1
|
Huang Y, Liang G, Wang T, Ma Y, Ga L, Sun L, Qi X, Zhang W, Li R, Zhao Y, Meng Z, Gao X. Research strategies of the N-peptide fusion inhibitor: a promising direction for discovering novel antivirals. J Virol 2025; 99:e0228924. [PMID: 40207932 PMCID: PMC12090764 DOI: 10.1128/jvi.02289-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/11/2025] Open
Abstract
AIDS, caused by HIV-1, is a devastating condition that severely compromises the human immune system, often resulting in fatal consequences. The primary therapeutic approach for AIDS involves a combination of multiple agents, known as "cocktail therapy," aimed at maximizing and sustainably suppressing viral replication within patients. The ongoing discovery of novel compounds and the establishment of innovative research strategies have become the mandatory path to provide increasingly effective treatment options for AIDS. Peptide-based fusion inhibitors, exemplified as enfuvirtide, are able to target the six-helix bundle fusion core in HIV-1 envelope protein and function during the early stage of viral invasion. However, the prolonged and intensive use of enfuvirtide in clinical settings has posed significant challenges, including the emergence of drug resistance. N-peptide fusion inhibitors, whose sequences are different from enfuvirtide, exhibit potential anti-HIV-1 activity and inhibition of drug-resistant strains through the advanced coiled-coil conformation and are expected to serve as novel peptide inhibitors in the iteration of enfuvirtide. This paper provides a comprehensive summary of N-peptide fusion inhibitor research and development (R&D) to date, with the aim of providing investigators with prospective ideas for exploring antivirals.
Collapse
Affiliation(s)
- Yan Huang
- Key Laboratory for Candidate Medicine Design and Screening Based on Chemical Biology, College of Pharmacy, Inner Mongolia Medical University, Hohhot, China
| | - Guodong Liang
- Key Laboratory for Candidate Medicine Design and Screening Based on Chemical Biology, College of Pharmacy, Inner Mongolia Medical University, Hohhot, China
| | - Taoran Wang
- Beijing Institute of Pharmacology and Toxicology, Beijing, China
| | - Yuheng Ma
- Key Laboratory for Candidate Medicine Design and Screening Based on Chemical Biology, College of Pharmacy, Inner Mongolia Medical University, Hohhot, China
| | - Lu Ga
- Key Laboratory for Candidate Medicine Design and Screening Based on Chemical Biology, College of Pharmacy, Inner Mongolia Medical University, Hohhot, China
| | - Lijun Sun
- Key Laboratory for Candidate Medicine Design and Screening Based on Chemical Biology, College of Pharmacy, Inner Mongolia Medical University, Hohhot, China
| | - Xiao Qi
- Key Laboratory for Candidate Medicine Design and Screening Based on Chemical Biology, College of Pharmacy, Inner Mongolia Medical University, Hohhot, China
| | - Wei Zhang
- Key Laboratory for Candidate Medicine Design and Screening Based on Chemical Biology, College of Pharmacy, Inner Mongolia Medical University, Hohhot, China
| | - Ruijuan Li
- Key Laboratory for Candidate Medicine Design and Screening Based on Chemical Biology, College of Pharmacy, Inner Mongolia Medical University, Hohhot, China
| | - Yan Zhao
- Key Laboratory for Candidate Medicine Design and Screening Based on Chemical Biology, College of Pharmacy, Inner Mongolia Medical University, Hohhot, China
| | - Zhao Meng
- Beijing Institute of Pharmacology and Toxicology, Beijing, China
| | - Xin Gao
- Key Laboratory for Candidate Medicine Design and Screening Based on Chemical Biology, College of Pharmacy, Inner Mongolia Medical University, Hohhot, China
| |
Collapse
|
2
|
Liang G, Huang Y, Tang Y, Ga L, Huo C, Ma Y, Zhao Y, Na H, Meng Z. Research Strategy for Short-peptide Fusion Inhibitors Based on 6-HB Core Structure against HIV-1: A Review. Curr Pharm Biotechnol 2025; 26:328-340. [PMID: 38551054 DOI: 10.2174/0113892010297943240325040448] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 02/22/2024] [Accepted: 03/02/2024] [Indexed: 03/04/2025]
Abstract
Acquired Immune Deficiency Syndrome (AIDS) is a devastating infectious disease caused by the Human Immunodeficiency Virus type 1 (HIV-1). Enfuvirtide (T20) is the first HIV-1 fusion inhibitor for marketing, which plays an important role in AIDS treatment. However, in the clinical application process, T20 has several drawbacks, such as a high level of development of drug resistance, a short half-life in vivo, and rapid renal clearance, which severely limits the clinical application. Therefore, the development of novel fusion inhibitors to address T20 shortcomings has long been the research hotspot. Short peptides have a long half-life through modification and a high barrier to drug resistance, which is expected to solve the current fusion inhibitors dilemma. In this paper, we summarized six emerging R&D strategies for short peptide-based fusion inhibitors against HIV-1. We hope that this review will provide fresh insights into the development of novel fusion inhibitors, as well as ideas for other viral fusion inhibitor discoveries based on the common membrane fusion 6-HB core structure.
Collapse
Affiliation(s)
- Guodong Liang
- Key Laboratory for Candidate Drug Design and Screening Based on Chemical Biology, College of Pharmacy, Inner Mongolia Medical University, Huhhot, 010110, P.R. China
| | - Yan Huang
- Key Laboratory for Candidate Drug Design and Screening Based on Chemical Biology, College of Pharmacy, Inner Mongolia Medical University, Huhhot, 010110, P.R. China
| | - Yanbai Tang
- Key Laboratory for Candidate Drug Design and Screening Based on Chemical Biology, College of Pharmacy, Inner Mongolia Medical University, Huhhot, 010110, P.R. China
| | - Lu Ga
- Key Laboratory for Candidate Drug Design and Screening Based on Chemical Biology, College of Pharmacy, Inner Mongolia Medical University, Huhhot, 010110, P.R. China
| | - Caixia Huo
- Key Laboratory for Candidate Drug Design and Screening Based on Chemical Biology, College of Pharmacy, Inner Mongolia Medical University, Huhhot, 010110, P.R. China
| | - Yuheng Ma
- Key Laboratory for Candidate Drug Design and Screening Based on Chemical Biology, College of Pharmacy, Inner Mongolia Medical University, Huhhot, 010110, P.R. China
| | - Yan Zhao
- Key Laboratory for Candidate Drug Design and Screening Based on Chemical Biology, College of Pharmacy, Inner Mongolia Medical University, Huhhot, 010110, P.R. China
| | - Heiya Na
- College of Life Sciences, Inner Mongolia Agricultural University, Hohhot, 010018, P.R. China
| | - Zhao Meng
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, 100039, P.R. China
| |
Collapse
|
3
|
Enhancing HIV-1 Neutralization by Increasing the Local Concentration of Membrane-Proximal External Region-Directed Broadly Neutralizing Antibodies. J Virol 2023; 97:e0164722. [PMID: 36541800 PMCID: PMC9888200 DOI: 10.1128/jvi.01647-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Broadly neutralizing antibodies (bNAbs) against the membrane-proximal external region (MPER) of the gp41 component of the human immunodeficiency virus type 1 (HIV-1) envelope (Env) are characterized by long, hydrophobic, heavy chain complementarity-determining region 3s (HCDR3s) that interact with the MPER and some viral membrane lipids to achieve increased local concentrations. Here, we show that increasing the local concentration of MPER-directed bNAbs at the cell surface via binding to the high-affinity Fc receptor FcγRI potentiates their ability to prevent viral entry in a manner analogous to the previously reported observation wherein the lipid-binding activity of MPER bNAbs increases their concentration at the viral surface membrane. However, binding of MPER-directed bNAb 10E8 to FcγRI abolishes the neutralization synergy that is seen with the N-heptad repeat (NHR)-targeting antibody D5_AR and NHR-targeting small molecule enfuvirtide (T20), possibly due to decreased accessibility of the NHR in the FcγRI-10E8-MPER complex. Taken together, our results suggest that lipid-binding activity and FcγRI-mediated potentiation function in concert to improve the potency of MPER-directed bNAbs by increasing their local concentration near the site of viral fusion. Therefore, lipid binding may not be a strict requirement for potent neutralization by MPER-targeting bNAbs, as alternative methods can achieve similar increases in local concentrations while avoiding potential liabilities associated with immunologic host tolerance. IMPORTANCE The trimeric glycoprotein Env, the only viral protein expressed on the surface of HIV-1, is the target of broadly neutralizing antibodies and the focus of most vaccine development efforts. Broadly neutralizing antibodies targeting the membrane proximal external region (MPER) of Env show lipid-binding characteristics, and modulating this interaction affects neutralization. In this study, we tested the neutralization potencies of variants of the MPER-targeting antibody 10E8 with different viral-membrane-binding and host FcγRI-binding capabilities. Our results suggest that binding to both lipid and FcγRI improves the neutralization potency of MPER-directed antibodies by concentrating the antibodies at sites of viral fusion. As such, lipid binding may not be uniquely required for MPER-targeting broadly neutralizing antibodies, as alternative methods to increase local concentration can achieve similar improvements in potency.
Collapse
|
4
|
Kuttiyatveetil JRA, Soufari H, Dasovich M, Uribe IR, Mirhasan M, Cheng SJ, Leung AKL, Pascal JM. Crystal structures and functional analysis of the ZnF5-WWE1-WWE2 region of PARP13/ZAP define a distinctive mode of engaging poly(ADP-ribose). Cell Rep 2022; 41:111529. [PMID: 36288691 PMCID: PMC9720839 DOI: 10.1016/j.celrep.2022.111529] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 07/21/2022] [Accepted: 09/28/2022] [Indexed: 11/03/2022] Open
Abstract
PARP13/ZAP (zinc-finger antiviral protein) acts against multiple viruses by promoting degradation of viral mRNA. PARP13 has four N-terminal zinc (Zn) fingers that bind CG-rich nucleotide sequences, a C-terminal ADP ribosyltransferase fold, and a central region with a fifth Zn finger and tandem WWE domains. The central PARP13 region, ZnF5-WWE1-WWE2, is implicated in binding poly(ADP-ribose); however, there are limited insights into its structure and function. We present crystal structures of ZnF5-WWE1-WWE2 from mouse PARP13 in complex with ADP-ribose and in complex with ATP. The crystal structures and binding studies demonstrate that WWE2 interacts with ADP-ribose and ATP, whereas WWE1 does not have a functional binding site. Binding studies with poly(ADP-ribose) ligands indicate that WWE2 serves as an anchor for preferential binding to the terminal end of poly(ADP-ribose) chains. The composite ZnF5-WWE1-WWE2 structure forms an extended surface to engage ADP-ribose chains, representing a distinctive mode of recognition that provides a framework for investigating the impact of poly(ADP-ribose) on PARP13 function.
Collapse
Affiliation(s)
- Jijin R A Kuttiyatveetil
- Department of Biochemistry and Molecular Medicine, Université de Montréal, Montréal, QC H3T 1J4, Canada
| | - Heddy Soufari
- Department of Biochemistry and Molecular Medicine, Université de Montréal, Montréal, QC H3T 1J4, Canada
| | - Morgan Dasovich
- Department of Chemistry, Krieger School of Arts and Sciences, Johns Hopkins University, Baltimore, MD 21205, USA; Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Isabel R Uribe
- Department of Chemistry, Krieger School of Arts and Sciences, Johns Hopkins University, Baltimore, MD 21205, USA; Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Manija Mirhasan
- Department of Biochemistry and Molecular Medicine, Université de Montréal, Montréal, QC H3T 1J4, Canada
| | - Shang-Jung Cheng
- Department of Chemistry, Krieger School of Arts and Sciences, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Anthony K L Leung
- Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD 21205, USA; Department of Molecular Biology and Genetics, Johns Hopkins University, Baltimore, MD 21205, USA; McKusick-Nathans Department of Genetic Medicine, Johns Hopkins University, Baltimore, MD 21205, USA; Department of Oncology, School of Medicine, Johns Hopkins University, Baltimore, MD 21205, USA
| | - John M Pascal
- Department of Biochemistry and Molecular Medicine, Université de Montréal, Montréal, QC H3T 1J4, Canada.
