1
|
Islam MKB, Marcus RK. Effects of packing density and adsorption conditions on extracellular vesicle dynamic binding capacities for capillary-channeled polymer (C-CP) fiber columns. J Chromatogr A 2025; 1755:466068. [PMID: 40403650 DOI: 10.1016/j.chroma.2025.466068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2025] [Revised: 05/16/2025] [Accepted: 05/17/2025] [Indexed: 05/24/2025]
Abstract
Extracellular vesicles (EVs) are membrane-bound nanoparticles (50-1000 nm) secreted by all cell types and play critical roles in various biological processes. Among these, exosomes, a smaller subset of EVs, have attracted considerable interest due to their potential applications in diagnostics and therapeutics. However, conventional EV isolation methods are often limited by inefficiencies in processing time, recovery, and scalability. Hydrophobic interaction chromatography utilizing capillary-channeled polymer (CCP) fiber stationary phases offers a promising alternative, enabling rapid (<15 min), cost-effective (∼$5 per column) EV isolation with high loading capacities (∼1010-10¹² particles) and minimal sample pre-processing. Despite these advantages, achieving high-throughput EV isolation for larger-scale applications using the CCP fiber platform is the present challenge. To this end, further optimization of stationary phase packing and adsorption conditions is necessary to maximize the available binding surface area in the current microbore column format. This study systematically investigates the influence of interstitial fraction (i.e. packing density) in polyester (PET) CCP fiber columns on the dynamic binding capacity (DBC) of EVs isolated from human urine using a high-performance liquid chromatography platform. Microbore columns (0.76 mm i.d. × 300 mm) packed with PET CCP fibers in both an eight-channel (PET-8) and a novel trilobal (PET-Y) configuration were evaluated using breakthrough curves and frontal analysis. The results reveal that lower packing densities correlate with higher mass- and surface area-based EV binding capacities, with a maximum DBCs of 2.86 × 10¹³ EVs g-1 fiber and 1.22 × 10¹⁴ EVs m⁻² fiber achieved in <2 min of sample loading. Under optimum conditions, surface utilization of >50 % is realized. These results establish a framework for optimizing CCP fiber-based platforms to enhance EV capture efficiency, facilitating the development of scalable EV isolation techniques for biomedical research and therapeutic applications.
Collapse
Affiliation(s)
- Md Khalid Bin Islam
- Department of Chemistry, Biosystems Research Complex, Clemson University, Clemson, SC 29634-0973, USA
| | - R Kenneth Marcus
- Department of Chemistry, Biosystems Research Complex, Clemson University, Clemson, SC 29634-0973, USA.
| |
Collapse
|
2
|
Yu Z, Swift KA, Hedges MA, Theiss AL, Andres SF. Microscopic messengers: Extracellular vesicles shaping gastrointestinal health and disease. Physiol Rep 2025; 13:e70292. [PMID: 40165585 PMCID: PMC11959161 DOI: 10.14814/phy2.70292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 03/10/2025] [Accepted: 03/13/2025] [Indexed: 04/02/2025] Open
Abstract
The field of extracellular vesicles (EVs) is advancing rapidly, and this review aims to synthesize the latest research connected to EVs and the gastrointestinal tract. We will address new and emerging roles for EVs derived from internal sources such as the pancreas and immune system and how these miniature messengers alter organismal health or the inflammatory response within the GI tract. We will examine what is known about external EVs from dietary and bacterial sources and the immense anti-inflammatory, immune-modulatory, and proliferative potential within these nano-sized information carriers. EV interactions with the intestinal and colonic epithelium and associated immune cells at homeostatic and disease states, such as necrotizing enterocolitis (NEC) and inflammatory bowel disease (IBD) will also be covered. We will discuss how EVs are being leveraged as therapeutics or for drug delivery and conclude with a series of unanswered questions in the field.
Collapse
Affiliation(s)
- Zhantao Yu
- Division of Gastroenterology and Hepatology, Department of Medicine and the Mucosal Inflammation ProgramUniversity of Colorado School of MedicineAuroraColoradoUSA
| | - Kevin A. Swift
- Department of Pediatrics, Pediatric GI Division, School of MedicineOregon Health and Science UniversityPortlandOregonUSA
| | - Madeline A. Hedges
- Department of Neonatology, School of MedicineOregon Health and Science UniversityPortlandOregonUSA
| | - Arianne L. Theiss
- Division of Gastroenterology and Hepatology, Department of Medicine and the Mucosal Inflammation ProgramUniversity of Colorado School of MedicineAuroraColoradoUSA
- Rocky Mountain Regional Veterans Affairs Medical CenterAuroraColoradoUSA
| | - Sarah F. Andres
- Department of Pediatrics, Pediatric GI Division, School of MedicineOregon Health and Science UniversityPortlandOregonUSA
| |
Collapse
|
3
|
Puagsopa J, Tongviseskul N, Jaroentomeechai T, Meksiriporn B. Recent Progress in Developing Extracellular Vesicles as Nanovehicles to Deliver Carbohydrate-Based Therapeutics and Vaccines. Vaccines (Basel) 2025; 13:285. [PMID: 40266147 PMCID: PMC11946770 DOI: 10.3390/vaccines13030285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2025] [Revised: 02/22/2025] [Accepted: 03/04/2025] [Indexed: 04/24/2025] Open
Abstract
Cell-derived, nanoscale extracellular vesicles (EVs) have emerged as promising tools in diagnostic, therapeutic, and vaccine applications. Their unique properties including the capability to encapsulate diverse molecular cargo as well as the versatility in surface functionalization make them ideal candidates for safe and effective vehicles to deliver a range of biomolecules including gene editing cassettes, therapeutic proteins, glycans, and glycoconjugate vaccines. In this review, we discuss recent advances in the development of EVs derived from mammalian and bacterial cells for use in a delivery of carbohydrate-based protein therapeutics and vaccines. We highlight key innovations in EVs' molecular design, characterization, and deployment for treating diseases including Alzheimer's disease, infectious diseases, and cancers. We discuss challenges for their clinical translation and provide perspectives for future development of EVs within biopharmaceutical research and the clinical translation landscape.
Collapse
Affiliation(s)
- Japigorn Puagsopa
- Department of Physiology and Aging, College of Medicine, University of Florida, Gainesville, FL 32610, USA;
| | - Niksa Tongviseskul
- Department of Biology, School of Science, King Mongkut’s Institute of Technology Ladkrabang, Bangkok 10520, Thailand;
| | - Thapakorn Jaroentomeechai
- Copenhagen Center for Glycomics, Departments of Cellular and Molecular Medicine, Faculty of Health Sciences, University of Copenhagen, Blegdamsvej 3, 2200 Copenhagen, Denmark
| | - Bunyarit Meksiriporn
- Department of Biology, School of Science, King Mongkut’s Institute of Technology Ladkrabang, Bangkok 10520, Thailand;
| |
Collapse
|
4
|
Apostolov A, Mladenović D, Tilk K, Lõhmus A, Baev V, Yahubyan G, Sola-Leyva A, Bergamelli M, Görgens A, Zhao C, Andaloussi SEL, Kalinina A, Acharya G, Lanner F, Saare M, Peters M, Piomboni P, Luddi A, Salumets A, Aleksejeva E. Multi-omics analysis of uterine fluid extracellular vesicles reveals a resemblance with endometrial tissue across the menstrual cycle: biological and translational insights. Hum Reprod Open 2025; 2025:hoaf010. [PMID: 40084293 PMCID: PMC11904304 DOI: 10.1093/hropen/hoaf010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 01/15/2025] [Indexed: 03/16/2025] Open
Abstract
STUDY QUESTION Does the molecular composition of uterine fluid extracellular vesicles (UF-EVs) reflect endometrial tissue changes across the menstrual cycle? SUMMARY ANSWER Concordance between endometrial tissue and UF-EVs exists on miRNA and mRNA levels along the menstrual cycle phases and UF-EV surface proteomic signatures suggest EVs originate from several major endometrial cell populations. WHAT IS KNOWN ALREADY The clinical value of endometrial receptivity testing is restricted by invasiveness and the use of only one omics level of input. There is promising evidence that UF-EVs can reflect changes in mid-secretory endometrium, highlighting the potential to establish endometrial receptivity testing right before embryo transfer. However, the dynamic changes of UF-EVs molecular cargo have not been directly compared to endometrial tissue on multiple omics levels. STUDY DESIGN SIZE DURATION This cross-sectional study included fertile women from four menstrual cycle phases: proliferative and early-, mid-, and late-secretory phases. In total, 26 paired samples of UF and endometrial tissue were collected. mRNA and miRNA were sequenced, and differential analysis was performed on consecutive phases. UF-EVs were profiled for various protein surface markers associated with different cell types. EVs from epithelial endometrial organoid-conditioned culture media were used as a reference of pure epithelial endometrial EVs. PARTICIPANTS/MATERIALS SETTING METHODS Paired UF and endometrial tissue samples were collected from 26 fertile, reproductive-age women. EV isolation from UF was validated using electron microscopy and western blotting, and particle numbers were measured by nanoparticle tracking analysis. The transcriptome and miRNome of UF-EVs and endometrial tissue were sequenced, and differential expression analysis was conducted on consecutive phases of the menstrual cycle. Bead-based EV flow cytometry targeting 37 surface protein markers was used to characterize EVs from UF and endometrial organoids. MAIN RESULTS AND THE ROLE OF CHANCE Surface proteome analysis revealed that UF-EVs from the mid-secretory phase had significantly increased expression of natural killer cell marker CD56 (P < 0.005), pan-leukocyte marker CD45 (P < 0.005), pan-T-cell marker CD3 (P < 0.005), and coagulation-related protein CD142 (P < 0.005) compared to those from the proliferative phase, whereas markers associated with endometrial epithelial cells (CD29, CD133, and CD326) did not significantly change across the menstrual cycle. Transcriptomic analysis highlighted differential expression of histone and metallothionein genes that correlated between paired UF-EVs and endometrial tissues in each tested menstrual cycle phase. Principal component analysis of miRNomes of paired UF-EVs and endometrial tissue samples resulted in similar clustering patterns, where mid- and late-secretory samples clustered closely, and proliferative and early-secretory phase samples clustered separately. Half of the differentially expressed miRNAs in each phase in UF-EVs were also differentially expressed in the endometrium. Importantly, nine mid-secretory phase UF-EV DE miRNAs were identified, five of which were common between UF-EVs and endometrial biopsies, including hsa-miR-30d-5p and hsa-miR-200b-3p, both of which were previously implicated in implantation. Notably, three of the nine miRNAs, hsa-miR-200b-3p, hsa-miR-141-3p, and hsa-miR-200a-3p, were predicted to regulate mRNAs in the endometrial tissue and the pre-implantation embryo trophectoderm. LARGE SCALE DATA N/A. LIMITATIONS REASONS FOR CAUTION The clinical dating of the menstrual cycle phase is based on the first day of menstruation and the time of the LH peak, which does not exclude the possibility that the expected endometrial phase was not reached. The wider limitation of our study is the lack of standardized procedures for collecting UF samples in gynaecological practice, which could challenge the replication of our findings. WIDER IMPLICATIONS OF THE FINDINGS Evidence that UF-EVs reflect endometrial phases of menstrual cycle supports the use of UF-EVs in endometrial receptivity testing. Additionally, further studies of UF-EVs in endometrial pathologies could be beneficial for diagnostics, considering that more invasive tissue biopsies only reflect the biopsy site and not the full endometrium. STUDY FUNDING/COMPETING INTERESTS This study was supported by the European Regional Development Fund Enterprise Estonia's Applied Research Program under the grant agreement number 2014-2020.4.02.21-0398 (EVREM), the Estonian Research Council (grant nos. PRG1076 and PSG1082), the Horizon Europe NESTOR grant (grant no. 101120075) of the European Commission, the Swedish Research Council (grant no. 2024-02530), the Novo Nordisk Fonden (grant no. NNF24OC0092384), and the National Recovery and Resilience Plan of the Republic of Bulgaria, project number BG-RRP-2.004-0001-C01. A.S.L. received funding from the Becas Fundación Ramón Areces para Estudios Postdoctorales. All the authors declare no conflict of interest.
