1
|
Yi XM, Lei YL, Li M, Zhong L, Li S. The monkeypox virus-host interplays. CELL INSIGHT 2024; 3:100185. [PMID: 39144256 PMCID: PMC11321328 DOI: 10.1016/j.cellin.2024.100185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 07/11/2024] [Accepted: 07/11/2024] [Indexed: 08/16/2024]
Abstract
Monkeypox virus (MPXV) is a DNA virus belonging to the Orthopoxvirus genus within the Poxviridae family which can cause a zoonotic infection. The unexpected non-endemic outbreak of mpox in 2022 is considered as a new global threat. It is imperative to take proactive measures, including enhancing our understanding of MPXV's biology and pathogenesis, and developing novel antiviral strategies. The host immune responses play critical roles in defensing against MPXV infection while the virus has also evolved multiple strategies for immune escape. This review summarizes the biological features, antiviral immunity, immune evasion mechanisms, pathogenicity, and prevention strategies for MPXV.
Collapse
Affiliation(s)
- Xue-Mei Yi
- Department of Infectious Diseases, Zhongnan Hospital of Wuhan University, Medical Research Institute, Frontier Science Center for Immunology and Metabolism, Research Unit of Innate Immune and Inflammatory Diseases (2019RU063), Chinese Academy of Medical Sciences, Wuhan University, Wuhan, 430071, China
| | - Ya-Li Lei
- Department of Infectious Diseases, Zhongnan Hospital of Wuhan University, Medical Research Institute, Frontier Science Center for Immunology and Metabolism, Research Unit of Innate Immune and Inflammatory Diseases (2019RU063), Chinese Academy of Medical Sciences, Wuhan University, Wuhan, 430071, China
| | - Mi Li
- Department of Infectious Diseases, Zhongnan Hospital of Wuhan University, Medical Research Institute, Frontier Science Center for Immunology and Metabolism, Research Unit of Innate Immune and Inflammatory Diseases (2019RU063), Chinese Academy of Medical Sciences, Wuhan University, Wuhan, 430071, China
| | - Li Zhong
- Department of Pathology, New York University Grossman School of Medicine, New York, NY, USA
| | - Shu Li
- Department of Infectious Diseases, Zhongnan Hospital of Wuhan University, Medical Research Institute, Frontier Science Center for Immunology and Metabolism, Research Unit of Innate Immune and Inflammatory Diseases (2019RU063), Chinese Academy of Medical Sciences, Wuhan University, Wuhan, 430071, China
| |
Collapse
|
2
|
Sun Y, Nie W, Tian D, Ye Q. Human monkeypox virus: Epidemiologic review and research progress in diagnosis and treatment. J Clin Virol 2024; 171:105662. [PMID: 38432097 DOI: 10.1016/j.jcv.2024.105662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 02/22/2024] [Accepted: 02/25/2024] [Indexed: 03/05/2024]
Abstract
Monkeypox virus (MPXV) is responsible for causing a zoonotic disease called monkeypox (mpox), which sporadically infects humans in West and Central Africa. It first infected humans in 1970 and, along with the variola virus, belongs to the genus Orthopoxvirus in the poxvirus family. Since the World Health Organization declared the MPXV outbreak a "Public Health Emergency of International Concern" on July 23, 2022, the number of infected patients has increased dramatically. To control this epidemic and address this previously neglected disease, MPXV needs to be better understood and reevaluated. In this review, we cover recent research on MPXV, including its genomic and pathogenic characteristics, transmission, mutations and mechanisms, clinical characteristics, epidemiology, laboratory diagnosis, and treatment measures, as well as prevention of MPXV infection in light of the 2022 and 2023 global outbreaks. The 2022 MPXV outbreak has been primarily associated with close intimate contact, including sexual activity, with most cases diagnosed among men who have sex with men. The incubation period of MPXV infection usually lasts from 6 to 13 days, and symptoms include fever, muscle pains, headache, swollen lymph nodes, and a characteristic painful rash, including several stages, such as macules, papules, blisters, pustules, scabs, and scab shedding involving the genitals and anus. Polymerase chain reaction (PCR) is usually used to detect MPXV in skin lesion material. Treatment includes supportive care, antivirals, and intravenous vaccinia immune globulin. Smallpox vaccines have been designed with four givens emergency approval for use against MPXV infection.
