1
|
Li W, Dao Y, Lin T, Austin MJ, Lin NP, Chou DHC. Modulation of insulin receptor activation through controlled folding of peptide ligands. Org Biomol Chem 2025; 23:4776-4781. [PMID: 40277138 DOI: 10.1039/d5ob00363f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2025]
Abstract
Insulin receptor (IR) activation requires coordinated engagement of two distinct insulin-binding sites, and recent structural insights have highlighted the role of a disulfide bond in IR agonist S597 in the S597-IR complex. In this study, we synthesized and evaluated analogs of S597 and the IR antagonist Ins-AC-S2, replacing their native disulfide bridges with alternative linkages. While these modifications had minimal impact on Ins-AC-S2's antagonistic activity, they significantly reduced the agonistic potency of S597, suggesting that conformational stability is critical for receptor activation. Our findings provide a structural basis for designing non-insulin ligands to selectively activate or inhibit the insulin receptor, with potential therapeutic implications.
Collapse
Affiliation(s)
- Wenchao Li
- Department of Pediatrics, Division of Diabetes and Endocrinology, Stanford University, USA.
| | - Yuankun Dao
- Department of Pediatrics, Division of Diabetes and Endocrinology, Stanford University, USA.
| | - Terra Lin
- Department of Pediatrics, Division of Diabetes and Endocrinology, Stanford University, USA.
| | - Maxwell J Austin
- Department of Pediatrics, Division of Diabetes and Endocrinology, Stanford University, USA.
- Department of Chemistry, Stanford University, USA
| | - Nai-Pin Lin
- Department of Pediatrics, Division of Diabetes and Endocrinology, Stanford University, USA.
| | - Danny Hung-Chieh Chou
- Department of Pediatrics, Division of Diabetes and Endocrinology, Stanford University, USA.
| |
Collapse
|
2
|
Zapata-Mercado E, Rainwater RR, Özdemir E, Azarova EV, Krzyscik MA, Pasquale EB, Hristova K. Differential association of EphA2 intracellular regions in biased signaling. J Biol Chem 2025; 301:108383. [PMID: 40049409 PMCID: PMC11999613 DOI: 10.1016/j.jbc.2025.108383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2025] [Revised: 02/26/2025] [Accepted: 02/28/2025] [Indexed: 04/06/2025] Open
Abstract
Biased signaling is the ability of a receptor to differentially activate certain signaling cascades in response to different ligands. Our previous work demonstrated that the monomeric ephrinA1 ligand and the widely used dimeric ephrinA1-Fc ligand induced EphA2 receptor tyrosine kinase (RTK) biased signaling. The hypothesis that RTK biased signaling is a consequence of differential interactions between receptor intracellular regions when different ligands are bound to the extracellular region has not been experimentally verified thus far, in part because of the lack of high-resolution structures of full-length RTK oligomers. Here, we compare the effects of deletion of intracellular regions in EphA2 oligomers bound to the biased ligands, monomeric ephrinA1 or ephrinA1-Fc. Our data reveal distinct differences in the intracellular organization of EphA2 oligomers bound to the two ligands, supporting the hypothesis. They also suggest that EphA2 signaling could be modulated by agents that alter interactions between oligomerized EphA2 intracellular regions by binding at sites that can be distant from the ATP-binding pocket.
Collapse
Affiliation(s)
- Elmer Zapata-Mercado
- Department of Materials Science and Engineering and Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, Maryland, USA
| | - Randall R Rainwater
- Department of Materials Science and Engineering and Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, Maryland, USA
| | - Ece Özdemir
- Department of Materials Science and Engineering and Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, Maryland, USA
| | - Evgenia V Azarova
- Department of Materials Science and Engineering and Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, Maryland, USA
| | - Mateusz A Krzyscik
- Department of Materials Science and Engineering and Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, Maryland, USA
| | - Elena B Pasquale
- Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California, USA
| | - Kalina Hristova
- Department of Materials Science and Engineering and Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, Maryland, USA.
| |
Collapse
|
3
|
Choi E, Duan C, Bai XC. Regulation and function of insulin and insulin-like growth factor receptor signalling. Nat Rev Mol Cell Biol 2025:10.1038/s41580-025-00826-3. [PMID: 39930003 DOI: 10.1038/s41580-025-00826-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/13/2025] [Indexed: 03/24/2025]
Abstract
Receptors of insulin and insulin-like growth factors (IGFs) are receptor tyrosine kinases whose signalling controls multiple aspects of animal physiology throughout life. In addition to regulating metabolism and growth, insulin-IGF receptor signalling has recently been linked to a variety of new, cell type-specific functions. In the last century, key questions have focused on how structural differences of insulin and IGFs affect receptor activation, and how insulin-IGF receptor signalling translates into pleiotropic biological functions. Technological advances such as cryo-electron microscopy have provided a detailed understanding of how native and engineered ligands activate insulin-IGF receptors. In this Review, we highlight recent structural and functional insights into the activation of insulin-IGF receptors, and summarize new agonists and antagonists developed for intervening in the activation of insulin-IGF receptor signalling. Furthermore, we discuss recently identified regulatory mechanisms beyond ligand-receptor interactions and functions of insulin-IGF receptor signalling in diseases.
Collapse
Affiliation(s)
- Eunhee Choi
- Department of Pathology and Cell Biology, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, USA.
| | - Cunming Duan
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI, USA.
| | - Xiao-Chen Bai
- Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, TX, USA.
| |
Collapse
|
4
|
Jørgensen SH, Emdal KB, Pedersen AK, Axelsen LN, Kildegaard HF, Demozay D, Pedersen TÅ, Grønborg M, Slaaby R, Nielsen PK, Olsen JV. Multi-layered proteomics identifies insulin-induced upregulation of the EphA2 receptor via the ERK pathway which is dependent on low IGF1R level. Sci Rep 2024; 14:28856. [PMID: 39572596 PMCID: PMC11582730 DOI: 10.1038/s41598-024-77817-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Accepted: 10/25/2024] [Indexed: 11/24/2024] Open
Abstract
Insulin resistance impairs the cellular insulin response, and often precedes metabolic disorders, like type 2 diabetes, impacting an increasing number of people globally. Understanding the molecular mechanisms in hepatic insulin resistance is essential for early preventive treatments. To elucidate changes in insulin signal transduction associated with hepatocellular resistance, we employed a multi-layered mass spectrometry-based proteomics approach focused on insulin receptor (IR) signaling at the interactome, phosphoproteome, and proteome levels in a long-term hyperinsulinemia-induced insulin-resistant HepG2 cell line with a knockout of the insulin-like growth factor 1 receptor (IGF1R KO). The analysis revealed insulin-stimulated recruitment of the PI3K complex in both insulin-sensitive and -resistant cells. Phosphoproteomics showed attenuated signaling via the metabolic PI3K-AKT pathway but sustained extracellular signal-regulated kinase (ERK) activity in insulin-resistant cells. At the proteome level, the ephrin type-A receptor 2 (EphA2) showed an insulin-induced increase in expression, which occurred through the ERK signaling pathway and was concordantly independent of insulin resistance. Induction of EphA2 by insulin was confirmed in additional cell lines and observed uniquely in cells with high IR-to-IGF1R ratio. The multi-layered proteomics dataset provided insights into insulin signaling, serving as a resource to generate and test hypotheses, leading to an improved understanding of insulin resistance.
Collapse
Affiliation(s)
- Sarah Hyllekvist Jørgensen
- Proteomics Program, Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, 2200, Copenhagen, Denmark
- Global Research Technologies, Novo Nordisk A/S, 2760, Maaloev, Denmark
| | - Kristina Bennet Emdal
- Proteomics Program, Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, 2200, Copenhagen, Denmark.
| | - Anna-Kathrine Pedersen
- Proteomics Program, Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, 2200, Copenhagen, Denmark
| | | | | | - Damien Demozay
- Global Drug Discovery, Novo Nordisk A/S, 2760, Maaloev, Denmark
| | | | - Mads Grønborg
- Global Translation, Novo Nordisk A/S, 2760, Maaloev, Denmark
| | - Rita Slaaby
- Global Drug Discovery, Novo Nordisk A/S, 2760, Maaloev, Denmark
| | | | - Jesper Velgaard Olsen
- Proteomics Program, Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, 2200, Copenhagen, Denmark.
| |
Collapse
|
5
|
Liu C, Hong T, Zhao C, Xue T, Wang S, Ren Z. Single-nucleus transcriptomics and chromatin accessibility analysis of musk gland development in Chinese forest musk deer (Moschus berezovskii). Integr Zool 2024; 19:955-974. [PMID: 38644525 DOI: 10.1111/1749-4877.12823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 12/28/2023] [Accepted: 02/15/2024] [Indexed: 04/23/2024]
Abstract
Musk secreted by male forest musk deer (Moschus berezovskii) musk glands is an invaluable component of medicine and perfume. Musk secretion depends on musk gland maturation; however, the mechanism of its development remains elusive. Herein, using single cell multiome ATAC + gene expression coupled with several bioinformatic analyses, a dynamic transcriptional cell atlas of musk gland development was revealed, and key genes and transcription factors affecting its development were determined. Twelve cell types, including two different types of acinar cells (Clusters 0 and 10) were identified. Single-nucleus RNA and single-nucleus ATAC sequencing analyses revealed that seven core target genes associated with musk secretion (Hsd17b2, Acacb, Lss, Vapa, Aldh16a1, Aldh7a1, and Sqle) were regulated by 12 core transcription factors (FOXO1, CUX2, RORA, RUNX1, KLF6, MGA, NFIC, FOXO3, ETV5, NR3C1, HSF4, and MITF) during the development of Cluster 0 acinar cells. Kyoto Encyclopedia of Genes and Genomes enrichment showed significant changes in the pathways associated with musk secretion during acinar cell development. Gene set variation analysis also revealed that certain pathways associated with musk secretion were enriched in 6-year-old acinar cells. A gene co-expression network was constructed during acinar cell development to provide a precise understanding of the connections between transcription factors, genes, and pathways. Finally, intercellular communication analysis showed that intercellular communication is involved in musk gland development. This study provides crucial insights into the changes and key factors underlying musk gland development, which serve as valuable resources for studying musk secretion mechanisms and promoting the protection of this endangered species.
Collapse
Affiliation(s)
- Chenmiao Liu
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Tingting Hong
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Chengcheng Zhao
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Tao Xue
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Shuhui Wang
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Zhanjun Ren
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| |
Collapse
|
6
|
Zhang Y, Hung-Chieh Chou D. From Natural Insulin to Designed Analogs: A Chemical Biology Exploration. Chembiochem 2023; 24:e202300470. [PMID: 37800626 DOI: 10.1002/cbic.202300470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 08/25/2023] [Indexed: 10/07/2023]
Abstract
Since its discovery in 1921, insulin has been at the forefront of scientific breakthroughs. From its amino acid sequencing to the revelation of its three-dimensional structure, the progress in insulin research has spurred significant therapeutic breakthroughs. In recent years, protein engineering has introduced innovative chemical and enzymatic methods for insulin modification, fostering the development of therapeutics with tailored pharmacological profiles. Alongside these advances, the quest for self-regulated, glucose-responsive insulin remains a holy grail in the field. In this article, we highlight the pivotal role of chemical biology in driving these innovations and discuss how it continues to shape the future trajectory of insulin research.
Collapse
Affiliation(s)
- Yanxian Zhang
- Division of Endocrinology and Diabetes, Department of Pediatrics, School of Medicine, Stanford University, 1701 Page Mill Road, Palo Alto, CA 94304, USA
| | - Danny Hung-Chieh Chou
- Division of Endocrinology and Diabetes, Department of Pediatrics, School of Medicine, Stanford University, 1701 Page Mill Road, Palo Alto, CA 94304, USA
| |
Collapse
|
7
|
Thomas A, Krombholz S, Breuer J, Walpurgis K, Thevis M. Insulin-mimetic peptides in sports drug testing. Drug Test Anal 2023; 15:1468-1476. [PMID: 37691519 DOI: 10.1002/dta.3572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 08/25/2023] [Accepted: 08/25/2023] [Indexed: 09/12/2023]
Abstract
Because of its influence on carbohydrate metabolism and, at the same time, anti-catabolic effects, the misuse of the peptide hormone insulin and its synthetic analogs is prohibited in sports at all times according to the regulations of the World Anti-Doping Agency (WADA). The biological effects of insulin and its analogs are mediated through binding to the insulin receptor, which was also found to be activated by different peptides structurally largely unrelated to insulin. Such insulin-mimetic peptides or selective-insulin receptor modulators (SIRMs) represent a novel class of potential performance-enhancing agents, which is currently not explicitly mentioned on the WADA Prohibited List. Within this research project, advanced solid-phase extraction (SPE) and liquid chromatography coupled to high-resolution tandem mass spectrometry (LC-HRMS/MS) were employed to develop a fast, reliable, and specific assay for the detection of the insulin-mimetic peptides S597 and S519 from plasma. Method validation demonstrated a detection limit of 0.5 ng/mL and successfully illustrated the applicability of the approach to routine sports drug testing programs. Moreover, sophisticated and comprehensive in vitro metabolism experiments were conducted, and several metabolic degradation products were identified, which will enhance the information generated from future analyses of doping control samples.
