1
|
Harrison AG, Yang D, Cahoon JG, Geng T, Cao Z, Karginov TA, Hu Y, Li X, Chiari CC, Qyang Y, Vella AT, Fan Z, Vanaja SK, Rathinam VA, Witczak CA, Bogan JS, Wang P. UBXN9 governs GLUT4-mediated spatial confinement of RIG-I-like receptors and signaling. Nat Immunol 2024; 25:2234-2246. [PMID: 39567760 PMCID: PMC12067455 DOI: 10.1038/s41590-024-02004-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 10/04/2024] [Indexed: 11/22/2024]
Abstract
The cytoplasmic RIG-I-like receptors (RLRs) recognize viral RNA and initiate innate antiviral immunity. RLR signaling also triggers glycolytic reprogramming through glucose transporters (GLUTs), whose role in antiviral immunity is elusive. Here, we unveil that insulin-responsive GLUT4 inhibits RLR signaling independently of glucose uptake in adipose and muscle tissues. At steady state, GLUT4 is trapped at the Golgi matrix by ubiquitin regulatory X domain 9 (UBXN9, TUG). Following RNA virus infection, GLUT4 is released and translocated to the cell surface where it spatially segregates a significant pool of cytosolic RLRs, preventing them from activating IFN-β responses. UBXN9 deletion prompts constitutive GLUT4 translocation, sequestration of RLRs and attenuation of antiviral immunity, whereas GLUT4 deletion heightens RLR signaling. Notably, reduced GLUT4 expression is uniquely associated with human inflammatory myopathies characterized by hyperactive interferon responses. Overall, our results demonstrate a noncanonical UBXN9-GLUT4 axis that controls antiviral immunity via plasma membrane tethering of cytosolic RLRs.
Collapse
Affiliation(s)
- Andrew G Harrison
- Department of Immunology, School of Medicine, University of Connecticut Health Center, Farmington, CT, USA
| | - Duomeng Yang
- Department of Immunology, School of Medicine, University of Connecticut Health Center, Farmington, CT, USA.
- Department of Pathophysiology, Key Laboratory of State Administration of Traditional Chinese Medicine of the People's Republic of China, School of Medicine, Jinan University, Guangzhou, Guangdong, China.
| | - Jason G Cahoon
- Department of Immunology, School of Medicine, University of Connecticut Health Center, Farmington, CT, USA
| | - Tingting Geng
- Department of Immunology, School of Medicine, University of Connecticut Health Center, Farmington, CT, USA
| | - Ziming Cao
- Department of Immunology, School of Medicine, University of Connecticut Health Center, Farmington, CT, USA
| | - Timofey A Karginov
- Department of Immunology, School of Medicine, University of Connecticut Health Center, Farmington, CT, USA
| | - Youjia Hu
- Section of Endocrinology, Department of Internal Medicine, and Department of Cell Biology, and Yale Center for Molecular and Systems Metabolism, Yale School of Medicine, New Haven, CT, USA
| | - Xin Li
- Section of Cardiovascular Medicine, Department of Internal Medicine, Yale School of Medicine, New Haven, CT, USA
| | - Conner C Chiari
- Department of Immunology, School of Medicine, University of Connecticut Health Center, Farmington, CT, USA
| | - Yibing Qyang
- Section of Cardiovascular Medicine, Department of Internal Medicine, Yale School of Medicine, New Haven, CT, USA
| | - Anthony T Vella
- Department of Immunology, School of Medicine, University of Connecticut Health Center, Farmington, CT, USA
| | - Zhichao Fan
- Department of Immunology, School of Medicine, University of Connecticut Health Center, Farmington, CT, USA
| | - Sivapriya Kailasan Vanaja
- Department of Immunology, School of Medicine, University of Connecticut Health Center, Farmington, CT, USA
| | - Vijay A Rathinam
- Department of Immunology, School of Medicine, University of Connecticut Health Center, Farmington, CT, USA
| | - Carol A Witczak
- Department of Anatomy, Cell Biology & Physiology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Jonathan S Bogan
- Section of Endocrinology, Department of Internal Medicine, and Department of Cell Biology, and Yale Center for Molecular and Systems Metabolism, Yale School of Medicine, New Haven, CT, USA
| | - Penghua Wang
- Department of Immunology, School of Medicine, University of Connecticut Health Center, Farmington, CT, USA.
| |
Collapse
|
2
|
Chen KR, Yang CY, Shu SG, Lo YC, Lee KW, Wang LC, Chen JB, Shih MC, Chang HC, Hsiao YJ, Wu CL, Tan TH, Ling P. Endosomes serve as signaling platforms for RIG-I ubiquitination and activation. SCIENCE ADVANCES 2024; 10:eadq0660. [PMID: 39504361 PMCID: PMC11540011 DOI: 10.1126/sciadv.adq0660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 10/01/2024] [Indexed: 11/08/2024]
Abstract
RIG-I-like receptors (RLRs) are cytosolic RNA sensors critical for antiviral immunity. RLR activation is regulated by polyubiquitination and oligomerization following RNA binding. Yet, little is known about how RLRs exploit subcellular organelles to facilitate their posttranslational modifications and activation. Endosomal adaptor TAPE regulates the endosomal TLR and cytosolic RLR pathways. The potential interplay between RIG-I signaling and endosomes has been explored. Here, we report that endosomes act as platforms for facilitating RIG-I polyubiquitination and complex formation. RIG-I was translocated onto endosomes to form signaling complexes upon activation. Ablation of endosomes impaired RIG-I signaling to type I IFN activation. TAPE mediates the interaction and polyubiquitination of RIG-I and TRIM25. TAPE-deficient myeloid cells were defective in type I IFN activation upon RNA ligand and virus challenges. Myeloid TAPE deficiency increased the susceptibility to RNA virus infection in vivo. Our work reveals endosomes as signaling platforms for RIG-I activation and antiviral immunity.
Collapse
Affiliation(s)
- Kuan-Ru Chen
- Department of Microbiology and Immunology, National Cheng Kung University, 70101 Tainan, Taiwan
- Department of Medical Research, E-Da Hospital, I-Shou University, 824005 Kaohsiung, Taiwan
| | - Chia-Yu Yang
- Immunology Research Center, National Health Research Institutes, Zhunan, Taiwan
- Department of Microbiology and Immunology, College of Medicine, Chang Gung University, 33302 Tao-Yuan, Taiwan
| | - San-Ging Shu
- Department of Pediatrics, Ditmanson Medical Foundation Chia-Yi Christian Hospital, 60002 Chiayi City, Taiwan
| | - Yin-Chiu Lo
- Department of Microbiology and Immunology, National Cheng Kung University, 70101 Tainan, Taiwan
| | - Kuan-Wei Lee
- Department of Microbiology and Immunology, National Cheng Kung University, 70101 Tainan, Taiwan
| | - Li-Chun Wang
- Department of Microbiology and Immunology, National Cheng Kung University, 70101 Tainan, Taiwan
| | - Jia-Bao Chen
- Department of Microbiology and Immunology, National Cheng Kung University, 70101 Tainan, Taiwan
| | - Meng-Cen Shih
- Department of Medical Laboratory Science and Biotechnology, National Cheng Kung University, 70101 Tainan, Taiwan
| | - Hung-Chun Chang
- Department of Microbiology and Immunology, National Cheng Kung University, 70101 Tainan, Taiwan
| | - Yu-Ju Hsiao
- Department of Medical Laboratory Science and Biotechnology, National Cheng Kung University, 70101 Tainan, Taiwan
| | - Chao-Liang Wu
- Department of Medical Research, Ditmanson Medical Foundation Chia-Yi Christian Hospital, 60002 Chiayi City, Taiwan
| | - Tse-Hua Tan
- Immunology Research Center, National Health Research Institutes, Zhunan, Taiwan
| | - Pin Ling
- Department of Microbiology and Immunology, National Cheng Kung University, 70101 Tainan, Taiwan
- Department of Medical Laboratory Science and Biotechnology, National Cheng Kung University, 70101 Tainan, Taiwan
| |
Collapse
|
3
|
Wu F, Du H, Overbey E, Kim J, Makhijani P, Martin N, Lerner CA, Nguyen K, Baechle J, Valentino TR, Fuentealba M, Bartleson JM, Halaweh H, Winer S, Meydan C, Garrett-Bakelman F, Sayed N, Melov S, Muratani M, Gerencser AA, Kasler HG, Beheshti A, Mason CE, Furman D, Winer DA. Single-cell analysis identifies conserved features of immune dysfunction in simulated microgravity and spaceflight. Nat Commun 2024; 15:4795. [PMID: 38862487 PMCID: PMC11166937 DOI: 10.1038/s41467-023-42013-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 09/27/2023] [Indexed: 06/13/2024] Open
Abstract
Microgravity is associated with immunological dysfunction, though the mechanisms are poorly understood. Here, using single-cell analysis of human peripheral blood mononuclear cells (PBMCs) exposed to short term (25 hours) simulated microgravity, we characterize altered genes and pathways at basal and stimulated states with a Toll-like Receptor-7/8 agonist. We validate single-cell analysis by RNA sequencing and super-resolution microscopy, and against data from the Inspiration-4 (I4) mission, JAXA (Cell-Free Epigenome) mission, Twins study, and spleens from mice on the International Space Station. Overall, microgravity alters specific pathways for optimal immunity, including the cytoskeleton, interferon signaling, pyroptosis, temperature-shock, innate inflammation (e.g., Coronavirus pathogenesis pathway and IL-6 signaling), nuclear receptors, and sirtuin signaling. Microgravity directs monocyte inflammatory parameters, and impairs T cell and NK cell functionality. Using machine learning, we identify numerous compounds linking microgravity to immune cell transcription, and demonstrate that the flavonol, quercetin, can reverse most abnormal pathways. These results define immune cell alterations in microgravity, and provide opportunities for countermeasures to maintain normal immunity in space.
Collapse
Grants
- R01 MH117406 NIMH NIH HHS
- T32 AG000266 NIA NIH HHS
- This work was supported in part through funds derived from the Buck Institute for Research on Aging (D.A.W., D.F.), and the Huiying Memorial Foundation (D.A.W.). T.V. and J.B. are funded by a T32 NIH fellowship grant (NIA T32 AG000266). C.E.M. thanks the Scientific Computing Unit (SCU) at WCM, the WorldQuant Foundation, NASA (NNX14AH50G, NNX17AB26G, 80NSSC22K0254, NNH18ZTT001N-FG2, 80NSSC22K0254, NNX16AO69A), the National Institutes of Health (R01MH117406), and LLS (MCL7001-18, LLS 9238-16).
Collapse
Affiliation(s)
- Fei Wu
- Buck Institute for Research on Aging, Novato, CA, 94945, USA
| | - Huixun Du
- Buck Institute for Research on Aging, Novato, CA, 94945, USA
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, 90089, USA
| | - Eliah Overbey
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, 10021, USA
| | - JangKeun Kim
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, 10021, USA
| | - Priya Makhijani
- Buck Institute for Research on Aging, Novato, CA, 94945, USA
- Department of Immunology, University of Toronto, Toronto, ON, M5S 1A8, Canada
| | - Nicolas Martin
- Buck Institute for Research on Aging, Novato, CA, 94945, USA
| | - Chad A Lerner
- Buck Institute for Research on Aging, Novato, CA, 94945, USA
| | - Khiem Nguyen
- Buck Institute for Research on Aging, Novato, CA, 94945, USA
| | - Jordan Baechle
- Buck Institute for Research on Aging, Novato, CA, 94945, USA
| | | | | | | | - Heather Halaweh
- Buck Institute for Research on Aging, Novato, CA, 94945, USA
| | - Shawn Winer
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, M5S 1A8, Canada
- Pathology and Laboratory Medicine, Mount Sinai Hospital, Toronto, ON, Canada
| | - Cem Meydan
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, 10021, USA
| | - Francine Garrett-Bakelman
- Department of Medicine, University of Virginia, Charlottesville, VA, USA
- Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, VA, USA
| | - Nazish Sayed
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Simon Melov
- Buck Institute for Research on Aging, Novato, CA, 94945, USA
| | - Masafumi Muratani
- Transborder Medical Research Center, University of Tsukuba, Ibaraki, 305-8575, Japan
- Department of Genome Biology, Faculty of Medicine, University of Tsukuba, Ibaraki, 305-8575, Japan
| | | | | | - Afshin Beheshti
- Blue Marble Space Institute of Science, Space Biosciences Division, NASA Ames Research Center, Moffett Field, CA, 94043, USA
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA
| | - Christopher E Mason
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, 10021, USA.
- The HRH Prince Alwaleed Bin Talal Bin Abdulaziz Alsaud Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY, 10021, USA.
- WorldQuant Initiative for Quantitative Prediction, Weill Cornell Medicine, New York, NY, 10021, USA.
- The Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, 10021, USA.
| | - David Furman
- Buck Institute for Research on Aging, Novato, CA, 94945, USA.
- Stanford 1000 Immunomes Project, Stanford University School of Medicine, Stanford, CA, USA.
- Institute for Research in Translational Medicine, Universidad Austral, CONICET, Pilar, Buenos Aires, Argentina.
| | - Daniel A Winer
- Buck Institute for Research on Aging, Novato, CA, 94945, USA.
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, 90089, USA.
- Department of Immunology, University of Toronto, Toronto, ON, M5S 1A8, Canada.
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, M5S 1A8, Canada.
