1
|
Khazaal AQ, Ismaeel HM, Cheah PS, Nordin N. Cellular Stem Cell Therapy for Treating Traumatic Brain Injury: Strategies for Enhancement of Therapeutic Efficacy. Mol Neurobiol 2025:10.1007/s12035-025-04778-9. [PMID: 40000574 DOI: 10.1007/s12035-025-04778-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Accepted: 02/13/2025] [Indexed: 02/27/2025]
Abstract
Traumatic brain injury (TBI) influences a considerable population globally. TBI notably impacts both fatalities and disabilities worldwide. The mortality related to TBI is a significant concern in public health, affecting persons across various age groups and demographic profiles. More research and preventative interventions are required to alleviate TBIs' effects and optimize patient outcomes. Stem cell (SC) treatment exhibits promise as a viable strategy for addressing TBI due to its capacity to possibly restore or regenerate the compromised cells within the central nervous system. Additionally, it can influence the inflammatory response and increase neurogenesis and neuroplasticity. Increasing evidence has shown that SC transplantation has the potential to enhance functional recovery and decrease the extent of lesions in animal models of TBI. Nevertheless, several hurdles and ambiguities persist in determining the most effective source, dosage, administration method, timing, and mechanism of action for SC treatment for TBI. Further investigation is required to prove the safety and effectiveness of SC treatment for TBI in human subjects. This review brings insight into the strategies for utilizing SCs as cellular therapy for TBI, mainly based on preclinical investigations and TBI-induced animal models. In addition, this study also addresses many elements related to cell transfusion in the context of TBI, including considerations of cell amount, method, and timing. Integrating biomaterials and genetically altering SCs as potential strategies to enhance therapeutic efficacy are also presented. We also describe the potential of SCs in treating TBI and evaluate the effectiveness of cellular therapy and its corresponding outcomes.
Collapse
Affiliation(s)
- Ali Q Khazaal
- Department of Biotechnology, College of Science, University of Baghdad, Al-Jadriya, Baghdad, Iraq
| | - Haneen M Ismaeel
- Department of Biotechnology, College of Science, University of Baghdad, Al-Jadriya, Baghdad, Iraq
| | - Pike See Cheah
- Department of Human Anatomy, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia
- Malaysian Research Institute of Ageing (Myageing®), Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia
- Genetics and Regenerative Medicine (Regen) Research Group, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia
- Brain and Mental Health Research Advancement and Innovation Networks (PUTRA® BRAIN), Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia
| | - Norshariza Nordin
- Medical Genetics Unit, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia.
- Malaysian Research Institute of Ageing (Myageing®), Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia.
- Genetics and Regenerative Medicine (Regen) Research Group, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia.
- Brain and Mental Health Research Advancement and Innovation Networks (PUTRA® BRAIN), Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia.
| |
Collapse
|
2
|
Radoszkiewicz K, Rybkowska P, Szymanska M, Krzesniak NE, Sarnowska A. The influence of biomimetic conditions on neurogenic and neuroprotective properties of dedifferentiated fat cells. Stem Cells 2025; 43:sxae066. [PMID: 39576128 PMCID: PMC11811640 DOI: 10.1093/stmcls/sxae066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Accepted: 09/30/2024] [Indexed: 02/12/2025]
Abstract
In the era of a constantly growing number of reports on the therapeutic properties of dedifferentiated, ontogenetically rejuvenated cells and their use in the treatment of neurological diseases, the optimization of their derivation and long-term culture methods seem to be crucial. One of the solutions is seen in the use of dedifferentiated fat cells (DFATs) that are characterized by a greater homogeneity. Moreover, these cells seem to possess a higher expression of transcriptional factors necessary to maintain pluripotency (stemness-related transcriptional factors) as well as a greater ability to differentiate in vitro into 3 embryonic germ layers, and a high proliferative potential in comparison to adipose stem/stromal cells. However, the neurogenic and neuroprotective potential of DFATs is still insufficiently understood; hence, our research goal was to contribute to our current knowledge of the subject. To recreate the brain's physiological (biomimetic) conditions, the cells were cultured at 5% oxygen concentration. The neural differentiation capacity of DFATs was assessed in the presence of the N21 supplement containing the factors that are typically found in the natural environment of the neural cell niche or in the presence of cerebrospinal fluid and under various spatial conditions (microprinting). The neuroprotective properties of DFATs were assessed using the coculture method with the ischemically damaged nerve tissue.
Collapse
Affiliation(s)
- Klaudia Radoszkiewicz
- Translational Platform for Regenerative Medicine, Mossakowski Medical Research Institute, Polish Academy of Sciences, 02‐106 Warsaw, Poland
| | - Paulina Rybkowska
- Translational Platform for Regenerative Medicine, Mossakowski Medical Research Institute, Polish Academy of Sciences, 02‐106 Warsaw, Poland
| | - Magdalena Szymanska
- Translational Platform for Regenerative Medicine, Mossakowski Medical Research Institute, Polish Academy of Sciences, 02‐106 Warsaw, Poland
| | - Natalia Ewa Krzesniak
- Department of Plastic and Reconstructive Surgery, Centre of Postgraduate Medical Education, Prof. W. Orlowski Memorial Hospital, 00‐416 Warsaw, Poland
| | - Anna Sarnowska
- Translational Platform for Regenerative Medicine, Mossakowski Medical Research Institute, Polish Academy of Sciences, 02‐106 Warsaw, Poland
| |
Collapse
|
3
|
Seyyedin S, Ezzatabadipour M, Nematollahi-Mahani SN. The Role of Various Factors in Neural Differentiation of Human Umbilical Cord Mesenchymal Stem Cells with a Special Focus on the Physical Stimulants. Curr Stem Cell Res Ther 2024; 19:166-177. [PMID: 36734908 DOI: 10.2174/1574888x18666230124151311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Revised: 10/05/2022] [Accepted: 11/25/2022] [Indexed: 02/04/2023]
Abstract
Human umbilical cord matrix-derived mesenchymal stem cells (hUCMs) are considered as ideal tools for cell therapy procedures and regenerative medicine. The capacity of these cells to differentiate into neural lineage cells make them potentially important in the treatment of various neurodegenerative diseases. An electronic search was performed in Web of Science, PubMed/MEDLINE, Scopus and Google Scholar databases for articles published from January 1990 to March 2022. This review discusses the current knowledge on the effect of various factors, including physical, chemical and biological stimuli which play a key role in the differentiation of hUCMs into neural and glial cells. Moreover, the currently understood molecular mechanisms involved in the neural differentiation of hUCMs under various environmental stimuli are reviewed. Various stimuli, especially physical stimuli and specifically different light sources, have revealed effects on neural differentiation of mesenchymal stem cells, including hUCMs; however, due to the lack of information about the exact mechanisms, there is still a need to find optimal conditions to promote the differentiation capacity of these cells which in turn can lead to significant progress in the clinical application of hUCMs for the treatment of neurological disorders.
Collapse
Affiliation(s)
- Sajad Seyyedin
- Department of Anatomical Sciences, Afzalipour School of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Massood Ezzatabadipour
- Department of Anatomical Sciences, Afzalipour School of Medicine, Kerman University of Medical Sciences, Kerman, Iran
- Physiology Research Center, Kerman University of Medical Sciences, Kerman, Iran
| | - Seyed Noureddin Nematollahi-Mahani
- Department of Anatomical Sciences, Afzalipour School of Medicine, Kerman University of Medical Sciences, Kerman, Iran
- Neuroscience Research Center, Kerman University of Medical Sciences, Kerman, Iran
| |
Collapse
|
4
|
Xu Y, Kusuyama J, Osana S, Matsuhashi S, Li L, Takada H, Inada H, Nagatomi R. Lactate promotes neuronal differentiation of SH-SY5Y cells by lactate-responsive gene sets through NDRG3-dependent and -independent manners. J Biol Chem 2023:104802. [PMID: 37172727 DOI: 10.1016/j.jbc.2023.104802] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Revised: 04/23/2023] [Accepted: 05/01/2023] [Indexed: 05/15/2023] Open
Abstract
Lactate serves as the major glucose alternative to an energy substrate in the brain. Lactate level is increased in the fetal brain from the middle stage of gestation, indicating the involvement of lactate in brain development and neuronal differentiation. Recent reports show that lactate functions as a signaling molecule to regulate gene expression and protein stability. However, the roles of lactate signaling in neuronal cells remain unknown. Here, we showed that lactate promotes the all stages of neuronal differentiation of SH-SY5Y and Neuro2A, human and mouse neuroblastoma cell lines, characterized by increased neuronal marker expression and the rates of neurites extension. Transcriptomics revealed many lactate-responsive genes sets such as SPARCL1 in SH-SY5Y, Neuro2A, and primary embryonic mouse neuronal cells. The effects of lactate on neuronal function were mainly mediated through monocarboxylate transporters 1 (MCT1). We found that NDRG family member 3 (NDRG3), a lactate-binding protein, was highly expressed and stabilized by lactate treatment during neuronal differentiation. Combinative RNA-seq of SH-SY5Y with lactate treatment and NDRG3 knockdown shows that the promotive effects of lactate on neural differentiation are regulated through NDRG3-dependent and independent manners. Moreover, we identified TEA domain family member 1 (TEAD1) and ETS-related transcription factor 4 (ELF4) are the specific transcription factors that are regulated by both lactate and NDRG3 in neuronal differentiation. TEAD1 and ELF4 differently affect the expression of neuronal marker genes in SH-SY5Y cells. These results highlight the biological roles of extracellular and intracellular lactate as a critical signaling molecule that modifies neuronal differentiation.
Collapse
Affiliation(s)
- Yidan Xu
- Department of Medicine and Science in Sports and Exercise, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Joji Kusuyama
- Department of Medicine and Science in Sports and Exercise, Tohoku University Graduate School of Medicine, Sendai, Japan; Frontier Research Institute for Interdisciplinary Sciences, Tohoku University, Sendai, Japan; Division of Biomedical Engineering for Health and Welfare, Tohoku University Graduate School of Biomedical Engineering, Sendai, Japan; Department of Biosignals and Inheritance, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo, Japan.
| | - Shion Osana
- Department of Medicine and Science in Sports and Exercise, Tohoku University Graduate School of Medicine, Sendai, Japan; Division of Biomedical Engineering for Health and Welfare, Tohoku University Graduate School of Biomedical Engineering, Sendai, Japan; Graduate School of Informatics and Engineering, University of Electro-Communications
| | - Satayuki Matsuhashi
- Division of Biomedical Engineering for Health and Welfare, Tohoku University Graduate School of Biomedical Engineering, Sendai, Japan
| | - Longfei Li
- Department of Medicine and Science in Sports and Exercise, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Hiroaki Takada
- Division of Biomedical Engineering for Health and Welfare, Tohoku University Graduate School of Biomedical Engineering, Sendai, Japan
| | - Hitoshi Inada
- Division of Biomedical Engineering for Health and Welfare, Tohoku University Graduate School of Biomedical Engineering, Sendai, Japan; Department of Developmental Neuroscience, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Ryoichi Nagatomi
- Department of Medicine and Science in Sports and Exercise, Tohoku University Graduate School of Medicine, Sendai, Japan; Division of Biomedical Engineering for Health and Welfare, Tohoku University Graduate School of Biomedical Engineering, Sendai, Japan.
| |
Collapse
|
5
|
Santilli F, Fabrizi J, Pulcini F, Santacroce C, Sorice M, Delle Monache S, Mattei V. Gangliosides and Their Role in Multilineage Differentiation of Mesenchymal Stem Cells. Biomedicines 2022; 10:biomedicines10123112. [PMID: 36551867 PMCID: PMC9775755 DOI: 10.3390/biomedicines10123112] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 11/10/2022] [Accepted: 11/30/2022] [Indexed: 12/05/2022] Open
Abstract
Gangliosides (GGs) are a glycolipid class present on Mesenchymal Stem Cells (MSCs) surfaces with a critical appearance role in stem cell differentiation, even though their mechanistic role in signaling and differentiation remains largely unknown. This review aims to carry out a critical analysis of the predictive role of gangliosides as specific markers of the cellular state of undifferentiated and differentiated MSCs, towards the osteogenic, chondrogenic, neurogenic, and adipogenic lineage. For this reason, we analyzed the role of GGs during multilineage differentiation processes of several types of MSCs such as Umbilical Cord-derived MSCs (UC-MSCs), Bone Marrow-derived MSCs (BM-MSCs), Dental Pulp derived MSCs (DPSCs), and Adipose derived MSCs (ADSCs). Moreover, we examined the possible role of GGs as specific cell surface markers to identify or isolate specific stem cell isotypes and their potential use as additional markers for quality control of cell-based therapies.
Collapse
Affiliation(s)
- Francesca Santilli
- Biomedicine and Advanced Technologies Rieti Center, Sabina Universitas, Angelo Maria Ricci 35A, 02100 Rieti, Italy
| | - Jessica Fabrizi
- Biomedicine and Advanced Technologies Rieti Center, Sabina Universitas, Angelo Maria Ricci 35A, 02100 Rieti, Italy
- Department of Experimental Medicine, Sapienza University, Regina Elena 324, 00161 Rome, Italy
| | - Fanny Pulcini
- Department of Biotechnological and Applied Clinical Sciences, University of L’Aquila, Vetoio, 67100 L’Aquila, Italy
| | - Costantino Santacroce
- Biomedicine and Advanced Technologies Rieti Center, Sabina Universitas, Angelo Maria Ricci 35A, 02100 Rieti, Italy
| | - Maurizio Sorice
- Department of Experimental Medicine, Sapienza University, Regina Elena 324, 00161 Rome, Italy
| | - Simona Delle Monache
- Department of Biotechnological and Applied Clinical Sciences, University of L’Aquila, Vetoio, 67100 L’Aquila, Italy
- Correspondence: (S.D.M.); (V.M.)
| | - Vincenzo Mattei
- Biomedicine and Advanced Technologies Rieti Center, Sabina Universitas, Angelo Maria Ricci 35A, 02100 Rieti, Italy
- Correspondence: (S.D.M.); (V.M.)
| |
Collapse
|
6
|
Li W, Du X, Yang Y, Yuan L, Yang M, Qin L, Wang L, Zhou K, Xiang Y, Qu X, Liu H, Qin X, Xiao G, Liu C. miRNA-34b/c regulates mucus secretion in RSV-infected airway epithelial cells by targeting FGFR1. J Cell Mol Med 2021; 25:10565-10574. [PMID: 34636482 PMCID: PMC8581336 DOI: 10.1111/jcmm.16988] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 08/28/2021] [Accepted: 09/08/2021] [Indexed: 12/16/2022] Open
Abstract
Respiratory syncytial virus (RSV) infection in airway epithelial cells is the main cause of bronchiolitis in children. Excessive mucus secretion is one of the primary symbols in RSV related lower respiratory tract infections (RSV-related LRTI). However, the pathological processes of mucus hypersecretion in RSV-infected airway epithelial cells remains unclear. The current study explores the involvement of miR-34b/miR-34c in mucus hypersecretion in RSV-infected airway epithelial cells by targeting FGFR1. First, miR-34b/miR-34c and FGFR1 mRNA were quantified by qPCR in throat swab samples and cell lines, respectively. Then, the luciferase reporters' assay was designed to verify the direct binding between FGFR1 and miR-34b/miR-34c. Finally, the involvement of AP-1 signalling was assessed by western blot. This study identified that miR-34b/miR-34c was involved in c-Jun-regulated MUC5AC production by targeting FGFR1 in RSV-infected airway epithelial cells. These results provide some useful insights into the molecular mechanisms of mucus hypersecretion which may also bring new potential strategies to improve mucus hypersecretion in RSV disease.