Collapse
Affiliation(s)
- Andreas Thomas
- Institute of Biochemistry/Center for Preventive Doping Research, German Sport University Cologne, Cologne, Germany
| | - Sophia Krombholz
- Institute of Biochemistry/Center for Preventive Doping Research, German Sport University Cologne, Cologne, Germany
| | - Johanna Breuer
- Institute of Biochemistry/Center for Preventive Doping Research, German Sport University Cologne, Cologne, Germany
| | - Katja Walpurgis
- Institute of Biochemistry/Center for Preventive Doping Research, German Sport University Cologne, Cologne, Germany
| | - Mario Thevis
- Institute of Biochemistry/Center for Preventive Doping Research, German Sport University Cologne, Cologne, Germany
- European Monitoring Center for Emerging Doping Agents (EuMoCEDA), Cologne/Bonn, Germany
| |
Collapse
|
8
|
Abstract
Nutrient intake is obligatory for animal growth and development, but nutrients alone are not sufficient. Indeed, insulin and homologous hormones are required for normal growth even in the presence of nutrients. These hormones communicate nutrient status between organs, allowing animals to coordinate growth and metabolism with nutrient supply. Insulin and related hormones, such as insulin-like growth factors and insulin-like peptides, play important roles in development and metabolism, with defects in insulin production and signaling leading to hyperglycemia and diabetes. Here, we describe the insulin hormone family and the signal transduction pathways activated by these hormones. We highlight the roles of insulin signaling in coordinating maternal and fetal metabolism and growth during pregnancy, and we describe how secretion of insulin is regulated at different life stages. Additionally, we discuss the roles of insulin signaling in cell growth, stem cell proliferation and cell differentiation. We provide examples of the role of insulin in development across multiple model organisms: Caenorhabditis elegans, Drosophila, zebrafish, mouse and human.
Collapse
Affiliation(s)
- Miyuki Suzawa
- Department of Pharmacology, University of Virginia, Charlottesville, VA 22908, USA
| | - Michelle L. Bland
- Department of Pharmacology, University of Virginia, Charlottesville, VA 22908, USA
| |
Collapse
|
9
|
Yunn NO, Kim J, Ryu SH, Cho Y. A stepwise activation model for the insulin receptor. Exp Mol Med 2023; 55:2147-2161. [PMID: 37779149 PMCID: PMC10618199 DOI: 10.1038/s12276-023-01101-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 06/25/2023] [Accepted: 07/24/2023] [Indexed: 10/03/2023] Open
Abstract
The binding of insulin to the insulin receptor (IR) triggers a cascade of receptor conformational changes and autophosphorylation, leading to the activation of metabolic and mitogenic pathways. Recent advances in the structural and functional analyses of IR have revealed the conformations of the extracellular domains of the IR in inactive and fully activated states. However, the early activation mechanisms of this receptor remain poorly understood. The structures of partially activated IR in complex with aptamers provide clues for understanding the initial activation mechanism. In this review, we discuss the structural and functional features of IR complexed with various ligands and propose a model to explain the sequential activation mechanism. Moreover, we discuss the structures of IR complexed with biased agonists that selectively activate metabolic pathways and provide insights into the design of selective agonists and their clinical implications.
Collapse
Affiliation(s)
- Na-Oh Yunn
- Postech Biotech Center, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea.
| | - Junhong Kim
- Department of Life Sciences, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
| | - Sung Ho Ryu
- Department of Life Sciences, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
| | - Yunje Cho
- Department of Life Sciences, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea.
- Department of Biomedical Science and Engineering, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea.
| |
Collapse
|
10
|
Le TKC, Dao XD, Nguyen DV, Luu DH, Bui TMH, Le TH, Nguyen HT, Le TN, Hosaka T, Nguyen TTT. Insulin signaling and its application. Front Endocrinol (Lausanne) 2023; 14:1226655. [PMID: 37664840 PMCID: PMC10469844 DOI: 10.3389/fendo.2023.1226655] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 07/19/2023] [Indexed: 09/05/2023] Open
Abstract
The discovery of insulin in 1921 introduced a new branch of research into insulin activity and insulin resistance. Many discoveries in this field have been applied to diagnosing and treating diseases related to insulin resistance. In this mini-review, the authors attempt to synthesize the updated discoveries to unravel the related mechanisms and inform the development of novel applications. Firstly, we depict the insulin signaling pathway to explain the physiology of insulin action starting at the receptor sites of insulin and downstream the signaling of the insulin signaling pathway. Based on this, the next part will analyze the mechanisms of insulin resistance with two major provenances: the defects caused by receptors and the defects due to extra-receptor causes, but in this study, we focus on post-receptor causes. Finally, we discuss the recent applications including the diseases related to insulin resistance (obesity, cardiovascular disease, Alzheimer's disease, and cancer) and the potential treatment of those based on insulin resistance mechanisms.
Collapse
Affiliation(s)
- Thi Kim Chung Le
- School of Preventive Medicine and Public Health, Hanoi Medical University, Hanoi, Vietnam
| | - Xuan Dat Dao
- School of Preventive Medicine and Public Health, Hanoi Medical University, Hanoi, Vietnam
| | - Dang Vung Nguyen
- School of Preventive Medicine and Public Health, Hanoi Medical University, Hanoi, Vietnam
| | - Duc Huy Luu
- Department of Biopharmaceuticals, Institute of Chemistry, Vietnam Academy of Science and Technology, Hanoi, Vietnam
| | - Thi Minh Hanh Bui
- School of Preventive Medicine and Public Health, Hanoi Medical University, Hanoi, Vietnam
| | - Thi Huong Le
- School of Preventive Medicine and Public Health, Hanoi Medical University, Hanoi, Vietnam
| | - Huu Thang Nguyen
- School of Preventive Medicine and Public Health, Hanoi Medical University, Hanoi, Vietnam
| | - Tran Ngoan Le
- School of Preventive Medicine and Public Health, Hanoi Medical University, Hanoi, Vietnam
| | - Toshio Hosaka
- Department of Food and Nutritional Sciences, University of Shizuoka, Shizuoka, Japan
| | - Thi Thu Thao Nguyen
- School of Preventive Medicine and Public Health, Hanoi Medical University, Hanoi, Vietnam
| |
Collapse
|
11
|
Lubos M, Pícha J, Selicharová I, Žák J, Buděšínský M, Mitrová K, Žáková L, Jiráček J. Modulation of the antagonistic properties of an insulin mimetic peptide by disulfide bridge modifications. J Pept Sci 2023; 29:e3478. [PMID: 36633503 PMCID: PMC10909431 DOI: 10.1002/psc.3478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 01/04/2023] [Accepted: 01/05/2023] [Indexed: 01/13/2023]
Abstract
Insulin is a peptide responsible for regulating the metabolic homeostasis of the organism; it elicits its effects through binding to the transmembrane insulin receptor (IR). Insulin mimetics with agonistic or antagonistic effects toward the receptor are an exciting field of research and could find applications in treating diabetes or malignant diseases. We prepared five variants of a previously reported 20-amino acid insulin-mimicking peptide. These peptides differ from each other by the structure of the covalent bridge connecting positions 11 and 18. In addition to the peptide with a disulfide bridge, a derivative with a dicarba bridge and three derivatives with a 1,2,3-triazole differing from each other by the presence of sulfur or oxygen in their staples were prepared. The strongest binding to IR was exhibited by the peptide with a disulfide bridge. All other derivatives only weakly bound to IR, and a relationship between increasing bridge length and lower binding affinity can be inferred. Despite their nanomolar affinities, none of the prepared peptide mimetics was able to activate the insulin receptor even at high concentrations, but all mimetics were able to inhibit insulin-induced receptor activation. However, the receptor remained approximately 30% active even at the highest concentration of the agents; thus, the agents behave as partial antagonists. An interesting observation is that these mimetic peptides do not antagonize insulin action in proportion to their binding affinities. The compounds characterized in this study show that it is possible to modulate the functional properties of insulin receptor peptide ligands using disulfide mimetics.
Collapse
Affiliation(s)
- Marta Lubos
- Institute of Organic Chemistry and BiochemistryCzech Academy of SciencesPrahaCzech Republic
| | - Jan Pícha
- Institute of Organic Chemistry and BiochemistryCzech Academy of SciencesPrahaCzech Republic
| | - Irena Selicharová
- Institute of Organic Chemistry and BiochemistryCzech Academy of SciencesPrahaCzech Republic
| | - Jíří Žák
- Institute of Organic Chemistry and BiochemistryCzech Academy of SciencesPrahaCzech Republic
| | - Miloš Buděšínský
- Institute of Organic Chemistry and BiochemistryCzech Academy of SciencesPrahaCzech Republic
| | - Katarína Mitrová
- Institute of Organic Chemistry and BiochemistryCzech Academy of SciencesPrahaCzech Republic
| | - Lenka Žáková
- Institute of Organic Chemistry and BiochemistryCzech Academy of SciencesPrahaCzech Republic
| | - Jiří Jiráček
- Institute of Organic Chemistry and BiochemistryCzech Academy of SciencesPrahaCzech Republic
| |
Collapse
|
12
|
Abstract
Insulin is a peptide hormone essential for maintaining normal blood glucose levels. Individuals unable to secrete sufficient insulin or not able to respond properly to insulin develop diabetes. Since the discovery of insulin its structure and function has been intensively studied with the aim to develop effective diabetes treatments. The three-dimensional crystal structure of this 51 amino acid peptide paved the way for discoveries, outlined in this review, of determinants important for receptor binding and hormone stability that have been instrumental in development of insulin analogs used in the clinic today. Important for the future development of effective diabetes treatments will be a detailed understanding of the insulin receptor structure and function. Determination of the three-dimensional structure of the insulin receptor, a receptor tyrosine kinase, proved challenging but with the recent advent of high-resolution cryo-electron microscopy significant progress has been made. There are now >40 structures of the insulin:insulin receptor complex deposited in the Protein Data Bank. From these structures we have a detailed picture of how insulin binds and activates the receptor. Still lacking are details of the initial binding events and the exact sequence of structural changes within the receptor and insulin. In this review, the focus will be on the most recent structural studies of insulin:insulin receptor complexes and how they have contributed to the current understanding of insulin receptor activation and signaling outcome. Molecular mechanisms underlying insulin receptor signaling bias emerging from the latest structures are described.
Collapse
Affiliation(s)
- Briony E Forbes
- Flinders Health and Medical Research Institute, Flinders University, Bedford Park, SA, Australia.
| |
Collapse
|
13
|
Kim J, Yunn NO, Park M, Kim J, Park S, Kim Y, Noh J, Ryu SH, Cho Y. Functional selectivity of insulin receptor revealed by aptamer-trapped receptor structures. Nat Commun 2022; 13:6500. [PMID: 36310231 PMCID: PMC9618554 DOI: 10.1038/s41467-022-34292-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 10/20/2022] [Indexed: 12/25/2022] Open
Abstract
Activation of insulin receptor (IR) initiates a cascade of conformational changes and autophosphorylation events. Herein, we determined three structures of IR trapped by aptamers using cryo-electron microscopy. The A62 agonist aptamer selectively activates metabolic signaling. In the absence of insulin, the two A62 aptamer agonists of IR adopt an insulin-accessible arrowhead conformation by mimicking site-1/site-2' insulin coordination. Insulin binding at one site triggers conformational changes in one protomer, but this movement is blocked in the other protomer by A62 at the opposite site. A62 binding captures two unique conformations of IR with a similar stalk arrangement, which underlie Tyr1150 mono-phosphorylation (m-pY1150) and selective activation for metabolic signaling. The A43 aptamer, a positive allosteric modulator, binds at the opposite side of the insulin-binding module, and stabilizes the single insulin-bound IR structure that brings two FnIII-3 regions into closer proximity for full activation. Our results suggest that spatial proximity of the two FnIII-3 ends is important for m-pY1150, but multi-phosphorylation of IR requires additional conformational rearrangement of intracellular domains mediated by coordination between extracellular and transmembrane domains.
Collapse
Affiliation(s)
- Junhong Kim
- grid.49100.3c0000 0001 0742 4007Department of Life Sciences, Pohang University of Science and Technology (POSTECH), Pohang, 37673 Republic of Korea
| | - Na-Oh Yunn
- grid.49100.3c0000 0001 0742 4007Postech Biotech Center, Pohang University of Science and Technology (POSTECH), Pohang, 37673 Republic of Korea
| | - Mangeun Park
- grid.49100.3c0000 0001 0742 4007Postech Biotech Center, Pohang University of Science and Technology (POSTECH), Pohang, 37673 Republic of Korea
| | - Jihan Kim
- grid.49100.3c0000 0001 0742 4007Department of Life Sciences, Pohang University of Science and Technology (POSTECH), Pohang, 37673 Republic of Korea
| | - Seongeun Park
- grid.49100.3c0000 0001 0742 4007Postech Biotech Center, Pohang University of Science and Technology (POSTECH), Pohang, 37673 Republic of Korea
| | - Yoojoong Kim
- grid.49100.3c0000 0001 0742 4007Department of Life Sciences, Pohang University of Science and Technology (POSTECH), Pohang, 37673 Republic of Korea
| | - Jeongeun Noh
- grid.49100.3c0000 0001 0742 4007Postech Biotech Center, Pohang University of Science and Technology (POSTECH), Pohang, 37673 Republic of Korea
| | - Sung Ho Ryu
- grid.49100.3c0000 0001 0742 4007Department of Life Sciences, Pohang University of Science and Technology (POSTECH), Pohang, 37673 Republic of Korea
| | - Yunje Cho
- grid.49100.3c0000 0001 0742 4007Department of Life Sciences, Pohang University of Science and Technology (POSTECH), Pohang, 37673 Republic of Korea
| |
Collapse
|
14
|
Activation of the insulin receptor by an insulin mimetic peptide. Nat Commun 2022; 13:5594. [PMID: 36151101 PMCID: PMC9508239 DOI: 10.1038/s41467-022-33274-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Accepted: 09/09/2022] [Indexed: 01/21/2023] Open
Abstract
Insulin receptor (IR) signaling defects cause a variety of metabolic diseases including diabetes. Moreover, inherited mutations of the IR cause severe insulin resistance, leading to early morbidity and mortality with limited therapeutic options. A previously reported selective IR agonist without sequence homology to insulin, S597, activates IR and mimics insulin's action on glycemic control. To elucidate the mechanism of IR activation by S597, we determine cryo-EM structures of the mouse IR/S597 complex. Unlike the compact T-shaped active IR resulting from the binding of four insulins to two distinct sites, two S597 molecules induce and stabilize an extended T-shaped IR through the simultaneous binding to both the L1 domain of one protomer and the FnIII-1 domain of another. Importantly, S597 fully activates IR mutants that disrupt insulin binding or destabilize the insulin-induced compact T-shape, thus eliciting insulin-like signaling. S597 also selectively activates IR signaling among different tissues and triggers IR endocytosis in the liver. Overall, our structural and functional studies guide future efforts to develop insulin mimetics targeting insulin resistance caused by defects in insulin binding and stabilization of insulin-activated state of IR, demonstrating the potential of structure-based drug design for insulin-resistant diseases.
