1
|
Sexton R, Fazel M, Schweiger M, Pressé S, Beckstein O. Bayesian Nonparametric Analysis of Residence Times for Protein-Lipid Interactions in Molecular Dynamics Simulations. J Chem Theory Comput 2025; 21:4203-4220. [PMID: 40172093 PMCID: PMC12071184 DOI: 10.1021/acs.jctc.4c01522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2025]
Abstract
Molecular Dynamics (MD) simulations are a versatile tool to investigate the interactions of proteins within their environments, in particular, of membrane proteins with the surrounding lipids. However, quantitative analysis of lipid-protein binding kinetics has remained challenging due to considerable noise and low frequency of long binding events, even in hundreds of microseconds of simulation data. Here, we apply Bayesian nonparametrics to compute residue-resolved residence time distributions from MD trajectories. Such an analysis characterizes binding processes at different time scales (quantified by their kinetic off-rate) and assigns to each trajectory frame a probability of belonging to a specific process. In this way, we classify trajectory frames in an unsupervised manner and obtain, for example, different binding poses or molecular densities based on the time scale of the process. We demonstrate our approach by characterizing interactions of cholesterol with six different G-protein-coupled receptors (A2AAR, β2AR, CB1R, CB2R, CCK1R, and CCK2R) simulated with coarse-grained MD simulations with the MARTINI model. The nonparametric Bayesian analysis allows us to connect the coarse binding time series data to the underlying molecular picture and thus not only infers accurate binding kinetics with error distributions from MD simulations but also describes molecular events responsible for the broad range of kinetic rates.
Collapse
Affiliation(s)
- Ricky Sexton
- Department of Physics, Arizona State University, Tempe, Arizona 85287-1504, United States
- Center for Biological Physics, Arizona State University, Tempe, Arizona 85287-1504, United States
| | - Mohamadreza Fazel
- Department of Physics, Arizona State University, Tempe, Arizona 85287-1504, United States
- Center for Biological Physics, Arizona State University, Tempe, Arizona 85287-1504, United States
| | - Maxwell Schweiger
- Department of Physics, Arizona State University, Tempe, Arizona 85287-1504, United States
- Center for Biological Physics, Arizona State University, Tempe, Arizona 85287-1504, United States
| | - Steve Pressé
- Department of Physics, Arizona State University, Tempe, Arizona 85287-1504, United States
- Center for Biological Physics, Arizona State University, Tempe, Arizona 85287-1504, United States
- School of Molecular Sciences, Arizona State University, Tempe, Arizona 85287-1504, United States
| | - Oliver Beckstein
- Department of Physics, Arizona State University, Tempe, Arizona 85287-1504, United States
- Center for Biological Physics, Arizona State University, Tempe, Arizona 85287-1504, United States
| |
Collapse
|
2
|
Schuck RJ, Ward AE, Sahoo AR, Rybak JA, Pyron RJ, Trybala TN, Simmons TB, Baccile JA, Sgouralis I, Buck M, Lamichhane R, Barrera FN. Cholesterol inhibits assembly and oncogenic activation of the EphA2 receptor. Commun Biol 2025; 8:411. [PMID: 40069393 PMCID: PMC11897322 DOI: 10.1038/s42003-025-07786-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Accepted: 02/19/2025] [Indexed: 03/15/2025] Open
Abstract
The receptor tyrosine kinase EphA2 drives cancer malignancy by facilitating metastasis. EphA2 can be found in different self-assembly states: as a monomer, dimer, and oligomer. However, we have a poor understanding regarding which EphA2 state is responsible for driving pro-metastatic signaling. To address this limitation, we have developed SiMPull-POP, a single-molecule method for accurate quantification of membrane protein self-assembly. Our experiments reveal that a reduction of plasma membrane cholesterol strongly promotes EphA2 self-assembly. Indeed, low cholesterol levels cause a similar effect to the EphA2 ligand ephrinA1-Fc. These results indicate that cholesterol inhibits EphA2 assembly. Phosphorylation studies in different cell lines reveal that low cholesterol increased phospho-serine levels in EphA2, the signature of oncogenic signaling. Investigation of the mechanism that cholesterol uses to inhibit the assembly and activity of EphA2 indicate an in-trans effect, where EphA2 is phosphorylated by protein kinase A downstream of beta-adrenergic receptor activity, which cholesterol also inhibits. Our study not only provides new mechanistic insights on EphA2 oncogenic function, but it also suggests that cholesterol acts as a molecular safeguard mechanism that prevents uncontrolled self-assembly and activation of EphA2.
Collapse
Affiliation(s)
- Ryan J Schuck
- Department of Biochemistry & Cellular and Molecular Biology, University of Tennessee, Knoxville, TN, USA
| | - Alyssa E Ward
- Department of Biochemistry & Cellular and Molecular Biology, University of Tennessee, Knoxville, TN, USA
| | - Amita R Sahoo
- Department of Physiology and Biophysics, Case Western Reserve University, School of Medicine, Cleveland, TN, USA
| | - Jennifer A Rybak
- Genome Science and Technology, University of Tennessee, Knoxville, TN, USA
| | - Robert J Pyron
- Genome Science and Technology, University of Tennessee, Knoxville, TN, USA
| | - Thomas N Trybala
- Department of Chemistry, University of Tennessee, Knoxville, TN, USA
| | - Timothy B Simmons
- Department of Biochemistry & Cellular and Molecular Biology, University of Tennessee, Knoxville, TN, USA
| | - Joshua A Baccile
- Department of Chemistry, University of Tennessee, Knoxville, TN, USA
| | - Ioannis Sgouralis
- Department of Mathematics, University of Tennessee, Knoxville, TN, USA
| | - Matthias Buck
- Department of Physiology and Biophysics, Case Western Reserve University, School of Medicine, Cleveland, TN, USA
| | - Rajan Lamichhane
- Department of Biochemistry & Cellular and Molecular Biology, University of Tennessee, Knoxville, TN, USA.
| | - Francisco N Barrera
- Department of Biochemistry & Cellular and Molecular Biology, University of Tennessee, Knoxville, TN, USA.
| |
Collapse
|
3
|
Sexton R, Fazel M, Schweiger M, Pressé S, Beckstein O. Bayesian nonparametric analysis of residence times for protein-lipid interactions in Molecular Dynamics simulations. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2024.11.07.622502. [PMID: 40093144 PMCID: PMC11908185 DOI: 10.1101/2024.11.07.622502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/19/2025]
Abstract
Molecular Dynamics (MD) simulations are a versatile tool to investigate the interactions of proteins within their environments, in particular of membrane proteins with the surrounding lipids. However, quantitative analysis of lipid-protein binding kinetics has remained challenging due to considerable noise and low frequency of long binding events, even in hundreds of microseconds of simulation data. Here we apply Bayesian nonparametrics to compute residue-resolved residence time distributions from MD trajectories. Such an analysis characterizes binding processes at different timescales (quantified by their kinetic off-rate) and assigns to each trajectory frame a probability of belonging to a specific process. In this way, we classify trajectory frames in an unsupervised manner and obtain, for example, different binding poses or molecular densities based on the timescale of the process. We demonstrate our approach by characterizing interactions of cholesterol with six different G-protein coupled receptors (A 2 A AR ,β 2 AR ,CB 1 R ,CB 2 R ,CCK 1 R ,CCK 2 R ) simulated with coarse-grained MD simulations with the MARTINI model. The nonparametric Bayesian analysis allows us to connect the coarse binding time series data to the underlying molecular picture and, thus, not only infers accurate binding kinetics with error distributions from MD simulations but also describes molecular events responsible for the broad range of kinetic rates.
Collapse
Affiliation(s)
- Ricky Sexton
- Department of Physics, Arizona State University, Tempe AZ, USA
- Center for Biological Physics, Arizona State University, Tempe AZ, USA
| | - Mohamadreza Fazel
- Department of Physics, Arizona State University, Tempe AZ, USA
- Center for Biological Physics, Arizona State University, Tempe AZ, USA
- Present address: National Cancer Institute, National Institute of Health, Bethesda, MD 20892, USA
| | - Maxwell Schweiger
- Department of Physics, Arizona State University, Tempe AZ, USA
- Center for Biological Physics, Arizona State University, Tempe AZ, USA
| | - Steve Pressé
- Department of Physics, Arizona State University, Tempe AZ, USA
- Center for Biological Physics, Arizona State University, Tempe AZ, USA
- School of Molecular Sciences, Arizona State University, Tempe AZ, USA
| | - Oliver Beckstein
- Department of Physics, Arizona State University, Tempe AZ, USA
- Center for Biological Physics, Arizona State University, Tempe AZ, USA
| |
Collapse
|
4
|
Harikumar KG, Zhao P, Cary BP, Xu X, Desai AJ, Dong M, Mobbs JI, Toufaily C, Furness SGB, Christopoulos A, Belousoff MJ, Wootten D, Sexton PM, Miller LJ. Cholesterol-dependent dynamic changes in the conformation of the type 1 cholecystokinin receptor affect ligand binding and G protein coupling. PLoS Biol 2024; 22:e3002673. [PMID: 39083706 PMCID: PMC11290853 DOI: 10.1371/journal.pbio.3002673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 05/13/2024] [Indexed: 08/02/2024] Open
Abstract
Development of optimal therapeutics for disease states that can be associated with increased membrane cholesterol requires better molecular understanding of lipid modulation of the drug target. Type 1 cholecystokinin receptor (CCK1R) agonist actions are affected by increased membrane cholesterol, enhancing ligand binding and reducing calcium signaling, while agonist actions of the closely related CCK2R are not. In this work, we identified a set of chimeric human CCK1R/CCK2R mutations that exchange the cholesterol sensitivity of these 2 receptors, providing powerful tools when expressed in CHO and HEK-293 model cell lines to explore mechanisms. Static, low energy, high-resolution structures of the mutant CCK1R constructs, stabilized in complex with G protein, were not substantially different, suggesting that alterations to receptor dynamics were key to altered function. We reveal that cholesterol-dependent dynamic changes in the conformation of the helical bundle of CCK receptors affects both ligand binding at the extracellular surface and G protein coupling at the cytosolic surface, as well as their interrelationships involved in stimulus-response coupling. This provides an ideal setting for potential allosteric modulators to correct the negative impact of membrane cholesterol on CCK1R.
Collapse
Affiliation(s)
- Kaleeckal G. Harikumar
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Scottsdale, Arizona, United States of America
| | - Peishen Zhao
- Drug Discovery Biology Theme, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Australia
- ARC Centre for Cryo-electron Microscopy of Membrane Proteins, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Australia
| | - Brian P. Cary
- Drug Discovery Biology Theme, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Australia
- ARC Centre for Cryo-electron Microscopy of Membrane Proteins, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Australia
| | - Xiaomeng Xu
- Drug Discovery Biology Theme, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Australia
- ARC Centre for Cryo-electron Microscopy of Membrane Proteins, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Australia
| | - Aditya J. Desai
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Scottsdale, Arizona, United States of America
| | - Maoqing Dong
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Scottsdale, Arizona, United States of America
| | - Jesse I. Mobbs
- Drug Discovery Biology Theme, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Australia
- ARC Centre for Cryo-electron Microscopy of Membrane Proteins, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Australia
| | - Chirine Toufaily
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Scottsdale, Arizona, United States of America
| | - Sebastian G. B. Furness
- Drug Discovery Biology Theme, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Australia
- School of Biomedical Sciences, University Queensland, Queensland, Australia
| | - Arthur Christopoulos
- Drug Discovery Biology Theme, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Australia
- ARC Centre for Cryo-electron Microscopy of Membrane Proteins, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Australia
| | - Matthew J. Belousoff
- Drug Discovery Biology Theme, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Australia
- ARC Centre for Cryo-electron Microscopy of Membrane Proteins, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Australia
| | - Denise Wootten
- Drug Discovery Biology Theme, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Australia
- ARC Centre for Cryo-electron Microscopy of Membrane Proteins, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Australia
| | - Patrick M. Sexton
- Drug Discovery Biology Theme, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Australia
- ARC Centre for Cryo-electron Microscopy of Membrane Proteins, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Australia
| | - Laurence J. Miller
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Scottsdale, Arizona, United States of America
| |
Collapse
|
5
|
Bauri R, Bele S, Edelli J, Reddy NC, Kurukuti S, Devasia T, Ibrahim A, Rai V, Mitra P. Reduced incretin receptor trafficking upon activation enhances glycemic control and reverses obesity in diet-induced obese mice. Am J Physiol Cell Physiol 2024; 327:C74-C96. [PMID: 38738303 DOI: 10.1152/ajpcell.00474.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 04/30/2024] [Accepted: 04/30/2024] [Indexed: 05/14/2024]
Abstract
Activation of incretin receptors by their cognate agonist augments sustained cAMP generation both from the plasma membrane as well as from the endosome. To address the functional outcome of this spatiotemporal signaling, we developed a nonacylated glucagon-like peptide-1 (GLP-1) and glucose-dependent insulinotropic polypeptide (GIP) receptor dual agonist I-M-150847 that reduced receptor internalization following activation of the incretin receptors. The incretin receptor dual agonist I-M-150847 was developed by replacing the tryptophan cage of exendin-4 tyrosine substituted at the amino terminus with the C-terminal undecapeptide sequence of oxyntomodulin that placed lysine 30 of I-M-150847 in frame with the corresponding lysine residue of GIP. The peptide I-M-150847 is a partial agonist of GLP-1R and GIPR; however, the receptors, upon activation by I-M-150847, undergo reduced internalization that promotes agonist-mediated iterative cAMP signaling and augments glucose-stimulated insulin exocytosis in pancreatic β cells. Chronic administration of I-M-150847 improved glycemic control, enhanced insulin sensitivity, and provided profound weight loss in diet-induced obese (DIO) mice. Our results demonstrated that despite being a partial agonist, I-M-150847, by reducing the receptor internalization upon activation, enhanced the incretin effect and reversed obesity.NEW & NOTEWORTHY Replacement of the tryptophan cage (Trp-cage) with the C-terminal oxyntomodulin undecapeptide along with the tyrosine substitution at the amino terminus converts the selective glucagon-like peptide-1 receptor (GLP-1R) agonist exendin-4 to a novel GLP-1R and GIPR dual agonist I-M-150847. Reduced internalization of incretin receptors upon activation by the GLP-1R and GIPR dual agonist I-M-150847 promotes iterative receptor signaling that enhances the incretin effect and reverses obesity.
Collapse
Affiliation(s)
- Rathin Bauri
- Dr. Reddy's Institute of Life Sciences, University of Hyderabad Campus, Hyderabad, India
- Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, India
| | - Shilpak Bele
- Dr. Reddy's Institute of Life Sciences, University of Hyderabad Campus, Hyderabad, India
- Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, India
| | - Jhansi Edelli
- Dr. Reddy's Institute of Life Sciences, University of Hyderabad Campus, Hyderabad, India
| | - Neelesh C Reddy
- Department of Chemistry, Indian Institute of Science Education and Research, Bhopal, India
| | | | - Tom Devasia
- Department of Cardiology, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, Manipal, India
| | - Ahamed Ibrahim
- Division of Lipid Chemistry, National Institute of Nutrition Hyderabad, Hyderabad, India
| | - Vishal Rai
- Department of Chemistry, Indian Institute of Science Education and Research, Bhopal, India
| | - Prasenjit Mitra
- Dr. Reddy's Institute of Life Sciences, University of Hyderabad Campus, Hyderabad, India
- Institute of Transformative Molecular medicine, Case Western Reserve University School of Medicine, Cleveland, Ohio, United States
| |
Collapse
|
6
|
Schuck RJ, Ward AE, Sahoo AR, Rybak JA, Pyron RJ, Trybala TN, Simmons TB, Baccile JA, Sgouralis I, Buck M, Lamichhane R, Barrera FN. Cholesterol inhibits assembly and activation of the EphA2 receptor. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.10.598255. [PMID: 38915729 PMCID: PMC11195142 DOI: 10.1101/2024.06.10.598255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/26/2024]
Abstract
The receptor tyrosine kinase EphA2 drives cancer malignancy by facilitating metastasis. EphA2 can be found in different self-assembly states: as a monomer, dimer, and oligomer. However, our understanding remains limited regarding which EphA2 state is responsible for driving pro-metastatic signaling. To address this limitation, we have developed SiMPull-POP, a single-molecule method for accurate quantification of membrane protein self-assembly. Our experiments revealed that a reduction of plasma membrane cholesterol strongly promoted EphA2 self-assembly. Indeed, low cholesterol caused a similar effect to the EphA2 ligand ephrinA1-Fc. These results indicate that cholesterol inhibits EphA2 assembly. Phosphorylation studies in different cell lines revealed that low cholesterol increased phospho-serine levels, the signature of oncogenic signaling. Investigation of the mechanism that cholesterol uses to inhibit the assembly and activity of EphA2 indicate an in-trans effect, where EphA2 is phosphorylated by protein kinase A downstream of beta-adrenergic receptor activity, which cholesterol also inhibits. Our study not only provides new mechanistic insights on EphA2 oncogenic function, but also suggests that cholesterol acts as a molecular safeguard mechanism that prevents uncontrolled self-assembly and activation of EphA2.