Collapse
Affiliation(s)
- Wenkai Li
- Department of PediatricsHunan Provincial People’s HospitalThe First Affiliated Hospital of Hunan Normal UniversityChangshaChina
| | - Xizi Du
- Centre for Asthma and Respiratory DiseaseSchool of Biomedical Sciences and PharmacyFaculty of Health and MedicineUniversity of Newcastle and Hunter Medical Research InstituteCallaghanNSWAustralia
- Department of Respiratory MedicineNational Clinical Research Center for Respiratory DiseasesXiangya HospitalCentral South UniversityChangshaChina
| | - Yu Yang
- Department of PhysiologySchool of Basic Medicine ScienceCentral South UniversityChangshaChina
| | - Lin Yuan
- Department of PhysiologySchool of Basic Medicine ScienceCentral South UniversityChangshaChina
| | - Ming Yang
- Centre for Asthma and Respiratory DiseaseSchool of Biomedical Sciences and PharmacyFaculty of Health and MedicineUniversity of Newcastle and Hunter Medical Research InstituteCallaghanNSWAustralia
| | - Ling Qin
- Department of Respiratory MedicineNational Clinical Research Center for Respiratory DiseasesXiangya HospitalCentral South UniversityChangshaChina
| | - Leyuan Wang
- Department of PhysiologySchool of Basic Medicine ScienceCentral South UniversityChangshaChina
| | - Kai Zhou
- Department of PhysiologySchool of Basic Medicine ScienceCentral South UniversityChangshaChina
| | - Yang Xiang
- Department of PhysiologySchool of Basic Medicine ScienceCentral South UniversityChangshaChina
| | - Xiangping Qu
- Department of PhysiologySchool of Basic Medicine ScienceCentral South UniversityChangshaChina
| | - Huijun Liu
- Department of PhysiologySchool of Basic Medicine ScienceCentral South UniversityChangshaChina
| | - Xiaoqun Qin
- Department of PhysiologySchool of Basic Medicine ScienceCentral South UniversityChangshaChina
| | - Gelei Xiao
- Department of NeurosurgeryXiangya HospitalCentral South UniversityChangshaChina
| | - Chi Liu
- Department of Respiratory MedicineNational Clinical Research Center for Respiratory DiseasesXiangya HospitalCentral South UniversityChangshaChina
- Department of PhysiologySchool of Basic Medicine ScienceCentral South UniversityChangshaChina
| |
Collapse
|
7
|
Neurogenic and Neuroprotective Potential of Stem/Stromal Cells Derived from Adipose Tissue. Cells 2021; 10:cells10061475. [PMID: 34208414 PMCID: PMC8231154 DOI: 10.3390/cells10061475] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 05/28/2021] [Accepted: 06/04/2021] [Indexed: 01/01/2023] Open
Abstract
Currently, the number of stem-cell based experimental therapies in neurological injuries and neurodegenerative disorders has been massively increasing. Despite the fact that we still have not obtained strong evidence of mesenchymal stem/stromal cells’ neurogenic effectiveness in vivo, research may need to focus on more appropriate sources that result in more therapeutically promising cell populations. In this study, we used dedifferentiated fat cells (DFAT) that are proven to demonstrate more pluripotent abilities in comparison with standard adipose stromal cells (ASCs). We used the ceiling culture method to establish DFAT cells and to optimize culture conditions with the use of a physioxic environment (5% O2). We also performed neural differentiation tests and assessed the neurogenic and neuroprotective capability of both DFAT cells and ASCs. Our results show that DFAT cells may have a better ability to differentiate into oligodendrocytes, astrocytes, and neuron-like cells, both in culture supplemented with N21 and in co-culture with oxygen–glucose-deprived (OGD) hippocampal organotypic slice culture (OHC) in comparison with ASCs. Results also show that DFAT cells have a different secretory profile than ASCs after contact with injured tissue. In conclusion, DFAT cells constitute a distinct subpopulation and may be an alternative source in cell therapy for the treatment of nervous system disorders.
Collapse
|
8
|
Wang X, Li Z, Wang C, Bai H, Wang Z, Liu Y, Bao Y, Ren M, Liu H, Wang J. Enlightenment of Growth Plate Regeneration Based on Cartilage Repair Theory: A Review. Front Bioeng Biotechnol 2021; 9:654087. [PMID: 34150725 PMCID: PMC8209549 DOI: 10.3389/fbioe.2021.654087] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Accepted: 05/10/2021] [Indexed: 01/21/2023] Open
Abstract
The growth plate (GP) is a cartilaginous region situated between the epiphysis and metaphysis at the end of the immature long bone, which is susceptible to mechanical damage because of its vulnerable structure. Due to the limited regeneration ability of the GP, current clinical treatment strategies (e.g., bone bridge resection and fat engraftment) always result in bone bridge formation, which will cause length discrepancy and angular deformity, thus making satisfactory outcomes difficult to achieve. The introduction of cartilage repair theory and cartilage tissue engineering technology may encourage novel therapeutic approaches for GP repair using tissue engineered GPs, including biocompatible scaffolds incorporated with appropriate seed cells and growth factors. In this review, we summarize the physiological structure of GPs, the pathological process, and repair phases of GP injuries, placing greater emphasis on advanced tissue engineering strategies for GP repair. Furthermore, we also propose that three-dimensional printing technology will play a significant role in this field in the future given its advantage of bionic replication of complex structures. We predict that tissue engineering strategies will offer a significant alternative to the management of GP injuries.
Collapse
Affiliation(s)
- Xianggang Wang
- Orthopaedic Medical Center, The Second Hospital of Jilin University, Changchun, China.,Orthopaedic Research Institute of Jilin Province, Changchun, China
| | - Zuhao Li
- Orthopaedic Medical Center, The Second Hospital of Jilin University, Changchun, China.,Orthopaedic Research Institute of Jilin Province, Changchun, China
| | - Chenyu Wang
- Department of Plastic and Reconstructive Surgery, The First Hospital of Jilin University, Changchun, China
| | - Haotian Bai
- Orthopaedic Medical Center, The Second Hospital of Jilin University, Changchun, China.,Orthopaedic Research Institute of Jilin Province, Changchun, China
| | - Zhonghan Wang
- Orthopaedic Medical Center, The Second Hospital of Jilin University, Changchun, China.,Orthopaedic Research Institute of Jilin Province, Changchun, China
| | - Yuzhe Liu
- Orthopaedic Medical Center, The Second Hospital of Jilin University, Changchun, China.,Orthopaedic Research Institute of Jilin Province, Changchun, China
| | - Yirui Bao
- Department of Orthopedics, Chinese PLA 965 Hospital, Jilin, China
| | - Ming Ren
- Orthopaedic Medical Center, The Second Hospital of Jilin University, Changchun, China.,Orthopaedic Research Institute of Jilin Province, Changchun, China
| | - He Liu
- Orthopaedic Medical Center, The Second Hospital of Jilin University, Changchun, China.,Orthopaedic Research Institute of Jilin Province, Changchun, China
| | - Jincheng Wang
- Orthopaedic Medical Center, The Second Hospital of Jilin University, Changchun, China.,Orthopaedic Research Institute of Jilin Province, Changchun, China
| |
Collapse
|
9
|
Hu L, Wang Y, Pan H, Kadir K, Wen J, Li S, Zhang C. Apoptosis repressor with caspase recruitment domain (ARC) promotes bone regeneration of bone marrow-derived mesenchymal stem cells by activating Fgf-2/PI3K/Akt signaling. Stem Cell Res Ther 2021; 12:185. [PMID: 33726822 PMCID: PMC7962397 DOI: 10.1186/s13287-021-02253-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2020] [Accepted: 02/28/2021] [Indexed: 12/14/2022] Open
Abstract
Objectives This study aims to investigate whether apoptosis repressor with caspase recruitment domain (ARC) could promote survival and enhance osteogenic differentiation of bone marrow-derived mesenchymal stem cells (BMSCs). Materials and methods The lentivirus transfection method was used to establish ARC-overexpressing BMSCs. The CCK-8 method was used to detect cell proliferation. The BD Pharmingen™ APC Annexin V Apoptosis Detection kit was used to detect cell apoptosis. The osteogenic capacity was investigated by OCN immunofluorescence staining, ALP analysis, ARS assays, and RT-PCR analysis. Cells were seeded into calcium phosphate cement (CPC) scaffolds and then inserted subcutaneously into nude mice and the defect area of the rat calvarium. Histological analysis was conducted to evaluate the in vivo cell apoptosis and new bone formation of the ARC-overexpressing BMSCs. RNA-seq was used to detect the possible mechanism of the effect of ARC on BMSCs. Results ARC promoted BMSC proliferation and inhibited cell apoptosis. ARC enhanced BMSC osteogenic differentiation in vitro. An in vivo study revealed that ARC can inhibit BMSC apoptosis and increase new bone formation. ARC regulates BMSCs mainly by activating the Fgf-2/PI3K/Akt pathway. Conclusions The present study suggests that ARC is a powerful agent for promoting bone regeneration of BMSCs and provides a promising method for bone tissue engineering.
Collapse
Affiliation(s)
- Longwei Hu
- Department of Oral & Maxillofacial-Head & Neck Oncology, Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine; National Clinical Research Center for Oral Diseases; Shanghai Key Laboratory of Stomatology& Shanghai Research Institute of Stomatology, Shanghai, 200011, People's Republic of China
| | - Yang Wang
- Department of Oral & Maxillofacial-Head & Neck Oncology, Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine; National Clinical Research Center for Oral Diseases; Shanghai Key Laboratory of Stomatology& Shanghai Research Institute of Stomatology, Shanghai, 200011, People's Republic of China
| | - Hongya Pan
- Linno Pharmaceuticals Inc., Shanghai, 200011, People's Republic of China
| | - Kathreena Kadir
- Department of Oral & Maxillofacial Clinical Sciences, Faculty of Dentistry, University of Malaya, 50603, Kuala Lumpur, Malaysia
| | - Jin Wen
- Department of Prosthodontics, Ninth People's Hospital affiliated to Shanghai Jiao Tong University, School of Medicine, Shanghai, 200011, People's Republic of China
| | - Siyi Li
- Department of Oral & Maxillofacial-Head & Neck Oncology, Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine; National Clinical Research Center for Oral Diseases; Shanghai Key Laboratory of Stomatology& Shanghai Research Institute of Stomatology, Shanghai, 200011, People's Republic of China.
| | - Chenping Zhang
- Department of Oral & Maxillofacial-Head & Neck Oncology, Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine; National Clinical Research Center for Oral Diseases; Shanghai Key Laboratory of Stomatology& Shanghai Research Institute of Stomatology, Shanghai, 200011, People's Republic of China.
| |
Collapse
|
10
|
Trombetta-Lima M, Assis-Ribas T, Cintra RC, Campeiro JD, Guerreiro JR, Winnischofer SMB, Nascimento ICC, Ulrich H, Hayashi MAF, Sogayar MC. Impact of Reck expression and promoter activity in neuronal in vitro differentiation. Mol Biol Rep 2021; 48:1985-1994. [PMID: 33619662 DOI: 10.1007/s11033-021-06175-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2020] [Accepted: 01/20/2021] [Indexed: 02/07/2023]
Abstract
Reck (REversion-inducing Cysteine-rich protein with Kazal motifs) tumor suppressor gene encodes a multifunctional glycoprotein which inhibits the activity of several matrix metalloproteinases (MMPs), and has the ability to modulate the Notch and canonical Wnt pathways. Reck-deficient neuro-progenitor cells undergo precocious differentiation; however, modulation of Reck expression during progression of the neuronal differentiation process is yet to be characterized. In the present study, we demonstrate that Reck expression levels are increased during in vitro neuronal differentiation of PC12 pheochromocytoma cells and P19 murine teratocarcinoma cells and characterize mouse Reck promoter activity during this process. Increased Reck promoter activity was found upon induction of differentiation in PC12 cells, in accordance with its increased mRNA expression levels in mouse in vitro models. Interestingly, Reck overexpression, prior to the beginning of the differentiation protocol, led to diminished efficiency of the neuronal differentiation process. Taken together, our findings suggest that increased Reck expression at early stages of differentiation diminishes the number of neuron-like cells, which are positive for the beta-3 tubulin marker. Our data highlight the importance of Reck expression evaluation to optimize in vitro neuronal differentiation protocols.
Collapse
Affiliation(s)
- Marina Trombetta-Lima
- Núcleo de Terapia Celular e Molecular (NUCEL), Faculdade de Medicina, Universidade de São Paulo (USP), Rua Pangaré, 100 (Cidade Universitária), São Paulo, SP, 05360-130, Brazil
| | - Thais Assis-Ribas
- Núcleo de Terapia Celular e Molecular (NUCEL), Faculdade de Medicina, Universidade de São Paulo (USP), Rua Pangaré, 100 (Cidade Universitária), São Paulo, SP, 05360-130, Brazil
| | - Ricardo C Cintra
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo (USP), São Paulo, SP, 05508-000, Brazil
| | - Joana D Campeiro
- Departamento de Farmacologia, Escola Paulista de Medicina (EPM), Universidade Federal de São Paulo (UNIFESP), Rua 3 de Maio 100, Ed INFAR, 3º andar, São Paulo, SP, 04044-020, Brazil
| | - Juliano R Guerreiro
- Faculdade de Farmácia, Universidade Paulista (UNIP), São Paulo, SP, 05347-020, Brazil
| | - Sheila M B Winnischofer
- Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Paraná (UFPR), Curitiba, PR, 81531-990, Brazil
- Departamento de Biologia Celular, Universidade Federal do Paraná (UFPR), Curitiba, PR, 81531-990, Brazil
| | - Isis C C Nascimento
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo (USP), São Paulo, SP, 05508-000, Brazil
| | - Henning Ulrich
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo (USP), São Paulo, SP, 05508-000, Brazil
| | - Mirian A F Hayashi
- Departamento de Farmacologia, Escola Paulista de Medicina (EPM), Universidade Federal de São Paulo (UNIFESP), Rua 3 de Maio 100, Ed INFAR, 3º andar, São Paulo, SP, 04044-020, Brazil.
| | - Mari C Sogayar
- Núcleo de Terapia Celular e Molecular (NUCEL), Faculdade de Medicina, Universidade de São Paulo (USP), Rua Pangaré, 100 (Cidade Universitária), São Paulo, SP, 05360-130, Brazil.
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo (USP), São Paulo, SP, 05508-000, Brazil.
| |
Collapse
|
11
|
Gene Profiles in the Early Stage of Neuronal Differentiation of Mouse Bone Marrow Stromal Cells Induced by Basic Fibroblast Growth Factor. Stem Cells Int 2021; 2020:8857057. [PMID: 33424980 PMCID: PMC7775150 DOI: 10.1155/2020/8857057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 11/30/2020] [Accepted: 12/08/2020] [Indexed: 11/20/2022] Open
Abstract
A stably established population of mouse bone marrow stromal cells (BMSCs) with self-renewal and multilineage differentiation potential was expanded in vitro for more than 50 passages. These cells express high levels of mesenchymal stem cell markers and can be differentiated into adipogenic, chondrogenic, and osteogenic lineages in vitro. Subjected to basic fibroblast growth factor (bFGF) treatment, a typical neuronal phenotype was induced in these cells, as supported by neuronal morphology, induction of neuronal markers, and relevant electrophysiological excitability. To identify the genes regulating neuronal differentiation, cDNA microarray analysis was conducted using mRNAs isolated from cells differentiated for different time periods (0, 4, 24, and 72 h) after bFGF treatment. Various expression patterns of neuronal genes were stimulated by bFGF. These gene profiles were shown to be involved in developmental, functional, and structural integration of the nervous system. The expression of representative genes stimulated by bFGF in each group was verified by RT-PCR. Amongst proneural genes, the mammalian achate-schute homolog 1 (Mash-1), a basic helix-loop-helix transcriptional factor, was further demonstrated to be significantly upregulated. Overexpression of Mash-1 in mouse BMSCs was shown to induce the expression of neuronal specific enolase (NSE) and terminal neuronal morphology, suggesting that Mash-1 plays an important role in the induction of neuronal differentiation of mouse BMSCs.
Collapse
|
12
|
Yusuf IO, Chen HM, Cheng PH, Chang CY, Tsai SJ, Chuang JI, Wu CC, Huang BM, Sun HS, Chen CM, Yang SH. Fibroblast Growth Factor 9 Stimulates Neuronal Length Through NF-kB Signaling in Striatal Cell Huntington's Disease Models. Mol Neurobiol 2021; 58:2396-2406. [PMID: 33421017 DOI: 10.1007/s12035-020-02220-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Accepted: 11/18/2020] [Indexed: 12/29/2022]
Abstract
Proper development of neuronal cells is important for brain functions, and impairment of neuronal development may lead to neuronal disorders, implying that improvement in neuronal development may be a therapeutic direction for these diseases. Huntington's disease (HD) is a neurodegenerative disease characterized by impairment of neuronal structures, ultimately leading to neuronal death and dysfunctions of the central nervous system. Based on previous studies, fibroblast growth factor 9 (FGF9) may provide neuroprotective functions in HD, and FGFs may enhance neuronal development and neurite outgrowth. However, whether FGF9 can provide neuronal protective functions through improvement of neuronal morphology in HD is still unclear. Here, we study the effects of FGF9 on neuronal length in HD and attempt to understand the related working mechanisms. Taking advantage of striatal cell lines from HD knock-in mice, we found that FGF9 increases total neuronal length and upregulates several structural and synaptic proteins under HD conditions. In addition, activation of nuclear factor kappa B (NF-kB) signaling by FGF9 was observed to be significant in HD cells, and blockage of NF-kB leads to suppression of these structural and synaptic proteins induced by FGF9, suggesting the involvement of NF-kB signaling in these effects of FGF9. Taken these results together, FGF9 may enhance total neuronal length through upregulation of NF-kB signaling, and this mechanism could serve as an important mechanism for neuroprotective functions of FGF9 in HD.