Collapse
|
15
|
Laugesen SH, Chou DHC, Safavi-Hemami H. Unconventional insulins from predators and pathogens. Nat Chem Biol 2022; 18:688-697. [PMID: 35761080 DOI: 10.1038/s41589-022-01068-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 05/18/2022] [Indexed: 11/09/2022]
Abstract
Insulin and its related peptides are found throughout the animal kingdom, in which they serve diverse functions. This includes regulation of glucose homeostasis, neuronal development and cognition. The surprising recent discovery that venomous snails evolved specialized insulins to capture fish demonstrated the nefarious use of this hormone in nature. Because of their streamlined role in predation, these repurposed insulins exhibit unique characteristics that have unraveled new aspects of the chemical ecology and structural biology of this important hormone. Recently, insulins were also reported in other venomous predators and pathogenic viruses, demonstrating the broader use of insulin by one organism to manipulate the physiology of another. In this Review, we provide an overview of the discovery and biomedical application of repurposed insulins and other hormones found in nature and highlight several unique insights gained from these unusual compounds.
Collapse
Affiliation(s)
| | - Danny Hung-Chieh Chou
- Department of Pediatrics, Division of Endocrinology and Diabetes, Stanford University, Stanford, CA, USA
| | - Helena Safavi-Hemami
- Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark. .,Department of Biochemistry, University of Utah, Salt Lake City, UT, USA. .,School of Biological Sciences, University of Utah, Salt Lake City, UT, USA.
| |
Collapse
|
16
|
Wu M, Carballo-Jane E, Zhou H, Zafian P, Dai G, Liu M, Lao J, Kelly T, Shao D, Gorski J, Pissarnitski D, Kekec A, Chen Y, Previs SF, Scapin G, Gomez-Llorente Y, Hollingsworth SA, Yan L, Feng D, Huo P, Walford G, Erion MD, Kelley DE, Lin S, Mu J. Functionally selective signaling and broad metabolic benefits by novel insulin receptor partial agonists. Nat Commun 2022; 13:942. [PMID: 35177603 PMCID: PMC8854621 DOI: 10.1038/s41467-022-28561-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Accepted: 01/17/2022] [Indexed: 01/09/2023] Open
Abstract
Insulin analogs have been developed to treat diabetes with focus primarily on improving the time action profile without affecting ligand-receptor interaction or functional selectivity. As a result, inherent liabilities (e.g. hypoglycemia) of injectable insulin continue to limit the true therapeutic potential of related agents. Insulin dimers were synthesized to investigate whether partial agonism of the insulin receptor (IR) tyrosine kinase is achievable, and to explore the potential for tissue-selective systemic insulin pharmacology. The insulin dimers induced distinct IR conformational changes compared to native monomeric insulin and substrate phosphorylation assays demonstrated partial agonism. Structurally distinct dimers with differences in conjugation sites and linkers were prepared to deliver desirable IR partial agonist (IRPA). Systemic infusions of a B29-B29 dimer in vivo revealed sharp differences compared to native insulin. Suppression of hepatic glucose production and lipolysis were like that attained with regular insulin, albeit with a distinctly shallower dose-response. In contrast, there was highly attenuated stimulation of glucose uptake into muscle. Mechanistic studies indicated that IRPAs exploit tissue differences in receptor density and have additional distinctions pertaining to drug clearance and distribution. The hepato-adipose selective action of IRPAs is a potentially safer approach for treatment of diabetes.
Collapse
MESH Headings
- Adipose Tissue/drug effects
- Adipose Tissue/metabolism
- Alloxan/administration & dosage
- Alloxan/toxicity
- Animals
- Blood Glucose/drug effects
- Blood Glucose/metabolism
- CHO Cells
- Cricetulus
- Diabetes Mellitus, Experimental/blood
- Diabetes Mellitus, Experimental/chemically induced
- Diabetes Mellitus, Experimental/drug therapy
- Diabetes Mellitus, Experimental/metabolism
- Diabetes Mellitus, Type 1/blood
- Diabetes Mellitus, Type 1/chemically induced
- Diabetes Mellitus, Type 1/drug therapy
- Diabetes Mellitus, Type 1/metabolism
- HEK293 Cells
- Humans
- Hypoglycemic Agents/pharmacology
- Hypoglycemic Agents/therapeutic use
- Insulin/pharmacology
- Insulin/therapeutic use
- Lipolysis/drug effects
- Liver/drug effects
- Liver/metabolism
- Male
- Mice
- Rats
- Receptor, Insulin/agonists
- Recombinant Proteins/pharmacology
- Recombinant Proteins/therapeutic use
- Signal Transduction/drug effects
- Swine
- Swine, Miniature
Collapse
Affiliation(s)
- Margaret Wu
- Merck & Co., Inc., Kenilworth, NJ, 07033, USA
| | | | | | | | - Ge Dai
- Merck & Co., Inc., Kenilworth, NJ, 07033, USA
| | - Mindy Liu
- Merck & Co., Inc., South San Francisco, CA, 94080, USA
| | - Julie Lao
- Merck & Co., Inc., South San Francisco, CA, 94080, USA
| | - Terri Kelly
- Merck & Co., Inc., Kenilworth, NJ, 07033, USA
| | - Dan Shao
- Merck & Co., Inc., South San Francisco, CA, 94080, USA
| | | | | | - Ahmet Kekec
- Merck & Co., Inc., Kenilworth, NJ, 07033, USA
| | - Ying Chen
- Merck & Co., Inc., Kenilworth, NJ, 07033, USA
| | | | | | | | | | - Lin Yan
- Merck & Co., Inc., Kenilworth, NJ, 07033, USA
| | | | - Pei Huo
- Merck & Co., Inc., Kenilworth, NJ, 07033, USA
| | | | | | | | | | - James Mu
- Merck & Co., Inc., South San Francisco, CA, 94080, USA.
| |
Collapse
|
17
|
Ong SC, Belgi A, Merriman AL, Delaine CA, van Lierop B, Andrikopoulos S, Robinson AJ, Forbes BE. Minimizing Mitogenic Potency of Insulin Analogues Through Modification of a Disulfide Bond. Front Endocrinol (Lausanne) 2022; 13:907864. [PMID: 35832429 PMCID: PMC9271792 DOI: 10.3389/fendo.2022.907864] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 05/09/2022] [Indexed: 11/13/2022] Open
Abstract
The mechanisms by which insulin activates the insulin receptor to promote metabolic processes and cellular growth are still not clear. Significant advances have been gained from recent structural studies in understanding how insulin binds to its receptor. However, the way in which specific interactions lead to either metabolic or mitogenic signalling remains unknown. Currently there are only a few examples of insulin receptor agonists that have biased signalling properties. Here we use novel insulin analogues that differ only in the chemical composition at the A6-A11 bond, as it has been changed to a rigid, non-reducible C=C linkage (dicarba bond), to reveal mechanisms underlying signaling bias. We show that introduction of an A6-A11 cis-dicarba bond into either native insulin or the basal/long acting insulin glargine results in biased signalling analogues with low mitogenic potency. This can be attributed to reduced insulin receptor activation that prevents effective receptor internalization and mitogenic signalling. Insight gained into the receptor interactions affected by insertion of an A6-A11 cis-dicarba bond will ultimately assist in the development of new insulin analogues for the treatment of diabetes that confer low mitogenic activity and therefore pose minimal risk of promoting cancer with long term use.
Collapse
Affiliation(s)
- Shee Chee Ong
- Discipline of Medical Biochemistry, Flinders Health and Medical Research Institute, Flinders University of South Australia, Bedford Park, SA, Australia
| | - Alessia Belgi
- School of Chemistry, Monash University, Clayton, VIC, Australia
| | - Allanah L. Merriman
- Discipline of Medical Biochemistry, Flinders Health and Medical Research Institute, Flinders University of South Australia, Bedford Park, SA, Australia
| | - Carlie A. Delaine
- Discipline of Medical Biochemistry, Flinders Health and Medical Research Institute, Flinders University of South Australia, Bedford Park, SA, Australia
| | | | | | | | - Briony E. Forbes
- Discipline of Medical Biochemistry, Flinders Health and Medical Research Institute, Flinders University of South Australia, Bedford Park, SA, Australia
- *Correspondence: Briony E. Forbes,
| |
Collapse
|
18
|
Nishimura E, Pridal L, Glendorf T, Hansen BF, Hubálek F, Kjeldsen T, Kristensen NR, Lützen A, Lyby K, Madsen P, Pedersen TÅ, Ribel-Madsen R, Stidsen CE, Haahr H. Molecular and pharmacological characterization of insulin icodec: a new basal insulin analog designed for once-weekly dosing. BMJ Open Diabetes Res Care 2021; 9:9/1/e002301. [PMID: 34413118 PMCID: PMC8378355 DOI: 10.1136/bmjdrc-2021-002301] [Citation(s) in RCA: 82] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 07/04/2021] [Indexed: 12/18/2022] Open
Abstract
INTRODUCTION Insulin icodec is a novel, long-acting insulin analog designed to cover basal insulin requirements with once-weekly subcutaneous administration. Here we describe the molecular engineering and the biological and pharmacological properties of insulin icodec. RESEARCH DESIGN AND METHODS A number of in vitro assays measuring receptor binding, intracellular signaling as well as cellular metabolic and mitogenic responses were used to characterize the biological properties of insulin icodec. To evaluate the pharmacological properties of insulin icodec in individuals with type 2 diabetes, a randomized, double-blind, double-dummy, active-controlled, multiple-dose, dose escalation trial was conducted. RESULTS The long half-life of insulin icodec was achieved by introducing modifications to the insulin molecule aiming to obtain a safe, albumin-bound circulating depot of insulin icodec, providing protracted insulin action and clearance. Addition of a C20 fatty diacid-containing side chain imparts strong, reversible albumin binding, while three amino acid substitutions (A14E, B16H and B25H) provide molecular stability and contribute to attenuating insulin receptor (IR) binding and clearance, further prolonging the half-life. In vitro cell-based studies showed that insulin icodec activates the same dose-dependent IR-mediated signaling and metabolic responses as native human insulin (HI). The affinity of insulin icodec for the insulin-like growth factor-1 receptor was proportionately lower than its binding to the IR, and the in vitro mitogenic effect of insulin icodec in various human cells was low relative to HI. The clinical pharmacology trial in people with type 2 diabetes showed that insulin icodec was well tolerated and has pharmacokinetic/pharmacodynamic properties that are suited for once-weekly dosing, with a mean half-life of 196 hours and close to even distribution of glucose-lowering effect over the entire dosing interval of 1 week. CONCLUSIONS The molecular modifications introduced into insulin icodec provide a novel basal insulin with biological and pharmacokinetic/pharmacodynamic properties suitable for once-weekly dosing. TRIAL REGISTRATION NUMBER NCT02964104.
Collapse
Affiliation(s)
- Erica Nishimura
- Research & Early Development, Novo Nordisk A/S, Måløv, Denmark
| | - Lone Pridal
- Research & Early Development, Novo Nordisk A/S, Måløv, Denmark
| | - Tine Glendorf
- Research & Early Development, Novo Nordisk A/S, Måløv, Denmark
| | - Bo Falk Hansen
- Research & Early Development, Novo Nordisk A/S, Måløv, Denmark
| | | | - Thomas Kjeldsen
- Research & Early Development, Novo Nordisk A/S, Måløv, Denmark
| | | | - Anne Lützen
- Research & Early Development, Novo Nordisk A/S, Måløv, Denmark
| | | | - Peter Madsen
- Research & Early Development, Novo Nordisk A/S, Måløv, Denmark
| | | | | | | | - Hanne Haahr
- Development, Novo Nordisk A/S, Søborg, Denmark
| |
Collapse
|
19
|
Kurtzhals P, Nishimura E, Haahr H, Høeg-Jensen T, Johansson E, Madsen P, Sturis J, Kjeldsen T. Commemorating insulin's centennial: engineering insulin pharmacology towards physiology. Trends Pharmacol Sci 2021; 42:620-639. [PMID: 34148677 DOI: 10.1016/j.tips.2021.05.005] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 05/13/2021] [Accepted: 05/18/2021] [Indexed: 01/14/2023]
Abstract
The life-saving discovery of insulin in Toronto in 1921 is one of the most impactful achievements in medical history, at the time being hailed as a miracle treatment for diabetes. The insulin molecule itself, however, is poorly amenable as a pharmacological intervention, and the formidable challenge of optimizing insulin therapy has been ongoing for a century. We review early academic insights into insulin structure and its relation to self-association and receptor binding, as well as recombinant biotechnology, which have all been seminal for drug design. Recent developments have focused on combining genetic and chemical engineering with pharmaceutical optimization to generate ultra-rapid and ultra-long-acting, tissue-selective, or orally delivered insulin analogs. We further discuss these developments and propose that future scientific efforts in molecular engineering include realizing the dream of glucose-responsive insulin delivery.
