1
|
Lin H, Ma C, Cai K, Guo L, Wang X, Lv L, Zhang C, Lin J, Zhang D, Ye C, Wang T, Huang S, Han J, Zhang Z, Gao J, Zhang M, Pu Z, Li F, Guo Y, Zhou X, Qin C, Yi F, Yu X, Kong W, Jiang C, Sun JP. Metabolic signaling of ceramides through the FPR2 receptor inhibits adipocyte thermogenesis. Science 2025; 388:eado4188. [PMID: 40080544 DOI: 10.1126/science.ado4188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 09/13/2024] [Accepted: 01/03/2025] [Indexed: 03/15/2025]
Abstract
Ceramides play a central role in human health and disease, yet their role as systemic signaling molecules remain poorly understood. In this work, we identify formyl peptide receptor 2 (FPR2) as a membrane receptor that specifically binds long-chain ceramides (C14 to C20). In brown and beige adipocytes, C16:0 ceramide binding to FPR2 inhibits thermogenesis through Gi cyclic adenosine monophosphate signaling pathways, an effect that is reversed in the absence of FPR2. We present three cryo-electron microscopy structures of FPR2 in complex with Gi trimers bound to C16:0, C18:0, and C20:0 ceramides. The hydrophobic tails are deeply embedded in the orthosteric ligand pocket, which has a limited amount of plasticity. Modification of the ceramide binding motif in closely related receptors, such as FPR1 or FPR3, converts them from inactive to active ceramide receptors. Our findings provide a structural basis for adipocyte thermogenesis mediated by FPR2.
Collapse
Affiliation(s)
- Hui Lin
- New Cornerstone Science Laboratory, Advanced Medical Research Institute, and NHC Key Laboratory of Otorhinolaryngology, Qilu Hospital of Shandong University, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences; State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing, China
- Department of Periodontology, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration, Jinan, Shandong, China
| | - Chuanshun Ma
- Key Laboratory Experimental Teratology of the Ministry of Education and Department of Physiology, School of Basic Medical Sciences, Shandong University, Jinan, Shandong, China
| | - Kui Cai
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences; State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing, China
| | - Lulu Guo
- New Cornerstone Science Laboratory, Advanced Medical Research Institute, and NHC Key Laboratory of Otorhinolaryngology, Qilu Hospital of Shandong University, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
- Key Laboratory of Membrane Receptor Drug Target Discovery and Lead Drug Screening at Shandong Province, Shandong, China
| | - Xuemei Wang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences; State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing, China
| | - Lin Lv
- Key Laboratory Experimental Teratology of the Ministry of Education and Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Chao Zhang
- Key Laboratory Experimental Teratology of the Ministry of Education and Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Jun Lin
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences; State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing, China
| | - Daolai Zhang
- School of Pharmacy, Binzhou Medical University, Yantai, China
| | - Chuan Ye
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences; State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing, China
| | - Tengwei Wang
- New Cornerstone Science Laboratory, Advanced Medical Research Institute, and NHC Key Laboratory of Otorhinolaryngology, Qilu Hospital of Shandong University, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Shenming Huang
- New Cornerstone Science Laboratory, Advanced Medical Research Institute, and NHC Key Laboratory of Otorhinolaryngology, Qilu Hospital of Shandong University, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Jifei Han
- Key Laboratory Experimental Teratology of the Ministry of Education and Department of Physiology, School of Basic Medical Sciences, Shandong University, Jinan, Shandong, China
| | - Zihao Zhang
- Key Laboratory Experimental Teratology of the Ministry of Education and Department of Physiology, School of Basic Medical Sciences, Shandong University, Jinan, Shandong, China
| | - Junyan Gao
- Department of Periodontology, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration, Jinan, Shandong, China
| | - Mingxiang Zhang
- School of Pharmacy, Binzhou Medical University, Yantai, China
| | - Zhao Pu
- Key Laboratory Experimental Teratology of the Ministry of Education and Department of Physiology, School of Basic Medical Sciences, Shandong University, Jinan, Shandong, China
- Department of Biochemistry and Human Biology, University of Toronto, Toronto, Ontario, Canada
| | - Fengyang Li
- School of Pharmacy, Shandong University, Jinan, Shandong, China
| | - Yongyuan Guo
- Department of Orthopaedics, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Xiaojun Zhou
- School of Pharmacy, Shandong University, Jinan, Shandong, China
| | - Chengxue Qin
- School of Pharmacy, Shandong University, Jinan, Shandong, China
| | - Fan Yi
- Key Laboratory of Infection and Immunity of Shandong Province, Department of Pharmacology, School of Basic Medical Sciences, Shandong University, Jinan, China
| | - Xiao Yu
- Key Laboratory Experimental Teratology of the Ministry of Education and Department of Physiology, School of Basic Medical Sciences, Shandong University, Jinan, Shandong, China
| | - Wei Kong
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences; State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing, China
- Department of Cardiology, Peking University First Hospital, Beijing, China
| | - Changtao Jiang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences; State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing, China
- Center of Basic Medical Research, Institute of Medical Innovation and Research, Peking University Third Hospital, Beijing, China
| | - Jin-Peng Sun
- New Cornerstone Science Laboratory, Advanced Medical Research Institute, and NHC Key Laboratory of Otorhinolaryngology, Qilu Hospital of Shandong University, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences; State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing, China
- Key Laboratory Experimental Teratology of the Ministry of Education and Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
- Department of Biophysics, School of Basic Medical Sciences, Peking University, Beijing, China
| |
Collapse
|
2
|
Deng C, Xiao Y, Zhao X, Li H, Chen Y, Ai K, Jiang T, Wei J, Chen X, Lei G, Zeng C. Sequential Targeting Chondroitin Sulfate-Bilirubin Nanomedicine Attenuates Osteoarthritis via Reprogramming Lipid Metabolism in M1 Macrophages. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2411911. [PMID: 39792653 PMCID: PMC11884591 DOI: 10.1002/advs.202411911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 12/16/2024] [Indexed: 01/12/2025]
Abstract
The infiltration and excessive polarization of M1 macrophages contribute to the induction and persistence of low-grade inflammation in joint-related degenerative diseases such as osteoarthritis (OA). The lipid metabolism dysregulation promotes M1 macrophage polarization by coordinating the compensatory pathways of the inflammatory and oxidative stress responses. Here, a self-assembling, licofelone-loaded nanoparticle (termed LCF-CSBN), comprising chondroitin sulfate and bilirubin joined by an ethylenediamine linker, is developed to selectively reprogram lipid metabolism in macrophage activation. LCF-CSBN is internalized by M1 macrophages via CD44-mediated endocytosis and targets the Golgi apparatus accompanied with the reactive oxygen species-responsive release of licofelone (LCF, dual inhibitor of arachidonic acid metabolism). LCF-CSBN effectively promotes M1 to M2 macrophage transition by reprogramming the Golgi apparatus-related sphingolipid metabolism and arachidonic acid metabolism. Intra-articularly injected LCF-CSBN retains in the joint for up to 28 days and accumulates into M1 macrophages. Moreover, LCF-CSBN can effectively attenuate joint inflammation, oxidative stress, and cartilage degeneration in OA model rats. These findings indicate the promising potential of lipid-metabolism-reprogramming LCF-CSBN in the targeted therapy of OA.
Collapse
Affiliation(s)
- Caifeng Deng
- Department of Orthopaedics, Xiangya HospitalCentral South UniversityChangshaHunan410008China
- Key Laboratory of Aging‐related Bone and Joint Diseases Prevention and TreatmentMinistry of Education, Xiangya HospitalCentral South UniversityChangshaHunan410008China
- Hunan Key Laboratory of Joint Degeneration and Injury, Xiangya HospitalCentral South UniversityChangshaHunan410008China
| | - Yongbing Xiao
- Department of Orthopaedics, Xiangya HospitalCentral South UniversityChangshaHunan410008China
- Key Laboratory of Aging‐related Bone and Joint Diseases Prevention and TreatmentMinistry of Education, Xiangya HospitalCentral South UniversityChangshaHunan410008China
- Hunan Key Laboratory of Joint Degeneration and Injury, Xiangya HospitalCentral South UniversityChangshaHunan410008China
| | - Xuan Zhao
- Department of Orthopaedics, Xiangya HospitalCentral South UniversityChangshaHunan410008China
- Key Laboratory of Aging‐related Bone and Joint Diseases Prevention and TreatmentMinistry of Education, Xiangya HospitalCentral South UniversityChangshaHunan410008China
- Hunan Key Laboratory of Joint Degeneration and Injury, Xiangya HospitalCentral South UniversityChangshaHunan410008China
| | - Hui Li
- Department of Orthopaedics, Xiangya HospitalCentral South UniversityChangshaHunan410008China
- Key Laboratory of Aging‐related Bone and Joint Diseases Prevention and TreatmentMinistry of Education, Xiangya HospitalCentral South UniversityChangshaHunan410008China
- Hunan Key Laboratory of Joint Degeneration and Injury, Xiangya HospitalCentral South UniversityChangshaHunan410008China
| | - Yuxiao Chen
- Department of Orthopaedics, Xiangya HospitalCentral South UniversityChangshaHunan410008China
- Key Laboratory of Aging‐related Bone and Joint Diseases Prevention and TreatmentMinistry of Education, Xiangya HospitalCentral South UniversityChangshaHunan410008China
- Hunan Key Laboratory of Joint Degeneration and Injury, Xiangya HospitalCentral South UniversityChangshaHunan410008China
| | - Kelong Ai
- Xiangya School of Pharmaceutical SciencesCentral South UniversityChangshaHunan410008China
| | - Ting Jiang
- Department of Orthopaedics, Xiangya HospitalCentral South UniversityChangshaHunan410008China
- Key Laboratory of Aging‐related Bone and Joint Diseases Prevention and TreatmentMinistry of Education, Xiangya HospitalCentral South UniversityChangshaHunan410008China
- Hunan Key Laboratory of Joint Degeneration and Injury, Xiangya HospitalCentral South UniversityChangshaHunan410008China
| | - Jie Wei
- Department of Orthopaedics, Xiangya HospitalCentral South UniversityChangshaHunan410008China
- Key Laboratory of Aging‐related Bone and Joint Diseases Prevention and TreatmentMinistry of Education, Xiangya HospitalCentral South UniversityChangshaHunan410008China
- Hunan Key Laboratory of Joint Degeneration and Injury, Xiangya HospitalCentral South UniversityChangshaHunan410008China
| | - Xiaoyuan Chen
- Departments of Diagnostic Radiology, Surgery, Chemical and Biomolecular Engineering and Biomedical Engineering, Yong Loo Lin School of Medicine and College of Design and EngineeringNational University of SingaporeSingapore119074Singapore
- Clinical Imaging Research Centre, Centre for Translational Medicine, Yong Loo Lin School of MedicineNational University of SingaporeSingapore117599Singapore
- Nanomedicine Translational Research Program, Yong Loo Lin School of MedicineNational University of SingaporeSingapore117597Singapore
| | - Guanghua Lei
- Department of Orthopaedics, Xiangya HospitalCentral South UniversityChangshaHunan410008China
- Key Laboratory of Aging‐related Bone and Joint Diseases Prevention and TreatmentMinistry of Education, Xiangya HospitalCentral South UniversityChangshaHunan410008China
- Hunan Key Laboratory of Joint Degeneration and Injury, Xiangya HospitalCentral South UniversityChangshaHunan410008China
- National Clinical Research Center for Geriatric Disorders, Xiangya HospitalCentral South UniversityChangshaHunan410008China
| | - Chao Zeng
- Department of Orthopaedics, Xiangya HospitalCentral South UniversityChangshaHunan410008China
- Key Laboratory of Aging‐related Bone and Joint Diseases Prevention and TreatmentMinistry of Education, Xiangya HospitalCentral South UniversityChangshaHunan410008China
- Hunan Key Laboratory of Joint Degeneration and Injury, Xiangya HospitalCentral South UniversityChangshaHunan410008China
- National Clinical Research Center for Geriatric Disorders, Xiangya HospitalCentral South UniversityChangshaHunan410008China
| |
Collapse
|
3
|
Hornemann T. Sphingoid Base Diversity. Atherosclerosis 2025; 401:119091. [PMID: 39824719 DOI: 10.1016/j.atherosclerosis.2024.119091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 12/10/2024] [Accepted: 12/11/2024] [Indexed: 01/20/2025]
Abstract
Sphingolipids (SL) are crucial components of cellular membranes and play pivotal roles in various biological processes, including cell growth, differentiation, apoptosis, and stress responses. All SL contain a sphingoid base (SPB) backbone which is the shared and class-defining element. SPBs are heterogeneous in length and structure. This review summarizes our current understanding on minor SPBs and the role of the serine palmitoyltransferase (SPT) in particular of its subunits SPTLC3 and SPTSSA/B in forming a spectrum of structurally and metabolically distinct SPBs. Some minor SPBs, such as 1-deoxysphingolipids (1-deoxySL) are neurotoxic and associated with neurological disorders such as hereditary sensory neuropathy type 1 (HSAN1) and diabetic neuropathy. Furthermore, the review discusses the pathological implications of atypical SPBs in cardiometabolic conditions such as obesity, type 2 diabetes or cardiomyopathy, where the induction of the SPTLC3 subunit alters the SPB profile and contributes to disease progression. Understanding these, often neglected aspects of the sphingolipid metabolism provides potential therapeutic targets for metabolic and neurodegenerative diseases, emphasizing the need for continued research in this area.
Collapse
Affiliation(s)
- Thorsten Hornemann
- Institute for Clinical Chemistry, University Hospital and University Zurich, 8091, Zürich, Switzerland.
| |
Collapse
|
4
|
Mah MSM, Cao E, Anderson D, Escott A, Tegegne S, Gracia G, Schmitz J, Brodesser S, Zaph C, Creek DJ, Hong J, Windsor JA, Phillips ARJ, Trevaskis NL, Febbraio MA, Turpin-Nolan SM. High-fat feeding drives the intestinal production and assembly of C 16:0 ceramides in chylomicrons. SCIENCE ADVANCES 2024; 10:eadp2254. [PMID: 39178255 PMCID: PMC11343029 DOI: 10.1126/sciadv.adp2254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 07/19/2024] [Indexed: 08/25/2024]
Abstract
Consumption of a diet rich in saturated fat increases lipid absorption from the intestine, assembly into chylomicrons, and delivery to metabolic tissues via the lymphatic and circulatory systems. Accumulation of ceramide lipids, composed of sphingosine and a fatty acid, in metabolic tissues contributes to the pathogenesis of cardiovascular diseases, type 2 diabetes mellitus and cancer. Using a mesenteric lymph duct cannulated rat model, we showed that ceramides are generated by the intestine and assembled into chylomicrons, which are transported via the mesenteric lymphatic system. A lipidomic screen of intestinal-derived chylomicrons identified a diverse range of fatty acid, sphingolipid, and glycerolipid species that have not been previously detected in chylomicrons, including the metabolically deleterious C16:0 ceramide that increased in response to high-fat feeding in rats and human high-lipid meal replacement enteral feeding. In conclusion, high-fat feeding increases the export of intestinal-derived C16:0 ceramide in chylomicrons, identifying a potentially unknown mechanism through which ceramides are transported systemically to contribute to metabolic dysfunction.
Collapse
Affiliation(s)
- Michael SM Mah
- Monash Institute of Pharmaceutical Sciences, Monash University, Melbourne, Australia
| | - Enyuan Cao
- Monash Institute of Pharmaceutical Sciences, Monash University, Melbourne, Australia
| | - Dovile Anderson
- Monash Institute of Pharmaceutical Sciences, Monash University, Melbourne, Australia
| | - Alistair Escott
- Surgical and Translational Research Centre, Faculty of Medical and Health Sciences, The University of Auckland, Auckland, New Zealand
- HBP/Upper GI Unit, Department of General Surgery, Auckland City Hospital, Auckland, New Zealand
| | - Surafel Tegegne
- Monash Institute of Pharmaceutical Sciences, Monash University, Melbourne, Australia
| | - Gracia Gracia
- Monash Institute of Pharmaceutical Sciences, Monash University, Melbourne, Australia
| | - Joel Schmitz
- Max Planck Institute for Metabolism and Cologne Excellence Cluster on Cellular Stress Responses in Aging Associated Diseases (CECAD), Cologne, Germany
| | - Susanne Brodesser
- University of Cologne, Faculty of Medicine and University Hospital of Cologne, Cluster of Excellence Cellular Stress Responses in Aging associated Diseases (CECAD), Cologne, Germany
| | - Colby Zaph
- Biomedical Discovery Institute, Monash University, Melbourne, Australia
| | - Darren J. Creek
- Monash Institute of Pharmaceutical Sciences, Monash University, Melbourne, Australia
| | - Jiwon Hong
- Surgical and Translational Research Centre, Faculty of Medical and Health Sciences, The University of Auckland, Auckland, New Zealand
- Applied Surgery and Metabolism Laboratory, School of Biological Sciences, The University of Auckland, Auckland, New Zealand
| | - John A. Windsor
- Surgical and Translational Research Centre, Faculty of Medical and Health Sciences, The University of Auckland, Auckland, New Zealand
- HBP/Upper GI Unit, Department of General Surgery, Auckland City Hospital, Auckland, New Zealand
| | - Anthony RJ Phillips
- Surgical and Translational Research Centre, Faculty of Medical and Health Sciences, The University of Auckland, Auckland, New Zealand
- Applied Surgery and Metabolism Laboratory, School of Biological Sciences, The University of Auckland, Auckland, New Zealand
| | - Natalie L. Trevaskis
- Monash Institute of Pharmaceutical Sciences, Monash University, Melbourne, Australia
| | - Mark A. Febbraio
- Monash Institute of Pharmaceutical Sciences, Monash University, Melbourne, Australia
| | - Sarah M. Turpin-Nolan
- Monash Institute of Pharmaceutical Sciences, Monash University, Melbourne, Australia
| |
Collapse
|
5
|
Sisson TH, Osterholzer JJ, Leung L, Basrur V, Nesvizhskii A, Subbotina N, Warnock M, Torrente D, Virk AQ, Horowitz JC, Migliorini M, Strickland DK, Kim KK, Huang SK, Lawrence DA. PAI-1 Interaction with Sortilin Related Receptor-1 is Required for Lung Fibrosis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.06.606812. [PMID: 39211273 PMCID: PMC11361096 DOI: 10.1101/2024.08.06.606812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Plasminogen activator inhibitor-1 (PAI-1) has been previously shown to promote lung fibrosis via a mechanism that requires an intact vitronectin (VTN) binding site. In the present study, employing two distinct murine fibrosis models, we find that VTN is not required for PAI-1 to drive lung scarring. This result suggested the existence of a previously unrecognized profibrotic PAI-1-protein interaction involving the VTN-binding site for PAI-1. Using an unbiased proteomic approach, we identified sortilin related receptor 1 (SorlA) as the most highly enriched PAI-1 interactor in the fibrosing lung. We next investigated the role of SorlA in pulmonary fibrosis and found that SorlA deficiency protected against lung scarring in a murine model. We further show that, while VTN deficiency does not influence fibrogenesis in the presence or absence of PAI-1, SorlA is required for PAI-1 to promote scarring. These results, together with data showing increased SorlA levels in human IPF lung tissue, support a novel mechanism through which the potent profibrotic mediator PAI-1 drives lung fibrosis and implicate SorlA as a new therapeutic target in IPF treatment.