Collapse
Affiliation(s)
- Ryan J Schuck
- Department of Biochemistry & Cellular and Molecular Biology, University of Tennessee, Knoxville, USA
| | - Alyssa E Ward
- Department of Biochemistry & Cellular and Molecular Biology, University of Tennessee, Knoxville, USA
| | - Amita R Sahoo
- Department of Physiology and Biophysics, Case Western Reserve University, School of Medicine, Cleveland, USA
| | - Jennifer A Rybak
- Genome Science and Technology, University of Tennessee, Knoxville, USA
| | - Robert J Pyron
- Genome Science and Technology, University of Tennessee, Knoxville, USA
| | - Thomas N Trybala
- Department of Chemistry, University of Tennessee, Knoxville, USA
| | - Timothy B Simmons
- Department of Biochemistry & Cellular and Molecular Biology, University of Tennessee, Knoxville, USA
| | - Joshua A Baccile
- Department of Chemistry, University of Tennessee, Knoxville, USA
| | | | - Matthias Buck
- Department of Physiology and Biophysics, Case Western Reserve University, School of Medicine, Cleveland, USA
| | - Rajan Lamichhane
- Department of Biochemistry & Cellular and Molecular Biology, University of Tennessee, Knoxville, USA
| | - Francisco N Barrera
- Department of Biochemistry & Cellular and Molecular Biology, University of Tennessee, Knoxville, USA
| |
Collapse
|
7
|
Kockelkoren G, Lauritsen L, Shuttle CG, Kazepidou E, Vonkova I, Zhang Y, Breuer A, Kennard C, Brunetti RM, D'Este E, Weiner OD, Uline M, Stamou D. Molecular mechanism of GPCR spatial organization at the plasma membrane. Nat Chem Biol 2024; 20:142-150. [PMID: 37460675 PMCID: PMC10792125 DOI: 10.1038/s41589-023-01385-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 06/14/2023] [Indexed: 10/12/2023]
Abstract
G-protein-coupled receptors (GPCRs) mediate many critical physiological processes. Their spatial organization in plasma membrane (PM) domains is believed to encode signaling specificity and efficiency. However, the existence of domains and, crucially, the mechanism of formation of such putative domains remain elusive. Here, live-cell imaging (corrected for topography-induced imaging artifacts) conclusively established the existence of PM domains for GPCRs. Paradoxically, energetic coupling to extremely shallow PM curvature (<1 µm-1) emerged as the dominant, necessary and sufficient molecular mechanism of GPCR spatiotemporal organization. Experiments with different GPCRs, H-Ras, Piezo1 and epidermal growth factor receptor, suggest that the mechanism is general, yet protein specific, and can be regulated by ligands. These findings delineate a new spatiomechanical molecular mechanism that can transduce to domain-based signaling any mechanical or chemical stimulus that affects the morphology of the PM and suggest innovative therapeutic strategies targeting cellular shape.
Collapse
Affiliation(s)
- Gabriele Kockelkoren
- Center for Geometrically Engineered Cellular Membranes, Department of Chemistry, University of Copenhagen, Copenhagen, Denmark
| | - Line Lauritsen
- Center for Geometrically Engineered Cellular Membranes, Department of Chemistry, University of Copenhagen, Copenhagen, Denmark
| | - Christopher G Shuttle
- Center for Geometrically Engineered Cellular Membranes, Department of Chemistry, University of Copenhagen, Copenhagen, Denmark
| | - Eleftheria Kazepidou
- Center for Geometrically Engineered Cellular Membranes, Department of Chemistry, University of Copenhagen, Copenhagen, Denmark
| | - Ivana Vonkova
- Center for Geometrically Engineered Cellular Membranes, Department of Chemistry, University of Copenhagen, Copenhagen, Denmark
| | - Yunxiao Zhang
- Howard Hughes Medical Institute, Department of Neuroscience, Dorris Neuroscience Center, Scripps Research, La Jolla, CA, USA
| | - Artù Breuer
- Center for Geometrically Engineered Cellular Membranes, Department of Chemistry, University of Copenhagen, Copenhagen, Denmark
| | - Celeste Kennard
- Department of Chemical Engineering, Biomedical Engineering Program, University of South Carolina, Columbia, SC, USA
| | - Rachel M Brunetti
- Cardiovascular Research Institute, University of California, San Francisco, CA, USA
- Department of Biochemistry and Biophysics, University of California, San Francisco, CA, USA
- Center for Geometrically Engineered Cellular Membranes, University of California, San Francisco, CA, USA
| | - Elisa D'Este
- Max-Planck-Institute for Medical Research, Optical Microscopy Facility, Heidelberg, Germany
| | - Orion D Weiner
- Cardiovascular Research Institute, University of California, San Francisco, CA, USA
- Department of Biochemistry and Biophysics, University of California, San Francisco, CA, USA
- Center for Geometrically Engineered Cellular Membranes, University of California, San Francisco, CA, USA
| | - Mark Uline
- Center for Geometrically Engineered Cellular Membranes, Department of Chemistry, University of Copenhagen, Copenhagen, Denmark.
- Department of Chemical Engineering, Biomedical Engineering Program, University of South Carolina, Columbia, SC, USA.
| | - Dimitrios Stamou
- Center for Geometrically Engineered Cellular Membranes, Department of Chemistry, University of Copenhagen, Copenhagen, Denmark.
- Atomos Biotech, Copenhagen, Denmark.
| |
Collapse
|
8
|
Rosenhouse-Dantsker A, Gazgalis D, Logothetis DE. PI(4,5)P 2 and Cholesterol: Synthesis, Regulation, and Functions. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1422:3-59. [PMID: 36988876 DOI: 10.1007/978-3-031-21547-6_1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 03/30/2023]
Abstract
Phosphatidylinositol 4,5-bisphosphate (PI(4,5)P2) is the most abundant membrane phosphoinositide and cholesterol is an essential component of the plasma membrane (PM). Both lipids play key roles in a variety of cellular functions including as signaling molecules and major regulators of protein function. This chapter provides an overview of these two important lipids. Starting from a brief description of their structure, synthesis, and regulation, the chapter continues to describe the primary functions and signaling processes in which PI(4,5)P2 and cholesterol are involved. While PI(4,5)P2 and cholesterol can act independently, they often act in concert or affect each other's impact. The chapters in this volume on "Cholesterol and PI(4,5)P2 in Vital Biological Functions: From Coexistence to Crosstalk" focus on the emerging relationship between cholesterol and PI(4,5)P2 in a variety of biological systems and processes. In this chapter, the next section provides examples from the ion channel field demonstrating that PI(4,5)P2 and cholesterol can act via common mechanisms. The chapter ends with a discussion of future directions.
Collapse
Affiliation(s)
| | - Dimitris Gazgalis
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, Bouvé College of Health Sciences, Northeastern University, Boston, MA, USA
| | - Diomedes E Logothetis
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, Bouvé College of Health Sciences, Northeastern University, Boston, MA, USA
| |
Collapse
|
9
|
Xu H, Zhang J, Zhou Y, Zhao G, Cai M, Gao J, Shao L, Shi Y, Li H, Ji H, Zhao Y, Wang H. Mechanistic Insights into Membrane Protein Clustering Revealed by Visualizing EGFR Secretion. Research (Wash D C) 2022; 2022:9835035. [PMID: 36340505 PMCID: PMC9620640 DOI: 10.34133/2022/9835035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Accepted: 09/22/2022] [Indexed: 11/19/2022] Open
Abstract
Most plasmalemmal proteins are organized into clusters to modulate various cellular functions. However, the machineries that regulate protein clustering remain largely unclear. Here, with EGFR as an example, we directly and in detail visualized the entire process of EGFR from synthesis to secretion onto the plasma membrane (PM) using a high-speed, high-resolution spinning-disk confocal microscope. First, colocalization imaging revealed that EGFR secretory vesicles underwent transport from the ER to the Golgi to the PM, eventually forming different distribution forms on the apical and basal membranes; that is, most EGFR formed larger clusters on the apical membrane than the basal membrane. A dynamic tracking image and further siRNA interference experiment confirmed that fusion of secretory vesicles with the plasma membrane led to EGFR clusters, and we showed that EGFR PM clustering may be intimately related to EGFR signaling and cell proliferation. Finally, we found that the size and origin of the secretory vesicles themselves may determine the difference in the distribution patterns of EGFR on the PM. More importantly, we showed that actin influenced the EGFR distribution by controlling the fusion of secretory vesicles with the PM. Collectively, a comprehensive understanding of the EGFR secretion process helps us to unravel the EGFR clustering process and elucidate the key factors determining the differences in the spatial distribution of EGFR PM, highlighting the correlation between EGFR secretion and its PM distribution pattern.
Collapse
Affiliation(s)
- Haijiao Xu
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022 Jilin, China
| | - Jinrui Zhang
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022 Jilin, China
| | - Yijia Zhou
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai 200031, China
- School of Life Science and Technology, ShanghaiTech University, Shanghai 200031, China
| | - Guanfang Zhao
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022 Jilin, China
- University of Science and Technology of China, Hefei, 230026 Anhui, China
| | - Mingjun Cai
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022 Jilin, China
| | - Jing Gao
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022 Jilin, China
| | - Lina Shao
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022 Jilin, China
| | - Yan Shi
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022 Jilin, China
| | - Hongru Li
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022 Jilin, China
- University of Science and Technology of China, Hefei, 230026 Anhui, China
| | - Hongbin Ji
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai 200031, China
- School of Life Science and Technology, ShanghaiTech University, Shanghai 200031, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 130102, China
| | - Yikai Zhao
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai 200031, China
| | - Hongda Wang
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022 Jilin, China
- University of Science and Technology of China, Hefei, 230026 Anhui, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237 Shandong, China
| |
Collapse
|
10
|
Sarkar P, Chattopadhyay A. Statin-induced Increase in Actin Polymerization Modulates GPCR Dynamics and Compartmentalization. Biophys J 2022:S0006-3495(22)00708-1. [DOI: 10.1016/j.bpj.2022.08.039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 07/16/2022] [Accepted: 08/25/2022] [Indexed: 11/29/2022] Open
|
11
|
Mobbs JI, Belousoff MJ, Harikumar KG, Piper SJ, Xu X, Furness SGB, Venugopal H, Christopoulos A, Danev R, Wootten D, Thal DM, Miller LJ, Sexton PM. Structures of the human cholecystokinin 1 (CCK1) receptor bound to Gs and Gq mimetic proteins provide insight into mechanisms of G protein selectivity. PLoS Biol 2021; 19:e3001295. [PMID: 34086670 PMCID: PMC8208569 DOI: 10.1371/journal.pbio.3001295] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Revised: 06/16/2021] [Accepted: 05/19/2021] [Indexed: 01/08/2023] Open
Abstract
G protein-coupled receptors (GPCRs) are critical regulators of cellular function acting via heterotrimeric G proteins as their primary transducers with individual GPCRs capable of pleiotropic coupling to multiple G proteins. Structural features governing G protein selectivity and promiscuity are currently unclear. Here, we used cryo-electron microscopy (cryo-EM) to determine structures of the cholecystokinin (CCK) type 1 receptor (CCK1R) bound to the CCK peptide agonist, CCK-8 and 2 distinct transducer proteins, its primary transducer Gq, and the more weakly coupled Gs. As seen with other Gq/11-GPCR complexes, the Gq-α5 helix (αH5) bound to a relatively narrow pocket in the CCK1R core. Surprisingly, the backbone of the CCK1R and volume of the G protein binding pocket were essentially equivalent when Gs was bound, with the Gs αH5 displaying a conformation that arises from "unwinding" of the far carboxyl-terminal residues, compared to canonically Gs coupled receptors. Thus, integrated changes in the conformations of both the receptor and G protein are likely to play critical roles in the promiscuous coupling of individual GPCRs.
Collapse
MESH Headings
- Cholecystokinin/metabolism
- Cholesterol/metabolism
- GTP-Binding Protein alpha Subunits, Gq-G11/chemistry
- GTP-Binding Protein alpha Subunits, Gq-G11/metabolism
- GTP-Binding Protein alpha Subunits, Gq-G11/ultrastructure
- GTP-Binding Protein alpha Subunits, Gs/chemistry
- GTP-Binding Protein alpha Subunits, Gs/metabolism
- GTP-Binding Protein alpha Subunits, Gs/ultrastructure
- HEK293 Cells
- Humans
- Models, Molecular
- Protein Binding
- Receptors, Cholecystokinin/chemistry
- Receptors, Cholecystokinin/metabolism
- Receptors, Cholecystokinin/ultrastructure
- Signal Transduction
Collapse
Affiliation(s)
- Jesse I. Mobbs
- Drug Discovery Biology Theme, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia
| | - Matthew J. Belousoff
- Drug Discovery Biology Theme, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia
- ARC Centre for Cryo-Electron Microscopy of Membrane Proteins, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia
| | - Kaleeckal G. Harikumar
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Scottsdale, Arizona, United States of America
| | - Sarah J. Piper
- Drug Discovery Biology Theme, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia
| | - Xiaomeng Xu
- Drug Discovery Biology Theme, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia
| | - Sebastian G. B. Furness
- Drug Discovery Biology Theme, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia
| | - Hari Venugopal
- Ramaciotti Centre for Cryo-Electron Microscopy, Monash University, Clayton, Victoria, Australia
| | - Arthur Christopoulos
- Drug Discovery Biology Theme, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia
| | - Radostin Danev
- Graduate School of Medicine, University of Tokyo, Tokyo, Japan
| | - Denise Wootten
- Drug Discovery Biology Theme, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia
- ARC Centre for Cryo-Electron Microscopy of Membrane Proteins, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia
| | - David M. Thal
- Drug Discovery Biology Theme, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia
| | - Laurence J. Miller
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Scottsdale, Arizona, United States of America
| | - Patrick M. Sexton
- Drug Discovery Biology Theme, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia
- ARC Centre for Cryo-Electron Microscopy of Membrane Proteins, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia
| |
Collapse
|
12
|
Lasunción MA, Martínez-Botas J, Martín-Sánchez C, Busto R, Gómez-Coronado D. Cell cycle dependence on the mevalonate pathway: Role of cholesterol and non-sterol isoprenoids. Biochem Pharmacol 2021; 196:114623. [PMID: 34052188 DOI: 10.1016/j.bcp.2021.114623] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 05/25/2021] [Accepted: 05/25/2021] [Indexed: 12/16/2022]
Abstract
The mevalonate pathway is responsible for the synthesis of isoprenoids, including sterols and other metabolites that are essential for diverse biological functions. Cholesterol, the main sterol in mammals, and non-sterol isoprenoids are in high demand by rapidly dividing cells. As evidence of its importance, many cell signaling pathways converge on the mevalonate pathway and these include those involved in proliferation, tumor-promotion, and tumor-suppression. As well as being a fundamental building block of cell membranes, cholesterol plays a key role in maintaining their lipid organization and biophysical properties, and it is crucial for the function of proteins located in the plasma membrane. Importantly, cholesterol and other mevalonate derivatives are essential for cell cycle progression, and their deficiency blocks different steps in the cycle. Furthermore, the accumulation of non-isoprenoid mevalonate derivatives can cause DNA replication stress. Identification of the mechanisms underlying the effects of cholesterol and other mevalonate derivatives on cell cycle progression may be useful in the search for new inhibitors, or the repurposing of preexisting cholesterol biosynthesis inhibitors to target cancer cell division. In this review, we discuss the dependence of cell division on an active mevalonate pathway and the role of different mevalonate derivatives in cell cycle progression.