Collapse
Affiliation(s)
- Peter Kurtzhals
- Research and Development, Novo Nordisk A/S, Novo Allé, DK-2880 Bagsværd, Denmark.
| | - Erica Nishimura
- Research and Development, Novo Nordisk A/S, Novo Allé, DK-2880 Bagsværd, Denmark
| | - Hanne Haahr
- Research and Development, Novo Nordisk A/S, Novo Allé, DK-2880 Bagsværd, Denmark
| | - Thomas Høeg-Jensen
- Research and Development, Novo Nordisk A/S, Novo Allé, DK-2880 Bagsværd, Denmark
| | - Eva Johansson
- Research and Development, Novo Nordisk A/S, Novo Allé, DK-2880 Bagsværd, Denmark
| | - Peter Madsen
- Research and Development, Novo Nordisk A/S, Novo Allé, DK-2880 Bagsværd, Denmark
| | - Jeppe Sturis
- Research and Development, Novo Nordisk A/S, Novo Allé, DK-2880 Bagsværd, Denmark
| | - Thomas Kjeldsen
- Research and Development, Novo Nordisk A/S, Novo Allé, DK-2880 Bagsværd, Denmark
| |
Collapse
|
20
|
The biophysical basis of receptor tyrosine kinase ligand functional selectivity: Trk-B case study. Biochem J 2021; 477:4515-4526. [PMID: 33094812 DOI: 10.1042/bcj20200671] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 10/19/2020] [Accepted: 10/22/2020] [Indexed: 01/08/2023]
Abstract
Tropomyosin receptor kinase B (Trk-B) belongs to the second largest family of membrane receptors, Receptor Tyrosine Kinases (RTKs). Trk-B is known to interact with three different neurotrophins: Brain-Derived Neurotrophic Factor (BDNF), Neurotrophin-4 (NT-4), and Neurotrophin-3 (NT-3). All three neurotrophins are involved in survival and proliferation of neuronal cells, but each induces distinct signaling through Trk-B. We hypothesize that the different biological effects correlate with differences in the interactions between the Trk-B receptors, when bound to different ligands, in the plasma membrane. To test this hypothesis, we use quantitative FRET to characterize Trk-B dimerization in response to NT-3 and NT-4 in live cells, and compare it to the previously published data for Trk-B in the absence and presence of BDNF. Our study reveals that the distinct Trk-B signaling outcomes are underpinned by both different configurations and different stabilities of the three ligand-bound Trk-B dimers in the plasma membrane.
Collapse
|
21
|
Ashraf A, Palakkott A, Ayoub MA. Anti-Insulin Receptor Antibodies in the Pathology and Therapy of Diabetes Mellitus. Curr Diabetes Rev 2021; 17:198-206. [PMID: 32496987 DOI: 10.2174/1573399816666200604122345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 05/12/2020] [Accepted: 05/24/2020] [Indexed: 11/22/2022]
Abstract
Diabetes mellitus (DM) is recognized as the most common and the world's fastest-growing chronic disease with severe complications leading to increased mortality. Many strategies exist for the management of DM and its control, including treatment with insulin and insulin analogs, oral hypoglycemic therapy such as insulin secretion stimulators and insulin sensitizers, and diet and physical training. Over the years, many types of drugs and molecules with an interesting pharmacological diversity have been developed and proposed for their anti-diabetic potential. Such molecules target diverse key receptors, enzymes, and regulatory/signaling proteins known to be directly or indirectly involved in the pathophysiology of DM. Among them, insulin receptor (IR) is undoubtedly the target of choice for its central role in insulin-mediated glucose homeostasis and its utilization by the major insulin-sensitive tissues such as skeletal muscles, adipose tissue, and the liver. In this review, we focus on the implication of antibodies targeting IR in the pathology of DM as well as the recent advances in the development of IR antibodies as promising anti-diabetic drugs. The challenge still entails development of more powerful, highly selective, and safer anti-diabetic drugs.
Collapse
Affiliation(s)
- Arshida Ashraf
- Department of Biology, College of Science, The United Arab Emirates University (UAEU), PO Box 15551, Al Ain, United Arab Emirates
| | - Abdulrasheed Palakkott
- Department of Biology, College of Science, The United Arab Emirates University (UAEU), PO Box 15551, Al Ain, United Arab Emirates
| | - Mohammed Akli Ayoub
- Department of Biology, College of Science, The United Arab Emirates University (UAEU), PO Box 15551, Al Ain, United Arab Emirates
| |
Collapse
|
22
|
Karl K, Paul MD, Pasquale EB, Hristova K. Ligand bias in receptor tyrosine kinase signaling. J Biol Chem 2020; 295:18494-18507. [PMID: 33122191 PMCID: PMC7939482 DOI: 10.1074/jbc.rev120.015190] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2020] [Revised: 10/28/2020] [Indexed: 12/14/2022] Open
Abstract
Ligand bias is the ability of ligands to differentially activate certain receptor signaling responses compared with others. It reflects differences in the responses of a receptor to specific ligands and has implications for the development of highly specific therapeutics. Whereas ligand bias has been studied primarily for G protein-coupled receptors (GPCRs), there are also reports of ligand bias for receptor tyrosine kinases (RTKs). However, the understanding of RTK ligand bias is lagging behind the knowledge of GPCR ligand bias. In this review, we highlight how protocols that were developed to study GPCR signaling can be used to identify and quantify RTK ligand bias. We also introduce an operational model that can provide insights into the biophysical basis of RTK activation and ligand bias. Finally, we discuss possible mechanisms underpinning RTK ligand bias. Thus, this review serves as a primer for researchers interested in investigating ligand bias in RTK signaling.
Collapse
Affiliation(s)
- Kelly Karl
- Department of Materials Science and Engineering, Institute for NanoBioTechnology, and Program in Molecular Biophysics, Johns Hopkins University, Baltimore, Maryland, USA
| | - Michael D Paul
- Department of Materials Science and Engineering, Institute for NanoBioTechnology, and Program in Molecular Biophysics, Johns Hopkins University, Baltimore, Maryland, USA
| | - Elena B Pasquale
- Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California, USA.
| | - Kalina Hristova
- Department of Materials Science and Engineering, Institute for NanoBioTechnology, and Program in Molecular Biophysics, Johns Hopkins University, Baltimore, Maryland, USA.
| |
Collapse
|
23
|
Multipodal insulin mimetics built on adamantane or proline scaffolds. Bioorg Chem 2020; 107:104548. [PMID: 33358613 DOI: 10.1016/j.bioorg.2020.104548] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 10/29/2020] [Accepted: 12/07/2020] [Indexed: 12/27/2022]
Abstract
Multi-orthogonal molecular scaffolds can be applied as core structures of bioactive compounds. Here, we prepared four tri-orthogonal scaffolds based on adamantane or proline skeletons. The scaffolds were used for the solid-phase synthesis of model insulin mimetics bearing two different peptides on the scaffolds. We found that adamantane-derived compounds bind to the insulin receptor more effectively (Kd value of 0.5 μM) than proline-derived compounds (Kd values of 15-38 μM) bearing the same peptides. Molecular dynamics simulations suggest that spacers between peptides and central scaffolds can provide greater flexibility that can contribute to increased binding affinity. Molecular modeling showed possible binding modes of mimetics to the insulin receptor. Our data show that the structure of the central scaffold and flexibility of attached peptides in this type of compound are important and that different scaffolds should be considered when designing peptide hormone mimetics.
Collapse
|
24
|
Insulin and Insulin Receptors in Adipose Tissue Development. Int J Mol Sci 2019; 20:ijms20030759. [PMID: 30754657 PMCID: PMC6387287 DOI: 10.3390/ijms20030759] [Citation(s) in RCA: 138] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Revised: 02/05/2019] [Accepted: 02/06/2019] [Indexed: 12/14/2022] Open
Abstract
Insulin is a major endocrine hormone also involved in the regulation of energy and lipid metabolism via the activation of an intracellular signaling cascade involving the insulin receptor (INSR), insulin receptor substrate (IRS) proteins, phosphoinositol 3-kinase (PI3K) and protein kinase B (AKT). Specifically, insulin regulates several aspects of the development and function of adipose tissue and stimulates the differentiation program of adipose cells. Insulin can activate its responses in adipose tissue through two INSR splicing variants: INSR-A, which is predominantly expressed in mesenchymal and less-differentiated cells and mainly linked to cell proliferation, and INSR-B, which is more expressed in terminally differentiated cells and coupled to metabolic effects. Recent findings have revealed that different distributions of INSR and an altered INSR-A:INSR-B ratio may contribute to metabolic abnormalities during the onset of insulin resistance and the progression to type 2 diabetes. In this review, we discuss the role of insulin and the INSR in the development and endocrine activity of adipose tissue and the pharmacological implications for the management of obesity and type 2 diabetes.
Collapse
|
25
|
Chrudinová M, Žáková L, Marek A, Socha O, Buděšínský M, Hubálek M, Pícha J, Macháčková K, Jiráček J, Selicharová I. A versatile insulin analog with high potency for both insulin and insulin-like growth factor 1 receptors: Structural implications for receptor binding. J Biol Chem 2018; 293:16818-16829. [PMID: 30213860 PMCID: PMC6204900 DOI: 10.1074/jbc.ra118.004852] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Revised: 09/05/2018] [Indexed: 12/02/2022] Open
Abstract
Insulin and insulin-like growth factor 1 (IGF-1) are closely related hormones involved in the regulation of metabolism and growth. They elicit their functions through activation of tyrosine kinase–type receptors: insulin receptors (IR-A and IR-B) and IGF-1 receptor (IGF-1R). Despite similarity in primary and three-dimensional structures, insulin and IGF-1 bind the noncognate receptor with substantially reduced affinity. We prepared [d-HisB24, GlyB31, TyrB32]-insulin, which binds all three receptors with high affinity (251 or 338% binding affinity to IR-A respectively to IR-B relative to insulin and 12.4% binding affinity to IGF-1R relative to IGF-1). We prepared other modified insulins with the aim of explaining the versatility of [d-HisB24, GlyB31, TyrB32]-insulin. Through structural, activity, and kinetic studies of these insulin analogs, we concluded that the ability of [d-HisB24, GlyB31, TyrB32]-insulin to stimulate all three receptors is provided by structural changes caused by a reversed chirality at the B24 combined with the extension of the C terminus of the B chain by two extra residues. We assume that the structural changes allow the directing of the B chain C terminus to some extra interactions with the receptors. These unusual interactions lead to a decrease of dissociation rate from the IR and conversely enable easier association with IGF-1R. All of the structural changes were made at the hormones' Site 1, which is thought to interact with the Site 1 of the receptors. The results of the study suggest that merely modifications of Site 1 of the hormone are sufficient to change the receptor specificity of insulin.
Collapse
Affiliation(s)
- Martina Chrudinová
- From the Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo n. 2, 166 10 Prague 6, Czech Republic
| | - Lenka Žáková
- From the Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo n. 2, 166 10 Prague 6, Czech Republic
| | - Aleš Marek
- From the Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo n. 2, 166 10 Prague 6, Czech Republic
| | - Ondřej Socha
- From the Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo n. 2, 166 10 Prague 6, Czech Republic
| | - Miloš Buděšínský
- From the Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo n. 2, 166 10 Prague 6, Czech Republic
| | - Martin Hubálek
- From the Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo n. 2, 166 10 Prague 6, Czech Republic
| | - Jan Pícha
- From the Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo n. 2, 166 10 Prague 6, Czech Republic
| | - Kateřina Macháčková
- From the Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo n. 2, 166 10 Prague 6, Czech Republic
| | - Jiří Jiráček
- From the Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo n. 2, 166 10 Prague 6, Czech Republic
| | - Irena Selicharová
- From the Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo n. 2, 166 10 Prague 6, Czech Republic
| |
Collapse
|
26
|
Brierley GV, Siddle K, Semple RK. Evaluation of anti-insulin receptor antibodies as potential novel therapies for human insulin receptoropathy using cell culture models. Diabetologia 2018; 61:1662-1675. [PMID: 29700562 PMCID: PMC6445487 DOI: 10.1007/s00125-018-4606-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Accepted: 03/06/2018] [Indexed: 12/28/2022]
Abstract
AIMS/HYPOTHESIS Bi-allelic loss-of-function mutations in the INSR gene (encoding the insulin receptor [INSR]) commonly cause extreme insulin resistance and early mortality. Therapeutic options are limited, but anti-INSR antibodies have been shown to activate two mutant receptors, S323L and F382V. This study evaluates four well-characterised murine anti-INSR monoclonal antibodies recognising distinct epitopes (83-7, 83-14, 18-44, 18-146) as surrogate agonists for potential targeted treatment of severe insulin resistance arising from insulin receptoropathies. METHODS Ten naturally occurring mutant human INSRs with defects affecting different aspects of receptor function were modelled and assessed for response to insulin and anti-INSR antibodies. A novel 3T3-L1 adipocyte model of insulin receptoropathy was generated, permitting conditional knockdown of endogenous mouse Insr by lentiviral expression of species-specific short hairpin (sh)RNAs with simultaneous expression of human mutant INSR transgenes. RESULTS All expressed mutant INSR bound to all antibodies tested. Eight mutants showed antibody-induced autophosphorylation, while co-treatment with antibody and insulin increased maximal phosphorylation compared with insulin alone. After knockdown of mouse Insr and expression of mutant INSR in 3T3-L1 adipocytes, two antibodies (83-7 and 83-14) activated signalling via protein kinase B (Akt) preferentially over signalling via extracellular signal-regulated kinase 1/2 (ERK1/2) for seven mutants. These antibodies stimulated glucose uptake via P193L, S323L, F382V and D707A mutant INSRs, with antibody response greater than insulin response for D707A. CONCLUSIONS/INTERPRETATION Anti-INSR monoclonal antibodies can activate selected naturally occurring mutant human insulin receptors, bringing closer the prospect of novel therapy for severe insulin resistance caused by recessive mutations.