- Division of Cellular & Molecular Biology, Toronto General Hospital Research Institute (TGHRI), University Health Network, Toronto, ON, M5G 1L7, Canada.
| |
Collapse
|
4
|
Wang P, Harrison A, Yang D, Cahoon J, Geng T, Cao Z, Karginov T, Chiari C, Li X, Qyang Y, Vella A, Fan Z, Vanaja SK, Rathinam V, Witczak C, Bogan J. UBXN9 governs GLUT4-mediated spatial confinement of RIG-I-like receptors and signaling. RESEARCH SQUARE 2024:rs.3.rs-3373803. [PMID: 38883790 PMCID: PMC11177981 DOI: 10.21203/rs.3.rs-3373803/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/18/2024]
Abstract
The cytoplasmic RIG-I-like receptors (RLRs) recognize viral RNA and initiate innate antiviral immunity. RLR signaling also triggers glycolytic reprogramming through glucose transporters (GLUTs), whose role in antiviral immunity is elusive. Here, we unveil that insulin-responsive GLUT4 inhibits RLR signaling independently of glucose uptake in adipose and muscle tissues. At steady state, GLUT4 is docked at the Golgi matrix by ubiquitin regulatory X domain 9 (UBXN9, TUG). Following RNA virus infection, GLUT4 is released and translocated to the cell surface where it spatially segregates a significant pool of cytosolic RLRs, preventing them from activating IFN-β responses. UBXN9 deletion prompts constitutive GLUT4 trafficking, sequestration of RLRs, and attenuation of antiviral immunity, whereas GLUT4 deletion heightens RLR signaling. Notably, reduced GLUT4 expression is uniquely associated with human inflammatory myopathies characterized by hyperactive interferon responses. Overall, our results demonstrate a noncanonical UBXN9-GLUT4 axis that controls antiviral immunity via plasma membrane tethering of cytosolic RLRs.
Collapse
|
5
|
Yoneyama M, Kato H, Fujita T. Physiological functions of RIG-I-like receptors. Immunity 2024; 57:731-751. [PMID: 38599168 DOI: 10.1016/j.immuni.2024.03.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Revised: 02/19/2024] [Accepted: 03/04/2024] [Indexed: 04/12/2024]
Abstract
RIG-I-like receptors (RLRs) are crucial for pathogen detection and triggering immune responses and have immense physiological importance. In this review, we first summarize the interferon system and innate immunity, which constitute primary and secondary responses. Next, the molecular structure of RLRs and the mechanism of sensing non-self RNA are described. Usually, self RNA is refractory to the RLR; however, there are underlying host mechanisms that prevent immune reactions. Studies have revealed that the regulatory mechanisms of RLRs involve covalent molecular modifications, association with regulatory factors, and subcellular localization. Viruses have evolved to acquire antagonistic RLR functions to escape the host immune reactions. Finally, the pathologies caused by the malfunction of RLR signaling are described.
Collapse
Affiliation(s)
- Mitsutoshi Yoneyama
- Division of Molecular Immunology, Medical Mycology Research Center, Chiba University, Chiba, Japan; Division of Pandemic and Post-disaster Infectious Diseases, Research Institute of Disaster Medicine, Chiba University, Chiba, Japan
| | - Hiroki Kato
- Institute of Cardiovascular Immunology, Medical Faculty, University Hospital Bonn, University of Bonn, Bonn, Germany
| | - Takashi Fujita
- Institute of Cardiovascular Immunology, Medical Faculty, University Hospital Bonn, University of Bonn, Bonn, Germany; Laboratory of Regulatory Information, Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto, Japan.
| |
Collapse
|
6
|
Trono P, Tocci A, Palermo B, Di Carlo A, D'Ambrosio L, D'Andrea D, Di Modugno F, De Nicola F, Goeman F, Corleone G, Warren S, Paolini F, Panetta M, Sperduti I, Baldari S, Visca P, Carpano S, Cappuzzo F, Russo V, Tripodo C, Zucali P, Gregorc V, Marchesi F, Nistico P. hMENA isoforms regulate cancer intrinsic type I IFN signaling and extrinsic mechanisms of resistance to immune checkpoint blockade in NSCLC. J Immunother Cancer 2023; 11:e006913. [PMID: 37612043 PMCID: PMC10450042 DOI: 10.1136/jitc-2023-006913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/08/2023] [Indexed: 08/25/2023] Open
Abstract
BACKGROUND Understanding how cancer signaling pathways promote an immunosuppressive program which sustains acquired or primary resistance to immune checkpoint blockade (ICB) is a crucial step in improving immunotherapy efficacy. Among the pathways that can affect ICB response is the interferon (IFN) pathway that may be both detrimental and beneficial. The immune sensor retinoic acid-inducible gene I (RIG-I) induces IFN activation and secretion and is activated by actin cytoskeleton disturbance. The actin cytoskeleton regulatory protein hMENA, along with its isoforms, is a key signaling hub in different solid tumors, and recently its role as a regulator of transcription of genes encoding immunomodulatory secretory proteins has been proposed. When hMENA is expressed in tumor cells with low levels of the epithelial specific hMENA11a isoform, identifies non-small cell lung cancer (NSCLC) patients with poor prognosis. Aim was to identify cancer intrinsic and extrinsic pathways regulated by hMENA11a downregulation as determinants of ICB response in NSCLC. Here, we present a potential novel mechanism of ICB resistance driven by hMENA11a downregulation. METHODS Effects of hMENA11a downregulation were tested by RNA-Seq, ATAC-Seq, flow cytometry and biochemical assays. ICB-treated patient tumor tissues were profiled by Nanostring IO 360 Panel enriched with hMENA custom probes. OAK and POPLAR datasets were used to validate our discovery cohort. RESULTS Transcriptomic and biochemical analyses demonstrated that the depletion of hMENA11a induces IFN pathway activation, the production of different inflammatory mediators including IFNβ via RIG-I, sustains the increase of tumor PD-L1 levels and activates a paracrine loop between tumor cells and a unique macrophage subset favoring an epithelial-mesenchymal transition (EMT). Notably, when we translated our results in a clinical setting of NSCLC ICB-treated patients, transcriptomic analysis revealed that low expression of hMENA11a, high expression of IFN target genes and high macrophage score identify patients resistant to ICB therapy. CONCLUSIONS Collectively, these data establish a new function for the actin cytoskeleton regulator hMENA11a in modulating cancer cell intrinsic type I IFN signaling and extrinsic mechanisms that promote protumoral macrophages and favor EMT. These data highlight the role of actin cytoskeleton disturbance in activating immune suppressive pathways that may be involved in resistance to ICB in NSCLC.
Collapse
Affiliation(s)
- Paola Trono
- Tumor of Immunology and Immunotherapy Unit, IRCCS Regina Elena National Cancer Institute, Rome, Italy
- Institute of Biochemistry and Cell Biology, Consiglio Nazionale delle Ricerche, Rome, Italy
| | - Annalisa Tocci
- Tumor of Immunology and Immunotherapy Unit, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Belinda Palermo
- Tumor of Immunology and Immunotherapy Unit, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Anna Di Carlo
- Tumor of Immunology and Immunotherapy Unit, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Lorenzo D'Ambrosio
- Tumor of Immunology and Immunotherapy Unit, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Daniel D'Andrea
- Department of Biosciences, School of Science and Technology, Nottingham Trent University, Nottingham, UK
| | - Francesca Di Modugno
- Tumor of Immunology and Immunotherapy Unit, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | | | - Frauke Goeman
- SAFU Unit, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Giacomo Corleone
- SAFU Unit, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Sarah Warren
- NanoString Technologies Inc, Seattle, Washington, USA
| | - Francesca Paolini
- Tumor of Immunology and Immunotherapy Unit, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Mariangela Panetta
- Tumor of Immunology and Immunotherapy Unit, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Isabella Sperduti
- Biostatistics Unit, IRCSS Regina Elena National Cancer Institute, Rome, Italy
| | - Silvia Baldari
- Tumor of Immunology and Immunotherapy Unit, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Paolo Visca
- Pathology Unit, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Silvia Carpano
- Second Division of Medical Oncology, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Federico Cappuzzo
- Second Division of Medical Oncology, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Vincenzo Russo
- Department of Oncology, IRCCS Ospedale San Raffaele, Milan, Italy
| | - Claudio Tripodo
- Department of Health Sciences, Human Pathology Section, Tumor Immunology Unit, University of Palermo, Palermo, Italy
| | - Paolo Zucali
- Department of Oncology, IRCCS Humanitas Research Hospital, Rozzano, Milan, Italy
| | - Vanesa Gregorc
- Department of Oncology, IRCCS Ospedale San Raffaele, Milan, Italy
| | - Federica Marchesi
- Department of Immunology and Inflammation, IRCCS Humanitas Research Hospital, Rozzano, Milan, Italy
- Department of Medical Biotechnology and Translational Medicine, University of Milan, Milan, Italy
| | - Paola Nistico
- Tumor of Immunology and Immunotherapy Unit, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| |
Collapse
|
7
|
Salve BG, Kurian AM, Vijay N. Concurrent loss of ciliary genes WDR93 and CFAP46 in phylogenetically distant birds. ROYAL SOCIETY OPEN SCIENCE 2023; 10:230801. [PMID: 37621660 PMCID: PMC10445033 DOI: 10.1098/rsos.230801] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 08/01/2023] [Indexed: 08/26/2023]
Abstract
The respiratory system is the primary route of infection for many contagious pathogens. Mucociliary clearance of inhaled pathogens is an important innate defence mechanism sustained by the rhythmic movement of epithelial cilia. To counter host defences, viral pathogens target epithelial cells and cilia. For instance, the avian influenza virus that targets ciliated cells modulates the expression of WDR93, a central ciliary apparatus C1d projection component. Lineage-specific prevalence of such host defence genes results in differential susceptibility. In this study, the comparative analysis of approximately 500 vertebrate genomes from seven taxonomic classes spanning 73 orders confirms the widespread conservation of WDR93 across these different vertebrate groups. However, we established loss of the WDR93 in landfowl, geese and other phylogenetically independent bird species due to gene-disrupting changes. The lack of WDR93 transcripts in species with gene loss in contrast to its expression in species with an intact gene confirms gene loss. Notably, species with WDR93 loss have concurrently lost another C1d component, CFAP46, through large segmental deletions. Understanding the consequences of such gene loss may provide insight into their role in host-pathogen interactions and benefit global pathogen surveillance efforts by prioritizing species missing host defence genes and identifying putative zoonotic reservoirs.
Collapse
Affiliation(s)
- Buddhabhushan Girish Salve
- Computational Evolutionary Genomics Lab, Department of Biological Sciences, IISER Bhopal, Bhauri, Madhya Pradesh, India
| | - Amia Miriam Kurian
- Computational Evolutionary Genomics Lab, Department of Biological Sciences, IISER Bhopal, Bhauri, Madhya Pradesh, India
| | - Nagarjun Vijay
- Computational Evolutionary Genomics Lab, Department of Biological Sciences, IISER Bhopal, Bhauri, Madhya Pradesh, India
| |
Collapse
|
8
|
Zhang Y, Chen RW, Liu X, Zhu M, Li Z, Wang A, Li X. Oxidative stress, apoptosis, and transcriptional responses in Acropora microphthalma under simulated diving activities. MARINE POLLUTION BULLETIN 2022; 183:114084. [PMID: 36058177 DOI: 10.1016/j.marpolbul.2022.114084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 08/16/2022] [Accepted: 08/21/2022] [Indexed: 06/15/2023]
Abstract
This study simulated the effects of diving activities on the physiology, enzymatic, and transcriptional responses of Acropora microphthalma. Touching had less impact on Fv/Fm, but a few zooxanthellae were decreased and minor MDA was elevated. Caspase 3 was activated to remove damaged cells, and SOD was increased to alleviate oxidative damage. Under double or triple diving stress, we observed mass loss of zooxanthellae and Fv/Fm, a significant increase in MDA, and SOD, CAT was activated in response to oxidative stress. Transcriptome analyses showed that corals activated immune signaling pathways, anti-oxidation pathways, lysosomal, phagosomal, and cellular autophagy pathways to manage oxidation stress. Moreover, it up-regulated carbohydrate metabolisms, as well as lipopolysaccharide metabolism, glycosphingolipid biosynthesis, photorespiration, amino acid metabolism, and fatty acid beta-oxidation, but down-regulated fatty acid biosynthesis to answer energy insufficiency. This research supported that even in a short time, improper diving activities could have a serious impact on coral health.
Collapse
Affiliation(s)
- Yu Zhang
- College of Marine Science, Hainan University, Haikou, China
| | - Rou-Wen Chen
- College of Marine Science, Hainan University, Haikou, China.
| | - Xiangbo Liu
- College of Marine Science, Hainan University, Haikou, China
| | - Ming Zhu
- College of Marine Science, Hainan University, Haikou, China
| | - Zhuoran Li
- College of Marine Science, Hainan University, Haikou, China
| | - Aimin Wang
- College of Marine Science, Hainan University, Haikou, China; State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou, China
| | - Xiubao Li
- College of Marine Science, Hainan University, Haikou, China; State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou, China.
| |
Collapse
|
9
|
Morita N, Tanaka Y, Takeuchi K, Kitagawa Y, Sakuma R, Koide N, Komatsu T. SeV C Protein Plays a Role in Restricting Macrophage Phagocytosis by Limiting the Generation of Intracellular Double-Stranded RNA. Front Microbiol 2022; 13:780534. [PMID: 35265056 PMCID: PMC8899396 DOI: 10.3389/fmicb.2022.780534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Accepted: 01/19/2022] [Indexed: 11/23/2022] Open
Abstract
Macrophages play a central role in the innate immune response to respiratory viral infections through pro-inflammatory factor secretion and phagocytosis. However, as a countermeasure, viral pathogens have evolved virulence factors to antagonize macrophage function. In our recent in vitro analyses of murine macrophage cell lines, Sendai virus (SeV) accessory protein C inhibited the secretion of pro-inflammatory factors, and C gene-knockout SeV (SeVΔC) caused drastic morphological changes in RAW264.7 macrophages, similar to those observed after stimulation with Lipid A, a well-known activator of actin-rich membrane ruffle formation and phagocytosis. Hence, we sought to determine whether the C protein limits phagocytosis in SeV-infected macrophages through the suppression of membrane ruffling. Phagocytosis assays indicated an upregulation of phagocytosis in both SeVΔC-infected and Lipid A-stimulated macrophages, but not in SeV WT-infected cells. Further, the observed membrane ruffling was associated with phagocytosis. RIG-I is essential for Lipid A-induced phagocytosis; its deficiency inhibited SeVΔC-stimulated phagocytosis and ruffling, confirming the essential role of RIG-I. Moreover, treatment with interferon (IFN)-β stimulation and neutralizing antibodies against IFN-β suggested that SeVΔC-induced phagocytosis and ruffling occurred in an IFN-β-independent manner. A newly isolated SeVΔC strain that does not generate dsRNA further highlighted the importance of dsRNA in the induction of phagocytosis and ruffling. Taken together, the current results suggest that SeV C protein might limit phagocytosis-associated membrane ruffling in an RIG-I-mediated but IFN-independent manner via limiting the generation of intracellular dsRNA.