Collapse
Affiliation(s)
- Miguel A Lasunción
- Servicio de Bioquímica-Investigación, Hospital Universitario Ramón y Cajal, IRyCIS, Madrid, Spain; CIBER de Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III (ISCIII), Spain.
| | - Javier Martínez-Botas
- Servicio de Bioquímica-Investigación, Hospital Universitario Ramón y Cajal, IRyCIS, Madrid, Spain; CIBER de Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III (ISCIII), Spain
| | - Covadonga Martín-Sánchez
- Servicio de Bioquímica-Investigación, Hospital Universitario Ramón y Cajal, IRyCIS, Madrid, Spain
| | - Rebeca Busto
- Servicio de Bioquímica-Investigación, Hospital Universitario Ramón y Cajal, IRyCIS, Madrid, Spain; CIBER de Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III (ISCIII), Spain
| | - Diego Gómez-Coronado
- Servicio de Bioquímica-Investigación, Hospital Universitario Ramón y Cajal, IRyCIS, Madrid, Spain; CIBER de Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III (ISCIII), Spain.
| |
Collapse
|
13
|
Jakubík J, El-Fakahany EE. Allosteric Modulation of GPCRs of Class A by Cholesterol. Int J Mol Sci 2021; 22:1953. [PMID: 33669406 PMCID: PMC7920425 DOI: 10.3390/ijms22041953] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 02/11/2021] [Accepted: 02/12/2021] [Indexed: 12/16/2022] Open
Abstract
G-protein coupled receptors (GPCRs) are membrane proteins that convey extracellular signals to the cellular milieu. They represent a target for more than 30% of currently marketed drugs. Here we review the effects of membrane cholesterol on the function of GPCRs of Class A. We review both the specific effects of cholesterol mediated via its direct high-affinity binding to the receptor and non-specific effects mediated by cholesterol-induced changes in the properties of the membrane. Cholesterol binds to many GPCRs at both canonical and non-canonical binding sites. It allosterically affects ligand binding to and activation of GPCRs. Additionally, it changes the oligomerization state of GPCRs. In this review, we consider a perspective of the potential for the development of new therapies that are targeted at manipulating the level of membrane cholesterol or modulating cholesterol binding sites on to GPCRs.
Collapse
Affiliation(s)
- Jan Jakubík
- Department of Neurochemistry, Institute of Physiology Czech Academy of Sciences, 142 20 Prague, Czech Republic
| | - Esam E. El-Fakahany
- Department of Experimental and Clinical Pharmacology, University of Minnesota College of Pharmacy, Minneapolis, MN 55455, USA
| |
Collapse
|
14
|
Vleeshouwers W, van den Dries K, de Keijzer S, Joosten B, Lidke DS, Cambi A. Characterization of the Signaling Modalities of Prostaglandin E2 Receptors EP2 and EP4 Reveals Crosstalk and a Role for Microtubules. Front Immunol 2021; 11:613286. [PMID: 33643295 PMCID: PMC7907432 DOI: 10.3389/fimmu.2020.613286] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Accepted: 12/18/2020] [Indexed: 11/13/2022] Open
Abstract
Prostaglandin E2 (PGE2) is a lipid mediator that modulates the function of myeloid immune cells such as macrophages and dendritic cells (DCs) through the activation of the G protein-coupled receptors EP2 and EP4. While both EP2 and EP4 signaling leads to an elevation of intracellular cyclic adenosine monophosphate (cAMP) levels through the stimulating Gαs protein, EP4 also couples to the inhibitory Gαi protein to decrease the production of cAMP. The receptor-specific contributions to downstream immune modulatory functions are still poorly defined. Here, we employed quantitative imaging methods to characterize the early EP2 and EP4 signaling events in myeloid cells and their contribution to the dissolution of adhesion structures called podosomes, which is a first and essential step in DC maturation. We first show that podosome loss in DCs is primarily mediated by EP4. Next, we demonstrate that EP2 and EP4 signaling leads to distinct cAMP production profiles, with EP4 inducing a transient cAMP response and EP2 inducing a sustained cAMP response only at high PGE2 levels. We further find that simultaneous EP2 and EP4 stimulation attenuates cAMP production, suggesting a reciprocal control of EP2 and EP4 signaling. Finally, we demonstrate that efficient signaling of both EP2 and EP4 relies on an intact microtubule network. Together, these results enhance our understanding of early EP2 and EP4 signaling in myeloid cells. Considering that modulation of PGE2 signaling is regarded as an important therapeutic possibility in anti-tumor immunotherapy, our findings may facilitate the development of efficient and specific immune modulators of PGE2 receptors.
Collapse
Affiliation(s)
- Ward Vleeshouwers
- Department of Cell Biology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, Netherlands
| | - Koen van den Dries
- Department of Cell Biology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, Netherlands
| | - Sandra de Keijzer
- Department of Cell Biology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, Netherlands
| | - Ben Joosten
- Department of Cell Biology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, Netherlands
| | - Diane S Lidke
- Department of Pathology, University of New Mexico Health Sciences Center, Albuquerque, NM, United States.,Comprehensive Cancer Center, University of New Mexico Health Sciences Center, Albuquerque, NM, United States
| | - Alessandra Cambi
- Department of Cell Biology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, Netherlands
| |
Collapse
|
15
|
Interaction of drugs with lipid raft membrane domains as a possible target. Drug Target Insights 2021; 14:34-47. [PMID: 33510571 PMCID: PMC7832984 DOI: 10.33393/dti.2020.2185] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Accepted: 11/11/2020] [Indexed: 01/23/2023] Open
Abstract
Introduction Plasma membranes are not the homogeneous bilayers of uniformly distributed lipids but the lipid complex with laterally separated lipid raft membrane domains, which provide receptor, ion channel and enzyme proteins with a platform. The aim of this article is to review the mechanistic interaction of drugs with membrane lipid rafts and address the question whether drugs induce physicochemical changes in raft-constituting and raft-surrounding membranes. Methods Literature searches of PubMed/MEDLINE and Google Scholar databases from 2000 to 2020 were conducted to include articles published in English in internationally recognized journals. Collected articles were independently reviewed by title, abstract and text for relevance. Results The literature search indicated that pharmacologically diverse drugs interact with raft model membranes and cellular membrane lipid rafts. They could physicochemically modify functional protein-localizing membrane lipid rafts and the membranes surrounding such domains, affecting the raft organizational integrity with the resultant exhibition of pharmacological activity. Raft-acting drugs were characterized as ones to decrease membrane fluidity, induce liquid-ordered phase or order plasma membranes, leading to lipid raft formation; and ones to increase membrane fluidity, induce liquid-disordered phase or reduce phase transition temperature, leading to lipid raft disruption. Conclusion Targeting lipid raft membrane domains would open a new way for drug design and development. Since angiotensin-converting enzyme 2 receptors which are a cell-specific target of and responsible for the cellular entry of novel coronavirus are localized in lipid rafts, agents that specifically disrupt the relevant rafts may be a drug against coronavirus disease 2019.
Collapse
|
16
|
Harikumar KG, Coudrat T, Desai AJ, Dong M, Dengler DG, Furness SGB, Christopoulos A, Wootten D, Sergienko EA, Sexton PM, Miller LJ. Discovery of a Positive Allosteric Modulator of Cholecystokinin Action at CCK1R in Normal and Elevated Cholesterol. Front Endocrinol (Lausanne) 2021; 12:789957. [PMID: 34950108 PMCID: PMC8689142 DOI: 10.3389/fendo.2021.789957] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Accepted: 11/11/2021] [Indexed: 11/13/2022] Open
Abstract
Drugs useful in prevention/treatment of obesity could improve health. Cholecystokinin (CCK) is a key regulator of appetite, working through the type 1 CCK receptor (CCK1R); however, full agonists have not stimulated more weight loss than dieting. We proposed an alternate strategy to target this receptor, while reducing likelihood of side effects and/or toxicity. Positive allosteric modulators (PAMs) with minimal intrinsic agonist activity would enhance CCK action, while maintaining spatial and temporal characteristics of physiologic signaling. This could correct abnormal stimulus-activity coupling observed in a high-cholesterol environment observed in obesity. We utilized high-throughput screening to identify a molecule with this pharmacological profile and studied its basis of action. Compound 1 was a weak partial agonist, with PAM activity to enhance CCK action at CCK1R, but not CCK2R, maintained in both normal and high cholesterol. Compound 1 (10 µM) did not exhibit agonist activity or stimulate internalization of CCK1R. It enhanced CCK activity by slowing the off-rate of bound hormone, increasing its binding affinity. Computational docking of Compound 1 to CCK1R yielded plausible poses. A radioiodinatable photolabile analogue retained Compound 1 pharmacology and covalently labeled CCK1R Thr211, consistent with one proposed pose. Our study identifies a novel, selective, CCK1R PAM that binds to the receptor to enhance action of CCK-8 and CCK-58 in both normal and disease-mimicking high-cholesterol environments. This facilitates the development of compounds that target the physiologic spatial and temporal engagement of CCK1R by CCK that underpins its critical role in metabolic regulation.
Collapse
Affiliation(s)
- Kaleeckal G. Harikumar
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Scottsdale, AZ, United States
| | - Thomas Coudrat
- Drug Discovery Biology Theme, Monash Institute for Pharmaceutical Sciences, Monash University, Parkville, VIC, Australia
- ARC (Australian Research Council) Centre for Cryo-electron Microscopy of Membrane Proteins, Monash Institute for Pharmaceutical Sciences, Monash University, Parkville, VIC, Australia
| | - Aditya J. Desai
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Scottsdale, AZ, United States
| | - Maoqing Dong
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Scottsdale, AZ, United States
| | - Daniela G. Dengler
- Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, United States
| | - Sebastian G. B. Furness
- Drug Discovery Biology Theme, Monash Institute for Pharmaceutical Sciences, Monash University, Parkville, VIC, Australia
| | - Arthur Christopoulos
- Drug Discovery Biology Theme, Monash Institute for Pharmaceutical Sciences, Monash University, Parkville, VIC, Australia
- ARC (Australian Research Council) Centre for Cryo-electron Microscopy of Membrane Proteins, Monash Institute for Pharmaceutical Sciences, Monash University, Parkville, VIC, Australia
| | - Denise Wootten
- Drug Discovery Biology Theme, Monash Institute for Pharmaceutical Sciences, Monash University, Parkville, VIC, Australia
- ARC (Australian Research Council) Centre for Cryo-electron Microscopy of Membrane Proteins, Monash Institute for Pharmaceutical Sciences, Monash University, Parkville, VIC, Australia
| | - Eduard A. Sergienko
- Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, United States
| | - Patrick M. Sexton
- Drug Discovery Biology Theme, Monash Institute for Pharmaceutical Sciences, Monash University, Parkville, VIC, Australia
- ARC (Australian Research Council) Centre for Cryo-electron Microscopy of Membrane Proteins, Monash Institute for Pharmaceutical Sciences, Monash University, Parkville, VIC, Australia
| | - Laurence J. Miller
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Scottsdale, AZ, United States
- *Correspondence: Laurence J. Miller,
| |
Collapse
|
17
|
Abstract
The field of cAMP signaling is witnessing exciting developments with the recognition that cAMP is compartmentalized and that spatial regulation of cAMP is critical for faithful signal coding. This realization has changed our understanding of cAMP signaling from a model in which cAMP connects a receptor at the plasma membrane to an intracellular effector in a linear pathway to a model in which cAMP signals propagate within a complex network of alternative branches and the specific functional outcome strictly depends on local regulation of cAMP levels and on selective activation of a limited number of branches within the network. In this review, we cover some of the early studies and summarize more recent evidence supporting the model of compartmentalized cAMP signaling, and we discuss how this knowledge is starting to provide original mechanistic insight into cell physiology and a novel framework for the identification of disease mechanisms that potentially opens new avenues for therapeutic interventions. SIGNIFICANCE STATEMENT: cAMP mediates the intracellular response to multiple hormones and neurotransmitters. Signal fidelity and accurate coordination of a plethora of different cellular functions is achieved via organization of multiprotein signalosomes and cAMP compartmentalization in subcellular nanodomains. Defining the organization and regulation of subcellular cAMP nanocompartments is necessary if we want to understand the complex functional ramifications of pharmacological treatments that target G protein-coupled receptors and for generating a blueprint that can be used to develop precision medicine interventions.
Collapse
Affiliation(s)
- Manuela Zaccolo
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom
| | - Anna Zerio
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom
| | - Miguel J Lobo
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
18
|
Bhattarai A, Wang J, Miao Y. G-Protein-Coupled Receptor-Membrane Interactions Depend on the Receptor Activation State. J Comput Chem 2020; 41:460-471. [PMID: 31602675 PMCID: PMC7026935 DOI: 10.1002/jcc.26082] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Revised: 07/25/2019] [Accepted: 09/03/2019] [Indexed: 12/20/2022]
Abstract
G-protein-coupled receptors (GPCRs) are the largest family of human membrane proteins and serve as primary targets of approximately one-third of currently marketed drugs. In particular, adenosine A1 receptor (A1 AR) is an important therapeutic target for treating cardiac ischemia-reperfusion injuries, neuropathic pain, and renal diseases. As a prototypical GPCR, the A1 AR is located within a phospholipid membrane bilayer and transmits cellular signals by changing between different conformational states. It is important to elucidate the lipid-protein interactions in order to understand the functional mechanism of GPCRs. Here, all-atom simulations using a robust Gaussian accelerated molecular dynamics (GaMD) method were performed on both the inactive (antagonist bound) and active (agonist and G-protein bound) A1 AR, which was embedded in a 1-palmitoyl-2-oleoyl-glycero-3-phosphocholine (POPC) lipid bilayer. In the GaMD simulations, the membrane lipids played a key role in stabilizing different conformational states of the A1 AR. Our simulations further identified important regions of the receptor that interacted distinctly with the lipids in highly correlated manner. Activation of the A1 AR led to differential dynamics in the upper and lower leaflets of the lipid bilayer. In summary, GaMD enhanced simulations have revealed strongly coupled dynamics of the GPCR and lipids that depend on the receptor activation state. © 2019 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Apurba Bhattarai
- Center for Computational Biology and Department of Molecular Biosciences, University of Kansas, Lawrence, KS 66047, USA
| | - Jinan Wang
- Center for Computational Biology and Department of Molecular Biosciences, University of Kansas, Lawrence, KS 66047, USA
| | - Yinglong Miao
- Center for Computational Biology and Department of Molecular Biosciences, University of Kansas, Lawrence, KS 66047, USA
| |
Collapse
|
19
|
Sarkar P, Chattopadhyay A. Cholesterol interaction motifs in G protein-coupled receptors: Slippery hot spots? WILEY INTERDISCIPLINARY REVIEWS-SYSTEMS BIOLOGY AND MEDICINE 2020; 12:e1481. [PMID: 32032482 DOI: 10.1002/wsbm.1481] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 12/28/2019] [Accepted: 01/09/2020] [Indexed: 12/15/2022]
Abstract
G protein-coupled receptors (GPCRs) are cell membrane associated signaling hubs that orchestrate a multitude of cellular functions upon binding to a diverse variety of extracellular ligands. Since GPCRs are integral membrane proteins with seven-transmembrane domain architecture, their function, organization and dynamics are intimately regulated by membrane lipids, such as cholesterol. Cholesterol is an extensively studied lipids in terms of its effects on GPCR structure and function. One of the possible mechanisms underlying modulation of GPCR function by cholesterol is via specific interaction of GPCRs with membrane cholesterol. These interactions of GPCRs with membrane cholesterol are often attributed to structural features of GPCRs that could facilitate their preferential association with cholesterol. In this backdrop, cholesterol interaction motifs represent putative interaction sites on GPCRs that could facilitate cholesterol-sensitive function of these receptors. In this review, we provide an overview of cholesterol interaction motifs found in GPCRs, which have been identified through a combination of crystallography, bioinformatics analysis, and functional studies. In addition, we will highlight, using specific examples, why mere presence of a cholesterol interaction motif at a given site may not directly implicate its role in interaction with membrane cholesterol. We therefore believe that experimental approaches, followed by functional analysis of cholesterol sensitivity of GPCRs, would provide a better understanding of the role played by these motifs in cholesterol-sensitive function. We envision that a comprehensive knowledge of cholesterol interaction sites in GPCRs would allow us to develop a better understanding of GPCR structure-function paradigm, and could be useful in future therapeutics. This article is categorized under: Models of Systems Properties and Processes > Mechanistic Models Analytical and Computational Methods > Computational Methods Laboratory Methods and Technologies > Macromolecular Interactions, Methods.
Collapse
Affiliation(s)
- Parijat Sarkar
- CSIR-Centre for Cellular and Molecular Biology, Hyderabad, India
| | | |
Collapse
|
20
|
Abstract
Lipid microenvironments in the plasma membrane are known to influence many signal transduction pathways. Several of those pathways are critical for both the etiology and treatment of depression. Further, several signaling proteins are modified, covalently, by lipids, a process that alters their interface with the microenvironments mentioned above. This review presents a brief discussion of the interface of the above elements as well as a discussion about the participation of lipids and lipid moieties in the action of antidepressants.