Collapse
Affiliation(s)
- Gemma V Brierley
- University of Cambridge Metabolic Research Laboratories, Wellcome Trust-MRC Institute of Metabolic Science, Cambridge, UK
- National Institute for Health Research Cambridge Biomedical Research Centre, Addenbrooke's Hospital, Cambridge, UK
| | - Kenneth Siddle
- University of Cambridge Metabolic Research Laboratories, Wellcome Trust-MRC Institute of Metabolic Science, Cambridge, UK
- National Institute for Health Research Cambridge Biomedical Research Centre, Addenbrooke's Hospital, Cambridge, UK
| | - Robert K Semple
- University of Cambridge Metabolic Research Laboratories, Wellcome Trust-MRC Institute of Metabolic Science, Cambridge, UK.
- National Institute for Health Research Cambridge Biomedical Research Centre, Addenbrooke's Hospital, Cambridge, UK.
- University of Edinburgh Centre for Cardiovascular Science, Queen's Medical Research Institute, Little France Crescent, Edinburgh, EH16 4TJ, UK.
| |
Collapse
|
27
|
Kostov K, Halacheva L. Role of Magnesium Deficiency in Promoting Atherosclerosis, Endothelial Dysfunction, and Arterial Stiffening as Risk Factors for Hypertension. Int J Mol Sci 2018; 19:E1724. [PMID: 29891771 PMCID: PMC6032400 DOI: 10.3390/ijms19061724] [Citation(s) in RCA: 123] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Revised: 06/05/2018] [Accepted: 06/08/2018] [Indexed: 02/07/2023] Open
Abstract
Arterial hypertension is a disease with a complex pathogenesis. Despite considerable knowledge about this socially significant disease, the role of magnesium deficiency (MgD) as a risk factor is not fully understood. Magnesium is a natural calcium antagonist. It potentiates the production of local vasodilator mediators (prostacyclin and nitric oxide) and alters vascular responses to a variety of vasoactive substances (endothelin-1, angiotensin II, and catecholamines). MgD stimulates the production of aldosterone and potentiates vascular inflammatory response, while expression/activity of various antioxidant enzymes (glutathione peroxidase, superoxide dismutase, and catalase) and the levels of important antioxidants (vitamin C, vitamin E, and selenium) are decreased. Magnesium balances the effects of catecholamines in acute and chronic stress. MgD may be associated with the development of insulin resistance, hyperglycemia, and changes in lipid metabolism, which enhance atherosclerotic changes and arterial stiffness. Magnesium regulates collagen and elastin turnover in the vascular wall and matrix metalloproteinase activity. Magnesium helps to protect the elastic fibers from calcium deposition and maintains the elasticity of the vessels. Considering the numerous positive effects on a number of mechanisms related to arterial hypertension, consuming a healthy diet that provides the recommended amount of magnesium can be an appropriate strategy for helping control blood pressure.
Collapse
Affiliation(s)
- Krasimir Kostov
- Department of Pathophysiology, Medical University-Pleven, 1 Kliment Ohridski Str., 5800 Pleven, Bulgaria.
| | - Lyudmila Halacheva
- Department of Physiology, Medical University-Pleven, 1 Kliment Ohridski Str., 5800 Pleven, Bulgaria.
| |
Collapse
|
28
|
Kanter JE, Kramer F, Barnhart S, Duggan JM, Shimizu-Albergine M, Kothari V, Chait A, Bouman SD, Hamerman JA, Hansen BF, Olsen GS, Bornfeldt KE. A Novel Strategy to Prevent Advanced Atherosclerosis and Lower Blood Glucose in a Mouse Model of Metabolic Syndrome. Diabetes 2018; 67:946-959. [PMID: 29483182 PMCID: PMC5909997 DOI: 10.2337/db17-0744] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2017] [Accepted: 02/01/2018] [Indexed: 12/20/2022]
Abstract
Cardiovascular disease caused by atherosclerosis is the leading cause of mortality associated with type 2 diabetes and metabolic syndrome. Insulin therapy is often needed to improve glycemic control, but it does not clearly prevent atherosclerosis. Upon binding to the insulin receptor (IR), insulin activates distinct arms of downstream signaling. The IR-Akt arm is associated with blood glucose lowering and beneficial effects, whereas the IR-Erk arm might exert less desirable effects. We investigated whether selective activation of the IR-Akt arm, leaving the IR-Erk arm largely inactive, would result in protection from atherosclerosis in a mouse model of metabolic syndrome. The insulin mimetic peptide S597 lowered blood glucose and activated Akt in insulin target tissues, mimicking insulin's effects, but only weakly activated Erk and even prevented insulin-induced Erk activation. Strikingly, S597 retarded atherosclerotic lesion progression through a process associated with protection from leukocytosis, thereby reducing lesional accumulation of inflammatory Ly6Chi monocytes. S597-mediated protection from leukocytosis was accompanied by reduced numbers of the earliest bone marrow hematopoietic stem cells and reduced IR-Erk activity in hematopoietic stem cells. This study provides a conceptually novel treatment strategy for advanced atherosclerosis associated with metabolic syndrome and type 2 diabetes.
Collapse
Affiliation(s)
- Jenny E Kanter
- Division of Metabolism, Endocrinology and Nutrition, Department of Medicine, UW Medicine Diabetes Institute, University of Washington, Seattle, WA
| | - Farah Kramer
- Division of Metabolism, Endocrinology and Nutrition, Department of Medicine, UW Medicine Diabetes Institute, University of Washington, Seattle, WA
| | - Shelley Barnhart
- Division of Metabolism, Endocrinology and Nutrition, Department of Medicine, UW Medicine Diabetes Institute, University of Washington, Seattle, WA
| | - Jeffrey M Duggan
- Department of Immunology, University of Washington, Seattle, WA
- Benaroya Research Institute, Seattle, WA
| | - Masami Shimizu-Albergine
- Division of Metabolism, Endocrinology and Nutrition, Department of Medicine, UW Medicine Diabetes Institute, University of Washington, Seattle, WA
| | - Vishal Kothari
- Division of Metabolism, Endocrinology and Nutrition, Department of Medicine, UW Medicine Diabetes Institute, University of Washington, Seattle, WA
| | - Alan Chait
- Division of Metabolism, Endocrinology and Nutrition, Department of Medicine, UW Medicine Diabetes Institute, University of Washington, Seattle, WA
| | | | - Jessica A Hamerman
- Department of Immunology, University of Washington, Seattle, WA
- Benaroya Research Institute, Seattle, WA
| | - Bo F Hansen
- Insulin Biology Department, Novo Nordisk A/S, Måløv, Denmark
| | - Grith S Olsen
- Insulin Biology Department, Novo Nordisk A/S, Måløv, Denmark
| | - Karin E Bornfeldt
- Division of Metabolism, Endocrinology and Nutrition, Department of Medicine, UW Medicine Diabetes Institute, University of Washington, Seattle, WA
- Department of Pathology, UW Medicine Diabetes Institute, University of Washington, Seattle, WA
| |
Collapse
|
29
|
Yunn NO, Kim J, Kim Y, Leibiger I, Berggren PO, Ryu SH. Mechanistic understanding of insulin receptor modulation: Implications for the development of anti-diabetic drugs. Pharmacol Ther 2018; 185:86-98. [DOI: 10.1016/j.pharmthera.2017.12.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
30
|
Mohammadiarani H, Vashisth H. Insulin mimetic peptide S371 folds into a helical structure. J Comput Chem 2017; 38:1158-1166. [DOI: 10.1002/jcc.24746] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2016] [Revised: 12/14/2016] [Accepted: 01/07/2017] [Indexed: 01/26/2023]
Affiliation(s)
| | - Harish Vashisth
- Department of Chemical Engineering; University of New Hampshire; Durham New Hampshire
| |
Collapse
|
31
|
Fabre B, Pícha J, Vaněk V, Selicharová I, Chrudinová M, Collinsová M, Žáková L, Buděšínský M, Jiráček J. Synthesis and Evaluation of a Library of Trifunctional Scaffold-Derived Compounds as Modulators of the Insulin Receptor. ACS COMBINATORIAL SCIENCE 2016; 18:710-722. [PMID: 27936668 DOI: 10.1021/acscombsci.6b00132] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
We designed a combinatorial library of trifunctional scaffold-derived compounds, which were derivatized with 30 different in-house-made azides. The compounds were proposed to mimic insulin receptor (IR)-binding epitopes in the insulin molecule and bind to and activate this receptor. This work has enabled us to test our synthetic and biological methodology and to prove its robustness and reliability for the solid-phase synthesis and testing of combinatorial libraries of the trifunctional scaffold-derived compounds. Our effort resulted in the discovery of two compounds, which were able to weakly induce the autophosphorylation of IR and weakly bind to this receptor at a 0.1 mM concentration. Despite these modest biological results, which well document the well-known difficulty in modulating protein-protein interactions, this study represents a unique example of targeting the IR with a set of nonpeptide compounds that were specifically designed and synthesized for this purpose. We believe that this work can open new perspectives for the development of next-generation insulin mimetics based on the scaffold structure.
Collapse
Affiliation(s)
- Benjamin Fabre
- Institute of Organic Chemistry
and Biochemistry, Czech Academy of Sciences, Flemingovo n. 2, 16610 Praha 6, Czech Republic
| | - Jan Pícha
- Institute of Organic Chemistry
and Biochemistry, Czech Academy of Sciences, Flemingovo n. 2, 16610 Praha 6, Czech Republic
| | - Václav Vaněk
- Institute of Organic Chemistry
and Biochemistry, Czech Academy of Sciences, Flemingovo n. 2, 16610 Praha 6, Czech Republic
| | - Irena Selicharová
- Institute of Organic Chemistry
and Biochemistry, Czech Academy of Sciences, Flemingovo n. 2, 16610 Praha 6, Czech Republic
| | - Martina Chrudinová
- Institute of Organic Chemistry
and Biochemistry, Czech Academy of Sciences, Flemingovo n. 2, 16610 Praha 6, Czech Republic
| | - Michaela Collinsová
- Institute of Organic Chemistry
and Biochemistry, Czech Academy of Sciences, Flemingovo n. 2, 16610 Praha 6, Czech Republic
| | - Lenka Žáková
- Institute of Organic Chemistry
and Biochemistry, Czech Academy of Sciences, Flemingovo n. 2, 16610 Praha 6, Czech Republic
| | - Miloš Buděšínský
- Institute of Organic Chemistry
and Biochemistry, Czech Academy of Sciences, Flemingovo n. 2, 16610 Praha 6, Czech Republic
| | - Jiří Jiráček
- Institute of Organic Chemistry
and Biochemistry, Czech Academy of Sciences, Flemingovo n. 2, 16610 Praha 6, Czech Republic
| |
Collapse
|
32
|
Stecker M, Stevenson M. Effects of insulin on peripheral nerves. J Diabetes Complications 2016; 30:770-7. [PMID: 27134033 DOI: 10.1016/j.jdiacomp.2016.03.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2015] [Revised: 03/08/2016] [Accepted: 03/14/2016] [Indexed: 12/14/2022]
Abstract
AIMS To assess the effects of insulin on peripheral nerve under normoglycemic and hyperglycemic conditions in the presence and absence of anoxia. METHODS This study uses the in-vitro sciatic nerve model to assess the effect of insulin on peripheral nerve with the nerve action potential (NAP) as an index of nerve function. RESULTS Under normoglycemic conditions, low concentrations of regular insulin (0.01nM) reduced the conduction velocity of oxygenated nerves. Hyperglycemia increased the duration of the NAP and this increase was nearly completely eliminated by insulin in the 0.1nM-100nM concentration range. Insulin (1nM) also had effects on normoglycemic nerves exposed to intermittent anoxia, producing a decrease in the paired-pulse response and NAP amplitude and an increase in peak duration. This was associated with a reduced time to anoxia-induced conduction block. Similar effects were seen when regular insulin was replaced by insulin detemir, but the latter required much higher concentrations. CONCLUSIONS Insulin has concentration dependent effects on the peripheral nerve that are dependent on glucose and anoxia. These effects may be important in modulating neuropathic consequences of diabetes.
Collapse
Affiliation(s)
- Mark Stecker
- Department of Neuroscience, Winthrop University Hospital, Mineola NY 11530.
| | - Matthew Stevenson
- Department of Neuroscience, Winthrop University Hospital, Mineola NY 11530
| |
Collapse
|
33
|
Westermeier F, Sáez T, Arroyo P, Toledo F, Gutiérrez J, Sanhueza C, Pardo F, Leiva A, Sobrevia L. Insulin receptor isoforms: an integrated view focused on gestational diabetes mellitus. Diabetes Metab Res Rev 2016; 32:350-65. [PMID: 26431063 DOI: 10.1002/dmrr.2729] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2015] [Revised: 09/14/2015] [Accepted: 09/27/2015] [Indexed: 12/17/2022]
Abstract
The human insulin receptor (IR) exists in two isoforms that differ by the absence (IR-A) or the presence (IR-B) of a 12-amino acid segment encoded by exon 11. Both isoforms are functionally distinct regarding their binding affinities and intracellular signalling. However, the underlying mechanisms related to their cellular functions in several tissues are only partially understood. In this review, we summarize the current knowledge in this field regarding the alternative splicing of IR isoform, tissue-specific distribution and signalling both in physiology and disease, with an emphasis on the human placenta in gestational diabetes mellitus (GDM). Furthermore, we discuss the clinical relevance of IR isoforms highlighted by findings that show altered insulin signalling due to differential IR-A and IR-B expression in human placental endothelium in GDM pregnancies. Future research and clinical studies focused on the role of IR isoform signalling might provide novel therapeutic targets for treating GDM to improve the adverse maternal and neonatal outcomes.