Collapse
Affiliation(s)
- Apostol Apostolov
- Celvia CC, Competence Centre on Health Technologies, Tartu, Estonia
- Division of Obstetrics and Gynecology, Department of Clinical Science, Intervention and Technology (CLINTEC), Karolinska Institute, Stockholm, Sweden
- Department of Gynecology and Reproductive Medicine, Karolinska University Hospital, Stockholm, Sweden
- Department of Biotechnology, Institute of Molecular and Cell Biology, University of Tartu, Tartu, Estonia
| | - Danilo Mladenović
- HansaBioMed Life Sciences Ltd., Tallinn, Estonia
- School of Natural Sciences and Health, Tallinn University, Tallinn, Estonia
| | - Kadi Tilk
- Celvia CC, Competence Centre on Health Technologies, Tartu, Estonia
| | | | - Vesselin Baev
- Department of Molecular Biology, University of Plovdiv, Plovdiv, Bulgaria
| | - Galina Yahubyan
- Department of Molecular Biology, University of Plovdiv, Plovdiv, Bulgaria
| | - Alberto Sola-Leyva
- Celvia CC, Competence Centre on Health Technologies, Tartu, Estonia
- Division of Obstetrics and Gynecology, Department of Clinical Science, Intervention and Technology (CLINTEC), Karolinska Institute, Stockholm, Sweden
- Department of Gynecology and Reproductive Medicine, Karolinska University Hospital, Stockholm, Sweden
| | - Mathilde Bergamelli
- Division of Obstetrics and Gynecology, Department of Clinical Science, Intervention and Technology (CLINTEC), Karolinska Institute, Stockholm, Sweden
- Department of Gynecology and Reproductive Medicine, Karolinska University Hospital, Stockholm, Sweden
| | - André Görgens
- Division of Biomolecular and Cellular Medicine, Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden
- Department of Cellular Therapy and Allogeneic Stem Cell Transplantation (CAST), Karolinska University Hospital, Huddinge, Sweden
- Karolinska ATMP Center, ANA Futura, Huddinge, Sweden
- Institute for Transfusion Medicine, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Cheng Zhao
- Division of Obstetrics and Gynecology, Department of Clinical Science, Intervention and Technology (CLINTEC), Karolinska Institute, Stockholm, Sweden
- Department of Gynecology and Reproductive Medicine, Karolinska University Hospital, Stockholm, Sweden
| | - Samir E L Andaloussi
- Division of Biomolecular and Cellular Medicine, Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden
- Department of Cellular Therapy and Allogeneic Stem Cell Transplantation (CAST), Karolinska University Hospital, Huddinge, Sweden
- Karolinska ATMP Center, ANA Futura, Huddinge, Sweden
| | | | - Ganesh Acharya
- Division of Obstetrics and Gynecology, Department of Clinical Science, Intervention and Technology (CLINTEC), Karolinska Institute, Stockholm, Sweden
- Center for Fetal Medicine, Karolinska University Hospital, Stockholm, Sweden
- Women’s Health and Perinatology Research Group, Department of Clinical Medicine, UiT—The Arctic University of Norway, Tromsø, Norway
| | - Fredrik Lanner
- Division of Obstetrics and Gynecology, Department of Clinical Science, Intervention and Technology (CLINTEC), Karolinska Institute, Stockholm, Sweden
- Department of Gynecology and Reproductive Medicine, Karolinska University Hospital, Stockholm, Sweden
| | - Merli Saare
- Celvia CC, Competence Centre on Health Technologies, Tartu, Estonia
- Department of Obstetrics and Gynecology, Institute of Clinical Medicine, University of Tartu, Tartu, Estonia
| | - Maire Peters
- Celvia CC, Competence Centre on Health Technologies, Tartu, Estonia
- Department of Obstetrics and Gynecology, Institute of Clinical Medicine, University of Tartu, Tartu, Estonia
| | - Paola Piomboni
- Department of Molecular and Developmental Medicine, University of Siena, Siena, Italy
| | - Alice Luddi
- Department of Molecular and Developmental Medicine, University of Siena, Siena, Italy
| | - Andres Salumets
- Celvia CC, Competence Centre on Health Technologies, Tartu, Estonia
- Division of Obstetrics and Gynecology, Department of Clinical Science, Intervention and Technology (CLINTEC), Karolinska Institute, Stockholm, Sweden
- Department of Gynecology and Reproductive Medicine, Karolinska University Hospital, Stockholm, Sweden
- Department of Obstetrics and Gynecology, Institute of Clinical Medicine, University of Tartu, Tartu, Estonia
| | - Elina Aleksejeva
- Celvia CC, Competence Centre on Health Technologies, Tartu, Estonia
- Department of Obstetrics and Gynecology, Institute of Clinical Medicine, University of Tartu, Tartu, Estonia
| |
Collapse
|
5
|
Wang C, Lu Z, She G, Chen K, Zhou H, Zhan X, Yu H, Pi L, Zuo L, Che D. The Identification of FN1 as an Early Diagnostic Marker for Recurrent Abortion by Single-Exosome Profiling. Int J Gen Med 2025; 18:691-702. [PMID: 39963517 PMCID: PMC11830759 DOI: 10.2147/ijgm.s487632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Accepted: 01/11/2025] [Indexed: 02/20/2025] Open
Abstract
Purpose Recurrent abortion(RA) is a prevalent adverse pregnancy event. Exosomes, secreted by various body fluids, are known to play a role in disease diagnosis and serve as biomarkers through intercellular communication. This study aims to analyze single exosomes in patients with recurrent abortion to identify new biomarkers that may significantly contribute to recurrent abortion, providing new directions for its treatment. Patients and Methods A total of 244 serum exosomes were collected, including 216 patients with recurrent abortion of varying outcomes and 28 normal pregnancies. We performed the proximity barcoding assay (PBA) to analyze single exosome surface proteins, which allowed us to identify individual exosomes related to the development of RA as well as the major subpopulations of exosomes. After PBA treatment, samples were analyzed for single exosomes, and exosomes from each group were compared using volcano plots, dot plots, and ROC curves. Results By intersecting all significantly differentially expressed genes obtained from comparisons between the normal pregnancy control group and the recurrent abortion group, including the RA before abortion, RA after abortion, and RA non-pregnancy groups, we identified seven shared differential genes: FN1, APIPOQ, CDH13, DSG1, CLDN4, CD36, and ULBP3. Among these, FN1 was the most significantly differentially expressed gene in exosomes, with FN1 | log2 (fold change) |>1.5 and an AUC of 0.7414. In addition, exosome subpopulation analyses showed that cluster 11 accounted for the largest proportion of the total 16 subpopulations, and FN1 was the marker with the highest concentration of cluster 11. Conclusion Single-exosome profiling and exosome subpopulations of RA by PBA yielded significant differential gene FN1, which provides new possibilities for diagnostic screening of RA.
Collapse
Affiliation(s)
- Chenlu Wang
- Department of Clinical Biological Resource Bank, Guangzhou Institute of Pediatrics, Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou, 510620, People’s Republic of China
| | - Zhaojin Lu
- Department of Clinical Biological Resource Bank, Guangzhou Institute of Pediatrics, Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou, 510620, People’s Republic of China
| | - Guangpeng She
- Department of Laboratory Medicine, The Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong, 510180, People’s Republic of China
| | - Kaining Chen
- Department of Clinical Biological Resource Bank, Guangzhou Institute of Pediatrics, Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou, 510620, People’s Republic of China
| | - Huazhong Zhou
- Department of Clinical Biological Resource Bank, Guangzhou Institute of Pediatrics, Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou, 510620, People’s Republic of China
| | - Xueli Zhan
- Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou, Guangdong, 510620, People’s Republic of China
| | - Hongyan Yu
- Department of Clinical Biological Resource Bank, Guangzhou Institute of Pediatrics, Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou, 510620, People’s Republic of China
| | - Lei Pi
- Department of Clinical Biological Resource Bank, Guangzhou Institute of Pediatrics, Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou, 510620, People’s Republic of China
| | - Liandong Zuo
- Department of Andrology, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou, 510620, People’s Republic of China
| | - Di Che
- Department of Clinical Biological Resource Bank, Guangzhou Institute of Pediatrics, Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou, 510620, People’s Republic of China
| |
Collapse
|
6
|
Steiner L, Eldh M, Offens A, Veerman RE, Johansson M, Hemdan T, Netterling H, Huge Y, Abdul-Sattar Aljabery F, Alamdari F, Lidén O, Sherif A, Gabrielsson S. Protein profile in urinary extracellular vesicles is a marker of malignancy and correlates with muscle invasiveness in urinary bladder cancer. Cancer Lett 2025; 609:217352. [PMID: 39586489 DOI: 10.1016/j.canlet.2024.217352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 11/22/2024] [Accepted: 11/22/2024] [Indexed: 11/27/2024]
Abstract
Urinary Bladder Cancer (UBC) ranks among the most prevalent cancers worldwide, has a high recurrence rate and unpredictable treatment responses. Thus, biomarkers are urgently needed. Extracellular vesicles (EVs) are released from both cancer- and immune cells and provide a snapshot of the originating cell. They are abundant in urine and are therefore candidate biomarkers for UBC. Isolated urinary EVs from 39 UBC patients were compared with EVs from healthy controls, prostate cancer patients and whole urine. Samples were from bladder urine at time of both transurethral resection of the bladder tumour (TURB) and cystectomy, as well as urine taken from the ureter at cystectomy. EVs were isolated by tangential flow filtration and differential ultracentrifugation and their protein composition was detected by Proximity Extension Assay (PEA; Olink, immuno-oncology panel). In UBC patients, the proteomic signature of bladder urine EVs differed from ureter urine EVs from the same individuals, and from bladder urine derived EVs of both healthy and prostate cancer controls. Pairwise comparison was performed with matched whole urine revealing proteins solely detected in isolated vesicles. Additionally, a distinct signature was identified in bladder urine EVs correlating with muscle invasiveness, and a trained classifier could predict UBC with 92 % accuracy. Some differentially expressed proteins, HO-1 and MMP7, were analysed by bead-based flow cytometry, where HO-1 was detected on the EV surface. Taken together, these results strengthen the rationale of using EVs as non-invasive biomarkers and prognostic tools for UBC.
Collapse
Affiliation(s)
- Loïc Steiner
- Division of Immunology and Respiratory Medicine, Department of Medicine Solna, Karolinska Institutet, Stockholm, Sweden; Center for Molecular Medicine, Karolinska University Hospital, Stockholm, Sweden; Clinical Immunology and Transfusion Medicine, Karolinska University Hospital, Stockholm, Sweden
| | - Maria Eldh
- Division of Immunology and Respiratory Medicine, Department of Medicine Solna, Karolinska Institutet, Stockholm, Sweden; Center for Molecular Medicine, Karolinska University Hospital, Stockholm, Sweden; Clinical Immunology and Transfusion Medicine, Karolinska University Hospital, Stockholm, Sweden
| | - Annemarijn Offens
- Division of Immunology and Respiratory Medicine, Department of Medicine Solna, Karolinska Institutet, Stockholm, Sweden; Center for Molecular Medicine, Karolinska University Hospital, Stockholm, Sweden; Clinical Immunology and Transfusion Medicine, Karolinska University Hospital, Stockholm, Sweden
| | - Rosanne E Veerman
- Division of Immunology and Respiratory Medicine, Department of Medicine Solna, Karolinska Institutet, Stockholm, Sweden; Center for Molecular Medicine, Karolinska University Hospital, Stockholm, Sweden; Clinical Immunology and Transfusion Medicine, Karolinska University Hospital, Stockholm, Sweden
| | - Markus Johansson
- Department of Diagnostics and Intervention, Umeå University, Umeå, Sweden; Department of Surgery, Urology Section, Sundsvall-Härnösand Hospital, Sundsvall, Sweden
| | - Tammer Hemdan
- Department of Surgical Sciences, Uppsala University, Uppsala, Sweden
| | - Hans Netterling
- Department of Diagnostics and Intervention, Umeå University, Umeå, Sweden
| | - Ylva Huge
- Department of Clinical and Experimental Medicine, Division of Urology, Linköping University, Linköping, Sweden
| | - Firas Abdul-Sattar Aljabery
- Department of Clinical and Experimental Medicine, Division of Urology, Linköping University, Linköping, Sweden
| | | | - Oskar Lidén
- Department of Surgery and Urology, Hudiksvall Hospital, Hudiksvall, Sweden
| | - Amir Sherif
- Department of Diagnostics and Intervention, Umeå University, Umeå, Sweden; Department of Biomedical and Clinical Sciences, Division of Urology, Linköping University, 581 85, Linköping, Sweden
| | - Susanne Gabrielsson
- Division of Immunology and Respiratory Medicine, Department of Medicine Solna, Karolinska Institutet, Stockholm, Sweden; Center for Molecular Medicine, Karolinska University Hospital, Stockholm, Sweden; Clinical Immunology and Transfusion Medicine, Karolinska University Hospital, Stockholm, Sweden.
| |
Collapse
|
7
|
Chen G, Ouyang X, Mu Y, Chen Y. Human breast milk-derived exosomes and their positive role on neonatal intestinal health. Pediatr Res 2025:10.1038/s41390-025-03813-8. [PMID: 39865171 DOI: 10.1038/s41390-025-03813-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 11/24/2024] [Accepted: 12/09/2024] [Indexed: 01/28/2025]
Abstract
Although the role of breast milk in promoting neonatal growth and maintaining intestinal homeostasis is well established, underlying mechanisms by which it protects the intestine from damage remain to be elucidated. Human breast milk-derived exosomes (HMDEs) are newly discovered active signaling vesicles with a diameter of 30-150 nm, which are key carriers of biological information exchange between mother and child. In addition, due to their ability to cross the gastrointestinal barrier, low immunogenicity, good biocompatibility and stability, HMDEs play an important role in regulating intestinal barrier integrity in newborns. In addition, HMDEs possess specific properties that are reformable and modifiable, offering promising strategies for the prevention and treatment of neonatal intestinal diseases. However, challenges such as purification, complex content, and quality control hinder their clinical application. This paper provides a comprehensive review of the biogenesis and properties of HMDEs, their isolation and purification, composition, and effects on neonatal intestinal barrier function, and further explores their potential biomedical applications. IMPACT: Breast milk helps maintain intestinal homeostasis in newborns and can prevent diseases, especially necrotizing enterocolitis (NEC). Breast milk contains abundant exosomes, which are important carriers of maternal and infant biological information exchange. Breast milk have the advantages of low immunogenicity, good biocompatibility and good stability, which helps to maintain the integrity of the intestinal barrier. Exosomes can be modified, which is expected to provide a more effective strategy for the prevention and treatment of intestinal diseases.