Collapse
Affiliation(s)
- Yanhong Sun
- Department of Clinical Laboratory, National Clinical Research Center for Child Health, National Children's Regional Medical Center, Children's Hospital, Zhejiang University School of Medicine, Hangzhou 310052, China
| | - Wenjian Nie
- Department of Clinical Laboratory, National Clinical Research Center for Child Health, National Children's Regional Medical Center, Children's Hospital, Zhejiang University School of Medicine, Hangzhou 310052, China
| | - Dandan Tian
- Department of Clinical Laboratory, National Clinical Research Center for Child Health, National Children's Regional Medical Center, Children's Hospital, Zhejiang University School of Medicine, Hangzhou 310052, China
| | - Qing Ye
- Department of Clinical Laboratory, National Clinical Research Center for Child Health, National Children's Regional Medical Center, Children's Hospital, Zhejiang University School of Medicine, Hangzhou 310052, China.
| |
Collapse
|
3
|
Ritter JM, Martines RB, Bhatnagar J, Rao AK, Villalba JA, Silva-Flannery L, Lee E, Bullock HA, Hutson CL, Cederroth T, Harris CK, Hord K, Xu Y, Brown CA, Guccione JP, Miller M, Paddock CD, Reagan-Steiner S. Pathology and Monkeypox virus Localization in Tissues From Immunocompromised Patients With Severe or Fatal Mpox. J Infect Dis 2024; 229:S219-S228. [PMID: 38243606 DOI: 10.1093/infdis/jiad574] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 12/04/2023] [Accepted: 01/16/2024] [Indexed: 01/21/2024] Open
Abstract
BACKGROUND Pathology and Monkeypox virus (MPXV) tissue tropism in severe and fatal human mpox is not thoroughly described but can help elucidate the disease pathogenesis and the role of coinfections in immunocompromised patients. METHODS We analyzed biopsy and autopsy tissues from 22 patients with severe or fatal outcomes to characterize pathology and viral antigen and DNA distribution in tissues by immunohistochemistry and in situ hybridization. Tissue-based testing for coinfections was also performed. RESULTS Mucocutaneous lesions showed necrotizing and proliferative epithelial changes. Deceased patients with autopsy tissues evaluated had digestive tract lesions, and half had systemic tissue necrosis with thrombotic vasculopathy in lymphoid tissues, lung, or other solid organs. Half also had bronchopneumonia, and one-third had acute lung injury. All cases had MPXV antigen and DNA detected in tissues. Coinfections were identified in 5 of 16 (31%) biopsy and 4 of 6 (67%) autopsy cases. CONCLUSIONS Severe mpox in immunocompromised patients is characterized by extensive viral infection of tissues and viremic dissemination that can progress despite available therapeutics. Digestive tract and lung involvement are common and associated with prominent histopathological and clinical manifestations. Coinfections may complicate mpox diagnosis and treatment. Significant viral DNA (likely correlating to infectious virus) in tissues necessitates enhanced biosafety measures in healthcare and autopsy settings.
Collapse
Affiliation(s)
| | | | | | - Agam K Rao
- Poxvirus and Rabies Branch, Division of High-Consequence Pathogens and Pathology, National Center for Emerging and Zoonotic Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia
| | | | | | - Elizabeth Lee
- Infectious Diseases Pathology Branch
- Oak Ridge Institute for Science and Education, Oak Ridge, Tennessee
| | | | - Christina L Hutson
- Poxvirus and Rabies Branch, Division of High-Consequence Pathogens and Pathology, National Center for Emerging and Zoonotic Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia
| | | | | | - Kristin Hord
- Office of Chief Medical Examiner, New York City, New York
| | - Ya Xu
- Department of Pathology and Immunology, Baylor College of Medicine
- Department of Pathology and Laboratory Medicine, Ben Taub Hospital, Harris Health System, Houston, Texas
| | - Cameron A Brown
- Department of Pathology and Immunology, Baylor College of Medicine
- Department of Pathology and Laboratory Medicine, Ben Taub Hospital, Harris Health System, Houston, Texas
| | - Jack P Guccione
- Department of Medical Examiner-Coroner, Los Angeles County, Los Angeles, California
| | - Matthew Miller
- Department of Medical Examiner-Coroner, Los Angeles County, Los Angeles, California
| | - Christopher D Paddock
- Rickettsial Zoonoses Branch, Division of Vector-Borne Diseases, National Center for Zoonotic and Emerging Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia
| | | |
Collapse
|
4
|
Zhu J, Yu J, Qin H, Chen X, Wu C, Hong X, Zhang Y, Zhang Z. Exploring the key genomic variation in monkeypox virus during the 2022 outbreak. BMC Genom Data 2023; 24:67. [PMID: 37968621 PMCID: PMC10652487 DOI: 10.1186/s12863-023-01171-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Accepted: 11/02/2023] [Indexed: 11/17/2023] Open