Collapse
Affiliation(s)
- Nathan H Wray
- University of Illinois College of Medicine, Department of Physiology & Biophysics, Chicago, IL, United States; The Graduate Program in Neuroscience, Chicago, IL, United States
| | - Mark M Rasenick
- University of Illinois College of Medicine, Department of Physiology & Biophysics, Chicago, IL, United States; The Graduate Program in Neuroscience, Chicago, IL, United States; Department of Psychiatry, Chicago, IL, United States; The Jesse Brown VAMC, Chicago, IL, United States.
| |
Collapse
|
21
|
Smith LK, Kuhn TB, Chen J, Bamburg JR. HIV Associated Neurodegenerative Disorders: A New Perspective on the Role of Lipid Rafts in Gp120-Mediated Neurotoxicity. Curr HIV Res 2019; 16:258-269. [PMID: 30280668 PMCID: PMC6398609 DOI: 10.2174/1570162x16666181003144740] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Revised: 09/17/2018] [Accepted: 09/26/2018] [Indexed: 02/07/2023]
Abstract
The implementation of combination antiretroviral therapy (cART) as the primary means of treatment for HIV infection has achieved a dramatic decline in deaths attributed to AIDS and the reduced incidence of severe forms of HIV-associated neurocognitive disorders (HAND) in infected individuals. Despite these advances, milder forms of HAND persist and prevalence of these forms of neurocognitive impairment are rising with the aging population of HIV infected individuals. HIV enters the CNS early in the pathophysiology establishing persistent infection in resident macrophages and glial cells. These infected cells, in turn, secrete neurotoxic viral proteins, inflammatory cytokines, and small metabolites thought to contribute to neurodegenerative processes. The viral envelope protein gp120 has been identified as a potent neurotoxin affecting neurodegeneration via indirect and direct mechanisms involving interactions with chemokine co-receptors CCR5 and CXCR4. This short review focuses on gp120 neurotropism and associated mechanisms of neurotoxicity linked to chemokine receptors CCR5 and CXCR4 with a new perspective on plasma membrane lipid rafts as an active participant in gp120-mediated neurodegeneration underlying HIV induced CNS pathology.
Collapse
Affiliation(s)
- Lisa K Smith
- Department of Chemistry and Biochemistry, University of Alaska Fairbanks, Fairbanks, AK, United States
| | - Thomas B Kuhn
- Department of Chemistry and Biochemistry, University of Alaska Fairbanks, Fairbanks, AK, United States
| | - Jack Chen
- Department of Biology and Wildlife, Institute of Arctic Biology, University of Alaska Fairbanks, Fairbanks, AK, United States
| | - James R Bamburg
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO, United States
| |
Collapse
|
22
|
Startek JB, Boonen B, López-Requena A, Talavera A, Alpizar YA, Ghosh D, Van Ranst N, Nilius B, Voets T, Talavera K. Mouse TRPA1 function and membrane localization are modulated by direct interactions with cholesterol. eLife 2019; 8:e46084. [PMID: 31184584 PMCID: PMC6590989 DOI: 10.7554/elife.46084] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Accepted: 06/10/2019] [Indexed: 01/04/2023] Open
Abstract
The cation channel TRPA1 transduces a myriad of noxious chemical stimuli into nociceptor electrical excitation and neuropeptide release, leading to pain and neurogenic inflammation. Despite emergent evidence that TRPA1 is regulated by the membrane environment, it remains unknown whether this channel localizes in membrane microdomains or whether it interacts with cholesterol. Using total internal reflection fluorescence microscopy and density gradient centrifugation we found that mouse TRPA1 localizes preferably into cholesterol-rich domains and functional experiments revealed that cholesterol depletion decreases channel sensitivity to chemical agonists. Moreover, we identified two structural motifs in transmembrane segments 2 and 4 involved in mTRPA1-cholesterol interactions that are necessary for normal agonist sensitivity and plasma membrane localization. We discuss the impact of such interactions on TRPA1 gating mechanisms, regulation by the lipid environment, and role of this channel in sensory membrane microdomains, all of which helps to understand the puzzling pharmacology and pathophysiology of this channel.
Collapse
Affiliation(s)
- Justyna B Startek
- Laboratory of Ion Channel Research and TRP Research Platform Leuven (TRPLe), Department of Cellular and Molecular MedicineKU LeuvenLeuvenBelgium
- VIB Center for Brain & Disease ResearchLeuvenBelgium
| | - Brett Boonen
- Laboratory of Ion Channel Research and TRP Research Platform Leuven (TRPLe), Department of Cellular and Molecular MedicineKU LeuvenLeuvenBelgium
- VIB Center for Brain & Disease ResearchLeuvenBelgium
| | - Alejandro López-Requena
- Laboratory of Ion Channel Research and TRP Research Platform Leuven (TRPLe), Department of Cellular and Molecular MedicineKU LeuvenLeuvenBelgium
- VIB Center for Brain & Disease ResearchLeuvenBelgium
| | - Ariel Talavera
- Center for Microscopy and Molecular Imaging (CMMI), Laboratory of MicroscopyUniversité Libre de BruxellesGosseliesBelgium
| | - Yeranddy A Alpizar
- Laboratory of Ion Channel Research and TRP Research Platform Leuven (TRPLe), Department of Cellular and Molecular MedicineKU LeuvenLeuvenBelgium
- VIB Center for Brain & Disease ResearchLeuvenBelgium
| | - Debapriya Ghosh
- Laboratory of Ion Channel Research and TRP Research Platform Leuven (TRPLe), Department of Cellular and Molecular MedicineKU LeuvenLeuvenBelgium
- VIB Center for Brain & Disease ResearchLeuvenBelgium
| | - Nele Van Ranst
- Laboratory of Ion Channel Research and TRP Research Platform Leuven (TRPLe), Department of Cellular and Molecular MedicineKU LeuvenLeuvenBelgium
- VIB Center for Brain & Disease ResearchLeuvenBelgium
| | - Bernd Nilius
- Laboratory of Ion Channel Research and TRP Research Platform Leuven (TRPLe), Department of Cellular and Molecular MedicineKU LeuvenLeuvenBelgium
- VIB Center for Brain & Disease ResearchLeuvenBelgium
| | - Thomas Voets
- Laboratory of Ion Channel Research and TRP Research Platform Leuven (TRPLe), Department of Cellular and Molecular MedicineKU LeuvenLeuvenBelgium
- VIB Center for Brain & Disease ResearchLeuvenBelgium
| | - Karel Talavera
- Laboratory of Ion Channel Research and TRP Research Platform Leuven (TRPLe), Department of Cellular and Molecular MedicineKU LeuvenLeuvenBelgium
- VIB Center for Brain & Disease ResearchLeuvenBelgium
| |
Collapse
|
23
|
Manna M, Nieminen T, Vattulainen I. Understanding the Role of Lipids in Signaling Through Atomistic and Multiscale Simulations of Cell Membranes. Annu Rev Biophys 2019; 48:421-439. [DOI: 10.1146/annurev-biophys-052118-115553] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Cell signaling controls essentially all cellular processes. While it is often assumed that proteins are the key architects coordinating cell signaling, recent studies have shown more and more clearly that lipids are also involved in signaling processes in a number of ways. Lipids do, for instance, act as messengers, modulate membrane receptor conformation and dynamics, and control membrane receptor partitioning. Further, through structural modifications such as oxidation, the functions of lipids as part of signaling processes can be modified. In this context, in this article we discuss the understanding recently revealed by atomistic and coarse-grained computer simulations of nanoscale processes and underlying physicochemical principles related to lipids’ functions in cellular signaling.
Collapse
Affiliation(s)
- Moutusi Manna
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal, Madhya Pradesh 462 066, India
| | - Tuomo Nieminen
- Computational Physics Laboratory, Tampere University, FI-33014 Tampere, Finland
| | - Ilpo Vattulainen
- Computational Physics Laboratory, Tampere University, FI-33014 Tampere, Finland
- Department of Physics, University of Helsinki, FI-00014 Helsinki, Finland
| |
Collapse
|
24
|
A Critical Analysis of Molecular Mechanisms Underlying Membrane Cholesterol Sensitivity of GPCRs. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1115:21-52. [PMID: 30649754 DOI: 10.1007/978-3-030-04278-3_2] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
G protein-coupled receptors (GPCRs) are the largest and a diverse family of proteins involved in signal transduction across biological membranes. GPCRs mediate a wide range of physiological processes and have emerged as major targets for the development of novel drug candidates in all clinical areas. Since GPCRs are integral membrane proteins, regulation of their organization, dynamics, and function by membrane lipids, in particular membrane cholesterol, has emerged as an exciting area of research. Cholesterol sensitivity of GPCRs could be due to direct interaction of cholesterol with the receptor (specific effect). Alternately, GPCR function could be influenced by the effect of cholesterol on membrane physical properties (general effect). In this review, we critically analyze the specific and general mechanisms of the modulation of GPCR function by membrane cholesterol, taking examples from representative GPCRs. While evidence for both the proposed mechanisms exists, there appears to be no clear-cut distinction between these two mechanisms, and a combination of these mechanisms cannot be ruled out in many cases. We conclude that classifying the mechanism underlying cholesterol sensitivity of GPCR function merely into these two mutually exclusive classes could be somewhat arbitrary. A more holistic approach could be suitable for analyzing GPCR-cholesterol interaction.
Collapse
|
25
|
Liu JJ, Hezghia A, Shaikh SR, Cenido JF, Stark RE, Mann JJ, Sublette ME. Regulation of monoamine transporters and receptors by lipid microdomains: implications for depression. Neuropsychopharmacology 2018; 43:2165-2179. [PMID: 30022062 PMCID: PMC6135777 DOI: 10.1038/s41386-018-0133-6] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Revised: 05/24/2018] [Accepted: 06/18/2018] [Indexed: 12/16/2022]
Abstract
Lipid microdomains ("rafts") are dynamic, nanoscale regions of the plasma membrane enriched in cholesterol and glycosphingolipids, that possess distinctive physicochemical properties including higher order than the surrounding membrane. Lipid microdomain integrity is thought to affect neurotransmitter signaling by regulating membrane-bound protein signaling. Among the proteins potentially affected are monoaminergic receptors and transporters. As dysfunction of monoaminergic neurotransmission is implicated in major depressive disorder and other neuropsychiatric conditions, interactions with lipid microdomains may be of clinical importance. This systematic review evaluates what is known about the molecular relationships of monoamine transporter and receptor regulation to lipid microdomains. The PubMed/MeSH database was searched for original studies published in English through August 2017 concerning relationships between lipid microdomains and serotonin, dopamine and norepinephrine transporters and receptors. Fifty-seven publications were identified and assessed. Strong evidence implicates lipid microdomains in the regulation of serotonin and norepinephrine transporters; serotonin 1A, 2A, 3A, and 7A receptors; and dopamine D1 and β2 adrenergic receptors. Results were conflicting or more complex regarding lipid microdomain associations with the dopamine transporter, D2, D3, and D5 receptors; and negative with respect to β1 adrenergic receptors. Indirect evidence suggests that antidepressants, lipid-lowering drugs, and polyunsaturated fatty acids may exert effects on depression and suicide by altering the lipid milieu, thereby affecting monoaminergic transporter and receptor signaling. The lipid composition of membrane subdomains is involved in localization and trafficking of specific monoaminergic receptors and transporters. Elucidating precise mechanisms whereby lipid microdomains modulate monoamine neurotransmission in clinical contexts can have critical implications for pharmacotherapeutic targeting.
Collapse
Affiliation(s)
- Joanne J Liu
- Department of Molecular Imaging & Neuropathology, New York State Psychiatric Institute, New York, NY, USA
- Chestnut Hill Hospital, Philadelphia, PA, USA
| | - Adrienne Hezghia
- Department of Molecular Imaging & Neuropathology, New York State Psychiatric Institute, New York, NY, USA
- Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, The State University of New York, Buffalo, NY, USA
| | - Saame Raza Shaikh
- Department of Nutrition, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Joshua F Cenido
- Department of Molecular Imaging & Neuropathology, New York State Psychiatric Institute, New York, NY, USA
- Department of Psychiatry, Charles R. Drew University of Medicine and Science, Los Angeles, CA, USA
| | - Ruth E Stark
- Department of Chemistry and Biochemistry and CUNY Institute for Macromolecular Assemblies, The City College of New York, New York, NY, USA
- Ph.D. Program in Biochemistry, The Graduate Center of the City University of New York, New York, NY, USA
| | - J John Mann
- Department of Molecular Imaging & Neuropathology, New York State Psychiatric Institute, New York, NY, USA
- Department of Psychiatry, Columbia University, New York, NY, USA
- Department of Radiology, Columbia University, New York, NY, USA
| | - M Elizabeth Sublette
- Department of Molecular Imaging & Neuropathology, New York State Psychiatric Institute, New York, NY, USA.
- Department of Psychiatry, Columbia University, New York, NY, USA.
| |
Collapse
|
26
|
Scheefhals N, MacGillavry HD. Functional organization of postsynaptic glutamate receptors. Mol Cell Neurosci 2018; 91:82-94. [PMID: 29777761 PMCID: PMC6276983 DOI: 10.1016/j.mcn.2018.05.002] [Citation(s) in RCA: 98] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Revised: 04/16/2018] [Accepted: 05/07/2018] [Indexed: 01/28/2023] Open
Abstract
Glutamate receptors are the most abundant excitatory neurotransmitter receptors in the brain, responsible for mediating the vast majority of excitatory transmission in neuronal networks. The AMPA- and NMDA-type ionotropic glutamate receptors (iGluRs) are ligand-gated ion channels that mediate the fast synaptic responses, while metabotropic glutamate receptors (mGluRs) are coupled to downstream signaling cascades that act on much slower timescales. These functionally distinct receptor sub-types are co-expressed at individual synapses, allowing for the precise temporal modulation of postsynaptic excitability and plasticity. Intriguingly, these receptors are differentially distributed with respect to the presynaptic release site. While iGluRs are enriched in the core of the synapse directly opposing the release site, mGluRs reside preferentially at the border of the synapse. As such, to understand the differential contribution of these receptors to synaptic transmission, it is important to not only consider their signaling properties, but also the mechanisms that control the spatial segregation of these receptor types within synapses. In this review, we will focus on the mechanisms that control the organization of glutamate receptors at the postsynaptic membrane with respect to the release site, and discuss how this organization could regulate synapse physiology.
Collapse
Affiliation(s)
- Nicky Scheefhals
- Cell Biology, Department of Biology, Faculty of Science, Utrecht University, 3584 CH Utrecht, The Netherlands
| | - Harold D MacGillavry
- Cell Biology, Department of Biology, Faculty of Science, Utrecht University, 3584 CH Utrecht, The Netherlands.
| |
Collapse
|
27
|
Felce JH, Davis SJ, Klenerman D. Single-Molecule Analysis of G Protein-Coupled Receptor Stoichiometry: Approaches and Limitations. Trends Pharmacol Sci 2018; 39:96-108. [PMID: 29122289 DOI: 10.1016/j.tips.2017.10.005] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2017] [Revised: 10/06/2017] [Accepted: 10/10/2017] [Indexed: 01/17/2023]
Abstract
How G protein-coupled receptors (GPCRs) are organized at the cell surface remains highly contentious. Single-molecule (SM) imaging is starting to inform this debate as receptor behavior can now be visualized directly, without the need for interpreting ensemble data. The limited number of SM studies of GPCRs undertaken to date have strongly suggested that dimerization is at most transient, and that most receptors are monomeric at any given time. However, even SM data has its caveats and needs to be interpreted carefully. Here, we discuss the types of SM imaging strategies used to examine GPCR stoichiometry and consider some of these caveats. We also emphasize that attempts to resolve the debate ought to rely on orthogonal approaches to measuring receptor stoichiometry.