Collapse
Affiliation(s)
- Gen Chen
- Department of Pediatrics, The First People's Hospital of Chenzhou, Chenzhou, Hunan, 423000, China
| | - Xiangdong Ouyang
- Department of Pediatrics, The First People's Hospital of Chenzhou, Chenzhou, Hunan, 423000, China
| | - Yide Mu
- Department of Pediatric Surgery, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, Guangdong, 510000, China
| | - Yuqiong Chen
- Department of Pediatrics, Guangzhou Eighth People's Hospital, Guangzhou Medical University, Guangzhou, 510623, China.
| |
Collapse
|
8
|
Du X, Li H, Shen S, Tian C, Cao X, Xu X, Xu N, Wang S, Tian Q. Labeling tumor-associated extracellular vesicles with antibody-DNA conjugates for quantitative analysis. Front Mol Biosci 2025; 12:1531108. [PMID: 39911266 PMCID: PMC11794122 DOI: 10.3389/fmolb.2025.1531108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Accepted: 01/06/2025] [Indexed: 02/07/2025] Open
Abstract
Introduction Extracellular vesicles (EVs) shed from tumor cells into peripheral circulation or other body fluids are promising biomarkers for cancer diagnosis with enormously long circulation. Consequently, precise methods for differentiating normal and tumor-associated EVs (TAEs) are required. Methods This study used quantifiable antibody-DNA conjugate-assisted quantitative methods combined with proximity ligation technology to detect TAEs. The antibody-DNA conjugate contained one antibody associated with three oligonucleotides for signal amplification. The antibody in the conjugate can recognize the surface tumor antigens of TAEs. Simultaneously, DNA in the conjugate is attached to the surfaces of TAEs and holds the signal amplification post, converting protein identities to DNA amplification for protein detection, even at the molecular level. Results These findings revealed that TAEs can be quantitatively detected using DNA-mediated quantitative polymerase chain reaction (qPCR). Antibody-DNA conjugates were used to recognize the epithelial cell adhesion molecule (EpCAM) antigen on the TAE surface and quantify the antigen using qPCR for cancer analysis. Discussion This method proposed a new quantitative detection approach for TAEs, which aim to identify specific EV-associated markers for diagnostic or therapeutic, this method could inspire a new idea for tumor diagnosis and detection of other diseases.
Collapse
Affiliation(s)
- Xiao Du
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang, China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang, China
- Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang, China
| | - Hongxiu Li
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang, China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang, China
- Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang, China
| | - Shiyi Shen
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang, China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang, China
- Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang, China
| | - Chao Tian
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang, China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang, China
- Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang, China
| | - Xiaohuan Cao
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang, China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang, China
- Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang, China
| | - Xingang Xu
- Laboratory of Chinese Medicine Preparation, Shandong Research Academy of Traditional Chinese Medicine, Jinan, China
| | - Nan Xu
- Laboratory of Chinese Medicine Preparation, Shandong Research Academy of Traditional Chinese Medicine, Jinan, China
| | - Shuling Wang
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang, China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang, China
- Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang, China
| | - Qingchang Tian
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang, China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang, China
- Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang, China
| |
Collapse
|
9
|
Zagrodnik JL, Blandford SN, Fudge NJ, Arsenault ST, Anthony S, McGrath L, Clift F, Stefanelli M, Moore CS. Investigating T-cell-derived extracellular vesicles as biomarkers of disease activity, axonal injury, and disability in multiple sclerosis. Clin Exp Immunol 2025; 219:uxaf003. [PMID: 39798086 PMCID: PMC11791523 DOI: 10.1093/cei/uxaf003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 11/22/2024] [Accepted: 01/08/2025] [Indexed: 01/15/2025] Open
Abstract
INTRODUCTION Multiple sclerosis (MS) is a chronic immune-mediated demyelinating disease of the central nervous system, whereby clinical disease activity is primarily monitored by magnetic resonance imaging. METHODS Given the limitations associated with implementing and acquiring novel and emerging imaging biomarkers in routine clinical practice, the discovery of biofluid biomarkers may offer a more simple and cost-effective measure that would improve accessibility, standardization, and patient care. Extracellular vesicles (EVs) are nanoparticles secreted from cells under both homeostatic and pathological states, and have been recently investigated as biomarkers in MS. The objectives of this study were to longitudinally measure levels of specific immune cell-derived EVs in MS and provide evidence that EV sub-populations may serve as biomarkers of disease activity, axonal injury, and/or clinical disability. RESULTS Our results demonstrate that the rate of clinical disability in MS negatively correlates with changes in circulating CD3+ EVs within the plasma. Additionally, numbers of CD4+ EVs decrease in individuals with increasing pNfL levels overtime whereby the magnitude of the pNfL increase negatively correlates with changes in plasma CD4+ and CD8+ EVs. Finally, when applying NEDA-3 criteria to define active versus stable disease, individuals with active disease had significantly elevated CD4+ and CD8+ EVs compared to stable disease. CONCLUSION In summary, the analysis of specific immune cell-derived EV subsets may provide a method to monitor disability accumulation, disease activity, and axonal injury in MS, while also providing insights into the pathophysiology and cellular/molecular mechanisms that influence progression.
Collapse
Affiliation(s)
- Jennifer L Zagrodnik
- Division of Biomedical Sciences, Faculty of Medicine, Memorial University of Newfoundland, St. John’s, NL, Canada
| | - Stephanie N Blandford
- Division of Biomedical Sciences, Faculty of Medicine, Memorial University of Newfoundland, St. John’s, NL, Canada
| | - Neva J Fudge
- Division of Biomedical Sciences, Faculty of Medicine, Memorial University of Newfoundland, St. John’s, NL, Canada
| | - Shane T Arsenault
- Discipline of Medicine (Neurology), Faculty of Medicine, Memorial University of Newfoundland, St. John’s, NL, Canada
| | - Sarah Anthony
- Discipline of Medicine (Neurology), Faculty of Medicine, Memorial University of Newfoundland, St. John’s, NL, Canada
| | - Lillian McGrath
- Discipline of Medicine (Neurology), Faculty of Medicine, Memorial University of Newfoundland, St. John’s, NL, Canada
| | - Fraser Clift
- Discipline of Medicine (Neurology), Faculty of Medicine, Memorial University of Newfoundland, St. John’s, NL, Canada
| | - Mark Stefanelli
- Discipline of Medicine (Neurology), Faculty of Medicine, Memorial University of Newfoundland, St. John’s, NL, Canada
| | - Craig S Moore
- Division of Biomedical Sciences, Faculty of Medicine, Memorial University of Newfoundland, St. John’s, NL, Canada
- Discipline of Medicine (Neurology), Faculty of Medicine, Memorial University of Newfoundland, St. John’s, NL, Canada
| |
Collapse
|
10
|
Khristov V, Weber SR, Caton-Darby M, Campbell G, Sundstrom JM. Diagnostic and Therapeutic Utility of Extracellular Vesicles in Ocular Disease. Int J Mol Sci 2025; 26:836. [PMID: 39859553 PMCID: PMC11765869 DOI: 10.3390/ijms26020836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2024] [Revised: 01/11/2025] [Accepted: 01/14/2025] [Indexed: 01/27/2025] Open
Abstract
Extracellular vesicles (EVs) are lipid bilayer particles released by virtually all cells, with prominent roles in both physiological and pathological processes. The size, number, and molecular composition of released EVs correlate to the cells of origin, modulated by the cell's environment and pathologic state. The proteins, DNA, RNA, and protein cargo carried by EVs are protected by degradation, with a prominent role in targeted intercellular signaling. These properties make EVs salient targets as both carriers of biomarkers and potential therapeutic delivery vehicles. The majority of EV research has focused on blood, urine, saliva, and cerebrospinal fluid due to easy accessibility. EVs have also been identified and studied in all ocular biofluids, including the vitreous humor, the aqueous humor, and the tear film, and the study of EVs in ocular disease is a new, promising, and underexplored direction with unique challenges and considerations. This review covers recent advances in the diagnostic and therapeutic use of ocular EVs, with a focus on human applications and key preceding in vitro and in vivo animal studies. We also discuss future directions based on the study of EVs in other organ systems and disease sates.
Collapse
Affiliation(s)
- Vladimir Khristov
- Penn State Hershey College of Medicine, Pennsylvania State University, Hershey, PA 17033, USA; (V.K.); (G.C.)
| | - Sarah R. Weber
- Department of Ophthalmology, Penn State University, Hershey, PA 17033, USA; (S.R.W.); (M.C.-D.)
| | - Mireille Caton-Darby
- Department of Ophthalmology, Penn State University, Hershey, PA 17033, USA; (S.R.W.); (M.C.-D.)
| | - Gregory Campbell
- Penn State Hershey College of Medicine, Pennsylvania State University, Hershey, PA 17033, USA; (V.K.); (G.C.)
| | - Jeffrey M. Sundstrom
- Department of Ophthalmology, Penn State University, Hershey, PA 17033, USA; (S.R.W.); (M.C.-D.)
| |
Collapse
|
11
|
Kumari S, Lausted C, Scherler K, Ng AHC, Lu Y, Lee I, Hood L, Wang K. Approaches and Challenges in Characterizing the Molecular Content of Extracellular Vesicles for Biomarker Discovery. Biomolecules 2024; 14:1599. [PMID: 39766306 PMCID: PMC11674167 DOI: 10.3390/biom14121599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 12/04/2024] [Accepted: 12/11/2024] [Indexed: 01/11/2025] Open
Abstract
Extracellular vesicles (EVs) are lipid bilayer nanoparticles released from all known cells and are involved in cell-to-cell communication via their molecular content. EVs have been found in all tissues and body fluids, carrying a variety of biomolecules, including DNA, RNA, proteins, metabolites, and lipids, offering insights into cellular and pathophysiological conditions. Despite the emergence of EVs and their molecular contents as important biological indicators, it remains difficult to explore EV-mediated biological processes due to their small size and heterogeneity and the technical challenges in characterizing their molecular content. EV-associated small RNAs, especially microRNAs, have been extensively studied. However, other less characterized RNAs, including protein-coding mRNAs, long noncoding RNAs, circular RNAs, and tRNAs, have also been found in EVs. Furthermore, the EV-associated proteins can be used to distinguish different types of EVs. The spectrum of EV-associated RNAs, as well as proteins, may be associated with different pathophysiological conditions. Therefore, the ability to comprehensively characterize EVs' molecular content is critical for understanding their biological function and potential applications in disease diagnosis. Here, we set out to provide an overview of EV-associated RNAs and proteins as well as approaches currently being used to characterize them.
Collapse
Affiliation(s)
- Suman Kumari
- Institute for Systems Biology, Seattle, WA 98109, USA; (S.K.); (C.L.); (K.S.); (L.H.)
| | - Christopher Lausted
- Institute for Systems Biology, Seattle, WA 98109, USA; (S.K.); (C.L.); (K.S.); (L.H.)
| | - Kelsey Scherler
- Institute for Systems Biology, Seattle, WA 98109, USA; (S.K.); (C.L.); (K.S.); (L.H.)
| | - Alphonsus H. C. Ng
- Department of Molecular Pharmaceutics, University of Utah, Salt Lake City, UT 84112, USA; (A.H.C.N.); (Y.L.)