| |
Collapse
|
5
|
Arumugam AC, Agharbaoui FE, Khazali AS, Yusof R, Abd Rahman N, Ahmad Fuaad AAH. Computational-aided design: minimal peptide sequence to block dengue virus transmission into cells. J Biomol Struct Dyn 2020; 40:5026-5035. [PMID: 33382015 DOI: 10.1080/07391102.2020.1866074] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Dengue virus (DV) infection is one of the main public health concerns, affecting approximately 390 million people worldwide, as reported by the World Health Organization. Yet, there is no antiviral treatment for DV infection. Therefore, the development of potent and nontoxic anti-DV, as a complement for the existing treatment strategies, is urgently needed. Herein, we investigate a series of small peptides inhibitors of DV antiviral activity targeting the entry process as the promising strategy to block DV infection. The peptides were designed based on our previously reported peptide sequence, DN58opt (TWWCFYFCRRHHPFWFFYRHN), to identify minimal effective inhibitory sequence through molecular docking and dynamics studies. The in silico designed peptides were synthesized using conventional Fmoc solid-phase peptide synthesis chemistry, purified by RP-HPLC and characterized using LCMS. Later, they were screened for their antiviral activity. One of the peptides, AC 001, was able to reduce about 40% of DV plaque formation. This observation correlates well with the molecular mechanics-Poisson-Boltzmann surface area (MM-PBSA) analysis - AC 001 showed the most favorable binding affinity through 60 ns simulations. Pairwise residue decomposition analysis has revealed four key residues that contributed to the binding of these peptides into the DV2 E protein pocket. This work identifies the minimal peptide sequence required to inhibit DV replication and explains the behavior observed on an atomic level using computational study.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Aathe Cangaree Arumugam
- Faculty of Science, Department of Chemistry, DDDRG, Universiti Malaya, Kuala Lumpur, Malaysia
| | | | - Ahmad Suhail Khazali
- Faculty of Medicine, Department of Molecular Medicine, Universiti Malaya, Kuala Lumpur, Malaysia.,Faculty of Applied Sciences, Universiti Teknologi Mara, Arau, Perlis, Malaysia
| | - Rohana Yusof
- Faculty of Medicine, Department of Molecular Medicine, Universiti Malaya, Kuala Lumpur, Malaysia
| | - Noorsaadah Abd Rahman
- Faculty of Science, Department of Chemistry, DDDRG, Universiti Malaya, Kuala Lumpur, Malaysia
| | | |
Collapse
|
6
|
Akachar J, Bouricha EM, Hakmi M, Belyamani L, El Jaoudi R, Ibrahimi A. Identifying epitopes for cluster of differentiation and design of new peptides inhibitors against human SARS-CoV-2 spike RBD by an in-silico approach. Heliyon 2020; 6:e05739. [PMID: 33364503 PMCID: PMC7753134 DOI: 10.1016/j.heliyon.2020.e05739] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 10/27/2020] [Accepted: 12/11/2020] [Indexed: 12/23/2022] Open
Abstract
The coronavirus disease 19 (COVID-19) is a highly contagious and rapidly spreading infection caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). In some cases, the disease can be fatal which resulted in more than one million deaths worldwide according the WHO. Currently, there is no effective vaccine or treatment for COVID-19, however many small-molecule inhibitors have shown potent antiviral activity against SARS-CoV-2 and some of them are now under clinical trials. Despite their promising activities, the development of these small molecules for the clinical use can be limited by many factors like the off-target effect, the poor stability, and the low bioavailability. The clusters of differentiation CD147, CD209, CD299 have been identified as essential entry co-receptors for SARS-CoV-2 species specificity to humans, although the underlying mechanisms are yet to be fully elucidated. In this paper, protein-protein docking was utilized for identifying the critical epitopes in CD147, CD209 and CD299 which are involved in the binding with SARS-CoV-2 Spike receptor binding domain (RBD). The results of binding free energies showed a high affinity of SARS-CoV-2 RBD to CD299 receptor which was used as a reference to derive hypothetical peptide sequences with specific binding activities to SARS-CoV-2 RBD. Molecular docking and molecular dynamics simulations of the newly designed peptides showed favorable binding features and stability with SARS-CoV-2 RBD and therefore can be further considered as potential candidates in future anti-SARS CoV-2 drug discovery studies.
Collapse
Affiliation(s)
- Jihane Akachar
- Medical Biotechnology Laboratory (MedBiotech), Bioinova Research Center, Rabat Medical & Pharmacy School, Mohammed Vth University in Rabat, Morocco
| | - El Mehdi Bouricha
- Medical Biotechnology Laboratory (MedBiotech), Bioinova Research Center, Rabat Medical & Pharmacy School, Mohammed Vth University in Rabat, Morocco
| | - Mohammed Hakmi
- Medical Biotechnology Laboratory (MedBiotech), Bioinova Research Center, Rabat Medical & Pharmacy School, Mohammed Vth University in Rabat, Morocco
| | - Lahcen Belyamani
- Emergency Department, Military Hospital Mohammed V, Rabat Medical & Pharmacy School, Mohammed Vth University in Rabat, Morocco
| | - Rachid El Jaoudi
- Medical Biotechnology Laboratory (MedBiotech), Bioinova Research Center, Rabat Medical & Pharmacy School, Mohammed Vth University in Rabat, Morocco
| | - Azeddine Ibrahimi
- Medical Biotechnology Laboratory (MedBiotech), Bioinova Research Center, Rabat Medical & Pharmacy School, Mohammed Vth University in Rabat, Morocco
| |
Collapse
|
7
|
Smith MH, Fologea D. Kinetic Exclusion Assay of Biomolecules by Aptamer Capture. SENSORS (BASEL, SWITZERLAND) 2020; 20:E3442. [PMID: 32570818 PMCID: PMC7348807 DOI: 10.3390/s20123442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 06/16/2020] [Accepted: 06/16/2020] [Indexed: 11/23/2022]
Abstract
DNA aptamers are short nucleotide oligomers selected to bind a target ligand with affinity and specificity rivaling that of antibodies. These remarkable features recommend aptamers as candidates for analytical and therapeutic applications that traditionally use antibodies as biorecognition elements. Numerous traditional and emerging analytical techniques have been proposed and successfully implemented to utilize aptamers for sensing purposes. In this work, we exploited the analytical capabilities offered by the kinetic exclusion assay technology to measure the affinity of fluorescent aptamers for their thrombin target and quantify the concentration of analyte in solution. Standard binding curves constructed by using equilibrated mixtures of aptamers titrated with thrombin were fitted with a 1:1 binding model and provided an effective Kd of the binding in the sub-nanomolar range. However, our experimental results suggest that this simple model does not satisfactorily describe the binding process; therefore, the possibility that the aptamer is composed of a mixture of two or more distinct Kd populations is discussed. The same standard curves, together with a four-parameter logistic equation, were used to determine "unknown" concentrations of thrombin in mock samples. The ability to identify and characterize complex binding stoichiometry, together with the determination of target analyte concentrations in the pM-nM range, supports the adoption of this technology for kinetics, equilibrium, and analytical purposes by employing aptamers as biorecognition elements.
Collapse
Affiliation(s)
- Mark H. Smith
- Department of Physics, Boise State University, 1910 University Drive, Boise, ID 83725, USA;
- Biomolecular Sciences Graduate Programs, Boise State University, 1910 University Drive, Boise, ID 83725, USA
| | - Daniel Fologea
- Department of Physics, Boise State University, 1910 University Drive, Boise, ID 83725, USA;
- Biomolecular Sciences Graduate Programs, Boise State University, 1910 University Drive, Boise, ID 83725, USA
| |
Collapse
|
8
|
Xu W, Pu J, Su S, Hua C, Su X, Wang Q, Jiang S, Lu L. Revisiting the mechanism of enfuvirtide and designing an analog with improved fusion inhibitory activity by targeting triple sites in gp41. AIDS 2019; 33:1545-1555. [PMID: 30932963 DOI: 10.1097/qad.0000000000002208] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
OBJECTIVE To revisit the mechanism of action of enfuvirtide (T20) and based on the newly defined mechanism, design an analogous peptide of T20 with improved antiviral activity. DESIGN We compared the inhibitory activity of T20 with that of T1144 on six-helix bundle (6HB) formation at different time after coculture of HIV type 1 (HIV-1) envelope (Env)-expressing Chinese hamster ovary (CHO-Env) cells and CD4-expressing MT-2 cells at 31.5 °C and with that of T20-SF, an analogous peptide of T20 with an additional tryptophan-rich motif, on hemolysis mediated by FP-P, which contains fusion peptide and fusion peptide (FP) proximal region (FPPR), and HIV-1 infection. METHODS Inhibitory activity of peptides on 6HB formation was tested in a temperature-controlled cell-cell fusion assay by flow cytometry using 6HB-specific mAb 2G8; on HIV-1 infection and fusion was assessed by p24 and cell-cell fusion assays. Interaction between different peptides or peptide and antibody was evaluated by ELISA. RESULTS T20 could inhibit 6HB formation at early, but not late, stage of HIV-1 fusion, whereas T1144 was effective at both stages. T20-SF is much more effective than T20 in binding to FP-P and inhibiting infection of HIV-1, including T20-resistant strains, and FP-P-mediated hemolysis. CONCLUSION Results suggest that T20 has a double-target mechanism, by which its N-terminal and C-terminal portions bind to N-terminal heptad repeat and FPPR, respectively. T20-SF designed based on this new mechanism exhibits significantly improved anti-HIV-1 activity because it targets the triple sites in gp41, including N-terminal heptad repeat, FPPR, and fusion peptide. Thus, this study provides clues for designing novel HIV fusion inhibitors with improved antiviral activity.
Collapse
|
9
|
Chen G, Cook JD, Ye W, Lee JE, Sidhu SS. Optimization of peptidic HIV-1 fusion inhibitor T20 by phage display. Protein Sci 2019; 28:1501-1512. [PMID: 31228294 PMCID: PMC6635768 DOI: 10.1002/pro.3669] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Revised: 06/16/2019] [Accepted: 06/17/2019] [Indexed: 11/06/2022]
Abstract
The HIV fusion inhibitor T20 has been approved to treat those living with HIV/AIDS, but treatment gives rise to resistant viruses. Using combinatorial phage-displayed libraries, we applied a saturation scan approach to dissect the entire T20 sequence for binding to a prefusogenic five-helix bundle (5HB) mimetic of HIV-1 gp41. Our data set compares all possible amino acid substitutions at all positions, and affords a complete view of the complex molecular interactions governing the binding of T20 to 5HB. The scan of T20 revealed that 12 of its 36 positions were conserved for 5HB binding, which cluster into three epitopes: hydrophobic epitopes at the ends and a central dyad of hydrophilic residues. The scan also revealed that the T20 sequence was highly adaptable to mutations at most positions, demonstrating a striking structural plasticity that allows multiple amino acid substitutions at contact points to adapt to conformational changes, and also at noncontact points to fine-tune the interface. Based on the scan result and structural knowledge of the gp41 fusion intermediate, a library was designed with tailored diversity at particular positions of T20 and was used to derive a variant (T20v1) that was found to be a highly effective inhibitor of infection by multiple HIV-1 variants, including a common T20-escape mutant. These findings show that the plasticity of the T20 functional sequence space can be exploited to develop variants that overcome resistance of HIV-1 variants to T20 itself, and demonstrate the utility of saturation scanning for rapid epitope mapping and protein engineering.
Collapse
Affiliation(s)
- Gang Chen
- Banting and Best Department of Medical Research, The Terrence Donnelly Center for Cellular and Biomolecular ResearchUniversity of TorontoTorontoOntarioM5S 3E1Canada
- Department of Molecular GeneticsUniversity of TorontoTorontoOntarioM5S 1A8Canada
| | - Jonathan D. Cook
- Department of Laboratory Medicine and Pathobiology, Faculty of MedicineUniversity of TorontoTorontoOntarioM5S 1A8Canada
| | - Wei Ye
- Banting and Best Department of Medical Research, The Terrence Donnelly Center for Cellular and Biomolecular ResearchUniversity of TorontoTorontoOntarioM5S 3E1Canada
- Department of Molecular GeneticsUniversity of TorontoTorontoOntarioM5S 1A8Canada
| | - Jeffrey E. Lee
- Department of Laboratory Medicine and Pathobiology, Faculty of MedicineUniversity of TorontoTorontoOntarioM5S 1A8Canada
| | - Sachdev S. Sidhu
- Banting and Best Department of Medical Research, The Terrence Donnelly Center for Cellular and Biomolecular ResearchUniversity of TorontoTorontoOntarioM5S 3E1Canada
- Department of Molecular GeneticsUniversity of TorontoTorontoOntarioM5S 1A8Canada
| |
Collapse
|
10
|
Gorai B, Das S, Maiti PK. Prediction and validation of HIV-1 gp41 ecto-transmembrane domain post-fusion trimeric structure using molecular modeling. J Biomol Struct Dyn 2019; 38:2592-2603. [DOI: 10.1080/07391102.2019.1635916] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Biswajit Gorai
- Department of Physics, Indian Institute of Science, Bangalore, Karnataka, India
| | - Satyabrata Das
- Department of Physics, Indian Institute of Science, Bangalore, Karnataka, India
| | - Prabal K. Maiti
- Department of Physics, Indian Institute of Science, Bangalore, Karnataka, India
| |
Collapse
|
11
|
Abstract
OBJECTIVE The peptide drug T20 (enfuvirtide), derived from the C-terminal heptad repeat region of HIV-1 gp41, is the only membrane fusion inhibitor available for treatment of viral infection; however, its mechanism of action remains elusive and its structural basis is lacking. DESIGN We focused on determining the crystal structure of T20 in complex with N39, a target mimic peptide derived from the N-terminal heptad repeat region of gp41. On the basis of the structural information, the mechanisms of action of T20 and its resistance were further characterized. METHODS A panel of peptides was synthesized. The T20/N39 complex was assembled for crystallization studies. Circular dichroism spectroscopy, isothermal titration calorimetry (ITC), native polyacrylamide gel electrophoresis (N-PAGE), and mutational analysis were applied to analyze the structural and functional properties. RESULTS A crystal structure of six-helical bundle (6-HB) structure formed by T20 and N39 was determined with a resolution limit of 2.3 Å, which revealed the critical intrahelical and interhelical interactions underlying the mechanism of action of T20 and its resistance mutations. Although the structural properties in the C-terminal tryptophan-rich motif (TRM) of T20 and the fusion peptide proximal region (FPPR) of N39 could not be finely defined by the structure, the data from biophysical and mutational analyses verified the essential roles of the TRM and FPPR motifs for the binding and inhibitory activities of T20. CONCLUSION For the first time, our studies provide a structural basis of T20, which help our understanding on the mechanisms of HIV-1 fusion and its inhibition.
