterm Birth: a Preliminary Cohort Study. Biol Trace Elem Res 2021; 199:527-534. [PMID: 32418160 DOI: 10.1007/s12011-020-02191-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Accepted: 05/10/2020] [Indexed: 12/21/2022]
Abstract
Women with gestational diabetes mellitus (GDM) may have lower serum selenium levels than healthy controls, which may be associated with preterm birth. We explored the association of serum selenium levels in early pregnancy with the risk of GDM and preterm birth among Chinese women. We included 398 women with a singleton pregnancy, who were followed up prospectively from the first prenatal visit until delivery. Serum selenium levels were measured in the first trimester. After delivery, data concerning mothers and their children were sourced from medical records by researchers who were blind to the participants' selenium status. Of the 398 women, 71 (17.8%) had GDM, 21(5.3%) had preterm birth, and 266 (66.8%) had selenium deficiency (serum selenium < 70 μg/L). Women in the upper three quartiles of serum selenium level did not have a significantly lower risk of GDM or preterm birth than those in the lowest quartile after adjustment for covariates (all p > 0.05). When serum selenium levels were classified as normal or deficient, the risk of GDM or preterm birth among women with normal serum selenium levels was still not lower than that of women with deficient serum selenium levels after adjustment for covariates (all p > 0.05). Although selenium deficiency was common in the Chinese women in our cohort, our results indicate that low serum selenium level during early pregnancy may not be a strong predictor of the risk of GDM and preterm birth. However, our sample size was small, and future studies with larger populations are warranted.
Collapse
Affiliation(s)
- Peng Ju Liu
- Department of Clinical Nutrition, Peking Union Medical College Hospital, China Academic Medical Science and Peking Union Medical College, Beijing, People's Republic of China
| | - Aimin Yao
- Department of Clinical Nutrition, Shunyi Women's and Children's Hospital of Beijing Children's Hospital, Beijing, China
| | - Liangkun Ma
- Department of Gynaecology and Obstetrics, Peking Union Medical College Hospital, China Academic Medical Science and Peking Union Medical College, Beijing, People's Republic of China
| | - Xiao Yan Chen
- Department of Gynaecology and Obstetrics, Quan Zhou Woman's and Children's Hospital, Quanzhou, Fujian, China
| | - Song Lin Yu
- Department of Clinical Laboratory, Peking Union Medical College Hospital, China Academic Medical Science and Peking Union Medical College, Beijing, China
| | - Yanping Liu
- Department of Clinical Nutrition, Peking Union Medical College Hospital, China Academic Medical Science and Peking Union Medical College, Beijing, People's Republic of China.
| | - Yi Xuan Hou
- School of Nursing, Peking Union Medical College, Beijing, People's Republic of China
| |
Collapse
|
45
|
Mou D, Ding D, Yang M, Jiang X, Zhao L, Che L, Fang Z, Xu S, Lin Y, Zhuo Y, Li J, Huang C, Zou Y, Li L, Wu D, Feng B. Maternal organic selenium supplementation during gestation improves the antioxidant capacity and reduces the inflammation level in the intestine of offspring through the NF-κB and ERK/Beclin-1 pathways. Food Funct 2020; 12:315-327. [PMID: 33300903 DOI: 10.1039/d0fo02274h] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Selenium (Se) is postulated to protect against inflammation in the gut by attenuating oxidative stress. This study was conducted to investigate the effects of maternal 2-hydroxy-4-methylselenobutanoic acid (HMSeBA), an organic Se source, on the intestinal antioxidant capacity and inflammation level of the offspring and its possible mechanism. Forty-three sows were randomly assigned to receive one of the following three diets during gestation: control diet, sodium selenite (Na2SeO3) supplemented diet or HMSeBA supplemented diet, respectively. Samples were collected from the offspring at birth and weaning. The results showed that maternal HMSeBA supplementation significantly upregulated ileal GPX2 and SePP1 gene expression compared with the control and Na2SeO3 groups, while suppressed the expression of ileal IL-1β, IL-6 and NF-κB genes in newborn piglets compared with the control group. Moreover, maternal HMSeBA supplementation significantly increased the protein of ileal GPX2 and p-mTOR compared with the control and Na2SeO3 groups, but decreased the ileal p-NF-κB, Beclin-1 and p-ERK proteins in newborn piglets compared with the control group. The weaned piglets of the HMSeBA group had lower serum IL-1β and IL-6 than the piglets of the control group at 2 h of LPS challenge. In addition, after the LPS challenge, the HMSeBA group had a lower relative abundance of ileal p-NF-κB and Beclin-1 proteins than the control and Na2SeO3 groups. In conclusion, maternal HMSeBA supplementation during gestation can improve the offspring's intestinal antioxidant capacity and reduce the inflammation level by suppressing NF-κB and ERK/Beclin-1 signaling.