- Department of Biomedical Engineering, University of Utah, Salt Lake City, UT 84112, USA
| | - Yue Lu
- Department of Molecular Pharmaceutics, University of Utah, Salt Lake City, UT 84112, USA; (A.H.C.N.); (Y.L.)
| | - Inyoul Lee
- Institute for Systems Biology, Seattle, WA 98109, USA; (S.K.); (C.L.); (K.S.); (L.H.)
| | - Leroy Hood
- Institute for Systems Biology, Seattle, WA 98109, USA; (S.K.); (C.L.); (K.S.); (L.H.)
| | - Kai Wang
- Institute for Systems Biology, Seattle, WA 98109, USA; (S.K.); (C.L.); (K.S.); (L.H.)
| |
Collapse
|
12
|
Wu Y, Wang X, Zeng Y, Liu X. Exosomes are the mediators between the tumor microenvironment and prostate cancer (Review). Exp Ther Med 2024; 28:439. [PMID: 39355518 PMCID: PMC11443591 DOI: 10.3892/etm.2024.12728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 05/23/2024] [Indexed: 10/03/2024] Open
Abstract
Prostate cancer poses a serious threat to the well-being of men worldwide, with the leading cause of mortality being primarily through metastasis. Prostate cancer metastasis is dependent on cell communication, which is an essential component of this process; yet its exact mechanism remains obscure. Nonetheless, cell-to-cell communication plays a critical part in prostate cancer metastasis. Exosomes play an indispensable role in the development of metastatic growth by promoting intercellular communication. They are pivotal regulatory agents for both prostate cancer cells as well as their microenvironment. The present study investigated the makeup and function of exosomes in the tumor microenvironment, highlighting their significance to prostate cancer metastasis.
Collapse
Affiliation(s)
- Yiqi Wu
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Xiao Wang
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Yan Zeng
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Xiuheng Liu
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| |
Collapse
|
13
|
Salem DP, Bortolin LT, Gusenleitner D, Grosha J, Zabroski IO, Biette KM, Banerjee S, Sedlak CR, Byrne DM, Hamzeh BF, King MS, Cuoco LT, Santos-Heiman T, Barcaskey GN, Yang KS, Duff PA, Winn-Deen ES, Guettouche T, Mattoon DR, Huang EK, Schekman RW, Couvillon AD, Sedlak JC. Colocalization of Cancer-Associated Biomarkers on Single Extracellular Vesicles for Early Detection of Cancer. J Mol Diagn 2024; 26:1109-1128. [PMID: 39326670 DOI: 10.1016/j.jmoldx.2024.08.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 07/16/2024] [Accepted: 08/30/2024] [Indexed: 09/28/2024] Open
Abstract
Detection of cancer early, when it is most treatable, remains a significant challenge because of the lack of diagnostic methods sufficiently sensitive to detect nascent tumors. Early-stage tumors are small relative to their tissue of origin, heterogeneous, and infrequently manifest in clinical symptoms. The detection of early-stage tumors is challenging given the lack of tumor-specific indicators (ie, protein biomarkers, circulating tumor DNA) to enable detection using a noninvasive diagnostic assay. To overcome these obstacles, we have developed a liquid biopsy assay that interrogates circulating extracellular vesicles (EVs) to detect tumor-specific biomarkers colocalized on the surface of individual EVs. We demonstrate the technical feasibility of this approach in human cancer cell line-derived EVs, where we show strong correlations between assay signal and cell line gene/protein expression for the ovarian cancer-associated biomarkers bone marrow stromal antigen-2, folate receptor-α, and mucin-1. Furthermore, we demonstrate that detecting distinct colocalized biomarkers on the surface of EVs significantly improves discrimination performance relative to single biomarker measurements. Using this approach, we observe promising discrimination of high-grade serous ovarian cancer versus benign ovarian masses and healthy women in a proof-of-concept clinical study.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - Randy W Schekman
- Department of Molecular and Cell Biology, Li Ka Shing Center, University of California Berkeley, Berkeley, California
| | | | | |
Collapse
|
14
|
Ahlberg E, Jenmalm MC, Karlsson A, Karlsson R, Tingö L. Proteome characterization of extracellular vesicles from human milk: Uncovering the surfaceome by a lipid-based protein immobilization technology. JOURNAL OF EXTRACELLULAR BIOLOGY 2024; 3:e70020. [PMID: 39512873 PMCID: PMC11541861 DOI: 10.1002/jex2.70020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 09/19/2024] [Accepted: 10/22/2024] [Indexed: 11/15/2024]
Abstract
Breast milk is an essential source of nutrition and hydration for the infant. In addition, this highly complex fluid is rich in extracellular vesicles (EVs). Here, we have applied a microfluidic technology, lipid-based protein immobilization (LPI) and liquid chromatography with tandem mass spectrometry (LC-MS/MS) to characterize the proteome of human milk EVs. Mature milk from six mothers was subjected to EV isolation by ultracentrifugation followed by size exclusion chromatography. Three of the samples were carefully characterized; suggesting a subset enriched by small EVs. The EVs were digested by trypsin in an LPI flow cell and in-solution digestion, giving rise to two fractions of peptides originating from the surface proteome (LPI fraction) or the complete proteome (in-solution digestion). LC-MS/MS recovered peptides corresponding to 582 proteins in the LPI fraction and 938 proteins in the in-solution digested samples; 400 of these proteins were uniquely found in the in-solution digested samples and were hence denoted "cargo proteome". GeneOntology overrepresentation analysis gave rise to distinctly different functional predictions of the EV surfaceome and the cargo proteome. The surfaceome tends to be overrepresented in functions and components of relevance for the immune system, while the cargo proteome primarily seems to be associated with EV biogenesis.
Collapse
Affiliation(s)
- Emelie Ahlberg
- Department of Biomedical and Clinical Sciences, Division of Inflammation and InfectionLinköping UniversityLinkopingSweden
| | - Maria C. Jenmalm
- Department of Biomedical and Clinical Sciences, Division of Inflammation and InfectionLinköping UniversityLinkopingSweden
| | | | - Roger Karlsson
- Nanoxis Consulting ABGothenburgSweden
- Department of Clinical MicrobiologySahlgrenska University HospitalGothenburgSweden
| | - Lina Tingö
- Department of Biomedical and Clinical Sciences, Division of Inflammation and InfectionLinköping UniversityLinkopingSweden
- School of Medical SciencesÖrebro UniversityOrebroSweden
| |
Collapse
|
15
|
Zhang Y, Tian L. Advances and challenges in the use of liquid biopsy in gynaecological oncology. Heliyon 2024; 10:e39148. [PMID: 39492906 PMCID: PMC11530831 DOI: 10.1016/j.heliyon.2024.e39148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 10/08/2024] [Accepted: 10/08/2024] [Indexed: 11/05/2024] Open
Abstract
Ovarian cancer, endometrial cancer, and cervical cancer are the three primary gynaecological cancers that pose a significant threat to women's health on a global scale. Enhancing global cancer survival rates necessitates advancements in illness detection and monitoring, with the goal of improving early diagnosis and prognostication of disease recurrence. Conventional methods for identifying and tracking malignancies rely primarily on imaging techniques and, when possible, protein biomarkers found in blood, many of which lack specificity. The process of collecting tumour samples necessitates intrusive treatments that are not suitable for specific purposes, such as screening, predicting, or evaluating the effectiveness of treatment, monitoring the presence of remaining illness, and promptly detecting relapse. Advancements in treatment are being made by the detection of genetic abnormalities in tumours, both inherited and acquired. Newly designed therapeutic approaches can specifically address some of these abnormalities. Liquid biopsy is an innovative technique for collecting samples that examine specific cancer components that are discharged into the bloodstream, such as circulating tumour DNA (ctDNA), circulating tumour cells (CTCs), cell-free RNA (cfRNA), tumour-educated platelets (TEPs), and exosomes. Mounting data indicates that liquid biopsy has the potential to improve the clinical management of gynaecological cancers through enhanced early diagnosis, prognosis prediction, recurrence detection, and therapy response monitoring. Understanding the distinct genetic composition of tumours can also inform therapy choices and the identification of suitable targeted treatments. The main benefits of liquid biopsy are its non-invasive characteristics and practicality, enabling the collection of several samples and the continuous monitoring of tumour changes over time. This review aims to provide an overview of the data supporting the therapeutic usefulness of each component of liquid biopsy. Additionally, it will assess the benefits and existing constraints associated with the use of liquid biopsy in the management of gynaecological malignancies. In addition, we emphasise future prospects in light of the existing difficulties and investigate areas where further research is necessary to clarify its rising clinical capabilities.
Collapse
Affiliation(s)
- Yingfeng Zhang
- University-Town Hospital of Chongqing Medical University, Chongqing, 401331, China
| | - Libi Tian
- University-Town Hospital of Chongqing Medical University, Chongqing, 401331, China
| |
Collapse
|
16
|
Xu S, Zhang Z, Melvin BC, Basu Ray N, Ikezu S, Ikezu T. Comparison of nanoimaging and nanoflow based detection of extracellular vesicles at a single particle resolution. JOURNAL OF EXTRACELLULAR BIOLOGY 2024; 3:e70016. [PMID: 39416671 PMCID: PMC11481688 DOI: 10.1002/jex2.70016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 09/08/2024] [Accepted: 10/02/2024] [Indexed: 10/19/2024]
Abstract
The characterization of single extracellular vesicle (EV) has been an emerging tool for the early detection of various diseases despite there being challenges regarding how to interpret data with different protocols or instruments. In this work, standard EV particles were characterized for single CD9+, single CD81+ or double CD9+/CD81+ tetraspanin molecule positivity with two single EV analytic technologies in order to optimize their EV sample preparation after antibody labelling and analysis methods: NanoImager for direct stochastic optical reconstruction microscopy (dSTORM)-based EV imaging and characterization, and Flow NanoAnalyzer for flow-based EV quantification and characterization. False positives from antibody aggregates were found during dSTORM-based NanoImager imaging. Analysis of particle radius with lognormal fittings of probability density histogram enabled the removal of antibody aggregates and corrected EV quantification. Furthermore, different machine learning models were trained to differentiate antibody aggregates from EV particles and correct EV quantification with increased double CD9+/CD81+ population. With Flow NanoAnalyzer, EV samples were prepared with different dilution or fractionation methods, which increased the detection rate of CD9+/CD81+ EV population. Comparing the EV phenotype percentages measured by two instruments, differences in double positive and single positive particles existed after percentage correction, which might be due to the different detection limit of each instrument. Our study reveals that the characterization of individual EVs for tetraspanin positivity varies between two platforms-the NanoImager and the Flow NanoAnalyzer-depending on the EV sample preparation methods used after antibody labelling. Additionally, we applied machine learning models to correct for false positive particles identified in imaging-based results by fitting size distribution data.
Collapse
Affiliation(s)
- Shihan Xu
- Department of NeuroscienceMayo Clinic FloridaJacksonvilleFloridaUSA
| | - Zhengrong Zhang
- Department of NeuroscienceMayo Clinic FloridaJacksonvilleFloridaUSA
| | | | | | - Seiko Ikezu
- Department of NeuroscienceMayo Clinic FloridaJacksonvilleFloridaUSA
| | - Tsuneya Ikezu
- Department of NeuroscienceMayo Clinic FloridaJacksonvilleFloridaUSA
- Regenerative Science Graduate ProgramMayo Clinic College of Medicine and ScienceJacksonvilleFloridaUSA
| |
Collapse
|
17
|
Zhang S, Liao A, Wang Y, Liu Q, Ouyang L, Peng H, Yuan L, Zhao L, Yang X, Chen X, He Y, Li Z. Profiling expressing features of surface proteins on single-exosome in first-episode Schizophrenia patients: a preliminary study. SCHIZOPHRENIA (HEIDELBERG, GERMANY) 2024; 10:84. [PMID: 39349515 PMCID: PMC11443124 DOI: 10.1038/s41537-024-00510-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 09/16/2024] [Indexed: 10/02/2024]
Abstract
Proximity barcoding assay, a high-throughput method for single-exosome analysis, was employed to profile surface proteins on individual exosomes of SCZ patients. This analysis identified five differentially expressed proteins (DEPs) between SCZ patients and healthy controls (HC) and six DEPs between antipsychotic responders and non-responders. Furthermore, two exosome clusters were found to be associated with SCZ, and certain DEPs were correlated with cognitive functions.
Collapse
Affiliation(s)
- Sijie Zhang
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, and National Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Aijun Liao
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, and National Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Yujue Wang
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, and National Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Qian Liu
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, and National Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Lijun Ouyang
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, and National Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Huiqing Peng
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, and National Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Liu Yuan
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, and National Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Linlin Zhao
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, and National Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Xinbo Yang
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, and National Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Xiaogang Chen
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, and National Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
- China National Technology Institute on Mental Disorders & Hunan Key, Laboratory of Psychiatry and Mental Health, Mental Health Institute of the Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Ying He
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, and National Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China.