Collapse
Affiliation(s)
- Issa Olakunle Yusuf
- Taiwan International Graduate Program in Interdisciplinary Neuroscience, National Cheng Kung University and Academia Sinica, Taipei, 11529, Taiwan.,Institute of Clinical Medicine, Taipei, Taiwan.,Department of Physiology, College of Medicine, National Cheng Kung University, Tainan, 70101, Taiwan
| | - Hsiu-Mei Chen
- Department of Physiology, College of Medicine, National Cheng Kung University, Tainan, 70101, Taiwan
| | - Pei-Hsun Cheng
- Department of Physiology, College of Medicine, National Cheng Kung University, Tainan, 70101, Taiwan
| | - Chih-Yi Chang
- Department of Physiology, College of Medicine, National Cheng Kung University, Tainan, 70101, Taiwan
| | - Shaw-Jenq Tsai
- Department of Physiology, College of Medicine, National Cheng Kung University, Tainan, 70101, Taiwan.,Institute of Basic Medical Sciences, Taipei, Taiwan
| | - Jih-Ing Chuang
- Department of Physiology, College of Medicine, National Cheng Kung University, Tainan, 70101, Taiwan.,Institute of Basic Medical Sciences, Taipei, Taiwan
| | - Chia-Ching Wu
- Institute of Basic Medical Sciences, Taipei, Taiwan.,Department of Cell Biology and Anatomy, Taipei, Taiwan
| | - Bu-Miin Huang
- Institute of Basic Medical Sciences, Taipei, Taiwan.,Department of Cell Biology and Anatomy, Taipei, Taiwan
| | - H Sunny Sun
- Institute of Basic Medical Sciences, Taipei, Taiwan.,Institute of Molecular Medicine, National Cheng Kung University, Tainan, 70101, Taiwan
| | - Chuan-Mu Chen
- Department of Life Sciences, College of Life Sciences, National Chung Hsing University, Taichung, 40227, Taiwan
| | - Shang-Hsun Yang
- Taiwan International Graduate Program in Interdisciplinary Neuroscience, National Cheng Kung University and Academia Sinica, Taipei, 11529, Taiwan. .,Department of Physiology, College of Medicine, National Cheng Kung University, Tainan, 70101, Taiwan. .,Institute of Basic Medical Sciences, Taipei, Taiwan.
| |
Collapse
|
13
|
Chang MC, Chen CY, Chang YC, Zhong BH, Wang YL, Yeung SY, Chang HH, Jeng JH. Effect of bFGF on the growth and matrix turnover of stem cells from human apical papilla: Role of MEK/ERK signaling. J Formos Med Assoc 2020; 119:1666-1672. [PMID: 31932202 DOI: 10.1016/j.jfma.2019.12.013] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 12/11/2019] [Accepted: 12/23/2019] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND/PURPOSE Basic fibroblast growth factor (bFGF) exhibits multiple biological functions in various tissues. Stem cells from apical papilla (SCAP) can be isolated from human apical papilla tissues in developmental teeth of children. The purposes of this study were to investigate the expression of FGF receptors (FGFRs) and the effects of bFGF on SCAP and related MEK/ERK signaling. METHODS SCAP cells were treated under different concentrations of bFGF with or without U0126 (an inhibitor of MEK/ERK). Expression of FGFR1 and FGFR2 in SCAP was analyzed by RT-PCR. Cell proliferation was measured by MTT assay. The expressions of type I collagen, cdc 2, cyclin B1, TIMP-1 and p-ERK proteins were examined by Western blot. RESULTS SCAP cells expressed FGFR1 and FGFR2. Exposure of SCAP to bFGF enhanced cell proliferation, and the expression cyclinB1, cdc 2, and TIMP-1, but not type I collagen. U0126 pretreatment and co-incubation attenuated the bFGF-induced proliferation, cdc2, cyclin B1 and TIMP-1 proteins' expression, but not type I collagen in SCAP. CONCLUSION SCAP cells express FGFRs. bFGF may stimulate proliferation and affect the matrix turnover of SCAP cells, possibly via stimulation of FGFRs and MEK/ERK signaling pathway. These results are useful for clinical therapies for apexogenesis and regeneration of pulpo-dentin complex.
Collapse
Affiliation(s)
- Mei-Chi Chang
- Biomedical Science Team, Chang Gung University of Science and Technology, Taoyuan, Taiwan; Department of Dentistry, Chang Gung Memorial Hospital, Taipei, Taiwan
| | - Chih-Yu Chen
- School of Dentistry, National Taiwan University Medical College, Taipei, Taiwan; Department of Dentistry, National Taiwan University Hospital, Taipei, Taiwan
| | - Ya-Ching Chang
- Department of Dentistry, MacKay Memorial Hospital, Taipei, Taiwan
| | - Bo-Hao Zhong
- School of Dentistry, National Taiwan University Medical College, Taipei, Taiwan; Department of Dentistry, National Taiwan University Hospital, Taipei, Taiwan
| | - Yin-Lin Wang
- School of Dentistry, National Taiwan University Medical College, Taipei, Taiwan; Department of Dentistry, National Taiwan University Hospital, Taipei, Taiwan
| | - Sin-Yuet Yeung
- Department of Dentistry, Chang Gung Memorial Hospital, Taipei, Taiwan
| | - Hsiao-Hua Chang
- School of Dentistry, National Taiwan University Medical College, Taipei, Taiwan; Department of Dentistry, National Taiwan University Hospital, Taipei, Taiwan.
| | - Jiiang-Huei Jeng
- School of Dentistry, National Taiwan University Medical College, Taipei, Taiwan; Department of Dentistry, National Taiwan University Hospital, Taipei, Taiwan.
| |
Collapse
|
14
|
Edamura K, Takahashi Y, Fujii A, Masuhiro Y, Narita T, Seki M, Asano K. Recombinant canine basic fibroblast growth factor-induced differentiation of canine bone marrow mesenchymal stem cells into voltage- and glutamate-responsive neuron-like cells. Regen Ther 2020; 15:121-128. [PMID: 33426210 PMCID: PMC7770349 DOI: 10.1016/j.reth.2020.07.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 07/06/2020] [Accepted: 07/13/2020] [Indexed: 02/07/2023] Open
Abstract
Introduction Basic fibroblast growth factor (bFGF) is a promising cytokine in regenerative therapy for spinal cord injury. In this study, recombinant canine bFGF (rc-bFGF) was synthesized for clinical use in dogs, and the ability of rc-bFGF to differentiate canine bone marrow mesenchymal stem cells (BMSCs) into functional neurons was investigated. Methods The rc-bFGF was synthesized using a wheat germ cell-free protein synthesis system. The expression of rc-bFGF mRNA in the purification process was confirmed using a reverse transcription-polymerase chain reaction (RT-PCR). Western blotting was performed to confirm the antigenic property of the purified protein. To verify function of the purified protein, phosphorylation of extracellular signal-regulated kinase (ERK) was examined by in vitro assay using HEK293 cells. To compare the neuronal differentiation capacity of canine BMSCs in response to treatment with rc-bFGF, the cells were divided into the following four groups: control, undifferentiated, rh-bFGF, and rc-bFGF groups. After neuronal induction, the percentage of cells that had changed to a neuron-like morphology and the mRNA expression of neuronal markers were evaluated. Furthermore, to assess the function of the canine BMSCs after neuronal induction, changes in the intracellular Ca2+ concentrations after stimulation with KCl and l-glutamate were examined. Results The protein synthesized in this study was rc-bFGF and functioned as bFGF, from the results of RT-PCR, western blotting, and the expression of pERK in HEK293 cells. Canine BMSCs acquired a neuron-like morphology and expressed mRNAs of neuronal markers after neuronal induction in the rh-bFGF and the rc-bFGF groups. These results were more marked in the rc-bFGF group than in the other groups. Furthermore, an increase in intracellular Ca2+ concentrations was observed after the stimulation of KCl and l-glutamate in the rc-bFGF group, same as in the rh-bFGF group. Conclusions A functional rc-bFGF was successfully synthesized, and rc-bFGF induced the differentiation of canine BMSCs into voltage- and glutamate-responsive neuron-like cells. Our purified rc-bFGF may contribute, on its own, or in combination with canine BMSCs, to regenerative therapy for spinal cord injury in dogs. Functional rc-bFGF was successfully synthesized. rc-bFGF induced the differentiation of canine BMSCs into neuron-like cells. rc-bFGF may aid in regenerative therapy of spinal cord injury in dogs.
Collapse
Key Words
- BMSCs, bone marrow mesenchymal stem cells
- Basic fibroblast growth factor
- Bone marrow
- Differentiation
- Dog
- EDTA, ethylenediaminetetraacetic acid
- ERK, extracellular signal-regulated kinase
- FBS, fatal bovine serum
- FGFR, basic fibroblast growth factor receptor
- GUSB, β-glucuronidase
- HEK293, human embryonic kidney cells 293
- HRP, horseradish peroxidase
- Mesenchymal stem cell
- Neuron
- PBS, phosphate buffered saline
- PCR, polymerase chain reaction
- PI3K, phosphatidylinositol 3-kinase
- RT-PCR, reverse transcription-polymerase chain reaction
- bFGF, basic fibroblast growth factor
- cDNA, complementary DNA
- mRNA, messenger ribonucleic acid
- pERK, phosphorylated extracellular signal-regulated kinase
- αMEM, alpha modified eagle minimum essential medium
Collapse
Affiliation(s)
- Kazuya Edamura
- Laboratory of Veterinary Surgery, Department of Veterinary Medicine, College of Bioresource and Sciences, Nihon University, Fujisawa, Kanagawa, 252-0880, Japan
| | - Yusuke Takahashi
- Laboratory of Veterinary Surgery, Department of Veterinary Medicine, College of Bioresource and Sciences, Nihon University, Fujisawa, Kanagawa, 252-0880, Japan
| | - Airi Fujii
- Laboratory of Veterinary Surgery, Department of Veterinary Medicine, College of Bioresource and Sciences, Nihon University, Fujisawa, Kanagawa, 252-0880, Japan
| | - Yoshikazu Masuhiro
- Department of Applied Biological Science, College of Bioresource and Sciences, Nihon University, Fujisawa, Kanagawa, 252-0880, Japan
| | - Takanori Narita
- Laboratory of Veterinary Biochemistry, Department of Veterinary Medicine, College of Bioresource and Sciences, Nihon University, Fujisawa, Kanagawa, 252-0880, Japan
| | - Mamiko Seki
- Laboratory of Veterinary Surgery, Department of Veterinary Medicine, College of Bioresource and Sciences, Nihon University, Fujisawa, Kanagawa, 252-0880, Japan
| | - Kazushi Asano
- Laboratory of Veterinary Surgery, Department of Veterinary Medicine, College of Bioresource and Sciences, Nihon University, Fujisawa, Kanagawa, 252-0880, Japan
| |
Collapse
|
15
|
Molecular Mechanisms Involved in Neural Substructure Development during Phosphodiesterase Inhibitor Treatment of Mesenchymal Stem Cells. Int J Mol Sci 2020; 21:ijms21144867. [PMID: 32660142 PMCID: PMC7402296 DOI: 10.3390/ijms21144867] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 07/03/2020] [Accepted: 07/06/2020] [Indexed: 12/14/2022] Open
Abstract
Stem cells are highly important in biology due to their unique innate ability to self-renew and differentiate into other specialised cells. In a neurological context, treating major injuries such as traumatic brain injury, spinal cord injury and stroke is a strong basis for research in this area. Mesenchymal stem cells (MSC) are a strong candidate because of their accessibility, compatibility if autologous, high yield and multipotency with a potential to generate neural cells. With the use of small-molecule chemicals, the neural induction of stem cells may occur within minutes or hours. Isobutylmethyl xanthine (IBMX) has been widely used in cocktails to induce neural differentiation. However, the key molecular mechanisms it instigates in the process are largely unknown. In this study we showed that IBMX-treated mesenchymal stem cells induced differentiation within 24 h with the unique expression of several key proteins such as Adapter protein crk, hypoxanthine-guanine phosphoribosyltransferase, DNA topoisomerase 2-beta and Cell division protein kinase 5 (CDK5), vital in linking signalling pathways. Furthermore, the increased expression of basic fibroblast growth factor in treated cells promotes phosphatidylinositol 3-kinase (PI3K), mitogen-activated protein kinase (MAPK) cascades and GTPase–Hras interactions. Bioinformatic and pathway analyses revealed upregulation in expression and an increase in the number of proteins with biological ontologies related to neural development and substructure formation. These findings enhance the understanding of the utility of IBMX in MSC neural differentiation and its involvement in neurite substructure development.
Collapse
|
16
|
Zheng K, Feng G, Zhang J, Xing J, Huang D, Lian M, Zhang W, Wu W, Hu Y, Lu X, Feng X. Basic fibroblast growth factor promotes human dental pulp stem cells cultured in 3D porous chitosan scaffolds to neural differentiation. Int J Neurosci 2020; 131:625-633. [PMID: 32186218 DOI: 10.1080/00207454.2020.1744592] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
AIM/PURPOSE Dental pulp stem cells (DPSCs) were widely used as seed cells in the field of tissue engineering and regenerative medicine, including spinal cord injury (SCI) repair and other neuronal degenerative diseases, due to their easy isolation, multiple differentiation potential, low immunogenicity and low rates of rejection during transplantation. Various studies have shown that bFGF can enhance peripheral nerve regeneration after injury, and phospho-ERK (p-ERK) activation as a major mediator may be involved in this process. Previous studies also have proved that a suitable biomaterial scaffold can carry and transport the therapeutic cells effectively to the recipient area. It has showed in our earlier experiments that 3D porous chitosan scaffolds exhibited a suitable circumstance for survival and neural differentiation of DPSCs in vitro. The purpose of the study was to evaluate the influence of chitosan scaffolds and bFGF on differentiation of DPSCs. MATERIALS AND METHODS In current study, DPSCs were cultured in chitosan scaffolds and treated with neural differentiation medium for 7 days. The neural genes and protein markers were analyzed by western blot and immunofluorescence. Meanwhile, the relevant signaling pathway involved in this process was also tested. RESULTS Our study revealed that the viability of DPSCs was not influenced by co-culture with the chitosan scaffolds as well as bFGF. Compared with the control and DPSC/chitosan-scaffold groups, the levels of GFAP, S100β and β-tubulin III significantly increased in the DPSC/chitosan-scaffold+bFGF group. CONCLUSION Chitosan scaffolds were non-cytotoxic to the survival of DPSCs, and chitosan scaffolds combined with bFGF facilitated the neural differentiation of DPSCs. The transplantation of DPSCs/chitosan-scaffold+bFGF might be a secure and effective method of treating SCI and other neuronal diseases.