Collapse
|
12
|
Isa DM, Chin SP, Chong WL, Zain SM, Rahman NA, Lee VS. Dynamics and binding interactions of peptide inhibitors of dengue virus entry. J Biol Phys 2019; 45:63-76. [PMID: 30680580 DOI: 10.1007/s10867-018-9515-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Accepted: 11/28/2018] [Indexed: 01/01/2023] Open
Abstract
In this study, we investigate the binding interactions of two synthetic antiviral peptides (DET2 and DET4) on type II dengue virus (DENV2) envelope protein domain III. These two antiviral peptides are designed based on the domain III of the DENV2 envelope protein, which has shown significant inhibition activity in previous studies and can be potentially modified further to be active against all dengue strains. Molecular docking was performed using AutoDock Vina and the best-ranked peptide-domain III complex was further explored using molecular dynamics simulations. Molecular mechanics-Poisson-Boltzmann surface area (MM-PBSA) was used to calculate the relative binding free energies and to locate the key residues of peptide-protein interactions. The predicted binding affinity correlated well with the previous experimental studies. DET4 outperformed DET2 and is oriented within the binding site through favorable vdW and electrostatic interactions. Pairwise residue decomposition analysis has revealed several key residues that contribute to the binding of these peptides. Residues in DET2 interact relatively lesser with the domain III compared to DET4. Dynamic cross-correlation analysis showed that both the DET2 and DET4 trigger different dynamic patterns on the domain III. Correlated motions were seen between the residue pairs of DET4 and the binding site while binding of DET2 results in anti-correlated motion on the binding site. This work showcases the use of computational study in elucidating and explaining the experiment observation on an atomic level.
Collapse
Affiliation(s)
- Diyana Mohd Isa
- Department of Chemistry, Faculty of Science, University of Malaya, 50603, Kuala Lumpur, Malaysia
| | - Sek Peng Chin
- Department of Chemistry, Faculty of Science, University of Malaya, 50603, Kuala Lumpur, Malaysia
| | - Wei Lim Chong
- Department of Chemistry, Faculty of Science, University of Malaya, 50603, Kuala Lumpur, Malaysia
| | - Sharifuddin M Zain
- Department of Chemistry, Faculty of Science, University of Malaya, 50603, Kuala Lumpur, Malaysia
| | - Noorsaadah Abd Rahman
- Department of Chemistry, Faculty of Science, University of Malaya, 50603, Kuala Lumpur, Malaysia
| | - Vannajan Sanghiran Lee
- Department of Chemistry, Faculty of Science, University of Malaya, 50603, Kuala Lumpur, Malaysia.
| |
Collapse
|
13
|
Liang S, Ratnayake PU, Keinath C, Jia L, Wolfe R, Ranaweera A, Weliky DP. Efficient Fusion at Neutral pH by Human Immunodeficiency Virus gp41 Trimers Containing the Fusion Peptide and Transmembrane Domains. Biochemistry 2018; 57:1219-1235. [PMID: 29345922 DOI: 10.1021/acs.biochem.7b00753] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Human immunodeficiency virus (HIV) is membrane-enveloped, and an initial infection step is joining/fusion of viral and cell membranes. This step is catalyzed by gp41, which is a single-pass integral viral membrane protein. The protein contains an ∼170-residue ectodomain located outside the virus that is important for fusion and includes the fusion peptide (FP), N-helix, loop, C-helix, and viral membrane-proximal external region (MPER). The virion initially has noncovalent complexes between three gp41 ectodomains and three gp120 proteins. A gp120 contains ∼500 residues and functions to identify target T-cells and macrophages via binding to specific protein receptors of the target cell membrane. gp120 moves away from the gp41 ectodomain, and the ectodomain is thought to bind to the target cell membrane and mediate membrane fusion. The secondary and tertiary structures of the ectodomain are different in the initial complex with gp120 and the final state without gp120. There is not yet imaging of gp41 during fusion, so the temporal relationship between the gp41 and membrane structures is not known. This study describes biophysical and functional characterization of large gp41 constructs that include the ectodomain and transmembrane domain (TM). Significant fusion is observed of both neutral and anionic vesicles at neutral pH, which reflects the expected conditions of HIV/cell fusion. Fusion is enhanced by the FP, which in HIV/cell fusion likely contacts the host membrane, and the MPER and TM, which respectively interfacially contact and traverse the HIV membrane. Initial contact with vesicles is made by protein trimers that are in a native oligomeric state that reflects the initial complex with gp120 and also is commonly observed for the ectodomain without gp120. Circular dichroism data support helical structure for the N-helix, C-helix, and MPER and nonhelical structure for the FP and loop. Distributions of monomer, trimer, and hexamer states are observed by size-exclusion chromatography (SEC), with dependences on solubilizing detergent and construct. These SEC and other data are integrated into a refined working model of HIV/cell fusion that includes dissociation of the ectodomain into gp41 monomers followed by folding into hairpins that appose the two membranes, and subsequent fusion catalysis by trimers and hexamers of hairpins. The monomer and oligomer gp41 states may therefore satisfy dual requirements for HIV entry of membrane apposition and fusion.
Collapse
Affiliation(s)
- S Liang
- Department of Chemistry, Michigan State University , East Lansing, Michigan 48824, United States
| | - P U Ratnayake
- Department of Chemistry, Michigan State University , East Lansing, Michigan 48824, United States
| | - C Keinath
- Department of Chemistry, Michigan State University , East Lansing, Michigan 48824, United States
| | - L Jia
- Department of Chemistry, Michigan State University , East Lansing, Michigan 48824, United States
| | - R Wolfe
- Department of Chemistry, Michigan State University , East Lansing, Michigan 48824, United States
| | - A Ranaweera
- Department of Chemistry, Michigan State University , East Lansing, Michigan 48824, United States
| | - D P Weliky
- Department of Chemistry, Michigan State University , East Lansing, Michigan 48824, United States
| |
Collapse
|
14
|
Abstract
HIV fusion with the cell membrane can be inhibited by blocking coreceptor binding or by preventing fusion-inducing conformational changes in the Env protein. Logically, inhibitors that act by these two mechanisms should act synergistically, but previous studies have reported conflicting results. A new study by Ahn and Root reconciles these discordant reports by demonstrating that synergy emerges when Env engages multiple coreceptors prior to inducing fusion and when high-affinity inhibitory peptides are used, a condition that may not be satisfied in vivo.
Collapse
Affiliation(s)
- Gregory B Melikyan
- From the Department of Pediatrics, Infectious Diseases, Emory University School of Medicine, Atlanta, Georgia 30322
| |
Collapse
|
15
|
Ahn KW, Root MJ. Complex interplay of kinetic factors governs the synergistic properties of HIV-1 entry inhibitors. J Biol Chem 2017; 292:16498-16510. [PMID: 28696261 DOI: 10.1074/jbc.m117.791731] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2017] [Revised: 07/09/2017] [Indexed: 01/04/2023] Open
Abstract
The homotrimeric HIV-1 envelope glycoprotein (Env) undergoes receptor-triggered structural changes that mediate viral entry through membrane fusion. This process is inhibited by chemokine receptor antagonists (CoRAs) that block Env-receptor interactions and by fusion inhibitors (FIs) that disrupt Env conformational transitions. Synergy between CoRAs and FIs has been attributed to a CoRA-dependent decrease in the rate of viral membrane fusion that extends the lifetime of the intermediate state targeted by FIs. Here, we demonstrated that the magnitude of CoRA/FI synergy unexpectedly depends on FI-binding affinity and the stoichiometry of chemokine receptor binding to trimeric Env. For C-peptide FIs (clinically represented by enfuvirtide), synergy waned as binding strength decreased until inhibitor combinations behaved additively. Curiously, this affinity dependence on synergy was absent for 5-Helix-type FIs. We linked this complex behavior to the CoRA dependence of Env deactivation following FI binding. For both FI classes, reducing chemokine receptor levels on target cells or eliminating competent chemokine receptor-binding sites on Env trimers resulted in a loss of synergistic activity. These data imply that the stoichiometry required for CoRA/FI synergy exceeds that required for HIV-1 entry. Our analysis suggests two distinct roles for chemokine receptor binding, one to trigger formation of the FI-sensitive intermediate state and another to facilitate subsequent conformational transitions. Together, our results could explain the wide variety of previously reported activities for CoRA/FI combinations. These findings also have implications for the combined use of CoRAs and FIs in antiviral therapies and point to a multifaceted role for chemokine receptor binding in promoting HIV-1 entry.
Collapse
Affiliation(s)
- Koree W Ahn
- From the Department of Biochemistry and Molecular Biology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania 19107
| | - Michael J Root
- From the Department of Biochemistry and Molecular Biology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania 19107
| |
Collapse
|
16
|
Khasnis MD, Halkidis K, Bhardwaj A, Root MJ. Receptor Activation of HIV-1 Env Leads to Asymmetric Exposure of the gp41 Trimer. PLoS Pathog 2016; 12:e1006098. [PMID: 27992602 PMCID: PMC5222517 DOI: 10.1371/journal.ppat.1006098] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2016] [Revised: 01/09/2017] [Accepted: 11/29/2016] [Indexed: 11/18/2022] Open
Abstract
Structural rearrangements of HIV-1 glycoprotein Env promote viral entry through membrane fusion. Env is a symmetric homotrimer with each protomer composed of surface subunit gp120 and transmembrane subunit gp41. Cellular CD4- and chemokine receptor-binding to gp120 coordinate conformational changes in gp41, first to an extended prehairpin intermediate (PHI) and, ultimately, into a fusogenic trimer-of-hairpins (TOH). HIV-1 fusion inhibitors target gp41 in the PHI and block TOH formation. To characterize structural transformations into and through the PHI, we employed asymmetric Env trimers containing both high and low affinity binding sites for individual fusion inhibitors. Asymmetry was achieved using engineered Env heterotrimers composed of protomers deficient in either CD4- or chemokine receptor-binding. Linking receptor engagement to inhibitor affinity allowed us to assess conformational changes of individual Env protomers in the context of a functioning trimer. We found that the transition into the PHI could occur symmetrically or asymmetrically depending on the stoichiometry of CD4 binding. Sequential engagement of multiple CD4s promoted progressive exposure of individual fusion inhibitor binding sites in a CD4-dependent fashion. By contrast, engagement of only a single CD4 molecule led to a delayed, but symmetric, exposure of the gp41 trimer. This complex coupling between Env-CD4 interaction and gp41 exposure explained the multiphasic fusion-inhibitor titration observed for a mutant Env homotrimer with a naturally asymmetric gp41. Our results suggest that the spatial and temporal exposure of gp41 can proceed in a nonconcerted, asymmetric manner depending on the number of CD4s that engage the Env trimer. The findings have important implications for the mechanism of viral membrane fusion and the development of vaccine candidates designed to elicit neutralizing antibodies targeting gp41 in the PHI. For HIV, cellular invasion requires merging viral and cellular membranes, an event achieved through the activity of the viral fusion protein Env. Env consists of three gp120 and three gp41 subunits symmetrically arranged on the viral surface. The gp120 subunits bind cellular receptors, which, in turn, coordinate gp41 conformational changes that promote membrane fusion. Understanding these structural rearrangements illuminates the mechanism of viral membrane fusion, and also spurs development of targeted inhibitors of viral entry and vaccine candidates that elicit antiviral immune responses. In this study, we employed a novel strategy to investigate individual subunits in the context of functioning Env complexes. The strategy links distinct gp120-receptor interactions to conformational changes that expose specific gp41 subunits. We found that, despite the initial symmetric arrangement of its subunits, Env conformational changes most often proceed quite asymmetrically, leading to exposure of only one-third of the gp41 trimer for much of the fusion event. This finding might explain why attempts to elicit potent anti-HIV antibodies to a fully exposed gp41 trimer have been largely unsuccessful. The study gives us a glimpse of the early structural transitions leading to Env-mediated membrane fusion and provides a framework for interrogating the fusion proteins of other membrane-encapsulated viruses.