- China National Technology Institute on Mental Disorders & Hunan Key, Laboratory of Psychiatry and Mental Health, Mental Health Institute of the Second Xiangya Hospital, Central South University, Changsha, Hunan, China.
| | - Zongchang Li
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, and National Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China.
- China National Technology Institute on Mental Disorders & Hunan Key, Laboratory of Psychiatry and Mental Health, Mental Health Institute of the Second Xiangya Hospital, Central South University, Changsha, Hunan, China.
| |
Collapse
|
18
|
Fekry B, Ugartemendia L, Esnaola NF, Goetzl L. Extracellular Vesicles, Circadian Rhythms, and Cancer: A Comprehensive Review with Emphasis on Hepatocellular Carcinoma. Cancers (Basel) 2024; 16:2552. [PMID: 39061191 PMCID: PMC11274441 DOI: 10.3390/cancers16142552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 07/12/2024] [Accepted: 07/14/2024] [Indexed: 07/28/2024] Open
Abstract
This review comprehensively explores the complex interplay between extracellular vesicles (ECVs)/exosomes and circadian rhythms, with a focus on the role of this interaction in hepatocellular carcinoma (HCC). Exosomes are nanovesicles derived from cells that facilitate intercellular communication by transporting bioactive molecules such as proteins, lipids, and RNA/DNA species. ECVs are implicated in a range of diseases, where they play crucial roles in signaling between cells and their surrounding environment. In the setting of cancer, ECVs are known to influence cancer initiation and progression. The scope of this review extends to all cancer types, synthesizing existing knowledge on the various roles of ECVs. A unique aspect of this review is the emphasis on the circadian-controlled release and composition of exosomes, highlighting their potential as biomarkers for early cancer detection and monitoring metastasis. We also discuss how circadian rhythms affect multiple cancer-related pathways, proposing that disruptions in the circadian clock can alter tumor development and treatment response. Additionally, this review delves into the influence of circadian clock components on ECV biogenesis and their impact on reshaping the tumor microenvironment, a key component driving HCC progression. Finally, we address the potential clinical applications of ECVs, particularly their use as diagnostic tools and drug delivery vehicles, while considering the challenges associated with clinical implementation.
Collapse
Affiliation(s)
- Baharan Fekry
- McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX 77030, USA; (L.U.); (L.G.)
| | - Lierni Ugartemendia
- McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX 77030, USA; (L.U.); (L.G.)
| | - Nestor F. Esnaola
- Division of Surgical Oncology and Gastrointestinal Surgery, Department of Surgery, Houston Methodist Hospital, Houston, TX 77030, USA;
| | - Laura Goetzl
- McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX 77030, USA; (L.U.); (L.G.)
| |
Collapse
|
19
|
Talebian Gevari M, Sahu SS, Stridfeldt F, Hååg P, De Petris L, Viktorsson K, Lewensohn R, Gori A, Cretich M, Dev A. Design and Optimization of a Silicon-Based Electrokinetic Microchip for Sensitive Detection of Small Extracellular Vesicles. ACS Sens 2024; 9:2935-2945. [PMID: 38848141 PMCID: PMC11217933 DOI: 10.1021/acssensors.4c00110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 05/24/2024] [Accepted: 05/29/2024] [Indexed: 06/09/2024]
Abstract
Detection of analytes using streaming current has previously been explored using both experimental approaches and theoretical analyses of such data. However, further developments are needed for establishing a viable microchip that can be exploited to deliver a sensitive, robust, and scalable biosensor device. In this study, we demonstrated the fabrication of such a device on silicon wafer using a scalable silicon microfabrication technology followed by characterization and optimization of this sensor for detection of small extracellular vesicles (sEVs) with sizes in the range of 30 to 200 nm, as determined by nanoparticle tracking analyses. We showed that the sensitivity of the devices, assessed by a common protein-ligand pair and sEVs, significantly outperforms previous approaches using the same principle. Two versions of the microchips, denoted as enclosed and removable-top microchips, were developed and compared, aiming to discern the importance of high-pressure measurement versus easier and better surface preparation capacity. A custom-built chip manifold allowing easy interfacing with standard microfluidic connections was also constructed. By investigating different electrical, fluidic, morphological, and fluorescence measurements, we show that while the enclosed microchip with its robust glass-silicon bonding can withstand higher pressure and thus generate higher streaming current, the removable-top configuration offers several practical benefits, including easy surface preparation, uniform probe conjugation, and improvement in the limit of detection (LoD). We further compared two common surface functionalization strategies and showed that the developed microchip can achieve both high sensitivity for membrane protein profiling and low LoD for detection of sEV detection. At the optimum working condition, we demonstrated that the microchip could detect sEVs reaching an LoD of 104 sEVs/mL (when captured by membrane-sensing peptide (MSP) probes), which is among the lowest in the so far reported microchip-based methods.
Collapse
Affiliation(s)
- Moein Talebian Gevari
- Division
of Solid-State Electronics, Department of Electrical Engineering, Uppsala University, 75 121 Uppsala, Sweden
| | - Siddharth Sourabh Sahu
- Department
of Applied Physics, School of Engineering Sciences, KTH Royal Institute of Technology, 10 691 Stockholm, Sweden
| | - Fredrik Stridfeldt
- Department
of Applied Physics, School of Engineering Sciences, KTH Royal Institute of Technology, 10 691 Stockholm, Sweden
| | - Petra Hååg
- Department
of Oncology-Pathology, Karolinska Institutet, 171 64 Solna, Sweden
| | - Luigi De Petris
- Department
of Oncology-Pathology, Karolinska Institutet, 171 64 Solna, Sweden
- Theme
Cancer, Medical Unit Head and Neck, Lung, and Skin Tumors, Thoracic
Oncology Center, Karolinska University Hospital, 171 64 Solna, Sweden
| | - Kristina Viktorsson
- Department
of Oncology-Pathology, Karolinska Institutet, 171 64 Solna, Sweden
| | - Rolf Lewensohn
- Department
of Oncology-Pathology, Karolinska Institutet, 171 64 Solna, Sweden
- Theme
Cancer, Medical Unit Head and Neck, Lung, and Skin Tumors, Thoracic
Oncology Center, Karolinska University Hospital, 171 64 Solna, Sweden
| | - Alessandro Gori
- Consiglio
Nazionale delle Ricerche, Istituto di Scienze
e Tecnologie Chimiche “Giulio Natta” (SCITEC), 20131 Milan, Italy
| | - Marina Cretich
- Consiglio
Nazionale delle Ricerche, Istituto di Scienze
e Tecnologie Chimiche “Giulio Natta” (SCITEC), 20131 Milan, Italy
| | - Apurba Dev
- Division
of Solid-State Electronics, Department of Electrical Engineering, Uppsala University, 75 121 Uppsala, Sweden
- Department
of Applied Physics, School of Engineering Sciences, KTH Royal Institute of Technology, 10 691 Stockholm, Sweden
| |
Collapse
|
20
|
Vahkal B, Altosaar I, Tremblay E, Gagné D, Hüttman N, Minic Z, Côté M, Blais A, Beaulieu J, Ferretti E. Gestational age at birth influences protein and RNA content in human milk extracellular vesicles. JOURNAL OF EXTRACELLULAR BIOLOGY 2024; 3:e128. [PMID: 38938674 PMCID: PMC11080785 DOI: 10.1002/jex2.128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 10/26/2023] [Accepted: 11/02/2023] [Indexed: 06/29/2024]
Abstract
Human milk extracellular vesicles (HM EVs) are proposed to protect against disease development in infants. This protection could in part be facilitated by the bioactive EV cargo of proteins and RNA. Notably, mothers birth infants of different gestational ages with unique needs, wherein the EV cargo of HM may diverge. We collected HM from lactating mothers within two weeks of a term or preterm birth. Following purification of EVs, proteins and mRNA were extracted for proteomics and sequencing analyses, respectively. Over 2000 protein groups were identified, and over 8000 genes were quantified. The total number of proteins and mRNA did not differ significantly between the two conditions, while functional bioinformatics of differentially expressed cargo indicated enrichment in immunoregulatory cargo for preterm HM EVs. In term HM EVs, significantly upregulated cargo was enriched in metabolism-related functions. Based on gene expression signatures from HM-contained single cell sequencing data, we proposed that a larger portion of preterm HM EVs are secreted by immune cells, whereas term HM EVs contain more signatures of lactocyte epithelial cells. Proposed differences in EV cargo could indicate variation in mother's milk based on infants' gestational age and provide basis for further functional characterisation.
Collapse
Affiliation(s)
- Brett Vahkal
- Department of Biochemistry, Microbiology and ImmunologyUniversity of OttawaOttawaCanada
- uOttawa Centre for Infection, Immunity, and InflammationOttawaCanada
- Ottawa Institute of Systems BiologyOttawaCanada
| | - Illimar Altosaar
- Department of Biochemistry, Microbiology and ImmunologyUniversity of OttawaOttawaCanada
| | - Eric Tremblay
- Department of Immunology and Cell BiologyUniversité de SherbrookeSherbrookeCanada
| | - David Gagné
- Department of Immunology and Cell BiologyUniversité de SherbrookeSherbrookeCanada
| | - Nico Hüttman
- Faculty of Science, John L. Holmes Mass Spectrometry FacilityUniversity of OttawaOttawaCanada
| | - Zoran Minic
- Faculty of Science, John L. Holmes Mass Spectrometry FacilityUniversity of OttawaOttawaCanada
| | - Marceline Côté
- Department of Biochemistry, Microbiology and ImmunologyUniversity of OttawaOttawaCanada
- uOttawa Centre for Infection, Immunity, and InflammationOttawaCanada
- Ottawa Institute of Systems BiologyOttawaCanada
| | - Alexandre Blais
- Department of Biochemistry, Microbiology and ImmunologyUniversity of OttawaOttawaCanada
- uOttawa Centre for Infection, Immunity, and InflammationOttawaCanada
- Ottawa Institute of Systems BiologyOttawaCanada
- Brain and Mind InstituteUniversity of OttawaOttawaCanada
- Éric Poulin Centre for Neuromuscular DiseaseOttawaCanada
| | | | - Emanuela Ferretti
- Department of Pediatrics, Division of NeonatologyChildren's Hospital of Eastern OntarioOttawaCanada
| |
Collapse
|
21
|
Hsia T, You DG, Politis MG, Batool SM, Ekanayake E, Lee H, Carter BS, Balaj L. Rigorous Comparison of Extracellular Vesicle Processing to Enhance Downstream Analysis for Glioblastoma Characterization. Adv Biol (Weinh) 2024; 8:e2300233. [PMID: 37670402 DOI: 10.1002/adbi.202300233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 07/28/2023] [Indexed: 09/07/2023]
Abstract
Extracellular vesicles (EVs) are highly sought after as a source of biomarkers for disease detection and monitoring. Tumor EV isolation, processing, and evaluation from biofluids is convoluted by EV heterogeneity and biological contaminants and is limited by technical processing efficacy. This study rigorously compares common bulk EV isolation workflows (size exclusion chromatography, SEC; membrane affinity, MA) alongside downstream RNA extraction protocols to investigate molecular analyte recovery. EV integrity and recovery is evaluated using a variety of technologies to quantify total intact EVs, total and surface proteins, and RNA purity and recovery. A comprehensive evaluation of each analyte is performed, with a specific emphasis on maintaining user (n = 2), biological (n = 3), and technical replicates (n≥3) under in vitro conditions. Subsequent study of tumor EV spike-in into healthy donor plasma samples is performed to further validate biofluid-derived EV purity and isolation for clinical application. Results show that EV surface integrity is considerably preserved in eluates from SEC-derived EVs, but RNA recovery and purity, as well as bulk protein isolation, is significantly improved in MA-isolated EVs. This study concludes that EV isolation and RNA extraction pipelines govern recovered analyte integrity, necessitating careful selection of processing modality to enhance recovery of the analyte of interest.