Collapse
Affiliation(s)
- Naoko Morita
- Department of Microbiology and Immunology, Aichi Medical University School of Medicine, Aichi, Japan
| | - Yukie Tanaka
- Department of Integrative Vascular Biology, Faculty of Medical Sciences, University of Fukui, Fukui, Japan
| | - Kenji Takeuchi
- Department of Genome Science and Microbiology, Faculty of Medical Sciences, University of Fukui, Fukui, Japan
| | - Yoshinori Kitagawa
- Division of Microbiology and Infectious Diseases, Department of Pathology, Shiga University of Medical Science, Shiga, Japan
| | - Ryusuke Sakuma
- Department of Microbiology and Immunology, Aichi Medical University School of Medicine, Aichi, Japan
| | - Naoki Koide
- Department of Microbiology and Immunology, Aichi Medical University School of Medicine, Aichi, Japan
| | - Takayuki Komatsu
- Department of Microbiology and Immunology, Aichi Medical University School of Medicine, Aichi, Japan
- *Correspondence: Takayuki Komatsu,
| |
Collapse
|
10
|
The interplay between SARS-CoV-2 infected airway epithelium and immune cells modulates regulatory/inflammatory signals. iScience 2022; 25:103854. [PMID: 35128349 PMCID: PMC8802491 DOI: 10.1016/j.isci.2022.103854] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 12/21/2021] [Accepted: 01/27/2022] [Indexed: 01/08/2023] Open
Abstract
To assess the cross-talk between immune cells and respiratory tract during SARS-CoV-2 infection, we analyzed the relationships between the inflammatory response induced by SARS-CoV-2 replication and immune cells phenotype in a reconstituted organotypic human airway epithelium (HAE). The results indicated that immune cells failed to inhibit SARS-CoV-2 replication in the HAE model. In contrast, immune cells strongly affected the inflammatory profile induced by SARS-CoV-2 infection, dampening the production of several immunoregulatory/inflammatory signals (e.g., IL-35, IL-27, and IL-34). Moreover, these mediators were found inversely correlated with innate immune cell frequency (NK and γδ T cells) and directly with CD8 T cells. The enriched signals associated with NK and CD8 T cells highlighted the modulation of pathways induced by SARS-CoV-2 infected HAE. These findings are useful to depict the cell-cell communication mechanisms necessary to develop novel therapeutic strategies aimed to promote an effective immune response. HAE as a model to study the cross-talk between infected epithelium and immune cells Immune cells failed to inhibit SARS-CoV-2 replication Immune cells dampen the production of several signals induced by SARS-CoV-2 infection Decrease of NK/γδ T and increase of CD8 T cells in SARS-CoV-2 infected HAE co-culture
Collapse
|
11
|
Figueroa F, Vega-Gibson A, Catrileo J, Gaete-Argel A, Riquelme-Barrios S, Alonso-Palomares LA, Tapia LI, Valiente-Echeverría F, Soto-Rifo R, Acevedo ML. N 6 -Methyladenosine Negatively Regulates Human Respiratory Syncytial Virus Replication. Front Cell Dev Biol 2021; 9:739445. [PMID: 34671602 PMCID: PMC8521026 DOI: 10.3389/fcell.2021.739445] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Accepted: 09/02/2021] [Indexed: 11/13/2022] Open
Abstract
N6-methyladenosine (m6A) is the most abundant internal modification described in eukaryotic mRNA and several viral RNA including human respiratory syncytial virus (HRSV). Here, we evaluated the impact of m6A writers, erasers and readers on HRSV genomic RNA accumulation and inclusion bodies assembly during viral replication. We observed that the METTL3/METTL14 m6A writer complex plays a negative role in HRSV protein synthesis and viral titers, while m6A erasers FTO and ALKBH5 had the opposite effect. We also observed that m6A readers YTHDF1-3 bind to the viral genomic RNA inducing a decrease in its intracellular levels and thus, inhibiting viral replication. Finally, we observed that overexpression of YTHDFs proteins caused a decrease in the size of inclusion bodies (IBs), accompanied by an increase in their number. METTL3 knockdown cells showed an opposite effect indicating that the dynamics of IBs assembly and coalescence are strongly affected by m6A readers in a mechanism dependent on m6A writers. Taken together, our results demonstrated that the m6A modification negatively affects HRSV replication, possibly through a mechanism involving the assembly of inclusion bodies, the main factories of viral genomic RNA synthesis.
Collapse
Affiliation(s)
- Fabian Figueroa
- Laboratory of Molecular and Cellular Virology, Virology Program, Institute of Biomedical Sciences, Faculty of Medicine, Universidad de Chile, Santiago, Chile
| | - Alonso Vega-Gibson
- Laboratory of Molecular and Cellular Virology, Virology Program, Institute of Biomedical Sciences, Faculty of Medicine, Universidad de Chile, Santiago, Chile
| | - Joseline Catrileo
- Laboratory of Molecular and Cellular Virology, Virology Program, Institute of Biomedical Sciences, Faculty of Medicine, Universidad de Chile, Santiago, Chile
| | - Aracelly Gaete-Argel
- Laboratory of Molecular and Cellular Virology, Virology Program, Institute of Biomedical Sciences, Faculty of Medicine, Universidad de Chile, Santiago, Chile.,HIV/AIDS Workgroup, Faculty of Medicine, Universidad de Chile, Santiago, Chile
| | - Sebastian Riquelme-Barrios
- Laboratory of Molecular and Cellular Virology, Virology Program, Institute of Biomedical Sciences, Faculty of Medicine, Universidad de Chile, Santiago, Chile.,HIV/AIDS Workgroup, Faculty of Medicine, Universidad de Chile, Santiago, Chile
| | - Luis Antonio Alonso-Palomares
- Laboratory of Molecular and Cellular Virology, Virology Program, Institute of Biomedical Sciences, Faculty of Medicine, Universidad de Chile, Santiago, Chile.,HIV/AIDS Workgroup, Faculty of Medicine, Universidad de Chile, Santiago, Chile
| | - Lorena I Tapia
- Laboratory of Molecular and Cellular Virology, Virology Program, Institute of Biomedical Sciences, Faculty of Medicine, Universidad de Chile, Santiago, Chile.,Department of Pediatrics and Pediatric Surgery, Hospital Roberto del Río, Faculty of Medicine, Universidad de Chile, Santiago, Chile
| | - Fernando Valiente-Echeverría
- Laboratory of Molecular and Cellular Virology, Virology Program, Institute of Biomedical Sciences, Faculty of Medicine, Universidad de Chile, Santiago, Chile.,HIV/AIDS Workgroup, Faculty of Medicine, Universidad de Chile, Santiago, Chile
| | - Ricardo Soto-Rifo
- Laboratory of Molecular and Cellular Virology, Virology Program, Institute of Biomedical Sciences, Faculty of Medicine, Universidad de Chile, Santiago, Chile.,HIV/AIDS Workgroup, Faculty of Medicine, Universidad de Chile, Santiago, Chile
| | - Monica L Acevedo
- Laboratory of Molecular and Cellular Virology, Virology Program, Institute of Biomedical Sciences, Faculty of Medicine, Universidad de Chile, Santiago, Chile
| |
Collapse
|
12
|
Bruland T, Østvik AE, Sandvik AK, Hansen MD. Host-Viral Interactions in the Pathogenesis of Ulcerative Colitis. Int J Mol Sci 2021; 22:ijms221910851. [PMID: 34639191 PMCID: PMC8509287 DOI: 10.3390/ijms221910851] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 10/04/2021] [Accepted: 10/05/2021] [Indexed: 12/12/2022] Open
Abstract
Ulcerative colitis is characterized by relapsing and remitting colonic mucosal inflammation. During the early stages of viral infection, innate immune defenses are activated, leading to the rapid release of cytokines and the subsequent initiation of downstream responses including inflammation. Previously, intestinal viruses were thought to be either detrimental or neutral to the host. However, persisting viruses may have a role as resident commensals and confer protective immunity during inflammation. On the other hand, the dysregulation of gut mucosal immune responses to viruses can trigger excessive, pathogenic inflammation. The purpose of this review is to discuss virus-induced innate immune responses that are at play in ulcerative colitis.
Collapse
Affiliation(s)
- Torunn Bruland
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, 7491 Trondheim, Norway; (T.B.); (A.E.Ø.); (A.K.S.)
- Department of Gastroenterology and Hepatology, Clinic of Medicine, St. Olav’s University Hospital, 7030 Trondheim, Norway
| | - Ann Elisabet Østvik
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, 7491 Trondheim, Norway; (T.B.); (A.E.Ø.); (A.K.S.)
- Department of Gastroenterology and Hepatology, Clinic of Medicine, St. Olav’s University Hospital, 7030 Trondheim, Norway
| | - Arne Kristian Sandvik
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, 7491 Trondheim, Norway; (T.B.); (A.E.Ø.); (A.K.S.)
- Department of Gastroenterology and Hepatology, Clinic of Medicine, St. Olav’s University Hospital, 7030 Trondheim, Norway
- Centre of Molecular Inflammation Research, Norwegian University of Science and Technology, 7491 Trondheim, Norway
| | - Marianne Doré Hansen
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, 7491 Trondheim, Norway; (T.B.); (A.E.Ø.); (A.K.S.)
- Department of Medical Microbiology, Clinic of Laboratory Medicine, St. Olav’s University Hospital, 7030 Trondheim, Norway
- Correspondence:
| |
Collapse
|
13
|
Actin Cytoskeleton Dynamics and Type I IFN-Mediated Immune Response: A Dangerous Liaison in Cancer? BIOLOGY 2021; 10:biology10090913. [PMID: 34571790 PMCID: PMC8469949 DOI: 10.3390/biology10090913] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 09/06/2021] [Accepted: 09/09/2021] [Indexed: 12/13/2022]
Abstract
Simple Summary Actin cytoskeleton is a dynamic subcellular component critical for maintaining cell shape and for elaborating response to any stimulus converging on the cell. Cytoskeleton constantly interfaces with diverse cellular components and affects a wide range of processes important in homeostasis and disease. What has been clearly demonstrated to date is that pathogens modify and use host cytoskeleton to their advantage. What is now emerging is that in sterile conditions, when a chronic inflammation occurs as in cancer, the subversion of tissue homeostasis induces an alarm status which mimics infection. This activates cellular players similar to those that solve an infection, but their persistence may pave the way for tumor progression. Understanding molecular mechanisms engaged by cytoskeleton to induce this viral mimicry could improve our knowledge of processes governing tumor progression and resistance to therapy. Abstract Chronic viral infection and cancer are closely inter-related and are both characterized by profound alteration of tissue homeostasis. The actin cytoskeleton dynamics highly participate in tissue homeostasis and act as a sensor leading to an immune-mediated anti-cancer and anti-viral response. Herein we highlight the crucial role of actin cytoskeleton dynamics in participating in a viral mimicry activation with profound effect in anti-tumor immune response. This still poorly explored field understands the cytoskeleton dynamics as a platform of complex signaling pathways which may regulate Type I IFN response in cancer. This emerging network needs to be elucidated to identify more effective anti-cancer strategies and to further advance the immuno-oncology field which has revolutionized the cancer treatment. For a progress to occur in this exciting arena we have to shed light on actin cytoskeleton related pathways and immune response. Herein we summarize the major findings, considering the double sword of the immune response and in particular the role of Type I IFN pathways in resistance to anti-cancer treatment.
Collapse
|
14
|
Khan MI, Nur SM, Adhami V, Mukhtar H. Epigenetic regulation of RNA sensors: Sentinels of immune response. Semin Cancer Biol 2021; 83:413-421. [PMID: 33484869 DOI: 10.1016/j.semcancer.2020.12.028] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 12/17/2020] [Accepted: 12/18/2020] [Indexed: 12/11/2022]
Abstract
Living host system possess mechanisms like innate immune system to combat against inflammation, stress singling, and cancer. These mechanisms are initiated by PAMP and DAMP mediated recognition by PRR. PRR is consist of variety of nucleic acid sensors like-RNA sensors. They play crucial role in identifying exogenous and endogenous RNA molecules, which subsequently mediate pro/inflammatory cytokine, IFN and ISGs response in traumatized or tumorigenic conditions. The sensors can sensitize wide range of nucleic acid particle in term of size and structure, while each category sensors belongs subclasses with differentially expressed in cell and distinguished functioning mechanisms. They are also able to make comparison between self and non-self-nucleic acid molecules through specific mechanisms. Besides exhibiting anti-inflammatory and anti-tumorigenic responses, RNA sensors cover the broad spectrum of response mechanisms. Transcriptionally RNA sensors undergo with tight epigenetic regulations. In this review study, we will be going to discuss about the details of RNA sensors, their functional mechanisms and epi-transactional regulations.