Collapse
Affiliation(s)
- Mukta D. Khasnis
- Department of Biochemistry and Molecular Biology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, United States of America
| | - Konstantine Halkidis
- Department of Biochemistry and Molecular Biology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, United States of America
| | - Anshul Bhardwaj
- Department of Biochemistry and Molecular Biology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, United States of America
| | - Michael J. Root
- Department of Biochemistry and Molecular Biology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, United States of America
- * E-mail:
| |
Collapse
|
17
|
Leslie GJ, Wang J, Richardson MW, Haggarty BS, Hua KL, Duong J, Secreto AJ, Jordon APO, Romano J, Kumar KE, DeClercq JJ, Gregory PD, June CH, Root MJ, Riley JL, Holmes MC, Hoxie JA. Potent and Broad Inhibition of HIV-1 by a Peptide from the gp41 Heptad Repeat-2 Domain Conjugated to the CXCR4 Amino Terminus. PLoS Pathog 2016; 12:e1005983. [PMID: 27855210 PMCID: PMC5113989 DOI: 10.1371/journal.ppat.1005983] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2016] [Accepted: 10/06/2016] [Indexed: 12/31/2022] Open
Abstract
HIV-1 entry can be inhibited by soluble peptides from the gp41 heptad repeat-2 (HR2) domain that interfere with formation of the 6-helix bundle during fusion. Inhibition has also been seen when these peptides are conjugated to anchoring molecules and over-expressed on the cell surface. We hypothesized that potent anti-HIV activity could be achieved if a 34 amino acid peptide from HR2 (C34) were brought to the site of virus-cell interactions by conjugation to the amino termini of HIV-1 coreceptors CCR5 or CXCR4. C34-conjugated coreceptors were expressed on the surface of T cell lines and primary CD4 T cells, retained the ability to mediate chemotaxis in response to cognate chemokines, and were highly resistant to HIV-1 utilization for entry. Notably, C34-conjugated CCR5 and CXCR4 each exhibited potent and broad inhibition of HIV-1 isolates from diverse clades irrespective of tropism (i.e., each could inhibit R5, X4 and dual-tropic isolates). This inhibition was highly specific and dependent on positioning of the peptide, as HIV-1 infection was poorly inhibited when C34 was conjugated to the amino terminus of CD4. C34-conjugated coreceptors could also inhibit HIV-1 isolates that were resistant to the soluble HR2 peptide inhibitor, enfuvirtide. When introduced into primary cells, CD4 T cells expressing C34-conjugated coreceptors exhibited physiologic responses to T cell activation while inhibiting diverse HIV-1 isolates, and cells containing C34-conjugated CXCR4 expanded during HIV-1 infection in vitro and in a humanized mouse model. Notably, the C34-conjugated peptide exerted greater HIV-1 inhibition when conjugated to CXCR4 than to CCR5. Thus, antiviral effects of HR2 peptides can be specifically directed to the site of viral entry where they provide potent and broad inhibition of HIV-1. This approach to engineer HIV-1 resistance in functional CD4 T cells may provide a novel cell-based therapeutic for controlling HIV infection in humans.
Collapse
Affiliation(s)
- George J. Leslie
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States of America
| | - Jianbin Wang
- Sangamo BioSciences Inc., Richmond, CA, United States of America
| | - Max W. Richardson
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States of America
| | - Beth S. Haggarty
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States of America
| | - Kevin L. Hua
- Sangamo BioSciences Inc., Richmond, CA, United States of America
| | - Jennifer Duong
- Sangamo BioSciences Inc., Richmond, CA, United States of America
| | - Anthony J. Secreto
- Department of Pathology & Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States of America
| | - Andrea P. O. Jordon
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States of America
| | - Josephine Romano
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States of America
| | - Kritika E. Kumar
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States of America
| | | | | | - Carl H. June
- Department of Pathology & Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States of America
| | - Michael J. Root
- Department of Biochemistry and Molecular Biology, Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, United States of America
| | - James L. Riley
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States of America
| | | | - James A. Hoxie
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States of America
| |
Collapse
|
18
|
Danial M, Stauffer AN, Wurm FR, Root MJ, Klok HA. Site-Specific Polymer Attachment to HR2 Peptide Fusion Inhibitors against HIV-1 Decreases Binding Association Rates and Dissociation Rates Rather Than Binding Affinity. Bioconjug Chem 2016; 28:701-712. [PMID: 27737540 DOI: 10.1021/acs.bioconjchem.6b00540] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
A popular strategy for overcoming the limited plasma half-life of peptide heptad repeat 2 (HR2) fusion inhibitors against HIV-1 is conjugation with biocompatible polymers such as poly(ethylene glycol) (PEG). However, despite improved resistance to proteolysis and reduced renal elimination, covalent attachment of polymers often causes a loss in therapeutic potency. In this study, we investigated the molecular origins of the loss in potency upon conjugation of linear, midfunctional, and hyperbranched PEG-like polymers to peptides that inhibit HIV-1-host cell membrane fusion. Fluorescence binding assays revealed that polymer conjugation imparted mass transport limitations that manifested as coexistent slower association and dissociation rates from the gp41 target on HIV-1. Furthermore, reduced association kinetics rather than affinity disruption was responsible for the loss in antiviral potency. Finally, the binding assays indicated that the unmodified HR2-derived peptide demonstrated diffusion-limited binding. The observed high potency of the unmodified peptide in HIV-1 inhibition assays was therefore attributed to rapid peptide conformational changes upon binding to the gp41 prehairpin structure. This study emphasizes that the view in which polymer ligation to therapeutic peptides inadvertently leads to loss in potency due to a loss in binding affinity requires scientific verification on a case-by-case basis and that high peptide potency may be due to rapid target-binding events.
Collapse
Affiliation(s)
- Maarten Danial
- Institut des Matériaux and Institut des Sciences et Ingéniere Chimiques, École Polytechnique Fédérale de Lausanne, Laboratoire des Polymères , Bâtiment MXD, Station 12, 1015 Lausanne, Switzerland
| | - Angela N Stauffer
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University , 233 South 10th Street, Philadelphia, Pennsylvania 19107, U.S.A
| | - Frederik R Wurm
- Institut des Matériaux and Institut des Sciences et Ingéniere Chimiques, École Polytechnique Fédérale de Lausanne, Laboratoire des Polymères , Bâtiment MXD, Station 12, 1015 Lausanne, Switzerland
| | - Michael J Root
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University , 233 South 10th Street, Philadelphia, Pennsylvania 19107, U.S.A
| | - Harm-Anton Klok
- Institut des Matériaux and Institut des Sciences et Ingéniere Chimiques, École Polytechnique Fédérale de Lausanne, Laboratoire des Polymères , Bâtiment MXD, Station 12, 1015 Lausanne, Switzerland
| |
Collapse
|
19
|
Gilliam AJH, Smith JN, Flather D, Johnston KM, Gansmiller AM, Fishman DA, Edgar JM, Balk M, Majumdar S, Weiss GA. Affinity-Guided Design of Caveolin-1 Ligands for Deoligomerization. J Med Chem 2016; 59:4019-25. [PMID: 27010220 DOI: 10.1021/acs.jmedchem.5b01536] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Caveolin-1 is a target for academic and pharmaceutical research due to its many cellular roles and associated diseases. We report peptide WL47 (1), a small, high-affinity, selective disrupter of caveolin-1 oligomers. Developed and optimized through screening and analysis of synthetic peptide libraries, ligand 1 has 7500-fold improved affinity compared to its T20 parent ligand and an 80% decrease in sequence length. Ligand 1 will permit targeted study of caveolin-1 function.
Collapse
Affiliation(s)
- Amanda J H Gilliam
- Department of Chemistry, and ‡Department of Molecular Biology and Biochemistry, University of California , Irvine, California 92697-2025, United States
| | - Joshua N Smith
- Department of Chemistry, and ‡Department of Molecular Biology and Biochemistry, University of California , Irvine, California 92697-2025, United States
| | - Dylan Flather
- Department of Chemistry, and ‡Department of Molecular Biology and Biochemistry, University of California , Irvine, California 92697-2025, United States
| | - Kevin M Johnston
- Department of Chemistry, and ‡Department of Molecular Biology and Biochemistry, University of California , Irvine, California 92697-2025, United States
| | - Andrew M Gansmiller
- Department of Chemistry, and ‡Department of Molecular Biology and Biochemistry, University of California , Irvine, California 92697-2025, United States
| | - Dmitry A Fishman
- Department of Chemistry, and ‡Department of Molecular Biology and Biochemistry, University of California , Irvine, California 92697-2025, United States
| | - Joshua M Edgar
- Department of Chemistry, and ‡Department of Molecular Biology and Biochemistry, University of California , Irvine, California 92697-2025, United States
| | - Mark Balk
- Department of Chemistry, and ‡Department of Molecular Biology and Biochemistry, University of California , Irvine, California 92697-2025, United States
| | - Sudipta Majumdar
- Department of Chemistry, and ‡Department of Molecular Biology and Biochemistry, University of California , Irvine, California 92697-2025, United States
| | - Gregory A Weiss
- Department of Chemistry, and ‡Department of Molecular Biology and Biochemistry, University of California , Irvine, California 92697-2025, United States
| |
Collapse
|
20
|
Louis JM, Baber JL, Clore GM. The C34 Peptide Fusion Inhibitor Binds to the Six-Helix Bundle Core Domain of HIV-1 gp41 by Displacement of the C-Terminal Helical Repeat Region. Biochemistry 2015; 54:6796-805. [PMID: 26506247 DOI: 10.1021/acs.biochem.5b01021] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The conformational transition of the core domain of HIV-1 gp41 from a prehairpin intermediate to a six-helix bundle is responsible for virus-cell fusion. Several inhibitors which target the N-heptad repeat helical coiled-coil trimer that is fully accessible in the prehairpin intermediate have been designed. One such inhibitor is the peptide C34 derived from the C-heptad repeat of gp41 that forms the exterior of the six-helix bundle. Here, using a variety of biophysical techniques, including dye tagging, size-exclusion chromatography combined with multiangle light scattering, double electron-electron resonance EPR spectroscopy, and circular dichroism, we investigate the binding of C34 to two six-helix bundle mimetics comprising N- and C-heptad repeats either without (core(SP)) or with (core(S)) a short spacer connecting the two. In the case of core(SP), C34 directly exchanges with the C-heptad repeat. For core(S), up to two molecules of C34 bind the six-helix bundle via displacement of the C-heptad repeat. These results suggest that fusion inhibitors such as C34 can target a continuum of transitioning conformational states from the prehairpin intermediate to the six-helix bundle prior to the occurrence of irreversible fusion of viral and target cell membranes.
Collapse
Affiliation(s)
- John M Louis
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health , Bethesda, Maryland 20892-0520, United States
| | - James L Baber
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health , Bethesda, Maryland 20892-0520, United States
| | - G Marius Clore
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health , Bethesda, Maryland 20892-0520, United States
| |
Collapse
|
21
|
Jiao J, Rebane AA, Ma L, Gao Y, Zhang Y. Kinetically coupled folding of a single HIV-1 glycoprotein 41 complex in viral membrane fusion and inhibition. Proc Natl Acad Sci U S A 2015; 112:E2855-64. [PMID: 26038562 PMCID: PMC4460471 DOI: 10.1073/pnas.1424995112] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
HIV-1 glycoprotein 41 (gp41) mediates viral entry into host cells by coupling its folding energy to membrane fusion. Gp41 folding is blocked by fusion inhibitors, including the commercial drug T20, to treat HIV/AIDS. However, gp41 folding intermediates, energy, and kinetics are poorly understood. Here, we identified the folding intermediates of a single gp41 trimer-of-hairpins and measured their associated energy and kinetics using high-resolution optical tweezers. We found that folding of gp41 hairpins was energetically independent but kinetically coupled: Each hairpin contributed a folding energy of ∼-23 kBT, but folding of one hairpin successively accelerated the folding rate of the next one by ∼20-fold. Membrane-mimicking micelles slowed down gp41 folding and reduced the stability of the six-helix bundle. However, the stability was restored by cooperative folding of the membrane-proximal external region. Surprisingly, T20 strongly inhibited gp41 folding by actively displacing the C-terminal hairpin strand in a force-dependent manner. The inhibition was abolished by a T20-resistant gp41 mutation. The energetics and kinetics of gp41 folding established by us provides a basis to understand viral membrane fusion, infection, and therapeutic intervention.