Abstract
BACKGROUND In 2022, a global outbreak of monkeypox occurred with a significant shift in its epidemiological characteristics. The monkeypox virus (MPXV) belongs to the B.1 lineage, and its genomic variations that were linked to the outbreak were investigated in this study. Previous studies have suggested that viral genomic variation plays a crucial role in the pathogenicity and transmissibility of viruses. Therefore, understanding the genomic variation of MPXV is crucial for controlling future outbreaks. METHODS This study employed bioinformatics and phylogenetic approaches to evaluate the key genomic variation in the B.1 lineage of MPXV. A total of 979 MPXV strains were screened, and 212 representative strains were analyzed to identify specific substitutions in the viral genome. Reference sequences were constructed for each of the 10 lineages based on the most common nucleotide at each site. A total of 49 substitutions were identified, with 23 non-synonymous substitutions. Class I variants, which had significant effects on protein conformation likely to affect viral characteristics, were classified among the non-synonymous substitutions. RESULTS The phylogenetic analysis revealed 10 relatively monophyletic branches. The study identified 49 substitutions specific to the B.1 lineage, with 23 non-synonymous substitutions that were classified into Class I, II, and III variants. The Class I variants were likely responsible for the observed changes in the characteristics of circulating MPXV in 2022. These key mutations, particularly Class I variants, played a crucial role in the pathogenicity and transmissibility of MPXV. CONCLUSION This study provides an understanding of the genomic variation of MPXV in the B.1 lineage linked to the recent outbreak of monkeypox. The identification of key mutations, particularly Class I variants, sheds light on the molecular mechanisms underlying the observed changes in the characteristics of circulating MPXV. Further studies can focus on functional domains affected by these mutations, enabling the development of effective control strategies against future monkeypox outbreaks.
Collapse
Affiliation(s)
- Jie Zhu
- Institute of Clinical Virology, Department of Infectious Diseases, The Second Affiliated Hospital of Anhui Medical University, Furong Road 678, Hefei, 230601, Anhui, China
| | - Jian Yu
- Institute of Clinical Virology, Department of Infectious Diseases, The Second Affiliated Hospital of Anhui Medical University, Furong Road 678, Hefei, 230601, Anhui, China
| | - Hao Qin
- Department of Infectious Diseases, The Third People's Hospital of Hefei, Hefei, China
| | - Xinlei Chen
- Institute of Clinical Virology, Department of Infectious Diseases, The Second Affiliated Hospital of Anhui Medical University, Furong Road 678, Hefei, 230601, Anhui, China
| | - Chuanchang Wu
- Institute of Clinical Virology, Department of Infectious Diseases, The Second Affiliated Hospital of Anhui Medical University, Furong Road 678, Hefei, 230601, Anhui, China
| | - Xiaodan Hong
- Institute of Clinical Virology, Department of Infectious Diseases, The Second Affiliated Hospital of Anhui Medical University, Furong Road 678, Hefei, 230601, Anhui, China
| | - Yafei Zhang
- Institute of Clinical Virology, Department of Infectious Diseases, The Second Affiliated Hospital of Anhui Medical University, Furong Road 678, Hefei, 230601, Anhui, China
| | - Zhenhua Zhang
- Institute of Clinical Virology, Department of Infectious Diseases, The Second Affiliated Hospital of Anhui Medical University, Furong Road 678, Hefei, 230601, Anhui, China.
| |
Collapse
|
5
|
Saghazadeh A, Rezaei N. Insights on Mpox virus infection immunopathogenesis. Rev Med Virol 2023; 33:e2426. [PMID: 36738134 DOI: 10.1002/rmv.2426] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 01/13/2023] [Accepted: 01/13/2023] [Indexed: 02/05/2023]
Abstract
An immunocompromised status has been associated with more odds of being infected with Mpox virus (MPXV) and progressing to severe disease. This aligns with the importance of immune competence for MPXV control and clearance. We and others have previously reviewed parallels between MPXV and other viruses belonging to the Poxviridae in affecting the immune system. This article reviews studies providing direct evidence of the MPXV-immune interactions. The wide-ranging effects of MPXV on the immune system, from stimulation to modulation to memory, are broadly categorised, followed by a detailing of these effects on the immune cells and molecules, including natural killer cells, macrophages, neutrophils, lymphocytes, cytokines, interferons, chemokines, and complement.