Collapse
Affiliation(s)
- Mohammad Imran Khan
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia.
| | - Suza Mohammad Nur
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Vaqar Adhami
- Department of Dermatology, School of Medicine and Public Health, University of Wisconsin, Madison, USA
| | - Hasan Mukhtar
- Department of Dermatology, School of Medicine and Public Health, University of Wisconsin, Madison, USA.
| |
Collapse
|
15
|
O' Donovan DH, Mao Y, Mele DA. The Next Generation of Pattern Recognition Receptor Agonists: Improving Response Rates in Cancer Immunotherapy. Curr Med Chem 2020; 27:5654-5674. [PMID: 31250749 DOI: 10.2174/0929867326666190620103105] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Revised: 04/01/2019] [Accepted: 04/30/2019] [Indexed: 12/19/2022]
Abstract
The recent success of checkpoint blocking antibodies has sparked a revolution in cancer immunotherapy. Checkpoint inhibition activates the adaptive immune system leading to durable responses across a range of tumor types, although this response is limited to patient populations with pre-existing tumor-infiltrating T cells. Strategies to stimulate the immune system to prime an antitumor response are of intense interest and several groups are now working to develop agents to activate the Pattern Recognition Receptors (PRRs), proteins which detect pathogenic and damageassociated molecules and respond by activating the innate immune response. Although early efforts focused on the Toll-like Receptor (TLR) family of membrane-bound PRRs, TLR activation has been associated with both pro- and antitumor effects. Nonetheless, TLR agonists have been deployed as potential anticancer agents in a range of clinical trials. More recently, the cytosolic PRR Stimulator of IFN Genes (STING) has attracted attention as another promising target for anticancer drug development, with early clinical data beginning to emerge. Besides STING, several other cytosolic PRR targets have likewise captured the interest of the drug discovery community, including the RIG-Ilike Receptors (RLRs) and NOD-like Receptors (NLRs). In this review, we describe the outlook for activators of PRRs as anticancer therapeutic agents and contrast the earlier generation of TLR agonists with the emerging focus on cytosolic PRR activators, both as single agents and in combination with other cancer immunotherapies.
Collapse
Affiliation(s)
| | - Yumeng Mao
- Oncology R&D, AstraZeneca, Cambridge, United Kingdom
| | - Deanna A Mele
- Oncology R&D, AstraZeneca, Waltham, Massachusetts, United States
| |
Collapse
|
16
|
Mokhtar DM, Hussien MM. Cellular elements organization in the trachea of mallard (Anas platyrhynchos) with a special reference to its local immunological role. PROTOPLASMA 2020; 257:407-420. [PMID: 31724070 DOI: 10.1007/s00709-019-01444-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Accepted: 10/01/2019] [Indexed: 06/10/2023]
Abstract
Many studies have been carried out to investigate the histological structure of the trachea in many species of birds. However, the cellular organization of the trachea in the mallard duck is still unclear. This study was performed on 12 sexually mature male Mallard duck to demonstrate the cellular organization of the trachea using light and electron microscopy. The tracheal epithelium is considered the first line of defense against airborne pathogens. The mallard trachea was lined by a pseudostratified ciliated columnar epithelium that contained many morphologically distinct cell types: ciliated, non-ciliated, basal cells that encircled by a population of sub-epithelial immune cells, fibroblasts, and telocytes (TCs). Telocytes were first recorded in duck trachea in this study and showed a wide variety of staining affinity. They presented two long telopodes that made up frequent close contacts with epithelium, tracheal cartilages, and other neighboring TCs, immune cells, blood capillaries, and nerve fibers. TCs express VEGF and S-100 protein. The immune cells include mast cells, eosinophils, basophils, lymphocytes, plasma cells, and dendritic reticular cells. The ciliated tracheal epithelium was interrupted by numerous intraepithelial mucous glands and solitary goblet cells. This mucociliary apparatus constitutes the major defense mechanism against inhaled foreign materials. The cellular organization of the duck trachea and its relation to the immunity was discussed.
Collapse
Affiliation(s)
- Doaa M Mokhtar
- Department of Anatomy and Histology, Faculty of Vet. Medicine, Assiut University, Asyut, 71526, Egypt.
| | - Marwa M Hussien
- Department of Anatomy and Histology, Faculty of Vet. Medicine, Assiut University, Asyut, 71526, Egypt
| |
Collapse
|
17
|
Agier J, Różalska S, Wiktorska M, Żelechowska P, Pastwińska J, Brzezińska-Błaszczyk E. The RLR/NLR expression and pro-inflammatory activity of tissue mast cells are regulated by cathelicidin LL-37 and defensin hBD-2. Sci Rep 2018; 8:11750. [PMID: 30082780 PMCID: PMC6079022 DOI: 10.1038/s41598-018-30289-w] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Accepted: 07/27/2018] [Indexed: 12/27/2022] Open
Abstract
Considering the significance of mast cells (MCs) in the course of various physiological and pathological processes, and the pivotal role of endogenous molecules, i.e., cathelicidins and defensins as multifunctional modulators, the study examines the constitutive and cathelicidin LL-37/defensin hBD-2-induced expression of certain NLRs and RLRs, i.e., NOD1, NOD2, and RIG-I, in fully-mature tissue MCs, and the impact of LL-37 and hBD-2 on MC pro-inflammatory activity. All experiments were carried out in vitro on freshly-isolated peritoneal (P)MCs. qRT-PCR, western blotting, flow cytometry, and confocal microscopy were used to evaluate both constitutive and LL-37/hBD-2-induced expression of NOD1, NOD2, and RIG-I receptors. ROS was determined using H2DCFDA, and Boyden microchamber assay was used to define the migratory response. Standard techniques assessed histamine, cysLT, and chemokine generation. PMCs express NOD1, NOD2, and RIG-I constitutively. LL-37 and hBD-2 enhance the expression and induce translocation of the studied receptors and directly activate the pro-inflammatory and migratory responses of PMCs. Observations demonstrate that LL-37 and hBD-2 might augment MC capability and sensitivity to NLR and RLR ligands and strengthen the role of MCs in inflammation.
Collapse
Affiliation(s)
- Justyna Agier
- Department of Experimental Immunology, Faculty of Health Sciences, Medical University of Lodz, Lodz, Poland
| | - Sylwia Różalska
- Department of Industrial Microbiology and Biotechnology, Faculty of Biology and Environmental Protection, University of Lodz, Lodz, Poland
| | - Magdalena Wiktorska
- Department of Molecular Cell Mechanisms, Faculty of Health Sciences, Medical University of Lodz, Lodz, Poland
| | - Paulina Żelechowska
- Department of Experimental Immunology, Faculty of Health Sciences, Medical University of Lodz, Lodz, Poland
| | - Joanna Pastwińska
- Department of Experimental Immunology, Faculty of Health Sciences, Medical University of Lodz, Lodz, Poland
- Laboratory of Cellular Immunology, Institute of Medical Biology, Polish Academy of Sciences, Lodz, Poland
| | - Ewa Brzezińska-Błaszczyk
- Department of Experimental Immunology, Faculty of Health Sciences, Medical University of Lodz, Lodz, Poland.
| |
Collapse
|
18
|
Denney L, Ho LP. The role of respiratory epithelium in host defence against influenza virus infection. Biomed J 2018; 41:218-233. [PMID: 30348265 PMCID: PMC6197993 DOI: 10.1016/j.bj.2018.08.004] [Citation(s) in RCA: 86] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Revised: 08/03/2018] [Accepted: 08/03/2018] [Indexed: 12/18/2022] Open
Abstract
The respiratory epithelium is the major interface between the environment and the host. Sophisticated barrier, sensing, anti-microbial and immune regulatory mechanisms have evolved to help maintain homeostasis and to defend the lung against foreign substances and pathogens. During influenza virus infection, these specialised structural cells and populations of resident immune cells come together to mount the first response to the virus, one which would play a significant role in the immediate and long term outcome of the infection. In this review, we focus on the immune defence machinery of the respiratory epithelium and briefly explore how it repairs and regenerates after infection.
Collapse
Affiliation(s)
- Laura Denney
- MRC Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford, UK
| | - Ling-Pei Ho
- MRC Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford, UK.
| |
Collapse
|
19
|
Matsumura T, Hida S, Kitazawa M, Fujii C, Kobayashi A, Takeoka M, Taniguchi SI, Miyagawa SI. Fascin1 suppresses RIG-I-like receptor signaling and interferon-β production by associating with IκB kinase ϵ (IKKϵ) in colon cancer. J Biol Chem 2018; 293:6326-6336. [PMID: 29496994 PMCID: PMC5925820 DOI: 10.1074/jbc.m117.819201] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2017] [Revised: 02/26/2018] [Indexed: 11/06/2022] Open
Abstract
Fascin1 is an actin-bundling protein involved in cancer cell migration and has recently been shown also to have roles in virus-mediated immune cell responses. Because viral infection has been shown to activate immune cells and to induce interferon-β expression in human cancer cells, we evaluated the effects of fascin1 on virus-dependent signaling via the membrane- and actin-associated protein RIG-I (retinoic acid-inducible gene I) in colon cancer cells. We knocked down fascin1 expression with shRNA retrovirally transduced into a DLD-1 colon cancer and L929 fibroblast-like cell lines and used luciferase reporter assays and co-immunoprecipitation to identify fascin1 targets. We found that intracellular poly(I·C) transfection to mimic viral infection enhances the RIG-I/MDA5 (melanoma differentiation-associated gene 5)-mediated dimerization of interferon regulatory factor 3 (IRF-3). The transfection also significantly increased the expression levels of IRF-7, interferon-β, and interferon-inducible cytokine IP-10 in fascin1-deleted cells compared with controls while significantly suppressing cell growth, migration, and invasion. We also found that fascin1 constitutively interacts with IκB kinase ϵ (IKKϵ) in the RIG-I signaling pathway. In summary, we have identified fascin1 as a suppressor of the RIG-I signaling pathway associating with IκB kinase ϵ in DLD-1 colon cancer cells to suppress immune responses to viral infection.
Collapse
Affiliation(s)
- Tomio Matsumura
- From the Departments of Molecular Oncology and
- Aging Biology, Shinshu University Graduate School of Medicine
- the Department of Surgery, Shinshu University School of Medicine, and
| | - Shigeaki Hida
- the Department of Molecular and Cellular Health Science, Nagoya University Graduate School of Pharmaceutical Sciences, Nagoya 467-8603, Japan
| | - Masato Kitazawa
- the Department of Surgery, Shinshu University School of Medicine, and
| | - Chifumi Fujii
- From the Departments of Molecular Oncology and
- the Department of Advanced Medicine for Health Promotion, Institute for Biomedical Sciences, Shinshu University, Matsumoto 390-8621, Japan and
| | - Akira Kobayashi
- the Department of Surgery, Shinshu University School of Medicine, and
| | - Michiko Takeoka
- the Department of Surgery, Shinshu University School of Medicine, and
| | | | | |
Collapse
|
20
|
Yang H, Guo HZ, Li XY, Lin J, Zhang W, Zhao JM, Zhang HX, Chen SJ, Chen Z, Zhu J. Viral RNA-Unprimed Rig-I Restrains Stat3 Activation in the Modulation of Regulatory T Cell/Th17 Cell Balance. THE JOURNAL OF IMMUNOLOGY 2017; 199:119-128. [PMID: 28550197 DOI: 10.4049/jimmunol.1700366] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Accepted: 04/21/2017] [Indexed: 01/11/2023]
Abstract
Innate immunity activation by viral RNA-primed retinoid acid inducible gene-I (Rig-I) in CD4+ T cells antagonizes TGFβ signaling to suppress the differentiation of regulatory T cells (Tregs). However, how viral RNA-unliganded Rig-I (apo-Rig-I) modulates Treg generation remains unclear. In this article, we show that, in the absence of viral infection, Treg differentiation of Rig-I-/- CD4+ T cells was compromised, in the presence of increased generation of Th17 cells and overactivation of Stat3, a critical regulator tilting the Treg/Th17 cell balance. Mechanistically, apo-Rig-I physically associates with Stat3, thereby inhibiting Jak1's association with Stat3 while facilitating Shp2's association to inhibit p-Stat3 levels. Interestingly, inhibition of Stat3 ameliorates the Treg/Th17 imbalance and the colitis observed in Rig-I-/- mice. Collectively, these results uncover an independent functional contribution of the apo-Rig-I/Stat3 interaction in the maintenance of Treg/Th17 cell balance.