Collapse
|
6
|
SenthilKumar G, Zirgibel Z, Cohen KE, Katunaric B, Jobe AM, Shult CG, Limpert RH, Freed JK. Ying and Yang of Ceramide in the Vascular Endothelium. Arterioscler Thromb Vasc Biol 2024; 44:1725-1736. [PMID: 38899471 PMCID: PMC11269027 DOI: 10.1161/atvbaha.124.321158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
Ceramides, a group of biologically active sphingolipids, have been described as the new cholesterol given strong evidence linking high plasma ceramide with endothelial damage, risk for early adverse cardiovascular events, and development of cardiometabolic disease. This relationship has sparked great interest in investigating therapeutic targets with the goal of suppressing ceramide formation. However, the growing data challenge this paradigm of ceramide as solely eliciting detrimental effects to the cardiovascular system. Studies show that ceramides are necessary for maintaining proper endothelial redox states, mechanosensation, and membrane integrity. Recent work in preclinical models and isolated human microvessels highlights that the loss of ceramide formation can in fact propagate vascular endothelial dysfunction. Here, we delve into these conflicting findings to evaluate how ceramide may be capable of exerting both beneficial and damaging effects within the vascular endothelium. We propose a unifying theory that while basal levels of ceramide in response to physiological stimuli are required for the production of vasoprotective metabolites such as S1P (sphingosine-1-phosphate), the chronic accumulation of ceramide can promote activation of pro-oxidative stress pathways in endothelial cells. Clinically, the evidence discussed here highlights the potential challenges associated with therapeutic suppression of ceramide formation as a means of reducing cardiovascular disease risk.
Collapse
Affiliation(s)
- Gopika SenthilKumar
- Department of Anesthesiology, Medical College of Wisconsin, Milwaukee WI
- Department of Physiology, Medical College of Wisconsin, Milwaukee WI
- Cardiovascular Center, Medical College of Wisconsin, Milwaukee WI
| | - Zachary Zirgibel
- Department of Anesthesiology, Medical College of Wisconsin, Milwaukee WI
- Cardiovascular Center, Medical College of Wisconsin, Milwaukee WI
| | - Katie E. Cohen
- Cardiovascular Center, Medical College of Wisconsin, Milwaukee WI
- Division of Cardiovascular Medicine, Department of Medicine, Medical College of Wisconsin, Milwaukee WI
| | - Boran Katunaric
- Department of Anesthesiology, Medical College of Wisconsin, Milwaukee WI
- Department of Physiology, Medical College of Wisconsin, Milwaukee WI
- Cardiovascular Center, Medical College of Wisconsin, Milwaukee WI
| | - Alyssa M. Jobe
- Department of Anesthesiology, Medical College of Wisconsin, Milwaukee WI
- Cardiovascular Center, Medical College of Wisconsin, Milwaukee WI
| | - Carolyn G. Shult
- Department of Anesthesiology, Medical College of Wisconsin, Milwaukee WI
- Cardiovascular Center, Medical College of Wisconsin, Milwaukee WI
| | - Rachel H. Limpert
- Department of Anesthesiology, Medical College of Wisconsin, Milwaukee WI
- Department of Physiology, Medical College of Wisconsin, Milwaukee WI
- Cardiovascular Center, Medical College of Wisconsin, Milwaukee WI
| | - Julie K. Freed
- Department of Anesthesiology, Medical College of Wisconsin, Milwaukee WI
- Department of Physiology, Medical College of Wisconsin, Milwaukee WI
- Cardiovascular Center, Medical College of Wisconsin, Milwaukee WI
| |
Collapse
|
7
|
de Hart NMMP, Petrocelli JJ, Nicholson RJ, Yee EM, van Onselen L, Lang MJ, Bourrant PE, Ferrara PJ, Bastian ED, Ward LS, Petersen BL, Drummond MJ. Dietary delivery of glycomacropeptide within the whey protein matrix is not effective in mitigating tissue ceramide deposition and obesity in mice fed a high-fat diet. J Dairy Sci 2024; 107:669-682. [PMID: 37709040 PMCID: PMC11110038 DOI: 10.3168/jds.2023-23914] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 08/28/2023] [Indexed: 09/16/2023]
Abstract
Obesity is often accompanied by heightened circulating and tissue inflammation along with an increase in sphingolipids (e.g., ceramides) in metabolically active and insulin-sensitive organs. Whey protein isolate (WPI) has been shown to decrease inflammation and increase insulin sensitivity when given during a high-fat diet (HFD) intervention in rodents. The whey protein bioactive peptide glycomacropeptide (GMP) has also been linked to having anti-inflammatory properties and regulating lipogenesis. Therefore, the purpose of the study was to determine the effect of dietary GMP within the whey protein matrix on tissue inflammation, adiposity, and tissue ceramide accumulation in an obesogenic rodent model. Young adult male mice (10 wk old) underwent a 10-wk 60% HFD intervention. Glycomacropeptide was absent in the control low-fat diet and HFD WPI (-GMP) groups. The HFD WPI (1×GMP) treatment contained a standard amount of GMP, and HFD WPI (2×GMP) had double the amount. We observed no differences in weight gain or reductions in adiposity when comparing the GMP groups to HFD WPI (-GMP). Similarly, insulin resistance and glucose intolerance were not offset with GMP, and skeletal muscle and liver tissue ceramide content was unaltered with the GMP intervention. In contrast, the additional amount of GMP (2×GMP) might adversely affect tissue obesity-related pathologies. Together, dietary GMP given in a whey protein matrix during an HFD intervention does not alter weight gain, insulin resistance, glucose intolerance, and sphingolipid accumulation in the liver and skeletal muscle.
Collapse
Affiliation(s)
- Naomi M M P de Hart
- Department of Nutrition and Integrative Physiology, University of Utah, Salt Lake City, UT 84112
| | - Jonathan J Petrocelli
- Department of Physical Therapy and Athletic Training, University of Utah, Salt Lake City, UT 84108
| | - Rebekah J Nicholson
- Department of Nutrition and Integrative Physiology, University of Utah, Salt Lake City, UT 84112
| | - Elena M Yee
- Department of Physical Therapy and Athletic Training, University of Utah, Salt Lake City, UT 84108
| | - Lisha van Onselen
- Department of Physical Therapy and Athletic Training, University of Utah, Salt Lake City, UT 84108
| | - Marisa J Lang
- Department of Nutrition and Integrative Physiology, University of Utah, Salt Lake City, UT 84112
| | - Paul-Emile Bourrant
- Department of Nutrition and Integrative Physiology, University of Utah, Salt Lake City, UT 84112
| | - Patrick J Ferrara
- Department of Nutrition and Integrative Physiology, University of Utah, Salt Lake City, UT 84112
| | - Eric D Bastian
- Dairy West Innovation Partnerships, Twin Falls, ID 83301
| | - Loren S Ward
- Glanbia Nutritionals Research, Twin Falls, ID 83301
| | | | - Micah J Drummond
- Department of Nutrition and Integrative Physiology, University of Utah, Salt Lake City, UT 84112; Department of Physical Therapy and Athletic Training, University of Utah, Salt Lake City, UT 84108.
| |
Collapse
|
8
|
Engin A. Reappraisal of Adipose Tissue Inflammation in Obesity. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1460:297-327. [PMID: 39287856 DOI: 10.1007/978-3-031-63657-8_10] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/19/2024]
Abstract
Chronic low-grade inflammation is a central component in the pathogenesis of obesity-related expansion of adipose tissue and complications in other metabolic tissues. Five different signaling pathways are defined as dominant determinants of adipose tissue inflammation: These are increased circulating endotoxin due to dysregulation in the microbiota-gut-brain axis, systemic oxidative stress, macrophage accumulation, and adipocyte death. Finally, the nucleotide-binding and oligomerization domain (NOD) leucine-rich repeat family pyrin domain-containing 3 (NLRP3) inflammasome pathway is noted to be a key regulator of metabolic inflammation. The NLRP3 inflammasome and associated metabolic inflammation play an important role in the relationships among fatty acids and obesity. Several highly active molecules, including primarily leptin, resistin, adiponectin, visfatin, and classical cytokines, are abundantly released from adipocytes. The most important cytokines that are released by inflammatory cells infiltrating obese adipose tissue are tumor necrosis factor-alpha (TNF-α), interleukin 6 (IL-6), monocyte chemoattractant protein 1 (MCP-1) (CCL-2), and IL-1. All these molecules mentioned above act on immune cells, causing local and then general inflammation. Three metabolic pathways are noteworthy in the development of adipose tissue inflammation: toll-like receptor 4 (TLR4)/phosphatidylinositol-3'-kinase (PI3K)/Protein kinase B (Akt) signaling pathway, endoplasmic reticulum (ER) stress-derived unfolded protein response (UPR), and inhibitor of nuclear factor kappa-B kinase beta (IKKβ)-nuclear factor kappa B (NF-κB) pathway. In fact, adipose tissue inflammation is an adaptive response that contributes to a visceral depot barrier that effectively filters gut-derived endotoxin. Excessive fatty acid release worsens adipose tissue inflammation and contributes to insulin resistance. However, suppression of adipose inflammation in obesity with anti-inflammatory drugs is not a rational solution and paradoxically promotes insulin resistance, despite beneficial effects on weight gain. Inflammatory pathways in adipocytes are indeed indispensable for maintaining systemic insulin sensitivity. Cannabinoid type 1 receptor (CB1R) is important in obesity-induced pro-inflammatory response; however, blockade of CB1R, contrary to anti-inflammatory drugs, breaks the links between insulin resistance and adipose tissue inflammation. Obesity, however, could be decreased by improving leptin signaling, white adipose tissue browning, gut microbiota interactions, and alleviating inflammation. Furthermore, capsaicin synthesized by chilies is thought to be a new and promising therapeutic option in obesity, as it prevents metabolic endotoxemia and systemic chronic low-grade inflammation caused by high-fat diet.
Collapse
Affiliation(s)
- Atilla Engin
- Faculty of Medicine, Department of General Surgery, Gazi University, Besevler, Ankara, Turkey.
- Mustafa Kemal Mah. 2137. Sok. 8/14, 06520, Cankaya, Ankara, Turkey.
| |
Collapse
|
9
|
Rome S, Tacconi S. High-fat diets: You are what you eat….your extracellular vesicles too! J Extracell Vesicles 2024; 13:e12382. [PMID: 38151475 PMCID: PMC10752826 DOI: 10.1002/jev2.12382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 10/13/2023] [Accepted: 11/10/2023] [Indexed: 12/29/2023] Open
Abstract
Recent works indicate that the lipid composition of extracellular vesicles (EVs) can modify their biological functions and their incorporation into recipient cells. In particular high-fat diets affect EV biogenesis, EV lipid composition, EV targeting and consequently the cross-talk between tissues. This review connects different research topics to show that a vicious circle is established during the development of high-fat diet-induced obesity, connecting the alteration of lipid metabolism, the composition of extracellular vesicles and the spread of deleterious lipids between tissues, which participates in NAFLD/NASH and diabetes development. According to the studies described in this review, it is urgent to take an interest in this question as the modulation of EV lipid composition could be an important factor to take into account during the therapeutic management of patients suffering from metabolic syndrome and related pathologies such as obesity and diabetes. Furthermore, as lipid modification of EVs is a strategy currently being tested to enable better integration into their target tissue or cell, it is important to consider the impact of these lipid modifications on the homeostasis of these targets.
Collapse
Affiliation(s)
- Sophie Rome
- CarMeN Laboratory, INSERM 1060‐INRAE 1397, Department of Human Nutrition, Lyon Sud HospitalUniversity of LyonLyonFrance
| | - Stefano Tacconi
- CarMeN Laboratory, INSERM 1060‐INRAE 1397, Department of Human Nutrition, Lyon Sud HospitalUniversity of LyonLyonFrance
| |
Collapse
|
10
|
Carobbio S, Pellegrinelli V, Vidal-Puig A. Adipose Tissue Dysfunction Determines Lipotoxicity and Triggers the Metabolic Syndrome: Current Challenges and Clinical Perspectives. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1460:231-272. [PMID: 39287854 DOI: 10.1007/978-3-031-63657-8_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/19/2024]
Abstract
The adipose tissue organ is organised as distinct anatomical depots located all along the body axis, and it is constituted of three different types of adipocytes: white, beige and brown, which are integrated with vascular, immune, neural, and extracellular stroma cells. These distinct adipocytes serve different specialised functions. The main function of white adipocytes is to ensure healthy storage of excess nutrients/energy and its rapid mobilisation to supply the demand of energy imposed by physiological cues in other organs, whereas brown and beige adipocytes are designed for heat production through uncoupling lipid oxidation from energy production. The concerted action of the three types of adipocytes/tissues ensures an optimal metabolic status. However, when one or several of these adipose depots become dysfunctional because of sustained lipid/nutrient overload, then insulin resistance and associated metabolic complications ensue. These metabolic alterations close a vicious cycle that negatively affects the adipose tissue functionality and compromises global metabolic homeostasis. Optimising white adipose tissue expandability and ensuring its functional metabolic flexibility and/or promoting brown/beige mediated thermogenic activity are complementary strategies that counteract obesity and its associated lipotoxic metabolic effects. However, the development of these therapeutic approaches requires a deep understanding of adipose tissue in all broad aspects. In this chapter, we will discuss the characteristics of the different adipose tissue depots with respect to origins and precursors recruitment, plasticity, cellular composition, and expandability capacity potential as well as molecular and metabolic characteristic signatures in both physiological and pathophysiological conditions. Current antilipotoxic strategies for future clinical application are also discussed in this chapter.
Collapse
Affiliation(s)
- Stefania Carobbio
- University of Cambridge Metabolic Research Laboratories, Wellcome Trust-MRC Institute of Metabolic Science, University of Cambridge, Cambridge, UK.
- Centro de Investigación Principe Felipe, Valencia, Spain.
| | - Vanessa Pellegrinelli
- University of Cambridge Metabolic Research Laboratories, Wellcome Trust-MRC Institute of Metabolic Science, University of Cambridge, Cambridge, UK
| | - Antonio Vidal-Puig
- University of Cambridge Metabolic Research Laboratories, Wellcome Trust-MRC Institute of Metabolic Science, University of Cambridge, Cambridge, UK.
- Centro de Investigación Principe Felipe, Valencia, Spain.
| |
Collapse
|
11
|
Miles LA, Bai H, Chakrabarty S, Baik N, Zhang Y, Parmer RJ, Samad F. Overexpression of Plg-R KT protects against adipose dysfunction and dysregulation of glucose homeostasis in diet-induced obese mice. Adipocyte 2023; 12:2252729. [PMID: 37642146 PMCID: PMC10481882 DOI: 10.1080/21623945.2023.2252729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 08/22/2023] [Accepted: 08/24/2023] [Indexed: 08/31/2023] Open
Abstract
The plasminogen receptor, Plg-RKT, is a unique cell surface receptor that is broadly expressed in cells and tissues throughout the body. Plg-RKT localizes plasminogen on cell surfaces and promotes its activation to the broad-spectrum serine protease, plasmin. In this study, we show that overexpression of Plg-RKT protects mice from high fat diet (HFD)-induced adipose and metabolic dysfunction. During the first 10 weeks on the HFD, the body weights of mice that overexpressed Plg-RKT (Plg-RKT-OEX) were lower than those of control mice (CagRosaPlgRKT). After 10 weeks on the HFD, CagRosaPlgRKT and Plg-RKT-OEX mice had similar body weights. However, Plg-RKT-OEX mice showed a more metabolically favourable body composition phenotype. Plg-RKT-OEX mice also showed improved glucose tolerance and increased insulin sensitivity. We found that the improved metabolic functions of Plg-RKT-OEX mice were mechanistically associated with increased energy expenditure and activity, decreased proinflammatory adipose macrophages and decreased inflammation, elevated brown fat thermogenesis, and higher expression of adipose PPARγ and adiponectin. These findings suggest that Plg-RKT signalling promotes healthy adipose function via multiple mechanisms to defend against obesity-associated adverse metabolic phenotypes.