Collapse
Affiliation(s)
- Ke Zheng
- Department of Stomatology, Wuxi No. 2 People's Hospital, Wuxi, China.,Department of Stomatology, Affiliated Hospital of Nantong University, Nantong, China
| | - Guijuan Feng
- Department of Stomatology, Affiliated Hospital of Nantong University, Nantong, China
| | - Jinlong Zhang
- Department of Spine Surgery, The Second Affiliated Hospital of Nantong University, Nantong, China
| | - Jing Xing
- Department of Stomatology, Affiliated Hospital of Nantong University, Nantong, China
| | - Dan Huang
- Department of Stomatology, Affiliated Hospital of Nantong University, Nantong, China
| | - Min Lian
- Department of Stomatology, Affiliated Hospital of Nantong University, Nantong, China
| | - Wei Zhang
- Department of Stomatology, Affiliated Hospital of Nantong University, Nantong, China
| | - Wenli Wu
- Department of Stomatology, Affiliated Hospital of Nantong University, Nantong, China
| | - Yingzi Hu
- Medical College of Nantong University, Nantong, China
| | - Xiaohui Lu
- Department of Stomatology, Affiliated Hospital of Nantong University, Nantong, China
| | - Xingmei Feng
- Department of Stomatology, Affiliated Hospital of Nantong University, Nantong, China
| |
Collapse
|
17
|
Barisic D, Erb M, Follo M, Al-Mudaris D, Rolauffs B, Hart ML. Lack of a skeletal muscle phenotype in adult human bone marrow stromal cells following xenogeneic-free expansion. Stem Cell Res Ther 2020; 11:79. [PMID: 32087752 PMCID: PMC7036219 DOI: 10.1186/s13287-020-1587-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Revised: 01/22/2020] [Accepted: 02/05/2020] [Indexed: 02/07/2023] Open
Abstract
Background Many studies have elegantly shown that murine and rat bone marrow-derived mesenchymal stromal cells (bmMSCs) contribute to muscle regeneration and improve muscle function. Yet, the ability of transplanted human bmMSCs to manifest myogenic potential shows conflicting results. While human adipose- and umbilical cord-derived MSCs can be differentiated into a skeletal muscle phenotype using horse serum (HS), bmMSCs have only been shown to differentiate towards the skeletal muscle lineage using a complex mixture of cytokines followed by transfection with notch intracellular domain. Methods Since xenogeneic-free growth supplements are increasingly being used in the expansion of bmMSCs in clinical trials, we investigated the effects of human plasma and platelet lysate (P/PL) on the expression of neuromuscular markers and whether P/PL-expanded human bmMSCs could be differentiated towards a skeletal myogenic phenotype. Neuromuscular markers were measured using the highly sensitive droplet digital polymerase chain reaction for measuring the expression of Myf5, MyoD, MyoG, ACTA1, Desmin, GAP-43, and Coronin 1b transcripts, by performing immunofluorescence for the expression of Desmin, GAP-43, and MEF2, and flow cytometry for the expression of CD56/neural cell adhesion molecule (NCAM). Results Despite that bmMSCs expressed the myogenic regulatory factor (MRF) MEF2 after expansion in P/PL, bmMSCs cultured under such conditions did not express other essential MRFs including Myf5, MyoD, MyoG, or ACTA1 needed for myogenesis. Moreover, HS did not induce myogenesis of bmMSCs and hence did not induce the expression of any of these myogenic markers. P/PL, however, did lead to a significant increase in neurogenic GAP-43, as well as Desmin expression, and resulted in a high baseline expression of the neurogenic gene Coronin 1b which was sustained under further P/PL or HS culture conditions. Fetal bovine serum resulted in equally high levels of GAP-43 and Coronin 1b. Moreover, the proportion of CD56/NCAM-positive bmMSCs cultured in P/PL was 5.9 ± 2.1. Conclusions These data suggest that P/PL may prime a small portion of bmMSCs towards an early neural precursor cell type. Collectively, this shows that P/PL partially primes the cells towards a neurogenic phenotype, but does not prime adult human bmMSCs towards the skeletal muscle lineage.
Collapse
Affiliation(s)
- Dominik Barisic
- G.E.R.N. Center for Tissue Replacement, Regeneration and Neogenesis, Department of Orthopaedics and Trauma Surgery, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Marita Erb
- G.E.R.N. Center for Tissue Replacement, Regeneration and Neogenesis, Department of Orthopaedics and Trauma Surgery, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Marie Follo
- Department of Medicine I, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Dahlia Al-Mudaris
- G.E.R.N. Center for Tissue Replacement, Regeneration and Neogenesis, Department of Orthopaedics and Trauma Surgery, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Bernd Rolauffs
- G.E.R.N. Center for Tissue Replacement, Regeneration and Neogenesis, Department of Orthopaedics and Trauma Surgery, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Melanie L Hart
- G.E.R.N. Center for Tissue Replacement, Regeneration and Neogenesis, Department of Orthopaedics and Trauma Surgery, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany.
| |
Collapse
|
18
|
Zhao GH, Qiu YQ, Yang CW, Chen IS, Chen CY, Lee SJ. The cardenolides ouabain and reevesioside A promote FGF2 secretion and subsequent FGFR1 phosphorylation via converged ERK1/2 activation. Biochem Pharmacol 2019; 172:113741. [PMID: 31812679 DOI: 10.1016/j.bcp.2019.113741] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Accepted: 12/02/2019] [Indexed: 11/16/2022]
Abstract
Na+/K+-ATPase α1 was reported to directly interact with and recruit FGF2 (fibroblast growth factor 2), a vital cell signaling protein implicated in angiogenesis, to the inner plasma membrane for subsequent secretion. Cardenolides, a class of cardiac glycosides, were reported to downregulate FGF2 secretion upon binding to Na+/K+-ATPase α1 in a cell system with ectopically expressed FGF2 and Na+/K+-ATPase α1. Herein, we disclose that the cardenolides ouabain and reevesioside A significantly enhance the secretion/release of FGF2 and the phosphorylation of FGFR1 (fibroblast growth factor receptor 1) in a time- and dose-dependent manner, in A549 carcinoma cells. A pharmacological approach was used to elucidate the pertinent upstream effectors. Only the ERK1/2 inhibitor U0126 but not the other inhibitors examined (including those inhibiting the unconventional secretion of FGF2) was able to reduce ouabain-induced FGF2 secretion and FGFR1 activation. ERK1/2 phosphorylation was increased upon ouabain treatment, a process found to be mediated through upstream effectors including ouabain-induced phosphorylated EGFR and a reduced MKP1 protein level. Therefore, at least two independent lines of upstream effectors are able to mediate ouabain-induced ERK1/2 phosphorylation and the subsequent FGF2 secretion and FGFR1 activation. These finding constitute unprecedent insights into the regulation of FGF2 secretion by cardenolides.
Collapse
Affiliation(s)
- Guan-Hao Zhao
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Miaoli 35053, Taiwan, ROC; Department of Life Sciences, National Central University, Taoyuan 32001, Taiwan, ROC
| | - Ya-Qi Qiu
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Miaoli 35053, Taiwan, ROC
| | - Cheng-Wei Yang
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Miaoli 35053, Taiwan, ROC
| | - Ih-Sheng Chen
- School of Pharmacy, College of Pharmacy, Kaohsiung Medical University, Kaohsiung, Taiwan, ROC
| | - Chin-Yu Chen
- Department of Life Sciences, National Central University, Taoyuan 32001, Taiwan, ROC
| | - Shiow-Ju Lee
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Miaoli 35053, Taiwan, ROC.
| |
Collapse
|
19
|
Radhakrishnan S, Trentz OA, Martin CA, Reddy MS, Rela M, Chinnarasu M, Kalkura N, Sellathamby S. Effect of passaging on the stemness of infrapatellar fat pad‑derived stem cells and potential role of nucleostemin as a prognostic marker of impaired stemness. Mol Med Rep 2019; 20:813-829. [PMID: 31115526 PMCID: PMC6579983 DOI: 10.3892/mmr.2019.10268] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Accepted: 04/09/2019] [Indexed: 12/13/2022] Open
Abstract
Infrapatellar fat pad‑derived stem cells (IFPSCs) are emerging as an alternative to adipose tissue‑derived stem cells (ADSCs) from other sources. They are a reliable source of autologous stem cells obtained from medical waste that are suitable for use in cell‑based therapy, tissue engineering and regenerative medicine. Such clinical applications require a vast number of high‑quality IFPSCs. Unlike embryonic stem cells (ESCs), ADSCs and IFPSCs have limited population doubling capacity; however, in vitro expansion of primary IFPSCs through multiple passages (referred to as P) is a crucial step to acquire the desired population of cells. The present study investigated the effect of multiple passages on the stemness of IFPSCs during expansion and the possibility of predicting the loss of stemness using certain markers. IFPSCs were isolated from infrapatellar fat pad tissue resected during knee arthroplasty performed on aged patients (>65 years old). These cells from the stromal vascular fraction were serially passaged to at least to P7, and their stemness characteristics were examined at each passage. It was observed that IFPSCs maintained their spindle‑shaped morphology, self‑renewability and homogeneity at P2‑4. Furthermore, immunostaining revealed that these cells expressed mesenchymal stem cell (CD166, CD90 and CD105) and ESC markers [Sox2, Nanog, Oct4 and nucleostemin (NS)], whereas the hematopoietic stem cell marker CD45 was absent. These cells were also able to differentiate into the three germ layer cell types, thus confirming their ability to generate clinical grade cells. The findings indicated that prolonged culture of IFPSCs (P>6) led to the loss of the stem cell proliferative marker NS, with an increased population doubling time and progression toward neuronal differentiation, acquiring a neurogenic phenotype. Additionally, IFPSCs demonstrated an inherent ability to secrete neurotrophic factors and express receptors for these factors, which is the cause of neuronal differentiation at later passages. Therefore, these findings validated NS as a prognostic indicator for impaired stemness and identified IFPSCs as a promising source for cell‑based therapy, particularly for neurodegenerative diseases.
Collapse
Affiliation(s)
- Subathra Radhakrishnan
- National Foundation for Liver Research, Cell Laboratory, Gleneagles Global Health City, Chennai 600100, India
- Department of Biomedical Science, Bharathidasan University, Tiruchirappalli 620024, India
| | - Omana Anna Trentz
- MIOT Institute of Research, MIOT International, Chennai 600089, India
| | - Catherine Ann Martin
- National Foundation for Liver Research, Cell Laboratory, Gleneagles Global Health City, Chennai 600100, India
- Crystal Growth Centre, Anna University, Chennai 600025, India
| | - Mettu Srinivas Reddy
- National Foundation for Liver Research, Cell Laboratory, Gleneagles Global Health City, Chennai 600100, India
- Institute of Liver Disease and Transplantation, Gleneagles Global Health City, Chennai 600100, India
| | - Mohamed Rela
- National Foundation for Liver Research, Cell Laboratory, Gleneagles Global Health City, Chennai 600100, India
- Institute of Liver Disease and Transplantation, Gleneagles Global Health City, Chennai 600100, India
| | - Marimuthu Chinnarasu
- Institute of Liver Disease and Transplantation, Gleneagles Global Health City, Chennai 600100, India
| | | | | |
Collapse
|
20
|
Martin CA, Radhakrishnan S, Nagarajan S, Muthukoori S, Dueñas JMM, Gómez Ribelles JL, Lakshmi BS, E A K N, Gómez-Tejedor JA, Reddy MS, Sellathamby S, Rela M, Subbaraya NK. An innovative bioresorbable gelatin based 3D scaffold that maintains the stemness of adipose tissue derived stem cells and the plasticity of differentiated neurons. RSC Adv 2019; 9:14452-14464. [PMID: 35519343 PMCID: PMC9064131 DOI: 10.1039/c8ra09688k] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2018] [Accepted: 04/05/2019] [Indexed: 12/02/2022] Open
Abstract
Neural tissue engineering aims at producing a simulated environment using a matrix that is suitable to grow specialized neurons/glial cells pertaining to CNS/PNS which replace damaged or lost tissues. The primary goal of this study is to design a compatible scaffold that supports the development of neural-lineage cells which aids in neural regeneration. The fabricated, freeze-dried scaffolds consisted of biocompatible, natural and synthetic polymers: gelatin and polyvinyl pyrrolidone. Physiochemical characterization was carried out using Fourier Transform Infrared Spectroscopy (FT-IR) and Scanning Electron Microscopy (SEM) imaging. The 3D construct retains good swelling proficiency and holds the integrated structure that supports cell adhesion and proliferation. The composite of PVP-gelatin is blended in such a way that it matches the mechanical strength of the brain tissue. The cytocompatibility analysis shows that the scaffolds are compatible and permissible for the growth of both stem cells as well as differentiated neurons. A change in the ratios of the scaffold components resulted in varied sizes of pores giving diverse surface morphology, greatly influencing the properties of the neurons. However, there is no change in stem cell properties. Different types of neurons are characterized by the type of gene associated with the neurotransmitter secreted by them. The change in the neuron properties could be attributed to neuroplasticity. The plasticity of the neurons was analyzed using quantitative gene expression studies. It has been observed that the gelatin-rich construct supports the prolonged proliferation of stem cells and multiple neurons along with their plasticity.
Collapse
Affiliation(s)
- Catherine Ann Martin
- Crystal Growth Centre, Anna University Chennai India
- National Foundation for Liver Research, Global Hospitals & Health City Chennai India
| | - Subathra Radhakrishnan
- National Foundation for Liver Research, Global Hospitals & Health City Chennai India
- Department of Biomedicine, Bharathidasan University India
| | | | | | - J M Meseguer Dueñas
- Center for Biomaterials and Tissue Engineering (CBIT), Universitat Politècnica de València Camino de Vera s/n. 46022 Valencia Spain
- Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN) Spain
| | - José Luis Gómez Ribelles
- Center for Biomaterials and Tissue Engineering (CBIT), Universitat Politècnica de València Camino de Vera s/n. 46022 Valencia Spain
- Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN) Spain
| | | | | | - José Antonio Gómez-Tejedor
- Center for Biomaterials and Tissue Engineering (CBIT), Universitat Politècnica de València Camino de Vera s/n. 46022 Valencia Spain
- Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN) Spain
| | - Mettu Srinivas Reddy
- National Foundation for Liver Research, Global Hospitals & Health City Chennai India
| | | | - Mohamed Rela
- National Foundation for Liver Research, Global Hospitals & Health City Chennai India
| | | |
Collapse
|
21
|
Aubid NN, Liu Y, Vidal JMP, Hall VJ. Isolation and culture of porcine primary fetal progenitors and neurons from the developing dorsal telencephalon. J Vet Sci 2019; 20:e3. [PMID: 30944526 PMCID: PMC6441812 DOI: 10.4142/jvs.2019.20.e3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Revised: 11/26/2018] [Accepted: 12/04/2018] [Indexed: 01/20/2023] Open
Abstract
The development of long-term surviving fetal cell cultures from primary cell tissue from the developing brain is important for facilitating studies investigating neural development and for modelling neural disorders and brain congenital defects. The field faces current challenges in co-culturing both progenitors and neurons long-term. Here, we culture for the first time, porcine fetal cells from the dorsal telencephalon at embryonic day (E) 50 and E60 in conditions that promoted both the survival of progenitor cells and young neurons. We applied a novel protocol designed to collect, isolate and promote survival of both progenitors and young neurons. Herein, we used a combination of low amount of fetal bovine serum, together with pro-survival factors, including basic fibroblast growth factor and retinoic acid, together with arabinofuranosylcytosine and could maintain progenitors and facilitate in vitro differentiation into calbindin 1+ neurons and reelin+ interneurons for a period of 7 days. Further improvements to the protocol that might extend the survival of the fetal primary neural cells would be beneficial. The development of new porcine fetal culture methods is of value for the field, given the pig's neuroanatomical and developmental similarities to the human brain.
Collapse
Affiliation(s)
- Niroch Nawzad Aubid
- Department of Veterinary and Animal Sciences, Faculty of Health Sciences, University of Copenhagen, Frederiksberg C, DK-1870, Denmark
| | - Yong Liu
- Department of Veterinary and Animal Sciences, Faculty of Health Sciences, University of Copenhagen, Frederiksberg C, DK-1870, Denmark
| | - Juan Miguel Peralvo Vidal
- Department of Veterinary and Animal Sciences, Faculty of Health Sciences, University of Copenhagen, Frederiksberg C, DK-1870, Denmark
| | - Vanessa Jane Hall
- Department of Veterinary and Animal Sciences, Faculty of Health Sciences, University of Copenhagen, Frederiksberg C, DK-1870, Denmark
| |
Collapse
|
22
|
Kumar D, New J, Vishwakarma V, Joshi R, Enders J, Lin F, Dasari S, Gutierrez WR, Leef G, Ponnurangam S, Chavan H, Ganaden L, Thornton MM, Dai H, Tawfik O, Straub J, Shnayder Y, Kakarala K, Tsue TT, Girod DA, Van Houten B, Anant S, Krishnamurthy P, Thomas SM. Cancer-Associated Fibroblasts Drive Glycolysis in a Targetable Signaling Loop Implicated in Head and Neck Squamous Cell Carcinoma Progression. Cancer Res 2018; 78:3769-3782. [PMID: 29769197 DOI: 10.1158/0008-5472.can-17-1076] [Citation(s) in RCA: 95] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Revised: 12/13/2017] [Accepted: 05/11/2018] [Indexed: 12/21/2022]
Abstract
Despite aggressive therapies, head and neck squamous cell carcinoma (HNSCC) is associated with a less than 50% 5-year survival rate. Late-stage HNSCC frequently consists of up to 80% cancer-associated fibroblasts (CAF). We previously reported that CAF-secreted HGF facilitates HNSCC progression; however, very little is known about the role of CAFs in HNSCC metabolism. Here, we demonstrate that CAF-secreted HGF increases extracellular lactate levels in HNSCC via upregulation of glycolysis. CAF-secreted HGF induced basic FGF (bFGF) secretion from HNSCC. CAFs were more efficient than HNSCC in using lactate as a carbon source. HNSCC-secreted bFGF increased mitochondrial oxidative phosphorylation and HGF secretion from CAFs. Combined inhibition of c-Met and FGFR significantly inhibited CAF-induced HNSCC growth in vitro and in vivo (P < 0.001). Our cumulative findings underscore reciprocal signaling between CAF and HNSCC involving bFGF and HGF. This contributes to metabolic symbiosis and a targetable therapeutic axis involving c-Met and FGFR.Significance: HNSCC cancer cells and CAFs have a metabolic relationship where CAFs secrete HGF to induce a glycolytic switch in HNSCC cells and HNSCC cells secrete bFGF to promote lactate consumption by CAFs. Cancer Res; 78(14); 3769-82. ©2018 AACR.