Collapse
Affiliation(s)
- Hui Yang
- State Key Laboratory for Medical Genomics, Shanghai Institute of Hematology and Collaborative Innovation Center of Hematology, Rui-Jin Hospital, Shanghai Jiao-Tong University School of Medicine, Shanghai 200025, People's Republic of China
| | - He-Zhou Guo
- School of Life Sciences and Biotechnology, Shanghai Jiao-Tong University, Shanghai 200240, People's Republic of China; and
| | - Xian-Yang Li
- State Key Laboratory for Medical Genomics, Shanghai Institute of Hematology and Collaborative Innovation Center of Hematology, Rui-Jin Hospital, Shanghai Jiao-Tong University School of Medicine, Shanghai 200025, People's Republic of China
| | - Jian Lin
- School of Life Sciences and Biotechnology, Shanghai Jiao-Tong University, Shanghai 200240, People's Republic of China; and
| | - Wu Zhang
- State Key Laboratory for Medical Genomics, Shanghai Institute of Hematology and Collaborative Innovation Center of Hematology, Rui-Jin Hospital, Shanghai Jiao-Tong University School of Medicine, Shanghai 200025, People's Republic of China
| | - Jun-Mei Zhao
- State Key Laboratory for Medical Genomics, Shanghai Institute of Hematology and Collaborative Innovation Center of Hematology, Rui-Jin Hospital, Shanghai Jiao-Tong University School of Medicine, Shanghai 200025, People's Republic of China
| | - Hong-Xin Zhang
- State Key Laboratory for Medical Genomics, Shanghai Institute of Hematology and Collaborative Innovation Center of Hematology, Rui-Jin Hospital, Shanghai Jiao-Tong University School of Medicine, Shanghai 200025, People's Republic of China
| | - Sai-Juan Chen
- State Key Laboratory for Medical Genomics, Shanghai Institute of Hematology and Collaborative Innovation Center of Hematology, Rui-Jin Hospital, Shanghai Jiao-Tong University School of Medicine, Shanghai 200025, People's Republic of China.,Collaborative Innovation Center of Systems Biomedicine, Shanghai 200025, People's Republic of China
| | - Zhu Chen
- State Key Laboratory for Medical Genomics, Shanghai Institute of Hematology and Collaborative Innovation Center of Hematology, Rui-Jin Hospital, Shanghai Jiao-Tong University School of Medicine, Shanghai 200025, People's Republic of China.,Collaborative Innovation Center of Systems Biomedicine, Shanghai 200025, People's Republic of China
| | - Jiang Zhu
- State Key Laboratory for Medical Genomics, Shanghai Institute of Hematology and Collaborative Innovation Center of Hematology, Rui-Jin Hospital, Shanghai Jiao-Tong University School of Medicine, Shanghai 200025, People's Republic of China; .,School of Life Sciences and Biotechnology, Shanghai Jiao-Tong University, Shanghai 200240, People's Republic of China; and.,Collaborative Innovation Center of Systems Biomedicine, Shanghai 200025, People's Republic of China
| |
Collapse
|
21
|
Nguyen NT, Now H, Kim WJ, Kim N, Yoo JY. Ubiquitin-like modifier FAT10 attenuates RIG-I mediated antiviral signaling by segregating activated RIG-I from its signaling platform. Sci Rep 2016; 6:23377. [PMID: 26996158 PMCID: PMC4800306 DOI: 10.1038/srep23377] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2015] [Accepted: 03/04/2016] [Indexed: 12/30/2022] Open
Abstract
RIG-I is a key cytosolic RNA sensor that mediates innate immune defense against RNA virus. Aberrant RIG-I activity leads to severe pathological states such as autosomal dominant multi-system disorder, inflammatory myophathies and dermatomyositis. Therefore, identification of regulators that ensure efficient defense without harmful immune-pathology is particularly critical to deal with RIG-I-associated diseases. Here, we presented the inflammatory inducible FAT10 as a novel negative regulator of RIG-I-mediated inflammatory response. In various cell lines, FAT10 protein is undetectable unless it is induced by pro-inflammatory cytokines. FAT10 non-covalently associated with the 2CARD domain of RIG-I, and inhibited viral RNA-induced IRF3 and NF-kB activation through modulating the RIG-I protein solubility. We further demonstrated that FAT10 was recruited to RIG-I-TRIM25 to form an inhibitory complex where FAT10 was stabilized by E3 ligase TRIM25. As the result, FAT10 inhibited the antiviral stress granules formation contains RIG-I and sequestered the active RIG-I away from the mitochondria. Our study presented a novel mechanism to dampen RIG-I activity. Highly accumulated FAT10 is observed in various cancers with pro-inflammatory environment, therefore, our finding which uncovered the suppressive effect of the accumulated FAT10 during virus-mediated inflammatory response may also provide molecular clue to understand the carcinogenesis related with infection and inflammation.
Collapse
Affiliation(s)
- Nhung T.H. Nguyen
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, Korea Hyoja-dong 31, Pohang, 790-784, Republic of Korea
| | - Hesung Now
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, Korea Hyoja-dong 31, Pohang, 790-784, Republic of Korea
| | - Woo-Jong Kim
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, Korea Hyoja-dong 31, Pohang, 790-784, Republic of Korea
| | - Nari Kim
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, Korea Hyoja-dong 31, Pohang, 790-784, Republic of Korea
| | - Joo-Yeon Yoo
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, Korea Hyoja-dong 31, Pohang, 790-784, Republic of Korea
| |
Collapse
|
22
|
The Roles of RNase-L in Antimicrobial Immunity and the Cytoskeleton-Associated Innate Response. Int J Mol Sci 2016; 17:ijms17010074. [PMID: 26760998 PMCID: PMC4730318 DOI: 10.3390/ijms17010074] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2015] [Revised: 12/21/2015] [Accepted: 01/04/2016] [Indexed: 12/26/2022] Open
Abstract
The interferon (IFN)-regulated endoribonuclease RNase-L is involved in multiple aspects of the antimicrobial innate immune response. It is the terminal component of an RNA cleavage pathway in which dsRNA induces the production of RNase-L-activating 2-5A by the 2′-5′-oligoadenylate synthetase. The active nuclease then cleaves ssRNAs, both cellular and viral, leading to downregulation of their expression and the generation of small RNAs capable of activating retinoic acid-inducible gene-I (RIG-I)-like receptors or the nucleotide-binding oligomerization domain-like receptor 3 (NLRP3) inflammasome. This leads to IFNβ expression and IL-1β activation respectively, in addition to broader effects on immune cell function. RNase-L is also one of a growing number of innate immune components that interact with the cell cytoskeleton. It can bind to several cytoskeletal proteins, including filamin A, an actin-binding protein that collaborates with RNase-L to maintain the cellular barrier to viral entry. This antiviral activity is independent of catalytic function, a unique mechanism for RNase-L. We also describe here the interaction of RNase-L with the E3 ubiquitin ligase and scaffolding protein, ligand of nump protein X (LNX), a regulator of tight junction proteins. In order to better understand the significance and context of these novel binding partners in the antimicrobial response, other innate immune protein interactions with the cytoskeleton are also discussed.
Collapse
|
23
|
Membrane Perturbation-Associated Ca2+ Signaling and Incoming Genome Sensing Are Required for the Host Response to Low-Level Enveloped Virus Particle Entry. J Virol 2015; 90:3018-27. [PMID: 26719279 DOI: 10.1128/jvi.02642-15] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2015] [Accepted: 12/23/2015] [Indexed: 12/25/2022] Open
Abstract
UNLABELLED The type I interferon (IFN) response is an important aspect of innate antiviral defense, and the transcription factor IRF3 plays an important role in its induction. Membrane perturbation during fusion, a necessary step for enveloped virus particle entry, appears sufficient to induce transcription of a subset of IFN-stimulated genes (ISGs) in an IRF3-dependent, IFN-independent fashion. IRF3 is emerging as a central node in host cell stress responses, although it remains unclear how different forms of stress activate IRF3. Here, we investigated the minimum number of Sendai virus (SeV) and human cytomegalovirus (HCMV) particles required to activate IRF3 and trigger an antiviral response. We found that Ca(2+) signaling associated with membrane perturbation and recognition of incoming viral genomes by cytosolic nucleic acid receptors are required to activate IRF3 in response to fewer than 13 particles of SeV and 84 particles of HCMV per cell. Moreover, it appears that Ca(2+) signaling is important for activation of STING and IRF3 following HCMV particle entry, suggesting that Ca(2+) signaling sensitizes cells to recognize genomes within incoming virus particles. To our knowledge, this is the first evidence that cytosolic nucleic acid sensors recognize genomes within incoming virus particles prior to virus replication. These studies highlight the exquisite sensitivity of the cellular response to low-level stimuli and suggest that virus particle entry is sensed as a stress signal. IMPORTANCE The mechanism by which replicating viruses trigger IRF3 activation and type I IFN induction through the generation and accumulation of viral pathogen-associated molecular patterns has been well characterized. However, the mechanism by which enveloped virus particle entry mediates a stress response, leading to IRF3 activation and the IFN-independent response, remained elusive. Here, we find that Ca(2+) signaling associated with membrane perturbation appears to sensitize cells to recognize genomes within incoming virus particles. To our knowledge, this is the first study to show that cytosolic receptors recognize genomes within incoming virus particles prior to virus replication. These findings not only highlight the sensitivity of cellular responses to low-level virus particle stimulation, but provide important insights into how nonreplicating virus vectors or synthetic lipid-based carriers used as clinical delivery vehicles activate innate immune responses.
Collapse
|
24
|
The Potential Regulatory Mechanisms of miR-196a in Huntington's Disease through Bioinformatic Analyses. PLoS One 2015; 10:e0137637. [PMID: 26376480 PMCID: PMC4574104 DOI: 10.1371/journal.pone.0137637] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2015] [Accepted: 08/20/2015] [Indexed: 11/19/2022] Open
Abstract
High throughput screening is a powerful tool to identify the potential candidate molecules involved during disease progression. However, analysis of complicated data is one of the most challenging steps on the way to obtaining useful results from this approach. Previously, we showed that a specific miRNA, miR-196a, could ameliorate the pathological phenotypes of Huntington’s disease (HD) in different models, and performed high throughput screening by using the striatum of transgenic mice. In this study, we further tried to identify the potential regulatory mechanisms using different bioinformatic tools, including Database for Annotation, Visualization and Integrated Discovery (DAVID), Molecular Signatures Database (MSigDB), TargetScan and MetaCore. The results showed that miR-196a dominantly altered “ABC transporters”, “RIG-I-like receptor signaling pathway”, immune system”, “adaptive immune system”,“tissue remodeling and wound repair” and “cytoskeleton remodeling”. In addition, miR-196a also changed the expression of several well-defined pathways of HD, such as apoptosis and cell adhesion. Since these analyses showed the regulatory pathways are highly related to the modification of the cytoskeleton, we further confirmed that miR-196a could enhance the neurite outgrowth in neuroblastoma cells, suggesting miR-196a might provide beneficial functions through the alteration of cytoskeleton structures. Since impairment of the cytoskeleton has been reported in several neuronal diseases, this study will provide not only the potential working mechanisms of miR-196a but also insights for therapeutic strategies for use with different neuronal diseases.
Collapse
|
25
|
Horner SM, Wilkins C, Badil S, Iskarpatyoti J, Gale M. Proteomic analysis of mitochondrial-associated ER membranes (MAM) during RNA virus infection reveals dynamic changes in protein and organelle trafficking. PLoS One 2015; 10:e0117963. [PMID: 25734423 PMCID: PMC4348417 DOI: 10.1371/journal.pone.0117963] [Citation(s) in RCA: 90] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2014] [Accepted: 01/06/2015] [Indexed: 02/07/2023] Open
Abstract
RIG-I pathway signaling of innate immunity against RNA virus infection is organized between the ER and mitochondria on a subdomain of the ER called the mitochondrial-associated ER membrane (MAM). The RIG-I adaptor protein MAVS transmits downstream signaling of antiviral immunity, with signaling complexes assembling on the MAM in association with mitochondria and peroxisomes. To identify components that regulate MAVS signalosome assembly on the MAM, we characterized the proteome of MAM, ER, and cytosol from cells infected with either chronic (hepatitis C) or acute (Sendai) RNA virus infections, as well as mock-infected cells. Comparative analysis of protein trafficking dynamics during both chronic and acute viral infection reveals differential protein profiles in the MAM during RIG-I pathway activation. We identified proteins and biochemical pathways recruited into and out of the MAM in both chronic and acute RNA viral infections, representing proteins that drive immunity and/or regulate viral replication. In addition, by using this comparative proteomics approach, we identified 3 new MAVS-interacting proteins, RAB1B, VTN, and LONP1, and defined LONP1 as a positive regulator of the RIG-I pathway. Our proteomic analysis also reveals a dynamic cross-talk between subcellular compartments during both acute and chronic RNA virus infection, and demonstrates the importance of the MAM as a central platform that coordinates innate immune signaling to initiate immunity against RNA virus infection.
Collapse
Affiliation(s)
- Stacy M. Horner
- Department of Immunology, University of Washington, Seattle, Washington, United States of America
- Department of Medicine, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Courtney Wilkins
- Department of Immunology, University of Washington, Seattle, Washington, United States of America
| | - Samantha Badil
- Department of Immunology, University of Washington, Seattle, Washington, United States of America
| | - Jason Iskarpatyoti
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Michael Gale
- Department of Immunology, University of Washington, Seattle, Washington, United States of America
| |
Collapse
|
26
|
Li XY, Guo HZ, Zhu J. Tumor suppressor activity of RIG-I. Mol Cell Oncol 2014; 1:e968016. [PMID: 27308362 PMCID: PMC4905202 DOI: 10.4161/23723548.2014.968016] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2014] [Revised: 08/07/2014] [Accepted: 08/18/2014] [Indexed: 11/19/2022]
Abstract
Retinoic acid inducible gene-I (RIG-I), named for the observation that its mRNA expression is highly upregulated in the progression of all-trans retinoic acid (ATRA)-induced maturation of acute promyelocytic leukemia (APL) cells, has been well documented as a pivotal virus-associated molecular pattern recognition receptor (PRR) responsible for triggering innate immunity. Upon recognizing viral RNA ligands, RIG-I experiences a series of programmed conformational changes and modifications that unleash its activity through the formation of complexes with various binding partners. Such partners include the mitochondria membrane-anchored protein IPS-1 (also named MAVS/VISA/Cardif) that activates both the IRF3/7 and NF-κB pathways. These partnerships and resulting pathway activations underlie the synthesis of type I interferon and other inflammatory factors. Recent studies have demonstrated that RIG-I is also involved in the regulation of basic cellular processes outside of innate immunity against viral infections, such as hematopoietic proliferation and differentiation, maintenance of leukemic stemness, and tumorigenesis of hepatocellular carcinoma. In this review, we will highlight recent studies leading up to the recognition that RIG-I performs an essential function as a tumor suppressor and try to reconcile this activity of RIG-I with its well-known role in protecting cells against viral infection.