Collapse
Affiliation(s)
- Daolin Mou
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, Sichuan 611130, China. and Key Laboratory of Animal Disease-Resistant Nutrition of Ministry of Education, Sichuan Agricultural University, Chengdu, Sichuan 611130, China and Key Laboratory of Animal Disease-Resistant Nutrition of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Dajiang Ding
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, Sichuan 611130, China. and Key Laboratory of Animal Disease-Resistant Nutrition of Ministry of Education, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Min Yang
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, Sichuan 611130, China. and Key Laboratory of Animal Disease-Resistant Nutrition of Ministry of Education, Sichuan Agricultural University, Chengdu, Sichuan 611130, China and Chengdu Agricultural College, Chengdu, Sichuan 611130, China
| | - Xuemei Jiang
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, Sichuan 611130, China. and Key Laboratory of Animal Disease-Resistant Nutrition of Ministry of Education, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Lianpeng Zhao
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, Sichuan 611130, China. and Key Laboratory of Animal Disease-Resistant Nutrition of Ministry of Education, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Lianqiang Che
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, Sichuan 611130, China. and Key Laboratory of Animal Disease-Resistant Nutrition of Ministry of Education, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Zhengfeng Fang
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, Sichuan 611130, China. and Key Laboratory of Animal Disease-Resistant Nutrition of Ministry of Education, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Shengyu Xu
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, Sichuan 611130, China. and Key Laboratory of Animal Disease-Resistant Nutrition of Ministry of Education, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Yan Lin
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, Sichuan 611130, China. and Key Laboratory of Animal Disease-Resistant Nutrition of Ministry of Education, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Yong Zhuo
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, Sichuan 611130, China. and Key Laboratory of Animal Disease-Resistant Nutrition of Ministry of Education, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Jian Li
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, Sichuan 611130, China. and Key Laboratory of Animal Disease-Resistant Nutrition of Ministry of Education, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Chao Huang
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Yuanfeng Zou
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Lixia Li
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - De Wu
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, Sichuan 611130, China. and Key Laboratory of Animal Disease-Resistant Nutrition of Ministry of Education, Sichuan Agricultural University, Chengdu, Sichuan 611130, China and Key Laboratory of Animal Disease-Resistant Nutrition of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Bin Feng
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, Sichuan 611130, China. and Key Laboratory of Animal Disease-Resistant Nutrition of Ministry of Education, Sichuan Agricultural University, Chengdu, Sichuan 611130, China and Key Laboratory of Animal Disease-Resistant Nutrition of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| |
Collapse
|
46
|
Sherlock LG, Sjostrom K, Sian L, Delaney C, Tipple TE, Krebs NF, Nozik-Grayck E, Wright CJ. Hepatic-Specific Decrease in the Expression of Selenoenzymes and Factors Essential for Selenium Processing After Endotoxemia. Front Immunol 2020; 11:595282. [PMID: 33224150 PMCID: PMC7674557 DOI: 10.3389/fimmu.2020.595282] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2020] [Accepted: 10/14/2020] [Indexed: 01/05/2023] Open
Abstract