Collapse
Affiliation(s)
- Lindsey A. Miles
- Department of Molecular Medicine, Scripps Research, La Jolla, CA, USA
| | - Hongdong Bai
- Department of Medicine, Veterans Administration San Diego Healthcare System, San Diego, CA, USA
| | - Sagarika Chakrabarty
- Department of Cell Biology, San Diego Biomedical Research Institute, San Diego, CA, USA
| | - Nagyung Baik
- Department of Molecular Medicine, Scripps Research, La Jolla, CA, USA
| | - Yuqing Zhang
- Department of Molecular Medicine, Scripps Research, La Jolla, CA, USA
| | - Robert J. Parmer
- Department of Medicine, Veterans Administration San Diego Healthcare System, San Diego, CA, USA
- Department of Medicine, University of California San Diego, La Jolla, CA, USA
| | - Fahumiya Samad
- Department of Cell Biology, San Diego Biomedical Research Institute, San Diego, CA, USA
| |
Collapse
|
12
|
Gumede N, Khathi A. The role of fibrinolysis in the development of prediabetes-associated coronary heart disease: a focus on the plasminogen activator inhibitor -1 and its potential use as a predictive marker in diet-induced prediabetes. Front Nutr 2023; 10:1256427. [PMID: 38024366 PMCID: PMC10652797 DOI: 10.3389/fnut.2023.1256427] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 10/11/2023] [Indexed: 12/01/2023] Open
Abstract
Introduction Type 2 diabetes mellitus (T2DM) is associated with an increased risk of cardiovascular diseases (CVD). However, the onset of T2DM is preceded by prediabetes, which is associated with sedentary lifestyles and consumption of high-calorie diets. Studies have shown that impaired glucose homeostasis creates an environment for developing T2DM-related complications. Using a high-fat-high-carbohydrate diet-induced prediabetes animal model, this study sought to assess the risk factors of coronary heart disease (CHD) in diet-induced prediabetes and identify biomarkers that can be used for early detection of prediabetes-associated CHD. Methods Male Sprague Dawley rats were randomly grouped into two groups and were kept on different diets for 20 weeks (n = 6 in each group). One group was fed standard rat chow to serve as a non-prediabetes (NPD) control, while the other group consumed a high-fat-high-carbohydrate diet to induce prediabetes (PD). Post induction, the homeostasis model assessment- insulin resistance (HOMA-IR) and glycated haemoglobin (HbA1c) was used to test for insulin resistance. Body weight, mean arterial pressure (MAP), resting heart rate (HR), inflammatory cytokines (C-reactive protein (CRP), tumor necrosis factor (TNF-α), interleukin-6 (IL-6)), lipids (total cholesterol (TC), triglyceride (TG), lipoproteins (HDL, LDL, VLDL)), endothelial function (endothelial nitric oxide (eNOS), endothelin -1 (ET-1)), fibrinolysis (plasminogen activator inhibitor-1 (PAI-1)) were all measured to assess the risk of CHD. All data were expressed as means ± S.E.M. Statistical comparisons were performed with Graph Pad. Instat Software using Student's two-sided t-test. The Pearson correlation coefficient and linear regression were calculated to assess the association. The value of p < 0.05 was considered statistically significant. Results There was significant insulin resistance accompanied by significantly increased HbA1c and body weight in PD compared to NPD. Simultaneously, there was a significant increase in inflammatory cytokines in PD compared to NPD. This was accompanied by significantly increased TG and VLDL and endothelial dysfunction in PD. The association between HOMA-IR and PAI-1 was insignificantly positive in NPD, whereas a significantly strong positive association was observed in PD. Conclusion There is a positive correlation between insulin resistance and PAI-1 during prediabetes; therefore, suggesting that prediabetes increases the risk of developing vascular thrombosis. The current therefore study warrants further investigation on PAI-1 and other markers of fibrinolysis for the early detection of thrombosis and risk of CHD in prediabetes.
Collapse
Affiliation(s)
- Nompumelelo Gumede
- Department of Human Physiology, School of Laboratory Medicine and Medical Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
| | | |
Collapse
|
13
|
Kim E, Jeon S. The Impact of Phytochemicals in Obesity-Related Metabolic Diseases: Focus on Ceramide Metabolism. Nutrients 2023; 15:703. [PMID: 36771408 PMCID: PMC9920427 DOI: 10.3390/nu15030703] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 01/23/2023] [Accepted: 01/25/2023] [Indexed: 02/02/2023] Open
Abstract
The prevalence of obesity and related metabolic diseases has increased dramatically worldwide. As obesity progresses, various lipid species accumulate in ectopic tissues. Amongst them, ceramides-a deleterious sphingolipid species-accumulate and cause lipotoxicity and metabolic disturbances. Dysregulated ceramide metabolism appears to be a key feature in the pathogenesis of obesity-related metabolic diseases. Notably, dietary modification might have an impact on modulating ceramide metabolism. Phytochemicals are plant-derived compounds with various physiological properties, which have been shown to protect against obesity-related metabolic diseases. In this review, we aim to examine the impact of a myriad of phytochemicals and their dietary sources in altering ceramide deposition and ceramide-related metabolism from in vitro, in vivo, and human clinical/epidemiological studies. This review discusses how numerous phytochemicals are able to alleviate ceramide-induced metabolic defects and reduce the risk of obesity-related metabolic diseases via diverse mechanisms.
Collapse
Affiliation(s)
| | - Sookyoung Jeon
- Department of Food Science and Nutrition and the Korean Institute of Nutrition, Hallym University, Chuncheon 24252, Gangwon-do, Republic of Korea
| |
Collapse
|
14
|
Busnelli M, Manzini S, Colombo A, Franchi E, Lääperi M, Laaksonen R, Chiesa G. Effect of Diets on Plasma and Aorta Lipidome: A Study in the apoE Knockout Mouse Model. Mol Nutr Food Res 2023; 67:e2200367. [PMID: 36419336 DOI: 10.1002/mnfr.202200367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 09/20/2022] [Indexed: 11/27/2022]
Abstract
SCOPE Specific lipid molecules circulating in plasma at low concentrations have emerged as biomarkers of atherosclerotic risk. The aim of the present study is that of evaluating, in an athero-prone mouse model, how different diets can affect plasma and aorta lipidome. METHODS AND RESULTS Thirty-six apoE knockout mice are divided in three groups and feed 12 weeks with diets differing for cholesterol and fatty acid content. Atherosclerosis is measured at the aortic sinus and aorta. Lipids are quantified in plasma and aorta with mass spectrometry. The cholesterol content of the diets is the main driver of lipid accumulation in plasma and aorta. The fatty acid composition of the diets affects plasma levels both of essential (linoleic acid) and nonessential (myristic and arachidonic acid) ones. Lipidomics show a comparable distribution, in plasma and aorta, of the main lipid components of oxidized LDL, including cholesteryl esters and lysophosphatidylcholines. Interestingly, lactosylceramide, glucosyl/galactosylceramide, and individual ceramide species are found to accumulate in diseased aortic segments. CONCLUSION Both the cholesterol and fatty acid content of the diets profoundly affect plasma lipidome. Aorta lipidome is likewise affected with the accumulation of specific lipids known as markers of atherosclerosis.
Collapse
Affiliation(s)
- Marco Busnelli
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, via Balzaretti, 9, Milan, 20133, Italy
| | - Stefano Manzini
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, via Balzaretti, 9, Milan, 20133, Italy
| | - Alice Colombo
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, via Balzaretti, 9, Milan, 20133, Italy
| | - Elsa Franchi
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, via Balzaretti, 9, Milan, 20133, Italy
| | | | - Reijo Laaksonen
- Zora Biosciences Oy, Espoo, 02150, Finland.,Finnish Cardiovascular Research Center, University of Tampere, Tampere, 33520, Finland
| | - Giulia Chiesa
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, via Balzaretti, 9, Milan, 20133, Italy
| |
Collapse
|
15
|
Camacho-Muñoz D, Niven J, Kucuk S, Cucchi D, Certo M, Jones SW, Fischer DP, Mauro C, Nicolaou A. Omega-3 polyunsaturated fatty acids reverse the impact of western diets on regulatory T cell responses through averting ceramide-mediated pathways. Biochem Pharmacol 2022; 204:115211. [PMID: 35985403 DOI: 10.1016/j.bcp.2022.115211] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Revised: 08/10/2022] [Accepted: 08/10/2022] [Indexed: 11/02/2022]
Abstract
Western diet (WD), high in sugar and fat, promotes obesity and associated chronic low-grade pro-inflammatory environment, leading to impaired immune function, reprogramming of innate and adaptive immune cells, and development of chronic degenerative diseases, including cardiovascular disease. Increased concentrations of circulating and tissue ceramides contribute to inflammation and cellular dysfunction common in immune metabolic and cardiometabolic disease. Therefore, ceramide-lowering interventions have been considered as strategies to improve adipose tissue health. Here, we report the ability of omega-3 polyunsaturated fatty acids (n-3PUFA) to attenuate inflammatory phenotypes promoted by WD, through ceramide-dependent pathways. Using an animal model, we show that enrichment of WD diet with n-3PUFA, reduced the expression of ceramide synthase 2 (CerS2), and lowered the concentration of long-chain ceramides (C23-C26) in plasma and adipose tissues. N-3PUFA also increased prevalence of the anti-inflammatory CD4+Foxp3+ and CD4+Foxp3+CD25+ Treg subtypes in lymphoid organs. The CerS inhibitor FTY720 mirrored the effect of n-3PUFA. Treatment of animal and human T cells with ceramide C24 in vitro, reduced CD4+Foxp3+ Treg polarisation and IL-10 production, and increased IL-17, while it decreased Erk and Akt phosphorylation downstream of T cell antigen receptors (TCR). These findings suggest that molecular mechanisms mediating the adverse effect of ceramides on regulatory T lymphocytes, progress through reduced TCR signalling. Our findings suggest that nutritional enrichment of WD with fish oil n-3PUFA can partially mitigate its detrimental effects, potentially improving the low-grade inflammation associated with immune metabolic disease. Compared to pharmacological interventions, n-3PUFA offer a simpler approach that can be accommodated as lifestyle choice.
Collapse
Affiliation(s)
- Dolores Camacho-Muñoz
- Laboratory for Lipidomics and Lipid Biology, Division of Pharmacy and Optometry, School of Health Sciences, Faculty of Biology Medicine and Health, The University of Manchester, Manchester Academic Health Science Centre, Manchester M13 9PT, UK
| | - Jennifer Niven
- Institute of Inflammation and Ageing, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2WB, UK
| | - Salih Kucuk
- Institute of Inflammation and Ageing, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2WB, UK
| | - Danilo Cucchi
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London EC1M 6BQ, UK
| | - Michelangelo Certo
- Institute of Inflammation and Ageing, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2WB, UK
| | - Simon W Jones
- Institute of Inflammation and Ageing, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2WB, UK
| | - Deborah P Fischer
- Laboratory for Lipidomics and Lipid Biology, Division of Pharmacy and Optometry, School of Health Sciences, Faculty of Biology Medicine and Health, The University of Manchester, Manchester Academic Health Science Centre, Manchester M13 9PT, UK
| | - Claudio Mauro
- Institute of Inflammation and Ageing, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2WB, UK; William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London EC1M 6BQ, UK.
| | - Anna Nicolaou
- Laboratory for Lipidomics and Lipid Biology, Division of Pharmacy and Optometry, School of Health Sciences, Faculty of Biology Medicine and Health, The University of Manchester, Manchester Academic Health Science Centre, Manchester M13 9PT, UK; Lydia Becker Institute of Immunology and Inflammation, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester Academic Health Science Centre, Manchester M13 9NT, UK.
| |
Collapse
|
16
|
Mak B, Lin HM, Duong T, Mahon KL, Joshua AM, Stockler MR, Gurney H, Parnis F, Zhang A, Scheinberg T, Wittert G, Butler LM, Sullivan D, Hoy AJ, Meikle PJ, Horvath LG. Modulation of Plasma Lipidomic Profiles in Metastatic Castration-Resistant Prostate Cancer by Simvastatin. Cancers (Basel) 2022; 14:cancers14194792. [PMID: 36230715 PMCID: PMC9563053 DOI: 10.3390/cancers14194792] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 09/26/2022] [Accepted: 09/29/2022] [Indexed: 11/16/2022] Open
Abstract
Elevated circulating sphingolipids are associated with shorter overall survival and therapeutic resistance in metastatic castration-resistant prostate cancer (mCRPC), suggesting that perturbations in sphingolipid metabolism promotes prostate cancer growth. This study assessed whether addition of simvastatin to standard treatment for mCRPC can modify a poor prognostic circulating lipidomic profile represented by a validated 3-lipid signature (3LS). Men with mCRPC (n = 27) who were not on a lipid-lowering agent, were given simvastatin for 12 weeks (40 mg orally, once daily) with commencement of standard treatment. Lipidomic profiling was performed on their plasma sampled at baseline and after 12 weeks of treatment. Only 11 men had the poor prognostic 3LS at baseline, of whom five (45%) did not retain the 3LS after simvastatin treatment (expected conversion rate with standard treatment = 19%). At baseline, the plasma profiles of men with the 3LS displayed higher levels (p < 0.05) of sphingolipids (ceramides, hexosylceramides and sphingomyelins) than those of men without the 3LS. These plasma sphingolipids were reduced after statin treatment in men who lost the 3LS (mean decrease: 23−52%, p < 0.05), but not in men with persistent 3LS, and were independent of changes to plasma cholesterol, LDL-C or triacylglycerol. In conclusion, simvastatin in addition to standard treatment can modify the poor prognostic circulating lipidomic profile in mCRPC into a more favourable profile at twice the expected conversion rate.
Collapse
Affiliation(s)
- Blossom Mak
- Medical Oncology, Chris O’Brien Lifehouse, Camperdown, NSW 2050, Australia
- Garvan Institute of Medical Research, Darlinghurst, NSW 2010, Australia
- Faculty of Medicine and Health, University of Sydney, Camperdown, NSW 2050, Australia
| | - Hui-Ming Lin
- Garvan Institute of Medical Research, Darlinghurst, NSW 2010, Australia
- St Vincent’s Clinical School, UNSW Sydney, Darlinghurst, NSW 2010, Australia
| | - Thy Duong
- Metabolomics Laboratory, Baker Heart and Diabetes Institute, Melbourne, VIC 3004, Australia
| | - Kate L. Mahon
- Medical Oncology, Chris O’Brien Lifehouse, Camperdown, NSW 2050, Australia
- Garvan Institute of Medical Research, Darlinghurst, NSW 2010, Australia
- Faculty of Medicine and Health, University of Sydney, Camperdown, NSW 2050, Australia
- Royal Prince Alfred Hospital, Camperdown, NSW 2050, Australia
| | - Anthony M. Joshua
- Garvan Institute of Medical Research, Darlinghurst, NSW 2010, Australia
- St Vincent’s Clinical School, UNSW Sydney, Darlinghurst, NSW 2010, Australia
- Kinghorn Cancer Centre, St Vincent’s Hospital, Darlinghurst, NSW 2010, Australia
| | - Martin R. Stockler
- Faculty of Medicine and Health, University of Sydney, Camperdown, NSW 2050, Australia
- Concord Cancer Centre, Concord Repatriation General Hospital, Concord, NSW 2139, Australia
| | - Howard Gurney
- Faculty of Medicine and Health Sciences, Macquarie University, Macquarie Park, NSW 2109, Australia
| | - Francis Parnis
- Adelaide Cancer Centre, Kurralta Park, SA 5037, Australia
| | - Alison Zhang
- Medical Oncology, Chris O’Brien Lifehouse, Camperdown, NSW 2050, Australia
- Faculty of Medicine and Health, University of Sydney, Camperdown, NSW 2050, Australia
- Faculty of Medicine and Health Sciences, Macquarie University, Macquarie Park, NSW 2109, Australia
| | - Tahlia Scheinberg
- Medical Oncology, Chris O’Brien Lifehouse, Camperdown, NSW 2050, Australia
- Garvan Institute of Medical Research, Darlinghurst, NSW 2010, Australia
- Faculty of Medicine and Health, University of Sydney, Camperdown, NSW 2050, Australia
| | - Gary Wittert
- South Australian Immunogenomics Cancer Institute and Freemasons Centre for Male Health and Wellbeing, University of Adelaide, Adelaide, SA 5005, Australia
- South Australian Health and Medical Research Institute, Adelaide, SA 5000, Australia
| | - Lisa M. Butler
- South Australian Immunogenomics Cancer Institute and Freemasons Centre for Male Health and Wellbeing, University of Adelaide, Adelaide, SA 5005, Australia
- South Australian Health and Medical Research Institute, Adelaide, SA 5000, Australia
| | - David Sullivan
- Royal Prince Alfred Hospital, Camperdown, NSW 2050, Australia
- NSW Health Pathology, Department of Chemical Pathology, Royal Prince Alfred Hospital, Camperdown, NSW 2050, Australia
| | - Andrew J. Hoy
- School of Medical Sciences, Charles Perkins Centre, University of Sydney, Sydney, NSW 2050, Australia
| | - Peter J. Meikle
- Metabolomics Laboratory, Baker Heart and Diabetes Institute, Melbourne, VIC 3004, Australia
- Department of Cardiovascular Research Translation and Implementation, La Trobe University, Bundoora, VIC 3086, Australia
| | - Lisa G. Horvath
- Medical Oncology, Chris O’Brien Lifehouse, Camperdown, NSW 2050, Australia
- Garvan Institute of Medical Research, Darlinghurst, NSW 2010, Australia
- Faculty of Medicine and Health, University of Sydney, Camperdown, NSW 2050, Australia
- St Vincent’s Clinical School, UNSW Sydney, Darlinghurst, NSW 2010, Australia
- Royal Prince Alfred Hospital, Camperdown, NSW 2050, Australia
- Correspondence: ; Tel.: +61-2-8514-0142
| |
Collapse
|
17
|
Zhu Y, Barupal DK, Ngo AL, Quesenberry CP, Feng J, Fiehn O, Ferrara A. Predictive Metabolomic Markers in Early to Mid-pregnancy for Gestational Diabetes Mellitus: A Prospective Test and Validation Study. Diabetes 2022; 71:1807-1817. [PMID: 35532743 PMCID: PMC9490360 DOI: 10.2337/db21-1093] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 04/13/2022] [Indexed: 11/13/2022]
Abstract
Gestational diabetes mellitus (GDM) predisposes pregnant individuals to perinatal complications and long-term diabetes and cardiovascular diseases. We developed and validated metabolomic markers for GDM in a prospective test-validation study. In a case-control sample within the PETALS cohort (GDM n = 91 and non-GDM n = 180; discovery set), a random PETALS subsample (GDM n = 42 and non-GDM n = 372; validation set 1), and a case-control sample within the GLOW trial (GDM n = 35 and non-GDM n = 70; validation set 2), fasting serum untargeted metabolomics were measured by gas chromatography/time-of-flight mass spectrometry. Multivariate enrichment analysis examined associations between metabolites and GDM. Ten-fold cross-validated LASSO regression identified predictive metabolomic markers at gestational weeks (GW) 10-13 and 16-19 for GDM. Purinone metabolites at GW 10-13 and 16-19 and amino acids, amino alcohols, hexoses, indoles, and pyrimidine metabolites at GW 16-19 were positively associated with GDM risk (false discovery rate <0.05). A 17-metabolite panel at GW 10-13 outperformed the model using conventional risk factors, including fasting glycemia (area under the curve: discovery 0.871 vs. 0.742, validation 1 0.869 vs. 0.731, and validation 2 0.972 vs. 0.742; P < 0.01). Similar results were observed with a 13-metabolite panel at GW 17-19. Dysmetabolism is present early in pregnancy among individuals progressing to GDM. Multimetabolite panels in early pregnancy can predict GDM risk beyond conventional risk factors.