Collapse
Affiliation(s)
- Dhruv Kumar
- Department of Otolaryngology, University of Kansas Medical Center, Kansas City, Kansas
| | - Jacob New
- Department of Otolaryngology, University of Kansas Medical Center, Kansas City, Kansas.,Department of Anatomy and Cell Biology, University of Kansas Medical Center, Kansas City, Kansas
| | - Vikalp Vishwakarma
- Department of Otolaryngology, University of Kansas Medical Center, Kansas City, Kansas
| | - Radhika Joshi
- Department of Otolaryngology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Jonathan Enders
- Department of Anatomy and Cell Biology, University of Kansas Medical Center, Kansas City, Kansas
| | - Fangchen Lin
- Department of Otolaryngology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Sumana Dasari
- Department of Otolaryngology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Wade R Gutierrez
- Department of Otolaryngology, University of Kansas Medical Center, Kansas City, Kansas
| | - George Leef
- Department of Otolaryngology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | | | - Hemantkumar Chavan
- Department of Pharmacology, Toxicology & Therapeutics, University of Kansas Medical Center, Kansas City, Kansas
| | - Lydia Ganaden
- Department of Otolaryngology, University of Kansas Medical Center, Kansas City, Kansas
| | - Mackenzie M Thornton
- Department of Otolaryngology, University of Kansas Medical Center, Kansas City, Kansas
| | - Hongying Dai
- Health Services & Outcomes Research, Children's Mercy Hospital, Kansas City, Missouri
| | - Ossama Tawfik
- Department of Pathology, University of Kansas Medical Center, Kansas City, Kansas
| | - Jeffrey Straub
- Department of Otolaryngology, University of Kansas Medical Center, Kansas City, Kansas
| | - Yelizaveta Shnayder
- Department of Otolaryngology, University of Kansas Medical Center, Kansas City, Kansas
| | - Kiran Kakarala
- Department of Otolaryngology, University of Kansas Medical Center, Kansas City, Kansas
| | - Terance Ted Tsue
- Department of Otolaryngology, University of Kansas Medical Center, Kansas City, Kansas
| | - Douglas A Girod
- Department of Otolaryngology, University of Kansas Medical Center, Kansas City, Kansas
| | - Bennett Van Houten
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Shrikant Anant
- Department of Surgery, University of Kansas Medical Center, Kansas City, Kansas.,Department of Cancer Biology, University of Kansas Medical Center, Kansas City, Kansas
| | - Partha Krishnamurthy
- Department of Pharmacology, Toxicology & Therapeutics, University of Kansas Medical Center, Kansas City, Kansas
| | - Sufi Mary Thomas
- Department of Otolaryngology, University of Kansas Medical Center, Kansas City, Kansas. .,Department of Anatomy and Cell Biology, University of Kansas Medical Center, Kansas City, Kansas.,Department of Cancer Biology, University of Kansas Medical Center, Kansas City, Kansas
| |
Collapse
|
23
|
Yang HJ, Shi X, Ju F, Hao BN, Ma SP, Wang L, Cheng BF, Wang M. Cold Shock Induced Protein RBM3 but Not Mild Hypothermia Protects Human SH-SY5Y Neuroblastoma Cells From MPP +-Induced Neurotoxicity. Front Neurosci 2018; 12:298. [PMID: 29773975 PMCID: PMC5943555 DOI: 10.3389/fnins.2018.00298] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Accepted: 04/17/2018] [Indexed: 01/12/2023] Open
Abstract
The cold shock protein RBM3 can mediate mild hypothermia-related protection in neurodegeneration such as Alzheimer's disease. However, it remains unclear whether RBM3 and mild hypothermia provide same protection in model of Parkinson's disease (PD), the second most common neurodegenerative disorder. In this study, human SH-SY5Y neuroblastoma cells subjected to insult by 1-methyl-4-phenylpyridinium (MPP+) served as an in-vitro model of PD. Mild hypothermia (32°C) aggravated MPP+-induced apoptosis, which was boosted when RBM3 was silenced by siRNA. In contrast, overexpression of RBM3 significantly reduced this apoptosis. MPP+ treatment downregulated the expression of RBM3 both endogenously and exogenously and suppressed its induction by mild hypothermia (32°C). In conclusion, our data suggest that cold shock protein RBM3 provides neuroprotection in a cell model of PD, suggesting that RBM3 induction may be a suitable strategy for PD therapy. However, mild hypothermia exacerbates MPP+-induced apoptosis even that RBM3 could be synthesized during mild hypothermia.
Collapse
Affiliation(s)
- Hai-Jie Yang
- School of Life Science and Technology, Xinxiang Medical University, Xinxiang, China
- Henan Collaborative Innovation Center of Molecular Diagnosis and Laboratory Medicine, Xinxiang Medical University, Xinxiang, China
| | - Xiang Shi
- School of Life Science and Technology, Xinxiang Medical University, Xinxiang, China
| | - Fei Ju
- School of Life Science and Technology, Xinxiang Medical University, Xinxiang, China
| | | | - Shuang-Ping Ma
- School of Life Science and Technology, Xinxiang Medical University, Xinxiang, China
| | - Lei Wang
- School of Life Science and Technology, Xinxiang Medical University, Xinxiang, China
| | - Bin-Feng Cheng
- School of Life Science and Technology, Xinxiang Medical University, Xinxiang, China
| | - Mian Wang
- School of Life Science and Technology, Xinxiang Medical University, Xinxiang, China
| |
Collapse
|
24
|
George S, Hamblin MR, Abrahamse H. Current and Future Trends in Adipose Stem Cell Differentiation into Neuroglia. Photomed Laser Surg 2018; 36:230-240. [PMID: 29570423 DOI: 10.1089/pho.2017.4411] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
BACKGROUND Neurological diseases and disorders pose a challenge for treatment and rehabilitation due to the limited capacity of the nervous system to repair itself. Adipose stem cells (ASCs) are more pliable than any adult stem cells and are capable of differentiating into non-mesodermal tissues, including neurons. Transdifferentiating ASCs to specific neuronal lineage cells enables us to deliver the right type of cells required for a replacement therapy into the nervous system. METHODS Several methodologies are being explored and tested to differentiate ASCs to functional neurons and glia with cellular factors and chemical compounds. However, none of these processes and prototypes has been wholly successful in changing the cellular structure and functional status of ASCs to become identical to neuroglial cells. In addition, successful integration and functional competence of these cells for use in clinical applications remain problematic. Photobiomodulation or low-level laser irradiation has been successfully applied to not only improve ASC viability and proliferation but has also shown promise as a possible enhancer of ASC differentiation. CONCLUSIONS Studies have shown that photobiomodulation improves the use of stem cell transplantation for neurological applications. This review investigates current neuro-differentiation inducers and suitable methodologies, including photobiomodulation, utilizing ASCs for induction of differentiation into neuronal lineages.
Collapse
Affiliation(s)
- Sajan George
- 1 Laser Research Centre, Faculty of Health Sciences, University of Johannesburg , Doornfontein, South Africa
| | - Michael R Hamblin
- 2 Wellman Centre for Photomedicine, Massachusetts General Hospital , Boston, Massachusetts.,3 Department of Dermatology, Harvard Medical School , Boston, Massachusetts.,4 Harvard-MIT Division of Health Sciences and Technology , Cambridge, Massachusetts
| | - Heidi Abrahamse
- 1 Laser Research Centre, Faculty of Health Sciences, University of Johannesburg , Doornfontein, South Africa
| |
Collapse
|
25
|
Cold-Inducible Protein RBM3 Protects UV Irradiation-Induced Apoptosis in Neuroblastoma Cells by Affecting p38 and JNK Pathways and Bcl2 Family Proteins. J Mol Neurosci 2017; 63:142-151. [DOI: 10.1007/s12031-017-0964-3] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Accepted: 08/10/2017] [Indexed: 12/24/2022]
|
26
|
Bi JJ, Li J, Cheng BF, Yang HJ, Ding QQ, Wang RF, Chen SJ, Feng ZW. NCAM affects directional lamellipodia formation of BMSCs via β1 integrin signal-mediated cofilin activity. Mol Cell Biochem 2017; 435:175-183. [PMID: 28536952 DOI: 10.1007/s11010-017-3066-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2017] [Accepted: 05/05/2017] [Indexed: 12/20/2022]
Abstract
The neural cell adhesion molecule (NCAM), a key member of the immunoglobulin-like CAM family, was reported to regulate the migration of bone marrow-derived mesenchymal stem cells (BMSCs). However, the detailed cellular behaviors including lamellipodia formation in the initial step of directional migration remain largely unknown. In the present study, we reported that NCAM affects the lamellipodia formation of BMSCs. Using BMSCs from Ncam knockout mice we found that Ncam deficiency significantly impaired the migration and the directional lamellipodia formation of BMSCs. Further studies revealed that Ncam knockout decreased the activity of cofilin, an actin-cleaving protein, which was involved in directional protrusions. To explore the molecular mechanisms involved, we examined protein tyrosine phosphorylation levels in Ncam knockout BMSCs by phosphotyrosine peptide array analyses, and found that the tyrosine phosphorylation level of β1 integrin, a protein upstream of cofilin, was greatly upregulated in Ncam-deficient BMSCs. Notably, by blocking the function of β1 integrin with RGD peptide or ROCK inhibitor, the cofilin activity and directional lamellipodia formation of Ncam knockout BMSCs could be rescued. Finally, we found that the effect of NCAM on tyrosine phosphorylation of β1 integrin was independent of the fibroblast growth factor receptor. These results indicated that NCAM regulates directional lamellipodia formation of BMSCs through β1 integrin signal-mediated cofilin activity.
Collapse
Affiliation(s)
- Jia-Jia Bi
- School of Life Sciences and Technology, Xinxiang Medical University, 601 Jinsui Road, Xinxiang, 453003, Henan, China
| | - Jing Li
- School of Life Sciences and Technology, Xinxiang Medical University, 601 Jinsui Road, Xinxiang, 453003, Henan, China
| | - Bin-Feng Cheng
- School of Life Sciences and Technology, Xinxiang Medical University, 601 Jinsui Road, Xinxiang, 453003, Henan, China
| | - Hai-Jie Yang
- School of Life Sciences and Technology, Xinxiang Medical University, 601 Jinsui Road, Xinxiang, 453003, Henan, China
| | - Qiong-Qiong Ding
- School of Life Sciences and Technology, Xinxiang Medical University, 601 Jinsui Road, Xinxiang, 453003, Henan, China
| | - Rui-Fei Wang
- College of Life Sciences, Henan Normal University, Xinxiang, 453007, China
| | - Su-Juan Chen
- School of Life Sciences and Technology, Xinxiang Medical University, 601 Jinsui Road, Xinxiang, 453003, Henan, China.
| | - Zhi-Wei Feng
- School of Basic Medical Sciences, Xinxiang Medical University, 601 Jinsui Road, Xinxiang, 453003, Henan, China.
| |
Collapse
|
27
|
Long Q, Luo Q, Wang K, Bates A, Shetty AK. Mash1-dependent Notch Signaling Pathway Regulates GABAergic Neuron-Like Differentiation from Bone Marrow-Derived Mesenchymal Stem Cells. Aging Dis 2017; 8:301-313. [PMID: 28580186 PMCID: PMC5440110 DOI: 10.14336/ad.2016.1018] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2016] [Accepted: 10/18/2016] [Indexed: 12/16/2022] Open
Abstract
GABAergic neuronal cell grafting has promise for treating a multitude of neurological disorders including epilepsy, age-related memory dysfunction, Alzheimer's disease and schizophrenia. However, identification of an unlimited source of GABAergic cells is critical for advancing such therapies. Our previous study implied that reprogramming of bone marrow-derived mesenchymal stem cells (BMSCs) through overexpression of the Achaete-scute homolog 1 (Ascl1, also called Mash1) could generate GABAergic neuron-like cells. Here, we investigated mechanisms underlying the conversion of BMSCs into GABAergic cells. We inhibited γ-secretase (an enzyme that activates Notch signaling) with N-[N-(3,5-difluorophenacetyl)-L-alanyl]-S-phenylglycine t-butyl ester (DAPT) or manipulated the expression of Notch signaling components such as the recombination signal binding protein for immunoglobulin kappa J region (RBPJ), hairy and enhancer of split-1 (Hes1) or Mash1. We demonstrate that inhibition of γ-secretase through DAPT down-regulates RBPJ and Hes1, up-regulates Mash1 and results in an enhanced differentiation of BMSCs into GABAergic cells. On the other hand, RBPJ knockdown in BMSCs has no effect on Mash1 gene expression whereas Hes1 knockdown increases the expression of Mash1. Transduction of Mash1 in BMSCs also increases the expression of Hes1 but not RBPJ. Moreover, increased GABAergic differentiation in BMSCs occurs with concurrent Mash1 overexpression and Hes1-silencing. Thus, the Mash1-dependent Notch signaling pathway regulates GABAergic neuron-like differentiation of BMSCs. These results also suggest that genetic engineering of BMSCs is a useful avenue for obtaining GABAergic neuron-like donor cells for the treatment of neurological disorders.
Collapse
Affiliation(s)
- Qianfa Long
- 1Department of Neurosurgery, Xi'an Central Hospital, Xi'an Jiao Tong University School of Medicine, Xi'an 710003, China.,2Institute for Regenerative Medicine, Texas A&M Health Science Center College of Medicine at Scott & White, Temple and College Station, Texas, 76502, USA
| | - Qiang Luo
- 1Department of Neurosurgery, Xi'an Central Hospital, Xi'an Jiao Tong University School of Medicine, Xi'an 710003, China
| | - Kai Wang
- 3Department of Neurosurgery, Qingdao 401 Hospital of PLA, Qingdao 266071, China
| | - Adrian Bates
- 2Institute for Regenerative Medicine, Texas A&M Health Science Center College of Medicine at Scott & White, Temple and College Station, Texas, 76502, USA.,4Research Service, Olin E. Teague Veterans' Medical Center, CTVHCS, Temple, Texas, USA
| | - Ashok K Shetty
- 2Institute for Regenerative Medicine, Texas A&M Health Science Center College of Medicine at Scott & White, Temple and College Station, Texas, 76502, USA.,4Research Service, Olin E. Teague Veterans' Medical Center, CTVHCS, Temple, Texas, USA
| |
Collapse
|
28
|
Schwafertz C, Schinner S, Kühn MC, Haase M, Asmus A, Mülders-Opgenoorth B, Ansurudeen I, Hornsby PJ, Morawietz H, Oetjen E, Schott M, Willenberg HS. Endothelial cells regulate β-catenin activity in adrenocortical cells via secretion of basic fibroblast growth factor. Mol Cell Endocrinol 2017; 441:108-115. [PMID: 27889473 DOI: 10.1016/j.mce.2016.11.015] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2016] [Revised: 11/17/2016] [Accepted: 11/20/2016] [Indexed: 12/20/2022]
Abstract
Endothelial cell-derived products influence the synthesis of aldosterone and cortisol in human adrenocortical cells by modulating proteins such as steroidogenic acute-regulatory (StAR) protein, steroidogenic factor (SF)-1 and CITED2. However, the potential endothelial cell-derived factors that mediate this effect are still unknown. The current study was perfomed to look into the control of β-catenin activity by endothelial cell-derived factors and to identify a mechanism by which they affect β-catenin activity in adrenocortical NCIH295R cells. Using reporter gene assays and Western blotting, we found that endothelial cell-conditioned medium (ECCM) led to nuclear translocation of β-catenin and an increase in β-catenin-dependent transcription that could be blocked by U0126, an inhibitor of the mitogen-activated protein kinase pathway. Furthermore, we found that a receptor tyrosin kinase (RTK) was involved in ECCM-induced β-catenin-dependent transcription. Through selective inhibition of RTK using Su5402, it was shown that receptors responding to basic fibroblast growth factor (bFGF) mediate the action of ECCM. Adrenocortical cells treated with bFGF showed a significant greater level of bFGF mRNA. In addition, HUVECs secrete bFGF in a density-dependent manner. In conclusion, the data suggest that endothelial cells regulate β-catenin activity in adrenocortical cells also via secretion of basic fibroblast growth factor.