Collapse
Affiliation(s)
- Xian-Yang Li
- State Key Laboratory for Medical Genomics and Shanghai Institute of Hematology and Collaborative Innovation Center of Hematology; Rui-Jin Hospital; Shanghai Jiao-Tong University School of Medicine Shanghai, People's Republic of China; Department of Laboratory Medicine; Shanghai First People's Hospital; Shanghai Jiao-Tong University; Shanghai, People's Republic of China
| | - He-Zhou Guo
- State Key Laboratory for Medical Genomics and Shanghai Institute of Hematology and Collaborative Innovation Center of Hematology; Rui-Jin Hospital; Shanghai Jiao-Tong University School of Medicine Shanghai, People's Republic of China
| | - Jiang Zhu
- State Key Laboratory for Medical Genomics and Shanghai Institute of Hematology and Collaborative Innovation Center of Hematology; Rui-Jin Hospital; Shanghai Jiao-Tong University School of Medicine Shanghai, People's Republic of China
| |
Collapse
|
27
|
Abstract
The actin cytoskeleton and its network of associated proteins constitute a physical barrier that viruses must circumvent to gain entry into cells for productive infection. The mechanisms by which the physical signals of infection are sensed by the host to activate an innate immune response are not well understood. The antiviral endoribonuclease RNase L is ubiquitously expressed in a latent form and activated upon binding 2-5A, a unique oligoadenylate produced during viral infections. We provide evidence that RNase L in its inactive form interacts with the actin-binding protein Filamin A to modulate the actin cytoskeleton and inhibit virus entry. Cells lacking either RNase L or Filamin A displayed increased virus entry which was exacerbated in cells lacking both proteins. RNase L deletion mutants that reduced Filamin A interaction displayed a compromised ability to restrict virus entry, supporting the idea of an important role for the RNase L-Filamin A complex in barrier function. Remarkably, both the wild type and a catalytically inactive RNase L mutant were competent to reduce virus entry when transfected into RNase L-deficient cells, indicating that this novel function of RNase L is independent of its enzymatic activity. Virus infection and RNase L activation disrupt its association with Filamin A and release RNase L to mediate its canonical nuclease-dependent antiviral activities. The dual functions of RNase L as a constitutive component of the actin cytoskeleton and as an induced mediator of antiviral signaling and effector functions provide insights into its mechanisms of antiviral activity and opportunities for the development of novel antiviral agents. Cells constantly face and sample pathogens on their outer surface. The actin cytoskeleton and interacting proteins associate with the cell membrane and constitute a barrier to infection. Disruption of the actin cytoskeleton allows viruses to enter the cell and induces innate immune responses to clear infections. The molecular mechanisms that link virus-induced physical perturbations to host defense pathways remain unclear. Our studies identified a novel interaction between the antiviral endoribonuclease RNase L and the actin-binding protein Filamin A that enhances host defense by preventing viral entry into naive cells. This role for RNase L is independent of its enzymatic function. Virus infection alters actin dynamics, disrupts the RNase L-Filamin A complex, and releases RNase L to mediate antiviral signaling and effector functions via its established nucleolytic activities. These dual roles for RNase L provide an efficient strategy to protect cells from infection and rapidly respond upon pathogen exposure.
Collapse
|
28
|
Li W, Chen H, Sutton T, Obadan A, Perez DR. Interactions between the influenza A virus RNA polymerase components and retinoic acid-inducible gene I. J Virol 2014; 88:10432-47. [PMID: 24942585 PMCID: PMC4178842 DOI: 10.1128/jvi.01383-14] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2014] [Accepted: 06/12/2014] [Indexed: 12/11/2022] Open
Abstract
UNLABELLED The influenza A virus genome possesses eight negative-strand RNA segments in the form of viral ribonucleoprotein particles (vRNPs) in association with the three viral RNA polymerase subunits (PB2, PB1, and PA) and the nucleoprotein (NP). Through interactions with multiple host factors, the RNP subunits play vital roles in replication, host adaptation, interspecies transmission, and pathogenicity. In order to gain insight into the potential roles of RNP subunits in the modulation of the host's innate immune response, the interactions of each RNP subunit with retinoic acid-inducible gene I protein (RIG-I) from mammalian and avian species were investigated. Studies using coimmunoprecipitation (co-IP), bimolecular fluorescence complementation (BiFc), and colocalization using confocal microscopy provided direct evidence for the RNA-independent binding of PB2, PB1, and PA with RIG-I from various hosts (human, swine, mouse, and duck). In contrast, the binding of NP with RIG-I was found to be RNA dependent. Expression of the viral NS1 protein, which interacts with RIG-I, did not interfere with the association of RNA polymerase subunits with RIG-I. The association of each individual virus polymerase component with RIG-I failed to significantly affect the interferon (IFN) induction elicited by RIG-I and 5' triphosphate (5'ppp) RNA in reporter assays, quantitative reverse transcription-PCR (RT-PCR), and IRF3 phosphorylation tests. Taken together, these findings indicate that viral RNA polymerase components PB2, PB1, and PA directly target RIG-I, but the exact biological significance of these interactions in the replication and pathogenicity of influenza A virus needs to be further clarified. IMPORTANCE RIG-I is an important RNA sensor to elicit the innate immune response in mammals and some bird species (such as duck) upon influenza A virus infection. Although the 5'-triphosphate double-stranded RNA (dsRNA) panhandle structure at the end of viral genome RNA is responsible for the binding and subsequent activation of RIG-I, this structure is supposedly wrapped by RNA polymerase complex (PB2, PB1, and PA), which may interfere with the induction of RIG-I signaling pathway. In the present study, PB2, PB1, and PA were found to individually interact with RIG-Is from multiple mammalian and avian species in an RNA-independent manner, without significantly affecting the generation of IFN. The data suggest that although RIG-I binding by RNA polymerase complex is conserved in different species, it does not appear to play crucial role in the modulation of IFN in vitro.
Collapse
Affiliation(s)
- Weizhong Li
- Department of Veterinary Medicine, University of Maryland, College Park, and Virginia-Maryland Regional College of Veterinary Medicine, College Park, Maryland, USA
| | - Hongjun Chen
- Department of Veterinary Medicine, University of Maryland, College Park, and Virginia-Maryland Regional College of Veterinary Medicine, College Park, Maryland, USA
| | - Troy Sutton
- Department of Veterinary Medicine, University of Maryland, College Park, and Virginia-Maryland Regional College of Veterinary Medicine, College Park, Maryland, USA
| | - Adebimpe Obadan
- Department of Veterinary Medicine, University of Maryland, College Park, and Virginia-Maryland Regional College of Veterinary Medicine, College Park, Maryland, USA
| | - Daniel R Perez
- Department of Veterinary Medicine, University of Maryland, College Park, and Virginia-Maryland Regional College of Veterinary Medicine, College Park, Maryland, USA
| |
Collapse
|
29
|
Fitzgerald ME, Rawling DC, Vela A, Pyle AM. An evolving arsenal: viral RNA detection by RIG-I-like receptors. Curr Opin Microbiol 2014; 20:76-81. [PMID: 24912143 PMCID: PMC7108371 DOI: 10.1016/j.mib.2014.05.004] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2014] [Revised: 05/02/2014] [Accepted: 05/11/2014] [Indexed: 12/22/2022]
Abstract
RIG-I-like receptors (RLRs) utilize a specialized, multi-domain architecture to detect and respond to invasion by a diverse set of viruses. Structural similarities among these receptors provide a general mechanism for double strand RNA recognition and signal transduction. However, each RLR has developed unique strategies for sensing the specific molecular determinants on subgroups of viral RNAs. As a means to circumvent the antiviral response, viruses escape RLR detection by degrading, or sequestering or modifying their RNA. Patterns of variation in RLR sequence reveal a continuous evolution of the protein domains that contribute to RNA recognition and signaling.
Collapse
Affiliation(s)
- Megan E Fitzgerald
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT 06520, United States; Howard Hughes Medical Institute, Chevy Chase, MD 20815, United States
| | - David C Rawling
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520, United States
| | - Adriana Vela
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT 06520, United States
| | - Anna Marie Pyle
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT 06520, United States; Howard Hughes Medical Institute, Chevy Chase, MD 20815, United States.
| |
Collapse
|
30
|
Rac1 participates in thermally induced alterations of the cytoskeleton, cell morphology and lipid rafts, and regulates the expression of heat shock proteins in B16F10 melanoma cells. PLoS One 2014; 9:e89136. [PMID: 24586549 PMCID: PMC3930703 DOI: 10.1371/journal.pone.0089136] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2013] [Accepted: 01/17/2014] [Indexed: 11/19/2022] Open
Abstract
Eukaryotic cells exhibit a characteristic response to hyperthermic treatment, involving morphological and cytoskeletal alterations and the induction of heat shock protein synthesis. Small GTPases of the Ras superfamily are known to serve as molecular switches which mediate responses to extracellular stimuli. We addressed here how small GTPase Rac1 integrates signals from heat stress and simultaneously induces various cellular changes in mammalian cells. As evidence that Rac1 is implicated in the heat shock response, we first demonstrated that both mild (41.5°C) and severe (43°C) heat shock induced membrane translocation of Rac1. Following inhibition of the activation or palmitoylation of Rac1, the size of its plasma membrane-bound pool was significantly decreased while the heat shock-induced alterations in the cytoskeleton and cell morphology were prevented. We earlier documented that the size distribution pattern of cholesterol-rich rafts is temperature dependent and hypothesized that this is coupled to the triggering mechanism of stress sensing and signaling. Interestingly, when plasma membrane localization of Rac1 was inhibited, a different and temperature independent average domain size was detected. In addition, inhibition of the activation or palmitoylation of Rac1 resulted in a strongly decreased expression of the genes of major heat shock proteins hsp25 and hsp70 under both mild and severe heat stress conditions.
Collapse
|
31
|
Li XY, Jiang LJ, Chen L, Ding ML, Guo HZ, Zhang W, Zhang HX, Ma XD, Liu XZ, Xi XD, Chen SJ, Chen Z, Zhu J. RIG-I modulates Src-mediated AKT activation to restrain leukemic stemness. Mol Cell 2014; 53:407-19. [PMID: 24412064 DOI: 10.1016/j.molcel.2013.12.008] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2013] [Revised: 10/14/2013] [Accepted: 12/05/2013] [Indexed: 01/09/2023]
Abstract
Retinoic acid (RA)-inducible gene I (RIG-I) is highly upregulated and functionally implicated in the RA-induced maturation of acute myeloid leukemia (AML) blasts. However, the underlying mechanism and the biological relevance of RIG-I expression to the maintenance of leukemogenic potential are poorly understood. Here, we show that RIG-I, without priming by foreign RNA, inhibits the Src-facilitated activation of AKT-mTOR in AML cells. Moreover, in a group of primary human AML blasts, RIG-I reduction renders the Src family kinases hyperactive in promoting AKT activation. Mechanistically, a PxxP motif in RIG-I, upon the N-terminal CARDs' association with the Src SH1 domain, competes with the AKT PxxP motif for recognizing the Src SH3 domain. In accordance, mutating PxxP motif prevents Rig-I from inhibiting AKT activation, cytokine-stimulated myeloid progenitor proliferation, and in vivo repopulating capacity of leukemia cells. Collectively, our data suggest an antileukemia activity of RIG-I via competitively inhibiting Src/AKT association.
Collapse
MESH Headings
- Adaptor Proteins, Signal Transducing/metabolism
- Adaptor Proteins, Signal Transducing/physiology
- Amino Acid Sequence
- Cell Line, Tumor
- DEAD Box Protein 58
- DEAD-box RNA Helicases/chemistry
- DEAD-box RNA Helicases/genetics
- DEAD-box RNA Helicases/physiology
- Enzyme Activation
- Humans
- Leukemia, Myeloid, Acute/genetics
- Leukemia, Myeloid, Acute/metabolism
- Models, Genetic
- Molecular Sequence Data
- Proto-Oncogene Proteins c-akt/metabolism
- Proto-Oncogene Proteins c-akt/physiology
- Proto-Oncogene Proteins pp60(c-src)/metabolism
- Proto-Oncogene Proteins pp60(c-src)/physiology
- Receptors, Immunologic
- Sequence Alignment
- Sequence Analysis, Protein
- TOR Serine-Threonine Kinases/metabolism
- TOR Serine-Threonine Kinases/physiology
- Up-Regulation
Collapse
Affiliation(s)
- Xian-Yang Li
- State Key Laboratory for Medical Genomics and Shanghai Institute of Hematology, Rui-Jin Hospital, Shanghai Jiao-Tong University School of Medicine, Shanghai 200025, People's Republic of China; Shanghai E-Institute for Model Organisms, Shanghai 200025, People's Republic of China
| | - Lin-Jia Jiang
- State Key Laboratory for Medical Genomics and Shanghai Institute of Hematology, Rui-Jin Hospital, Shanghai Jiao-Tong University School of Medicine, Shanghai 200025, People's Republic of China; Shanghai E-Institute for Model Organisms, Shanghai 200025, People's Republic of China
| | - Lei Chen
- State Key Laboratory for Medical Genomics and Shanghai Institute of Hematology, Rui-Jin Hospital, Shanghai Jiao-Tong University School of Medicine, Shanghai 200025, People's Republic of China; Shanghai E-Institute for Model Organisms, Shanghai 200025, People's Republic of China
| | - Meng-Lei Ding
- State Key Laboratory for Medical Genomics and Shanghai Institute of Hematology, Rui-Jin Hospital, Shanghai Jiao-Tong University School of Medicine, Shanghai 200025, People's Republic of China; Shanghai E-Institute for Model Organisms, Shanghai 200025, People's Republic of China
| | - He-Zhou Guo
- State Key Laboratory for Medical Genomics and Shanghai Institute of Hematology, Rui-Jin Hospital, Shanghai Jiao-Tong University School of Medicine, Shanghai 200025, People's Republic of China; Shanghai E-Institute for Model Organisms, Shanghai 200025, People's Republic of China
| | - Wu Zhang
- State Key Laboratory for Medical Genomics and Shanghai Institute of Hematology, Rui-Jin Hospital, Shanghai Jiao-Tong University School of Medicine, Shanghai 200025, People's Republic of China; Shanghai E-Institute for Model Organisms, Shanghai 200025, People's Republic of China
| | - Hong-Xin Zhang
- Shanghai E-Institute for Model Organisms, Shanghai 200025, People's Republic of China
| | - Xiao-Dan Ma
- State Key Laboratory for Medical Genomics and Shanghai Institute of Hematology, Rui-Jin Hospital, Shanghai Jiao-Tong University School of Medicine, Shanghai 200025, People's Republic of China
| | - Xiang-Zhen Liu
- State Key Laboratory for Medical Genomics and Shanghai Institute of Hematology, Rui-Jin Hospital, Shanghai Jiao-Tong University School of Medicine, Shanghai 200025, People's Republic of China
| | - Xiao-Dong Xi
- State Key Laboratory for Medical Genomics and Shanghai Institute of Hematology, Rui-Jin Hospital, Shanghai Jiao-Tong University School of Medicine, Shanghai 200025, People's Republic of China
| | - Sai-Juan Chen
- State Key Laboratory for Medical Genomics and Shanghai Institute of Hematology, Rui-Jin Hospital, Shanghai Jiao-Tong University School of Medicine, Shanghai 200025, People's Republic of China
| | - Zhu Chen
- State Key Laboratory for Medical Genomics and Shanghai Institute of Hematology, Rui-Jin Hospital, Shanghai Jiao-Tong University School of Medicine, Shanghai 200025, People's Republic of China
| | - Jiang Zhu
- State Key Laboratory for Medical Genomics and Shanghai Institute of Hematology, Rui-Jin Hospital, Shanghai Jiao-Tong University School of Medicine, Shanghai 200025, People's Republic of China; Shanghai E-Institute for Model Organisms, Shanghai 200025, People's Republic of China.