Collapse
Affiliation(s)
- James H Felce
- Kennedy Institute of Rheumatology, University of Oxford, Oxford OX3 7FY, UK.
| | - Simon J Davis
- Radcliffe Department of Medicine and Medical Research Council Human Immunology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford OX3 9DS, UK
| | - David Klenerman
- Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, UK
| |
Collapse
|
28
|
Calebiro D, Sungkaworn T. Single-Molecule Imaging of GPCR Interactions. Trends Pharmacol Sci 2018; 39:109-122. [DOI: 10.1016/j.tips.2017.10.010] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Revised: 10/23/2017] [Accepted: 10/25/2017] [Indexed: 02/07/2023]
|
29
|
Single-molecule imaging reveals receptor-G protein interactions at cell surface hot spots. Nature 2017; 550:543-547. [PMID: 29045395 DOI: 10.1038/nature24264] [Citation(s) in RCA: 207] [Impact Index Per Article: 25.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Accepted: 09/08/2017] [Indexed: 12/19/2022]
Abstract
G-protein-coupled receptors mediate the biological effects of many hormones and neurotransmitters and are important pharmacological targets. They transmit their signals to the cell interior by interacting with G proteins. However, it is unclear how receptors and G proteins meet, interact and couple. Here we analyse the concerted motion of G-protein-coupled receptors and G proteins on the plasma membrane and provide a quantitative model that reveals the key factors that underlie the high spatiotemporal complexity of their interactions. Using two-colour, single-molecule imaging we visualize interactions between individual receptors and G proteins at the surface of living cells. Under basal conditions, receptors and G proteins form activity-dependent complexes that last for around one second. Agonists specifically regulate the kinetics of receptor-G protein interactions, mainly by increasing their association rate. We find hot spots on the plasma membrane, at least partially defined by the cytoskeleton and clathrin-coated pits, in which receptors and G proteins are confined and preferentially couple. Imaging with the nanobody Nb37 suggests that signalling by G-protein-coupled receptors occurs preferentially at these hot spots. These findings shed new light on the dynamic interactions that control G-protein-coupled receptor signalling.
Collapse
|
30
|
Onfroy L, Galandrin S, Pontier SM, Seguelas MH, N'Guyen D, Sénard JM, Galés C. G protein stoichiometry dictates biased agonism through distinct receptor-G protein partitioning. Sci Rep 2017; 7:7885. [PMID: 28801617 PMCID: PMC5554226 DOI: 10.1038/s41598-017-07392-5] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Accepted: 06/26/2017] [Indexed: 12/22/2022] Open
Abstract
Biased agonism at G protein coupled receptors emerges as an opportunity for development of drugs with enhanced benefit/risk balance making biased ligand identification a priority. However, ligand biased signature, classically inferred from ligand activity across multiple pathways, displays high variability in recombinant systems. Functional assays usually necessity receptor/effector overexpression that should be controlled among assays to allow comparison but this calibration currently fails. Herein, we demonstrate that Gα expression level dictates the biased profiling of agonists and, to a lesser extent of β-blockers, in a Gα isoform- and receptor-specific way, depending on specific G protein activity in different membrane territories. These results have major therapeutic implications since they suggest that the ligand bias phenotype is not necessarily maintained in pathological cell background characterized by fluctuations in G protein expression. Thus, we recommend implementation of G protein stoichiometry as a new parameter in biased ligand screening programs.
Collapse
Affiliation(s)
- Lauriane Onfroy
- Institut des Maladies Métaboliques et Cardiovasculaires, Institut National de la Santé et de la Recherche Médicale, U1048, Université de Toulouse, F-31432, Toulouse, France
| | - Ségolène Galandrin
- Institut des Maladies Métaboliques et Cardiovasculaires, Institut National de la Santé et de la Recherche Médicale, U1048, Université de Toulouse, F-31432, Toulouse, France
| | | | - Marie-Hélène Seguelas
- Institut des Maladies Métaboliques et Cardiovasculaires, Institut National de la Santé et de la Recherche Médicale, U1048, Université de Toulouse, F-31432, Toulouse, France
| | - Du N'Guyen
- Institut des Maladies Métaboliques et Cardiovasculaires, Institut National de la Santé et de la Recherche Médicale, U1048, Université de Toulouse, F-31432, Toulouse, France
| | - Jean-Michel Sénard
- Institut des Maladies Métaboliques et Cardiovasculaires, Institut National de la Santé et de la Recherche Médicale, U1048, Université de Toulouse, F-31432, Toulouse, France.,Service de Pharmacologie Clinique, Centre Hospitalier Universitaire de Toulouse, Faculté de Médecine, Université de Toulouse, F-31000, Toulouse, France
| | - Céline Galés
- Institut des Maladies Métaboliques et Cardiovasculaires, Institut National de la Santé et de la Recherche Médicale, U1048, Université de Toulouse, F-31432, Toulouse, France.
| |
Collapse
|
31
|
Tardif JC, Rhainds D, Rhéaume E, Dubé MP. CETP. Arterioscler Thromb Vasc Biol 2017; 37:396-400. [DOI: 10.1161/atvbaha.116.307122] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2016] [Accepted: 01/18/2017] [Indexed: 11/16/2022]
Abstract
High-density lipoproteins are involved in reverse cholesterol transport and possess anti-inflammatory and antioxidative properties. Paradoxically, CETP (cholesteryl ester transfer protein) inhibitors have been shown to increase inflammation as revealed by a raised plasma level of high-sensitivity C-reactive protein. CETP inhibitors did not improve clinical outcomes in large-scale clinical trials of unselected patients with coronary disease. Dalcetrapib is a CETP modulator for which effects on cardiovascular outcomes were demonstrated in the dal-OUTCOMES trial to be influenced by correlated polymorphisms in the
ADCY9
(adenylate cyclase type 9) gene (
P
=2.4×10
−8
for rs1967309). Patients with the AA genotype at rs1967309 had a relative reduction of 39% in the risk of presenting a cardiovascular event when treated with dalcetrapib compared with placebo (95% confidence interval, 0.41–0.92). In contrast, patients with the GG genotype had a 27% increase in risk, whereas heterozygotes (AG) presented a neutral result. Supporting evidence from the dal-PLAQUE-2 study using carotid ultrasonography revealed that the polymorphisms tested in the
ADCY9
linkage disequilibrium block were associated with disease regression for patients with the protective genotype, progression for the harmful genotype, and no effect in heterozygotes (
P
≤0.05 and ≤0.01 for 10 and 3 polymorphisms, respectively) when comparing dalcetrapib to placebo. Strikingly concordant and significant genotype-dependent effects of dalcetrapib were also obtained for changes in high-sensitivity C-reactive protein and cholesterol efflux capacity. The Dal-GenE randomized trial is currently being conducted in patients with a recent acute coronary syndrome bearing the AA genotype at rs1967309 in the
ADCY9
gene to confirm the effects of dalcetrapib on hard cardiovascular outcomes.
Collapse
Affiliation(s)
- Jean-Claude Tardif
- From the Montreal Heart Institute (J.-C.T., D.R., E.R., M.-P.D.) and Department of Medicine, Université de Montréal, Quebec, Canada (J.-C.T., E.R., M.-P.D.); and Université de Montréal Beaulieu-Saucier Pharmacogenomics Center, Quebec, Canada (M.-P.D.)
| | - David Rhainds
- From the Montreal Heart Institute (J.-C.T., D.R., E.R., M.-P.D.) and Department of Medicine, Université de Montréal, Quebec, Canada (J.-C.T., E.R., M.-P.D.); and Université de Montréal Beaulieu-Saucier Pharmacogenomics Center, Quebec, Canada (M.-P.D.)
| | - Eric Rhéaume
- From the Montreal Heart Institute (J.-C.T., D.R., E.R., M.-P.D.) and Department of Medicine, Université de Montréal, Quebec, Canada (J.-C.T., E.R., M.-P.D.); and Université de Montréal Beaulieu-Saucier Pharmacogenomics Center, Quebec, Canada (M.-P.D.)
| | - Marie-Pierre Dubé
- From the Montreal Heart Institute (J.-C.T., D.R., E.R., M.-P.D.) and Department of Medicine, Université de Montréal, Quebec, Canada (J.-C.T., E.R., M.-P.D.); and Université de Montréal Beaulieu-Saucier Pharmacogenomics Center, Quebec, Canada (M.-P.D.)
| |
Collapse
|
32
|
Manna M, Niemelä M, Tynkkynen J, Javanainen M, Kulig W, Müller DJ, Rog T, Vattulainen I. Mechanism of allosteric regulation of β 2-adrenergic receptor by cholesterol. eLife 2016; 5. [PMID: 27897972 PMCID: PMC5182060 DOI: 10.7554/elife.18432] [Citation(s) in RCA: 115] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2016] [Accepted: 11/28/2016] [Indexed: 11/13/2022] Open
Abstract
There is evidence that lipids can be allosteric regulators of membrane protein structure and activation. However, there are no data showing how exactly the regulation emerges from specific lipid-protein interactions. Here we show in atomistic detail how the human β2-adrenergic receptor (β2AR) - a prototypical G protein-coupled receptor - is modulated by cholesterol in an allosteric fashion. Extensive atomistic simulations show that cholesterol regulates β2AR by limiting its conformational variability. The mechanism of action is based on the binding of cholesterol at specific high-affinity sites located near the transmembrane helices 5-7 of the receptor. The alternative mechanism, where the β2AR conformation would be modulated by membrane-mediated interactions, plays only a minor role. Cholesterol analogues also bind to cholesterol binding sites and impede the structural flexibility of β2AR, however cholesterol generates the strongest effect. The results highlight the capacity of lipids to regulate the conformation of membrane receptors through specific interactions.
Collapse
Affiliation(s)
- Moutusi Manna
- Department of Physics, Tampere University of Technology, Tampere, Finland
| | - Miia Niemelä
- Department of Physics, Tampere University of Technology, Tampere, Finland
| | - Joona Tynkkynen
- Department of Physics, Tampere University of Technology, Tampere, Finland
| | - Matti Javanainen
- Department of Physics, Tampere University of Technology, Tampere, Finland.,Department of Physics, University of Helsinki, Helsinki, Finland
| | - Waldemar Kulig
- Department of Physics, Tampere University of Technology, Tampere, Finland.,Department of Physics, University of Helsinki, Helsinki, Finland
| | - Daniel J Müller
- Department of Biosystems Science and Engineering, ETH Zürich, Basel, Switzerland
| | - Tomasz Rog
- Department of Physics, Tampere University of Technology, Tampere, Finland.,Department of Physics, University of Helsinki, Helsinki, Finland
| | - Ilpo Vattulainen
- Department of Physics, Tampere University of Technology, Tampere, Finland.,Department of Physics, University of Helsinki, Helsinki, Finland.,MEMPHYS-Center for Biomembrane Physics, University of Southern Denmark, Odense, Denmark
| |
Collapse
|
33
|
Gao L, Chen J, Gao J, Wang H, Xiong W. Super-resolution microscopy reveals the insulin-resistance-regulated reorganization of GLUT4 on plasma membranes. J Cell Sci 2016; 130:396-405. [PMID: 27888215 DOI: 10.1242/jcs.192450] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Accepted: 11/11/2016] [Indexed: 02/01/2023] Open
Abstract
GLUT4 (also known as SLC2A4) is essential for glucose uptake in skeletal muscles and adipocytes, which play central roles in whole-body glucose metabolism. Here, using direct stochastic optical reconstruction microscopy (dSTORM) to investigate the characteristics of plasma-membrane-fused GLUT4 at the single-molecule level, we have demonstrated that insulin and insulin resistance regulate the spatial organization of GLUT4 in adipocytes. Stimulation with insulin shifted the balance of GLUT4 on the plasma membrane toward a more dispersed configuration. In contrast, insulin resistance induced a more clustered distribution of GLUT4 and increased the mean number of molecules per cluster. Furthermore, our data demonstrate that the F5QQI motif and lipid rafts mediate the maintenance of GLUT4 clusters on the plasma membrane. Mutation of F5QQI (F5QQA-GLUT4) induced a more clustered distribution of GLUT4; moreover, destruction of lipid rafts in adipocytes expressing F5QQA-GLUT4 dramatically decreased the percentage of large clusters and the mean number of molecules per cluster. In conclusion, our data clarify the effects of insulin stimulation or insulin resistance on GLUT4 reorganization on the plasma membrane and reveal new pathogenic mechanisms of insulin resistance.
Collapse
Affiliation(s)
- Lan Gao
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan 650201, P.R. China.,Graduate University of Chinese Academy of Sciences, Beijing 100049, P.R. China
| | - Junling Chen
- Graduate University of Chinese Academy of Sciences, Beijing 100049, P.R. China.,State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilil 130022, P.R. China
| | - Jing Gao
- Graduate University of Chinese Academy of Sciences, Beijing 100049, P.R. China.,State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilil 130022, P.R. China
| | - Hongda Wang
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilil 130022, P.R. China
| | - Wenyong Xiong
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan 650201, P.R. China
| |
Collapse
|
34
|
Costa-Neto CM, Parreiras-E-Silva LT, Bouvier M. A Pluridimensional View of Biased Agonism. Mol Pharmacol 2016; 90:587-595. [PMID: 27638872 DOI: 10.1124/mol.116.105940] [Citation(s) in RCA: 91] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2016] [Accepted: 09/14/2016] [Indexed: 12/17/2022] Open
Abstract
When studying G protein-coupled receptor (GPCR) signaling and ligand-biased agonism, at least three dimensional spaces must be considered, as follows: 1) the distinct conformations that can be stabilized by different ligands promoting the engagement of different signaling effectors and accessory regulators; 2) the distinct subcellular trafficking that can be conferred by different ligands, which results in spatially distinct signals; and 3) the differential binding kinetics that maintain the receptor in specific conformation and/or subcellular localization for different periods of time, allowing for the engagement of distinct signaling effector subsets. These three pluridimensional aspects of signaling contribute to different faces of functional selectivity and provide a complex, interconnected way to define the signaling profile of each individual ligand acting at GPCRs. In this review, we discuss how each of these aspects may contribute to the diversity of signaling, but also how they shed light on the complexity of data analyses and interpretation. The impact of phenotype variability as a source of signaling diversity, and the influence of novel and more sensitive assays in the detection and analysis of signaling pluridimensionality, is also discussed. Finally, we discuss perspectives for the use of the concept of pluridimensional signaling in drug discovery, in which we highlight future predictive tools that may facilitate the identification of compounds with optimal therapeutic and safety properties based on the signaling signatures of drug candidates.
Collapse
Affiliation(s)
- Claudio M Costa-Neto
- Department of Biochemistry and Immunology, Ribeirao Preto Medical School, University of São Paulo, Ribeirao Preto, Brazil (C.M.C.-N., L.T.P.-S.); and Department of Biochemistry and Molecular Medicine and Institute for Research in Immunology and Cancer, University of Montréal, Montréal, Canada (L.T.P.-S., M.B.)
| | - Lucas T Parreiras-E-Silva
- Department of Biochemistry and Immunology, Ribeirao Preto Medical School, University of São Paulo, Ribeirao Preto, Brazil (C.M.C.-N., L.T.P.-S.); and Department of Biochemistry and Molecular Medicine and Institute for Research in Immunology and Cancer, University of Montréal, Montréal, Canada (L.T.P.-S., M.B.)
| | - Michel Bouvier
- Department of Biochemistry and Immunology, Ribeirao Preto Medical School, University of São Paulo, Ribeirao Preto, Brazil (C.M.C.-N., L.T.P.-S.); and Department of Biochemistry and Molecular Medicine and Institute for Research in Immunology and Cancer, University of Montréal, Montréal, Canada (L.T.P.-S., M.B.)
| |
Collapse
|
35
|
Garcia-Fernandez MA, Percherancier Y, Lagroye I, O'Connor RP, Veyret B, Arnaud-Cormos D, Leveque P. Dosimetric Characteristics of an EMF Delivery System Based on a Real-Time Impedance Measurement Device. IEEE Trans Biomed Eng 2016; 63:2317-2325. [PMID: 26886964 DOI: 10.1109/tbme.2016.2527927] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
In this paper, the dosimetric characterization of an EMF exposure setup compatible with real-time impedance measurements of adherent biological cells is proposed. The EMF are directly delivered to the 16-well format plate used by the commercial xCELLigence apparatus. Experiments and numerical simulations were carried out for the dosimetric analysis. The reflection coefficient was less than -10 dB up to 180 MHz and this exposure system can be matched at higher frequencies up to 900 and 1800 MHz. The specific absorption rate (SAR) distribution within the wells containing the biological medium was calculated by numerical finite-difference time domain simulations and results were verified by temperature measurements at 13.56 MHz. Numerical SAR values were obtained at the microelectrode level where the biological cells were exposed to EMF including 13.56, 900, and 1800 MHz. At 13.56 MHz, the SAR values, within the cell layer and the 270-μL volume of medium, are 1.9e3 and 3.5 W/kg/incident mW, respectively.