Collapse
Affiliation(s)
- Amene Saghazadeh
- Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran.,Systematic Review and Meta-analysis Expert Group (SRMEG), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Nima Rezaei
- Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran.,Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.,Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| |
Collapse
|
6
|
Mukherjee AG, Wanjari UR, Kannampuzha S, Das S, Murali R, Namachivayam A, Renu K, Ramanathan G, Doss C GP, Vellingiri B, Dey A, Valsala Gopalakrishnan A. The pathophysiological and immunological background of the monkeypox virus infection: An update. J Med Virol 2023; 95:e28206. [PMID: 36217803 DOI: 10.1002/jmv.28206] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 10/03/2022] [Accepted: 10/06/2022] [Indexed: 01/18/2023]
Abstract
In addition to the COVID-19 waves, the globe is facing global monkeypox (MPX) outbreak. MPX is an uncommon zoonotic infection characterized by symptoms similar to smallpox. It is caused by the monkeypox virus (MPXV), a double-stranded DNA virus that belongs to the genus Orthopoxvirus (OPXV). MPXV, which causes human disease, has been confined to Africa for many years, with only a few isolated cases in other areas. Outside of Africa, the continuing MPXV outbreak in multiple countries in 2022 is the greatest in recorded history. The current outbreak, with over 10 000 confirmed cases in over 50 countries between May and July 2022, demonstrates that MPXV may travel rapidly among humans and pose a danger to human health worldwide. The rapid spread of such outbreaks in recent times has elevated MPX to the status of a rising zoonotic disease with significant epidemic potential. While the MPXV is not as deadly or contagious as the variola virus that causes smallpox, it poses a threat because it could evolve into a more potent human pathogen. This review assesses the potential threat to the human population and provides a brief overview of what is currently known about this reemerging virus. By analyzing the biological effects of MPXV on human health, its shifting epidemiological footprint, and currently available therapeutic options, this review has presented the most recent insights into the biology of the virus. This study also clarifies the key potential causes that could be to blame for the present MPX outbreak and draw attention to major research questions and promising new avenues for combating the current MPX epidemic.
Collapse
Affiliation(s)
- Anirban Goutam Mukherjee
- Department of Biomedical Sciences, School of Bio Sciences and Technology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu, India
| | - Uddesh Ramesh Wanjari
- Department of Biomedical Sciences, School of Bio Sciences and Technology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu, India
| | - Sandra Kannampuzha
- Department of Biomedical Sciences, School of Bio Sciences and Technology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu, India
| | - Soumik Das
- Department of Biomedical Sciences, School of Bio Sciences and Technology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu, India
| | - Reshma Murali
- Department of Biomedical Sciences, School of Bio Sciences and Technology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu, India
| | - Arunraj Namachivayam
- Department of Biomedical Sciences, School of Bio Sciences and Technology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu, India
| | - Kaviyarasi Renu
- Department of Biochemistry, Centre of Molecular Medicine and Diagnostics (COMManD), Saveetha Dental College & Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, Tamil Nadu, India
| | - Gnanasambandan Ramanathan
- Department of Biomedical Sciences, School of Bio Sciences and Technology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu, India
| | - George Priya Doss C
- Department of Integrative Biology, School of Bio Sciences and Technology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu, India
| | - Balachandar Vellingiri
- Department of Human Genetics and Molecular Biology, Human Molecular Cytogenetics and Stem Cell Laboratory, Bharathiar University, Coimbatore, Tamil Nadu, India
| | - Abhijit Dey
- Department of Life Sciences, Presidency University, Kolkata, West Bengal, India
| | - Abilash Valsala Gopalakrishnan
- Department of Biomedical Sciences, School of Bio Sciences and Technology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu, India
| |
Collapse
|
7
|
Abstract
Human monkeypox is a viral zoonosis endemic to West and Central Africa that has recently generated increased interest and concern on a global scale as an emerging infectious disease threat in the midst of the slowly relenting COVID-2019 disease pandemic. The hallmark of infection is the development of a flu-like prodrome followed by the appearance of a smallpox-like exanthem. Precipitous person-to-person transmission of the virus among residents of 100 countries where it is nonendemic has motivated the immediate and widespread implementation of public health countermeasures. In this review, we discuss the origins and virology of monkeypox virus, its link with smallpox eradication, its record of causing outbreaks of human disease in regions where it is endemic in wildlife, its association with outbreaks in areas where it is nonendemic, the clinical manifestations of disease, laboratory diagnostic methods, case management, public health interventions, and future directions.