Collapse
Affiliation(s)
- Yeyi Zhu
- Division of Research, Kaiser Permanente Northern California, Oakland, CA
- Department of Epidemiology and Biostatistics, University of California San Francisco, San Francisco, CA
- Corresponding author: Yeyi Zhu,
| | - Dinesh K. Barupal
- National Institutes of Health West Coast Metabolomics Center, University of California Davis, Davis, CA
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Amanda L. Ngo
- Division of Research, Kaiser Permanente Northern California, Oakland, CA
| | | | - Juanran Feng
- Division of Research, Kaiser Permanente Northern California, Oakland, CA
| | - Oliver Fiehn
- National Institutes of Health West Coast Metabolomics Center, University of California Davis, Davis, CA
| | - Assiamira Ferrara
- Division of Research, Kaiser Permanente Northern California, Oakland, CA
| |
Collapse
|
18
|
Sambolín-Escobales L, Tirado-Castro L, Suarez C, Pacheco-Cruz D, Fonseca-Ferrer W, Deme P, Haughey N, Chompre G, Porter JT. High-Fat Diet and Short-Term Unpredictable Stress Increase Long-Chain Ceramides Without Enhancing Behavioral Despair. Front Mol Biosci 2022; 9:859760. [PMID: 35601829 PMCID: PMC9114865 DOI: 10.3389/fmolb.2022.859760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 04/22/2022] [Indexed: 11/28/2022] Open
Abstract
Clinical and preclinical studies suggest that increases in long-chain ceramides in blood may contribute to the development of depressive-like behavior. However, which factors contribute to these increases and whether the increases are sufficient to induce depressive-like behaviors is unclear. To begin to address this issue, we examined the effects of high fat diet (HFD) and short-term unpredictable (STU) stress on long-chain ceramides in the serum of male and female rats. We found that brief exposure to HFD or unpredictable stress was sufficient to induce selective increases in the serum concentrations of long-chain ceramides, associated with depression in people. Furthermore, combined exposure to HFD and unpredictable stress caused a synergistic increase in C16:0, C16:1, and C18:0 ceramides in both sexes and C18:1 and C24:1 in males. However, the increased peripheral long-chain ceramides were not associated with increases in depressive-like behaviors suggesting that increases in serum long-chain ceramides may not be associated with the development of depressive-like behaviors in rodents.
Collapse
Affiliation(s)
- Lubriel Sambolín-Escobales
- Division of Pharmacology, Basic Sciences Department, Ponce Research Institute, Ponce Health Sciences University, Ponce, Puerto Rico
| | - Lizmarie Tirado-Castro
- Division of Pharmacology, Basic Sciences Department, Ponce Research Institute, Ponce Health Sciences University, Ponce, Puerto Rico
| | - Cristina Suarez
- Division of Pharmacology, Basic Sciences Department, Ponce Research Institute, Ponce Health Sciences University, Ponce, Puerto Rico
| | - Dariangelly Pacheco-Cruz
- Biology and Biotechnology Department, Pontifical Catholic University of Puerto Rico, Ponce, Puerto Rico
| | | | - Pragney Deme
- Department of Neurology, John Hopkins University School of Medicine, Baltimore, MD, United States
| | - Norman Haughey
- Department of Neurology, John Hopkins University School of Medicine, Baltimore, MD, United States
| | - Gladys Chompre
- Biology and Biotechnology Department, Pontifical Catholic University of Puerto Rico, Ponce, Puerto Rico
| | - James T. Porter
- Division of Pharmacology, Basic Sciences Department, Ponce Research Institute, Ponce Health Sciences University, Ponce, Puerto Rico
- *Correspondence: James T. Porter,
| |
Collapse
|
19
|
Huang SY, Lu YY, Lin YK, Chen YC, Chen YA, Chung CC, Lin WS, Chen SA, Chen YJ. Ceramide modulates electrophysiological characteristics and oxidative stress of pulmonary vein cardiomyocytes. Eur J Clin Invest 2022; 52:e13690. [PMID: 34662431 DOI: 10.1111/eci.13690] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 10/12/2021] [Accepted: 10/12/2021] [Indexed: 11/27/2022]
Abstract
BACKGROUND Ceramide is involved in regulating metabolism and energy expenditure, and its abnormal myocardial accumulation may contribute to heart injury or lipotoxic cardiomyopathy. Whether ceramide can modulate the electrophysiology of pulmonary veins (PVs) remains unknown. MATERIALS AND METHODS We used conventional microelectrodes to measure the electrical activity of isolated rabbit PV tissue preparations before and after treatment with various concentrations of ceramide with or without H2 O2 (2 mM), MitoQ, wortmannin or 740 YP. A whole-cell patch clamp and fluorescence imaging were used to record the ionic currents, calcium (Ca2+ ) transients, and intracellular reactive oxygen species (ROS) and sodium (Na+ ) in isolated single PV cardiomyocytes before and after ceramide (1 μM) treatment. RESULTS Ceramide (0.1, 0.3, 1 and 3 μM) reduced the beating rate of PV tissues. Furthermore, ceramide (1 μM) suppressed the 2 mM H2 O2 -induced faster PV beating rate, triggered activities and burst firings, which were further reduced by MitoQ. In the presence of wortmannin, ceramide did not change the PV beating rate. The H2 O2 -induced faster PV beating rate could be counteracted by MitoQ or wortmannin with no additive effect from the ceramide. Ceramide inhibited pPI3K. Ceramide reduced Ca2+ transients, sarcoplasmic reticulum Ca2+ contents, L-type Ca2+ currents, Na+ currents, late Na+ currents, Na+ -hydrogen exchange currents, and intracellular ROS and Na+ in PV cardiomyocytes, but did not change Na+ -Ca2+ exchange currents. CONCLUSION C2 ceramide may exert the distinctive electrophysiological effect of modulating PV activities, which may be affected by PI3K pathway-mediated oxidative stress, and might play a role in the pathogenesis of PV arrhythmogenesis.
Collapse
Affiliation(s)
- Shih-Yu Huang
- Division of Cardiac Electrophysiology, Cardiovascular Center, Cathay General Hospital, Taipei, Taiwan.,School of Medicine, College of Medicine, Fu Jen Catholic University, New Taipei City, Taiwan
| | - Yen-Yu Lu
- School of Medicine, College of Medicine, Fu Jen Catholic University, New Taipei City, Taiwan.,Division of Cardiology, Sijhih Cathay General Hospital, New Taipei City, Taiwan
| | - Yung-Kuo Lin
- Division of Cardiovascular Medicine, Department of Internal Medicine, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan.,Division of Cardiology, Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Yao-Chang Chen
- Department of Biomedical Engineering, National Defense Medical Center, Taipei, Taiwan
| | - Yi-Ann Chen
- Division of Nephrology, Sijhih Cathay General Hospital, New Taipei City, Taiwan
| | - Cheng-Chih Chung
- Division of Cardiovascular Medicine, Department of Internal Medicine, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan.,Division of Cardiology, Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Wei-Shiang Lin
- Division of Cardiology, Department of Internal Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Shih-Ann Chen
- Division of Cardiology, Department of Medicine, Heart Rhythm Center, Taipei Veterans General Hospital, Taipei, Taiwan.,Cardiovascular Center, Taichung Veterans General Hospital, Taichung, Taiwan
| | - Yi-Jen Chen
- Division of Cardiovascular Medicine, Department of Internal Medicine, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan.,Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan.,Cardiovascular Research Center, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan
| |
Collapse
|
20
|
Mak B, Lin HM, Kwan EM, Fettke H, Tran B, Davis ID, Mahon K, Stockler MR, Briscoe K, Marx G, Zhang A, Crumbaker M, Tan W, Huynh K, Meikle TG, Mellett NA, Hoy AJ, Du P, Yu J, Jia S, Joshua AM, Waugh DJ, Butler LM, Kohli M, Meikle PJ, Azad AA, Horvath LG. Combined impact of lipidomic and genetic aberrations on clinical outcomes in metastatic castration-resistant prostate cancer. BMC Med 2022; 20:112. [PMID: 35331214 PMCID: PMC8953070 DOI: 10.1186/s12916-022-02298-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Accepted: 02/14/2022] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Both changes in circulating lipids represented by a validated poor prognostic 3-lipid signature (3LS) and somatic tumour genetic aberrations are individually associated with worse clinical outcomes in men with metastatic castration-resistant prostate cancer (mCRPC). A key question is how the lipid environment and the cancer genome are interrelated in order to exploit this therapeutically. We assessed the association between the poor prognostic 3-lipid signature (3LS), somatic genetic aberrations and clinical outcomes in mCRPC. METHODS We performed plasma lipidomic analysis and cell-free DNA (cfDNA) sequencing on 106 men with mCRPC commencing docetaxel, cabazitaxel, abiraterone or enzalutamide (discovery cohort) and 94 men with mCRPC commencing docetaxel (validation cohort). Differences in lipid levels between men ± somatic genetic aberrations were assessed with t-tests. Associations between the 3LS and genetic aberrations with overall survival (OS) were examined using Kaplan-Meier methods and Cox proportional hazard models. RESULTS The 3LS was associated with shorter OS in the discovery (hazard ratio [HR] 2.15, 95% confidence interval [CI] 1.4-3.3, p < 0.001) and validation cohorts (HR 2.32, 95% CI 1.59-3.38, p < 0.001). Elevated plasma sphingolipids were associated with AR, TP53, RB1 and PI3K aberrations (p < 0.05). Men with both the 3LS and aberrations in AR, TP53, RB1 or PI3K had shorter OS than men with neither in both cohorts (p ≤ 0.001). The presence of 3LS and/or genetic aberration was independently associated with shorter OS for men with AR, TP53, RB1 and PI3K aberrations (p < 0.02). Furthermore, aggressive-variant prostate cancer (AVPC), defined as 2 or more aberrations in TP53, RB1 and/or PTEN, was associated with elevated sphingolipids. The combination of AVPC and 3LS predicted for a median survival of ~12 months. The relatively small sample size of the cohorts limits clinical applicability and warrants future studies. CONCLUSIONS Elevated circulating sphingolipids were associated with AR, TP53, RB1, PI3K and AVPC aberrations in mCRPC, and the combination of lipid and genetic abnormalities conferred a worse prognosis. These findings suggest that certain genotypes in mCRPC may benefit from metabolic therapies.
Collapse
Affiliation(s)
- Blossom Mak
- Chris O'Brien Lifehouse, Missenden Rd, Camperdown, New South Wales, 2050, Australia
- Garvan Institute of Medical Research, Darlinghurst, Sydney, New South Wales, Australia
- University of Sydney, Sydney, New South Wales, Australia
| | - Hui-Ming Lin
- Garvan Institute of Medical Research, Darlinghurst, Sydney, New South Wales, Australia
- St Vincent's Clinical School, UNSW, Sydney, New South Wales, Australia
| | | | - Heidi Fettke
- Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
| | - Ben Tran
- Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, Victoria, Australia
| | - Ian D Davis
- Eastern Health Clinical School, Monash University, Melbourne, Victoria, Australia
- Eastern Health, Box Hill, Victoria, Australia
| | - Kate Mahon
- Chris O'Brien Lifehouse, Missenden Rd, Camperdown, New South Wales, 2050, Australia
- Garvan Institute of Medical Research, Darlinghurst, Sydney, New South Wales, Australia
- University of Sydney, Sydney, New South Wales, Australia
- Royal Prince Alfred Hospital, Camperdown, New South Wales, Australia
| | - Martin R Stockler
- University of Sydney, Sydney, New South Wales, Australia
- Concord Repatriation General Hospital, Concord, New South Wales, Australia
| | - Karen Briscoe
- Mid North Coast Cancer Institute, Coffs Harbour, New South Wales, Australia
| | - Gavin Marx
- Sydney Adventist Hospital, Wahroonga, New South Wales, Australia
| | - Alison Zhang
- Chris O'Brien Lifehouse, Missenden Rd, Camperdown, New South Wales, 2050, Australia
| | - Megan Crumbaker
- Garvan Institute of Medical Research, Darlinghurst, Sydney, New South Wales, Australia
- The Kinghorn Cancer Centre, St Vincent's Hospital, Darlinghurst, New South Wales, Australia
| | | | - Kevin Huynh
- Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia
| | - Thomas G Meikle
- Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia
| | | | - Andrew J Hoy
- School of Medical Sciences, Charles Perkins Centre, Faculty of Medicine and Health, University of Sydney, Camperdown, New South Wales, Australia
| | - Pan Du
- Predicine, Inc., Hayward, CA, USA
| | | | | | - Anthony M Joshua
- Garvan Institute of Medical Research, Darlinghurst, Sydney, New South Wales, Australia
- St Vincent's Clinical School, UNSW, Sydney, New South Wales, Australia
- The Kinghorn Cancer Centre, St Vincent's Hospital, Darlinghurst, New South Wales, Australia
| | - David J Waugh
- Queensland University of Technology, Brisbane, Queensland, Australia
| | - Lisa M Butler
- Adelaide Medical School and Freemason's Foundation Centre for Men's Health, University of Adelaide, Adelaide, South Australia, Australia
- South Australian Health and Medical Research Institute, Adelaide, South Australia, Australia
| | - Manish Kohli
- Huntsman Cancer Institute, Salt Lake City, UT, USA
| | - Peter J Meikle
- Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia
| | - Arun A Azad
- Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, Victoria, Australia
- Department of Medicine, School of Clinical Sciences, Monash University, Melbourne, Victoria, Australia
| | - Lisa G Horvath
- Chris O'Brien Lifehouse, Missenden Rd, Camperdown, New South Wales, 2050, Australia.
- Garvan Institute of Medical Research, Darlinghurst, Sydney, New South Wales, Australia.
- University of Sydney, Sydney, New South Wales, Australia.
- St Vincent's Clinical School, UNSW, Sydney, New South Wales, Australia.