Collapse
Affiliation(s)
- Junyi Jiao
- Department of Cell Biology, Yale University, School of Medicine, New Haven, CT 06511; Integrated Graduate Program in Physical and Engineering Biology, Yale University, New Haven, CT 06511
| | - Aleksander A Rebane
- Department of Cell Biology, Yale University, School of Medicine, New Haven, CT 06511; Integrated Graduate Program in Physical and Engineering Biology, Yale University, New Haven, CT 06511; Department of Physics, Yale University, New Haven, CT 06511
| | - Lu Ma
- Department of Cell Biology, Yale University, School of Medicine, New Haven, CT 06511
| | - Ying Gao
- Department of Cell Biology, Yale University, School of Medicine, New Haven, CT 06511; National Center for Protein Science Shanghai, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 201210, China
| | - Yongli Zhang
- Department of Cell Biology, Yale University, School of Medicine, New Haven, CT 06511; Nanobiology Institute, Yale University, West Haven, CT 06477
| |
Collapse
|
22
|
Groß A, Rödel K, Kneidl B, Donhauser N, Mössl M, Lump E, Münch J, Schmidt B, Eichler J. Enhancement and induction of HIV-1 infection through an assembled peptide derived from the CD4 binding site of gp120. Chembiochem 2015; 16:446-54. [PMID: 25639621 DOI: 10.1002/cbic.201402545] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2014] [Indexed: 11/07/2022]
Abstract
Contact between the human immunodeficiency virus (HIV-1) and its target cell is initiated by the interaction of viral gp120 with cellular CD4. An assembled peptide (CD4bs-M) that presents the CD4 binding site of gp120 was previously shown to inhibit the gp120-CD4 interaction. Here, we demonstrate that CD4bs-M selectively enhances infection of cells with HIV-1, whereas infection with herpes simplex virus remains largely unaffected. The effects of CD4bs-M variants containing D-amino acids, or prolines at selected positions, point to the importance of side chain orientation and spatial orientation of this fragment. Furthermore, CD4bs-M was shown to assemble into amyloid-like fibrils that capture HIV-1 particles, which likely contributes to the infection-enhancing effect. Beyond infection enhancement, CD4bs-M enabled HIV-1 infection of CD4-negative cells, suggesting that binding of the peptide to gp120 facilitates interaction of gp120 with coreceptors, which might in turn enhance HIV-1 entry.
Collapse
Affiliation(s)
- Andrea Groß
- Department of Chemistry and Pharmacy, University of Erlangen-Nurnberg, Schuhstrasse 19, 91052 Erlangen (Germany)
| | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Chakraborty S, Phu M, de Morais TP, Nascimento R, Goulart LR, Rao BJ, Asgeirsson B, Dandekar AM. The PDB database is a rich source of alpha-helical anti-microbial peptides to combat disease causing pathogens. F1000Res 2014; 3:295. [PMID: 26629331 PMCID: PMC4642847 DOI: 10.12688/f1000research.5802.1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/02/2014] [Indexed: 08/06/2023] Open
Abstract
The therapeutic potential of α-helical anti-microbial peptides (AH-AMP) to combat pathogens is fast gaining prominence. Based on recently published open access software for characterizing α-helical peptides (PAGAL), we elucidate a search methodology (SCALPEL) that leverages the massive structural data pre-existing in the PDB database to obtain AH-AMPs belonging to the host proteome. We provide in vitro validation of SCALPEL on plant pathogens ( Xylella fastidiosa, Xanthomonas arboricola and Liberibacter crescens) by identifying AH-AMPs that mirror the function and properties of cecropin B, a well-studied AH-AMP. The identified peptides include a linear AH-AMP present within the existing structure of phosphoenolpyruvate carboxylase (PPC20), and an AH-AMP mimicing the properties of the two α-helices of cecropin B from chitinase (CHITI25). The minimum inhibitory concentration of these peptides are comparable to that of cecropin B, while anionic peptides used as control failed to show any inhibitory effect on these pathogens. Substitute therapies in place of conventional chemotherapies using membrane permeabilizing peptides like these might also prove effective to target cancer cells. The use of native structures from the same organism largely ensures that administration of such peptides will be better tolerated and not elicit an adverse immune response. We suggest a similar approach to target Ebola epitopes, enumerated using PAGAL recently, by selecting suitable peptides from the human proteome, especially in wake of recent reports of cationic amphiphiles inhibiting virus entry and infection.
Collapse
Affiliation(s)
- Sandeep Chakraborty
- Plant Sciences Department, University of California, Davis, CA, 95616, USA
- Department of Biological Sciences, Tata Institute of Fundamental Research, Homi Bhabha Road, Mumbai, 400 005, India
| | - My Phu
- Plant Sciences Department, University of California, Davis, CA, 95616, USA
| | - Tâmara Prado de Morais
- Institute of Agricultural Sciences, Federal University of Uberlandia, Av. Amazonas, Bloco 2E, Campus Umuarama, Uberlandia, MG, Brazil
| | - Rafael Nascimento
- Institute of Genetics and Biochemistry, Federal University of Uberlandia, Av. Amazonas, Bloco 2E, Campus Umuarama, Uberlandia, MG, Brazil
| | - Luiz Ricardo Goulart
- Institute of Genetics and Biochemistry, Federal University of Uberlandia, Av. Amazonas, Bloco 2E, Campus Umuarama, Uberlandia, MG, Brazil
| | - Basuthkar J. Rao
- Department of Biological Sciences, Tata Institute of Fundamental Research, Homi Bhabha Road, Mumbai, 400 005, India
| | - Bjarni Asgeirsson
- Science Institute, Department of Biochemistry, University of Iceland, Dunhaga 3, IS-107 Reykjavik, Iceland
| | - Abhaya M. Dandekar
- Plant Sciences Department, University of California, Davis, CA, 95616, USA
| |
Collapse
|
24
|
Chakraborty S, Phu M, de Morais TP, Nascimento R, Goulart LR, Rao BJ, Asgeirsson B, Dandekar AM. The PDB database is a rich source of alpha-helical anti-microbial peptides to combat disease causing pathogens. F1000Res 2014; 3:295. [PMID: 26629331 PMCID: PMC4642847 DOI: 10.12688/f1000research.5802.2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 06/11/2015] [Indexed: 12/26/2022] Open
Abstract
The therapeutic potential of α-helical anti-microbial peptides (AH-AMP) to combat pathogens is fast gaining prominence. Based on recently published open access software for characterizing α-helical peptides (PAGAL), we elucidate a search methodology (SCALPEL) that leverages the massive structural data pre-existing in the PDB database to obtain AH-AMPs belonging to the host proteome. We provide in vitro validation of SCALPEL on plant pathogens ( Xylella fastidiosa, Xanthomonas arboricola and Liberibacter crescens) by identifying AH-AMPs that mirror the function and properties of cecropin B, a well-studied AH-AMP. The identified peptides include a linear AH-AMP present within the existing structure of phosphoenolpyruvate carboxylase (PPC20), and an AH-AMP mimicing the properties of the two α-helices of cecropin B from chitinase (CHITI25). The minimum inhibitory concentration of these peptides are comparable to that of cecropin B, while anionic peptides used as control failed to show any inhibitory effect on these pathogens. Substitute therapies in place of conventional chemotherapies using membrane permeabilizing peptides like these might also prove effective to target cancer cells. The use of native structures from the same organism could possibly ensure that administration of such peptides will be better tolerated and not elicit an adverse immune response. We suggest a similar approach to target Ebola epitopes, enumerated using PAGAL recently, by selecting suitable peptides from the human proteome, especially in wake of recent reports of cationic amphiphiles inhibiting virus entry and infection.
Collapse
Affiliation(s)
- Sandeep Chakraborty
- Plant Sciences Department, University of California, Davis, CA, 95616, USA
- Department of Biological Sciences, Tata Institute of Fundamental Research, Homi Bhabha Road, Mumbai, 400 005, India
| | - My Phu
- Plant Sciences Department, University of California, Davis, CA, 95616, USA
| | - Tâmara Prado de Morais
- Institute of Agricultural Sciences, Federal University of Uberlandia, Av. Amazonas, Bloco 2E, Campus Umuarama, Uberlandia, MG, Brazil
| | - Rafael Nascimento
- Institute of Genetics and Biochemistry, Federal University of Uberlandia, Av. Amazonas, Bloco 2E, Campus Umuarama, Uberlandia, MG, Brazil
| | - Luiz Ricardo Goulart
- Institute of Genetics and Biochemistry, Federal University of Uberlandia, Av. Amazonas, Bloco 2E, Campus Umuarama, Uberlandia, MG, Brazil
| | - Basuthkar J. Rao
- Department of Biological Sciences, Tata Institute of Fundamental Research, Homi Bhabha Road, Mumbai, 400 005, India
| | - Bjarni Asgeirsson
- Science Institute, Department of Biochemistry, University of Iceland, Dunhaga 3, IS-107 Reykjavik, Iceland
| | - Abhaya M. Dandekar
- Plant Sciences Department, University of California, Davis, CA, 95616, USA
| |
Collapse
|
25
|
Rosemary Bastian A, Nangarlia A, Bailey LD, Holmes A, Kalyana Sundaram RV, Ang C, Moreira DRM, Freedman K, Duffy C, Contarino M, Abrams C, Root M, Chaiken I. Mechanism of multivalent nanoparticle encounter with HIV-1 for potency enhancement of peptide triazole virus inactivation. J Biol Chem 2014; 290:529-43. [PMID: 25371202 DOI: 10.1074/jbc.m114.608315] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Entry of HIV-1 into host cells remains a compelling yet elusive target for developing agents to prevent infection. A peptide triazole (PT) class of entry inhibitor has previously been shown to bind to HIV-1 gp120, suppress interactions of the Env protein at host cell receptor binding sites, inhibit cell infection, and cause envelope spike protein breakdown, including gp120 shedding and, for some variants, virus membrane lysis. We found that gold nanoparticle-conjugated forms of peptide triazoles (AuNP-PT) exhibit substantially more potent antiviral effects against HIV-1 than corresponding peptide triazoles alone. Here, we sought to reveal the mechanism of potency enhancement underlying nanoparticle conjugate function. We found that altering the physical properties of the nanoparticle conjugate, by increasing the AuNP diameter and/or the density of PT conjugated on the AuNP surface, enhanced potency of infection inhibition to impressive picomolar levels. Further, compared with unconjugated PT, AuNP-PT was less susceptible to reduction of antiviral potency when the density of PT-competent Env spikes on the virus was reduced by incorporating a peptide-resistant mutant gp120. We conclude that potency enhancement of virolytic activity and corresponding irreversible HIV-1 inactivation of PTs upon AuNP conjugation derives from multivalent contact between the nanoconjugates and metastable Env spikes on the HIV-1 virus. The findings reveal that multispike engagement can exploit the metastability built into virus the envelope to irreversibly inactivate HIV-1 and provide a conceptual platform to design nanoparticle-based antiviral agents for HIV-1 specifically and putatively for metastable enveloped viruses generally.
Collapse
Affiliation(s)
- Arangassery Rosemary Bastian
- From the Department of Biochemistry and Molecular Biology, Drexel University College of Medicine, Philadelphia, Pennsylvania 19102, the School of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, Pennsylvania 19104
| | - Aakansha Nangarlia
- From the Department of Biochemistry and Molecular Biology, Drexel University College of Medicine, Philadelphia, Pennsylvania 19102, the School of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, Pennsylvania 19104
| | - Lauren D Bailey
- From the Department of Biochemistry and Molecular Biology, Drexel University College of Medicine, Philadelphia, Pennsylvania 19102
| | - Andrew Holmes
- From the Department of Biochemistry and Molecular Biology, Drexel University College of Medicine, Philadelphia, Pennsylvania 19102
| | - R Venkat Kalyana Sundaram
- From the Department of Biochemistry and Molecular Biology, Drexel University College of Medicine, Philadelphia, Pennsylvania 19102, the School of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, Pennsylvania 19104
| | - Charles Ang
- From the Department of Biochemistry and Molecular Biology, Drexel University College of Medicine, Philadelphia, Pennsylvania 19102, the School of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, Pennsylvania 19104
| | - Diogo R M Moreira
- the Fundação Oswaldo Cruz, Centro de Pesquisas Goncalo Moniz, Salvador-BA 40296-710, Brazil
| | - Kevin Freedman
- the Department of Chemical and Biological Engineering, Drexel University, Philadelphia, Pennsylvania 19104, and
| | - Caitlin Duffy
- From the Department of Biochemistry and Molecular Biology, Drexel University College of Medicine, Philadelphia, Pennsylvania 19102
| | - Mark Contarino
- From the Department of Biochemistry and Molecular Biology, Drexel University College of Medicine, Philadelphia, Pennsylvania 19102
| | - Cameron Abrams
- the Department of Chemical and Biological Engineering, Drexel University, Philadelphia, Pennsylvania 19104, and
| | - Michael Root
- the Department of Biochemistry and Molecular Biology, Jefferson University, Philadelphia, Pennsylvania 19107
| | - Irwin Chaiken
- From the Department of Biochemistry and Molecular Biology, Drexel University College of Medicine, Philadelphia, Pennsylvania 19102,
| |
Collapse
|
26
|
Liu W, Tan J, Mehryar MM, Teng Z, Zeng Y. Peptide HIV fusion inhibitors: modifications and conjugations. MEDCHEMCOMM 2014. [DOI: 10.1039/c4md00214h] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
HIV fusion inhibitors are a group of virus entry preventing drugs aimed at membrane fusion.