Background Selenium (Se) levels decrease in the circulation during acute inflammatory states and sepsis, and are inversely associated with morbidity and mortality. A more specific understanding of where selenoproteins and Se processing are compromised during insult is needed. We investigated the acute signaling response in selenoenzymes and Se processing machinery in multiple organs after innate immune activation in response to systemic lipopolysaccharide (LPS). Methods Wild type (WT) adult male C57/B6 mice were exposed to LPS (5 mg/kg, intraperitoneal). Blood, liver, lung, kidney and spleen were collected from control mice as well as 2, 4, 8, and 24 h after LPS. Plasma Se concentration was determined by ICP-MS. Liver, lung, kidney and spleen were evaluated for mRNA and protein content of selenoenzymes and proteins required to process Se. Results After 8 h of endotoxemia, plasma levels of Se and the Se transporter protein, SELENOP were significantly decreased. Consistent with this timing, the transcription and protein content of several hepatic selenoenzymes, including SELENOP, glutathione peroxidase 1 and 4 were significantly decreased. Furthermore, hepatic transcription and protein content of factors required for the Se processing, including selenophosphate synthetase 2 (Sps2), phosphoseryl tRNA kinase (Pstk), selenocysteine synthase (SepsecS), and selenocysteine lyase (Scly) were significantly decreased. Significant LPS-induced downregulation of these key selenium processing enzymes was observed in isolated hepatocytes. In contrast to the acute and dynamic changes observed in the liver, selenoenzymes did not decrease in the lung, kidney or spleen. Conclusion Hepatic selenoenzyme production and Se processing factors decreased after endotoxemia. This was temporally associated with decreased circulating Se. In contrast to these active changes in the regulation of Se processing in the liver, selenoenzymes did not decrease in the lung, kidney or spleen. These findings highlight the need to further study the impact of innate immune challenges on Se processing in the liver and the impact of targeted therapeutic Se replacement strategies during innate immune challenge.
Collapse
Affiliation(s)
- Laura G Sherlock
- Perinatal Research Center, Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Kara Sjostrom
- Perinatal Research Center, Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Lei Sian
- Perinatal Nutrition Laboratory, Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Cassidy Delaney
- Cardiovascular Pulmonary Research Laboratories, Departments of Pediatrics and Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Trent E Tipple
- Department of Pediatrics, University of Oklahoma College of Medicine, Oklahoma City, OK, United States
| | - Nancy F Krebs
- Perinatal Nutrition Laboratory, Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Eva Nozik-Grayck
- Cardiovascular Pulmonary Research Laboratories, Departments of Pediatrics and Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Clyde J Wright
- Perinatal Research Center, Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| |
Collapse
|
47
|
Fuloria S, Subramaniyan V, Karupiah S, Kumari U, Sathasivam K, Meenakshi DU, Wu YS, Guad RM, Udupa K, Fuloria NK. A Comprehensive Review on Source, Types, Effects, Nanotechnology, Detection, and Therapeutic Management of Reactive Carbonyl Species Associated with Various Chronic Diseases. Antioxidants (Basel) 2020; 9:1075. [PMID: 33147856 PMCID: PMC7692604 DOI: 10.3390/antiox9111075] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2020] [Revised: 10/26/2020] [Accepted: 10/28/2020] [Indexed: 12/12/2022] Open
Abstract
Continuous oxidation of carbohydrates, lipids, and amino acids generate extremely reactive carbonyl species (RCS). Human body comprises some important RCS namely hexanal, acrolein, 4-hydroxy-2-nonenal, methylglyoxal, malondialdehyde, isolevuglandins, and 4-oxo-2- nonenal etc. These RCS damage important cellular components including proteins, nucleic acids, and lipids, which manifests cytotoxicity, mutagenicity, multitude of adducts and crosslinks that are connected to ageing and various chronic diseases like inflammatory disease, atherosclerosis, cerebral ischemia, diabetes, cancer, neurodegenerative diseases and cardiovascular disease. The constant prevalence of RCS in living cells suggests their importance in signal transduction and gene expression. Extensive knowledge of RCS properties, metabolism and relation with metabolic diseases would assist in development of effective approach to prevent numerous chronic diseases. Treatment approaches for RCS associated diseases involve endogenous RCS metabolizers, carbonyl metabolizing enzyme inducers, and RCS scavengers. Limited bioavailability and bio efficacy of RCS sequesters suggest importance of nanoparticles and nanocarriers. Identification of RCS and screening of compounds ability to sequester RCS employ several bioassays and analytical techniques. Present review describes in-depth study of RCS sources, types, properties, identification techniques, therapeutic approaches, nanocarriers, and their role in various diseases. This study will give an idea for therapeutic development to combat the RCS associated chronic diseases.