Collapse
Affiliation(s)
- Sameer Elsayed
- Department of Medicine, Western University, London, Ontario, Canada
- Department of Pathology & Laboratory Medicine, Western University, London, Ontario, Canada
- Department of Epidemiology & Biostatistics, Western University, London, Ontario, Canada
| | - Lise Bondy
- Department of Medicine, Western University, London, Ontario, Canada
| | - William P. Hanage
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
| |
Collapse
|
8
|
Chiang CY, Zhong Y, Ward MD, Lane DJ, Kenny T, Rosario-Acevedo R, Eaton BP, Treviño SR, Chance TB, Hu M, Worsham PL, Waag DM, Moore RT, Cazares LH, Cote CK, Zhou Y, Panchal RG. Proteomic Analysis of Non-human Primate Peripheral Blood Mononuclear Cells During Burkholderia mallei Infection Reveals a Role of Ezrin in Glanders Pathogenesis. Front Microbiol 2021; 12:625211. [PMID: 33967974 PMCID: PMC8101288 DOI: 10.3389/fmicb.2021.625211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 03/16/2021] [Indexed: 11/22/2022] Open
Abstract
Burkholderia mallei, the causative agent of glanders, is a gram-negative intracellular bacterium. Depending on different routes of infection, the disease is manifested by pneumonia, septicemia, and chronic infections of the skin. B. mallei poses a serious biological threat due to its ability to infect via aerosol route, resistance to multiple antibiotics and to date there are no US Food and Drug Administration (FDA) approved vaccines available. Induction of innate immunity, inflammatory cytokines and chemokines following B. mallei infection, have been observed in in vitro and small rodent models; however, a global characterization of host responses has never been systematically investigated using a non-human primate (NHP) model. Here, using a liquid chromatography-tandem mass spectrometry (LC-MS/MS) approach, we identified alterations in expression levels of host proteins in peripheral blood mononuclear cells (PBMCs) originating from naïve rhesus macaques (Macaca mulatta), African green monkeys (Chlorocebus sabaeus), and cynomolgus macaques (Macaca fascicularis) exposed to aerosolized B. mallei. Gene ontology (GO) analysis identified several statistically significant overrepresented biological annotations including complement and coagulation cascade, nucleoside metabolic process, vesicle-mediated transport, intracellular signal transduction and cytoskeletal protein binding. By integrating an LC-MS/MS derived proteomics dataset with a previously published B. mallei host-pathogen interaction dataset, a statistically significant predictive protein-protein interaction (PPI) network was constructed. Pharmacological perturbation of one component of the PPI network, specifically ezrin, reduced B. mallei mediated interleukin-1β (IL-1β). On the contrary, the expression of IL-1β receptor antagonist (IL-1Ra) was upregulated upon pretreatment with the ezrin inhibitor. Taken together, inflammasome activation as demonstrated by IL-1β production and the homeostasis of inflammatory response is critical during the pathogenesis of glanders. Furthermore, the topology of the network reflects the underlying molecular mechanism of B. mallei infections in the NHP model.