Collapse
Affiliation(s)
- Carolin Schwafertz
- Division for Specific Endocrinology, Medical Faculty, Heinrich-Heine University Dusseldorf, D-40225 Dusseldorf, Germany
| | - Sven Schinner
- Division for Specific Endocrinology, Medical Faculty, Heinrich-Heine University Dusseldorf, D-40225 Dusseldorf, Germany
| | - Markus C Kühn
- Division for Specific Endocrinology, Medical Faculty, Heinrich-Heine University Dusseldorf, D-40225 Dusseldorf, Germany
| | - Matthias Haase
- Division for Specific Endocrinology, Medical Faculty, Heinrich-Heine University Dusseldorf, D-40225 Dusseldorf, Germany; Department of Medicine III, Carl Gustav Carus Medical School, University of Technology, D-01307 Dresden, Germany
| | - Amelie Asmus
- Division for Specific Endocrinology, Medical Faculty, Heinrich-Heine University Dusseldorf, D-40225 Dusseldorf, Germany
| | - Birgit Mülders-Opgenoorth
- Division for Specific Endocrinology, Medical Faculty, Heinrich-Heine University Dusseldorf, D-40225 Dusseldorf, Germany
| | - Ishrath Ansurudeen
- Department of Medicine III, Carl Gustav Carus Medical School, University of Technology, D-01307 Dresden, Germany; Department of Molecular Medicine and Surgery, L1:01 Rolf Luft Centrum, Karolinska Institute, Stockholm, Sweden
| | - Peter J Hornsby
- Department of Physiology and Sam and Ann Barshop Institute for Longevity and Aging Studies, University of Texas Health Science Center, San Antonio, TX, USA
| | - Henning Morawietz
- Department of Medicine III, Carl Gustav Carus Medical School, University of Technology, D-01307 Dresden, Germany
| | - Elke Oetjen
- Department of Clinical Pharmacology and Toxicology, Pharmacology for Pharmacist's Unit, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Matthias Schott
- Division for Specific Endocrinology, Medical Faculty, Heinrich-Heine University Dusseldorf, D-40225 Dusseldorf, Germany
| | - Holger S Willenberg
- Division for Specific Endocrinology, Medical Faculty, Heinrich-Heine University Dusseldorf, D-40225 Dusseldorf, Germany; Division of Endocrinology and Metabolism, Rostock University Medical Center, Germany.
| |
Collapse
|
29
|
Dung TTM, Yi YS, Heo J, Yang WS, Kim JH, Kim HG, Park JG, Yoo BC, Cho JY, Hong S. Critical role of protein L-isoaspartyl methyltransferase in basic fibroblast growth factor-mediated neuronal cell differentiation. BMB Rep 2017; 49:437-42. [PMID: 26973341 PMCID: PMC5070731 DOI: 10.5483/bmbrep.2016.49.8.020] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Indexed: 11/29/2022] Open
Abstract
We aimed to study the role of protein L-isoaspartyl methyltransferase (PIMT) in neuronal differentiation using basic fibroblast growth factor (bFGF)-induced neuronal differentiation, characterized by cell-body shrinkage, long neurite outgrowth, and expression of neuronal differentiation markers light and medium neurofilaments (NF). The bFGF-mediated neuronal differentiation of PC12 cells was induced through activation of mitogen-activated protein kinase (MAPK) signaling molecules [MAPK kinase 1/2 (MEK1/2), extracellular signal-regulated kinase 1/2 (ERK1/2), and p90RSK], and phosphatidylinositide 3-kinase (PI3K)/Akt signaling molecules PI3Kp110β, PI3Kp110γ, Akt, and mTOR. Inhibitors (adenosine dialdehyde and S-adenosylhomocysteine) of protein methylation suppressed bFGF-mediated neuronal differentiation of PC12 cells. PIMT-eficiency caused by PIMT-specific siRNA inhibited neuronal differentiation of PC12 cells by suppressing phosphorylation of MEK1/2 and ERK1/2 in the MAPK signaling pathway and Akt and mTOR in the PI3K/Akt signaling pathway. Therefore, these results suggested that PIMT was critical for bFGF-mediated neuronal differentiation of PC12 cells and regulated the MAPK and Akt signaling pathways. [BMB Reports 2016; 49(8): 437-442]
Collapse
Affiliation(s)
- To Thi Mai Dung
- Department of Genetic Engineering, Sungkyunkwan University, Suwon 16419, Korea
| | - Young-Su Yi
- Department of Genetic Engineering, Sungkyunkwan University, Suwon 16419; Department of Pharmaceutical Engineering, Cheongju University, Cheongju 28503, Korea
| | - Jieun Heo
- Department of Genetic Engineering, Sungkyunkwan University, Suwon 16419, Korea
| | - Woo Seok Yang
- Department of Genetic Engineering, Sungkyunkwan University, Suwon 16419, Korea
| | - Ji Hye Kim
- Department of Genetic Engineering, Sungkyunkwan University, Suwon 16419, Korea
| | - Han Gyung Kim
- Department of Genetic Engineering, Sungkyunkwan University, Suwon 16419, Korea
| | - Jae Gwang Park
- Department of Genetic Engineering, Sungkyunkwan University, Suwon 16419, Korea
| | - Byong Chul Yoo
- Colorectal Cancer Branch, Research Institute, National Cancer Center, Goyang 10408, Korea
| | - Jae Youl Cho
- Department of Genetic Engineering, Sungkyunkwan University, Suwon 16419, Korea
| | - Sungyoul Hong
- Department of Genetic Engineering, Sungkyunkwan University, Suwon 16419, Korea
| |
Collapse
|
30
|
Gari M, Alsehli H, Gari A, Abbas M, Alkaff M, Abuzinadah M, Al-Sayes F, Gari M, Dallol A, Abuzenadah AM, Gauthaman K. Derivation and differentiation of bone marrow mesenchymal stem cells from osteoarthritis patients. Tissue Eng Regen Med 2016; 13:732-739. [PMID: 30603454 DOI: 10.1007/s13770-016-0013-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2016] [Revised: 03/08/2016] [Accepted: 03/23/2016] [Indexed: 12/27/2022] Open
Abstract
Osteoarthritis (OA) of the knee is a degenerative joint disease caused by the progressive reduction of the articular cartilage surface that leads to reduced joint function. Cartilage degeneration occurs through gradual loss in extracellular matrix components including type II collagen and proteoglycan. Due to limited inherent self repair capacity of the cartilage, the use of cell-based therapies for articular cartilage regeneration is considered promising. Bone marrow mesenchymal stem cells (BM-MSCs) are multipotent cells and are highly capable of multilineage differentiation which render them valuable for regenerative medicine. In this study, BM-MSCs were isolated from OA patients and were characterized for MSC specific CD surface marker antigens using flowcytometry and their differentiation potential into adipocytes, osteocytes and chondrocytes were evaluated using histological and gene expression studies. BM-MSCs isolated from OA patients showed short spindle shaped morphology in culture and expressed positive MSC related CD markers. They also demonstrated positive staining with oil red O, alizarin red and alcian blue following differentiation into adipocytes, osteocytes and chondrocytes, respectively. In addition, chodrogenic related genes such as collagen type II alpha1, cartilage oligomeric matrix protein, fibromodulin, and SOX9 as well as osteocytic related genes such as alkaline phosphatase, core-binding factor alpha 1, osteopontin and RUNX2 runt-related transcription factor 2 were upregulated following chondrogenic and osteogenic differentiation respectively. We have successfully isolated and characterized BM-MSCs from OA patients. Although BM-MSCs has been widely studied and their potential in regenerative medicine is reported, the present study is the first report in our series of experiments on the BMSCs isolated from OA patients at King Abdulaziz University Hospital, Jeddah, Saudi Arabia.
Collapse
Affiliation(s)
- Mamdooh Gari
- 1Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
- 2Stem Cell Unit, Centre of Excellence in Genomic Medicine Research, King Abdulaziz University, Jeddah, Saudi Arabia
- 3Sheikh Salem Bin Mahfouz Scientific Chair for Treatment of Osteoarthritis by Stem Cells, King Abdulaziz University, Jeddah, Saudi Arabia
- 4Center of Innovation in Personalized Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
- 7Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, P.O. Box 80216, Jeddah, 21589 Saudi Arabia
| | - Haneen Alsehli
- 3Sheikh Salem Bin Mahfouz Scientific Chair for Treatment of Osteoarthritis by Stem Cells, King Abdulaziz University, Jeddah, Saudi Arabia
- 4Center of Innovation in Personalized Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Abdullah Gari
- 2Stem Cell Unit, Centre of Excellence in Genomic Medicine Research, King Abdulaziz University, Jeddah, Saudi Arabia
- Department of Hematology, Faculty of Medicine, King Abdulaziz University Hospital, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Mohammed Abbas
- 3Sheikh Salem Bin Mahfouz Scientific Chair for Treatment of Osteoarthritis by Stem Cells, King Abdulaziz University, Jeddah, Saudi Arabia
- 6Department of Orthopedic Surgery, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Mohammed Alkaff
- 3Sheikh Salem Bin Mahfouz Scientific Chair for Treatment of Osteoarthritis by Stem Cells, King Abdulaziz University, Jeddah, Saudi Arabia
- 6Department of Orthopedic Surgery, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Mohammed Abuzinadah
- 1Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
- 4Center of Innovation in Personalized Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Fatin Al-Sayes
- 3Sheikh Salem Bin Mahfouz Scientific Chair for Treatment of Osteoarthritis by Stem Cells, King Abdulaziz University, Jeddah, Saudi Arabia
- Department of Hematology, Faculty of Medicine, King Abdulaziz University Hospital, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Mazin Gari
- 4Center of Innovation in Personalized Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Ashraf Dallol
- 4Center of Innovation in Personalized Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Adel M Abuzenadah
- 1Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
- 4Center of Innovation in Personalized Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Kalamegam Gauthaman
- 2Stem Cell Unit, Centre of Excellence in Genomic Medicine Research, King Abdulaziz University, Jeddah, Saudi Arabia
- 3Sheikh Salem Bin Mahfouz Scientific Chair for Treatment of Osteoarthritis by Stem Cells, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
31
|
Abstract
Prostate cancer is the most common cancer in US men and the second leading cause of cancer deaths. Fibroblast growth factor 23 (FGF23) is an endocrine FGF, normally expressed by osteocytes, which plays a critical role in phosphate homeostasis via a feedback loop involving the kidney and vitamin D. We now show that FGF23 is expressed as an autocrine growth factor in all prostate cancer cell lines tested and is present at increased levels in prostate cancer tissues. Exogenous FGF23 enhances proliferation, invasion and anchorage independent growth in vitro while FGF23 knockdown in prostate cancer cell lines decreases these phenotypes. FGF23 knockdown also decreases tumor growth in vivo. Given that classical FGFs and FGF19 are also increased in prostate cancer, we analyzed expression microarrays hybridized with RNAs from of LNCaP cells stimulated with FGF2, FGF19 or FGF23. The different FGF ligands induce overlapping as well as unique patterns of gene expression changes and thus are not redundant. We identified multiple genes whose expression is altered by FGF23 that are associated with prostate cancer initiation and progression. Thus FGF23 can potentially also act as an autocrine, paracrine and/or endocrine growth factor in prostate cancer that can promote prostate cancer progression.
Collapse
|
32
|
Brain Transcriptomic Response to Social Eavesdropping in Zebrafish (Danio rerio). PLoS One 2015; 10:e0145801. [PMID: 26713440 PMCID: PMC4700982 DOI: 10.1371/journal.pone.0145801] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2015] [Accepted: 12/08/2015] [Indexed: 01/05/2023] Open
Abstract
Public information is widely available at low cost to animals living in social groups. For instance, bystanders may eavesdrop on signaling interactions between conspecifics and use it to adapt their subsequent behavior towards the observed individuals. This social eavesdropping ability is expected to require specialized mechanisms such as social attention, which selects social information available for learning. To begin exploring the genetic basis of social eavesdropping, we used a previously established attention paradigm in the lab to study the brain gene expression profile of male zebrafish (Danio rerio) in relation to the attention they paid towards conspecifics involved or not involved in agonistic interactions. Microarray gene chips were used to characterize their brain transcriptomes based on differential expression of single genes and gene sets. These analyses were complemented by promoter region-based techniques. Using data from both approaches, we further drafted protein interaction networks. Our results suggest that attentiveness towards conspecifics, whether interacting or not, activates pathways linked to neuronal plasticity and memory formation. The network analyses suggested that fos and jun are key players on this response, and that npas4a, nr4a1 and egr4 may also play an important role. Furthermore, specifically observing fighting interactions further triggered pathways associated to a change in the alertness status (dnajb5) and to other genes related to memory formation (btg2, npas4b), which suggests that the acquisition of eavesdropped information about social relationships activates specific processes on top of those already activated just by observing conspecifics.
Collapse
|
33
|
Nakano R, Edamura K, Nakayama T, Narita T, Okabayashi K, Sugiya H. Fibroblast Growth Factor Receptor-2 Contributes to the Basic Fibroblast Growth Factor-Induced Neuronal Differentiation in Canine Bone Marrow Stromal Cells via Phosphoinositide 3-Kinase/Akt Signaling Pathway. PLoS One 2015; 10:e0141581. [PMID: 26523832 PMCID: PMC4629880 DOI: 10.1371/journal.pone.0141581] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2015] [Accepted: 10/09/2015] [Indexed: 11/26/2022] Open
Abstract
Bone marrow stromal cells (BMSCs) are considered as candidates for regenerative therapy and a useful model for studying neuronal differentiation. The role of basic fibroblast growth factor (bFGF) in neuronal differentiation has been previously studied; however, the signaling pathway involved in this process remains poorly understood. In this study, we investigated the signaling pathway in the bFGF-induced neuronal differentiation of canine BMSCs. bFGF induced the mRNA expression of the neuron marker, microtubule associated protein-2 (MAP2) and the neuron-like morphological change in canine BMSCs. In the presence of inhibitors of fibroblast growth factor receptors (FGFR), phosphatidylinositol 3-kinase (PI3K) and Akt, i.e., SU5402, LY294002, and MK2206, respectively, bFGF failed to induce the MAP2 mRNA expression and the neuron-like morphological change. bFGF induced Akt phosphorylation, but it was attenuated by the FGFR inhibitor SU5402 and the PI3K inhibitor LY294002. In canine BMSCs, expression of FGFR-1 and FGFR-2 was confirmed, but only FGFR-2 activation was detected by cross-linking and immunoprecipitation analysis. Small interfering RNA-mediated knockdown of FGFR-2 in canine BMSCs resulted in the attenuation of bFGF-induced Akt phosphorylation. These results suggest that the FGFR-2/PI3K/Akt signaling pathway is involved in the bFGF-induced neuronal differentiation of canine BMSCs.
Collapse
Affiliation(s)
- Rei Nakano
- Laboratory of Veterinary Surgery, Department of Veterinary Medicine, College of Bioresource Sciences, Nihon University, Kameino, Fujisawa, Kanagawa, Japan
- Laboratory of Veterinary Biochemistry, Department of Veterinary Medicine, College of Bioresource Sciences, Nihon University, Kameino, Fujisawa, Kanagawa, Japan
| | - Kazuya Edamura
- Laboratory of Veterinary Surgery, Department of Veterinary Medicine, College of Bioresource Sciences, Nihon University, Kameino, Fujisawa, Kanagawa, Japan
| | - Tomohiro Nakayama
- Laboratory of Veterinary Radiology, Department of Veterinary Medicine, College of Bioresource Sciences, Nihon University, Kameino, Fujisawa, Kanagawa, Japan
| | - Takanori Narita
- Laboratory of Veterinary Biochemistry, Department of Veterinary Medicine, College of Bioresource Sciences, Nihon University, Kameino, Fujisawa, Kanagawa, Japan
| | - Ken Okabayashi
- Laboratory of Veterinary Biochemistry, Department of Veterinary Medicine, College of Bioresource Sciences, Nihon University, Kameino, Fujisawa, Kanagawa, Japan
| | - Hiroshi Sugiya
- Laboratory of Veterinary Biochemistry, Department of Veterinary Medicine, College of Bioresource Sciences, Nihon University, Kameino, Fujisawa, Kanagawa, Japan
- * E-mail:
| |
Collapse
|
34
|
Yang SL, Han R, Liu Y, Hu LY, Li XL, Zhu LY. Negative pressure wound therapy is associated with up-regulation of bFGF and ERK1/2 in human diabetic foot wounds. Wound Repair Regen 2015; 22:548-54. [PMID: 24809625 DOI: 10.1111/wrr.12195] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2013] [Accepted: 04/10/2014] [Indexed: 12/26/2022]
Abstract
Chronic foot wounds are a leading cause of morbidity and hospitalization for patients with diabetes. Negative pressure wound therapy (NPWT) is known to promote healing of diabetic foot wounds, but the underlying molecular mechanisms remain elusive. We propose to gain molecular insights into the wound healing promoting signals underlying the effects of NPWT on diabetic foot wounds in humans. We assessed 30 patients with diabetic foot ulcers. Of these cases, 15 were treated with NPWT, while 15 patients were treated with traditional gauze therapy. Granulated tissue was harvested before and after treatment in both patient groups and histologically analyzed with hematoxylin & eosin as well as Masson's trichrome staining methods. Immunohistochemistry and Western blot analysis was performed to evaluate expression of basic fibroblast growth factor (bFGF) and extracellular signal-regulated kinase (ERK)1/2, previously associated with promoting cellular growth and/or wound healing. Unlike controls, the wounds in the NPWT-treated diabetic patients developed characteristic features of granulated tissue with increased collagen deposition. Immunohistochemical analysis also revealed an increase in bFGF levels in NPWT-treated patients. Western blot analysis further showed a significant up-regulation of bFGF and phosphorylated ERK1/2 protein levels in the NPWT-treated diabetic patients vs. controls. Our studies reveal that NPWT is associated with an up-regulation of bFGF and ERK1/2 signaling, which may be involved in promoting the NPWT-mediated wound healing response.