Collapse
Affiliation(s)
- Wei Liu
- College of Life Science and Bioengineering
- Beijing University of Technology
- Beijing 100124, China
- State Key Laboratory for Infectious Disease Prevention and Control
- National Institute for Viral disease control and prevention
| | - Jianjun Tan
- College of Life Science and Bioengineering
- Beijing University of Technology
- Beijing 100124, China
| | | | - Zhiping Teng
- State Key Laboratory for Infectious Disease Prevention and Control
- National Institute for Viral disease control and prevention
- Chinese Centre for Disease Control and Prevention
- Beijing 100052, China
| | - Yi Zeng
- College of Life Science and Bioengineering
- Beijing University of Technology
- Beijing 100124, China
- State Key Laboratory for Infectious Disease Prevention and Control
- National Institute for Viral disease control and prevention
| |
Collapse
|
27
|
Bastian AR, Contarino M, Bailey LD, Aneja R, Moreira DRM, Freedman K, McFadden K, Duffy C, Emileh A, Leslie G, Jacobson JM, Hoxie JA, Chaiken I. Interactions of peptide triazole thiols with Env gp120 induce irreversible breakdown and inactivation of HIV-1 virions. Retrovirology 2013; 10:153. [PMID: 24330857 PMCID: PMC3878761 DOI: 10.1186/1742-4690-10-153] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2013] [Accepted: 12/02/2013] [Indexed: 11/10/2022] Open
Abstract
Background We examined the underlying mechanism of action of the peptide triazole thiol, KR13 that has been shown previously to specifically bind gp120, block cell receptor site interactions and potently inhibit HIV-1 infectivity. Results KR13, the sulfhydryl blocked KR13b and its parent non-sulfhydryl peptide triazole, HNG156, induced gp120 shedding but only KR13 induced p24 capsid protein release. The resulting virion post virolysis had an altered morphology, contained no gp120, but retained gp41 that bound to neutralizing gp41 antibodies. Remarkably, HIV-1 p24 release by KR13 was inhibited by enfuvirtide, which blocks formation of the gp41 6-helix bundle during membrane fusion, while no inhibition of p24 release occurred for enfuvirtide-resistant virus. KR13 thus appears to induce structural changes in gp41 normally associated with membrane fusion and cell entry. The HIV-1 p24 release induced by KR13 was observed in several clades of HIV-1 as well as in fully infectious HIV-1 virions. Conclusions The antiviral activity of KR13 and its ability to inactivate virions prior to target cell engagement suggest that peptide triazole thiols could be highly effective in inhibiting HIV transmission across mucosal barriers and provide a novel probe to understand biochemical signals within envelope that are involved in membrane fusion.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | - Irwin Chaiken
- Department of Biochemistry and Molecular Biology, Drexel University College of Medicine, 245N 15th Street, New College Building, Room No, 11102, Philadelphia, PA 19102, USA.
| |
Collapse
|
28
|
Groß A, Möbius K, Haußner C, Donhauser N, Schmidt B, Eichler J. Mimicking Protein-Protein Interactions through Peptide-Peptide Interactions: HIV-1 gp120 and CXCR4. Front Immunol 2013; 4:257. [PMID: 24027570 PMCID: PMC3760305 DOI: 10.3389/fimmu.2013.00257] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2013] [Accepted: 08/13/2013] [Indexed: 01/21/2023] Open
Abstract
We have recently designed a soluble synthetic peptide that functionally mimics the HIV-1 coreceptor CXCR4, which is a chemokine receptor that belongs to the family of seven-transmembrane GPCRs. This CXCR4 mimetic peptide, termed CX4-M1, presents the three extracellular loops (ECLs) of the receptor. In binding assays involving recombinant proteins, as well as in cellular infection assays, CX4-M1 was found to selectively recognize gp120 from HIV-1 strains that use CXCR4 for cell entry (X4 tropic HIV-1). Furthermore, anti-HIV-1 antibodies modulate this interaction in a molecular mechanism related to that of their impact on the gp120-CXCR4 interaction. We could now show that the selectivity of CX4-M1 pertains not only to gp120 from X4 tropic HIV-1, but also to synthetic peptides presenting the V3 loops of these gp120 proteins. The V3 loop is thought to be an essential part of the coreceptor binding site of gp120 that contacts the second ECL of the coreceptor. We were able to experimentally confirm this notion in binding assays using substitution analogs of CX4-M1 and the V3 loop peptides, respectively, as well as in cellular infection assays. These results indicate that interactions of the HIV-1 Env with coreceptors can be mimicked by synthetic peptides, which may be useful to explore these interactions at the molecular level in more detail.
Collapse
Affiliation(s)
- Andrea Groß
- Department of Chemistry and Pharmacy, University of Erlangen-Nuremberg , Erlangen , Germany
| | | | | | | | | | | |
Collapse
|
29
|
HIV-1 resistance mechanism to an electrostatically constrained peptide fusion inhibitor that is active against T-20-resistant strains. Antimicrob Agents Chemother 2013; 57:4035-8. [PMID: 23689710 DOI: 10.1128/aac.00237-13] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
T-20EK is a novel fusion inhibitor designed to have enhanced α-helicity over T-20 (enfuvirtide) through engineered electrostatic interactions between glutamic acid (E) and lysine (K) substitutions. T-20EK efficiently suppresses wild-type and T-20-resistant variants. Here, we selected T-20EK-resistant variants. A combination of L33S and N43K substitutions in gp41 were required for high resistance to T-20EK. While these substitutions also caused resistance to T-20, they did not cause cross-resistance to other known fusion inhibitors.
Collapse
|
30
|
An ancestral HIV-2/simian immunodeficiency virus peptide with potent HIV-1 and HIV-2 fusion inhibitor activity. AIDS 2013; 27:1081-90. [PMID: 23324659 DOI: 10.1097/qad.0b013e32835edc1d] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVES To produce new fusion inhibitor peptides for HIV-1 and HIV-2 based on ancestral envelope sequences. METHODS HIV-2/simian immunodeficiency virus (SIV) ancestral transmembrane protein sequences were reconstructed and ancestral peptides were derived from the helical region 2 (HR2). The activity of one ancestral peptide (named P3) was examined against a panel of HIV-1 and HIV-2 primary isolates in TZM-bl cells and peripheral blood mononuclear cells and compared to T-20. Peptide secondary structure was analyzed by circular dichroism. Resistant viruses were selected and resistance mutations were identified by sequencing the env gene. RESULTS P3 has 34 residues and overlaps the N-terminal pocket-binding region and heptad repeat core of HR2. In contrast to T-20, P3 forms a typical α-helical structure in solution, binds strongly to the transmembrane protein, and potently inhibits both HIV-2 (mean IC50, 63.8 nmol/l) and HIV-1 (11 nmol/l) infection, including T-20-resistant isolates. The N43K mutation in the HR1 region of HIV-1 leads to 120-fold resistance to P3 indicating that the HR1 region in transmembrane glycoprotein is the target of P3. No HIV-2-resistant mutations could be selected by P3 suggesting that the genetic barrier to resistance is higher in HIV-2 than in HIV-1. HIV-1-infected patients presented significantly lower P3-specific antibody reactivity compared to T-20. CONCLUSION P3 is an HIV-2/SIV ancestral peptide with low antigenicity, high stability, and potent activity against both HIV-1, including variants resistant to T-20, and HIV-2. Similar evolutionary biology strategies should be explored to enhance the production of antiviral peptide drugs, microbicides, and vaccines.
Collapse
|
31
|
Lok SM, Costin JM, Hrobowski YM, Hoffmann AR, Rowe DK, Kukkaro P, Holdaway H, Chipman P, Fontaine KA, Holbrook MR, Garry RF, Kostyuchenko V, Wimley WC, Isern S, Rossmann MG, Michael SF. Release of dengue virus genome induced by a peptide inhibitor. PLoS One 2012; 7:e50995. [PMID: 23226444 PMCID: PMC3511436 DOI: 10.1371/journal.pone.0050995] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2012] [Accepted: 10/30/2012] [Indexed: 12/21/2022] Open
Abstract
Dengue virus infects approximately 100 million people annually, but there is no available therapeutic treatment. The mimetic peptide, DN59, consists of residues corresponding to the membrane interacting, amphipathic stem region of the dengue virus envelope (E) glycoprotein. This peptide is inhibitory to all four serotypes of dengue virus, as well as other flaviviruses. Cryo-electron microscopy image reconstruction of dengue virus particles incubated with DN59 showed that the virus particles were largely empty, concurrent with the formation of holes at the five-fold vertices. The release of RNA from the viral particle following incubation with DN59 was confirmed by increased sensitivity of the RNA genome to exogenous RNase and separation of the genome from the E protein in a tartrate density gradient. DN59 interacted strongly with synthetic lipid vesicles and caused membrane disruptions, but was found to be non-toxic to mammalian and insect cells. Thus DN59 inhibits flavivirus infectivity by interacting directly with virus particles resulting in release of the genomic RNA.
Collapse
Affiliation(s)
- Shee-Mei Lok
- Department of Biological Sciences, Purdue University, West Lafayette, Indiana, United States of America
- Emerging Infectious Diseases, Duke–NUS, Department of Biological Sciences, National University of Singapore, Singapore, Singapore
| | - Joshua M. Costin
- Department of Biological Sciences, Florida Gulf Coast University, Fort Myers, Florida, United States of America
| | - Yancey M. Hrobowski
- Department of Biological Sciences, Florida Gulf Coast University, Fort Myers, Florida, United States of America
- Department of Microbiology and Immunology and Graduate Program in Cellular and Molecular Biology, Tulane University Health Sciences Center, New Orleans, Louisiana, United States of America
| | - Andrew R. Hoffmann
- Department of Biochemistry, Tulane University Health Sciences Center, New Orleans, Louisiana, United States of America
| | - Dawne K. Rowe
- Department of Biological Sciences, Florida Gulf Coast University, Fort Myers, Florida, United States of America
| | - Petra Kukkaro
- Emerging Infectious Diseases, Duke–NUS, Department of Biological Sciences, National University of Singapore, Singapore, Singapore
| | - Heather Holdaway
- Department of Biological Sciences, Purdue University, West Lafayette, Indiana, United States of America
| | - Paul Chipman
- Department of Biological Sciences, Purdue University, West Lafayette, Indiana, United States of America
| | - Krystal A. Fontaine
- Department of Biological Sciences, Florida Gulf Coast University, Fort Myers, Florida, United States of America
| | - Michael R. Holbrook
- Department of Pathology, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Robert F. Garry
- Department of Microbiology and Immunology and Graduate Program in Cellular and Molecular Biology, Tulane University Health Sciences Center, New Orleans, Louisiana, United States of America
| | - Victor Kostyuchenko
- Emerging Infectious Diseases, Duke–NUS, Department of Biological Sciences, National University of Singapore, Singapore, Singapore
| | - William C. Wimley
- Department of Biochemistry, Tulane University Health Sciences Center, New Orleans, Louisiana, United States of America
| | - Sharon Isern
- Department of Biological Sciences, Florida Gulf Coast University, Fort Myers, Florida, United States of America
| | - Michael G. Rossmann
- Department of Biological Sciences, Purdue University, West Lafayette, Indiana, United States of America
| | - Scott F. Michael
- Department of Biological Sciences, Florida Gulf Coast University, Fort Myers, Florida, United States of America
- * E-mail:
| |
Collapse
|
32
|
Pessi A, Langella A, Capitò E, Ghezzi S, Vicenzi E, Poli G, Ketas T, Mathieu C, Cortese R, Horvat B, Moscona A, Porotto M. A general strategy to endow natural fusion-protein-derived peptides with potent antiviral activity. PLoS One 2012; 7:e36833. [PMID: 22666328 PMCID: PMC3353973 DOI: 10.1371/journal.pone.0036833] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2011] [Accepted: 04/07/2012] [Indexed: 01/26/2023] Open
Abstract
Fusion between the viral and target cell membranes is an obligatory step for the infectivity of all enveloped virus, and blocking this process is a clinically validated therapeutic strategy. Viral fusion is driven by specialized proteins which, although specific to each virus, act through a common mechanism, the formation of a complex between two heptad repeat (HR) regions. The HR regions are initially separated in an intermediate termed “prehairpin”, which bridges the viral and cell membranes, and then fold onto each other to form a 6-helical bundle (6HB), driving the two membranes to fuse. HR-derived peptides can inhibit viral infectivity by binding to the prehairpin intermediate and preventing its transition to the 6HB. The antiviral activity of HR-derived peptides differs considerably among enveloped viruses. For weak inhibitors, potency can be increased by peptide engineering strategies, but sequence-specific optimization is time-consuming. In seeking ways to increase potency without changing the native sequence, we previously reported that attachment to the HR peptide of a cholesterol group (”cholesterol-tagging”) dramatically increases its antiviral potency, and simultaneously increases its half-life in vivo. We show here that antiviral potency may be increased by combining cholesterol-tagging with dimerization of the HR-derived sequence, using as examples human parainfluenza virus, Nipah virus, and HIV-1. Together, cholesterol-tagging and dimerization may represent strategies to boost HR peptide potency to levels that in some cases may be compatible with in vivo use, possibly contributing to emergency responses to outbreaks of existing or novel viruses.