| |
Collapse
|
32
|
Chen Y, Zhang Y, Huang Z, Xu Q, Zhu Z, Tong Y, Yu Q, Ding J, Chen G. Molecular characterization, expression patterns, and subcellular localization of RIG-I in the Jinding duck (Anas platyrhynchos domesticus). DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2013; 41:766-771. [PMID: 23916689 DOI: 10.1016/j.dci.2013.07.018] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2013] [Revised: 07/16/2013] [Accepted: 07/24/2013] [Indexed: 06/02/2023]
Abstract
Retinoic acid-inducible gene I (RIG-I)-like receptors (RLRs) have recently been identified as cytoplasmic sensors for RNA virus. Recent research has shown that RIG-I, a member of this family, play an important role in innate immunity. In this study, we cloned the RIG-I gene from Jinding duck by reverse transcription polymerase chain reaction (RT-PCR) and rapid amplification of cDNA ends (RACE). We determined that the cDNA of duRIG-I contains a 14-bp 5' UTR, a 2802-bp open reading frame, and alternative 3' UTRs (295-bp and 927-bp) and encodes a polypeptide of 933 amino acids. Based on this sequence, the duRIG-I protein is predicted to have conserved domains typical of RLRs. In addition, duRIG-I was found to be distributed throughout DF1 cells by indirect immunofluorescence, as predicted. duRIG-I mRNA was scarcely detected in healthy tissues by semi-quantitative RT-PCR (sqRT-PCR). To study the role of RIG-I in innate immunity, we used synthetic double-stranded RNA to mimic viral infection in vivo and detected duRIG-I transcripts in spleen and liver by quantitative real-time PCR (qRT-PCR). The expression of duRIG-I mRNA was significantly elevated at 8h post-injection (P < 0.05) and was indistinguishable from control levels at other time points (P > 0.05). These results suggest that duRIG-I plays an important role in innate immune responses to double-stranded RNA viruses and warrant further studies to reveal the possible mechanism.
Collapse
Affiliation(s)
- Yang Chen
- College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009 Jiangsu, PR China
| | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Biasi F, Leonarduzzi G, Oteiza PI, Poli G. Inflammatory bowel disease: mechanisms, redox considerations, and therapeutic targets. Antioxid Redox Signal 2013; 19:1711-47. [PMID: 23305298 PMCID: PMC3809610 DOI: 10.1089/ars.2012.4530] [Citation(s) in RCA: 215] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Oxidative stress is thought to play a key role in the development of intestinal damage in inflammatory bowel disease (IBD), because of its primary involvement in intestinal cells' aberrant immune and inflammatory responses to dietary antigens and to the commensal bacteria. During the active disease phase, activated leukocytes generate not only a wide spectrum of pro-inflammatory cytokines, but also excess oxidative reactions, which markedly alter the redox equilibrium within the gut mucosa, and maintain inflammation by inducing redox-sensitive signaling pathways and transcription factors. Moreover, several inflammatory molecules generate further oxidation products, leading to a self-sustaining and auto-amplifying vicious circle, which eventually impairs the gut barrier. The current treatment of IBD consists of long-term conventional anti-inflammatory therapy and often leads to drug refractoriness or intolerance, limiting patients' quality of life. Immune modulators or anti-tumor necrosis factor α antibodies have recently been used, but all carry the risk of significant side effects and a poor treatment response. Recent developments in molecular medicine point to the possibility of treating the oxidative stress associated with IBD, by designing a proper supplementation of specific lipids to induce local production of anti-inflammatory derivatives, as well as by developing biological therapies that target selective molecules (i.e., nuclear factor-κB, NADPH oxidase, prohibitins, or inflammasomes) involved in redox signaling. The clinical significance of oxidative stress in IBD is now becoming clear, and may soon lead to important new therapeutic options to lessen intestinal damage in this disease.
Collapse
Affiliation(s)
- Fiorella Biasi
- 1 Department of Clinical and Biological Sciences, University of Turin , San Luigi Gonzaga Hospital, Orbassano, Italy
| | | | | | | |
Collapse
|
34
|
Novel paradigms of innate immune sensing of viral infections. Cytokine 2013; 63:219-24. [DOI: 10.1016/j.cyto.2013.06.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2013] [Accepted: 06/01/2013] [Indexed: 12/15/2022]
|
35
|
Karlsen TA, Brinchmann JE. Liposome delivery of microRNA-145 to mesenchymal stem cells leads to immunological off-target effects mediated by RIG-I. Mol Ther 2013; 21:1169-81. [PMID: 23568258 PMCID: PMC3677300 DOI: 10.1038/mt.2013.55] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2012] [Accepted: 02/27/2013] [Indexed: 12/17/2022] Open
Abstract
Synthetic microRNAs regulate gene expression when transfected into cells, and may be used in strategies for molecular therapy both in vitro and in vivo. Liposomal transfection reagents are frequently used as delivery vehicles in both settings. Here, we report on the immunological off-target effects observed following liposome transfection of synthetic microRNA-145 into human mesenchymal stem cells and human articular chondrocytes (hAC). The immune response was independent on endosome delivery and toll-like receptors (TLRs) but was mediated by retinoic acid inducible-gene 1 (RIG-I). Upregulation of immune genes required liposomal delivery, as no immune response was observed after electroporation of smiR-145 directly in to the cytosol, suggesting a new role of RIG-I. Immune response was seen both with blunt ended and 2-nucleotide 3' overhang versions of synthetic miR-145, and occurred in the absence of a 5'ppp cap. Mutations in a centrally placed poly (UUUU) sequence reduced, but did not abolish the immune response. Interestingly, exposure to liposomes alone led to upregulation of several immune genes, including RIG-I mRNA. However, this process was not mediated by RIG-I. This insight is important for researchers to avoid unexpected results from gene transfer experiments in vitro and unwanted immune responses following the use of lipid-based transfection reagents in vivo.
Collapse
Affiliation(s)
- Tommy A Karlsen
- Institute of Immunology, Oslo University Hospital Rikshospitalet, Oslo, Norway
- The Norwegian Center for Stem Cell Research, University of Oslo, Oslo, Norway
| | - Jan E Brinchmann
- Institute of Immunology, Oslo University Hospital Rikshospitalet, Oslo, Norway
- The Norwegian Center for Stem Cell Research, University of Oslo, Oslo, Norway
| |
Collapse
|
36
|
Toll-like receptor 3 expression inhibits cell invasion and migration and predicts a favorable prognosis in neuroblastoma. Cancer Lett 2013; 336:338-46. [PMID: 23541683 DOI: 10.1016/j.canlet.2013.03.024] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2013] [Revised: 03/17/2013] [Accepted: 03/20/2013] [Indexed: 12/20/2022]
Abstract
To evaluate the clinical significance of TLR3 expression on neuroblastomas, we performed immunohistochemical study on archival tissues and in vitro studies on neuroblastoma cell lines. The results showed that positive TLR3 expression was associated with favorable histology and prognosis. Activation of TLR3 by polyinosinic:polycytidylic acid [poly(I:C)] treatment is effective to suppress cell migration and invasion and to decrease organized assembly of F-actin and filopodia formation, in TLR3-expressing SK-N-AS cells, which could be reversed by TLR3-targeting siRNA treatment. TLR3 agonist poly(I:C) promotes GAP-43 expression also in SK-N-AS cells only. Taken together, TLR3 could serve to predict favorable behavior in neuroblastomas.
Collapse
|
37
|
Ver Heul AM, Fowler CA, Ramaswamy S, Piper RC. Ubiquitin regulates caspase recruitment domain-mediated signaling by nucleotide-binding oligomerization domain-containing proteins NOD1 and NOD2. J Biol Chem 2013; 288:6890-902. [PMID: 23300079 PMCID: PMC3591598 DOI: 10.1074/jbc.m112.413781] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2012] [Revised: 01/02/2013] [Indexed: 11/06/2022] Open
Abstract
NOD1 and NOD2 (nucleotide-binding oligomerization domain-containing proteins) are intracellular pattern recognition receptors that activate inflammation and autophagy. These pathways rely on the caspase recruitment domains (CARDs) within the receptors, which serve as protein interaction platforms that coordinately regulate immune signaling. We show that NOD1 CARD binds ubiquitin (Ub), in addition to directly binding its downstream targets receptor-interacting protein kinase 2 (RIP2) and autophagy-related protein 16-1 (ATG16L1). NMR spectroscopy and structure-guided mutagenesis identified a small hydrophobic surface of NOD1 CARD that binds Ub. In vitro, Ub competes with RIP2 for association with NOD1 CARD. In vivo, we found that the ligand-stimulated activity of NOD1 with a mutant CARD lacking Ub binding but retaining ATG16L1 and RIP2 binding is increased relative to wild-type NOD1. Likewise, point mutations in the tandem NOD2 CARDs at positions analogous to the surface residues defining the Ub interface on NOD1 resulted in loss of Ub binding and increased ligand-stimulated NOD2 signaling. These data suggest that Ub binding provides a negative feedback loop upon NOD-dependent activation of RIP2.
Collapse
Affiliation(s)
- Aaron M. Ver Heul
- From the Departments of Molecular Physiology and Biophysics and
- Biochemistry, University of Iowa, Iowa City, Iowa 52246
| | - C. Andrew Fowler
- the Carver College of Medicine NMR Facility, Iowa City, Iowa 52246, and
| | - S. Ramaswamy
- Biochemistry, University of Iowa, Iowa City, Iowa 52246
- the Institute for Stem Cell Biology and Regenerative Medicine, Bangalore, Karnataka 560065, India
| | - Robert C. Piper
- From the Departments of Molecular Physiology and Biophysics and
| |
Collapse
|
38
|
Katibah GE, Lee HJ, Huizar JP, Vogan JM, Alber T, Collins K. tRNA binding, structure, and localization of the human interferon-induced protein IFIT5. Mol Cell 2013; 49:743-50. [PMID: 23317505 PMCID: PMC3615435 DOI: 10.1016/j.molcel.2012.12.015] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2012] [Revised: 12/19/2012] [Accepted: 12/20/2012] [Indexed: 10/27/2022]
Abstract
Interferon-induced proteins, including the largely uncharacterized interferon-induced tetratricopeptide repeat (IFIT) protein family, provide defenses against pathogens. Differing from expectations for tetratricopeptide repeat (TPR) proteins and from human IFIT1, IFIT2, and IFIT3, we show that human IFIT5 recognizes cellular RNA instead of protein partners. In vivo and in vitro, IFIT5 bound to endogenous 5'-phosphate-capped RNAs, including transfer RNAs. The crystal structure of IFIT5 revealed a convoluted intramolecular packing of eight TPRs as a fold that we name the TPR eddy. Additional, non-TPR structural elements contribute to an RNA binding cleft. Instead of general cytoplasmic distribution, IFIT5 concentrated in actin-rich protrusions from the apical cell surface colocalized with the RNA-binding retinoic acid-inducible gene-I (RIG-I). These findings establish compartmentalized cellular RNA binding activity as a mechanism for IFIT5 function and reveal the TPR eddy as a scaffold for RNA recognition.
Collapse
MESH Headings
- Actins/metabolism
- Amino Acid Substitution
- Animals
- Crystallography, X-Ray
- DEAD Box Protein 58
- DEAD-box RNA Helicases/chemistry
- DEAD-box RNA Helicases/isolation & purification
- DEAD-box RNA Helicases/metabolism
- HEK293 Cells
- Humans
- Mice
- Models, Molecular
- Mutagenesis, Site-Directed
- Neoplasm Proteins/chemistry
- Neoplasm Proteins/isolation & purification
- Neoplasm Proteins/metabolism
- Protein Binding
- Protein Interaction Mapping
- Protein Structure, Secondary
- Protein Structure, Tertiary
- Protein Transport
- RNA, Transfer, Met/chemistry
- RNA, Transfer, Met/metabolism
- Receptors, Immunologic
Collapse
Affiliation(s)
- George E. Katibah
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720
| | - Ho Jun Lee
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720
| | - John P. Huizar
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720
| | - Jacob M. Vogan
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720
| | - Tom Alber
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720
- California Institute of Quantitative Biosciences (QB3), University of California, Berkeley, CA 94720
| | - Kathleen Collins
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720
- California Institute of Quantitative Biosciences (QB3), University of California, Berkeley, CA 94720
| |
Collapse
|
39
|
Irving AT, Wang D, Vasilevski O, Latchoumanin O, Kozer N, Clayton AHA, Szczepny A, Morimoto H, Xu D, Williams BRG, Sadler AJ. Regulation of actin dynamics by protein kinase R control of gelsolin enforces basal innate immune defense. Immunity 2012; 36:795-806. [PMID: 22633459 DOI: 10.1016/j.immuni.2012.02.020] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2011] [Revised: 12/30/2011] [Accepted: 02/29/2012] [Indexed: 10/28/2022]
Abstract
Primary resistance to pathogens is reliant on both basal and inducible immune defenses. To date, research has focused upon inducible innate immune responses. In contrast to resistance via cytokine induction, basal defense mechanisms are less evident. Here we showed that the antiviral protein kinase R (PKR) inhibited the key actin-modifying protein gelsolin to regulate actin dynamics and control cytoskeletal cellular functions under homeostatic conditions. Through this mechanism, PKR controlled fundamental innate immune, actin-dependent processes that included membrane ruffling and particle engulfment. Accordingly, PKR counteracted viral entry into the cell. These findings identify a layer of host resistance, showing that the regulation of actin-modifying proteins during the innate immune response bolsters first-line defense against intracellular pathogens and has a sustained effect on virus production. Moreover, these data provide proof of principle for a concept in which the cell cytoskeleton could be targeted to elicit broad antiviral protection.