Collapse
Affiliation(s)
- Shao-Ling Yang
- Department of Endocrinology, Peace Hospital of PLA, Shijiazhuang, Hebei, China
| | | | | | | | | | | |
Collapse
|
35
|
Tara S, Krishnan LK. Bioengineered fibrin-based niche to direct outgrowth of circulating progenitors into neuron-like cells for potential use in cellular therapy. J Neural Eng 2015; 12:036011. [PMID: 25946462 DOI: 10.1088/1741-2560/12/3/036011] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
OBJECTIVE Autologous cells are considered to be the best choice for use in transplantation therapy. However, the challenges and risks associated with the harvest of transplantable autologous cells limit their successful therapeutic application. The current study explores the possibility of isolating neural progenitor cells from circulating multipotent adult progenitor cells for potential use in cell-based and patient-specific therapy for neurological diseases. APPROACH To enable the selection of neural progenitor cells from human peripheral blood mononuclear cells, and to support their lineage maintenance, the composition of a fibrin-based niche was optimized. Morphological examination and specific marker analysis were carried out, employing a qualitative/quantitative polymerase chain reaction followed by immunocytochemistry to: (i) characterize neural progenitor cells in culture; (ii) monitor proliferation/survival; and (iii) track their differentiation status. MAIN RESULTS The presence of neural progenitors in circulation was confirmed by the presence of nestin(+) cells at the commencement of the culture. The isolation, proliferation and differentiation of circulating neural progenitors to neuron-like cells were directed by the engineered niche. Neural cell isolation to near homogeneity was confirmed by the expression of β-III tubulin in ∼95% of cells, whereas microtubule associated protein-2 expression confirmed their ability to differentiate. The concentration of potassium chloride in the niche was found to favour neuron-like cell lengthening, cell-cell contact, and expressions of synaptophysin and tyrosine hydroxylase. SIGNIFICANCE The purpose of this research was to find out if peripheral blood could serve as a potential source of neural progenitors for cell based therapy. The study established that neural progenitors could be selectively isolated from peripheral blood mononuclear cells using a biomimetic niche. The selected cells could multiply and slowly differentiate into neuron-like cells. These neuron-like cells expressed functional proteins-tyrosine hydroxylase and synaptophysin. Early progenitors that proliferate while expressing β-III tubulin could be harvested from the culture, suggesting their potential use in cell transplantation therapy.
Collapse
Affiliation(s)
- S Tara
- Thrombosis Research Unit, Biomedical Technology Wing, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Trivandrum, India 695012
| | | |
Collapse
|
36
|
NF-κB regulates caspase-4 expression and sensitizes neuroblastoma cells to Fas-induced apoptosis. PLoS One 2015; 10:e0117953. [PMID: 25695505 PMCID: PMC4335045 DOI: 10.1371/journal.pone.0117953] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2014] [Accepted: 01/06/2015] [Indexed: 12/01/2022] Open
Abstract
Found in neurons and neuroblastoma cells, Fas-induced apoptosis and accompanied activation of NF-κB signaling were thought to be associated with neurodegenerative diseases. However, the detailed functions of NF-κB activation in Fas killing and the effect of NF-κB activation on its downstream events remain unclear. Here, we demonstrated that agonistic Fas antibody induces cell death in a dose-dependent way and NF-κB signaling is activated as well, in neuroblastoma cells SH-EP1. Unexpectedly, NF-κB activation was shown to be pro-apoptotic, as suggested by the reduction of Fas-induced cell death with either a dominant negative form of IκBα (DN-IκBα) or an IκB kinase-specific inhibitor. To our interest, when analyzing downstream events of NF-κB signaling, we found that DN-IκBα only suppressed the expression of caspase-4, but not other caspases. Vice versa, enhancement of NF-κB activity by p65 (RelA) overexpression increased the expression of caspase-4 at both mRNA and protein levels. More directly, results from dual luciferase reporter assay demonstrated the regulation of caspase-4 promoter activity by NF-κB. When caspase-4 activity was blocked by its dominant negative (DN) form, Fas-induced cell death was substantially reduced. Consistently, the cleavage of PARP and caspase-3 induced by Fas was also reduced. In contrast, the cleavage of caspase-8 remained unaffected in caspase-4 DN cells, although caspase-8 inhibitor could rescue Fas-induced cell death. Collectively, these data suggest that caspase-4 activity is required for Fas-induced cell apoptosis and caspase-4 may act upstream of PARP and caspase-3 and downstream of caspase-8. Overall, we demonstrate that NF-κB can mediate Fas-induced apoptosis through caspase-4 protease, indicating that caspase-4 is a new mediator of NF-κB pro-apoptotic pathway in neuroblastoma cells.
Collapse
|
37
|
Nakano R, Edamura K, Nakayama T, Teshima K, Asano K, Narita T, Okabayashi K, Sugiya H. Differentiation of canine bone marrow stromal cells into voltage- and glutamate-responsive neuron-like cells by basic fibroblast growth factor. J Vet Med Sci 2014; 77:27-35. [PMID: 25284120 PMCID: PMC4349535 DOI: 10.1292/jvms.14-0284] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
We investigated the in vitro differentiation of canine bone marrow stromal cells (BMSCs) into voltage- and glutamate-responsive neuron-like cells. BMSCs were obtained from the bone marrow of healthy beagle dogs. Canine BMSCs were incubated with the basal medium for neurons containing recombinant human basic fibroblast growth factor (bFGF; 100 ng/ml). The viability of the bFGF-treated cells was assessed by a trypan blue exclusion assay, and the morphology was monitored. Real-time RT-PCR was performed to evaluate mRNA expression of neuronal, neural stem cell and glial markers. Western blotting and immunocytochemical analysis for the neuronal markers were performed to evaluate the protein expression and localization. The Ca(2+) mobilization of the cells was evaluated using the Ca(2+) indicator Fluo3 to monitor Ca(2+) influx. To investigate the mechanism of bFGF-induced neuronal differentiation, the fibroblast growth factor receptor inhibitor, the phosphoinositide 3-kinase inhibitor or the Akt inhibitor was tested. The bFGF treatment resulted in the maintenance of the viability of canine BMSCs for 10 days, in the expression of neuronal marker mRNAs and proteins and in the manifestation of neuron-like morphology. Furthermore, in the bFGF-treated BMSCs, a high concentration of KCl and L-glutamate induced an increase in intracellular Ca(2+) levels. Each inhibitor significantly attenuated the bFGF-induced increase in neuronal marker mRNA expression. These results suggest that bFGF contributes to the differentiation of canine BMSCs into voltage- and glutamate-responsive neuron-like cells and may lead to the development of new cell-based treatments for neuronal diseases.
Collapse
Affiliation(s)
- Rei Nakano
- Laboratory of Veterinary Surgery, Department of Veterinary Medicine, College of Bioresource Sciences, Nihon University, 1866 Kameino, Fujisawa, Kanagawa 252-0880, Japan
| | | | | | | | | | | | | | | |
Collapse
|
38
|
Du J, Gao X, Deng L, Chang N, Xiong H, Zheng Y. Transfection of the glial cell line-derived neurotrophic factor gene promotes neuronal differentiation. Neural Regen Res 2014; 9:33-40. [PMID: 25206741 PMCID: PMC4146314 DOI: 10.4103/1673-5374.125327] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/30/2013] [Indexed: 02/01/2023] Open
Abstract
Glial cell line-derived neurotrophic factor recombinant adenovirus vector-transfected bone marrow mesenchymal stem cells were induced to differentiate into neuron-like cells using inductive medium containing retinoic acid and epidermal growth factor. Cell viability, microtubule-associated protein 2-positive cell ratio, and the expression levels of glial cell line-derived neurotrophic factor, nerve growth factor and growth-associated protein-43 protein in the supernatant were significantly higher in glial cell line-derived neurotrophic factor/bone marrow mesenchymal stem cells compared with empty virus plasmid-transfected bone marrow mesenchymal stem cells. Furthermore, microtubule-associated protein 2, glial cell line-derived neurotrophic factor, nerve growth factor and growth-associated protein-43 mRNA levels in cell pellets were statistically higher in glial cell line-derived neurotrophic factor/bone marrow mesenchymal stem cells compared with empty virus plasmid-transfected bone marrow mesenchymal stem cells. These results suggest that glial cell line-derived neurotrophic factor/bone marrow mesenchymal stem cells have a higher rate of induction into neuron-like cells, and this enhanced differentiation into neuron-like cells may be associated with up-regulated expression of glial cell line-derived neurotrophic factor, nerve growth factor and growth-associated protein-43.
Collapse
Affiliation(s)
- Jie Du
- Department of Physiology, West China School of Preclinical and Forensic Medicine, Sichuan University, Chengdu, Sichuan Province, China ; Department of Anatomy, Luzhou Medical College, Luzhou, Sichuan Province, China
| | - Xiaoqing Gao
- Research Center for Preclinical Medicine, Luzhou Medical College, Luzhou, Sichuan Province, China
| | - Li Deng
- Research Center for Preclinical Medicine, Luzhou Medical College, Luzhou, Sichuan Province, China
| | - Nengbin Chang
- Department of Anatomy, Luzhou Medical College, Luzhou, Sichuan Province, China
| | - Huailin Xiong
- Department of Anatomy, Luzhou Medical College, Luzhou, Sichuan Province, China
| | - Yu Zheng
- Department of Physiology, West China School of Preclinical and Forensic Medicine, Sichuan University, Chengdu, Sichuan Province, China
| |
Collapse
|
39
|
Co-transplantation of bone marrow-derived mesenchymal stem cells and nanospheres containing FGF-2 improve cell survival and neurological function in the injured rat spinal cord. Acta Neurochir (Wien) 2014; 156:297-303. [PMID: 24352373 DOI: 10.1007/s00701-013-1963-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2013] [Accepted: 11/28/2013] [Indexed: 12/11/2022]
Abstract
BACKGROUND Spinal cord injury (SCI) is a devastating and irreversible event, and much research using fibroblast growth factor-2 (FGF-2) has been performed to test its capacity to blunt the effects of SCI as well as to provide an environment conducive for SCI repair. METHODS We tested how the in vitro release of FGF-2 from heparin-conjugated poly(L-lactide-co-glycolide) (PLGA)-conjugated nanospheres (HCPNs) affected the growth of human bone marrow-derived mesenchymal stem cells (hBMSCs), as well as the effects of their co-transplantation in an animal model of SCI. RESULTS Our results showed that sustained, long-term release of FGF-2 from HCPNs significantly increased hBMSCs proliferation in vitro, and that their co-transplantation following rat SCI lead to increased functional improvement, a greater amount of hBMSCs surviving transplantation, and a greater density of neurofilament-positive cells in the injury epicenter. CONCLUSION These results suggest a proliferative, protective, and neural inductive potential of FGF-2 for transplanted hBMSCs, as well as a possible role for sustained FGF-2 delivery along with hBMSCs transplantation in the injured spinal cord. Future studies will be required to ascertain the safety FGF-2-containing HCPNs before clinical application.
Collapse
|
40
|
Yin J, Hao Z, Ma Y, Liao S, Li X, Fu J, Wu Y, Shen J, Zhang P, Li X, Wang H. Concomitant activation of the PI3K/Akt and ERK1/2 signalling is involved in cyclic compressive force-induced IL-6 secretion in MLO-Y4 cells. Cell Biol Int 2014; 38:591-8. [PMID: 24375569 DOI: 10.1002/cbin.10235] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2013] [Accepted: 12/10/2013] [Indexed: 02/05/2023]
Abstract
IL-6 has a dual role in bone remodelling. The ERK1/2 pathway partially upregulated IL-6 secretion in osteocyte-like MLO-Y4 cells exposed to CCF. We have now investigated the possible role of phosphatidylinositol 3-kinase (PI3K)/Akt signalling pathway in the CCF-induced IL-6 expression. MLO-Y4 cells were treated with CCF 2,000 µstrain, 2 Hz, or 10, 30 min, 1, 3 and 6 h. IL-6 expression, Akt and ERK1/2 and PI3K/Akt phosphorylation were determined by RT-PCR, ELISA and Western blotting. Inhibition of PI3K/Akt with LY294002 or ERK1/2 with PD98059 significantly attenuated IL-6 upregulation, and IL-6 expression was abolished by inhibiting both pathways. Inhibition of one pathway downregulated the other's phosphorylation level. In conclusion, concomitant activation of PI3K/Akt and ERK1/2 pathways mediated IL-6 expression in MLO-Y4 cells under CCF.
Collapse
Affiliation(s)
- Jian Yin
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China; Department of Prosthodontics, West China College of Stomatology, Sichuan University, Chengdu, 610041, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Liu Y, Yi XC, Guo G, Long QF, Wang XA, Zhong J, Liu WP, Fei Z, Wang DM, Liu J. Basic fibroblast growth factor increases the transplantation‑mediated therapeutic effect of bone mesenchymal stem cells following traumatic brain injury. Mol Med Rep 2013; 9:333-9. [PMID: 24248266 DOI: 10.3892/mmr.2013.1803] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2013] [Accepted: 10/15/2013] [Indexed: 11/05/2022] Open
Abstract
Basic fibroblast growth factor (bFGF) has proven useful for neural stem and progenitor cells during the transplantation‑mediated therapeutic effect of bone mesenchymal stem cells (BMSCs). Endogenous bFGF expression levels increase during brain development and gradually diminish with aging. To date, few studies have been conducted on exogenous bFGF promoting BMSC transplantation‑mediated functional recovery in adult rats following traumatic brain injury (TBI). The results of the present study showed that BMSCs in the TBI cortex and dentate gyrus showed differentiation along the glial and neuronal lines, which are possibly enhanced by bFGF. The neuronal differentiation rate was not consistent with neurological functional recovery rate over time. bFGF may promote the transplantation‑mediated therapeutic effect of BMSCs more significantly and rapidly in rats following TBI, with a small proportion of differentiated neurons. In conclusion, exogenous bFGF functions as a booster of the transplantation‑mediated therapeutic effect of BMSCs following TBI.