Collapse
Affiliation(s)
| | | | | | - Silvia Ghezzi
- Viral Pathogens and Biosafety, Division of Immunology, Transplantation and Infectious Diseases, San Raffaele Scientific Institute, Milan, Italy
| | - Elisa Vicenzi
- Viral Pathogens and Biosafety, Division of Immunology, Transplantation and Infectious Diseases, San Raffaele Scientific Institute, Milan, Italy
| | - Guido Poli
- AIDS Immunopathogenesis Units, Division of Immunology, Transplantation and Infectious Diseases, San Raffaele Scientific Institute, Milan, Italy
- Vita-Salute San Raffaele University, School of Medicine, Milan, Italy
| | - Thomas Ketas
- Department of Microbiology and Immunology, Weill Medical College of Cornell University, New York, New York, United States of America
| | - Cyrille Mathieu
- INSERM, Ecole Normale Supérieure de Lyon, Lyon, France
- Pedriatics, Weill Medical College of Cornell University, New York, New York, United States of America
| | | | - Branka Horvat
- INSERM, Ecole Normale Supérieure de Lyon, Lyon, France
- IFR128 BioSciences Lyon-Gerland Lyon-Sud, University of Lyon, Lyon, France
| | - Anne Moscona
- Department of Microbiology and Immunology, Weill Medical College of Cornell University, New York, New York, United States of America
- Pedriatics, Weill Medical College of Cornell University, New York, New York, United States of America
| | - Matteo Porotto
- Pedriatics, Weill Medical College of Cornell University, New York, New York, United States of America
- * E-mail: (AP); (MP)
| |
Collapse
|
33
|
Danial M, Root MJ, Klok HA. Polyvalent side chain peptide-synthetic polymer conjugates as HIV-1 entry inhibitors. Biomacromolecules 2012; 13:1438-47. [PMID: 22455441 DOI: 10.1021/bm300150q] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
This report describes the synthesis and properties of a series of polyvalent side chain peptide-synthetic polymer conjugates designed to block the CD4 binding site on gp120 and inhibit HIV-1 entry into a host cell. The peptide sequences in the conjugates are based on the CDR H3 region of the neutralizing anti-HIV-1 antibody IgG1 b12. Using a consecutive ester-amide/thiol-ene postpolymerization modification strategy, a library of polymer conjugates was prepared. Evaluation of the HIV-1 inhibitory properties revealed that midsized polymer conjugates displayed the highest antiviral activity, while shorter and longer conjugates proved to be less efficacious inhibitors. The lower molecular weight conjugates may not have sufficient length to span the distance between two neighboring gp120 containing spikes, while the higher molecular weight conjugates may be compromised due to a higher entropic penalty that would accompany their binding to the viral envelope. Although the IC(50) values for these polymer conjugates are higher than that of the parent IgG1 b12 antibody, the strategy presented here may represent an interesting antiviral approach due to the attractive properties of such polymer therapeutics (relatively inexpensive production and purification costs, high thermal and chemical stability in storage conditions, long half-life in biological tissues, low immunogenicity, and protection from proteolytic degradation).
Collapse
Affiliation(s)
- Maarten Danial
- Institut des Matériaux and Institut des Sciences et Ingénierie Chimiques, Laboratoire des Polymères, École Polytechnique Fédérale de Lausanne (EPFL), Bâtiment MXD, Station 12, CH-1015 Lausanne, Switzerland
| | | | | |
Collapse
|
34
|
Cerasoli E, Ravi J, Gregor C, Hussain R, Siligardi G, Martyna G, Crain J, Ryadnov MG. Membrane mediated regulation in free peptides of HIV-1 gp41: minimal modulation of the hemifusion phase. Phys Chem Chem Phys 2012; 14:1277-85. [DOI: 10.1039/c1cp23155c] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
35
|
Gochin M, Zhou G. Amphipathic properties of HIV-1 gp41 fusion inhibitors. Curr Top Med Chem 2011; 11:3022-32. [PMID: 22044226 PMCID: PMC3219813 DOI: 10.2174/156802611798808488] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2010] [Revised: 02/26/2011] [Accepted: 12/01/2011] [Indexed: 12/11/2022]
Abstract
Small molecule inhibition of HIV fusion has been an elusive goal, despite years of effort by both pharmaceutical and academic laboratories. In this review, we will discuss the amphipathic properties of both peptide and small molecule inhibitors of gp41-mediated fusion. Many of the peptides and small molecules that have been developed target a large hydrophobic pocket situated within the grooves of the coiled coil, a potential hotspot for inhibiting the trimer of hairpin formation that accompanies fusion. Peptide studies reveal molecular properties required for effective inhibition, including elongated structure and lipophilic or amphiphilic nature. The characteristics of peptides that bind in this pocket provide features that should be considered in small molecule development. Additionally, a novel site for small molecule inhibition of fusion has recently been suggested, involving residues of the loop and fusion peptide. We will review the small molecule structures that have been developed, evidence pointing to their mechanism of action and strategies towards improving their affinity. The data points to the need for a strongly amphiphilic character of the inhibitors, possibly as a means to mediate the membrane - protein interaction that occurs in gp41 in addition to the protein - protein interaction that accompanies the fusion-activating conformational transition.
Collapse
Affiliation(s)
- Miriam Gochin
- Department of Basic Sciences, Touro University – California, Vallejo, CA 94592, USA.
| | | |
Collapse
|
36
|
Izumi K, Watanabe K, Oishi S, Fujii N, Matsuoka M, Sarafianos SG, Kodama EN. Potent anti-HIV-1 activity of N-HR-derived peptides including a deep pocket-forming region without antagonistic effects on T-20. Antivir Chem Chemother 2011; 22:51-5. [PMID: 21860071 DOI: 10.3851/imp1836] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
Abstract
BACKGROUND Enfuvirtide (T-20), a C-terminal heptad repeat (C-HR)-derived peptide of HIV-1 glycoprotein, gp41, effectively suppresses HIV-1 replication through a putative mechanism that involves it acting as a decoy and binding to the N-terminal heptad repeat (N-HR) of the virus. In this study, we address whether the anti-HIV-1 activity of T-20 is antagonized by a variety of N-HR-derived peptides. METHODS Multinuclear activation of galactosidase indicator assays were used to evaluate T-20 activity in the presence of N-HR-derived peptides. The gp41-derived peptides were chemically synthesized. RESULTS We demonstrate additive anti-HIV activity when T-20 is used in combination with N-HR-derived peptides that do not have a putative binding region for the tryptophan-rich domain in T-20. The presence of a deep pocket-forming region in the N-HR-derived peptides enhanced their anti-HIV-1 activity, but had little effect on the activity of T-20. CONCLUSIONS These results indicate that T-20-based antiviral therapies can be combined with N-HR-derived peptides.
Collapse
Affiliation(s)
- Kazuki Izumi
- Laboratory of Virus Control, Institute for Virus Research, Department of Bioorganic Medical Chemistry, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, Japan
| | | | | | | | | | | | | |
Collapse
|
37
|
Zhao B, Mankowski MK, Snyder BA, Ptak RG, Liwang PJ. Highly potent chimeric inhibitors targeting two steps of HIV cell entry. J Biol Chem 2011; 286:28370-81. [PMID: 21659523 PMCID: PMC3151080 DOI: 10.1074/jbc.m111.234799] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2011] [Revised: 06/03/2011] [Indexed: 11/06/2022] Open
Abstract
Blocking HIV-1 cell entry has long been a major goal of anti-HIV drug development. Here, we report a successful design of two highly potent chimeric HIV entry inhibitors composed of one CCR5-targeting RANTES (regulated on activation normal T cell expressed and secreted) variant (5P12-RANTES or 5P14-RANTES (Gaertner, H., Cerini, F., Escola, J. M., Kuenzi, G., Melotti, A., Offord, R., Rossitto-Borlat, I., Nedellec, R., Salkowitz, J., Gorochov, G., Mosier, D., and Hartley, O. (2008) Proc. Natl. Acad. Sci. U.S.A. 105, 17706-17711)) linked to a gp41 fusion inhibitor, C37. Chimeric inhibitors 5P12-linker-C37 and 5P14-linker-C37 showed extremely high antiviral potency in single cycle and replication-competent viral assays against R5-tropic viruses, with IC(50) values as low as 0.004 nm. This inhibition was somewhat strain-dependent and was up to 100-fold better than the RANTES variant alone or in combination with unlinked C37. The chimeric inhibitors also fully retained the antiviral activity of C37 against X4-tropic viruses, and this inhibition can be further enhanced significantly if the target cell co-expresses CCR5 receptor. On human peripheral blood mononuclear cells, the inhibitors showed very strong inhibition against R5-tropic Ba-L strain and X4-tropic IIIB strain, with IC(50) values as low as 0.015 and 0.44 nm, which are 45- and 16-fold better than the parent inhibitors, respectively. A clear delivery mechanism requiring a covalent linkage between the two segments of the chimera was observed and characterized. Furthermore, the two chimeric inhibitors are fully recombinant and are easily produced at low cost. These attributes make them excellent candidates for anti-HIV microbicides. The results of this study also suggest a potent approach for optimizing existing HIV entry inhibitors or designing new inhibitors.
Collapse
Affiliation(s)
- Bo Zhao
- University of California, Merced, California 95343, USA
| | | | | | | | | |
Collapse
|
38
|
Ingale S, Gach JS, Zwick MB, Dawson PE. Synthesis and analysis of the membrane proximal external region epitopes of HIV-1. J Pept Sci 2011; 16:716-22. [PMID: 21104968 DOI: 10.1002/psc.1325] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
The membrane proximal external region (MPER) of gp41 abuts the viral membrane at the base of HIV-1 envelope glycoprotein spikes. The MPER is highly conserved and is rich in Trp and other lipophilic residues. The MPER is also required for the infection of host cells by HIV-1 and is the target of the broadly neutralizing antibodies, 4E10, 2F5, and Z13e1. These neutralizing antibodies are valuable tools for understanding relevant conformations of the MPER and for studying HIV-1 neutralization, but multiple approaches used to elicit MPER binding antibodies with similar neutralization properties have failed. Here we report our efforts to mimic the MPER using linear as well as constrained peptides. Unnatural amino acids were also introduced into the core epitope of 4E10 to probe requirements of antibody binding. Peptide analogs with C-terminal Api or Aib residues designed to be helical transmembrane (TM) domain surrogates exhibit enhanced binding to the 4E10 and Z13e1 antibodies. However, we find that placement of constrained amino acids at nonbinding sites within the core epitope significantly reduce binding. These results are relevant to an understanding of native MPER structure on HIV-1, and form a basis for a chemical synthesis approach to mimic MPER stricture and to construct an MPER-based vaccine.
Collapse
Affiliation(s)
- Sampat Ingale
- Department of Chemistry and Cell Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | | | | | | |
Collapse
|
39
|
Potent strategy to inhibit HIV-1 by binding both gp120 and gp41. Antimicrob Agents Chemother 2010; 55:264-75. [PMID: 20956603 DOI: 10.1128/aac.00376-10] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The development of an anti-HIV microbicide is critical in the fight against the spread of HIV. It is shown here that the covalent linking of compounds that bind gp120 with compounds that bind gp41 can inhibit HIV entry even more potently than individual inhibitors or noncovalent combinations. The most striking example involves griffithsin, a potent HIV inhibitor that binds to the surface of HIV gp120. While griffithsin inhibits HIV Env-mediated fusion in a CCR5-tropic cell-cell fusion assay with a 50% inhibitory concentration (IC(50)) of 1.31 ± 0.87 nM and the gp41-binding peptide C37 shows an IC(50) of 18.2 ± 7.6 nM, the covalently linked combination of griffithsin with C37 (Griff37) has an IC(50) of 0.15 ± 0.05 nM, exhibiting a potency 8.7-fold greater than that of griffithsin alone. Similarly, in CXCR4-tropic cell-cell fusion assays, Griff37 is 5.2-fold more potent than griffithsin alone. In viral assays, both griffithsin and Griff37 inhibit HIV replication at midpicomolar levels, but the linked compound Griff37 is severalfold more potent than griffithsin alone against both CCR5- and CXCR4-tropic virus strains. Another example of this strategy is the covalently linked combination of peptide C37 with a variant of the gp120-binding peptide CD4M33 (L. Martin et al., Nat. Biotechnol. 21:71-76, 2003). Also, nuclear magnetic resonance (NMR) spectra for several of these compounds are shown, including, to our knowledge, the first published NMR spectrum for griffithsin.