Collapse
Affiliation(s)
- Tiffaney Hsia
- Department of Neurosurgery, Massachusetts General Hospital, 185 Cambridge Street, Boston, MA, 02114, USA
| | - Dong Gil You
- Department of Neurosurgery, Massachusetts General Hospital, 185 Cambridge Street, Boston, MA, 02114, USA
| | - Michelle Garlin Politis
- Center for Systems Biology, Massachusetts General Hospital, 185 Cambridge Street, Boston, MA, 02114, USA
| | - Syeda Maheen Batool
- Department of Neurosurgery, Massachusetts General Hospital, 185 Cambridge Street, Boston, MA, 02114, USA
| | - Emil Ekanayake
- Department of Neurosurgery, Massachusetts General Hospital, 185 Cambridge Street, Boston, MA, 02114, USA
| | - Hakho Lee
- Center for Systems Biology, Massachusetts General Hospital, 185 Cambridge Street, Boston, MA, 02114, USA
- Department of Radiology, Massachusetts General Hospital, 55 Fruit Street, Boston, MA, 02114, USA
| | - Bob S Carter
- Department of Neurosurgery, Massachusetts General Hospital, 185 Cambridge Street, Boston, MA, 02114, USA
- Department of Neurosurgery, Harvard Medical School, 25 Shattuck Street, Boston, MA, 02115, USA
| | - Leonora Balaj
- Department of Neurosurgery, Massachusetts General Hospital, 185 Cambridge Street, Boston, MA, 02114, USA
- Department of Neurosurgery, Harvard Medical School, 25 Shattuck Street, Boston, MA, 02115, USA
| |
Collapse
|
22
|
Cheng C, Hou K, Hsu C, Chiang L. Ultrasensitive and High-Resolution Protein Spatially Decoding Framework for Tumor Extracellular Vesicles. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2304926. [PMID: 37984870 PMCID: PMC10797477 DOI: 10.1002/advs.202304926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 09/28/2023] [Indexed: 11/22/2023]
Abstract
Proteins localized on the surface or within the lumen of tumor-derived extracellular vesicles (EVs) play distinct roles in cancer progression. However, quantifying both populations of proteins within EVs has been hampered due to the limited sensitivity of the existing protein detection methods and inefficient EV isolation techniques. In this study, the eSimoa framework, an innovative approach enabling spatial decoding of EV protein biomarkers with unmatched sensitivity and specificity is presented. Using the luminal eSimoa pipeline, the absolute concentration of luminal RAS or KRASG12D proteins is released and measured, uncovering their prevalence in pancreatic tumor-derived EVs. The pulldown eSimoa pipeline measured absolute protein concentrations from low-abundance EV subpopulations. The eSimoa assays detected EVs in both PBS and plasma samples, confirming their applicability across diverse clinical sample types. Overall, the eSimoa framework offers a valuable tool to (1) detect EVs at concentrations as low as 105 EV mL-1 in plasma, (2) quantify absolute EV protein concentrations as low as fM, and (3) decode the spatial distribution of EV proteins. This study highlights the potential of eSimoa in identifying disease-specific EV protein biomarkers in clinical samples with minimal pre-purification, thereby driving advancements in clinical translation.
Collapse
Affiliation(s)
- Chi‐An Cheng
- School of PharmacyCollege of MedicineNational Taiwan UniversityTaipei10050Taiwan
| | - Kuan‐Chu Hou
- Department of MedicineCollege of MedicineNational Taiwan UniversityTaipei10050Taiwan
| | - Chen‐Wei Hsu
- School of PharmacyCollege of MedicineNational Taiwan UniversityTaipei10050Taiwan
| | - Li‐Chiao Chiang
- School of PharmacyCollege of MedicineNational Taiwan UniversityTaipei10050Taiwan
| |
Collapse
|
23
|
Han C, Yang J, Yin T, An J, Qiao A, Cao Y, Feng Y, Lu H, Wang Y, Yang L, Qin G. CD63-Snorkel tagging for isolation of exosomes. EXTRACELLULAR VESICLE 2023; 2:100031. [PMID: 40151378 PMCID: PMC11949438 DOI: 10.1016/j.vesic.2023.100031] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/29/2025]
Abstract
Exosomes (Exo) are important mediators of inter-cellular communications; however, no effective method is available for isolating, thus characterizing, cellular-specific exosomes in vivo. Since CD63 is a reliable marker for exosomes, we have developed a tagging strategy, term "CD63-Snorkel (CD63-SNKL)", in which CD63 at its intracellular C-terminus was fused to a fragment of PDGFRB that contains the transmembrane domain tethered to multiple epitope tags (HA, His, and FLAG) displayed in tandem on surface. We found that the CD63-SNKL protein has similar subcellular localizations as endogenous CD63 and can be effectively sorted into Exo. Furthermore, Exo secreted from CD63-SNKL-transduced cells can be effectively captured on anti-HA magnetic beads and eluted with HA peptides. Thus, CD63-SNKL may be engineered for isolating and tracking endogenous tissue-specific Exo in vivo.
Collapse
Affiliation(s)
- Chaoshan Han
- Department of Pharmacology, Cardiovascular Research Institute, School of Medicine, Southern University of Science and Technology, Shenzhen, Guangdong 518055, P. R. China
| | - Junjie Yang
- Department of Biomedical Engineering, The University of Alabama at Birmingham, School of Medicine and School of Engineering, Birmingham, AL 35294, USA
| | - Tingting Yin
- Department of Pharmacology, Cardiovascular Research Institute, School of Medicine, Southern University of Science and Technology, Shenzhen, Guangdong 518055, P. R. China
| | - Junqing An
- Department of Pharmacology, Cardiovascular Research Institute, School of Medicine, Southern University of Science and Technology, Shenzhen, Guangdong 518055, P. R. China
| | - Aijun Qiao
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan 528400, P. R. China
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai 201203, China
| | - Yangpo Cao
- Department of Pharmacology, Cardiovascular Research Institute, School of Medicine, Southern University of Science and Technology, Shenzhen, Guangdong 518055, P. R. China
| | - Yuliang Feng
- Department of Pharmacology, Cardiovascular Research Institute, School of Medicine, Southern University of Science and Technology, Shenzhen, Guangdong 518055, P. R. China
| | - Haocheng Lu
- Department of Pharmacology, Cardiovascular Research Institute, School of Medicine, Southern University of Science and Technology, Shenzhen, Guangdong 518055, P. R. China
| | - Ying Wang
- Department of Pharmacology, Cardiovascular Research Institute, School of Medicine, Southern University of Science and Technology, Shenzhen, Guangdong 518055, P. R. China
| | - Liang Yang
- School of Medicine, Southern University of Science and Technology, Guangdong 518055, P. R. China
| | - Gangjian Qin
- Department of Pharmacology, Cardiovascular Research Institute, School of Medicine, Southern University of Science and Technology, Shenzhen, Guangdong 518055, P. R. China
- Department of Biomedical Engineering, The University of Alabama at Birmingham, School of Medicine and School of Engineering, Birmingham, AL 35294, USA
| |
Collapse
|
24
|
Zhang Y, Tedja R, Millman M, Wong T, Fox A, Chehade H, Gershater M, Adzibolosu N, Gogoi R, Anderson M, Rutherford T, Zhang Z, Chopp M, Mor G, Alvero AB. Adipose-derived exosomal miR-421 targets CBX7 and promotes metastatic potential in ovarian cancer cells. J Ovarian Res 2023; 16:233. [PMID: 38037081 PMCID: PMC10688490 DOI: 10.1186/s13048-023-01312-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 11/09/2023] [Indexed: 12/02/2023] Open
Abstract
BACKGROUND Chromobox protein homolog 7 (CBX7), a member of the Polycomb repressor complex, is a potent epigenetic regulator and gene silencer. Our group has previously reported that CBX7 functions as a tumor suppressor in ovarian cancer cells and its loss accelerated formation of carcinomatosis and drove tumor progression in an ovarian cancer mouse model. The goal of this study is to identify specific signaling pathways in the ovarian tumor microenvironment that down-regulate CBX7. Given that adipocytes are an integral component of the peritoneal cavity and the ovarian tumor microenvironment, we hypothesize that the adipose microenvironment is an important regulator of CBX7 expression. RESULTS Using conditioned media from human omental explants, we found that adipose-derived exosomes mediate CBX7 downregulation and enhance migratory potential of human ovarian cancer cells. Further, we identified adipose-derived exosomal miR-421 as a novel regulator of CBX7 expression and the main effector that downregulates CBX7. CONCLUSION In this study, we identified miR-421 as a specific signaling pathway in the ovarian tumor microenvironment that can downregulate CBX7 to induce epigenetic change in OC cells, which can drive disease progression. These findings suggest that targeting exosomal miR-421 may curtail ovarian cancer progression.
Collapse
Affiliation(s)
- Yi Zhang
- Neurology, Henry Ford Health System, 2799 W Grand Blvd., Detroit, MI, 48202, USA.
| | - Roslyn Tedja
- C.S. Mott Center for Human Growth and Development, Department of Obstetrics and Gynecology, Wayne State University, 275 E. Hancock St., Detroit, MI, 48201, USA
| | - Michael Millman
- Neurology, Henry Ford Health System, 2799 W Grand Blvd., Detroit, MI, 48202, USA
| | - Terrence Wong
- C.S. Mott Center for Human Growth and Development, Department of Obstetrics and Gynecology, Wayne State University, 275 E. Hancock St., Detroit, MI, 48201, USA
| | - Alexandra Fox
- C.S. Mott Center for Human Growth and Development, Department of Obstetrics and Gynecology, Wayne State University, 275 E. Hancock St., Detroit, MI, 48201, USA
| | - Hussein Chehade
- C.S. Mott Center for Human Growth and Development, Department of Obstetrics and Gynecology, Wayne State University, 275 E. Hancock St., Detroit, MI, 48201, USA
| | - Meyer Gershater
- C.S. Mott Center for Human Growth and Development, Department of Obstetrics and Gynecology, Wayne State University, 275 E. Hancock St., Detroit, MI, 48201, USA
| | - Nicholas Adzibolosu
- C.S. Mott Center for Human Growth and Development, Department of Obstetrics and Gynecology, Wayne State University, 275 E. Hancock St., Detroit, MI, 48201, USA
| | - Radhika Gogoi
- C.S. Mott Center for Human Growth and Development, Department of Obstetrics and Gynecology, Wayne State University, 275 E. Hancock St., Detroit, MI, 48201, USA
| | - Matthew Anderson
- Department of Obstetrics and Gynecology, University of South Florida, Tampa, FL, USA
| | - Thomas Rutherford
- Department of Obstetrics and Gynecology, University of South Florida, Tampa, FL, USA
| | - Zhenggang Zhang
- Neurology, Henry Ford Health System, 2799 W Grand Blvd., Detroit, MI, 48202, USA
| | - Michael Chopp
- Neurology, Henry Ford Health System, 2799 W Grand Blvd., Detroit, MI, 48202, USA
- Department of Physics, Oakland University, Rochester, MI, USA
| | - Gil Mor
- C.S. Mott Center for Human Growth and Development, Department of Obstetrics and Gynecology, Wayne State University, 275 E. Hancock St., Detroit, MI, 48201, USA
| | - Ayesha B Alvero
- C.S. Mott Center for Human Growth and Development, Department of Obstetrics and Gynecology, Wayne State University, 275 E. Hancock St., Detroit, MI, 48201, USA.
| |
Collapse
|
25
|
Zhang Y, Tedja R, Millman M, Wong T, Fox A, Chehade H, Gershater M, Adzibolosu N, Gogoi R, Anderson M, Rutherford T, Zhang Z, Chopp M, Mor G, Alvero AB. Adipose-derived exosomal miR-421 targets CBX7 and promotes metastatic potential in ovarian cancer cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.07.566022. [PMID: 37986971 PMCID: PMC10659572 DOI: 10.1101/2023.11.07.566022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2023]
Abstract
Background Chromobox protein homolog 7 (CBX7), a member of the Polycomb repressor complex, is a potent epigenetic regulator and gene silencer. Our group has previously reported that CBX7 functions as a tumor suppressor in ovarian cancer cells and its loss accelerated formation of carcinomatosis and drove tumor progression in an ovarian cancer mouse model. The goal of this study is to identify specific signaling pathways in the ovarian tumor microenvironment that down-regulate CBX7. Given that adipocytes are an integral component of the peritoneal cavity and the ovarian tumor microenvironment, we hypothesize that the adipose microenvironment is an important regulator of CBX7 expression. Results Using conditioned media from human omental explants, we found that adipose-derived exosomes mediate CBX7 downregulation and enhance migratory potential of human ovarian cancer cells. Further, we identified adipose-derived exosomal miR-421 as a novel regulator of CBX7 expression and the main effector that downregulates CBX7. Conclusion In this study, we identified miR-421 as a specific signaling pathway in the ovarian tumor microenvironment that can downregulate CBX7 to induce epigenetic change in OC cells, which can drive disease progression. These findings suggest that targeting exosomal miR-421 may curtail ovarian cancer progression.