Collapse
Affiliation(s)
| | - Yann Percherancier
- laboratoire de l'Intégration du Matériau au Système (IMS), UMR 5218, Université de Bordeaux I
| | - Isabelle Lagroye
- laboratoire de l'Intégration du Matériau au Système (IMS), UMR 5218, Université de Bordeaux I
| | | | - Bernard Veyret
- laboratoire de l'Intégration du Matériau au Système (IMS), UMR 5218, Université de Bordeaux I
| | | | | |
Collapse
|
36
|
Gahbauer S, Böckmann RA. Membrane-Mediated Oligomerization of G Protein Coupled Receptors and Its Implications for GPCR Function. Front Physiol 2016; 7:494. [PMID: 27826255 PMCID: PMC5078798 DOI: 10.3389/fphys.2016.00494] [Citation(s) in RCA: 90] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2016] [Accepted: 10/11/2016] [Indexed: 12/18/2022] Open
Abstract
The dimerization or even oligomerization of G protein coupled receptors (GPCRs) causes ongoing, controversial debates about its functional role and the coupled biophysical, biochemical or biomedical implications. A continously growing number of studies hints to a relation between oligomerization and function of GPCRs and strengthens the assumption that receptor assembly plays a key role in the regulation of protein function. Additionally, progress in the structural analysis of GPCR-G protein and GPCR-ligand interactions allows to distinguish between actively functional and non-signaling complexes. Recent findings further suggest that the surrounding membrane, i.e., its lipid composition may modulate the preferred dimerization interface and as a result the abundance of distinct dimeric conformations. In this review, the association of GPCRs and the role of the membrane in oligomerization will be discussed. An overview of the different reported oligomeric interfaces is provided and their capability for signaling discussed. The currently available data is summarized with regard to the formation of GPCR oligomers, their structures and dependency on the membrane microenvironment as well as the coupling of oligomerization to receptor function.
Collapse
Affiliation(s)
| | - Rainer A. Böckmann
- Computational Biology, Department of Biology, Friedrich-Alexander University of Erlangen-NürnbergErlangen, Germany
| |
Collapse
|
37
|
See Hoe LE, May LT, Headrick JP, Peart JN. Sarcolemmal dependence of cardiac protection and stress-resistance: roles in aged or diseased hearts. Br J Pharmacol 2016; 173:2966-91. [PMID: 27439627 DOI: 10.1111/bph.13552] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2015] [Revised: 06/27/2016] [Accepted: 06/28/2016] [Indexed: 12/25/2022] Open
Abstract
Disruption of the sarcolemmal membrane is a defining feature of oncotic death in cardiac ischaemia-reperfusion (I-R), and its molecular makeup not only fundamentally governs this process but also affects multiple determinants of both myocardial I-R injury and responsiveness to cardioprotective stimuli. Beyond the influences of membrane lipids on the cytoprotective (and death) receptors intimately embedded within this bilayer, myocardial ionic homeostasis, substrate metabolism, intercellular communication and electrical conduction are all sensitive to sarcolemmal makeup, and critical to outcomes from I-R. As will be outlined in this review, these crucial sarcolemmal dependencies may underlie not only the negative effects of age and common co-morbidities on myocardial ischaemic tolerance but also the on-going challenge of implementing efficacious cardioprotection in patients suffering accidental or surgically induced I-R. We review evidence for the involvement of sarcolemmal makeup changes in the impairment of stress-resistance and cardioprotection observed with ageing and highly prevalent co-morbid conditions including diabetes and hypercholesterolaemia. A greater understanding of membrane changes with age/disease, and the inter-dependences of ischaemic tolerance and cardioprotection on sarcolemmal makeup, can facilitate the development of strategies to preserve membrane integrity and cell viability, and advance the challenging goal of implementing efficacious 'cardioprotection' in clinically relevant patient cohorts. Linked Articles This article is part of a themed section on Molecular Pharmacology of G Protein-Coupled Receptors. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v173.20/issuetoc.
Collapse
Affiliation(s)
- Louise E See Hoe
- Menzies Health Institute Queensland, Griffith University, Gold Coast, Australia.,Critical Care Research Group, The Prince Charles Hospital and The University of Queensland, Chermside, Queensland, Australia
| | - Lauren T May
- Monash Institute of Pharmaceutical Sciences, Monash University, Clayton, VIC, Australia
| | - John P Headrick
- Menzies Health Institute Queensland, Griffith University, Gold Coast, Australia
| | - Jason N Peart
- Menzies Health Institute Queensland, Griffith University, Gold Coast, Australia.
| |
Collapse
|
38
|
Tardif JC, Rhainds D, Brodeur M, Feroz Zada Y, Fouodjio R, Provost S, Boulé M, Alem S, Grégoire JC, L'Allier PL, Ibrahim R, Guertin MC, Mongrain I, Olsson AG, Schwartz GG, Rhéaume E, Dubé MP. Genotype-Dependent Effects of Dalcetrapib on Cholesterol Efflux and Inflammation: Concordance With Clinical Outcomes. ACTA ACUST UNITED AC 2016; 9:340-8. [PMID: 27418594 PMCID: PMC4982759 DOI: 10.1161/circgenetics.116.001405] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2016] [Accepted: 06/23/2016] [Indexed: 01/25/2023]
Abstract
BACKGROUND Dalcetrapib effects on cardiovascular outcomes are determined by adenylate cyclase 9 gene polymorphisms. Our aim was to determine whether these clinical end point results are also associated with changes in reverse cholesterol transport and inflammation. METHODS AND RESULTS Participants of the dal-OUTCOMES and dal-PLAQUE-2 trials were randomly assigned to receive dalcetrapib or placebo in addition to standard care. High-sensitivity C-reactive protein was measured at baseline and at end of study in 5243 patients from dal-OUTCOMES also genotyped for the rs1967309 polymorphism in adenylate cyclase 9. Cholesterol efflux capacity of high-density lipoproteins from J774 macrophages after cAMP stimulation was determined at baseline and 12 months in 171 genotyped patients from dal-PLAQUE-2. Treatment with dalcetrapib resulted in placebo-adjusted geometric mean percent increases in high-sensitivity C-reactive protein from baseline to end of trial of 18.1% (P=0.0009) and 18.7% (P=0.00001) in participants with the GG and AG genotypes, respectively, but the change was -1.0% (P=0.89) in those with the protective AA genotype. There was an interaction between the treatment arm and the genotype groups (P=0.02). Although the mean change in cholesterol efflux was similar among study arms in patients with GG genotype (mean: 7.8% and 7.4%), increases were 22.3% and 3.5% with dalcetrapib and placebo for those with AA genotype (P=0.005). There was a significant genetic effect for change in efflux for dalcetrapib (P=0.02), but not with placebo. CONCLUSIONS Genotype-dependent effects on C-reactive protein and cholesterol efflux are supportive of dalcetrapib benefits on atherosclerotic cardiovascular outcomes in patients with the AA genotype at polymorphism rs1967309. CLINICAL TRIALS REGISTRATION ClinicalTrials.gov; Unique Identifiers: NCT00658515 and NCT01059682.
Collapse
Affiliation(s)
- Jean-Claude Tardif
- From the Montreal Heart Institute (J.-C.T., D.R., M. Brodeur, M. Boulé, S.A., J.C.G., P.L.L., R.I., E.R., M.-P.D.), Université de Montréal, Faculty of Medicine (J.-C.T., J.C.G., P.L.L., R.I., E.R., M.-P.D.), Université de Montréal Beaulieu-Saucier Pharmacogenomics Center (Y.F.Z., R.F., S.P., I.M., M.-P.D.), Montreal Health Innovations Coordinating Center (MHICC) (M.-C.G.), Montreal, Canada; Linkoping University, Department of Medicine and Health, Stockholm, Sweden (A.G.O.); and Veterans Affairs Medical Center & University of Colorado, School of Medicine, Denver, CO (G.G.S.).
| | - David Rhainds
- From the Montreal Heart Institute (J.-C.T., D.R., M. Brodeur, M. Boulé, S.A., J.C.G., P.L.L., R.I., E.R., M.-P.D.), Université de Montréal, Faculty of Medicine (J.-C.T., J.C.G., P.L.L., R.I., E.R., M.-P.D.), Université de Montréal Beaulieu-Saucier Pharmacogenomics Center (Y.F.Z., R.F., S.P., I.M., M.-P.D.), Montreal Health Innovations Coordinating Center (MHICC) (M.-C.G.), Montreal, Canada; Linkoping University, Department of Medicine and Health, Stockholm, Sweden (A.G.O.); and Veterans Affairs Medical Center & University of Colorado, School of Medicine, Denver, CO (G.G.S.)
| | - Mathieu Brodeur
- From the Montreal Heart Institute (J.-C.T., D.R., M. Brodeur, M. Boulé, S.A., J.C.G., P.L.L., R.I., E.R., M.-P.D.), Université de Montréal, Faculty of Medicine (J.-C.T., J.C.G., P.L.L., R.I., E.R., M.-P.D.), Université de Montréal Beaulieu-Saucier Pharmacogenomics Center (Y.F.Z., R.F., S.P., I.M., M.-P.D.), Montreal Health Innovations Coordinating Center (MHICC) (M.-C.G.), Montreal, Canada; Linkoping University, Department of Medicine and Health, Stockholm, Sweden (A.G.O.); and Veterans Affairs Medical Center & University of Colorado, School of Medicine, Denver, CO (G.G.S.)
| | - Yassamin Feroz Zada
- From the Montreal Heart Institute (J.-C.T., D.R., M. Brodeur, M. Boulé, S.A., J.C.G., P.L.L., R.I., E.R., M.-P.D.), Université de Montréal, Faculty of Medicine (J.-C.T., J.C.G., P.L.L., R.I., E.R., M.-P.D.), Université de Montréal Beaulieu-Saucier Pharmacogenomics Center (Y.F.Z., R.F., S.P., I.M., M.-P.D.), Montreal Health Innovations Coordinating Center (MHICC) (M.-C.G.), Montreal, Canada; Linkoping University, Department of Medicine and Health, Stockholm, Sweden (A.G.O.); and Veterans Affairs Medical Center & University of Colorado, School of Medicine, Denver, CO (G.G.S.)
| | - René Fouodjio
- From the Montreal Heart Institute (J.-C.T., D.R., M. Brodeur, M. Boulé, S.A., J.C.G., P.L.L., R.I., E.R., M.-P.D.), Université de Montréal, Faculty of Medicine (J.-C.T., J.C.G., P.L.L., R.I., E.R., M.-P.D.), Université de Montréal Beaulieu-Saucier Pharmacogenomics Center (Y.F.Z., R.F., S.P., I.M., M.-P.D.), Montreal Health Innovations Coordinating Center (MHICC) (M.-C.G.), Montreal, Canada; Linkoping University, Department of Medicine and Health, Stockholm, Sweden (A.G.O.); and Veterans Affairs Medical Center & University of Colorado, School of Medicine, Denver, CO (G.G.S.)
| | - Sylvie Provost
- From the Montreal Heart Institute (J.-C.T., D.R., M. Brodeur, M. Boulé, S.A., J.C.G., P.L.L., R.I., E.R., M.-P.D.), Université de Montréal, Faculty of Medicine (J.-C.T., J.C.G., P.L.L., R.I., E.R., M.-P.D.), Université de Montréal Beaulieu-Saucier Pharmacogenomics Center (Y.F.Z., R.F., S.P., I.M., M.-P.D.), Montreal Health Innovations Coordinating Center (MHICC) (M.-C.G.), Montreal, Canada; Linkoping University, Department of Medicine and Health, Stockholm, Sweden (A.G.O.); and Veterans Affairs Medical Center & University of Colorado, School of Medicine, Denver, CO (G.G.S.)
| | - Marie Boulé
- From the Montreal Heart Institute (J.-C.T., D.R., M. Brodeur, M. Boulé, S.A., J.C.G., P.L.L., R.I., E.R., M.-P.D.), Université de Montréal, Faculty of Medicine (J.-C.T., J.C.G., P.L.L., R.I., E.R., M.-P.D.), Université de Montréal Beaulieu-Saucier Pharmacogenomics Center (Y.F.Z., R.F., S.P., I.M., M.-P.D.), Montreal Health Innovations Coordinating Center (MHICC) (M.-C.G.), Montreal, Canada; Linkoping University, Department of Medicine and Health, Stockholm, Sweden (A.G.O.); and Veterans Affairs Medical Center & University of Colorado, School of Medicine, Denver, CO (G.G.S.)
| | - Sonia Alem
- From the Montreal Heart Institute (J.-C.T., D.R., M. Brodeur, M. Boulé, S.A., J.C.G., P.L.L., R.I., E.R., M.-P.D.), Université de Montréal, Faculty of Medicine (J.-C.T., J.C.G., P.L.L., R.I., E.R., M.-P.D.), Université de Montréal Beaulieu-Saucier Pharmacogenomics Center (Y.F.Z., R.F., S.P., I.M., M.-P.D.), Montreal Health Innovations Coordinating Center (MHICC) (M.-C.G.), Montreal, Canada; Linkoping University, Department of Medicine and Health, Stockholm, Sweden (A.G.O.); and Veterans Affairs Medical Center & University of Colorado, School of Medicine, Denver, CO (G.G.S.)
| | - Jean C Grégoire
- From the Montreal Heart Institute (J.-C.T., D.R., M. Brodeur, M. Boulé, S.A., J.C.G., P.L.L., R.I., E.R., M.-P.D.), Université de Montréal, Faculty of Medicine (J.-C.T., J.C.G., P.L.L., R.I., E.R., M.-P.D.), Université de Montréal Beaulieu-Saucier Pharmacogenomics Center (Y.F.Z., R.F., S.P., I.M., M.-P.D.), Montreal Health Innovations Coordinating Center (MHICC) (M.-C.G.), Montreal, Canada; Linkoping University, Department of Medicine and Health, Stockholm, Sweden (A.G.O.); and Veterans Affairs Medical Center & University of Colorado, School of Medicine, Denver, CO (G.G.S.)
| | - Philippe L L'Allier
- From the Montreal Heart Institute (J.-C.T., D.R., M. Brodeur, M. Boulé, S.A., J.C.G., P.L.L., R.I., E.R., M.-P.D.), Université de Montréal, Faculty of Medicine (J.-C.T., J.C.G., P.L.L., R.I., E.R., M.-P.D.), Université de Montréal Beaulieu-Saucier Pharmacogenomics Center (Y.F.Z., R.F., S.P., I.M., M.-P.D.), Montreal Health Innovations Coordinating Center (MHICC) (M.-C.G.), Montreal, Canada; Linkoping University, Department of Medicine and Health, Stockholm, Sweden (A.G.O.); and Veterans Affairs Medical Center & University of Colorado, School of Medicine, Denver, CO (G.G.S.)
| | - Reda Ibrahim
- From the Montreal Heart Institute (J.-C.T., D.R., M. Brodeur, M. Boulé, S.A., J.C.G., P.L.L., R.I., E.R., M.-P.D.), Université de Montréal, Faculty of Medicine (J.-C.T., J.C.G., P.L.L., R.I., E.R., M.-P.D.), Université de Montréal Beaulieu-Saucier Pharmacogenomics Center (Y.F.Z., R.F., S.P., I.M., M.-P.D.), Montreal Health Innovations Coordinating Center (MHICC) (M.-C.G.), Montreal, Canada; Linkoping University, Department of Medicine and Health, Stockholm, Sweden (A.G.O.); and Veterans Affairs Medical Center & University of Colorado, School of Medicine, Denver, CO (G.G.S.)
| | - Marie-Claude Guertin
- From the Montreal Heart Institute (J.-C.T., D.R., M. Brodeur, M. Boulé, S.A., J.C.G., P.L.L., R.I., E.R., M.-P.D.), Université de Montréal, Faculty of Medicine (J.-C.T., J.C.G., P.L.L., R.I., E.R., M.-P.D.), Université de Montréal Beaulieu-Saucier Pharmacogenomics Center (Y.F.Z., R.F., S.P., I.M., M.-P.D.), Montreal Health Innovations Coordinating Center (MHICC) (M.-C.G.), Montreal, Canada; Linkoping University, Department of Medicine and Health, Stockholm, Sweden (A.G.O.); and Veterans Affairs Medical Center & University of Colorado, School of Medicine, Denver, CO (G.G.S.)
| | - Ian Mongrain
- From the Montreal Heart Institute (J.-C.T., D.R., M. Brodeur, M. Boulé, S.A., J.C.G., P.L.L., R.I., E.R., M.-P.D.), Université de Montréal, Faculty of Medicine (J.-C.T., J.C.G., P.L.L., R.I., E.R., M.-P.D.), Université de Montréal Beaulieu-Saucier Pharmacogenomics Center (Y.F.Z., R.F., S.P., I.M., M.-P.D.), Montreal Health Innovations Coordinating Center (MHICC) (M.-C.G.), Montreal, Canada; Linkoping University, Department of Medicine and Health, Stockholm, Sweden (A.G.O.); and Veterans Affairs Medical Center & University of Colorado, School of Medicine, Denver, CO (G.G.S.)