Collapse
Affiliation(s)
- Shivkanya Fuloria
- Faculty of Pharmacy, AIMST University, Kedah, Bedong 08100, Malaysia;
| | - Vetriselvan Subramaniyan
- Faculty of Medicine, Bioscience and Nursing, MAHSA University, Kuala Lumpur 42610, Malaysia; (V.S.); (Y.S.W.)
| | - Sundram Karupiah
- Faculty of Pharmacy, AIMST University, Kedah, Bedong 08100, Malaysia;
| | - Usha Kumari
- Faculty of Medicine, AIMST University, Kedah, Bedong 08100, Malaysia;
| | | | | | - Yuan Seng Wu
- Faculty of Medicine, Bioscience and Nursing, MAHSA University, Kuala Lumpur 42610, Malaysia; (V.S.); (Y.S.W.)
| | - Rhanye Mac Guad
- Faculty of Medicine and Health Science, University Malaysia Sabah, Kota Kinabalu 88400, Malaysia;
| | - Kaviraja Udupa
- Department of Neurophysiology, NIMHANS, Bangalore 560029, India;
| | | |
Collapse
|
48
|
Zhao Z, Qu F, Liu R, Xia Y. Differential expression of miR-142-3p protects cardiomyocytes from myocardial ischemia-reperfusion via TLR4/NFkB axis. J Cell Biochem 2020; 121:3679-3690. [PMID: 31746021 DOI: 10.1002/jcb.29506] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Accepted: 10/10/2019] [Indexed: 01/24/2023]
Abstract
Our research aims to explore the impact of miR-142 on myocardial apoptosis in the mouse ischemia and reperfusion (IR) model and investigate the underlying mechanisms at the molecular level. A considerable downregulation of miR-142 was observed in the cardiac area of mice post IR modeling. To understand the regulatory function of IR-induced miR-142 downregulation, the animals were categorized into four groups: IR model group; IR + agomir-142 group (IR mice treated with agomir-142); IR + antagomir-142 group (IR mice treated with antagomir-142); IR + agomir-142 + negative control (NC) group (IR mice processed with agomir-NC). The results indicated that agomir-142 upregulation was capable of shrinking IR damage-triggered infarction of the ventriculus sinister, strengthening myocardial function, and guarding against cardiomyocyte apoptosis, whereas further decreased miR-142 with antagomir-142 infection displayed negative influence of miR-142 against mice IR damage. In the cellular assay, miR-142 overexpression significantly improved proliferation and inhibited the apoptosis of neonatal rat cardiomyocytes (NRCs). Moreover, we found that miR-142 reduced the Bcl-2/Bax ratio and upregulated hydrogen peroxide (H2 O2 )-induced caspase-3 expression. Furthermore, transfection with an miR-142 mimic prevented the upregulation of TLR4/NFkB expression and activation in H2 O2 -treated NRCs. Our findings also revealed that miR-142 is linked to the 3'-untranslated area of the TLR4 gene. In addition, TLR4 overexpression considerably ablated the protective effects of miR-142 in terms of the cell viability of H2 O2 -treated NRCs. Taken together, miR-142 agomir injection in mice and miR-142 mimic transfection in NRCs plays a role in protecting the heart from IR damage and malfunction via the TLR4/NFkB axis both in vivo and in vitro.