Collapse
Affiliation(s)
- Chih-Yuan Chiang
- Countermeasures Division, United States Army Medical Research Institute of Infectious Diseases, Frederick, MD, United States
| | - Yang Zhong
- Genomics Institute of the Novartis Research Foundation, San Diego, CA, United States
| | - Michael D. Ward
- Systems and Structural Biology Division, Protein Sciences Branch, United States Army Medical Research Institute of Infectious Diseases, Frederick, MD, United States
| | - Douglas J. Lane
- Countermeasures Division, United States Army Medical Research Institute of Infectious Diseases, Frederick, MD, United States
| | - Tara Kenny
- Countermeasures Division, United States Army Medical Research Institute of Infectious Diseases, Frederick, MD, United States
| | - Raysa Rosario-Acevedo
- Bacteriology Division, United States Army Medical Research Institute of Infectious Diseases, Frederick, MD, United States
| | - Brett P. Eaton
- Countermeasures Division, United States Army Medical Research Institute of Infectious Diseases, Frederick, MD, United States
| | - Sylvia R. Treviño
- Bacteriology Division, United States Army Medical Research Institute of Infectious Diseases, Frederick, MD, United States
| | - Taylor B. Chance
- Pathology Division, United States Army Medical Research Institute of Infectious Diseases, Frederick, MD, United States
| | - Meghan Hu
- Countermeasures Division, United States Army Medical Research Institute of Infectious Diseases, Frederick, MD, United States
| | - Patricia L. Worsham
- Bacteriology Division, United States Army Medical Research Institute of Infectious Diseases, Frederick, MD, United States
| | - David M. Waag
- Bacteriology Division, United States Army Medical Research Institute of Infectious Diseases, Frederick, MD, United States
| | - Richard T. Moore
- Countermeasures Division, United States Army Medical Research Institute of Infectious Diseases, Frederick, MD, United States
| | - Lisa H. Cazares
- Systems and Structural Biology Division, Protein Sciences Branch, United States Army Medical Research Institute of Infectious Diseases, Frederick, MD, United States
| | - Christopher K. Cote
- Bacteriology Division, United States Army Medical Research Institute of Infectious Diseases, Frederick, MD, United States
| | - Yingyao Zhou
- Genomics Institute of the Novartis Research Foundation, San Diego, CA, United States
| | - Rekha G. Panchal
- Countermeasures Division, United States Army Medical Research Institute of Infectious Diseases, Frederick, MD, United States
| |
Collapse
|
9
|
Alakunle E, Moens U, Nchinda G, Okeke MI. Monkeypox Virus in Nigeria: Infection Biology, Epidemiology, and Evolution. Viruses 2020; 12:E1257. [PMID: 33167496 PMCID: PMC7694534 DOI: 10.3390/v12111257] [Citation(s) in RCA: 422] [Impact Index Per Article: 84.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 10/22/2020] [Accepted: 10/30/2020] [Indexed: 12/16/2022] Open
Abstract
Monkeypox is a zoonotic disease caused by monkeypox virus (MPXV), which is a member of orthopoxvirus genus. The reemergence of MPXV in 2017 (at Bayelsa state) after 39 years of no reported case in Nigeria, and the export of travelers' monkeypox (MPX) from Nigeria to other parts of the world, in 2018 and 2019, respectively, have raised concern that MPXV may have emerged to occupy the ecological and immunological niche vacated by smallpox virus. This review X-rays the current state of knowledge pertaining the infection biology, epidemiology, and evolution of MPXV in Nigeria and worldwide, especially with regard to the human, cellular, and viral factors that modulate the virus transmission dynamics, infection, and its maintenance in nature. This paper also elucidates the role of recombination, gene loss and gene gain in MPXV evolution, chronicles the role of signaling in MPXV infection, and reviews the current therapeutic options available for the treatment and prevention of MPX. Additionally, genome-wide phylogenetic analysis was undertaken, and we show that MPXV isolates from recent 2017 outbreak in Nigeria were monophyletic with the isolate exported to Israel from Nigeria but do not share the most recent common ancestor with isolates obtained from earlier outbreaks, in 1971 and 1978, respectively. Finally, the review highlighted gaps in knowledge particularly the non-identification of a definitive reservoir host animal for MPXV and proposed future research endeavors to address the unresolved questions.