- Royal Prince Alfred Hospital, Camperdown, New South Wales, Australia.
| |
Collapse
|
21
|
Samad F, Bai H, Baik N, Haider P, Zhang Y, Rega-Kaun G, Kaun C, Prager M, Wojta J, Bui Q, Chakrabarty S, Wang J, Parmer RJ, Miles LA. The plasminogen receptor Plg-R KT regulates adipose function and metabolic homeostasis. J Thromb Haemost 2022; 20:742-754. [PMID: 34897983 PMCID: PMC8885904 DOI: 10.1111/jth.15622] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 11/30/2021] [Accepted: 12/10/2021] [Indexed: 11/28/2022]
Abstract
BACKGROUND Plg-RKT , a unique transmembrane plasminogen receptor, enhances the activation of plasminogen to plasmin, and localizes the proteolytic activity of plasmin on the cell surface. OBJECTIVES We investigated the role of Plg-RKT in adipose function, metabolic homeostasis, and obesity. METHODS We used adipose tissue (AT) sections from bariatric surgery patients and from high fat diet (HFD)-induced obese mice together with immunofluorescence and real-time polymerase chain reaction to study adipose expression of Plg-RKT . Mice genetically deficient in Plg-RKT and littermate controls fed a HFD or control low fat diet (LFD) were used to determine the role of Plg-RKT in insulin resistance, glucose tolerance, type 2 diabetes, and associated mechanisms including adipose inflammation, fibrosis, and ectopic lipid storage. The role of Plg-RKT in adipogenesis was determined using 3T3-L1 preadipocytes and primary cultures established from Plg-RKT -deficient and littermate control mice. RESULTS Plg-RKT was highly expressed in both human and mouse AT, and its levels dramatically increased during adipogenesis. Plg-RKT -deficient mice, when fed a HFD, gained more weight, developed more hepatic steatosis, and were more insulin resistant/glucose intolerant than HFD-fed wild-type littermates. Mechanistically, these metabolic defects were linked with increased AT inflammation, AT macrophage and T-cell accumulation, adipose and hepatic fibrosis, and decreased insulin signaling in the AT and liver. Moreover, Plg-RKT regulated the expression of PPARγ and other adipogenic molecules, suggesting a novel role for Plg-RKT in the adipogenic program. CONCLUSIONS Plg-RKT coordinately regulates multiple aspects of adipose function that are important to maintain efficient metabolic homeostasis.
Collapse
Affiliation(s)
- Fahumiya Samad
- Department of Cell Biology, San Diego Biomedical Research Institute, San Diego, CA, USA
| | - Hongdong Bai
- Department of Medicine, Veterans Administration San Diego Healthcare System, San Diego
| | - Nagyung Baik
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA
| | - Patrick Haider
- Department of Internal Medicine II, Medical University of Vienna, Vienna, Austria
| | - Yuqing Zhang
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA
| | - Gersina Rega-Kaun
- Department of Internal Medicine II, Medical University of Vienna, Vienna, Austria
- 5th Department of Internal Medicine for Diabetes and Rheumatology, Wilhelminen Hospital, Vienna, Austria
| | - Christoph Kaun
- Department of Internal Medicine II, Medical University of Vienna, Vienna, Austria
| | - Manfred Prager
- Department of Surgery, Hospital Oberwart, Oberwart, Austria
| | - Johann Wojta
- Department of Internal Medicine II, Medical University of Vienna, Vienna, Austria
- Ludwig Boltzmann Institute for Cardiovascular Research, Vienna
| | - Quyen Bui
- Department of Cell Biology, San Diego Biomedical Research Institute, San Diego, CA, USA
| | - Sagarika Chakrabarty
- Department of Cell Biology, San Diego Biomedical Research Institute, San Diego, CA, USA
| | - Jing Wang
- Department of Cell Biology, San Diego Biomedical Research Institute, San Diego, CA, USA
| | - Robert J. Parmer
- Department of Medicine, Veterans Administration San Diego Healthcare System, San Diego
- Department of Medicine, University of California San Diego, La Jolla, CA
| | - Lindsey A. Miles
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA
| |
Collapse
|
22
|
Gaggini M, Ndreu R, Michelucci E, Rocchiccioli S, Vassalle C. Ceramides as Mediators of Oxidative Stress and Inflammation in Cardiometabolic Disease. Int J Mol Sci 2022; 23:ijms23052719. [PMID: 35269861 PMCID: PMC8911014 DOI: 10.3390/ijms23052719] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 02/24/2022] [Accepted: 02/26/2022] [Indexed: 12/13/2022] Open
Abstract
Ceramides, composed of a sphingosine and a fatty acid, are bioactive lipid molecules involved in many key cellular pathways (e.g., apoptosis, oxidative stress and inflammation). There is much evidence on the relationship between ceramide species and cardiometabolic disease, especially in relationship with the onset and development of diabetes and acute and chronic coronary artery disease. This review reports available evidence on ceramide structure and generation, and discusses their role in cardiometabolic disease, as well as current translational chances and difficulties for ceramide application in the cardiometabolic clinical settings.
Collapse
Affiliation(s)
- Melania Gaggini
- Institute of Clinical Physiology, National Research Council, Via G. Moruzzi 1, 56124 Pisa, Italy; (M.G.); (R.N.); (E.M.); (S.R.)
| | - Rudina Ndreu
- Institute of Clinical Physiology, National Research Council, Via G. Moruzzi 1, 56124 Pisa, Italy; (M.G.); (R.N.); (E.M.); (S.R.)
| | - Elena Michelucci
- Institute of Clinical Physiology, National Research Council, Via G. Moruzzi 1, 56124 Pisa, Italy; (M.G.); (R.N.); (E.M.); (S.R.)
| | - Silvia Rocchiccioli
- Institute of Clinical Physiology, National Research Council, Via G. Moruzzi 1, 56124 Pisa, Italy; (M.G.); (R.N.); (E.M.); (S.R.)
| | - Cristina Vassalle
- Fondazione CNR-Regione Toscana G Monasterio, 56124 Pisa, Italy
- Correspondence: ; Tel.: +39-050-3153525
| |
Collapse
|
23
|
Lone MA, Bourquin F, Hornemann T. Serine Palmitoyltransferase Subunit 3 and Metabolic Diseases. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1372:47-56. [DOI: 10.1007/978-981-19-0394-6_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
24
|
Yao M, Li L, Huang M, Tan Y, Shang Y, Meng X, Pang Y, Xu H, Zhao X, Lei W, Chang Y, Wang Y, Zhang D, Zhang B, Li Y. Sanye Tablet Ameliorates Insulin Resistance and Dysregulated Lipid Metabolism in High-Fat Diet-Induced Obese Mice. Front Pharmacol 2021; 12:713750. [PMID: 34658856 PMCID: PMC8511530 DOI: 10.3389/fphar.2021.713750] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Accepted: 09/09/2021] [Indexed: 11/20/2022] Open
Abstract
Sanye Tablet (SYT) is a patent prescription widely used in treating T2D and pre-diabetes, especially T2D comorbid with hypertriglyceridemia, for many years in China. However, the underlying mechanism that accounts for the anti-diabetic potential of SYT by regulating lipid-related intermediates remains to be elucidated. This study aimed to investigate the mechanism of SYT on lipid metabolism and insulin sensitivity in high-fat diet (HFD)-induced obese mice by means of combining lipidomics and proteomics. The obese mice models were developed via HFD feeding for 20 consecutive weeks. Mice in the treatment group were given metformin and SYT respectively, and the effects of SYT on body weight, blood glucose, insulin sensitivity, fat accumulation in the organs, and pathological changes in the liver were monitored. Lipid metabolism was examined by lipidomics. Further determination of signaling pathways was detected by proteomics. The biological contributions of the compounds detected in SYT’s chemical fingerprint were predicted by network pharmacology. SYT treatment reduced body weight, inhibited viscera and hepatic steatosis lipid accumulation, and prevented insulin resistance. Furthermore, it was found that circulatory inflammatory cytokines were reduced by SYT treatment. In addition, lipidomics analysis indicated that SYT targets lipid intermediates, including diacylglycerol (DAG) and Ceramide (Cer). Mechanistically, SYT positively affected these lipid intermediates by suppressing liver lipogenesis via downregulation of SREBP1/ACC and the JAK/STAT signaling pathway. Our results predicted that astragalin and rosmarinic acid might regulate the JAK-STAT pathway by targeting PIM2 and STAT1, respectively, while paeoniflorin and rosmarinic acid were likely to regulate inflammatory responses by targeting TNFα, IL-6, and IL-4 during T2D. Overall, our study provides supportive evidence for the mechanism of SYT’s therapeutic effect on dysregulated lipid metabolism in diabesity.
Collapse
Affiliation(s)
- Minghe Yao
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China.,Key Laboratory of Pharmacology of Traditional Chinese Medical Formula, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Lin Li
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China.,Key Laboratory of Pharmacology of Traditional Chinese Medical Formula, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Ming Huang
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China.,Key Laboratory of Pharmacology of Traditional Chinese Medical Formula, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yao Tan
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China.,Key Laboratory of Pharmacology of Traditional Chinese Medical Formula, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Ye Shang
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China.,Key Laboratory of Pharmacology of Traditional Chinese Medical Formula, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Xianghui Meng
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China.,Key Laboratory of Pharmacology of Traditional Chinese Medical Formula, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yafen Pang
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China.,Key Laboratory of Pharmacology of Traditional Chinese Medical Formula, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Hong Xu
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China.,Key Laboratory of Pharmacology of Traditional Chinese Medical Formula, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Xin Zhao
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China.,Key Laboratory of Pharmacology of Traditional Chinese Medical Formula, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Wei Lei
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China.,Key Laboratory of Pharmacology of Traditional Chinese Medical Formula, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yanxu Chang
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China.,Key Laboratory of Pharmacology of Traditional Chinese Medical Formula, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yi Wang
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China.,Key Laboratory of Pharmacology of Traditional Chinese Medical Formula, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Deqin Zhang
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China.,Key Laboratory of Pharmacology of Traditional Chinese Medical Formula, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Boli Zhang
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China.,Key Laboratory of Pharmacology of Traditional Chinese Medical Formula, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yuhong Li
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China.,Key Laboratory of Pharmacology of Traditional Chinese Medical Formula, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| |
Collapse
|
25
|
Lin HM, Huynh K, Kohli M, Tan W, Azad AA, Yeung N, Mahon KL, Mak B, Sutherland PD, Shepherd A, Mellett N, Docanto M, Giles C, Centenera MM, Butler LM, Meikle PJ, Horvath LG. Aberrations in circulating ceramide levels are associated with poor clinical outcomes across localised and metastatic prostate cancer. Prostate Cancer Prostatic Dis 2021; 24:860-870. [PMID: 33746214 PMCID: PMC8387438 DOI: 10.1038/s41391-021-00338-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 01/10/2021] [Accepted: 01/28/2021] [Indexed: 02/01/2023]
Abstract
BACKGROUND Dysregulated lipid metabolism is associated with more aggressive pathology and poorer prognosis in prostate cancer (PC). The primary aim of the study is to assess the relationship between the plasma lipidome and clinical outcomes in localised and metastatic PC. The secondary aim is to validate a prognostic circulating 3-lipid signature specific to metastatic castration-resistant PC (mCRPC). PATIENTS AND METHODS Comprehensive lipidomic analysis was performed on pre-treatment plasma samples from men with localised PC (N = 389), metastatic hormone-sensitive PC (mHSPC)(N = 44), or mCRPC (validation cohort, N = 137). Clinical outcomes from our previously published mCRPC cohort (N = 159) that was used to derive the prognostic circulating 3-lipid signature, were updated. Associations between circulating lipids and clinical outcomes were examined by Cox regression and latent class analysis. RESULTS Circulating lipid profiles featuring elevated levels of ceramide species were associated with metastatic relapse in localised PC (HR 5.80, 95% CI 3.04-11.1, P = 1 × 10-6), earlier testosterone suppression failure in mHSPC (HR 3.70, 95% CI 1.37-10.0, P = 0.01), and shorter overall survival in mCRPC (HR 2.54, 95% CI 1.73-3.72, P = 1 × 10-6). The prognostic significance of circulating lipid profiles in localised PC was independent of standard clinicopathological and metabolic factors (P < 0.0002). The 3-lipid signature was verified in the mCRPC validation cohort (HR 2.39, 95% CI 1.63-3.51, P = 1 × 10-5). CONCLUSIONS Elevated circulating ceramide species are associated with poorer clinical outcomes across the natural history of PC. These clinically actionable lipid profiles could be therapeutically targeted in prospective clinical trials to potentially improve PC outcomes.
Collapse
Affiliation(s)
- Hui-Ming Lin
- Garvan Institute of Medical Research, Darlinghurst, Sydney, New South Wales, Australia,St Vincent’s Clinical School, UNSW Sydney, New South Wales, Australia
| | - Kevin Huynh
- Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia
| | - Manish Kohli
- Huntsman Cancer Institute, Division of Oncology, Department of Medicine, 2000 Circle of Hope Drive, Salt Lake City, UT 84012, United States of America
| | - Winston Tan
- Mayo Clinic Florida, Jacksonville, Florida, United States of America
| | - Arun A. Azad
- Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia,Sir Peter MacCallum Department of Oncology, University of Melbourne, Victoria, Australia,Monash University, Victoria, Australia
| | - Nicole Yeung
- Garvan Institute of Medical Research, Darlinghurst, Sydney, New South Wales, Australia
| | - Kate L. Mahon
- Garvan Institute of Medical Research, Darlinghurst, Sydney, New South Wales, Australia,Monash University, Victoria, Australia,Chris O’ Brien Lifehouse, Camperdown, New South Wales , Australia,University of Sydney, Sydney, New South Wales, Australia
| | - Blossom Mak
- Garvan Institute of Medical Research, Darlinghurst, Sydney, New South Wales, Australia,Chris O’ Brien Lifehouse, Camperdown, New South Wales , Australia,University of Sydney, Sydney, New South Wales, Australia
| | | | - Andrew Shepherd
- Royal Adelaide Hospital, Adelaide, South Australia, Australia,Adelaide Medical School and Freemason’s Foundation Centre for Men’s Health, University of Adelaide, Adelaide, South Australia, Australia
| | - Natalie Mellett
- Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia
| | | | - Corey Giles
- Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia
| | - Margaret M. Centenera
- Adelaide Medical School and Freemason’s Foundation Centre for Men’s Health, University of Adelaide, Adelaide, South Australia, Australia,South Australian Health and Medical Research Institute, Adelaide, South Australia, Australia
| | - Lisa M. Butler
- Adelaide Medical School and Freemason’s Foundation Centre for Men’s Health, University of Adelaide, Adelaide, South Australia, Australia,South Australian Health and Medical Research Institute, Adelaide, South Australia, Australia
| | - Peter J. Meikle
- Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia
| | - Lisa G. Horvath
- Garvan Institute of Medical Research, Darlinghurst, Sydney, New South Wales, Australia,St Vincent’s Clinical School, UNSW Sydney, New South Wales, Australia,Chris O’ Brien Lifehouse, Camperdown, New South Wales , Australia,University of Sydney, Sydney, New South Wales, Australia,Royal Prince Alfred Hospital, Camperdown, New South Wales, Australia
| |
Collapse
|
26
|
Abstract
The metabolic syndrome (MetS) is a cluster of cardiovascular risk factors including obesity, insulin resistance (IR) and dyslipidaemia. Consumption of a high-fat diet (HFD) enriched in SFA leads to the accumulation of ceramide (Cer), the central molecule in sphingolipid metabolism. Elevations in plasma and tissue Cer are found in obese individuals, and there is evidence to suggest that Cer lipotoxicity contributes to the MetS. EPA and DHA have shown to improve MetS parameters including IR, inflammation and hypertriacylglycerolaemia; however, whether these improvements are related to Cer is currently unknown. This review examines the potential of EPA and DHA to improve Cer lipotoxicity and MetS parameters including IR, inflammation and dyslipidaemia in vitro and in vivo. Current evidence from cell culture and animal studies indicates that EPA and DHA attenuate palmitate- or HFD-induced Cer lipotoxicity and IR, whereas evidence in humans is greatly lacking. Overall, there is intriguing potential for EPA and DHA to improve Cer lipotoxicity and related MetS parameters, but more research is warranted.
Collapse
|
27
|
Tran A, Wan L, Xu Z, Haro JM, Li B, Jones JW. Lithium Hydroxide Hydrolysis Combined with MALDI TOF Mass Spectrometry for Rapid Sphingolipid Detection. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2021; 32:289-300. [PMID: 33124427 PMCID: PMC7790884 DOI: 10.1021/jasms.0c00322] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Sphingolipids have diverse structural and bioactive functions that play important roles in many key biological processes. Factors such as low relative abundance, varied structures, and a dynamic concentration range provide a difficult analytical challenge for sphingolipid detection. To further improve mass-spectrometry-based sphingolipid analysis, lithium adduct consolidation was implemented to decrease spectral complexity and combine signal intensities, leading to increased specificity and sensitivity. We report the use of lithium hydroxide as a base in a routine hydrolysis procedure in order to effectively remove common ionization suppressants (such as glycolipids and glycerophospholipids) and introduce a source of lithium into the sample. In conjunction, an optimized MALDI matrix system, featuring 2',4',6'-trihydroxyacetophenone (THAP) is used to facilitate lithium adduct consolidation during the MALDI process. The result is a robust and high-throughput sphingolipid detection scheme, particularly of low-abundance ceramides. Application of our developed workflow includes the detection of differentially expressed liver sphingolipid profiles from a high-fat-induced obesity mouse model. We also demonstrate the method's effectiveness in detecting various sphingolipids in brain and plasma matrices. These results were corroborated with data from UHPLC HR MS/MS and MALDI FT-ICR, verifying the efficacy of the method application. Overall, we demonstrate a high-throughput workflow for sphingolipid analysis in various biological matrices by the use of MALDI TOF and lithium adduct consolidation.