Collapse
Affiliation(s)
- Zhikun Zhao
- Division One, For Senior Officers, Fourth Medical Center of PLA General Hospital, Beijing, Haidian, China
| | - Feng Qu
- Department of Orthopedics, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Runmei Liu
- Division One, For Senior Officers, Fourth Medical Center of PLA General Hospital, Beijing, Haidian, China
| | - Yunfeng Xia
- Division One, For Senior Officers, Fourth Medical Center of PLA General Hospital, Beijing, Haidian, China
| |
Collapse
|
49
|
Nettleford SK, Zhao L, Qian F, Herold M, Arner B, Desai D, Amin S, Xiong N, Singh V, Carlson BA, Prabhu KS. The Essential Role of Selenoproteins in the Resolution of Citrobacter rodentium-Induced Intestinal Inflammation. Front Nutr 2020; 7:96. [PMID: 32775340 PMCID: PMC7381334 DOI: 10.3389/fnut.2020.00096] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Accepted: 05/26/2020] [Indexed: 12/13/2022] Open
Abstract
Enteropathogenic Escherichia coli (EPEC) leads to adverse colonic inflammation associated with poor resolution of inflammation and loss of epithelial integrity. Micronutrient trace element selenium (Se) is incorporated into selenoproteins as the 21st amino acid, selenocysteine (Sec). Previous studies have shown that such an incorporation of Sec into the selenoproteome is key for the anti-inflammatory functions of Se in macrophages and other immune cells. An intriguing mechanism underlying the anti-inflammatory and pro-resolving effects of Se stems from the ability of selenoproteins to skew arachidonic acid metabolism from pro-inflammatory mediators, prostaglandin E2 (PGE2) toward anti-inflammatory mediators derived from PGD2, such as 15-deoxy-Δ12, 14- prostaglandin J2 (15d-PGJ2), via eicosanoid class switching of bioactive lipids. The impact of Se and such an eicosanoid-class switching mechanism was tested in an enteric infection model of gut inflammation by C. rodentium, a murine equivalent of EPEC. C57BL/6 mice deficient in Se (Se-D) experienced higher mortality when compared to those on Se adequate (0.08 ppm Se) and Se supplemented (0.4 ppm Se) diets following infection. Decreased survival was associated with decreased group 3 innate lymphoid cells (ILC3s) and T helper 17 (Th17) cells in colonic lamina propria of Se-D mice along with deceased expression of epithelial barrier protein Zo-1. Inhibition of metabolic inactivation of PGE2 by 15-prostaglandin dehydrogenase blocked the Se-dependent increase in ILC3 and Th17 cells in addition to reducing epithelial barrier integrity, as seen by increased systemic levels of FITC-dextran following oral administration; while 15d-PGJ2 administration in Se-D mice alleviated the effects by increasing ILC3 and Th17 cells. Mice lacking selenoproteins in monocyte/macrophages via the conditional deletion of the tRNA[Sec] showed increased mortality post infection. Our studies indicate a crucial role for dietary Se in the protection against inflammation following enteric infection via immune mechanisms involving epithelial barrier integrity.