Collapse
Affiliation(s)
- Yi Zhang
- Neurology, Henry Ford Health, Detroit, MI
| | - Roslyn Tedja
- C.S. Mott Center for Human Growth and Development, Department of Obstetrics and Gynecology, Wayne State University, Detroit, MI
| | | | - Terrence Wong
- C.S. Mott Center for Human Growth and Development, Department of Obstetrics and Gynecology, Wayne State University, Detroit, MI
| | - Alexandra Fox
- C.S. Mott Center for Human Growth and Development, Department of Obstetrics and Gynecology, Wayne State University, Detroit, MI
| | - Hussein Chehade
- C.S. Mott Center for Human Growth and Development, Department of Obstetrics and Gynecology, Wayne State University, Detroit, MI
| | - Meyer Gershater
- C.S. Mott Center for Human Growth and Development, Department of Obstetrics and Gynecology, Wayne State University, Detroit, MI
| | - Nicholas Adzibolosu
- C.S. Mott Center for Human Growth and Development, Department of Obstetrics and Gynecology, Wayne State University, Detroit, MI
| | - Radhika Gogoi
- C.S. Mott Center for Human Growth and Development, Department of Obstetrics and Gynecology, Wayne State University, Detroit, MI
| | - Matthew Anderson
- Department of Obstetrics and Gynecology, University of South Florida, Tampa, FL
| | - Thomas Rutherford
- Department of Obstetrics and Gynecology, University of South Florida, Tampa, FL
| | | | - Michael Chopp
- Neurology, Henry Ford Health, Detroit, MI
- Department of Physics, Oakland University, Rochester, MI
| | - Gil Mor
- C.S. Mott Center for Human Growth and Development, Department of Obstetrics and Gynecology, Wayne State University, Detroit, MI
| | - Ayesha B. Alvero
- C.S. Mott Center for Human Growth and Development, Department of Obstetrics and Gynecology, Wayne State University, Detroit, MI
| |
Collapse
|
26
|
Zhang Y, Lin Y, He J, Song S, Luo Y, Lu Y, Chen S, Wang Q, Li Y, Ren F, Guo H. Milk-derived small extracellular vesicles: a new perspective on dairy nutrition. Crit Rev Food Sci Nutr 2023; 64:13225-13246. [PMID: 37819268 DOI: 10.1080/10408398.2023.2263573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/13/2023]
Abstract
Milk contains bioactive compounds that have multiple essential benefits. Milk-derived small extracellular vesicles (M-sEVs) have emerged as novel bioactive milk components with various beneficial biological functions and broad applications. The M-sEVs from different mammalian sources have similar composition and bioactive functions. The digestive stability and biocompatibility of the M-sEVs provide a good foundation for their physiological functions. Evidence suggests that M-sEVs promote intestinal, immune, bone, neural, liver, and heart health and show therapeutic effects against cancer, indicating their potential for use in functional foods. In addition, M-sEVs can be developed as natural delivery carriers owing to their superior structural characteristics. Further studies are needed to elucidate the relationship between the specific components and functions of M-sEVs, standardize their extraction processes, and refine relevant clinical trials to advance the future applications of M-sEVs. This review summarizes the structure and composition of M-sEVs isolated from different milk sources and discusses several common extraction methods. Since the introduction of M-sEVs for digestion and absorption, studies have been conducted on their biological functions. Furthermore, we outline the theoretical industrial production route, potential application scenarios of M-sEVs, and the future perspectives of M-sEV research.
Collapse
Affiliation(s)
- Yuning Zhang
- Key Laboratory of Functional Dairy, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, PR China
| | - Yingying Lin
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing, PR China
- National Center of Technology Innovation for Dairy, Hohhot, PR China
| | - Jian He
- National Center of Technology Innovation for Dairy, Hohhot, PR China
| | - Sijia Song
- Food Laboratory of Zhongyuan, Luohe, PR China
| | - Yujia Luo
- Key Laboratory of Functional Dairy, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, PR China
| | - Yao Lu
- Key Laboratory of Functional Dairy, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, PR China
| | | | - Qingyu Wang
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology of National Health Commission, Beijing, PR China
| | - Yixuan Li
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing, PR China
| | - Fazheng Ren
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing, PR China
| | - Huiyuan Guo
- Key Laboratory of Functional Dairy, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, PR China
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing, PR China
| |
Collapse
|
27
|
Baselga M, Iruzubieta P, Castiella T, Monzón M, Monleón E, Berga C, Schuhmacher AJ, Junquera C. Spheresomes are the main extracellular vesicles in low-grade gliomas. Sci Rep 2023; 13:11180. [PMID: 37430101 DOI: 10.1038/s41598-023-38084-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 07/03/2023] [Indexed: 07/12/2023] Open
Abstract
Cancer progression and its impact on treatment response and prognosis is deeply regulated by tumour microenvironment (TME). Cancer cells are in constant communication and modulate TME through several mechanisms, including transfer of tumour-promoting cargos through extracellular vesicles (EVs) or oncogenic signal detection by primary cilia. Spheresomes are a specific EV that arise from rough endoplasmic reticulum-Golgi vesicles. They accumulate beneath cell membrane and are released to the extracellular medium through multivesicular spheres. This study describes spheresomes in low-grade gliomas using electron microscopy. We found that spheresomes are more frequent than exosomes in these tumours and can cross the blood-brain barrier. Moreover, the distinct biogenesis processes of these EVs result in unique cargo profiles, suggesting different functional roles. We also identified primary cilia in these tumours. These findings collectively contribute to our understanding of glioma progression and metastasis.
Collapse
Affiliation(s)
- Marta Baselga
- Institute for Health Research Aragon (IIS Aragón), 50009, Zaragoza, Spain
| | - Pablo Iruzubieta
- Department of Human Anatomy and Histology, University of Zaragoza, 50009, Zaragoza, Spain
| | - Tomás Castiella
- Department of Pathological Anatomy, Legal Medicine, and Toxicology, University of Zaragoza, 50009, Zaragoza, Spain
| | - Marta Monzón
- Institute for Health Research Aragon (IIS Aragón), 50009, Zaragoza, Spain
- Department of Human Anatomy and Histology, University of Zaragoza, 50009, Zaragoza, Spain
| | - Eva Monleón
- Institute for Health Research Aragon (IIS Aragón), 50009, Zaragoza, Spain.
- Department of Human Anatomy and Histology, University of Zaragoza, 50009, Zaragoza, Spain.
| | - Carmen Berga
- Department of Human Anatomy and Histology, University of Zaragoza, 50009, Zaragoza, Spain
| | - Alberto J Schuhmacher
- Institute for Health Research Aragon (IIS Aragón), 50009, Zaragoza, Spain
- Fundación Agencia Aragonesa para la Investigación y el Desarrollo (ARAID), 50018, Zaragoza, Spain
| | - Concepción Junquera
- Institute for Health Research Aragon (IIS Aragón), 50009, Zaragoza, Spain
- Department of Human Anatomy and Histology, University of Zaragoza, 50009, Zaragoza, Spain
| |
Collapse
|
28
|
Chatterjee A, Singh R. Extracellular vesicles: an emerging player in retinal homeostasis. Front Cell Dev Biol 2023; 11:1059141. [PMID: 37181750 PMCID: PMC10166895 DOI: 10.3389/fcell.2023.1059141] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 04/10/2023] [Indexed: 05/16/2023] Open
Abstract
Extracellular vesicles (EVs) encompass secreted membrane vesicles of varied sizes, including exosomes (-30-200 nm) and microvesicles (MVs) that are ∼100-1,000 nm in size. EVs play an important role in autocrine, paracrine, and endocrine signaling and are implicated in myriad human disorders including prominent retinal degenerative diseases, like age related macular degeneration (AMD) and diabetic retinopathy (DR). Studies of EVs in vitro using transformed cell lines, primary cultures, and more recently, induced pluripotent stem cell derived retinal cell type(s) (e.g., retinal pigment epithelium) have provided insights into the composition and function of EVs in the retina. Furthermore, consistent with a causal role of EVs in retinal degenerative diseases, altering EV composition has promoted pro-retinopathy cellular and molecular events in both in vitro and in vivo models. In this review, we summarize the current understanding of the role of EVs in retinal (patho)physiology. Specifically, we will focus on disease-associated EV alterations in specific retinal diseases. Furthermore, we discuss the potential utility of EVs in diagnostic and therapeutic strategies for targeting retinal diseases.
Collapse
Affiliation(s)
- Amit Chatterjee
- Department of Ophthalmology, University of Rochester, Rochester, NY, United States
- Department of Biomedical Genetics, University of Rochester, Rochester, NY, United States
- Center for Visual Science, University of Rochester, Rochester, NY, United States
| | - Ruchira Singh
- Department of Ophthalmology, University of Rochester, Rochester, NY, United States
- Department of Biomedical Genetics, University of Rochester, Rochester, NY, United States
- Center for Visual Science, University of Rochester, Rochester, NY, United States
- UR Stem Cell and Regenerative Medicine Center, University of Rochester, Rochester, NY, United States
| |
Collapse
|
29
|
Shami-Shah A, Norman M, Walt DR. Ultrasensitive protein detection technologies for extracellular vesicle measurements. Mol Cell Proteomics 2023; 22:100557. [PMID: 37088150 DOI: 10.1016/j.mcpro.2023.100557] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 04/11/2023] [Accepted: 04/18/2023] [Indexed: 04/25/2023] Open
Abstract
Extracellular Vesicles (EVs) are nanoscopic, heterogenous, lipid-rich particles that carry a multitude of cargo biomolecules including proteins, nucleic acids, and metabolites. Although historically, EVs were regarded as cellular debris with no intrinsic value, growing understanding of EV biogenesis has led to the realization that EVs facilitate intercellular communication and are sources of liquid biomarkers. EVs can be isolated and analyzed from a wide variety of accessible biofluids for biomarker discovery and diagnostic applications. There is a diversity of EVs from different biological compartments (e.g., cells, tissues) and some of these EVs are present at extremely low concentrations. Consequently, a challenge in the field is to find appropriate markers that enable selective isolation of these rare EVs. Many conventional protein detection technologies have limited sensitivity to detect low abundance biomarkers in EVs, limiting their use in EV research. Advances in ultrasensitive detection technologies are needed to harness the potential of EVs for clinical application. This Perspective highlights current EV research focusing on ultrasensitive detection technologies, their limitations, and areas of potential growth in the future.
Collapse
Affiliation(s)
- Adnan Shami-Shah
- Department of Pathology, Brigham & Women's Hospital and Harvard Medical School, Boston, MA; Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA
| | - Maia Norman
- Department of Pathology, Brigham & Women's Hospital and Harvard Medical School, Boston, MA; Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA; Tufts University School of Medicine, Boston, MA
| | - David R Walt
- Department of Pathology, Brigham & Women's Hospital and Harvard Medical School, Boston, MA; Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA.
| |
Collapse
|
30
|
Abstract
Human breast milk is the optimal nutrition for all infants and is comprised of many bioactive and immunomodulatory components. The components in human milk, such as probiotics, human milk oligosaccharides (HMOs), extracellular vesicles, peptides, immunoglobulins, growth factors, cytokines, and vitamins, play a critical role in guiding neonatal development beyond somatic growth. In this review, we will describe the bioactive factors in human milk and discuss how these factors shape neonatal immunity, the intestinal microbiome, intestinal development, and more from the inside out.
Collapse
Affiliation(s)
- Sarah F Andres
- Department of Pediatrics, Pediatric GI Division, School of Medicine, Oregon Health and Science University, Portland, OR 97229, United States
| | - Brian Scottoline
- Division of Neonatology, Department of Pediatrics, Oregon Health & Science University, Portland, OR 97239, United States
| | - Misty Good
- Division of Neonatal-Perinatal Medicine, Department of Pediatrics, University of North Carolina at Chapel Hill, 101 Manning Drive, Campus Box 7596, Chapel Hill, NC 27599, United States.
| |
Collapse
|
31
|
Surface protein profiling of prostate-derived extracellular vesicles by mass spectrometry and proximity assays. Commun Biol 2022; 5:1402. [PMID: 36550367 PMCID: PMC9780212 DOI: 10.1038/s42003-022-04349-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Accepted: 12/08/2022] [Indexed: 12/24/2022] Open
Abstract
Extracellular vesicles (EVs) are mediators of intercellular communication and a promising class of biomarkers. Surface proteins of EVs play decisive roles in establishing a connection with recipient cells, and they are putative targets for diagnostic assays. Analysis of the surface proteins can thus both illuminate the biological functions of EVs and help identify potential biomarkers. We developed a strategy combining high-resolution mass spectrometry (HRMS) and proximity ligation assays (PLA) to first identify and then validate surface proteins discovered on EVs. We applied our workflow to investigate surface proteins of small EVs found in seminal fluid (SF-sEV). We identified 1,014 surface proteins and verified the presence of a subset of these on the surface of SF-sEVs. Our work demonstrates a general strategy for deep analysis of EVs' surface proteins across patients and pathological conditions, proceeding from unbiased screening by HRMS to ultra-sensitive targeted analyses via PLA.