Collapse
Affiliation(s)
- Anh Tran
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, Maryland 21201, United States
| | - Liting Wan
- School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, South China University of Technology, Guangzhou 510640, China
- Department of Microbial Pathogenesis, University of Maryland School of Dentistry, Baltimore, Maryland 21201, United States
| | - Zhenbo Xu
- School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, South China University of Technology, Guangzhou 510640, China
- Overseas Expertise Introduction Center for Discipline Innovation of Food Nutrition and Human Health (111 Center), Guangzhou 510640, China
| | - Janette M Haro
- Department of Microbial Pathogenesis, University of Maryland School of Dentistry, Baltimore, Maryland 21201, United States
| | - Bing Li
- School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, South China University of Technology, Guangzhou 510640, China
| | - Jace W Jones
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, Maryland 21201, United States
| |
Collapse
|
28
|
Li L, Wang H, Jones JW. Sphingolipid metabolism as a marker of hepatotoxicity in drug-induced liver injury. Prostaglandins Other Lipid Mediat 2020; 151:106484. [PMID: 33007444 PMCID: PMC7669681 DOI: 10.1016/j.prostaglandins.2020.106484] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 05/09/2020] [Accepted: 09/23/2020] [Indexed: 12/13/2022]
Abstract
Drug-induced liver injury (DILI) has a substantial impact on human health and is a major monetary burden on the drug development process. Presently, there is a lack of robust and analytically validated markers for predicting and early diagnosis of DILI. Sphingolipid metabolism and subsequent disruption of sphingolipid homeostasis has been documented to play a key role contributing to hepatocellular death and subsequent liver injury. A more comprehensive understanding of sphingolipid metabolism in response to liver toxicity has great potential to gain mechanistic insight into hepatotoxicity and define molecular markers that are responsible for hepatocyte dysfunction. Here, we present an analytical platform that provides multidimensional mass spectrometry-based datasets for comprehensive structure characterization of sphingolipids extracted from human primary hepatocytes (HPH) exposed to toxic levels of acetaminophen (APAP). Sphingolipid metabolism as measured by characterization of individual sphingolipid structure was sensitive to APAP toxicity displaying a concentration-dependent response. A number of sphingolipid structures were differentially expressed across varying APAP exposures highlighting the unique role sphingolipid metabolism has in response to hepatotoxicity and its potential use as a molecular marker in DILI.
Collapse
Affiliation(s)
- Linhao Li
- University of Maryland, School of Pharmacy, Department of Pharmaceutical Sciences, Baltimore, MD, United States
| | - Hongbing Wang
- University of Maryland, School of Pharmacy, Department of Pharmaceutical Sciences, Baltimore, MD, United States
| | - Jace W Jones
- University of Maryland, School of Pharmacy, Department of Pharmaceutical Sciences, Baltimore, MD, United States.
| |
Collapse
|
29
|
Shon JC, Kim WC, Ryu R, Wu Z, Seo JS, Choi MS, Liu KH. Plasma Lipidomics Reveals Insights into Anti-Obesity Effect of Chrysanthemum morifolium Ramat Leaves and Its Constituent Luteolin in High-Fat Diet-Induced Dyslipidemic Mice. Nutrients 2020; 12:nu12102973. [PMID: 33003339 PMCID: PMC7650530 DOI: 10.3390/nu12102973] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 09/25/2020] [Accepted: 09/26/2020] [Indexed: 02/07/2023] Open
Abstract
The Chrysanthemum morifolium Ramat (CM) is widely used as a traditional medicine and herbal tea by the Asian population for its health benefits related to obesity. However, compared to the flowers of CM, detailed mechanisms underlying the beneficial effects of its leaves on obesity and dyslipidemia have not yet been elucidated. Therefore, to investigate the lipidomic biomarkers responsible for the pharmacological effects of CM leaf extract (CLE) in plasma of mice fed a high-fat diet (HFD), the plasma of mice fed a normal diet (ND), HFD, HFD plus CLE 1.5% diet, and HFD plus luteolin 0.003% diet (LU) for 16 weeks were analyzed using liquid chromatography-tandem mass spectrometry (LC-MS/MS) combined with multivariate analysis. In our analysis, the ND, HFD, CLE, and LU groups were clearly differentiated by partial least-squares discriminant analysis (PLS-DA) score plots. The major metabolites contributing to this differentiation were cholesteryl esters (CEs), lysophosphatidylcholines (LPCs), phosphatidylcholines (PCs), ceramides (CERs), and sphingomyelins (SMs). The levels of plasma CEs, LPCs, PCs, SMs, and CERs were significantly increased in the HFD group compared to those in the ND group, and levels of these lipids recovered to normal after administration of CLE or LU. Furthermore, changes in hepatic mRNA expression levels involved in the Kennedy pathway and sphingolipid biosynthesis were also suppressed by treatment with CLE or LU. In conclusion, this study examined the beneficial effects of CLE and LU on obesity and dyslipidemia, which were demonstrated as reduced synthesis of lipotoxic intermediates. These results may provide valuable insights towards evaluating the therapeutic effects of CLE and LU and understanding obesity-related diseases.
Collapse
Affiliation(s)
- Jong Cheol Shon
- Environmental Chemistry Research Group, Korea Institute of Toxicology, Jinju 52834, Korea; (J.C.S.); (J.-S.S.)
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Kyungpook National University, Daegu 41566, Korea; (W.C.K.); (Z.W.)
| | - Won Cheol Kim
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Kyungpook National University, Daegu 41566, Korea; (W.C.K.); (Z.W.)
| | - Ri Ryu
- Research Institute of Eco-Friendly Livestock Science, Institute of Green-Bio Science and Technology, Seoul National University, Pyeongchang 25354, Korea;
| | - Zhexue Wu
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Kyungpook National University, Daegu 41566, Korea; (W.C.K.); (Z.W.)
| | - Jong-Su Seo
- Environmental Chemistry Research Group, Korea Institute of Toxicology, Jinju 52834, Korea; (J.C.S.); (J.-S.S.)
| | - Myung-Sook Choi
- Center for Food and Nutritional Genomics Research, Kyungpook National University, Daegu 41566, Korea
- Correspondence: (M.-S.C.); (K.-H.L.); Tel.: +82-53-950-6232 (M.-S.C.); +82-53-950-8567 (K.-H.L.); Fax: +82-53-950-8557 (M.-S.C. & K.-H.L.)
| | - Kwang-Hyeon Liu
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Kyungpook National University, Daegu 41566, Korea; (W.C.K.); (Z.W.)
- Correspondence: (M.-S.C.); (K.-H.L.); Tel.: +82-53-950-6232 (M.-S.C.); +82-53-950-8567 (K.-H.L.); Fax: +82-53-950-8557 (M.-S.C. & K.-H.L.)
| |
Collapse
|
30
|
Chaurasia B, Talbot CL, Summers SA. Adipocyte Ceramides-The Nexus of Inflammation and Metabolic Disease. Front Immunol 2020; 11:576347. [PMID: 33072120 PMCID: PMC7538607 DOI: 10.3389/fimmu.2020.576347] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Accepted: 08/20/2020] [Indexed: 12/21/2022] Open
Abstract
Adipose depots are heterogeneous tissues that store and sense fuel levels. Through the secretion of lipids, cytokines, and protein hormones (adipokines), they communicate with other organ systems, informing them of the organism's nutritional status. The adipose tissues include diverse types of adipocytes (white, beige, and brown) distinguished by the number/size of lipid droplets, mitochondrial density, and thermogenic capacity. Moreover, they include a spectrum of immune cells that modulate metabolic activity and tissue remodeling. The unique characteristics and interplay of these cells control the production of ceramides, a class of nutrient signals derived from fat and protein metabolism that modulate adipocyte function to regulate glucose and lipid metabolism. The excessive accumulation of ceramides contributes to the adipose tissue inflammation and dysfunction that underlies cardiometabolic disease. Herein we review findings on this important class of lipid species and discuss their role at the convergence point that links overnutrition/inflammation to key features of the metabolic syndrome.
Collapse
Affiliation(s)
- Bhagirath Chaurasia
- Division of Endocrinology, Department of Internal Medicine, Carver College of Medicine and the Fraternal Order of Eagles Diabetes Research Center, University of Iowa, Iowa City, IA, United States
| | - Chad Lamar Talbot
- Department of Nutrition and Integrative Physiology and the Diabetes and Metabolism Research Center, University of Utah, Salt Lake City, UT, United States
| | - Scott A Summers
- Department of Nutrition and Integrative Physiology and the Diabetes and Metabolism Research Center, University of Utah, Salt Lake City, UT, United States
| |
Collapse
|
31
|
Paraiso IL, Revel JS, Choi J, Miranda CL, Lak P, Kioussi C, Bobe G, Gombart AF, Raber J, Maier CS, Stevens JF. Targeting the Liver-Brain Axis with Hop-Derived Flavonoids Improves Lipid Metabolism and Cognitive Performance in Mice. Mol Nutr Food Res 2020; 64:e2000341. [PMID: 32627931 PMCID: PMC8693899 DOI: 10.1002/mnfr.202000341] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 06/16/2020] [Indexed: 08/18/2023]
Abstract
SCOPE Sphingolipids including ceramides are implicated in the pathogenesis of obesity and insulin resistance. Correspondingly, inhibition of pro-inflammatory and neurotoxic ceramide accumulation prevents obesity-mediated insulin resistance and cognitive impairment. Increasing evidence suggests the farnesoid X receptor (FXR) is involved in ceramide metabolism, as bile acid-FXR crosstalk controls ceramide levels along the gut-liver axis. The authors previously reported that FXR agonist xanthohumol (XN), the principal prenylated flavonoid in hops (Humulus lupulus), and its hydrogenated derivatives, α,β-dihydroxanthohumol (DXN), and tetrahydroxanthohumol (TXN), ameliorated obesity-mediated insulin resistance, and cognitive impairment in mice fed a high-fat diet. METHODS AND RESULTS To better understand how the flavonoids improve both, lipid and bile acid profiles in the liver are analyzed, sphingolipid relative abundance in the hippocampus is measured, and linked them to metabolic and neurocognitive performance. XN, DXN, and TXN (30 mg kg-1 BW per day) decrease ceramide content in liver and hippocampus; the latter is linked to improvements in spatial learning and memory. In addition, XN, DXN, and TXN decrease hepatic cholesterol content by enhancing de novo synthesis of bile acids. CONCLUSION These observations suggest that XN, DXN, and TXN may alleviate obesity-induced metabolic and neurocognitive impairments by targeting the liver-brain axis.
Collapse
Affiliation(s)
- Ines L Paraiso
- Linus Pauling Institute, Oregon State University, Corvallis, OR, 97331, USA
- Department of Pharmaceutical Sciences, Oregon State University, Corvallis, OR, 97331, USA
| | - Johana S Revel
- Linus Pauling Institute, Oregon State University, Corvallis, OR, 97331, USA
- Department of Pharmaceutical Sciences, Oregon State University, Corvallis, OR, 97331, USA
- Department of Chemistry, Oregon State University, Corvallis, OR, 97331, USA
| | - Jaewoo Choi
- Linus Pauling Institute, Oregon State University, Corvallis, OR, 97331, USA
| | - Cristobal L Miranda
- Linus Pauling Institute, Oregon State University, Corvallis, OR, 97331, USA
- Department of Pharmaceutical Sciences, Oregon State University, Corvallis, OR, 97331, USA
| | - Parnian Lak
- Linus Pauling Institute, Oregon State University, Corvallis, OR, 97331, USA
- Department of Pharmaceutical Sciences, Oregon State University, Corvallis, OR, 97331, USA
- Department of Chemistry, Oregon State University, Corvallis, OR, 97331, USA
| | - Chrissa Kioussi
- Department of Pharmaceutical Sciences, Oregon State University, Corvallis, OR, 97331, USA
| | - Gerd Bobe
- Linus Pauling Institute, Oregon State University, Corvallis, OR, 97331, USA
- Department of Animal & Rangeland Sciences, Oregon State University, Corvallis, OR, 97331, USA
| | - Adrian F Gombart
- Linus Pauling Institute, Oregon State University, Corvallis, OR, 97331, USA
- Department of Biochemistry & Biophysics, Oregon State University, Corvallis, OR, 97331, USA
| | - Jacob Raber
- Department of Pharmaceutical Sciences, Oregon State University, Corvallis, OR, 97331, USA
- Department of Behavioral Neuroscience, Neurology, and Radiation Medicine, Division of Neuroscience, Oregon National Primate Research Center, Oregon Health & Science University, Portland, OR, 97239, USA
| | - Claudia S Maier
- Department of Chemistry, Oregon State University, Corvallis, OR, 97331, USA
| | - Jan F Stevens
- Linus Pauling Institute, Oregon State University, Corvallis, OR, 97331, USA
- Department of Pharmaceutical Sciences, Oregon State University, Corvallis, OR, 97331, USA
| |
Collapse
|
32
|
Torretta E, Barbacini P, Al-Daghri NM, Gelfi C. Sphingolipids in Obesity and Correlated Co-Morbidities: The Contribution of Gender, Age and Environment. Int J Mol Sci 2019; 20:ijms20235901. [PMID: 31771303 PMCID: PMC6929069 DOI: 10.3390/ijms20235901] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Revised: 11/20/2019] [Accepted: 11/22/2019] [Indexed: 02/07/2023] Open
Abstract
This paper reviews our present knowledge on the contribution of ceramide (Cer), sphingomyelin (SM), dihydroceramide (DhCer) and sphingosine-1-phosphate (S1P) in obesity and related co-morbidities. Specifically, in this paper, we address the role of acyl chain composition in bodily fluids for monitoring obesity in males and females, in aging persons and in situations of environmental hypoxia adaptation. After a brief introduction on sphingolipid synthesis and compartmentalization, the node of detection methods has been critically revised as the node of the use of animal models. The latter do not recapitulate the human condition, making it difficult to compare levels of sphingolipids found in animal tissues and human bodily fluids, and thus, to find definitive conclusions. In human subjects, the search for putative biomarkers has to be performed on easily accessible material, such as serum. The serum “sphingolipidome” profile indicates that attention should be focused on specific acyl chains associated with obesity, per se, since total Cer and SM levels coupled with dyslipidemia and vitamin D deficiency can be confounding factors. Furthermore, exposure to hypoxia indicates a relationship between dyslipidemia, obesity, oxygen level and aerobic/anaerobic metabolism, thus, opening new research avenues in the role of sphingolipids.
Collapse
Affiliation(s)
- Enrica Torretta
- Department of Biomedical Sciences for Health, University of Milan, Luigi Mangiagalli 31, 20133 Milan, Italy; (E.T.); (P.B.)
| | - Pietro Barbacini
- Department of Biomedical Sciences for Health, University of Milan, Luigi Mangiagalli 31, 20133 Milan, Italy; (E.T.); (P.B.)
- Ph.D. school in Molecular and Translational Medicine, University of Milan, 20142 Milan, Italy
| | - Nasser M. Al-Daghri
- Chair for Biomarkers of Chronic Diseases, Biochemistry Department,College of Science, King Saud University, Riyadh 11451, Saudi Arabia;
| | - Cecilia Gelfi
- Department of Biomedical Sciences for Health, University of Milan, Luigi Mangiagalli 31, 20133 Milan, Italy; (E.T.); (P.B.)
- I.R.C.C.S Orthopedic Institute Galeazzi, R. Galeazzi 4, 20161 Milan, Italy
- Correspondence: ; Tel.: +39-025-033-0475
| |
Collapse
|
33
|
Simultaneous quantitative analysis of multiple sphingoid bases by stable isotope labeling assisted liquid chromatography-mass spectrometry. Anal Chim Acta 2019; 1082:106-115. [DOI: 10.1016/j.aca.2019.07.016] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Revised: 07/05/2019] [Accepted: 07/07/2019] [Indexed: 01/11/2023]
|
34
|
Funcke JB, Scherer PE. Beyond adiponectin and leptin: adipose tissue-derived mediators of inter-organ communication. J Lipid Res 2019; 60:1648-1684. [PMID: 31209153 PMCID: PMC6795086 DOI: 10.1194/jlr.r094060] [Citation(s) in RCA: 211] [Impact Index Per Article: 35.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Revised: 06/17/2019] [Indexed: 01/10/2023] Open
Abstract
The breakthrough discoveries of leptin and adiponectin more than two decades ago led to a widespread recognition of adipose tissue as an endocrine organ. Many more adipose tissue-secreted signaling mediators (adipokines) have been identified since then, and much has been learned about how adipose tissue communicates with other organs of the body to maintain systemic homeostasis. Beyond proteins, additional factors, such as lipids, metabolites, noncoding RNAs, and extracellular vesicles (EVs), released by adipose tissue participate in this process. Here, we review the diverse signaling mediators and mechanisms adipose tissue utilizes to relay information to other organs. We discuss recently identified adipokines (proteins, lipids, and metabolites) and briefly outline the contributions of noncoding RNAs and EVs to the ever-increasing complexities of adipose tissue inter-organ communication. We conclude by reflecting on central aspects of adipokine biology, namely, the contribution of distinct adipose tissue depots and cell types to adipokine secretion, the phenomenon of adipokine resistance, and the capacity of adipose tissue to act both as a source and sink of signaling mediators.