Collapse
Affiliation(s)
- Shaneice K Nettleford
- Department of Veterinary and Biomedical Sciences, Center for Molecular Immunology and Infectious Disease, The Pennsylvania State University, State College, PA, United States
| | - Luming Zhao
- Department of Veterinary and Biomedical Sciences, Center for Molecular Immunology and Infectious Disease, The Pennsylvania State University, State College, PA, United States
| | - Fenghua Qian
- Department of Veterinary and Biomedical Sciences, Center for Molecular Immunology and Infectious Disease, The Pennsylvania State University, State College, PA, United States
| | - Morgan Herold
- Department of Veterinary and Biomedical Sciences, Center for Molecular Immunology and Infectious Disease, The Pennsylvania State University, State College, PA, United States
| | - Brooke Arner
- Department of Veterinary and Biomedical Sciences, Center for Molecular Immunology and Infectious Disease, The Pennsylvania State University, State College, PA, United States
| | - Dhimant Desai
- Department of Pharmacology, Organic Synthesis Core Laboratory, Penn State Cancer Institute, Penn State College of Medicine, Hershey, PA, United States
| | - Shantu Amin
- Department of Pharmacology, Organic Synthesis Core Laboratory, Penn State Cancer Institute, Penn State College of Medicine, Hershey, PA, United States
| | - Na Xiong
- Department of Microbiology, Immunology & Molecular Genetics, Long School of Medicine, University of Texas Health San Antonio, San Antonio, TX, United States
| | - Vishal Singh
- Department of Nutritional Sciences, The Pennsylvania State University, State College, PA, United States
| | - Bradley A Carlson
- Molecular Biology of Selenium Section, Mouse Genetics Program, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States
| | - K Sandeep Prabhu
- Department of Veterinary and Biomedical Sciences, Center for Molecular Immunology and Infectious Disease, The Pennsylvania State University, State College, PA, United States
| |
Collapse
|
50
|
Al-Dossari MH, Fadda LM, Attia HA, Hasan IH, Mahmoud AM. Curcumin and Selenium Prevent Lipopolysaccharide/Diclofenac-Induced Liver Injury by Suppressing Inflammation and Oxidative Stress. Biol Trace Elem Res 2020; 196:173-183. [PMID: 31654258 DOI: 10.1007/s12011-019-01910-4] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Accepted: 09/20/2019] [Indexed: 02/06/2023]
Abstract
Diclofenac (DCL), an anti-inflammatory drug used to reduce pain and inflammation, ranks in the top causes of drug-induced liver injury. The inflammatory stress induced by inflammagens is implicated in DCL-induced liver injury. Curcumin (CUR) and selenium (Se) possess anti-inflammatory effects; therefore, this study evaluated their protective potential against lipopolysaccharide (LPS)/DCL-induced liver injury. Rats received CUR and/or Se for 7 days followed by a single intravenous administration of LPS 2 h before a single injection of DCL and two other doses of CUR and/or Se 2 and 8 h after DCL. Administration of nontoxic doses of LPS and DCL resulted in liver damage evidenced by the significantly elevated liver function markers in serum. LPS/DCL-induced liver injury was confirmed by histological alterations, increased lipid peroxidation and nitric oxide, and diminished glutathione and superoxide dismutase. CUR and/or Se prevented liver injury, histological alterations, and oxidative stress and boosted antioxidant defenses in LPS/DCL-induced rats. In addition, CUR and/or Se reduced serum C-reactive protein, liver pro-inflammatory cytokines, and the expression of TLR4, NF-κB, JNK, and p38, and upregulated heme oxygenase-1 (HO-1). In conclusion, CUR and/or Se mitigated LPS/DCL-induced liver injury in rats by suppressing TLR4 signaling, inflammation, and oxidative stress and boosting HO-1 and other antioxidants. Therefore, CUR and Se can hinder the progression and severity of liver injury during acute inflammatory episodes.
Collapse
Affiliation(s)
- Manal H Al-Dossari
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Laila M Fadda
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Hala A Attia
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
- Department of Biochemistry, College of Pharmacy, Mansoura University, Mansoura, Egypt
| | - Iman H Hasan
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Ayman M Mahmoud
- Physiology Division, Zoology Department, Faculty of Science, Beni-Suef University, Beni-Suef, 62514, Egypt.
| |
Collapse
|