Collapse
Affiliation(s)
- Yang Liu
- Department of Neurosurgery, The Third Hospital of Mianyang, Mianyang, Sichuan 621000, P.R. China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Basic Fibroblast Growth Factor (bFGF) Facilitates Differentiation of Adult Dorsal Root Ganglia-Derived Neural Stem Cells Toward Schwann Cells by Binding to FGFR-1 Through MAPK/ERK Activation. J Mol Neurosci 2013; 52:538-51. [DOI: 10.1007/s12031-013-0109-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2013] [Accepted: 08/27/2013] [Indexed: 01/06/2023]
|
43
|
Li M, Yi X, Ma L, Zhou Y. Hepatocyte growth factor and basic fibroblast growth factor regulate atrial fibrosis in patients with atrial fibrillation and rheumatic heart disease via the mitogen-activated protein kinase signaling pathway. Exp Ther Med 2013; 6:1121-1126. [PMID: 24223632 PMCID: PMC3820834 DOI: 10.3892/etm.2013.1274] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2013] [Accepted: 08/16/2013] [Indexed: 01/14/2023] Open
Abstract
The aim of this study was to investigate the interrelation between basic fibroblast growth factor (bFGF), hepatocyte growth factor (HGF) and atrial fibrosis in patients with atrial fibrillation (AF) and rheumatic heart disease (RHD), and to explore the possible molecular mechanisms underlying this interrelation. Twenty patients with RHD who were scheduled for valve replacement were divided into two groups, comprising 10 cases with AF and 10 cases with sinus rhythm (SR). Clinical data were collected and a small sample of aseptic left atrial appendage was collected by the surgeon. Hematoxylin and eosin (H&E) and Masson's trichrome-stained sections were used to evaluate the cross-sectional area and level of fibrosis, respectively. The expression levels of bFGF and HGF were assessed using immunohistochemistry. The phosphorylation levels of mitogen-activated protein kinase/extracellular signal-regulated kinase 1/2 (MEK1/2), c-Jun N-terminal kinase 1/2 (JNK1/2), extracellular signal-regulated kinase 1/2 (ERK1/2) and p38 in atrial tissue were measured using western blotting. Compared with the SR group, myocardial cell diameter was significantly expanded and there was increased collagen deposition in the AF group (P<0.05). The distribution of bFGF in the AF group was significantly higher than that in the SR group (P<0.05); however, HGF levels were significantly lower in the AF group (P<0.05). The phosphorylation levels of MEK1/2, ERK1/2, JNK1/2 and p38 in the AF group were significantly higher than those in the SR group (P<0.05). The results indicated that bFGF may promote the development of atrial fibrosis, while HGF may function in an opposite manner in patients with AF and RHD. The mitogen-activated protein kinase (MAPK) signaling pathway may be the molecular basis for these roles in atrial fibrosis.
Collapse
Affiliation(s)
- Mingjiang Li
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | | | | | | |
Collapse
|
44
|
Han KY, Fahd DC, Tshionyi M, Allemann N, Jain S, Chang JH, Azar DT. MT1-MMP modulates bFGF-induced VEGF-A expression in corneal fibroblasts. Protein Pept Lett 2013; 19:1334-9. [PMID: 22670674 DOI: 10.2174/092986612803521639] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2012] [Revised: 05/10/2012] [Accepted: 05/11/2012] [Indexed: 11/22/2022]
Abstract
The cornea is physiologically avascular. Following a corneal injury, wound healing often proceeds without neovascularization (NV); however, corneal NV may be induced during wound healing in certain inflammatory, infectious, degenerative, and traumatic states. Such states disrupt the physiologic balance between pro-angiogenic and antiangiogenic mediators, favoring angiogenesis. Contributors to such states are matrix metalloproteinases (MMPs), which are key factors in both extracellular matrix remodeling and angiogenesis. Similarly, vascular endothelial growth factor A (VEGF-A) and basic fibroblast growth factor (bFGF) exert pro-angiogenic effects. Here, we elaborate on the facilitative role of MMPs-specifically Membrane Type 1 MMP (MT1-MMP, MMP14)-in corneal NV. Additionally, we provide new insight into the signaling relating to MT1-MMP, Ras, and ERK in the bFGF-induced VEGF-A expression pathways within the corneal fibroblasts.
Collapse
Affiliation(s)
- Kyu-Yeon Han
- Department of Ophthalmology and Visual Sciences, Illinois Eye and Ear Infirmary, University of Illinois at Chicago, Chicago, IL 60612, USA
| | | | | | | | | | | | | |
Collapse
|
45
|
Chen G, Qiu H, Ke SD, Hu SM, Yu SY, Zou SQ. Emodin regulating excision repair cross-complementation group 1 through fibroblast growth factor receptor 2 signaling. World J Gastroenterol 2013; 19:2481-2491. [PMID: 23674849 PMCID: PMC3646138 DOI: 10.3748/wjg.v19.i16.2481] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/03/2012] [Revised: 01/26/2013] [Accepted: 03/23/2013] [Indexed: 02/06/2023] Open
Abstract
AIM: To investigate the molecular mechanisms underlying the reversal effect of emodin on platinum resistance in hepatocellular carcinoma.
METHODS: After the addition of 10 μmol/L emodin to HepG2/oxaliplatin (OXA) cells, the inhibition rate (IR), 50% inhibitory concentration (IC50) and reversal index (IC50 in experimental group/IC50 in control group) were calculated. For HepG2, HepG2/OXA, HepG2/OXA/T, each cell line was divided into a control group, OXA group, OXA + fibroblast growth factor 7 (FGF7) group and OXA + emodin group, and the final concentrations of FGF7, emodin and OXA in each group were 5 ng/mL, 10 μg/mL and 10 μmol/L, respectively. Single-cell gel electrophoresis was conducted to detect DNA damage, and the fibroblast growth factor receptor 2 (FGFR2), phosphorylated extracellular signal-regulated kinase 1/2 (p-ERK1/2) and excision repair cross-complementing gene 1 (ERCC1) protein expression levels in each group were examined by Western blotting.
RESULTS: Compared with the IC50 of 120.78 μmol/L in HepG2/OXA cells, the IC50 decreased to 39.65 μmol/L after treatment with 10 μmol/L emodin; thus, the reversal index was 3.05. Compared with the control group, the tail length and Olive tail length in the OXA group, OXA + FGF7 group and OXA + emodin group were significantly increased, and the differences were statistically significant (P < 0.01). The tail length and Olive tail length were lower in the OXA + FGF7 group than in the OXA group, and this difference was also statistically significant. Compared with the OXA + FGF7 group, the tail extent, the Olive tail moment and the percentage of tail DNA were significantly increased in the OXA + emodin group, and these differences were statistically significant (P < 0.01). In comparison with its parental cell line HepG2, the HepG2/OXA cells demonstrated significantly increased FGFR2, p-ERK1/2 and ERCC1 expression levels, whereas the expression of all three molecules was significantly inhibited in HepG2/OXA/T cells, in which FGFR2 was silenced by FGFR2 shRNA. In the examined HepG2 cells, the FGFR2, p-ERK1/2 and ERCC1 expression levels demonstrated increasing trends in the OXA group and OXA + FGF7 group. Compared with the OXA group and OXA + FGF7 group, the FGFR2, p-ERK1/2, and ERCC1 expression levels were significantly lower in the OXA + emodin group, and these differences were statistically significant. In the HepG2/OXA/T cell line that was transfected with FGFR2 shRNA, the FGFR2, p-ERK1/2 and ERCC1 expression levels were significantly inhibited, but there were no significant differences in these expression levels among the OXA, OXA + FGF7 and OXA + emodin groups.
CONCLUSION: Emodin markedly reversed OXA resistance by enhancing OXA DNA damage in HepG2/OXA cells, and the molecular mechanism was related to the inhibitory effect on ERCC1 expression being mediated by the FGFR2/ERK1/2 signaling pathway.
Collapse
MESH Headings
- Antineoplastic Agents/pharmacology
- Carcinoma, Hepatocellular/enzymology
- Carcinoma, Hepatocellular/genetics
- Carcinoma, Hepatocellular/pathology
- Cell Proliferation/drug effects
- DNA Damage
- DNA-Binding Proteins/metabolism
- Dose-Response Relationship, Drug
- Drug Resistance, Neoplasm/drug effects
- Emodin/pharmacology
- Endonucleases/metabolism
- Fibroblast Growth Factor 7/metabolism
- Hep G2 Cells
- Humans
- Inhibitory Concentration 50
- Liver Neoplasms/enzymology
- Liver Neoplasms/genetics
- Liver Neoplasms/pathology
- Mitogen-Activated Protein Kinase 1/metabolism
- Mitogen-Activated Protein Kinase 3/metabolism
- Organoplatinum Compounds/pharmacology
- Oxaliplatin
- Phosphorylation
- RNA Interference
- Receptor, Fibroblast Growth Factor, Type 2/drug effects
- Receptor, Fibroblast Growth Factor, Type 2/genetics
- Receptor, Fibroblast Growth Factor, Type 2/metabolism
- Signal Transduction/drug effects
- Transfection
Collapse
|
46
|
Lonic A, Powell JA, Kong Y, Thomas D, Holien JK, Truong N, Parker MW, Guthridge MA. Phosphorylation of serine 779 in fibroblast growth factor receptor 1 and 2 by protein kinase C(epsilon) regulates Ras/mitogen-activated protein kinase signaling and neuronal differentiation. J Biol Chem 2013; 288:14874-85. [PMID: 23564461 DOI: 10.1074/jbc.m112.421669] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The FGF receptors (FGFRs) control a multitude of cellular processes both during development and in the adult through the initiation of signaling cascades that regulate proliferation, survival, and differentiation. Although FGFR tyrosine phosphorylation and the recruitment of Src homology 2 domain proteins have been widely described, we have previously shown that FGFR is also phosphorylated on Ser(779) in response to ligand and binds the 14-3-3 family of phosphoserine/threonine-binding adaptor/scaffold proteins. However, whether this receptor phosphoserine mode of signaling is able to regulate specific signaling pathways and biological responses is unclear. Using PC12 pheochromocytoma cells and primary mouse bone marrow stromal cells as models for growth factor-regulated neuronal differentiation, we show that Ser(779) in the cytoplasmic domains of FGFR1 and FGFR2 is required for the sustained activation of Ras and ERK but not for other FGFR phosphotyrosine pathways. The regulation of Ras and ERK signaling by Ser(779) was critical not only for neuronal differentiation but also for cell survival under limiting growth factor concentrations. PKCε can phosphorylate Ser(779) in vitro, whereas overexpression of PKCε results in constitutive Ser(779) phosphorylation and enhanced PC12 cell differentiation. Furthermore, siRNA knockdown of PKCε reduces both growth factor-induced Ser(779) phosphorylation and neuronal differentiation. Our findings show that in addition to FGFR tyrosine phosphorylation, the phosphorylation of a conserved serine residue, Ser(779), can quantitatively control Ras/MAPK signaling to promote specific cellular responses.
Collapse
Affiliation(s)
- Ana Lonic
- Cell Growth and Differentiation Laboratory, Division of Human Immunology, South Australian Pathology, Adelaide, South Australia 5000, Australia
| | | | | | | | | | | | | | | |
Collapse
|
47
|
Zheng YH, Xiong W, Su K, Kuang SJ, Zhang ZG. Multilineage differentiation of human bone marrow mesenchymal stem cells in vitro and in vivo.. Exp Ther Med 2013; 5:1576-1580. [PMID: 23837034 PMCID: PMC3702716 DOI: 10.3892/etm.2013.1042] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2012] [Accepted: 02/06/2013] [Indexed: 01/22/2023] Open
Abstract
The aim of the present study was to investigate the ability of human bone marrow-derived mesenchymal stem cells (BMSCs) to undergo multilineage differentiation. Human BMSCs were isolated from the ilia of donors by density gradient centrifugation, then purified by adherent separation and cultured in vitro. P3 or P4 BMSC populations were collected and induced for multilineage differentiation into osteoblasts, adipocytes and neuroblasts using an inductive medium in vitro. The BMSCs were cultured in either an osteoblast or chondroblast induction medium, seeded onto porous coral scaffolds and implanted into mice in vivo. The mice were sacrificed by anesthesia overdose at 6 or 9 weeks post-surgery. The scaffolds were then removed for analysis. Lipid vacuoles were observed subsequent to being cultured in an adipogenic medium. These accumulated lipid vacuoles were detected using Sudan Black B and Oil Red O (positive) staining. Deposited calcium was detected using von Kossa and Alizarin Red S (positive) staining subsequent to being cultured in an osteogenic medium. The BMSCs retracted to form neuron-like cells with axon- and dendrite-like processes following induction by β-mercaptoethanol. The cells were positively stained by toluidine blue and glial fibrillary acidic protein (GFAP) immunohistochemistry. Newly formed bone tissues were observed and islands of cartilage tissue were also formed at 9 weeks post-implantation in vivo. The present study demonstrated that human BMSCs were homogeneous and differentiated with high fidelity to osteogenic, adipogenic, neurogenic or chondrogenic lineages. These cells also form bone and cartilage tissues when implanted in vivo and may therefore be used as seed cells in bone tissue engineering.
Collapse
Affiliation(s)
- You-Hua Zheng
- Department of Oral and Maxillofacial Surgery, Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-Sen University, Guangzhou, Guangdong 510055, P.R. China
| | | | | | | | | |
Collapse
|
48
|
Luan P, Zhou HH, Zhang B, Liu AM, Yang LH, Weng XL, Tao EX, Liu J. Basic fibroblast growth factor protects C17.2 cells from radiation-induced injury through ERK1/2. CNS Neurosci Ther 2013; 18:767-72. [PMID: 22943143 DOI: 10.1111/j.1755-5949.2012.00365.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
AIMS To establish a radiation-induced neural injury model using C17.2 neural stem cells (NSCs) and to investigate whether basic fibroblast growth factor (bFGF) can protect the radiation-induced injury of C17.2 NSCs. Furthermore, we aim to identify the possible mechanisms involved in this model. METHODS C17.2 NSCs received a single exposure (3, 6, and 9 Gy, respectively) at a dose rate of 300 cGy/min with a control group receiving 0 Gy. Different concentrations of bFGF were added for 24 h, 5 min postirradiation. The MTS assay and flow cytometry were used to detect cytotoxicity and apoptosis. Expression of FGFR1, ERK1/2, and p-ERK1/2 proteins was detected with or without U0126 was pretreated prior to C17.2 NSCs receiving irradiation. RESULTS C17.2 NSCs showed a dose-dependent cell death as the dose of radiation was increased. Additionally, the rate of apoptosis in the C17.2 NSCs reached 31.2 ± 1.23% in the 6 Gy irradiation group, which was the most significant when compared to the other irradiation treated groups. bFGF showed protective effect on cell apoptosis in a dose-dependent manner. The mean percentage of apoptotic cells decreased to 7.83 ± 1.75% when 100 ng/mL bFGF was given. Furthermore, U0126 could block the protective effect of bFGF by inhibiting the phosphorylation of ERK1/2. CONCLUSIONS An in vitro cellular model of radiation-induced apoptosis of NSCs, in C17.2 NSCs, was developed successfully. Additionally, bFGF can protect neurons from radiation injury in vitro via the ERK1/2 signal transduction pathway.
Collapse
Affiliation(s)
- Ping Luan
- Medical School, Shenzhen University, China
| | | | | | | | | | | | | | | |
Collapse
|
49
|
Shimosaka M, Ujjal K. Bhawal. bFGF Upregulates the Expression of NGFR in PC12 Cells. J HARD TISSUE BIOL 2013. [DOI: 10.2485/jhtb.22.19] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
50
|
Akanuma H, Qin XY, Nagano R, Win-Shwe TT, Imanishi S, Zaha H, Yoshinaga J, Fukuda T, Ohsako S, Sone H. Identification of Stage-Specific Gene Expression Signatures in Response to Retinoic Acid during the Neural Differentiation of Mouse Embryonic Stem Cells. Front Genet 2012; 3:141. [PMID: 22891073 PMCID: PMC3413097 DOI: 10.3389/fgene.2012.00141] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2012] [Accepted: 07/12/2012] [Indexed: 01/23/2023] Open
Abstract
We have previously established a protocol for the neural differentiation of mouse embryonic stem cells (mESCs) as an efficient tool to evaluate the neurodevelopmental toxicity of environmental chemicals. Here, we described a multivariate bioinformatic approach to identify the stage-specific gene sets associated with neural differentiation of mESCs. We exposed mESCs (B6G-2 cells) to 10−8 or 10−7 M of retinoic acid (RA) for 4 days during embryoid body formation and then performed morphological analysis on day of differentiation (DoD) 8 and 36, or genomic microarray analysis on DoD 0, 2, 8, and 36. Three gene sets, namely a literature-based gene set (set 1), an analysis-based gene set (set 2) using self-organizing map and principal component analysis, and an enrichment gene set (set 3), were selected by the combined use of knowledge from literatures and gene information selected from the microarray data. A gene network analysis for each gene set was then performed using Bayesian statistics to identify stage-specific gene expression signatures in response to RA during mESC neural differentiation. Our results showed that RA significantly increased the size of neurosphere, neuronal cells, and glial cells on DoD 36. In addition, the gene network analysis showed that glial fibrillary acidic protein, a neural marker, remarkably up-regulates the other genes in gene set 1 and 3, and Gbx2, a neural development marker, significantly up-regulates the other genes in gene set 2 on DoD 36 in the presence of RA. These findings suggest that our protocol for identification of developmental stage-specific gene expression and interaction is a useful method for the screening of environmental chemical toxicity during neurodevelopmental periods.
Collapse
Affiliation(s)
- Hiromi Akanuma
- Health Risk Research Section, Center for Environmental Risk Research, National Institute for Environmental Studies Tsukuba, Ibaraki, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|