Collapse
Affiliation(s)
- Emmanuel Alakunle
- Department of Natural and Environmental Sciences, Biomedical Science Concentration, School of Arts and Sciences, American University of Nigeria, 98 Lamido Zubairu Way, PMB 2250 Yola, Nigeria;
| | - Ugo Moens
- Molecular Inflammation Research Group, Institute of Medical Biology, University i Tromsø (UIT)—The Arctic University of Norway, N-9037 Tromsø, Norway;
| | - Godwin Nchinda
- Laboratory of Vaccinology and Immunology, The Chantal Biya International Reference Center for Research on the Prevention and Management HIV/AIDS (CIRCB), P.O Box 3077 Yaoundé-Messa, Cameroon;
- Department of Pharmaceutical Microbiology & Biotechnology, Faculty of Pharmaceutical Sciences, Nnamdi Azikiwe University, P.O Box 420110 Awka, Nigeria
| | - Malachy Ifeanyi Okeke
- Department of Natural and Environmental Sciences, Biomedical Science Concentration, School of Arts and Sciences, American University of Nigeria, 98 Lamido Zubairu Way, PMB 2250 Yola, Nigeria;
| |
Collapse
|
10
|
Bortz E, Wu TT, Patel P, Whitelegge JP, Sun R. Proteomics of Bronchoalveolar Lavage Fluid Reveals a Lung Oxidative Stress Response in Murine Herpesvirus-68 Infection. Viruses 2018; 10:v10120670. [PMID: 30486363 PMCID: PMC6316452 DOI: 10.3390/v10120670] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2018] [Revised: 11/15/2018] [Accepted: 11/20/2018] [Indexed: 12/25/2022] Open
Abstract
Murine herpesvirus-68 (MHV-68) productively infects mouse lungs, exhibiting a complex pathology characteristic of both acute viral infections and chronic respiratory diseases. We sought to discover proteins differentially expressed in bronchoalveolar lavage (BAL) from mice infected with MHV-68. Mice were infected intranasally with MHV-68. After nine days, as the lytic phase of infection resolved, differential BAL proteins were identified by two-dimensional (2D) electrophoresis and mass spectrometry. Of 23 unique proteins, acute phase proteins, vitamin A transport, and oxidative stress response factors Pdx6 and EC-SOD (Sod3) were enriched. Correspondingly, iNOS2 was induced in lung tissue by seven days post-infection. Oxidative stress was partly a direct result of MHV-68 infection, as reactive oxygen species (ROS) were induced in cultured murine NIH3T3 fibroblasts and human lung A549 cells infected with MHV-68. Finally, mice infected with a recombinant MHV-68 co-expressing inflammatory cytokine murine interleukin 6 (IL6) showed exacerbated oxidative stress and soluble type I collagen characteristic of tissue recovery. Thus, oxidative stress appears to be a salient feature of MHV-68 pathogenesis, in part caused by lytic replication of the virus and IL6. Proteins and small molecules in lung oxidative stress networks therefore may provide new therapeutic targets to ameliorate respiratory virus infections.
Collapse
Affiliation(s)
- Eric Bortz
- Department of Biological Sciences, University of Alaska Anchorage, Anchorage, AK 99508, USA.
| | - Ting-Ting Wu
- Department of Molecular & Medical Pharmacology, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA.
| | - Parthive Patel
- Center for Molecular Biology and German Cancer Research Center (DKFZ), University of Heidelberg (ZMBH), 69120 Heidelberg, Germany.
| | - Julian P Whitelegge
- The Pasarow Mass Spectrometry Laboratory & the Jane and Terry Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA.
| | - Ren Sun
- Department of Molecular & Medical Pharmacology, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA.
| |
Collapse
|
11
|
|
12
|
Parker S, Buller RM. A review of experimental and natural infections of animals with monkeypox virus between 1958 and 2012. Future Virol 2013; 8:129-157. [PMID: 23626656 DOI: 10.2217/fvl.12.130] [Citation(s) in RCA: 180] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Monkeypox virus (MPXV) was discovered in 1958 during an outbreak in an animal facility in Copenhagen, Denmark. Since its discovery, MPXV has revealed a propensity to infect and induce disease in a large number of animals within the mammalia class from pan-geographical locations. This finding has impeded the elucidation of the natural host, although the strongest candidates are African squirrels and/or other rodents. Experimentally, MPXV can infect animals via a variety of multiple different inoculation routes; however, the natural route of transmission is unknown and is likely to be somewhat species specific. In this review we have attempted to compile and discuss all published articles that describe experimental or natural infections with MPXV, dating from the initial discovery of the virus through to the year 2012. We further discuss the comparative disease courses and pathologies of the host species.