Collapse
Affiliation(s)
- Aaron T Irving
- Centre for Cancer Research, Monash Institute of Medical Research, Monash University, Clayton, Victoria 3168, Australia
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Bozym RA, Delorme-Axford E, Harris K, Morosky S, Ikizler M, Dermody TS, Sarkar SN, Coyne CB. Focal adhesion kinase is a component of antiviral RIG-I-like receptor signaling. Cell Host Microbe 2012; 11:153-66. [PMID: 22341464 PMCID: PMC3995454 DOI: 10.1016/j.chom.2012.01.008] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2011] [Revised: 11/30/2011] [Accepted: 01/02/2012] [Indexed: 01/06/2023]
Abstract
Viruses modulate the actin cytoskeleton at almost every step of their cellular journey from entry to egress. Cellular sensing of these cytoskeletal changes may function in the recognition of viral infection. Here we show that focal adhesion kinase (FAK), a focal adhesion localized tyrosine kinase that transmits signals between the extracellular matrix and the cytoplasm, serves as a RIG-I-like receptor antiviral signaling component by directing mitochondrial antiviral signaling adaptor (MAVS) activation. Cells deficient in FAK are highly susceptible to RNA virus infection and attenuated in antiviral signaling. We show that FAK interacts with MAVS at the mitochondrial membrane in a virus infection-dependent manner and potentiates MAVS-mediated signaling via a kinase-independent mechanism. A cysteine protease encoded by enteroviruses cleaves FAK to suppress its role in innate immune signaling. These findings suggest that FAK serves as a link between cytoskeletal perturbations that occur during virus infection and activation of innate immune signaling.
Collapse
Affiliation(s)
- Rebecca A. Bozym
- Department of Microbiology and Molecular Genetics, Vanderbilt University School of Medicine, Nashville, Tennessee 37232
| | - Elizabeth Delorme-Axford
- Department of Microbiology and Molecular Genetics, Vanderbilt University School of Medicine, Nashville, Tennessee 37232
| | - Katharine Harris
- Department of Microbiology and Molecular Genetics, Vanderbilt University School of Medicine, Nashville, Tennessee 37232
| | - Setanie Morosky
- Department of Microbiology and Molecular Genetics, Vanderbilt University School of Medicine, Nashville, Tennessee 37232
| | - Mine Ikizler
- Department of Pediatrics, Vanderbilt University School of Medicine, Nashville, Tennessee 37232
- Elizabeth B. Lamb Center for Pediatric Research, Vanderbilt University School of Medicine, Nashville, Tennessee 37232
| | - Terence S. Dermody
- Department of Pediatrics, Vanderbilt University School of Medicine, Nashville, Tennessee 37232
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University School of Medicine, Nashville, Tennessee 37232
- Elizabeth B. Lamb Center for Pediatric Research, Vanderbilt University School of Medicine, Nashville, Tennessee 37232
| | - Saumendra N. Sarkar
- Department of Microbiology and Molecular Genetics, Vanderbilt University School of Medicine, Nashville, Tennessee 37232
- University of Pittsburgh Cancer Institute, University of Pittsburgh, Pittsburgh, Pennsylvania 15219, USA
| | - Carolyn B. Coyne
- Department of Microbiology and Molecular Genetics, Vanderbilt University School of Medicine, Nashville, Tennessee 37232
| |
Collapse
|
41
|
Morosky SA, Zhu J, Mukherjee A, Sarkar SN, Coyne CB. Retinoic acid-induced gene-I (RIG-I) associates with nucleotide-binding oligomerization domain-2 (NOD2) to negatively regulate inflammatory signaling. J Biol Chem 2011; 286:28574-83. [PMID: 21690088 PMCID: PMC3151099 DOI: 10.1074/jbc.m111.227942] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2011] [Revised: 05/17/2011] [Indexed: 11/06/2022] Open
Abstract
Cytoplasmic caspase recruiting domain (CARD)-containing molecules often function in the induction of potent antimicrobial responses in order to protect mammalian cells from invading pathogens. Retinoic acid-induced gene-I (RIG-I) and nucleotide binding oligomerization domain 2 (NOD2) serve as key factors in the detection of viral and bacterial pathogens, and in the subsequent initiation of innate immune signals to combat infection. RIG-I and NOD2 share striking similarities in their cellular localization, both localize to membrane ruffles in non-polarized epithelial cells and both exhibit a close association with the junctional complex of polarized epithelia. Here we show that RIG-I and NOD2 not only colocalize to cellular ruffles and cell-cell junctions, but that they also form a direct interaction that is mediated by the CARDs of RIG-I and multiple regions of NOD2. Moreover, we show that RIG-I negatively regulates ligand-induced nuclear factor-κB (NF-κB) signaling mediated by NOD2, and that NOD2 negatively regulates type I interferon induction by RIG-I. We also show that the three main Crohn disease-associated mutants of NOD2 (1007fs, R702W, G908R) form an interaction with RIG-I and negatively regulate its signaling to a greater extent than wild-type NOD2. Our results show that in addition to their role in innate immune recognition, RIG-I and NOD2 form a direct interaction at actin-enriched sites within cells and suggest that this interaction may impact RIG-I- and NOD2-dependent innate immune signaling.
Collapse
Affiliation(s)
| | - Jianzhong Zhu
- From the Department of Microbiology and Molecular Genetics
- University of Pittsburgh Cancer Institute, University of Pittsburgh, Pittsburgh, Pennsylvania 15219
| | | | - Saumendra N. Sarkar
- From the Department of Microbiology and Molecular Genetics
- University of Pittsburgh Cancer Institute, University of Pittsburgh, Pittsburgh, Pennsylvania 15219
| | | |
Collapse
|
42
|
The airway epithelium: soldier in the fight against respiratory viruses. Clin Microbiol Rev 2011; 24:210-29. [PMID: 21233513 DOI: 10.1128/cmr.00014-10] [Citation(s) in RCA: 465] [Impact Index Per Article: 33.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The airway epithelium acts as a frontline defense against respiratory viruses, not only as a physical barrier and through the mucociliary apparatus but also through its immunological functions. It initiates multiple innate and adaptive immune mechanisms which are crucial for efficient antiviral responses. The interaction between respiratory viruses and airway epithelial cells results in production of antiviral substances, including type I and III interferons, lactoferrin, β-defensins, and nitric oxide, and also in production of cytokines and chemokines, which recruit inflammatory cells and influence adaptive immunity. These defense mechanisms usually result in rapid virus clearance. However, respiratory viruses elaborate strategies to evade antiviral mechanisms and immune responses. They may disrupt epithelial integrity through cytotoxic effects, increasing paracellular permeability and damaging epithelial repair mechanisms. In addition, they can interfere with immune responses by blocking interferon pathways and by subverting protective inflammatory responses toward detrimental ones. Finally, by inducing overt mucus secretion and mucostasis and by paving the way for bacterial infections, they favor lung damage and further impair host antiviral mechanisms.
Collapse
|
43
|
Kemball CC, Alirezaei M, Whitton JL. Type B coxsackieviruses and their interactions with the innate and adaptive immune systems. Future Microbiol 2010; 5:1329-47. [PMID: 20860480 PMCID: PMC3045535 DOI: 10.2217/fmb.10.101] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Coxsackieviruses are important human pathogens, and their interactions with the innate and adaptive immune systems are of particular interest. Many viruses evade some aspects of the innate response, but coxsackieviruses go a step further by actively inducing, and then exploiting, some features of the host cell response. Furthermore, while most viruses encode proteins that hinder the effector functions of adaptive immunity, coxsackieviruses and their cousins demonstrate a unique capacity to almost completely evade the attention of naive CD8(+) T cells. In this artcle, we discuss the above phenomena, describe the current status of research in the field, and present several testable hypotheses regarding possible links between virus infection, innate immune sensing and disease.
Collapse
Affiliation(s)
- Christopher C Kemball
- Department of Immunology & Microbial Science, SP30-2110, The Scripps Research Institute, 10550 N. Torrey Pines Road, La Jolla, CA 92037, USA
| | - Mehrdad Alirezaei
- Department of Immunology & Microbial Science, SP30-2110, The Scripps Research Institute, 10550 N. Torrey Pines Road, La Jolla, CA 92037, USA
| | - J Lindsay Whitton
- Department of Immunology & Microbial Science, SP30-2110, The Scripps Research Institute, 10550 N. Torrey Pines Road, La Jolla, CA 92037, USA
| |
Collapse
|
44
|
An essential role for RIG-I in toll-like receptor-stimulated phagocytosis. Cell Host Microbe 2009; 6:150-61. [PMID: 19683681 DOI: 10.1016/j.chom.2009.06.008] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2008] [Revised: 02/03/2009] [Accepted: 06/12/2009] [Indexed: 11/21/2022]
Abstract
Retinoic acid-inducible gene-I (RIG-I) plays an important role in antiviral response by recognizing double-stranded RNA. Here we demonstrate an unanticipated role of RIG-I in Toll-like receptor (TLR)-stimulated phagocytosis. Stimulation with lipopolysaccharide (LPS), a ligand of TLR4, induced the expression of RIG-I in macrophages. Depletion of RIG-I by RNAi or gene targeting inhibited the LPS-induced phagocytosis of bacteria. Cellular processes involved in phagocytosis, such as small GTPase Cdc42/Rac1 activation, actin polymerization, and actin-regulator Arp2/3 recruitment, were also impaired in RIG-I-deficient macrophages activated by LPS. Moreover, RIG-I(-/-) mice were found to be more susceptible to infection with Escherichia coli as compared to wild-type mice. Thus, the regulatory functions of RIG-I are strikingly broad, including a role not only in antiviral responses but in antibacterial responses as well.
Collapse
|
45
|
Vance RE, Isberg RR, Portnoy DA. Patterns of pathogenesis: discrimination of pathogenic and nonpathogenic microbes by the innate immune system. Cell Host Microbe 2009; 6:10-21. [PMID: 19616762 PMCID: PMC2777727 DOI: 10.1016/j.chom.2009.06.007] [Citation(s) in RCA: 401] [Impact Index Per Article: 25.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2009] [Revised: 06/19/2009] [Accepted: 06/19/2009] [Indexed: 01/01/2023]
Abstract
The dominant conceptual framework for understanding innate immunity has been that host cells respond to evolutionarily conserved molecular features of pathogens called pathogen-associated molecular patterns (PAMPs). Here, we propose that PAMPs should be understood in the context of how they are naturally presented by pathogens. This can be experimentally challenging, since pathogens, almost by definition, bypass host defense. Nevertheless, in this review, we explore the idea that the immune system responds to PAMPs in the context of additional signals that derive from common "patterns of pathogenesis" employed by pathogens to infect, multiply within, and spread among their hosts.
Collapse
Affiliation(s)
- Russell E Vance
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | | | | |
Collapse
|
46
|
Barral PM, Sarkar D, Su ZZ, Barber GN, DeSalle R, Racaniello VR, Fisher PB. Functions of the cytoplasmic RNA sensors RIG-I and MDA-5: key regulators of innate immunity. Pharmacol Ther 2009; 124:219-34. [PMID: 19615405 DOI: 10.1016/j.pharmthera.2009.06.012] [Citation(s) in RCA: 139] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2009] [Accepted: 06/22/2009] [Indexed: 12/13/2022]
Abstract
The innate immune system responds within minutes of infection to produce type I interferons and pro-inflammatory cytokines. Interferons induce the synthesis of cell proteins with antiviral activity, and also shape the adaptive immune response by priming T cells. Despite the discovery of interferons over 50 years ago, only recently have we begun to understand how cells sense the presence of a virus infection. Two families of pattern recognition receptors have been shown to distinguish unique molecules present in pathogens, such as bacterial and fungal cell wall components, viral RNA and DNA, and lipoproteins. The first family includes the membrane-bound toll-like receptors (TLRs). Studies of the signaling pathways that lead from pattern recognition to cytokine induction have revealed extensive and overlapping cascades that involve protein-protein interactions and phosphorylation, and culminate in activation of transcription proteins that control the transcription of genes encoding interferons and other cytokines. A second family of pattern recognition receptors has recently been identified, which comprises the cytoplasmic sensors of viral nucleic acids, including MDA-5, RIG-I, and LGP2. In this review we summarize the discovery of these cytoplasmic sensors, how they recognize nucleic acids, the signaling pathways leading to cytokine synthesis, and viral countermeasures that have evolved to antagonize the functions of these proteins. We also consider the function of these cytoplasmic sensors in apoptosis, development and differentiation, and diabetes.
Collapse
Affiliation(s)
- Paola M Barral
- Department of Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, VA, USA.
| | | | | | | | | | | | | |
Collapse
|
47
|
Intercellular Junctional Proteins as Receptors and Barriers to Virus Infection and Spread. Cell Host Microbe 2009; 5:517-21. [DOI: 10.1016/j.chom.2009.05.009] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|