| | - Anders G Olsson
- From the Montreal Heart Institute (J.-C.T., D.R., M. Brodeur, M. Boulé, S.A., J.C.G., P.L.L., R.I., E.R., M.-P.D.), Université de Montréal, Faculty of Medicine (J.-C.T., J.C.G., P.L.L., R.I., E.R., M.-P.D.), Université de Montréal Beaulieu-Saucier Pharmacogenomics Center (Y.F.Z., R.F., S.P., I.M., M.-P.D.), Montreal Health Innovations Coordinating Center (MHICC) (M.-C.G.), Montreal, Canada; Linkoping University, Department of Medicine and Health, Stockholm, Sweden (A.G.O.); and Veterans Affairs Medical Center & University of Colorado, School of Medicine, Denver, CO (G.G.S.)
| | - Gregory G Schwartz
- From the Montreal Heart Institute (J.-C.T., D.R., M. Brodeur, M. Boulé, S.A., J.C.G., P.L.L., R.I., E.R., M.-P.D.), Université de Montréal, Faculty of Medicine (J.-C.T., J.C.G., P.L.L., R.I., E.R., M.-P.D.), Université de Montréal Beaulieu-Saucier Pharmacogenomics Center (Y.F.Z., R.F., S.P., I.M., M.-P.D.), Montreal Health Innovations Coordinating Center (MHICC) (M.-C.G.), Montreal, Canada; Linkoping University, Department of Medicine and Health, Stockholm, Sweden (A.G.O.); and Veterans Affairs Medical Center & University of Colorado, School of Medicine, Denver, CO (G.G.S.)
| | - Eric Rhéaume
- From the Montreal Heart Institute (J.-C.T., D.R., M. Brodeur, M. Boulé, S.A., J.C.G., P.L.L., R.I., E.R., M.-P.D.), Université de Montréal, Faculty of Medicine (J.-C.T., J.C.G., P.L.L., R.I., E.R., M.-P.D.), Université de Montréal Beaulieu-Saucier Pharmacogenomics Center (Y.F.Z., R.F., S.P., I.M., M.-P.D.), Montreal Health Innovations Coordinating Center (MHICC) (M.-C.G.), Montreal, Canada; Linkoping University, Department of Medicine and Health, Stockholm, Sweden (A.G.O.); and Veterans Affairs Medical Center & University of Colorado, School of Medicine, Denver, CO (G.G.S.)
| | - Marie-Pierre Dubé
- From the Montreal Heart Institute (J.-C.T., D.R., M. Brodeur, M. Boulé, S.A., J.C.G., P.L.L., R.I., E.R., M.-P.D.), Université de Montréal, Faculty of Medicine (J.-C.T., J.C.G., P.L.L., R.I., E.R., M.-P.D.), Université de Montréal Beaulieu-Saucier Pharmacogenomics Center (Y.F.Z., R.F., S.P., I.M., M.-P.D.), Montreal Health Innovations Coordinating Center (MHICC) (M.-C.G.), Montreal, Canada; Linkoping University, Department of Medicine and Health, Stockholm, Sweden (A.G.O.); and Veterans Affairs Medical Center & University of Colorado, School of Medicine, Denver, CO (G.G.S.).
| |
Collapse
|
39
|
Galandrin S, Onfroy L, Poirot MC, Sénard JM, Galés C. Delineating biased ligand efficacy at 7TM receptors from an experimental perspective. Int J Biochem Cell Biol 2016; 77:251-63. [PMID: 27107932 DOI: 10.1016/j.biocel.2016.04.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2016] [Revised: 04/15/2016] [Accepted: 04/16/2016] [Indexed: 12/17/2022]
Abstract
During the last 10 years, the concept of "biased agonism" also called "functional selectivity" swamped the pharmacology of 7 transmembrane receptors and paved the way for developing signaling pathway-selective drugs with increased efficacy and less adverse effects. Initially thought to select the activation of only a subset of the signaling pathways by the reference agonist, bias ligands revealed higher complexity as they have been shown to stabilize variable receptor conformations that associate with distinct signaling events from the reference. Today, one major challenge relies on the in vitro determination of the bias and classification of these ligands, as a prerequisite for future in vivo and clinical translation. In this review, current experimental considerations for the bias evaluation related to choice of the cellular model, of the signaling pathway as well as of the assays are presented and discussed.
Collapse
Affiliation(s)
- Ségolène Galandrin
- Institut des Maladies Métaboliques et Cardiovasculaires (I2MC), INSERM, UMR 1048, Université Toulouse, F-31432 Toulouse, France
| | - Lauriane Onfroy
- Institut des Maladies Métaboliques et Cardiovasculaires (I2MC), INSERM, UMR 1048, Université Toulouse, F-31432 Toulouse, France
| | - Mathias Charles Poirot
- Institut des Maladies Métaboliques et Cardiovasculaires (I2MC), INSERM, UMR 1048, Université Toulouse, F-31432 Toulouse, France
| | - Jean-Michel Sénard
- Institut des Maladies Métaboliques et Cardiovasculaires (I2MC), INSERM, UMR 1048, Université Toulouse, F-31432 Toulouse, France; Service de Pharmacologie Clinique, Faculté de médecine, Centre Hospitalier Universitaire de Toulouse, Université de Toulouse, F-31000 Toulouse, France
| | - Céline Galés
- Institut des Maladies Métaboliques et Cardiovasculaires (I2MC), INSERM, UMR 1048, Université Toulouse, F-31432 Toulouse, France.
| |
Collapse
|
40
|
Proteome Based Construction of the Lymphocyte Function-Associated Antigen 1 (LFA-1) Interactome in Human Dendritic Cells. PLoS One 2016; 11:e0149637. [PMID: 26889827 PMCID: PMC4758637 DOI: 10.1371/journal.pone.0149637] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2015] [Accepted: 02/03/2016] [Indexed: 12/21/2022] Open
Abstract
The β2-integrin lymphocyte function-associated antigen 1 (LFA-1) plays an important role in the migration, adhesion and intercellular communication of dendritic cells (DCs). During the differentiation of human DCs from monocyte precursors, LFA-1 ligand binding capacity is completely lost, even though its expression levels were remained constant. Yet LFA-1-mediated adhesive capacity on DCs can be regained by exposing DCs to the chemokine CCL21, suggesting a high degree of regulation of LFA-1 activity during the course of DC differentiation. The molecular mechanisms underlying this regulation of LFA-1 function in DCs, however, remain elusive. To get more insight we attempted to identify specific LFA-1 binding partners that may play a role in regulating LFA-1 activity in DCs. We used highly sensitive label free quantitative mass-spectrometry to identify proteins co-immunoprecipitated (co-IP) with LFA-1 from ex vivo generated DCs. Among the potential binding partners we identified not only established components of integrin signalling pathways and cytoskeletal proteins, but also several novel LFA-1 binding partners including CD13, galectin-3, thrombospondin-1 and CD44. Further comparison to the LFA-1 interaction partners in monocytes indicated that DC differentiation was accompanied by an overall increase in LFA-1 associated proteins, in particular cytoskeletal, signalling and plasma membrane (PM) proteins. The here presented LFA-1 interactome composed of 78 proteins thus represents a valuable resource of potential regulators of LFA-1 function during the DC lifecycle.
Collapse
|
41
|
Eich C, Manzo C, de Keijzer S, Bakker GJ, Reinieren-Beeren I, García-Parajo MF, Cambi A. Changes in membrane sphingolipid composition modulate dynamics and adhesion of integrin nanoclusters. Sci Rep 2016; 6:20693. [PMID: 26869100 PMCID: PMC4751618 DOI: 10.1038/srep20693] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2015] [Accepted: 01/11/2016] [Indexed: 12/14/2022] Open
Abstract
Sphingolipids are essential constituents of the plasma membrane (PM) and play an important role in signal transduction by modulating clustering and dynamics of membrane receptors. Changes in lipid composition are therefore likely to influence receptor organisation and function, but how this precisely occurs is difficult to address given the intricacy of the PM lipid-network. Here, we combined biochemical assays and single molecule dynamic approaches to demonstrate that the local lipid environment regulates adhesion of integrin receptors by impacting on their lateral mobility. Induction of sphingomyelinase (SMase) activity reduced sphingomyelin (SM) levels by conversion to ceramide (Cer), resulting in impaired integrin adhesion and reduced integrin mobility. Dual-colour imaging of cortical actin in combination with single molecule tracking of integrins showed that this reduced mobility results from increased coupling to the actin cytoskeleton brought about by Cer formation. As such, our data emphasizes a critical role for the PM local lipid composition in regulating the lateral mobility of integrins and their ability to dynamically increase receptor density for efficient ligand binding in the process of cell adhesion.
Collapse
Affiliation(s)
- Christina Eich
- Department of Tumor Immunology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Postbox 9101, 6500 HB Nijmegen, The Netherlands
| | - Carlo Manzo
- ICFO-Institut de Ciencies Fotoniques, Mediterranean Technology Park, 08860 Castelldefels (Barcelona), Spain
| | - Sandra de Keijzer
- Department of Tumor Immunology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Postbox 9101, 6500 HB Nijmegen, The Netherlands
| | - Gert-Jan Bakker
- Department of Cell Biology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Postbox 9101, 6500 HB Nijmegen, The Netherlands
| | - Inge Reinieren-Beeren
- Department of Tumor Immunology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Postbox 9101, 6500 HB Nijmegen, The Netherlands
| | - Maria F García-Parajo
- ICFO-Institut de Ciencies Fotoniques, Mediterranean Technology Park, 08860 Castelldefels (Barcelona), Spain.,ICREA-Institució Catalana de Recerca i Estudis Avançats, 08010 Barcelona, Spain
| | - Alessandra Cambi
- Department of Tumor Immunology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Postbox 9101, 6500 HB Nijmegen, The Netherlands
| |
Collapse
|
42
|
Kalyana Sundaram RV, Li H, Bailey L, Rashad AA, Aneja R, Weiss K, Huynh J, Bastian AR, Papazoglou E, Abrams C, Wrenn S, Chaiken I. Impact of HIV-1 Membrane Cholesterol on Cell-Independent Lytic Inactivation and Cellular Infectivity. Biochemistry 2016; 55:447-58. [PMID: 26713837 DOI: 10.1021/acs.biochem.5b00936] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Peptide triazole thiols (PTTs) have been found previously to bind to HIV-1 Env spike gp120 and cause irreversible virus inactivation by shedding gp120 and lytically releasing luminal capsid protein p24. Since the virions remain visually intact, lysis appears to occur via limited membrane destabilization. To better understand the PTT-triggered membrane transformation involved, we investigated the role of envelope cholesterol on p24 release by measuring the effect of cholesterol depletion using methyl beta-cyclodextrin (MβCD). An unexpected bell-shaped response of PTT-induced lysis to [MβCD] was observed, involving lysis enhancement at low [MβCD] vs loss of function at high [MβCD]. The impact of cholesterol depletion on PTT-induced lysis was reversed by adding exogenous cholesterol and other sterols that support membrane rafts, while sterols that do not support rafts induced only limited reversal. Cholesterol depletion appears to cause a reduced energy barrier to lysis as judged by decreased temperature dependence with MβCD. Enhancement/replenishment responses to [MβCD] also were observed for HIV-1 infectivity, consistent with a similar energy barrier effect in the membrane transformation of virus cell fusion. Overall, the results argue that cholesterol in the HIV-1 envelope is important for balancing virus stability and membrane transformation, and that partial depletion, while increasing infectivity, also makes the virus more fragile. The results also reinforce the argument that the lytic inactivation and infectivity processes are mechanistically related and that membrane transformations occurring during lysis can provide an experimental window to investigate membrane and protein factors important for HIV-1 cell entry.
Collapse
Affiliation(s)
- Ramalingam Venkat Kalyana Sundaram
- Department of Biochemistry and Molecular Biology, Drexel University College of Medicine , Philadelphia, Pennsylvania 19102, United States.,School of Biomedical Engineering, Science and Health Systems, Drexel University , Philadelphia, Pennsylvania 19104, United States
| | - Huiyuan Li
- Shared Research Facilities, West Virginia University , Morgantown, West Virginia 26506, United States
| | - Lauren Bailey
- Department of Biochemistry and Molecular Biology, Drexel University College of Medicine , Philadelphia, Pennsylvania 19102, United States
| | - Adel A Rashad
- Department of Biochemistry and Molecular Biology, Drexel University College of Medicine , Philadelphia, Pennsylvania 19102, United States
| | - Rachna Aneja
- Department of Biochemistry and Molecular Biology, Drexel University College of Medicine , Philadelphia, Pennsylvania 19102, United States
| | - Karl Weiss
- Department of Chemical and Biological Engineering, Drexel University , Philadelphia, Pennsylvania 19104, United States
| | - James Huynh
- Department of Biological Sciences, Drexel University , Philadelphia, Pennsylvania 19104, United States
| | - Arangaserry Rosemary Bastian
- Department of Biochemistry and Molecular Biology, Drexel University College of Medicine , Philadelphia, Pennsylvania 19102, United States.,School of Biomedical Engineering, Science and Health Systems, Drexel University , Philadelphia, Pennsylvania 19104, United States
| | - Elisabeth Papazoglou
- School of Biomedical Engineering, Science and Health Systems, Drexel University , Philadelphia, Pennsylvania 19104, United States
| | - Cameron Abrams
- Department of Chemical and Biological Engineering, Drexel University , Philadelphia, Pennsylvania 19104, United States
| | - Steven Wrenn
- Department of Chemical and Biological Engineering, Drexel University , Philadelphia, Pennsylvania 19104, United States
| | - Irwin Chaiken
- Department of Biochemistry and Molecular Biology, Drexel University College of Medicine , Philadelphia, Pennsylvania 19102, United States
| |
Collapse
|
43
|
Scarselli M, Annibale P, McCormick PJ, Kolachalam S, Aringhieri S, Radenovic A, Corsini GU, Maggio R. Revealing G-protein-coupled receptor oligomerization at the single-molecule level through a nanoscopic lens: methods, dynamics and biological function. FEBS J 2015; 283:1197-217. [PMID: 26509747 DOI: 10.1111/febs.13577] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2015] [Revised: 09/29/2015] [Accepted: 10/23/2015] [Indexed: 11/30/2022]
Abstract
The introduction of super-resolution fluorescence microscopy has allowed the visualization of single proteins in their biological environment. Recently, these techniques have been applied to determine the organization of class A G-protein-coupled receptors (GPCRs), and to determine whether they exist as monomers, dimers and/or higher-order oligomers. On this subject, this review highlights recent evidence from photoactivated localization microscopy (PALM), which allows the visualization of single molecules in dense samples, and single-molecule tracking (SMT), which determines how GPCRs move and interact in living cells in the presence of different ligands. PALM has demonstrated that GPCR oligomerization depends on the receptor subtype, the cell type, the actin cytoskeleton, and other proteins. Conversely, SMT has revealed the transient dynamics of dimer formation, whereby receptors show a monomer-dimer equilibrium characterized by rapid association and dissociation. At steady state, depending on the subtype, approximately 30-50% of receptors are part of dimeric complexes. Notably, the existence of many GPCR dimers/oligomers is also supported by well-known techniques, such as resonance energy transfer methodologies, and by approaches that exploit fluorescence fluctuations, such as fluorescence correlation spectroscopy (FCS). Future research using single-molecule methods will deepen our knowledge related to the function and druggability of homo-oligomers and hetero-oligomers.
Collapse
Affiliation(s)
- Marco Scarselli
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Italy
| | - Paolo Annibale
- Laboratory of Nanoscale Biology, Institute of Bioengineering, School of Engineering, EPFL, Lausanne, Switzerland
| | | | - Shivakumar Kolachalam
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Italy
| | - Stefano Aringhieri
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Italy
| | - Aleksandra Radenovic
- Laboratory of Nanoscale Biology, Institute of Bioengineering, School of Engineering, EPFL, Lausanne, Switzerland
| | - Giovanni U Corsini
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Italy
| | - Roberto Maggio
- Biotechnological and Applied Clinical Sciences Department, University of L'Aquila, Italy
| |
Collapse
|
44
|
Piscitelli CL, Kean J, de Graaf C, Deupi X. A Molecular Pharmacologist's Guide to G Protein-Coupled Receptor Crystallography. Mol Pharmacol 2015; 88:536-51. [PMID: 26152196 DOI: 10.1124/mol.115.099663] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2015] [Accepted: 07/07/2015] [Indexed: 12/14/2022] Open
Abstract
G protein-coupled receptor (GPCR) structural biology has progressed dramatically in the last decade. There are now over 120 GPCR crystal structures deposited in the Protein Data Bank of 32 different receptors from families scattered across the phylogenetic tree, including class B, C, and Frizzled GPCRs. These structures have been obtained in combination with a wide variety of ligands and captured in a range of conformational states. This surge in structural knowledge has enlightened research into the molecular recognition of biologically active molecules, the mechanisms of receptor activation, the dynamics of functional selectivity, and fueled structure-based drug design efforts for GPCRs. Here we summarize the innovations in both protein engineering/molecular biology and crystallography techniques that have led to these advances in GPCR structural biology and discuss how they may influence the resulting structural models. We also provide a brief molecular pharmacologist's guide to GPCR X-ray crystallography, outlining some key aspects in the process of structure determination, with the goal to encourage noncrystallographers to interrogate structures at the molecular level. Finally, we show how chemogenomics approaches can be used to marry the wealth of existing receptor pharmacology data with the expanding repertoire of structures, providing a deeper understanding of the mechanistic details of GPCR function.