Collapse
Affiliation(s)
- Jan-Bernd Funcke
- Touchstone Diabetes Center, University of Texas Southwestern Medical Center, Dallas, TX
| | - Philipp E Scherer
- Touchstone Diabetes Center, University of Texas Southwestern Medical Center, Dallas, TX
| |
Collapse
|
35
|
Fang Z, Pyne S, Pyne NJ. WITHDRAWN: Ceramide and Sphingosine 1-Phosphate in adipose dysfunction. Prog Lipid Res 2019:100991. [PMID: 31442525 DOI: 10.1016/j.plipres.2019.100991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Revised: 03/21/2019] [Accepted: 04/01/2019] [Indexed: 11/18/2022]
Affiliation(s)
- Zijian Fang
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, 161, Cathedral St, Glasgow, G4 0RE, Scotland, UK
| | - Susan Pyne
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, 161, Cathedral St, Glasgow, G4 0RE, Scotland, UK
| | - Nigel J Pyne
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, 161, Cathedral St, Glasgow, G4 0RE, Scotland, UK
| |
Collapse
|
36
|
McFadden JW, Rico JE. Invited review: Sphingolipid biology in the dairy cow: The emerging role of ceramide. J Dairy Sci 2019; 102:7619-7639. [PMID: 31301829 DOI: 10.3168/jds.2018-16095] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Accepted: 04/30/2019] [Indexed: 01/12/2023]
Abstract
The physiological control of lactation through coordinated adaptations is of fundamental importance for mammalian neonatal life. The putative actions of reduced insulin sensitivity and responsiveness and enhanced adipose tissue lipolysis spare glucose for the mammary synthesis of milk. However, severe insulin antagonism and body fat mobilization may jeopardize hepatic health and lactation in dairy cattle. Interestingly, lipolysis- and dietary-derived fatty acids may impair insulin sensitivity in cows. The mechanisms are undefined yet have major implications for the development of postpartum fatty liver disease. In nonruminants, the sphingolipid ceramide is a potent mediator of saturated fat-induced insulin resistance that defines in part the mechanisms of type 2 diabetes mellitus and nonalcoholic fatty liver disease. In ruminants including the lactating dairy cow, the functions of ceramide had remained virtually undescribed. Through a series of hypothesis-centered studies, ceramide has emerged as a potential antagonist of insulin-stimulated glucose utilization by adipose and skeletal muscle tissues in dairy cattle. Importantly, bovine data suggest that the ability of ceramide to inhibit insulin action likely depends on the lipolysis-dependent hepatic synthesis and secretion of ceramide during early lactation. Although these mechanisms appear to fade as lactation advances beyond peak milk production, early evidence suggests that palmitic acid feeding is a means to augment ceramide supply. Herein, we review a body of work that focuses on sphingolipid biology and the role of ceramide in the dairy cow within the framework of hepatic and fatty acid metabolism, insulin function, and lactation. The potential involvement of ceramide within the endocrine control of lactation is also considered.
Collapse
Affiliation(s)
- J W McFadden
- Department of Animal Science, Cornell University, Ithaca, NY 14853.
| | - J E Rico
- Department of Animal Science, Cornell University, Ithaca, NY 14853
| |
Collapse
|
37
|
Mehta HH, Xiao J, Ramirez R, Miller B, Kim SJ, Cohen P, Yen K. Metabolomic profile of diet-induced obesity mice in response to humanin and small humanin-like peptide 2 treatment. Metabolomics 2019; 15:88. [PMID: 31172328 PMCID: PMC6554247 DOI: 10.1007/s11306-019-1549-7] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Accepted: 05/24/2019] [Indexed: 01/10/2023]
Abstract
INTRODUCTION The mitochondrial-derived peptides (MDPs) are a novel group of natural occurring peptides that have important signaling functions and biological activity. Both humanin and small-humanin-like peptide 2 (SHLP2) have been reported to act as insulin sensitizers and modulate metabolism. OBJECTIVES By using a metabolomic approach, this study explores how the plasma metabolite profile is regulated in response to humanin and SHLP2 treatment in a diet-induced obesity (DIO) mouse model. The results also shed light on the potential mechanism underlying MDPs' insulin sensitization effects. METHODS Plasma samples were obtained from DIO mice subjected to vehicle (water) treatment, or peptide treatment with either humanin analog S14G (HNG) or SHLP2 (n = 6 per group). Vehicle or peptides were given as intraperitoneal (IP) injections twice a day at dose of 2.5 mg/kg/injection for 3 days. Metabolites in plasma samples were comprehensively identified and quantified using UPLC-MS/MS. RESULTS HNG and SHLP2 administration significantly altered the concentrations of amino acid and lipid metabolites in plasma. Among all the metabolic pathways, the glutathione and sphingolipid metabolism responded most strongly to the peptide treatment. CONCLUSIONS The present study indicates that humanin and SHLP2 can lower several markers associated with age-related metabolic disorders. With the previous understanding of the effects of humanin and SHLP2 on cardiovascular function, insulin sensitization, and anti-inflammation, this metabolomic discovery provides a more comprehensive molecular explanation of the mechanism of action for humanin and SHLP2 treatment.
Collapse
Affiliation(s)
- Hemal H Mehta
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, USA
| | - Jialin Xiao
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, USA
| | - Ricardo Ramirez
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, USA
| | - Brendan Miller
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, USA
| | - Su-Jeong Kim
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, USA
| | - Pinchas Cohen
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, USA
| | - Kelvin Yen
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, USA.
| |
Collapse
|
38
|
Chew WS, Torta F, Ji S, Choi H, Begum H, Sim X, Khoo CM, Khoo EYH, Ong WY, Van Dam RM, Wenk MR, Tai ES, Herr DR. Large-scale lipidomics identifies associations between plasma sphingolipids and T2DM incidence. JCI Insight 2019; 5:126925. [PMID: 31162145 PMCID: PMC6629294 DOI: 10.1172/jci.insight.126925] [Citation(s) in RCA: 94] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Accepted: 05/28/2019] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Sphingolipids (SPs) are ubiquitous, structurally diverse molecules that include ceramides, sphingomyelins, and sphingosines. They are involved in various pathologies including obesity and type 2 diabetes mellitus (T2DM). Therefore, it is likely that perturbations in plasma concentrations of SPs are associated with disease. Identifying these associations may reveal useful biomarkers or provide insight into disease processes. METHODS We performed a lipidomics evaluation of molecularly-distinct SPs in the plasma of 2,302 ethnically-Chinese Singaporeans using electrospray ionization mass spectrometry coupled with liquid chromatography. SP profiles were compared to clinical and biochemical characteristics, and subjects were evaluated by follow-up visits for 11 years. RESULTS We found that ceramides correlate positively but hexosylceramides correlate negatively with body mass index (BMI) and homeostatic model assessment of insulin resistance (HOMA-IR). Furthermore, SPs with a d16:1 sphingoid backbone correlate more positively with BMI and HOMA-IR, while d18:2 SPs correlate less positively, relative to canonical d18:1 SPs. We also found that higher concentrations of two distinct sphingomyelins were associated with a higher risk of T2DM (HR 1.45, 95% CI 1.18-1.78 for SM d16:1/C18:0; and HR 1.40, 95% CI 1.17-1.68 for SM d18:1/C18:0). CONCLUSION We identified significant associations between SPs and obesity/T2DM characteristics, specifically, that of hexosylceramides, d16:1 SPs, and d18:2 SPs. This suggests that the balance of SP metabolism, rather than ceramide accumulation, is associated with the pathology of obesity. We further identified two specific SPs that may represent prognostic biomarkers for T2DM. FUNDING Funding sources are listed in the Acknowledgements section.
Collapse
Affiliation(s)
| | - Federico Torta
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
- Singapore Lipidomics Incubator, Life Sciences Institute, National University of Singapore, Singapore
| | - Shanshan Ji
- Singapore Lipidomics Incubator, Life Sciences Institute, National University of Singapore, Singapore
| | - Hyungwon Choi
- Saw Swee Hock School of Public Health, National University of Singapore, Singapore
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore and National Health System, Singapore
- Institute of Molecular and Cell Biology, Agency for Science, Technology, and Research, Singapore
| | - Husna Begum
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
- Singapore Lipidomics Incubator, Life Sciences Institute, National University of Singapore, Singapore
| | - Xueling Sim
- Saw Swee Hock School of Public Health, National University of Singapore, Singapore
| | - Chin Meng Khoo
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore and National Health System, Singapore
| | - Eric Yin Hao Khoo
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore and National Health System, Singapore
| | - Wei-Yi Ong
- Department of Anatomy, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Rob M. Van Dam
- Saw Swee Hock School of Public Health, National University of Singapore, Singapore
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore and National Health System, Singapore
| | - Markus R. Wenk
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
- Singapore Lipidomics Incubator, Life Sciences Institute, National University of Singapore, Singapore
| | - E. Shyong Tai
- Saw Swee Hock School of Public Health, National University of Singapore, Singapore
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore and National Health System, Singapore
- Duke-NUS Graduate Medical School, Singapore
| | - Deron R. Herr
- Department of Pharmacology and
- Department of Biology, San Diego State University, San Diego, California, USA
| |
Collapse
|
39
|
Kim S, Yang X, Yin A, Zha J, Beharry Z, Bai A, Bielawska A, Bartlett MG, Yin H, Cai H. Dietary palmitate cooperates with Src kinase to promote prostate tumor progression. Prostate 2019; 79:896-908. [PMID: 30900312 PMCID: PMC6502658 DOI: 10.1002/pros.23796] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Revised: 02/14/2019] [Accepted: 02/28/2019] [Indexed: 12/14/2022]
Abstract
Numerous genetic alterations have been identified during prostate cancer progression. The influence of environmental factors, particularly the diet, on the acceleration of tumor progression is largely unknown. Expression levels and/or activity of Src kinase are highly elevated in numerous cancers including advanced stages of prostate cancer. In this study, we demonstrate that high-fat diets (HFDs) promoted pathological transformation mediated by the synergy of Src and androgen receptor in vivo. Additionally, a diet high in saturated fat significantly enhanced proliferation of Src-mediated xenograft tumors in comparison with a diet high in unsaturated fat. The saturated fatty acid palmitate, a major constituent in a HFD, significantly upregulated the biosynthesis of palmitoyl-CoA in cancer cells in vitro and in xenograft tumors in vivo. The exogenous palmitate enhanced Src-dependent mitochondrial β-oxidation. Additionally, it elevated the amount of C16-ceramide and total saturated ceramides, increased the level of Src kinase localized in the cell membrane, and Src-mediated downstream signaling, such as the activation of mitogen-activated protein kinase and focal adhesion kinase. Our results uncover how the metabolism of dietary palmitate cooperates with elevated Src kinase in the acceleration of prostate tumor progression.
Collapse
Affiliation(s)
- Sungjin Kim
- Department of Pharmaceutical and Biomedical Sciences, College of Pharmacy, University of Georgia, Athens, Georgia 30602
| | - Xiangkun Yang
- Department of Pharmaceutical and Biomedical Sciences, College of Pharmacy, University of Georgia, Athens, Georgia 30602
| | - Amelia Yin
- Center for Molecular Medicine, Department of Biochemistry and Molecular Biology, University of Georgia, Athens, Georgia 30602
| | - Junyi Zha
- Department of Pharmaceutical and Biomedical Sciences, College of Pharmacy, University of Georgia, Athens, Georgia 30602
| | - Zanna Beharry
- Department of Chemistry and Physics, Florida Gulf Coast University, Fort Myers, Florida 33965
| | - Aiping Bai
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, South Carolina 29425
| | - Alicja Bielawska
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, South Carolina 29425
| | - Michael G. Bartlett
- Department of Pharmaceutical and Biomedical Sciences, College of Pharmacy, University of Georgia, Athens, Georgia 30602
| | - Hang Yin
- Center for Molecular Medicine, Department of Biochemistry and Molecular Biology, University of Georgia, Athens, Georgia 30602
| | - Houjian Cai
- Department of Pharmaceutical and Biomedical Sciences, College of Pharmacy, University of Georgia, Athens, Georgia 30602
| |
Collapse
|
40
|
Ceramide and sphingosine 1-phosphate in adipose dysfunction. Prog Lipid Res 2019; 74:145-159. [PMID: 30951736 DOI: 10.1016/j.plipres.2019.04.001] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Revised: 03/21/2019] [Accepted: 04/01/2019] [Indexed: 12/17/2022]
Abstract
The increased adipose tissue mass of obese individuals enhances the risk of metabolic syndrome, type 2 diabetes and cardiovascular diseases. During pathological expansion of adipose tissue, multiple molecular controls of lipid storage, adipocyte turn-over and endocrine secretion are perturbed and abnormal lipid metabolism results in a distinct lipid profile. There is a role for ceramides and sphingosine 1-phosphate (S1P) in inducing adipose dysfunction. For instance, the alteration of ceramide biosynthesis, through the de-regulation of key enzymes, results in aberrant formation of ceramides (e.g. C16:0 and C18:0) which block insulin signaling and promote adipose inflammation. Furthermore, S1P can induce defective adipose tissue phenotypes by promoting chronic inflammation and inhibiting adipogenesis. These abnormal changes are discussed in the context of possible therapeutic approaches to re-establish normal adipose function and to, thereby, increase insulin sensitivity in type 2 diabetes. Such novel approaches include blockade of ceramide biosynthesis using inhibitors of sphingomyelinase or dihydroceramide desaturase and by antagonism of S1P receptors, such as S1P2.
Collapse
|
41
|
Morace I, Pilz R, Federico G, Jennemann R, Krunic D, Nordström V, von Gerichten J, Marsching C, Schießl IM, Müthing J, Wunder C, Johannes L, Sandhoff R, Gröne HJ. Renal globotriaosylceramide facilitates tubular albumin absorption and its inhibition protects against acute kidney injury. Kidney Int 2019; 96:327-341. [PMID: 31101366 DOI: 10.1016/j.kint.2019.02.010] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Revised: 02/01/2019] [Accepted: 02/07/2019] [Indexed: 11/29/2022]
Abstract
To elucidate the physiologic function of renal globotriaosylceramide (Gb3/CD77), which up-to-date has been associated exclusively with Shiga toxin binding, we have analyzed renal function in Gb3-deficient mice. Gb3 synthase KO (Gb3S-/-) mice displayed an increased renal albumin and low molecular weight protein excretion compared to WT. Gb3 localized at the brush border and within vesicular structures in WT proximal tubules and has now been shown to be closely associated with the receptor complex megalin/cubilin and with albumin uptake. In two clinically relevant mouse models of acute kidney injury caused by myoglobin as seen in rhabdomyolysis and the aminoglycoside gentamicin, Gb3S-/- mice showed a preserved renal function and morphology, compared to WT. Pharmacologic inhibition of glucosylceramide-based glycosphingolipids, including Gb3, in WT mice corroborated the results of genetically Gb3-deficient mice. In conclusion, our data significantly advance the current knowledge on the physiologic and pathophysiologic role of Gb3 in proximal tubules, showing an involvement in the reabsorption of filtered albumin, myoglobin and the aminoglycoside gentamicin.
Collapse
Affiliation(s)
- Ivan Morace
- Department of Cellular and Molecular Pathology, German Cancer Research Center, Heidelberg, Germany.
| | - Robert Pilz
- Department of Cellular and Molecular Pathology, German Cancer Research Center, Heidelberg, Germany; Lipid Pathobiochemistry Group, German Cancer Research Center, Heidelberg, Germany
| | - Giuseppina Federico
- Department of Cellular and Molecular Pathology, German Cancer Research Center, Heidelberg, Germany
| | - Richard Jennemann
- Department of Cellular and Molecular Pathology, German Cancer Research Center, Heidelberg, Germany
| | - Damir Krunic
- Light Microscopy Facility, German Cancer Research Center, Heidelberg, Germany
| | - Viola Nordström
- Department of Cellular and Molecular Pathology, German Cancer Research Center, Heidelberg, Germany
| | - Johanna von Gerichten
- Department of Cellular and Molecular Pathology, German Cancer Research Center, Heidelberg, Germany; Lipid Pathobiochemistry Group, German Cancer Research Center, Heidelberg, Germany
| | - Christian Marsching
- Department of Cellular and Molecular Pathology, German Cancer Research Center, Heidelberg, Germany; Lipid Pathobiochemistry Group, German Cancer Research Center, Heidelberg, Germany
| | - Ina Maria Schießl
- Institute of Physiology, University of Regensburg, Regensburg, Germany
| | | | - Christian Wunder
- Institut Curie, PSL Research University, Chemical Biology of Membranes and Therapeutic Delivery Unit, CNRS UMR3666, INSERM U1143, Paris, France
| | - Ludger Johannes
- Institut Curie, PSL Research University, Chemical Biology of Membranes and Therapeutic Delivery Unit, CNRS UMR3666, INSERM U1143, Paris, France
| | - Roger Sandhoff
- Department of Cellular and Molecular Pathology, German Cancer Research Center, Heidelberg, Germany; Lipid Pathobiochemistry Group, German Cancer Research Center, Heidelberg, Germany
| | - Hermann-Josef Gröne
- Department of Cellular and Molecular Pathology, German Cancer Research Center, Heidelberg, Germany; Institute of Pharmacology, University of Marburg, Marburg, Germany.
| |
Collapse
|
42
|
3-ketodihydrosphingosine reductase mutation induces steatosis and hepatic injury in zebrafish. Sci Rep 2019; 9:1138. [PMID: 30718751 PMCID: PMC6361991 DOI: 10.1038/s41598-018-37946-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Accepted: 12/11/2018] [Indexed: 02/06/2023] Open
Abstract
3-ketodihydrosphingosine reductase (KDSR) is the key enzyme in the de novo sphingolipid synthesis. We identified a novel missense kdsrI105R mutation in zebrafish that led to a loss of function, and resulted in progression of hepatomegaly to steatosis, then hepatic injury phenotype. Lipidomics analysis of the kdsrI105R mutant revealed compensatory activation of the sphingolipid salvage pathway, resulting in significant accumulation of sphingolipids including ceramides, sphingosine and sphingosine 1-phosphate (S1P). Ultrastructural analysis revealed swollen mitochondria with cristae damage in the kdsrI105R mutant hepatocytes, which can be a cause of hepatic injury in the mutant. We found elevated sphingosine kinase 2 (sphk2) expression in the kdsrI105R mutant. Genetic interaction analysis with the kdsrI105R and the sphk2wc1 mutants showed that sphk2 depletion suppressed liver defects observed in the kdsrI105R mutant, suggesting that liver defects were mediated by S1P accumulation. Further, both oxidative stress and ER stress were completely suppressed by deletion of sphk2 in kdsrI105R mutants, linking these two processes mechanistically to hepatic injury in the kdsrI105R mutants. Importantly, we found that the heterozygous mutation in kdsr induced predisposed liver injury in adult zebrafish. These data point to kdsr as a novel genetic risk factor for hepatic injury.