Collapse
Affiliation(s)
- F Westermeier
- Cellular and Molecular Physiology Laboratory (CMPL), Division of Obstetrics and Gynaecology, School of Medicine, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
- Advanced Centre for Chronic Diseases (ACCDiS), Faculty of Chemical & Pharmaceutical Sciences and Faculty of Medicine, Universidad de Chile, Santiago, Chile
- Faculty of Science, Universidad San Sebastián, Santiago, Chile
| | - T Sáez
- Cellular and Molecular Physiology Laboratory (CMPL), Division of Obstetrics and Gynaecology, School of Medicine, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
- University Medical Centre Groningen (UMCG), Faculty of Medicine, University of Groningen, Groningen, The Netherlands
| | - P Arroyo
- Cellular and Molecular Physiology Laboratory (CMPL), Division of Obstetrics and Gynaecology, School of Medicine, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - F Toledo
- Department of Basic Sciences, Faculty of Sciences, Universidad del Bío-Bío, Chillán, Chile
| | - J Gutiérrez
- Cellular and Molecular Physiology Laboratory (CMPL), Division of Obstetrics and Gynaecology, School of Medicine, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
- Cellular Signalling and Differentiation Laboratory (CSDL), School of Medical Technology, Health Sciences Faculty, Universidad San Sebastian, Santiago, Chile
| | - C Sanhueza
- Cellular and Molecular Physiology Laboratory (CMPL), Division of Obstetrics and Gynaecology, School of Medicine, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - F Pardo
- Cellular and Molecular Physiology Laboratory (CMPL), Division of Obstetrics and Gynaecology, School of Medicine, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - A Leiva
- Cellular and Molecular Physiology Laboratory (CMPL), Division of Obstetrics and Gynaecology, School of Medicine, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - L Sobrevia
- Cellular and Molecular Physiology Laboratory (CMPL), Division of Obstetrics and Gynaecology, School of Medicine, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
- Department of Physiology, Faculty of Pharmacy, Universidad de Sevilla, Seville, Spain
- University of Queensland Centre for Clinical Research (UQCCR), Faculty of Medicine and Biomedical Sciences, University of Queensland, Queensland, Australia
| |
Collapse
|
34
|
Abstract
Insulin remains indispensable in the treatment of diabetes, but its use is hampered by its narrow therapeutic index. Although advances in peptide chemistry and recombinant DNA-based macromolecule synthesis have enabled the synthesis of structurally optimized insulin analogues, the growing epidemics of obesity and diabetes have emphasized the need for diabetes therapies that are more efficacious, safe and convenient. Accordingly, a broad set of drug candidates, targeting hyperglycaemia plus other disease abnormalities, is now progressing through the clinic. The development of an insulin therapy that is responsive to glucose concentration remains an ultimate goal, with initial prototypes now reaching the proof-of-concept stage. Simultaneously, the first alternatives to injectable delivery have progressed to registration.
Collapse
|
35
|
Bedinger DH, Adams SH. Metabolic, anabolic, and mitogenic insulin responses: A tissue-specific perspective for insulin receptor activators. Mol Cell Endocrinol 2015; 415:143-56. [PMID: 26277398 DOI: 10.1016/j.mce.2015.08.013] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2015] [Revised: 08/05/2015] [Accepted: 08/09/2015] [Indexed: 12/17/2022]
Abstract
Insulin acts as the major regulator of the fasting-to-fed metabolic transition by altering substrate metabolism, promoting energy storage, and helping activate protein synthesis. In addition to its glucoregulatory and other metabolic properties, insulin can also act as a growth factor. The metabolic and mitogenic responses to insulin are regulated by divergent post-receptor signaling mechanisms downstream from the activated insulin receptor (IR). However, the anabolic and growth-promoting properties of insulin require tissue-specific inter-relationships between the two pathways, and the nature and scope of insulin-regulated processes vary greatly across tissues. Understanding the nuances of this interplay between metabolic and growth-regulating properties of insulin would have important implications for development of novel insulin and IR modulator therapies that stimulate insulin receptor activation in both pathway- and tissue-specific manners. This review will provide a unique perspective focusing on the roles of "metabolic" and "mitogenic" actions of insulin signaling in various tissues, and how these networks should be considered when evaluating selective pharmacologic approaches to prevent or treat metabolic disease.
Collapse
Affiliation(s)
| | - Sean H Adams
- Arkansas Children's Nutrition Center and University of Arkansas for Medical Sciences, Department of Pediatrics, Little Rock, AR, USA
| |
Collapse
|
36
|
Yunn NO, Koh A, Han S, Lim JH, Park S, Lee J, Kim E, Jang SK, Berggren PO, Ryu SH. Agonistic aptamer to the insulin receptor leads to biased signaling and functional selectivity through allosteric modulation. Nucleic Acids Res 2015; 43:7688-701. [PMID: 26245346 PMCID: PMC4652772 DOI: 10.1093/nar/gkv767] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2015] [Accepted: 07/16/2015] [Indexed: 12/13/2022] Open
Abstract
Due to their high affinity and specificity, aptamers have been widely used as effective inhibitors in clinical applications. However, the ability to activate protein function through aptamer-protein interaction has not been well-elucidated. To investigate their potential as target-specific agonists, we used SELEX to generate aptamers to the insulin receptor (IR) and identified an agonistic aptamer named IR-A48 that specifically binds to IR, but not to IGF-1 receptor. Despite its capacity to stimulate IR autophosphorylation, similar to insulin, we found that IR-A48 not only binds to an allosteric site distinct from the insulin binding site, but also preferentially induces Y1150 phosphorylation in the IR kinase domain. Moreover, Y1150-biased phosphorylation induced by IR-A48 selectively activates specific signaling pathways downstream of IR. In contrast to insulin-mediated activation of IR, IR-A48 binding has little effect on the MAPK pathway and proliferation of cancer cells. Instead, AKT S473 phosphorylation is highly stimulated by IR-A48, resulting in increased glucose uptake both in vitro and in vivo. Here, we present IR-A48 as a biased agonist able to selectively induce the metabolic activity of IR through allosteric binding. Furthermore, our study also suggests that aptamers can be a promising tool for developing artificial biased agonists to targeted receptors.
Collapse
Affiliation(s)
- Na-Oh Yunn
- The School of Interdisciplinary Bioscience and Bioengineering, Pohang University of Science and Technology, Pohang 790-784, South Korea
| | - Ara Koh
- The Department of Life Sciences, Pohang University of Science and Technology, Pohang 790-784, South Korea
| | - Seungmin Han
- The Department of Life Sciences, Pohang University of Science and Technology, Pohang 790-784, South Korea
| | - Jong Hun Lim
- The POSTECH Aptamer Initiative Program, POSTECH Biotech Center, Pohang University of Science and Technology, Pohang 790-784, South Korea
| | - Sehoon Park
- The Department of Life Sciences, Pohang University of Science and Technology, Pohang 790-784, South Korea
| | - Jiyoun Lee
- The Department of Life Sciences, Pohang University of Science and Technology, Pohang 790-784, South Korea
| | - Eui Kim
- The Division of Integrative Bioscience and Biotechnology, Pohang University of Science and Technology, Pohang 790-784, South Korea
| | - Sung Key Jang
- The School of Interdisciplinary Bioscience and Bioengineering, Pohang University of Science and Technology, Pohang 790-784, South Korea The Department of Life Sciences, Pohang University of Science and Technology, Pohang 790-784, South Korea The Division of Integrative Bioscience and Biotechnology, Pohang University of Science and Technology, Pohang 790-784, South Korea
| | - Per-Olof Berggren
- The Division of Integrative Bioscience and Biotechnology, Pohang University of Science and Technology, Pohang 790-784, South Korea The Rolf Luft Research Center for Diabetes and Endocrinology, Karolinska Institutet, SE-171 76 Stockholm, Sweden
| | - Sung Ho Ryu
- The School of Interdisciplinary Bioscience and Bioengineering, Pohang University of Science and Technology, Pohang 790-784, South Korea The Department of Life Sciences, Pohang University of Science and Technology, Pohang 790-784, South Korea The Division of Integrative Bioscience and Biotechnology, Pohang University of Science and Technology, Pohang 790-784, South Korea
| |
Collapse
|
37
|
Bedinger DH, Goldfine ID, Corbin JA, Roell MK, Adams SH. Differential pathway coupling of the activated insulin receptor drives signaling selectivity by XMetA, an allosteric partial agonist antibody. J Pharmacol Exp Ther 2015; 353:35-43. [PMID: 25613982 DOI: 10.1124/jpet.114.221309] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
The monoclonal antibody XMetA is an allosteric partial agonist of the insulin receptor (IR), which activates the metabolic Akt kinase signaling pathway while having little or no effect on the mitogenic extracellular signal-regulated kinase (ERK) signaling pathway. To investigate the nature of this selective signaling, we have conducted a detailed investigation of XMetA to evaluate specific phosphorylation and activation of IR, Akt, and ERK in Chinese hamster ovary cell lines expressing either the short or long isoform of the human IR. Insulin activated both pathways, but the phosphorylation of Akt was more sensitive to the hormone than the phosphorylation of ERK. Maximally effective concentrations of XMetA elicited phosphorylation patterns similar to 40-100 pM insulin, which were sufficient for robust Akt phosphorylation, but had little effect on ERK phosphorylation. These data indicate that the preferential signaling of XMetA is due to an innate difference in pathway sensitivity of Akt versus ERK responses to IR activation and partial agonism by XMetA, rather than a separate pathway-biased mechanism. The metabolic selectivity of partial IR agonists like XMetA, if recapitulated in vivo, may be a desirable feature of therapeutic agents designed to regulate blood glucose levels while minimizing undesirable outcomes of excessive IR mitogenic activation.
Collapse
Affiliation(s)
- Daniel H Bedinger
- XOMA Corporation, Berkeley, California (D.H.B., I.D.G., J.A.C., M.K.R.); Obesity & Metabolism Research Unit, United States Department of Agriculture-Agricultural Research Service Western Human Nutrition Research Center and Department of Nutrition, Davis, California (S.H.A.); and Molecular, Cellular and Integrative Physiology Graduate Group, University of California at Davis, Davis, California (D.H.B., S.H.A.)
| | - Ira D Goldfine
- XOMA Corporation, Berkeley, California (D.H.B., I.D.G., J.A.C., M.K.R.); Obesity & Metabolism Research Unit, United States Department of Agriculture-Agricultural Research Service Western Human Nutrition Research Center and Department of Nutrition, Davis, California (S.H.A.); and Molecular, Cellular and Integrative Physiology Graduate Group, University of California at Davis, Davis, California (D.H.B., S.H.A.)
| | - John A Corbin
- XOMA Corporation, Berkeley, California (D.H.B., I.D.G., J.A.C., M.K.R.); Obesity & Metabolism Research Unit, United States Department of Agriculture-Agricultural Research Service Western Human Nutrition Research Center and Department of Nutrition, Davis, California (S.H.A.); and Molecular, Cellular and Integrative Physiology Graduate Group, University of California at Davis, Davis, California (D.H.B., S.H.A.)
| | - Marina K Roell
- XOMA Corporation, Berkeley, California (D.H.B., I.D.G., J.A.C., M.K.R.); Obesity & Metabolism Research Unit, United States Department of Agriculture-Agricultural Research Service Western Human Nutrition Research Center and Department of Nutrition, Davis, California (S.H.A.); and Molecular, Cellular and Integrative Physiology Graduate Group, University of California at Davis, Davis, California (D.H.B., S.H.A.)
| | - Sean H Adams
- XOMA Corporation, Berkeley, California (D.H.B., I.D.G., J.A.C., M.K.R.); Obesity & Metabolism Research Unit, United States Department of Agriculture-Agricultural Research Service Western Human Nutrition Research Center and Department of Nutrition, Davis, California (S.H.A.); and Molecular, Cellular and Integrative Physiology Graduate Group, University of California at Davis, Davis, California (D.H.B., S.H.A.)
| |
Collapse
|
38
|
Wu M, Dai G, Yao J, Hoyt S, Wang L, Mu J. Potentiation of insulin-mediated glucose lowering without elevated hypoglycemia risk by a small molecule insulin receptor modulator. PLoS One 2015; 10:e0122012. [PMID: 25799496 PMCID: PMC4370409 DOI: 10.1371/journal.pone.0122012] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2014] [Accepted: 02/10/2015] [Indexed: 12/30/2022] Open
Abstract
Insulin resistance is the key feature of type 2 diabetes and is manifested as attenuated insulin receptor (IR) signaling in response to same levels of insulin binding. Several small molecule IR activators have been identified and reported to exhibit insulin sensitization properties. One of these molecules, TLK19781 (Cmpd1), was investigated to examine its IR sensitizing action in vivo. Our data demonstrate that Cmpd1, at doses that produced minimal efficacy in the absence of insulin, potentiated insulin action during an OGTT in non-diabetic mice and enhanced insulin-mediated glucose lowering in diabetic mice. Interestingly, different from insulin alone, Cmpd1 combined with insulin showed enhanced efficacy and duration of action without increased hypoglycemia. To explore the mechanism underlying the apparent glucose dependent efficacy, tissue insulin signaling was compared in healthy and diabetic mice. Cmpd1 enhanced insulin’s effects on IR phosphorylation in both healthy and diabetic mice. In contrast, the compound potentiated insulin’s effects on Akt phosphorylation in diabetic but not in non-diabetic mice. These differential effects on signaling corresponding to glucose levels could be part of the mechanism for reduced hypoglycemia risk. The in vivo efficacy of Cmpd1 is specific and dependent on IR expression. Results from these studies support the idea of targeting IR for insulin sensitization, which carries low hypoglycemia risk by standalone treatment and could improve the effectiveness of insulin therapies.