Collapse
|
40
|
Da Silva GF, Harrison JS, Lai JR. Contribution of light chain residues to high affinity binding in an HIV-1 antibody explored by combinatorial scanning mutagenesis. Biochemistry 2010; 49:5464-72. [PMID: 20518570 PMCID: PMC2911358 DOI: 10.1021/bi100293q] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Detailed analysis of factors governing high affinity antibody-antigen interactions yields important insight into molecular recognition and facilitates the design of functional antibody libraries. Here we describe comprehensive mutagenesis of the light chain complementarity determining regions (CDRs) of HIV-1 antibody D5 (which binds its target, "5-Helix", with a reported K(D) of 50 pM). Combinatorial scanning mutagenesis libraries were prepared in which CDR residues on the D5 light chain were varied among WT side chain identity or alanine. Selection of these libraries against 5-Helix and then sequence analysis of the resulting population were used to quantify energetic consequences of mutation from wild-type to alanine (DeltaDeltaG(Ala-WT)) at each position. This analysis revealed several hotspot residues (DeltaDeltaG(Ala-WT) >or= 1 kcal/mol) that formed combining site features critical to the affinity of the interaction. Tolerance of D5 light chain residues to alternative mutations was explored with a second library. We found that light chain residues located at the center and at the periphery of the D5 combining site contribute to shape complementarity and electrostatic characteristics. Thus, the affinity of D5 for 5-Helix arises from extended interactions involving both the heavy and light chains of D5. These results provide significant insight for future antibody engineering efforts.
Collapse
Affiliation(s)
- Gustavo F. Da Silva
- Department of Biochemistry, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461
| | - Joseph S. Harrison
- Department of Biochemistry, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461
| | - Jonathan R. Lai
- Department of Biochemistry, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461
| |
Collapse
|
41
|
The rare HIV-1 gp41 mutations 43T and 50V elevate enfuvirtide resistance levels of common enfuvirtide resistance mutations that did not impact susceptibility to sifuvirtide. Antiviral Res 2010; 86:253-60. [DOI: 10.1016/j.antiviral.2010.03.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2010] [Revised: 02/26/2010] [Accepted: 03/02/2010] [Indexed: 12/22/2022]
|
42
|
McGillick BE, Balius TE, Mukherjee S, Rizzo RC. Origins of resistance to the HIVgp41 viral entry inhibitor T20. Biochemistry 2010; 49:3575-92. [PMID: 20230061 PMCID: PMC2867330 DOI: 10.1021/bi901915g] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Peptide T20, which targets the HIV protein gp41, represents the first approved member of the class of HIV drugs known as membrane fusion inhibitors. However, mechanisms which lead to resistance through clinical use of T20 are not well-understood because the structure of the bound complex remains undetermined. In this report, an atomic-level model of a T20-gp41 complex embedded in an explicit DOPC membrane was constructed, and molecular dynamics simulations, followed by binding energy analysis (MM-GBSA method), were performed to delineate structural and energetic features that contribute to drug resistance. Per-residue binding footprints for T20 with wild-type gp41 reveal strong intermolecular van der Waals, Coulombic, and H-bond interactions in striking agreement with clinically observed resistance patterns. In addition, seven deleterious gp41 point mutations (L33Q, L33S, G36V, I37K, V38E, Q40H, and Q40K) were simulated, and all correctly exhibited decreases in the level of binding, including the fact that L33Q and Q40K are most detrimental. Six of the seven simulations yield good quantitative agreement (r(2) = 0.72; N = 6) with available experimental fold resistance data. Results from energy decomposition, heat map analysis, and differential (mutant minus wild-type) footprinting indicate the following. (1) Mutations disrupt intermolecular H-bonding and reduce the level of favorable contact with gp41 at M19. (2) Charged mutations (I37K, Q40K, and V38E) lead to significant Coulombic changes that weaken favorable van der Waals interactions. (3) Q40K is more detrimental than I37K because of interaction differences with a polar/charged patch on T20 in the initial (wild-type) state. (4) Resistance for L33S versus L33Q likely involves side chain packing differences in the final (mutated) state. A valuable finding of the work involves identification of favorable interactions among the C-terminal end of T20 (WNWF motif), residues on gp41 (including the fusion peptide), and headgroups in the adjacent membrane. The results suggest a complete T20 binding site would contribute to a stable complex, which could help to explain why prior studies, which employed truncated gp41 constructs, reported that C-terminal T20 residues may not interact with gp41. A hypothesis resulting from this study is that peptides could be designed to increase the level of favorable contact with both the membrane and gp41 which would lead to enhanced activity.
Collapse
Affiliation(s)
| | | | | | - Robert C. Rizzo
- Corresponding author , phone: 631-944-2891, fax: 631-632-8490
| |
Collapse
|
43
|
Asymmetric deactivation of HIV-1 gp41 following fusion inhibitor binding. PLoS Pathog 2009; 5:e1000674. [PMID: 19956769 PMCID: PMC2776349 DOI: 10.1371/journal.ppat.1000674] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2009] [Accepted: 10/30/2009] [Indexed: 12/12/2022] Open
Abstract
Both equilibrium and nonequilibrium factors influence the efficacy of pharmaceutical agents that target intermediate states of biochemical reactions. We explored the intermediate state inhibition of gp41, part of the HIV-1 envelope glycoprotein complex (Env) that promotes viral entry through membrane fusion. This process involves a series of gp41 conformational changes coordinated by Env interactions with cellular CD4 and a chemokine receptor. In a kinetic window between CD4 binding and membrane fusion, the N- and C-terminal regions of the gp41 ectodomain become transiently susceptible to inhibitors that disrupt Env structural transitions. In this study, we sought to identify kinetic parameters that influence the antiviral potency of two such gp41 inhibitors, C37 and 5-Helix. Employing a series of C37 and 5-Helix variants, we investigated the physical properties of gp41 inhibition, including the ability of inhibitor-bound gp41 to recover its fusion activity once inhibitor was removed from solution. Our results indicated that antiviral activity critically depended upon irreversible deactivation of inhibitor-bound gp41. For C37, which targets the N-terminal region of the gp41 ectodomain, deactivation was a slow process that depended on chemokine receptor binding to Env. For 5-Helix, which targets the C-terminal region of the gp41 ectodomain, deactivation occurred rapidly following inhibitor binding and was independent of chemokine receptor levels. Due to this kinetic disparity, C37 inhibition was largely reversible, while 5-Helix inhibition was functionally irreversible. The fundamental difference in deactivation mechanism points to an unappreciated asymmetry in gp41 following inhibitor binding and impacts the development of improved fusion inhibitors and HIV-1 vaccines. The results also demonstrate how the activities of intermediate state inhibitors critically depend upon the final disposition of inhibitor-bound states.
Collapse
|
44
|
Pang W, Tam SC, Zheng YT. Current peptide HIV type-1 fusion inhibitors. Antivir Chem Chemother 2009; 20:1-18. [PMID: 19794228 DOI: 10.3851/imp1369] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
Abstract
There are now 26 antiretroviral drugs and 6 fixed-dose combinations, including reverse transcriptase inhibitors, protease inhibitors, integrase inhibitors and fusion (or entry) inhibitors, approved by the US Food and Drug Administration for clinical use. Although they are clinically effective when used in combination, none of the existing drugs are considered ideal because of toxic side effects and the ascendance of inducing drug-resistant mutants. Development of new antiviral agents is essential. In the past decades, there has been great progress in understanding the structure of HIV type-1 (HIV-1) gp41 and the mechanism of HIV-1 entry into host cells. This opened up a promising avenue for rationally designed agents to interfere with this process. A number of fusion inhibitors have been developed to block HIV-1 replication. Enfuvirtide (T20) was one of those approved for clinical use. This signalled a new era in AIDS therapeutics. It is a synthetic polypeptide with potent inhibitory activity against HIV-1 infection. However, it is sensitive to proteolytic digestion and resistant virus strains are easily induced with multiple clinical use. One of the directions in designing new fusion inhibitors is to overcome these shortages. In the past years, large numbers of promising fusion inhibitory peptides have emerged. The antiviral activities are more potent or they can act differently from that of T20. Some of these new compounds have great potential to be further developed as therapeutic agents. This article reviewed some recent developments of these peptides and the possible role in anti-HIV-1 therapy.
Collapse
Affiliation(s)
- Wei Pang
- Key Laboratory of Animal Models and Human Diseases Mechanisms, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China
| | | | | |
Collapse
|
45
|
Pan C, Cai L, Lu H, Qi Z, Jiang S. Combinations of the first and next generations of human immunodeficiency virus (HIV) fusion inhibitors exhibit a highly potent synergistic effect against enfuvirtide- sensitive and -resistant HIV type 1 strains. J Virol 2009; 83:7862-72. [PMID: 19493996 PMCID: PMC2715752 DOI: 10.1128/jvi.00168-09] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2009] [Accepted: 05/27/2009] [Indexed: 11/20/2022] Open
Abstract
T20 (generic name, enfuvirtide; brand name, Fuzeon) is a first-generation human immunodeficiency virus (HIV) fusion inhibitor approved for salvage therapy of HIV-infected patients refractory to current antiretroviral drugs. However, its clinical use is limited because of rapid emergence of T20-resistant viruses in T20-treated patients. Therefore, T1249 and T1144 are being developed as the second- and third-generation HIV fusion inhibitors, respectively, with improved efficacy and drug resistance profiles. Here, we found that combinations of T20 with T1249 and/or T1144 resulted in exceptionally potent synergism (combination index, <0.01) against HIV-1-mediated membrane fusion by 2 to 3 orders of magnitude in dose reduction. Highly potent synergistic antiviral efficacy was also achieved against infection by laboratory-adapted and primary HIV-1 strains, including T20-resistant variants. The mechanism underlying the synergistic effect could be attributed to the fact that T20, T1249, and T1144 all contain different functional domains and have different primary binding sites in gp41. As such, they may work cooperatively to inhibit gp41 six-helix bundle core formation, thereby suppressing virus-cell fusion. Therefore, these findings strongly imply that, rather than replacing T20, combining it with HIV fusion inhibitors of different generations might produce synergistic activity against both T20-sensitive and -resistant HIV-1 strains, suggesting a new therapeutic strategy for the treatment of HIV-1 infection/AIDS.
Collapse
|
46
|
Naider F, Anglister J. Peptides in the treatment of AIDS. Curr Opin Struct Biol 2009; 19:473-82. [PMID: 19632107 PMCID: PMC2763535 DOI: 10.1016/j.sbi.2009.07.003] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2009] [Revised: 07/02/2009] [Accepted: 07/07/2009] [Indexed: 01/11/2023]
Abstract
Fusion of HIV-1 and target cells is mediated by the envelope protein gp41 that undergoes a series of conformational changes during the process of infection. Knowledge of the structural biology of gp41 allows the design of potent peptide inhibitors that prevent the virus from entering lymphocytes and macrophages. The design of such inhibitors is the subject of this review.
Collapse
Affiliation(s)
- Fred Naider
- Department of Chemistry, College of Staten Island of the City University of New York, Staten Island, New York 10314, USA.
| | | |
Collapse
|
47
|
Stable extended human immunodeficiency virus type 1 gp41 coiled coil as an effective target in an assay for high-affinity fusion inhibitors. Antimicrob Agents Chemother 2009; 53:2444-9. [PMID: 19364877 DOI: 10.1128/aac.00150-09] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The human immunodeficiency virus type 1 (HIV-1) gp41 coiled-coil domain is an important target for fusion inhibitors, including the peptide T20, which has been approved as a drug against HIV-1. Research into nonpeptide fusion inhibitors has focused primarily on a hydrophobic pocket located within the coiled coil and has so far yielded compounds with relatively weak fusion inhibitory activity. Here, we describe metal ion-assisted stabilization of an extended 39-residue construct of gp41, which includes residues of the hydrophobic pocket and also of an extended groove N terminal to the hydrophobic pocket. We show that the presence of a metal ion and the high-affinity interaction between the receptor construct and cognate C-peptides result in a simple and highly selective assay for fusion inhibitors that may be used to scan large compound libraries. The long construct presents multiple potential binding sites along the extended coiled-coil groove. We demonstrate the modular use of assay probes to detect whether compounds bind in the hydrophobic pocket or elsewhere along the groove. Rapid detection and quantitation of hits can lead to the discovery of compounds binding to different sites along the groove and provide structure-activity relationship data for optimization. Compounds binding to adjacent sites could be linked to form more potent fusion inhibitors.
Collapse
|
48
|
Moebius K, Eichler J. HIV-derived peptide mimics. DRUG DISCOVERY TODAY. TECHNOLOGIES 2009; 6:e1-e40. [PMID: 24128988 DOI: 10.1016/j.ddtec.2009.09.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
|