Collapse
Affiliation(s)
- Chayne L Piscitelli
- Laboratory of Biomolecular Research, Department of Biology and Chemistry (C.L.P., X.D.), and Condensed Matter Theory Group, Department of Research with Neutrons and Muons (X.D.), Paul Scherrer Institute, Villigen, Switzerland; Heptares Therapeutics Ltd., Welwyn Garden City, United Kingdom (J.K.); and Division of Medicinal Chemistry, Faculty of Sciences, Amsterdam Institute for Molecules, Medicines and Systems, VU University of Amsterdam, Amsterdam, The Netherlands (C.G.)
| | - James Kean
- Laboratory of Biomolecular Research, Department of Biology and Chemistry (C.L.P., X.D.), and Condensed Matter Theory Group, Department of Research with Neutrons and Muons (X.D.), Paul Scherrer Institute, Villigen, Switzerland; Heptares Therapeutics Ltd., Welwyn Garden City, United Kingdom (J.K.); and Division of Medicinal Chemistry, Faculty of Sciences, Amsterdam Institute for Molecules, Medicines and Systems, VU University of Amsterdam, Amsterdam, The Netherlands (C.G.)
| | - Chris de Graaf
- Laboratory of Biomolecular Research, Department of Biology and Chemistry (C.L.P., X.D.), and Condensed Matter Theory Group, Department of Research with Neutrons and Muons (X.D.), Paul Scherrer Institute, Villigen, Switzerland; Heptares Therapeutics Ltd., Welwyn Garden City, United Kingdom (J.K.); and Division of Medicinal Chemistry, Faculty of Sciences, Amsterdam Institute for Molecules, Medicines and Systems, VU University of Amsterdam, Amsterdam, The Netherlands (C.G.)
| | - Xavier Deupi
- Laboratory of Biomolecular Research, Department of Biology and Chemistry (C.L.P., X.D.), and Condensed Matter Theory Group, Department of Research with Neutrons and Muons (X.D.), Paul Scherrer Institute, Villigen, Switzerland; Heptares Therapeutics Ltd., Welwyn Garden City, United Kingdom (J.K.); and Division of Medicinal Chemistry, Faculty of Sciences, Amsterdam Institute for Molecules, Medicines and Systems, VU University of Amsterdam, Amsterdam, The Netherlands (C.G.)
| |
Collapse
|
45
|
Meng XY, Mezei M, Cui M. Computational approaches for modeling GPCR dimerization. Curr Pharm Biotechnol 2015; 15:996-1006. [PMID: 25307013 DOI: 10.2174/1389201015666141013102515] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2014] [Revised: 07/09/2014] [Accepted: 08/18/2014] [Indexed: 11/22/2022]
Abstract
Growing experimental evidences suggest that dimerization and oligomerization are important for G Protein- Coupled Receptors (GPCRs) function. The detailed structural information of dimeric/oligomeric GPCRs would be very important to understand their function. Although it is encouraging that recently several experimental GPCR structures in oligomeric forms have appeared, experimental determination of GPCR structures in oligomeric forms is still a big challenge, especially in mimicking the membrane environment. Therefore, development of computational approaches to predict dimerization of GPCRs will be highly valuable. In this review, we summarize computational approaches that have been developed and used for modeling of GPCR dimerization. In addition, we introduce a novel two-dimensional Brownian Dynamics based protein docking approach, which we have recently adapted, for GPCR dimer prediction.
Collapse
Affiliation(s)
| | | | - Meng Cui
- Institute of Quantitative Biology and Medicine, Jiangsu Provincial Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou 215123, China.
| |
Collapse
|
46
|
Álvarez R, López DJ, Casas J, Lladó V, Higuera M, Nagy T, Barceló M, Busquets X, Escribá PV. G protein-membrane interactions I: Gαi1 myristoyl and palmitoyl modifications in protein-lipid interactions and its implications in membrane microdomain localization. Biochim Biophys Acta Mol Cell Biol Lipids 2015; 1851:1511-20. [PMID: 26253820 DOI: 10.1016/j.bbalip.2015.08.001] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2015] [Revised: 07/10/2015] [Accepted: 08/03/2015] [Indexed: 12/31/2022]
Abstract
G proteins are fundamental elements in signal transduction involved in key cell responses, and their interactions with cell membrane lipids are critical events whose nature is not fully understood. Here, we have studied how the presence of myristic and palmitic acid moieties affects the interaction of the Gαi1 protein with model and biological membranes. For this purpose, we quantified the binding of purified Gαi1 protein and Gαi1 protein acylation mutants to model membranes, with lipid compositions that resemble different membrane microdomains. We observed that myristic and palmitic acids not only act as membrane anchors but also regulate Gαi1 subunit interaction with lipids characteristics of certain membrane microdomains. Thus, when the Gαi1 subunit contains both fatty acids it prefers raft-like lamellar membranes, with a high sphingomyelin and cholesterol content and little phosphatidylserine and phosphatidylethanolamine. By contrast, the myristoylated and non-palmitoylated Gαi1 subunit prefers other types of ordered lipid microdomains with higher phosphatidylserine content. These results in part explain the mobility of Gαi1 protein upon reversible palmitoylation to meet one or another type of signaling protein partner. These results also serve as an example of how membrane lipid alterations can change membrane signaling or how membrane lipid therapy can regulate the cell's physiology.
Collapse
Affiliation(s)
- Rafael Álvarez
- Laboratory of Molecular Cell Biomedicine, Department of Biology, IUNICS, University of Islas Baleares, Carretera de Valldemossa km 7.5, E-07122 Palma de Mallorca, Spain
| | - David J López
- Laboratory of Molecular Cell Biomedicine, Department of Biology, IUNICS, University of Islas Baleares, Carretera de Valldemossa km 7.5, E-07122 Palma de Mallorca, Spain
| | - Jesús Casas
- Laboratory of Molecular Cell Biomedicine, Department of Biology, IUNICS, University of Islas Baleares, Carretera de Valldemossa km 7.5, E-07122 Palma de Mallorca, Spain
| | - Victoria Lladó
- Laboratory of Molecular Cell Biomedicine, Department of Biology, IUNICS, University of Islas Baleares, Carretera de Valldemossa km 7.5, E-07122 Palma de Mallorca, Spain
| | - Mónica Higuera
- Laboratory of Molecular Cell Biomedicine, Department of Biology, IUNICS, University of Islas Baleares, Carretera de Valldemossa km 7.5, E-07122 Palma de Mallorca, Spain
| | - Tünde Nagy
- Laboratory of Molecular Cell Biomedicine, Department of Biology, IUNICS, University of Islas Baleares, Carretera de Valldemossa km 7.5, E-07122 Palma de Mallorca, Spain
| | - Miquel Barceló
- Bioinorganic and Bioorganic Research Group, Department of Chemistry, IUNICS, University of Islas Baleares, Carretera de Valldemossa km 7.5, E-07122 Palma de Mallorca, Spain
| | - Xavier Busquets
- Laboratory of Molecular Cell Biomedicine, Department of Biology, IUNICS, University of Islas Baleares, Carretera de Valldemossa km 7.5, E-07122 Palma de Mallorca, Spain
| | - Pablo V Escribá
- Laboratory of Molecular Cell Biomedicine, Department of Biology, IUNICS, University of Islas Baleares, Carretera de Valldemossa km 7.5, E-07122 Palma de Mallorca, Spain.
| |
Collapse
|
47
|
Gater DL, Saurel O, Iordanov I, Liu W, Cherezov V, Milon A. Two classes of cholesterol binding sites for the β2AR revealed by thermostability and NMR. Biophys J 2015; 107:2305-12. [PMID: 25418299 DOI: 10.1016/j.bpj.2014.10.011] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2014] [Revised: 09/19/2014] [Accepted: 10/09/2014] [Indexed: 11/24/2022] Open
Abstract
Cholesterol binding to G protein-coupled receptors (GPCRs) and modulation of their activities in membranes is a fundamental issue for understanding their function. Despite the identification of cholesterol binding sites in high-resolution x-ray structures of the ?2 adrenergic receptor (β2AR) and other GPCRs, the binding affinity of cholesterol for this receptor and exchange rates between the free and bound cholesterol remain unknown. In this study we report the existence of two classes of cholesterol binding sites in β2AR. By analyzing the β2AR unfolding temperature in lipidic cubic phase (LCP) as a function of cholesterol concentration we observed high-affinity cooperative binding of cholesterol with sub-nM affinity constant. In contrast, saturation transfer difference (STD) NMR experiments revealed the existence of a second class of cholesterol binding sites, in fast exchange on the STD NMR timescale. Titration of the STD signal as a function of cholesterol concentration provided a lower limit of 100 mM for their dissociation constant. However, these binding sites are specific for both cholesterol and β2AR, as shown with control experiments using ergosterol and a control membrane protein (KpOmpA). We postulate that this specificity is mediated by the high-affinity bound cholesterol molecules and propose the formation of transient cholesterol clusters around the high-affinity binding sites.
Collapse
Affiliation(s)
- Deborah L Gater
- Institute of Pharmacology and Structural Biology - UMR 5089, CNRS and Université de Toulouse - UPS, 205 Route de Narbonne, 31077 Toulouse, France; Khalifa University of Science, Technology and Research, P.O. Box 127788, Abu Dhabi, UAE
| | - Olivier Saurel
- Institute of Pharmacology and Structural Biology - UMR 5089, CNRS and Université de Toulouse - UPS, 205 Route de Narbonne, 31077 Toulouse, France
| | - Iordan Iordanov
- Institute of Pharmacology and Structural Biology - UMR 5089, CNRS and Université de Toulouse - UPS, 205 Route de Narbonne, 31077 Toulouse, France
| | - Wei Liu
- Department of Integrative Structural and Computational Biology, Scripps Research Institute, La Jolla, California
| | - Vadim Cherezov
- Department of Integrative Structural and Computational Biology, Scripps Research Institute, La Jolla, California.
| | - Alain Milon
- Institute of Pharmacology and Structural Biology - UMR 5089, CNRS and Université de Toulouse - UPS, 205 Route de Narbonne, 31077 Toulouse, France.
| |
Collapse
|
48
|
Murphy L, Rennard S, Donohue J, Molimard M, Dahl R, Beeh KM, Dederichs J, Fülle HJ, Higgins M, Young D. Turning a molecule into a medicine: the development of indacaterol as a novel once-daily bronchodilator treatment for patients with COPD. Drugs 2015; 74:1635-57. [PMID: 25212789 DOI: 10.1007/s40265-014-0284-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Indacaterol is the first once-daily, long-acting β2-adrenergic agonist (LABA) approved for the treatment of chronic obstructive pulmonary disease (COPD). Indacaterol was developed using a combination of informed drug design and molecular chemistry to generate a β2-adrenergic agonist with a fast onset and long duration of action, enabling once-daily dosing with an acceptable safety profile. Early preclinical studies with indacaterol demonstrated these characteristics, and this promising molecule was taken into clinical development, originally for asthma treatment. Subsequent safety concerns over LABA monotherapy in patients with asthma redirected indacaterol's development to centre on COPD, where a good evidence base and guideline recommendations for bronchodilator monotherapy existed. Clinical development was initially complicated by different inhaler devices and differing doses of indacaterol. Using a phase III innovative adaptive-design clinical trial (INHANCE), indacaterol 150 and 300 μg once-daily doses were selected to be taken forward into the phase III INERGIZE programme. This programme delivered placebo-controlled and active-comparator data, including comparisons with formoterol, tiotropium and salmeterol/fluticasone, as well as the use of indacaterol in combination with tiotropium. Together, these studies provided a comprehensive assessment of the benefit-risk profile of indacaterol, allowing for regulatory submission. Indacaterol was first approved at once-daily doses of 150 and 300 μg in the European Union in 2009, followed by 150 µg in Japan (2011) and China (2012), and 75 μg in the United States (2011). To date, indacaterol is approved and marketed in more than 100 countries worldwide for once-daily maintenance treatment of COPD.
Collapse
Affiliation(s)
- Lorraine Murphy
- Novartis Horsham Research Centre, Novartis Pharmaceuticals UK Limited, Wimblehurst Road, Horsham, West Sussex, RH12 5AB, UK,
| | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Potential Signal Transduction Regulation by HDL of the β2-Adrenergic Receptor Pathway. Implications in Selected Pathological Situations. Arch Med Res 2015; 46:361-71. [PMID: 26009249 DOI: 10.1016/j.arcmed.2015.05.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2015] [Accepted: 05/12/2015] [Indexed: 01/09/2023]
Abstract
The main atheroprotective mechanism of high-density lipoprotein (HDL) has been regarded as reverse cholesterol transport, whereby cholesterol from peripheral tissues is removed and transported to the liver for elimination. Although numerous additional atheroprotective mechanisms have been suggested, the role of HDL in modulating signal transduction of cell membrane-bound receptors has received little attention to date. This potential was recently highlighted following the identification of a polymorphism in the adenylyl cyclase 9 gene (ADCY9) that was shown to be a determining factor in the risk of cardiovascular (CV) events in patients treated with the HDL-raising compound dalcetrapib. Indeed, ADCY9 is part of the signaling pathway of the β2-adrenergic receptor (β2-AR) and both are membrane-bound proteins affected by changes in membrane-rich cholesterol plasma membrane domains (caveolae). Numerous G-protein-coupled receptors (GPCRs) and ion channels are affected by caveolae, with caveolae composition acting as a 'signalosome'. Polymorphisms in the genes encoding ADCY9 and β2-AR are associated with response to β2-agonist drugs in patients with asthma, malaria and with sickle cell disease. Crystallization of the β2-AR has found cholesterol tightly bound to transmembrane structures of the receptor. Cholesterol has also been shown to modulate the activity of this receptor. Apolipoprotein A1 (ApoA1), the major protein component of HDL, destabilizes and removes cholesterol from caveolae with high affinity through interaction with ATP-binding cassette transporter. Furthermore, β2-AR activity may be affected by ApoA1/HDL-targeted therapies. Taken together, these observations suggest a common pathway that potentially links a primary HDL function to the regulation of signal transduction.
Collapse
|
50
|
Molecular mechanisms underlying β-adrenergic receptor-mediated cross-talk between sympathetic neurons and immune cells. Int J Mol Sci 2015; 16:5635-65. [PMID: 25768345 PMCID: PMC4394497 DOI: 10.3390/ijms16035635] [Citation(s) in RCA: 143] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2014] [Revised: 02/13/2015] [Accepted: 03/04/2015] [Indexed: 01/01/2023] Open
Abstract
Cross-talk between the sympathetic nervous system (SNS) and immune system is vital for health and well-being. Infection, tissue injury and inflammation raise firing rates of sympathetic nerves, increasing their release of norepinephrine (NE) in lymphoid organs and tissues. NE stimulation of β2-adrenergic receptors (ARs) in immune cells activates the cAMP-protein kinase A (PKA) intracellular signaling pathway, a pathway that interfaces with other signaling pathways that regulate proliferation, differentiation, maturation and effector functions in immune cells. Immune-SNS cross-talk is required to maintain homeostasis under normal conditions, to develop an immune response of appropriate magnitude after injury or immune challenge, and subsequently restore homeostasis. Typically, β2-AR-induced cAMP is immunosuppressive. However, many studies report actions of β2-AR stimulation in immune cells that are inconsistent with typical cAMP-PKA signal transduction. Research during the last decade in non-immune organs, has unveiled novel alternative signaling mechanisms induced by β2-AR activation, such as a signaling switch from cAMP-PKA to mitogen-activated protein kinase (MAPK) pathways. If alternative signaling occurs in immune cells, it may explain inconsistent findings of sympathetic regulation of immune function. Here, we review β2-AR signaling, assess the available evidence for alternative signaling in immune cells, and provide insight into the circumstances necessary for "signal switching" in immune cells.
Collapse
|