Collapse
Affiliation(s)
- Margaret Wu
- Early Development and Discovery Sciences, Merck Research Laboratories, Merck Sharp & Dohme Corp., Whitehouse Station, NJ 08889, United States of America
| | - Ge Dai
- Early Development and Discovery Sciences, Merck Research Laboratories, Merck Sharp & Dohme Corp., Whitehouse Station, NJ 08889, United States of America
| | - Jun Yao
- Early Development and Discovery Sciences, Merck Research Laboratories, Merck Sharp & Dohme Corp., Whitehouse Station, NJ 08889, United States of America
| | - Scott Hoyt
- Early Development and Discovery Sciences, Merck Research Laboratories, Merck Sharp & Dohme Corp., Whitehouse Station, NJ 08889, United States of America
| | - Liangsu Wang
- Early Development and Discovery Sciences, Merck Research Laboratories, Merck Sharp & Dohme Corp., Whitehouse Station, NJ 08889, United States of America
| | - James Mu
- Early Development and Discovery Sciences, Merck Research Laboratories, Merck Sharp & Dohme Corp., Whitehouse Station, NJ 08889, United States of America
- * E-mail:
| |
Collapse
|
39
|
Frikke-Schmidt H, Pedersen TÅ, Fledelius C, Olsen GS, Bouman SD, Fitch M, Hellerstein M. Treatment of diabetic rats with insulin or a synthetic insulin receptor agonist peptide leads to divergent metabolic responses. Diabetes 2015; 64:1057-66. [PMID: 25315006 DOI: 10.2337/db14-0914] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
In addition to lowering of blood glucose, treatment with insulin also induces lipid synthesis and storage. Patients with type 2 diabetes often suffer from lipid-related comorbidities including dyslipidemia, obesity, and fatty liver disease. We examined here in two separate studies changes in lipid dynamics in Zucker diabetic fatty (ZDF) rats, in response to 7 days of treatment with either insulin or the insulin receptor agonist peptide S597. In concert with blood glucose normalization, the treated rats displayed large increases in hepatic de novo lipid synthesis and deposition of newly synthesized lipids in adipose tissue depots, accompanied by weight gain and expansion of adipose depots. In both treatment groups, heavy water labeling revealed that after 2 h (study A), de novo lipogenesis was responsible for 80% of newly stored hepatic triglyceride (TG)-palmitate, and after 5 days (study B), ∼60% of newly deposited TG-palmitate in adipose tissues originated from this pathway. Interestingly, in both studies, treatment with the insulin mimetic peptide resulted in significantly lower blood TG levels, plasma TG production rates, and hepatic de novo synthesized fatty acid in plasma TG compared with insulin. There were no differences in plasma TG turnover (clearance rate) in response to either treatment, consistent with differential actions on the liver. These results show that in ZDF rats, treatment with a synthetic insulin-receptor-activating peptide or with insulin to lower blood glucose is accompanied by different effects on hepatic lipid anabolism and blood TG profiles.
Collapse
Affiliation(s)
- Henriette Frikke-Schmidt
- Department of Nutritional Sciences and Toxicology, University of California, Berkeley, Berkeley, CA Department of Insulin Biology, Novo Nordisk, Maaloev, Denmark
| | | | | | - Grith S Olsen
- Department of Insulin Biology, Novo Nordisk, Maaloev, Denmark
| | - Stephan D Bouman
- Department of Insulin Pharmacology, Novo Nordisk, Maaloev, Denmark
| | - Mark Fitch
- Department of Nutritional Sciences and Toxicology, University of California, Berkeley, Berkeley, CA
| | - Marc Hellerstein
- Department of Nutritional Sciences and Toxicology, University of California, Berkeley, Berkeley, CA KineMed, Inc., Emeryville, CA
| |
Collapse
|
40
|
Rajapaksha H, Forbes BE. Ligand-Binding Affinity at the Insulin Receptor Isoform-A and Subsequent IR-A Tyrosine Phosphorylation Kinetics are Important Determinants of Mitogenic Biological Outcomes. Front Endocrinol (Lausanne) 2015; 6:107. [PMID: 26217307 PMCID: PMC4493403 DOI: 10.3389/fendo.2015.00107] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
The insulin receptor (IR) is a tyrosine kinase receptor that can mediate both metabolic and mitogenic biological actions. The IR isoform-A (IR-A) arises from alternative splicing of exon 11 and has different ligand binding and signaling properties compared to the IR isoform-B. The IR-A not only binds insulin but also insulin-like growth factor-II (IGF-II) with high affinity. IGF-II acting through the IR-A promotes cancer cell proliferation, survival, and migration by activating some unique signaling molecules compared to those activated by insulin. This observation led us to investigate whether the different IR-A signaling outcomes in response to IGF-II and insulin could be attributed to phosphorylation of a different subset of IR-A tyrosine residues or to the phosphorylation kinetics. We correlated IR-A phosphorylation to activation of molecules involved in mitogenic and metabolic signaling (MAPK and Akt) and receptor internalization rates (related to mitogenic signaling). We also extended this study to incorporate two ligands that are known to promote predominantly mitogenic [(His(4), Tyr(15), Thr(49), Ile(51)) IGF-I, qIGF-I] or metabolic (S597 peptide) biological actions, to see if common mechanisms can be used to define mitogenic or metabolic signaling through the IR-A. The threefold lower mitogenic action of IGF-II compared to insulin was associated with a decreased potency in activation of Y960, Y1146, Y1150, Y1151, Y1316, and Y1322, in MAPK phosphorylation and in IR-A internalization. With the poorly mitogenic S597 peptide, it was a decreased rate of tyrosine phosphorylation rather than potency that was associated with a low mitogenic potential. We conclude that both decreased affinity of IR-A binding and kinetics of IR-A phosphorylation can independently lead to a lower mitogenic activity. None of the studied parameters could account for the lower metabolic activity of qIGF-I.
Collapse
Affiliation(s)
- Harinda Rajapaksha
- School of Biological Sciences, University of Adelaide, Adelaide, SA, Australia
| | - Briony E. Forbes
- School of Biological Sciences, University of Adelaide, Adelaide, SA, Australia
- Department of Medical Biochemistry, School of Medicine, Flinders University of South Australia, Bedford Park, SA, Australia
- *Correspondence: Briony E. Forbes, Department of Medical Biochemistry, Flinders University of South Australia, C/O Flinders Medical Centre, Flinders Drive, Bedford Park, SA 5042, Australia,
| |
Collapse
|
41
|
Corbin JA, Bhaskar V, Goldfine ID, Issafras H, Bedinger DH, Lau A, Michelson K, Gross LM, Maddux BA, Kuan HF, Tran C, Lao L, Handa M, Watson SR, Narasimha AJ, Zhu S, Levy R, Webster L, Wijesuriya SD, Liu N, Wu X, Chemla-Vogel D, Lee SR, Wong S, Wilcock D, Rubin P, White ML. Inhibition of insulin receptor function by a human, allosteric monoclonal antibody: a potential new approach for the treatment of hyperinsulinemic hypoglycemia. MAbs 2014; 6:262-72. [PMID: 24423625 PMCID: PMC3929448 DOI: 10.4161/mabs.26871] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Novel therapies are needed for the treatment of hypoglycemia resulting from both endogenous and exogenous hyperinsulinema. To provide a potential new treatment option, we identified XMetD, an allosteric monoclonal antibody to the insulin receptor (INSR) that was isolated from a human antibody phage display library. To selectively obtain antibodies directed at allosteric sites, panning of the phage display library was conducted using the insulin-INSR complex. Studies indicated that XMetD bound to the INSR with nanomolar affinity. Addition of insulin reduced the affinity of XMetD to the INSR by 3-fold, and XMetD reduced the affinity of the INSR for insulin 3-fold. In addition to inhibiting INSR binding, XMetD also inhibited insulin-induced INSR signaling by 20- to 100-fold. These signaling functions included INSR autophosphorylation, Akt activation and glucose transport. These data indicated that XMetD was an allosteric antagonist of the INSR because, in addition to inhibiting the INSR via modulation of binding affinity, it also inhibited the INSR via modulation of signaling efficacy. Intraperitoneal injection of XMetD at 10 mg/kg twice weekly into normal mice induced insulin resistance. When sustained-release insulin implants were placed into normal mice, they developed fasting hypoglycemia in the range of 50 mg/dl. This hypoglycemia was reversed by XMetD treatment. These studies demonstrate that allosteric monoclonal antibodies, such as XMetD, can antagonize INSR signaling both in vitro and in vivo. They also suggest that this class of allosteric monoclonal antibodies has the potential to treat hyperinsulinemic hypoglycemia resulting from conditions such as insulinoma, congenital hyperinsulinism and insulin overdose.
Collapse
Affiliation(s)
- John A Corbin
- Preclinical Research; XOMA Corporation; Berkeley, CA USA
| | - Vinay Bhaskar
- Preclinical Research; XOMA Corporation; Berkeley, CA USA
| | - Ira D Goldfine
- Department of Medicine; University of California; San Francisco, CA USA
| | | | | | - Angela Lau
- Preclinical Research; XOMA Corporation; Berkeley, CA USA
| | | | - Lisa M Gross
- Preclinical Research; XOMA Corporation; Berkeley, CA USA
| | - Betty A Maddux
- Department of Medicine; University of California; San Francisco, CA USA
| | - Hua F Kuan
- Preclinical Research; XOMA Corporation; Berkeley, CA USA
| | - Catarina Tran
- Preclinical Research; XOMA Corporation; Berkeley, CA USA
| | - Llewelyn Lao
- Preclinical Research; XOMA Corporation; Berkeley, CA USA
| | - Masahisa Handa
- Preclinical Research; XOMA Corporation; Berkeley, CA USA
| | - Susan R Watson
- Preclinical Research; XOMA Corporation; Berkeley, CA USA
| | | | - Shirley Zhu
- Preclinical Research; XOMA Corporation; Berkeley, CA USA
| | - Raphael Levy
- Preclinical Research; XOMA Corporation; Berkeley, CA USA
| | - Lynn Webster
- Preclinical Research; XOMA Corporation; Berkeley, CA USA
| | | | - Naichi Liu
- Preclinical Research; XOMA Corporation; Berkeley, CA USA
| | - Xiaorong Wu
- Preclinical Research; XOMA Corporation; Berkeley, CA USA
| | | | - Steve R Lee
- Preclinical Research; XOMA Corporation; Berkeley, CA USA
| | - Steve Wong
- Preclinical Research; XOMA Corporation; Berkeley, CA USA
| | - Diane Wilcock
- Preclinical Research; XOMA Corporation; Berkeley, CA USA
| | - Paul Rubin
- Preclinical Research; XOMA Corporation; Berkeley, CA USA
| | - Mark L White
- Preclinical Research; XOMA Corporation; Berkeley, CA USA
| |
Collapse
|
42
|
Down-regulation of cyclin G2 by insulin, IGF-I (insulin-like growth factor 1) and X10 (AspB10 insulin): role in mitogenesis. Biochem J 2014; 457:69-77. [PMID: 24059861 DOI: 10.1042/bj20130490] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The mechanisms whereby insulin analogues may cause enhanced mitogenicity through activation of either the IR (insulin receptor) or the IGF-IR (insulin-like growth factor 1 receptor) are incompletely understood. We demonstrate that in L6 myoblasts expressing only IGF-IRs as well as in the same cells overexpressing the IR, IGF-I (insulin-like growth factor 1), insulin and X10 (AspB10 insulin) down-regulate the mRNA expression level of the cell cycle inhibitor cyclin G2, as measured by qRT-PCR (quantitative reverse transcription-PCR), and induce cell growth measured by [6-(3)H]thymidine incorporation into DNA. Western blotting showed a marked down-regulation of cyclin G2 at the protein level in both cell lines. Overexpression of cyclin G2 in the two cell lines diminished the mitogenic effect of all three ligands. The use of specific inhibitors indicated that both the MAPK (mitogen-activated protein kinase) and the PI3K (phosphoinositide 3-kinase) pathways mediate the down-regulation of Ccng2. The down-regulation of CCNG2 by the three ligands was also observed in other cell lines: MCF-7, HMEC, Saos-2, R(-)/IR and INS-1. These results indicate that regulation of cyclin G2 is a key mechanism whereby insulin, insulin analogues and IGF-I stimulate cell proliferation.