Collapse
|
43
|
Berg G, Miksztowicz V, Morales C, Barchuk M. Epicardial Adipose Tissue in Cardiovascular Disease. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1127:131-143. [DOI: 10.1007/978-3-030-11488-6_9] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
44
|
Park YJ, Park J, Huh JY, Hwang I, Choe SS, Kim JB. Regulatory Roles of Invariant Natural Killer T Cells in Adipose Tissue Inflammation: Defenders Against Obesity-Induced Metabolic Complications. Front Immunol 2018; 9:1311. [PMID: 29951059 PMCID: PMC6008523 DOI: 10.3389/fimmu.2018.01311] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Accepted: 05/28/2018] [Indexed: 12/12/2022] Open
Abstract
Adipose tissue is a metabolic organ that plays a central role in controlling systemic energy homeostasis. Compelling evidence indicates that immune system is closely linked to healthy physiologic functions and pathologic dysfunction of adipose tissue. In obesity, the accumulation of pro-inflammatory responses in adipose tissue subsequently leads to dysfunction of adipose tissue as well as whole body energy homeostasis. Simultaneously, adipose tissue also activates anti-inflammatory responses in an effort to reduce the unfavorable effects of pro-inflammation. Notably, the interplay between adipocytes and resident invariant natural killer T (iNKT) cells is a major component of defensive mechanisms of adipose tissue. iNKT cells are leukocytes that recognize lipids loaded on CD1d as antigens, whereas most other immune cells are activated by peptide antigens. In adipose tissue, adipocytes directly interact with iNKT cells by presenting lipid antigens and stimulate iNKT cell activation to alleviate pro-inflammation. In this review, we provide an overview of the molecular and cellular determinants of obesity-induced adipose tissue inflammation. Specifically, we focus on the roles of iNKT cell-adipocyte interaction in maintaining adipose tissue homeostasis as well as the consequent modulation in systemic energy metabolism. We also briefly discuss future research directions regarding the interplay between adipocytes and adipose iNKT cells in adipose tissue inflammation.
Collapse
Affiliation(s)
- Yoon Jeong Park
- Department of Biological Sciences, Center for Adipose Tissue Remodeling, College of Natural Sciences, Institute of Molecular Biology and Genetics, Seoul National University, Seoul, South Korea.,Department of Biophysics and Chemical Biology, Seoul National University, Seoul, South Korea
| | - Jeu Park
- Department of Biological Sciences, Center for Adipose Tissue Remodeling, College of Natural Sciences, Institute of Molecular Biology and Genetics, Seoul National University, Seoul, South Korea
| | - Jin Young Huh
- Department of Biological Sciences, Center for Adipose Tissue Remodeling, College of Natural Sciences, Institute of Molecular Biology and Genetics, Seoul National University, Seoul, South Korea.,Department of Medicine, University of California San Diego, San Diego, CA, United States
| | - Injae Hwang
- Department of Biological Sciences, Center for Adipose Tissue Remodeling, College of Natural Sciences, Institute of Molecular Biology and Genetics, Seoul National University, Seoul, South Korea
| | - Sung Sik Choe
- Department of Biological Sciences, Center for Adipose Tissue Remodeling, College of Natural Sciences, Institute of Molecular Biology and Genetics, Seoul National University, Seoul, South Korea
| | - Jae Bum Kim
- Department of Biological Sciences, Center for Adipose Tissue Remodeling, College of Natural Sciences, Institute of Molecular Biology and Genetics, Seoul National University, Seoul, South Korea.,Department of Biophysics and Chemical Biology, Seoul National University, Seoul, South Korea
| |
Collapse
|
45
|
Ribel-Madsen A, Ribel-Madsen R, Nielsen KF, Brix S, Vaag AA, Brøns C. Plasma ceramide levels are altered in low and normal birth weight men in response to short-term high-fat overfeeding. Sci Rep 2018; 8:3452. [PMID: 29472552 PMCID: PMC5823847 DOI: 10.1038/s41598-018-21419-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Accepted: 02/01/2018] [Indexed: 01/04/2023] Open
Abstract
Low birth weight (LBW) individuals have an increased risk of developing insulin resistance and type 2 diabetes compared with normal birth weight (NBW) individuals. We hypothesised that LBW individuals exhibit an increased fatty acid flux into lipogenesis in non-adipose tissue with a resulting accumulation of lipotoxic lipids, including ceramides, in the blood. Therefore, we measured fasting plasma levels of 27 ceramides in 18 young, healthy, LBW men and 25 NBW controls after an isocaloric control diet and a 5-day high-fat, high-calorie diet by HPLC-HRMS. LBW men did not show elevated plasma ceramide levels after the control or high-fat, high-calorie diet. An increased fatty acid oxidation rate in these individuals during both diets may limit ceramide synthesis and thereby compensate for a likely increased fatty acid load to non-adipose tissue. Interestingly, LBW and NBW men decreased d18:0-18:1/d18:1-18:0 and d18:1-24:2/d18:2-24:1 levels and increased the d18:0-24:1a level in response to overfeeding. Plasma d18:0-24:1a and total ceramide levels were positively associated with the fasting blood glucose level and endogenous glucose production after the control diet, and the total ceramide level was in addition positively associated with hepatic insulin resistance. Further studies are needed to determine if lipotoxicity contributes to insulin resistance in LBW individuals.
Collapse
Affiliation(s)
- Amalie Ribel-Madsen
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kongens Lyngby, Denmark. .,Department of Endocrinology, Diabetes and Metabolism, Copenhagen University Hospital, Copenhagen, Denmark.
| | - Rasmus Ribel-Madsen
- Department of Endocrinology, Diabetes and Metabolism, Copenhagen University Hospital, Copenhagen, Denmark.,Danish Diabetes Academy, Odense, Denmark
| | - Kristian Fog Nielsen
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Susanne Brix
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Allan A Vaag
- Department of Endocrinology, Diabetes and Metabolism, Copenhagen University Hospital, Copenhagen, Denmark
| | - Charlotte Brøns
- Department of Endocrinology, Diabetes and Metabolism, Copenhagen University Hospital, Copenhagen, Denmark
| |
Collapse
|
46
|
Ho N, Xu C, Thibault G. From the unfolded protein response to metabolic diseases - lipids under the spotlight. J Cell Sci 2018; 131:131/3/jcs199307. [PMID: 29439157 DOI: 10.1242/jcs.199307] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The unfolded protein response (UPR) is classically viewed as a stress response pathway to maintain protein homeostasis at the endoplasmic reticulum (ER). However, it has recently emerged that the UPR can be directly activated by lipid perturbation, independently of misfolded proteins. Comprising primarily phospholipids, sphingolipids and sterols, individual membranes can contain hundreds of distinct lipids. Even with such complexity, lipid distribution in a cell is tightly regulated by mechanisms that remain incompletely understood. It is therefore unsurprising that lipid dysregulation can be a key factor in disease development. Recent advances in analysis of lipids and their regulators have revealed remarkable mechanisms and connections to other cellular pathways including the UPR. In this Review, we summarize the current understanding in UPR transducers functioning as lipid sensors and the interplay between lipid metabolism and ER homeostasis in the context of metabolic diseases. We attempt to provide a framework consisting of a few key principles to integrate the different lines of evidence and explain this rather complicated mechanism.
Collapse
Affiliation(s)
- Nurulain Ho
- School of Biological Sciences, Nanyang Technological University, Singapore, 637551
| | - Chengchao Xu
- Whitehead Institute for Biomedical Research, 455 Main Street, Cambridge, MA 02142-1479, USA
| | - Guillaume Thibault
- School of Biological Sciences, Nanyang Technological University, Singapore, 637551
| |
Collapse
|
47
|
Rico JE, Myers WA, Laub DJ, Davis AN, Zeng Q, McFadden JW. Hot topic: Ceramide inhibits insulin sensitivity in primary bovine adipocytes. J Dairy Sci 2018; 101:3428-3432. [PMID: 29395144 DOI: 10.3168/jds.2017-13983] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2017] [Accepted: 12/21/2017] [Indexed: 12/31/2022]
Abstract
In nonruminants, the sphingolipid ceramide inhibits insulin sensitivity by inactivating protein kinase B (AKT) within the insulin-signaling pathway. We have established that ceramide accrual develops with impaired systemic insulin action in ruminants during the transition from gestation to lactation, dietary palmitic acid supplementation, or controlled nutrient restriction. We hypothesized that ceramide promotes AKT inactivation and antagonizes insulin sensitivity in primary bovine adipocytes. Stromal-vascular cells were grown from bovine adipose tissue explants and cultured in differentiation media. To modify ceramide supply, we treated differentiated adipocytes with (1) myriocin, an inhibitor of de novo ceramide synthesis, or (2) cell-permeable C2:0-ceramide. Insulin-stimulated AKT activation (i.e., phosphorylation) and 2-deoxy-D-[3H]-glucose (2DOG) uptake were measured. Treatment of adipocytes with myriocin consistently decreased concentrations of ceramide, monohexosylceramide, and lactosylceramide. The insulin-stimulated ratio of phosphorylated AKT to total AKT was increased with myriocin but decreased with C2:0-ceramide. Moreover, adipocyte insulin-stimulated 2DOG uptake was decreased with C2:0-ceramide and increased with myriocin. We conclude that ceramide inhibits insulin-stimulated glucose uptake by downregulating AKT activation in primary bovine adipocytes.
Collapse
Affiliation(s)
- J E Rico
- Division of Animal and Nutritional Sciences, West Virginia University, Morgantown 26505; Department of Animal Science, Cornell University, Ithaca, NY 14853
| | - W A Myers
- Division of Animal and Nutritional Sciences, West Virginia University, Morgantown 26505; Department of Animal Science, Cornell University, Ithaca, NY 14853
| | - D J Laub
- Division of Animal and Nutritional Sciences, West Virginia University, Morgantown 26505
| | - A N Davis
- Division of Animal and Nutritional Sciences, West Virginia University, Morgantown 26505; Department of Animal Science, Cornell University, Ithaca, NY 14853
| | - Q Zeng
- Division of Animal and Nutritional Sciences, West Virginia University, Morgantown 26505
| | - J W McFadden
- Division of Animal and Nutritional Sciences, West Virginia University, Morgantown 26505; Department of Animal Science, Cornell University, Ithaca, NY 14853.
| |
Collapse
|
48
|
Molino S, Tate E, McKillop WM, Medin JA. Sphingolipid pathway enzymes modulate cell fate and immune responses. Immunotherapy 2017; 9:1185-1198. [DOI: 10.2217/imt-2017-0089] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Sphingolipids (SLs) are a class of essential, bioactive lipids. The SL family includes over 4000 distinct molecules, characterized by their sphingoid base (long-chain aliphatic amine) backbone. SLs are key components of cell membranes, yet their roles go well beyond structure. SLs are involved in many cellular processes including cell differentiation, apoptosis, growth arrest and senescence. As cancer cells routinely display increased growth properties and escape from cell death, it has been suggested that enzymes involved in SL synthesis or catabolism may be altered in cancer cells. In this review, we discuss the role of SL pathway enzymes in cancer, and in acquired resistance to therapy. The use of inhibitors and gene silencing approaches targeting these SL pathways is also explored. Finally, we elaborate on the role of SL pathway enzymes in the tumor microenvironment and their effect on immune cell function.
Collapse
Affiliation(s)
- S Molino
- Department of Pediatrics, Medical College of Wisconsin, Milwaukee, Wisconsin 53226, USA
| | - E Tate
- Department of Pediatrics, Medical College of Wisconsin, Milwaukee, Wisconsin 53226, USA
| | - WM McKillop
- Department of Pediatrics, Medical College of Wisconsin, Milwaukee, Wisconsin 53226, USA
| | - JA Medin
- Department of Pediatrics, Medical College of Wisconsin, Milwaukee, Wisconsin 53226, USA
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, Wisconsin 53226, USA
- Department of Medical Biophysics & the Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada
- Department of Medical Biophysics, University Health Network, Toronto, Ontario, Canada
| |
Collapse
|
49
|
Parisi LR, Li N, Atilla-Gokcumen GE. Very Long Chain Fatty Acids Are Functionally Involved in Necroptosis. Cell Chem Biol 2017; 24:1445-1454.e8. [PMID: 29033315 DOI: 10.1016/j.chembiol.2017.08.026] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Revised: 05/09/2017] [Accepted: 08/30/2017] [Indexed: 12/21/2022]
Abstract
Necroptosis is a form of regulated cell death that is linked to various human diseases. Distinct membrane-related, thus lipid-dependent, alterations take place during necroptosis. However, little is known about the roles of specific lipids in this process. We used an untargeted LC-MS-based approach to reveal that distinct lipid species are regulated at the molecular level during necroptosis. We found that ceramides and very long chain fatty acids accumulate during this process. Intrigued by the specificity of very long chain fatty acid accumulation, we focused on characterizing their involvement during necroptosis. Biochemical characterizations suggested that activated fatty acid biosynthesis and elongation could be responsible for these accumulations. We further showed that inhibition of fatty acid biosynthesis and depletion of very long chain fatty acids prevented loss of plasma membrane integrity and cell death, strongly suggesting that very long chain fatty acids are functionally involved in necroptosis.
Collapse
Affiliation(s)
- Laura R Parisi
- Department of Chemistry, University at Buffalo, The State University of New York, Buffalo, NY 14260, USA
| | - Nasi Li
- Department of Chemistry, University at Buffalo, The State University of New York, Buffalo, NY 14260, USA
| | - G Ekin Atilla-Gokcumen
- Department of Chemistry, University at Buffalo, The State University of New York, Buffalo, NY 14260, USA.
| |
Collapse
|
50
|
Lee SM, Dorotea D, Jung I, Nakabayashi T, Miyata T, Ha H. TM5441, a plasminogen activator inhibitor-1 inhibitor, protects against high fat diet-induced non-alcoholic fatty liver disease. Oncotarget 2017; 8:89746-89760. [PMID: 29163785 PMCID: PMC5685706 DOI: 10.18632/oncotarget.21120] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Accepted: 09/03/2017] [Indexed: 12/16/2022] Open
Abstract
Recent evidences showed that elevation of plasminogen activator inhibitor 1 (PAI-1) was responsible in mediating obesity-induced non-alcoholic fatty liver disease (NAFLD) and metabolic disorders. Here, we investigated the effect of TM5441, an oral PAI-1 inhibitor that lacks of bleeding risk, on high-fat diet (HFD)-induced NAFLD. HFD-fed C57BL/6J mice was daily treated with 20 mg/kg TM5441. To examine the preventive effect, 10-week-treatment was started along with initiation of HFD; alternatively, 4-week-treatment was started in mice with glucose intolerance in the interventional strategy. In vivo study showed that early and delayed treatment decreased hepatic steatosis. Particularly, early treatment prevented the progression of hepatic inflammation and fibrosis in HFD mice. Interestingly, both strategies abrogated hepatic insulin resistance and mitochondrial dysfunction, presented by enhanced p-Akt and p-GSK3β, reduced p-JNK signaling, along with p-AMPK and PGC-1α activation. Consistently, TM5441 treatment in the presence of either PAI-1 exposure or TNF-α stimulated-PAI-1 activity showed a restoration of mitochondrial biogenesis related genes expression on HepG2 cells. Thus, improvement of insulin sensitivity and mitochondrial function was imperative to partially explain the therapeutic effects of TM5441, a novel agent targeting HFD-induced NAFLD.
Collapse
Affiliation(s)
- Seon Myeong Lee
- Graduate School of Pharmaceutical Sciences, College of Pharmacy, Ewha Womans University, Seoul, Republic of Korea
| | - Debra Dorotea
- Graduate School of Pharmaceutical Sciences, College of Pharmacy, Ewha Womans University, Seoul, Republic of Korea
| | - Inji Jung
- Graduate School of Pharmaceutical Sciences, College of Pharmacy, Ewha Womans University, Seoul, Republic of Korea
| | - Tetsuo Nakabayashi
- United Centers for Advanced Research and Translational Medicine, Tohoku University Graduate School of Medicine, Miyagi, Japan
| | - Toshio Miyata
- United Centers for Advanced Research and Translational Medicine, Tohoku University Graduate School of Medicine, Miyagi, Japan
| | - Hunjoo Ha
- Graduate School of Pharmaceutical Sciences, College of Pharmacy, Ewha Womans University, Seoul, Republic of Korea
| |
Collapse
|