Collapse
Affiliation(s)
- Scott Parker
- Department of Molecular Microbiology & Immunology, Saint Louis University School of Medicine, 1100 S. Grand Blvd, Saint Louis, MO 63104, USA
| | | |
Collapse
|
13
|
Kindrachuk J, Arsenault R, Kusalik A, Kindrachuk KN, Trost B, Napper S, Jahrling PB, Blaney JE. Systems kinomics demonstrates Congo Basin monkeypox virus infection selectively modulates host cell signaling responses as compared to West African monkeypox virus. Mol Cell Proteomics 2012; 11:M111.015701. [PMID: 22205724 PMCID: PMC3433897 DOI: 10.1074/mcp.m111.015701] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2011] [Revised: 12/19/2011] [Indexed: 01/04/2023] Open
Abstract
Monkeypox virus (MPXV) is comprised of two clades: Congo Basin MPXV, with an associated case fatality rate of 10%, and Western African MPXV, which is associated with less severe infection and minimal lethality. We thus postulated that Congo Basin and West African MPXV would differentially modulate host cell responses and, as many host responses are regulated through phosphorylation independent of transcription or translation, we employed systems kinomics with peptide arrays to investigate these functional host responses. Using this approach we have demonstrated that Congo Basin MPXV infection selectively down-regulates host responses as compared with West African MPXV, including growth factor- and apoptosis-related responses. These results were confirmed using fluorescence-activated cell sorting analysis demonstrating that West African MPXV infection resulted in a significant increase in apoptosis in human monocytes as compared with Congo Basin MPXV. Further, differentially phosphorylated kinases were identified through comparison of our MPXV data sets and validated as potential targets for pharmacological inhibition of Congo Basin MPXV infection, including increased Akt S473 phosphorylation and decreased p53 S15 phosphorylation. Inhibition of Akt S473 phosphorylation resulted in a significant decrease in Congo Basin MPXV virus yield (261-fold) but did not affect West African MPXV. In addition, treatment with staurosporine, an apoptosis activator resulted in a 49-fold greater decrease in Congo Basin MPXV yields as compared with West African MPXV. Thus, using a systems kinomics approach, our investigation demonstrates that West African and Congo Basin MPXV differentially modulate host cell responses and has identified potential host targets of therapeutic interest.
Collapse
Affiliation(s)
- Jason Kindrachuk
- Emerging Viral Pathogens Section, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland 20892, USA.
| | | | | | | | | | | | | | | |
Collapse
|
14
|
Brown JN, Ortiz GM, Angel TE, Jacobs JM, Gritsenko M, Chan EY, Purdy DE, Murnane RD, Larsen K, Palermo RE, Shukla AK, Clauss TR, Katze MG, McCune JM, Smith RD. Morphine produces immunosuppressive effects in nonhuman primates at the proteomic and cellular levels. Mol Cell Proteomics 2012; 11:605-18. [PMID: 22580588 DOI: 10.1074/mcp.m111.016121] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Morphine has long been known to have immunosuppressive properties in vivo, but the molecular and immunologic changes induced by it are incompletely understood. To explore how these changes interact with lentiviral infections in vivo, animals from two nonhuman primate species (African green monkeys and pigtailed macaques) were provided morphine and studied using a systems biology approach. Biological specimens were obtained from multiple sources (e.g. lymph node, colon, cerebrospinal fluid, and peripheral blood) before and after the administration of morphine (titrated up to a maximum dose of 5 mg/kg over a period of 20 days). Cellular immune, plasma cytokine, and proteome changes were measured and morphine-induced changes in these parameters were assessed on an interorgan, interindividual, and interspecies basis. In both species, morphine was associated with decreased levels of Ki-67(+) T-cell activation but with only minimal changes in overall T-cell counts, neutrophil counts, and NK cell counts. Although changes in T-cell maturation were observed, these varied across the various tissue/fluid compartments studied. Proteomic analysis revealed a morphine-induced suppressive effect in lymph nodes, with decreased abundance of protein mediators involved in the functional categories of energy metabolism, signaling, and maintenance of cell structure. These findings have direct relevance for understanding the impact of heroin addiction and the opioids used to treat addiction as well as on the potential interplay between opioid abuse and the immunological response to an infective agent.
Collapse
Affiliation(s)
- Joseph N Brown
- Biological Sciences Division, Pacific Northwest National Laboratories, Richland, Washington 99352, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|