Collapse
|
43
|
Escott GM, de Castro AL, Jacobus AP, Loss ES. Insulin and IGF-I actions on IGF-I receptor in seminiferous tubules from immature rats. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2014; 1838:1332-7. [PMID: 24530896 DOI: 10.1016/j.bbamem.2014.02.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2013] [Revised: 01/14/2014] [Accepted: 02/01/2014] [Indexed: 11/17/2022]
Abstract
Insulin and insulin-like growth factor 1 (IGF-I) are capable of activating similar intracellular pathways. Insulin acts mainly through its own receptor, but can also activate the IGF-I receptor (IGF-IR). The aim of this study was to investigate the involvement of the IGF-IR in the effects of insulin and IGF-I on the membrane potential of immature Sertoli cells in whole seminiferous tubules, as well as on calcium, amino acid, and glucose uptake in testicular tissue of immature rats. The membrane potential of the Sertoli cells was recorded using a standard single microelectrode technique. In calcium uptake experiments, the testes were pre-incubated with (45)Ca(2+), with or without JB1 (1 μg/mL), and then incubated with insulin (100 nM) or IGF-I (15 nM). In amino acid and glucose uptake experiments, the gonads were pre-incubated with or without JB1 (1 μg/mL) and then incubated with radiolabeled amino acid or glucose analogues in the presence of insulin (100 nM) or IGF-I (15 nM). The blockade of IGF-IR with JB1 prevented the depolarising effects of both insulin and IGF-I on membrane potential, as well as the effect of insulin on calcium uptake. JB1 also inhibited the effects of insulin and IGF-I on glucose uptake. The effect of IGF-I on amino acid transport was inhibited in the presence of JB1, whereas the effect of insulin was not. We concluded that while IGF-I seems to act mainly through its cognate receptor to induce membrane depolarisation and calcium, amino acid and glucose uptake, insulin appears to be able to elicit its effects through IGF-IR, in seminiferous tubules from immature rats.
Collapse
Affiliation(s)
- Gustavo Monteiro Escott
- Laboratório de Endocrinologia Experimental e Eletrofisiologia, Departamento de Fisiologia, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Brazil
| | - Alexandre Luz de Castro
- Laboratório de Endocrinologia Experimental e Eletrofisiologia, Departamento de Fisiologia, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Brazil
| | | | - E S Loss
- Laboratório de Endocrinologia Experimental e Eletrofisiologia, Departamento de Fisiologia, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Brazil.
| |
Collapse
|
44
|
Ishiki M, Nishida Y, Ishibashi H, Wada T, Fujisaka S, Takikawa A, Urakaze M, Sasaoka T, Usui I, Tobe K. Impact of divergent effects of astaxanthin on insulin signaling in L6 cells. Endocrinology 2013; 154:2600-12. [PMID: 23715867 DOI: 10.1210/en.2012-2198] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Because oxidative stress promotes insulin resistance in obesity and type 2 diabetes, it is crucial to find effective antioxidant for the purpose of decreasing this threat. In this study, we explored the effect of astaxanthin, a carotenoid antioxidant, on insulin signaling and investigated whether astaxanthin improves cytokine- and free fatty acid-induced insulin resistance in vitro. We examined the effect of astaxanthin on insulin-stimulated glucose transporter 4 (GLUT4) translocation, glucose uptake, and insulin signaling in cultured rat L6 muscle cells using plasma membrane lawn assay, 2-deoxyglucose uptake, and Western blot analysis. Next, we examined the effect of astaxanthin on TNFα- and palmitate-induced insulin resistance. The amount of reactive oxygen species generated by TNFα or palmitate with or without astaxanthin was evaluated by dichlorofluorescein staining. We also compared the effect of astaxanthin on insulin signaling with that of other antioxidants, α-lipoic acid and α-tocopherol. We observed astaxanthin enhanced insulin-stimulated GLUT4 translocation and glucose uptake, which was associated with an increase in insulin receptor substrate-1 tyrosine and Akt phosphorylation and a decrease in c-Jun N-terminal kinase (JNK) and insulin receptor substrate-1 serine 307 phosphorylation. Furthermore, astaxanthin restored TNFα- and palmitate-induced decreases in insulin-stimulated GLUT4 translocation or glucose uptake with a concomitant decrease in reactive oxygen species generation. α-Lipoic acid enhanced Akt phosphorylation and decreased ERK and JNK phosphorylation, whereas α-tocopherol enhanced ERK and JNK phosphorylation but had little effect on Akt phosphorylation. Collectively these findings indicate astaxanthin is a very effective antioxidant for ameliorating insulin resistance by protecting cells from oxidative stress generated by various stimuli including TNFα and palmitate.
Collapse
Affiliation(s)
- Manabu Ishiki
- The First Department of Internal Medicine, Faculty of Medicine, University of Toyama, Toyama, Japan.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Giudice J, Barcos LS, Guaimas FF, Penas-Steinhardt A, Giordano L, Jares-Erijman EA, Coluccio Leskow F. Insulin and insulin like growth factor II endocytosis and signaling via insulin receptor B. Cell Commun Signal 2013; 11:18. [PMID: 23497114 PMCID: PMC3607927 DOI: 10.1186/1478-811x-11-18] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2012] [Accepted: 12/14/2012] [Indexed: 12/12/2022] Open
Abstract
Background Insulin and insulin-like growth factors (IGFs) act on tetrameric tyrosine kinase receptors controlling essential functions including growth, metabolism, reproduction and longevity. The insulin receptor (IR) binds insulin and IGFs with different affinities triggering different cell responses. Results We showed that IGF-II induces cell proliferation and gene transcription when IR-B is over-expressed. We combined biotinylated ligands with streptavidin conjugated quantum dots and visible fluorescent proteins to visualize the binding of IGF-II and insulin to IR-B and their ensuing internalization. By confocal microscopy and flow cytometry in living cells, we studied the internalization kinetic through the IR-B of both IGF-II, known to elicit proliferative responses, and insulin, a regulator of metabolism. Conclusions IGF-II promotes a faster internalization of IR-B than insulin. We propose that IGF-II differentially activates mitogenic responses through endosomes, while insulin-activated IR-B remains at the plasma membrane. This fact could facilitate the interaction with key effector molecules involved in metabolism regulation.
Collapse
Affiliation(s)
- Jimena Giudice
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales (FCEN), Universidad de Buenos Aires (UBA), IQUIBICEN, CONICET, Buenos Aires, Argentina.
| | | | | | | | | | | | | |
Collapse
|
46
|
Giudice J, Jares-Erijman EA, Leskow FC. Endocytosis and Intracellular Dissociation Rates of Human Insulin–Insulin Receptor Complexes by Quantum Dots in Living Cells. Bioconjug Chem 2013; 24:431-42. [DOI: 10.1021/bc300526d] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
47
|
Versteyhe S, Klaproth B, Borup R, Palsgaard J, Jensen M, Gray SG, De Meyts P. IGF-I, IGF-II, and Insulin Stimulate Different Gene Expression Responses through Binding to the IGF-I Receptor. Front Endocrinol (Lausanne) 2013; 4:98. [PMID: 23950756 PMCID: PMC3738877 DOI: 10.3389/fendo.2013.00098] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2013] [Accepted: 07/26/2013] [Indexed: 01/02/2023] Open
Abstract
Insulin and the insulin-like growth factors (IGF)-I and -II are closely related peptides important for regulation of metabolism, growth, differentiation, and development. The IGFs exert their main effects through the IGF-I receptor. Although the insulin receptor is the main physiological receptor for insulin, this peptide hormone can also bind at higher concentrations to the IGF-I receptor and exert effects through it. We used microarray gene expression profiling to investigate the gene expression regulated by IGF-I, IGF-II, and insulin after stimulation of the IGF-I receptor. Fibroblasts from mice, knockout for IGF-II and the IGF-II/cation-independent mannose-6-phosphate receptor, and expressing functional IGF-I but no insulin receptors, were stimulated for 4 h with equipotent saturating concentrations of insulin, IGF-I, and IGF-II. Each ligand specifically regulated a group of transcripts that was not regulated by the other two ligands. Many of the functions and pathways these regulated genes were involved in, were consistent with the known biological effects of these ligands. The differences in gene expression might therefore account for some of the different biological effects of insulin, IGF-I, and IGF-II. This work adds to the evidence that not only the affinity of a ligand determines its biological response, but also its nature, even through the same receptor.
Collapse
Affiliation(s)
- Soetkin Versteyhe
- Receptor Systems Biology Laboratory, Hagedorn Research Institute, Novo Nordisk A/S, Gentofte, Denmark
- *Correspondence: Soetkin Versteyhe, Faculty of Health Sciences, The Novo Nordisk Foundation Center for Basic Metabolic Research, Integrative Physiology, University of Copenhagen, Blegdamsvej 3B, 2200 København N, Denmark e-mail:
| | - Birgit Klaproth
- Receptor Systems Biology Laboratory, Hagedorn Research Institute, Novo Nordisk A/S, Gentofte, Denmark
| | - Rehannah Borup
- Genomic Medicine, Microarray Center, Copenhagen University Hospital, Copenhagen, Denmark
| | - Jane Palsgaard
- Receptor Systems Biology Laboratory, Hagedorn Research Institute, Novo Nordisk A/S, Gentofte, Denmark
| | - Maja Jensen
- Receptor Systems Biology Laboratory, Hagedorn Research Institute, Novo Nordisk A/S, Gentofte, Denmark
| | - Steven G. Gray
- Receptor Systems Biology Laboratory, Hagedorn Research Institute, Novo Nordisk A/S, Gentofte, Denmark
- Thoracic Oncology Research Group, Trinity Centre for Health Sciences, Institute of Molecular Medicine, St. James’s Hospital, Dublin, Ireland
| | - Pierre De Meyts
- Receptor Systems Biology Laboratory, Hagedorn Research Institute, Novo Nordisk A/S, Gentofte, Denmark
| |
Collapse
|
48
|
Knudsen L, Hansen BF, Jensen P, Pedersen TÅ, Vestergaard K, Schäffer L, Blagoev B, Oleksiewicz MB, Kiselyov VV, De Meyts P. Agonism and antagonism at the insulin receptor. PLoS One 2012; 7:e51972. [PMID: 23300584 PMCID: PMC3531387 DOI: 10.1371/journal.pone.0051972] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2011] [Accepted: 11/14/2012] [Indexed: 11/29/2022] Open
Abstract
Insulin can trigger metabolic as well as mitogenic effects, the latter being pharmaceutically undesirable. An understanding of the structure/function relationships between insulin receptor (IR) binding and mitogenic/metabolic signalling would greatly facilitate the preclinical development of new insulin analogues. The occurrence of ligand agonism and antagonism is well described for G protein-coupled receptors (GPCRs) and other receptors but in general, with the exception of antibodies, not for receptor tyrosine kinases (RTKs). In the case of the IR, no natural ligand or insulin analogue has been shown to exhibit antagonistic properties, with the exception of a crosslinked insulin dimer (B29-B’29). However, synthetic monomeric or dimeric peptides targeting sites 1 or 2 of the IR were shown to be either agonists or antagonists. We found here that the S961 peptide, previously described to be an IR antagonist, exhibited partial agonistic effects in the 1–10 nM range, showing altogether a bell-shaped dose-response curve. Intriguingly, the agonistic effects of S961 were seen only on mitogenic endpoints (3H-thymidine incorporation), and not on metabolic endpoints (14C-glucose incorporation in adipocytes and muscle cells). The agonistic effects of S961 were observed in 3 independent cell lines, with complete concordance between mitogenicity (3H-thymidine incorporation) and phosphorylation of the IR and Akt. Together with the B29-B’29 crosslinked dimer, S961 is a rare example of a mixed agonist/antagonist for the human IR. A plausible mechanistic explanation based on the bivalent crosslinking model of IR activation is proposed.
Collapse
Affiliation(s)
- Louise Knudsen
- Receptor Systems Biology Laboratory, Hagedorn Research Institute, Gentofte, Denmark.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Hvid H, Fendt SM, Blouin MJ, Birman E, Voisin G, Svendsen AM, Frank R, Vander Heiden MG, Stephanopoulos G, Hansen BF, Pollak M. Stimulation of MC38 tumor growth by insulin analog X10 involves the serine synthesis pathway. Endocr Relat Cancer 2012; 19:557-74. [PMID: 22685267 DOI: 10.1530/erc-12-0125] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Recent evidence suggests that type II diabetes is associated with increased risk and/or aggressive behavior of several cancers, including those arising from the colon. Concerns have been raised that endogenous hyperinsulinemia and/or exogenous insulin and insulin analogs might stimulate proliferation of neoplastic cells. However, the mechanisms underlying possible growth-promoting effects of insulin and insulin analogs in cancer cells in vivo, such as changes in gene expression, are incompletely described. We observed that administration of the insulin analog X10 significantly increased tumor growth and proliferation in a murine colon cancer model (MC38 cell allografts). Insulin and X10 altered gene expression in MC38 tumors in a similar fashion, but X10 was more potent in terms of the number of genes influenced and the magnitude of changes in gene expression. Many of the affected genes were annotated to metabolism, nutrient uptake, and protein synthesis. Strikingly, expression of genes encoding enzymes in the serine synthesis pathway, recently shown to be critical for neoplastic proliferation, was increased following treatment with insulin and X10. Using stable isotopic tracers and mass spectrometry, we confirmed that insulin and X10 increased glucose contribution to serine synthesis in MC38 cells. The data demonstrate that the tumor growth-promoting effects of insulin and X10 are associated with changes in expression of genes involved in cellular energy metabolism and reveal previously unrecognized effects of insulin and X10 on serine synthesis.
Collapse
Affiliation(s)
- Henning Hvid
- Lady Davis Institute for Medical Research, Jewish General Hospital, 3755 Cote-Ste.-Catherine, Montreal, Quebec, Canada H3T 1E2.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Affiliation(s)
- Pierre De Meyts
- Department of Diabetes Biology and Hagedorn Research Institute, Novo Nordisk A/S, 2820 Gentofte, Denmark.
| |
Collapse
|