Collapse
|
32
|
Pallares-Rusiñol A, Bernuz M, Moura SL, Fernández-Senac C, Rossi R, Martí M, Pividori MI. Advances in exosome analysis. Adv Clin Chem 2022; 112:69-117. [PMID: 36642486 DOI: 10.1016/bs.acc.2022.09.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
There is growing demand for novel biomarkers that detect early stage disease as well as monitor clinical management and therapeutic strategies. Exosome analysis could provide the next advance in attaining that goal. Exosomes are membrane encapsulated biologic nanometric-sized particles of endocytic origin which are released by all cell types. Unfortunately, exosomes are exceptionally challenging to characterize with current technologies. Exosomes are between 30 and 200nm in diameter, a size that makes them out of the sensitivity range to most cell-oriented sorting or analysis platforms, i.e., traditional flow cytometers. The most common methods for targeting exosomes to date typically involve purification followed by the characterization and the specific determination of their cargo. The whole procedure is time consuming, requiring thus skilled personnel as well as laboratory facilities and benchtop instrumentation. The most relevant methodology for exosome isolation, characterization and quantification is addressed in this chapter, including the most up-to-date approaches to explore the potential usefulness of exosomes as biomarkers in liquid biopsies and in advanced nanomedicine.
Collapse
Affiliation(s)
- Arnau Pallares-Rusiñol
- Institute of Biotechnology and Biomedicine, Universitat Autònoma de Barcelona, Bellaterra, Spain; Grup de Sensors i Biosensors, Departament de Química, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Mireia Bernuz
- Institute of Biotechnology and Biomedicine, Universitat Autònoma de Barcelona, Bellaterra, Spain; Grup de Sensors i Biosensors, Departament de Química, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Silio Lima Moura
- Institute of Biotechnology and Biomedicine, Universitat Autònoma de Barcelona, Bellaterra, Spain; Grup de Sensors i Biosensors, Departament de Química, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Carolina Fernández-Senac
- Institute of Biotechnology and Biomedicine, Universitat Autònoma de Barcelona, Bellaterra, Spain; Grup de Sensors i Biosensors, Departament de Química, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Rosanna Rossi
- Institute of Biotechnology and Biomedicine, Universitat Autònoma de Barcelona, Bellaterra, Spain; Grup de Sensors i Biosensors, Departament de Química, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Mercè Martí
- Institute of Biotechnology and Biomedicine, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - María Isabel Pividori
- Institute of Biotechnology and Biomedicine, Universitat Autònoma de Barcelona, Bellaterra, Spain; Grup de Sensors i Biosensors, Departament de Química, Universitat Autònoma de Barcelona, Bellaterra, Spain.
| |
Collapse
|
33
|
Baratta AM, Mangieri RA, Aziz HC, Lopez MF, Farris SP, Homanics GE. Effect of chronic intermittent ethanol vapor exposure on RNA content of brain-derived extracellular vesicles. Alcohol 2022; 105:9-24. [PMID: 36055466 PMCID: PMC10173183 DOI: 10.1016/j.alcohol.2022.08.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 08/18/2022] [Accepted: 08/18/2022] [Indexed: 01/26/2023]
Abstract
Extracellular vesicles (EVs) are important players in normal biological function and disease pathogenesis. Of the many biomolecules packaged into EVs, coding and noncoding RNA transcripts are of particular interest for their ability to significantly alter cellular and molecular processes. Here we investigate how chronic ethanol exposure impacts EV RNA cargo and the functional outcomes of these changes. Following chronic intermittent ethanol (CIE) vapor exposure, EVs were isolated from male and female C57BL/6J mouse brain. Total RNA from EVs was analyzed by lncRNA/mRNA microarray to survey changes in RNA cargo following vapor exposure. Differential expression analysis of microarray data revealed a number of lncRNA and mRNA types differentially expressed in CIE compared to control EVs. Weighted gene co-expression network analysis identified multiple male and female specific modules related to neuroinflammation, cell death, demyelination, and synapse organization. To functionally test these changes, whole-cell voltage-clamp recordings were used to assess synaptic transmission. Incubation of nucleus accumbens brain slices with EVs led to a reduction in spontaneous excitatory postsynaptic current amplitude, although no changes in synaptic transmission were observed between control and CIE EV administration. These results indicate that CIE vapor exposure significantly changes the RNA cargo of brain-derived EVs, which have the ability to impact neuronal function.
Collapse
Affiliation(s)
- Annalisa M Baratta
- Center for Neuroscience, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States
| | - Regina A Mangieri
- College of Pharmacy, University of Texas at Austin, Texas, United States
| | - Heather C Aziz
- College of Pharmacy, University of Texas at Austin, Texas, United States
| | - Marcelo F Lopez
- Department of Psychiatry and Behavioral Science, Charleston Alcohol Research Center, Medical University of South Carolina, Charleston, South Carolina, United States
| | - Sean P Farris
- Center for Neuroscience, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States; Department of Anesthesiology and Perioperative Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States; Department of Biomedical Informatics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States
| | - Gregg E Homanics
- Center for Neuroscience, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States; Department of Anesthesiology and Perioperative Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States; Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States; Department of Neurobiology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States.
| |
Collapse
|
34
|
Tenchov R, Sasso JM, Wang X, Liaw WS, Chen CA, Zhou QA. Exosomes─Nature's Lipid Nanoparticles, a Rising Star in Drug Delivery and Diagnostics. ACS NANO 2022; 16:17802-17846. [PMID: 36354238 PMCID: PMC9706680 DOI: 10.1021/acsnano.2c08774] [Citation(s) in RCA: 259] [Impact Index Per Article: 86.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 10/21/2022] [Indexed: 05/03/2023]
Abstract
Exosomes are a subgroup of nanosized extracellular vesicles enclosed by a lipid bilayer membrane and secreted by most eukaryotic cells. They represent a route of intercellular communication and participate in a wide variety of physiological and pathological processes. The biological roles of exosomes rely on their bioactive cargos, including proteins, nucleic acids, and lipids, which are delivered to target cells. Their distinctive properties─innate stability, low immunogenicity, biocompatibility, and good biomembrane penetration capacity─allow them to function as superior natural nanocarriers for efficient drug delivery. Another notably favorable clinical application of exosomes is in diagnostics. They hold various biomolecules from host cells, which are indicative of pathophysiological conditions; therefore, they are considered vital for biomarker discovery in clinical diagnostics. Here, we use data from the CAS Content Collection and provide a landscape overview of the current state and delineate trends in research advancement on exosome applications in therapeutics and diagnostics across time, geography, composition, cargo loading, and development pipelines. We discuss exosome composition and pathway, from their biogenesis and secretion from host cells to recipient cell uptake. We assess methods for exosome isolation and purification, their clinical applications in therapy and diagnostics, their development pipelines, the exploration goals of the companies, the assortment of diseases they aim to treat, development stages of their research, and publication trends. We hope this review will be useful for understanding the current knowledge in the field of medical applications of exosomes, in an effort to further solve the remaining challenges in fulfilling their potential.
Collapse
Affiliation(s)
- Rumiana Tenchov
- CAS, a Division of the American Chemical
Society, 2540 Olentangy River Rd, Columbus, Ohio 43202, United
States
| | - Janet M. Sasso
- CAS, a Division of the American Chemical
Society, 2540 Olentangy River Rd, Columbus, Ohio 43202, United
States
| | - Xinmei Wang
- CAS, a Division of the American Chemical
Society, 2540 Olentangy River Rd, Columbus, Ohio 43202, United
States
| | - Wen-Shing Liaw
- CAS, a Division of the American Chemical
Society, 2540 Olentangy River Rd, Columbus, Ohio 43202, United
States
| | - Chun-An Chen
- CAS, a Division of the American Chemical
Society, 2540 Olentangy River Rd, Columbus, Ohio 43202, United
States
| | - Qiongqiong Angela Zhou
- CAS, a Division of the American Chemical
Society, 2540 Olentangy River Rd, Columbus, Ohio 43202, United
States
| |
Collapse
|
35
|
Birjandi AA, Sharpe P. Potential of extracellular space for tissue regeneration in dentistry. Front Physiol 2022; 13:1034603. [DOI: 10.3389/fphys.2022.1034603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 10/24/2022] [Indexed: 11/19/2022] Open
Abstract
With the proven relationship between oral and general health and the growing aging population, it is pivotal to provide accessible therapeutic approaches to regenerate oral tissues and restore clinical function. However, despite sharing many core concepts with medicine, dentistry has fallen behind the progress in precision medicine and regenerative treatments. Stem cell therapies are a promising avenue for tissue regeneration, however, ethical, safety and cost issues may limit their clinical use. With the significance of paracrine signalling in stem cell and tissue regeneration, extracellular space comprising of the cell secretome, and the extracellular matrix can serve as a potent source for tissue regeneration. Extravesicles are secreted and naturally occurring vesicles with biologically active cargo that can be harvested from the extracellular space. These vesicles have shown great potential as disease biomarkers and can be used in regenerative medicine. As a cell free therapy, secretome and extracellular vesicles can be stored and transferred easily and pose less ethical and safety risks in clinical application. Since there are currently many reviews on the secretome and the biogenesis, characterization and function of extracellular vesicles, here we look at the therapeutic potential of extracellular space to drive oral tissue regeneration and the current state of the field in comparison to regenerative medicine.
Collapse
|
36
|
Tracking matricellular protein SPARC in extracellular vesicles as a non-destructive method to evaluate lipid-based antifibrotic treatments. Commun Biol 2022; 5:1155. [PMID: 36310239 PMCID: PMC9618575 DOI: 10.1038/s42003-022-04123-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 10/17/2022] [Indexed: 11/10/2022] Open
Abstract
Uncovering the complex cellular mechanisms underlying hepatic fibrogenesis could expedite the development of effective treatments and noninvasive diagnosis for liver fibrosis. The biochemical complexity of extracellular vesicles (EVs) and their role in intercellular communication make them an attractive tool to look for biomarkers as potential alternative to liver biopsies. We developed a solid set of methods to isolate and characterize EVs from differently treated human hepatic stellate cell (HSC) line LX-2, and we investigated their biological effect onto naïve LX-2, proving that EVs do play an active role in fibrogenesis. We mined our proteomic data for EV-associated proteins whose expression correlated with HSC treatment, choosing the matricellular protein SPARC as proof-of-concept for the feasibility of fluorescence nanoparticle-tracking analysis to determine an EV-based HSCs’ fibrogenic phenotype. We thus used EVs to directly evaluate the efficacy of treatment with S80, a polyenylphosphatidylcholines-rich lipid, finding that S80 reduces the relative presence of SPARC-positive EVs. Here we correlated the cellular response to lipid-based antifibrotic treatment to the relative presence of a candidate protein marker associated with the released EVs. Along with providing insights into polyenylphosphatidylcholines treatments, our findings pave the way for precise and less invasive diagnostic analyses of hepatic fibrogenesis. A method is developed to isolate and characterize extracellular vesicles (EVs) from human hepatic stellate cells and proteomics reveals that the matricellular protein SPARC may be used as an EV marker after lipid-based antifibrotic treatment.
Collapse
|
37
|
Mysiris DS, Vavougios GD, Karamichali E, Papoutsopoulou S, Stavrou VT, Papayianni E, Boutlas S, Mavridis T, Foka P, Zarogiannis SG, Gourgoulianis K, Xiromerisiou G. Post-COVID-19 Parkinsonism and Parkinson's Disease Pathogenesis: The Exosomal Cargo Hypothesis. Int J Mol Sci 2022; 23:9739. [PMID: 36077138 PMCID: PMC9456372 DOI: 10.3390/ijms23179739] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 08/21/2022] [Accepted: 08/26/2022] [Indexed: 11/16/2022] Open
Abstract
Parkinson's disease (PD) is the second most prevalent neurodegenerative disease after Alzheimer's disease, globally. Dopaminergic neuron degeneration in substantia nigra pars compacta and aggregation of misfolded alpha-synuclein are the PD hallmarks, accompanied by motor and non-motor symptoms. Several viruses have been linked to the appearance of a post-infection parkinsonian phenotype. Coronavirus disease 2019 (COVID-19), caused by emerging severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) infection, has evolved from a novel pneumonia to a multifaceted syndrome with multiple clinical manifestations, among which neurological sequalae appear insidious and potentially long-lasting. Exosomes are extracellular nanovesicles bearing a complex cargo of active biomolecules and playing crucial roles in intercellular communication under pathophysiological conditions. Exosomes constitute a reliable route for misfolded protein transmission, contributing to PD pathogenesis and diagnosis. Herein, we summarize recent evidence suggesting that SARS-CoV-2 infection shares numerous clinical manifestations and inflammatory and molecular pathways with PD. We carry on hypothesizing that these similarities may be reflected in exosomal cargo modulated by the virus in correlation with disease severity. Travelling from the periphery to the brain, SARS-CoV-2-related exosomal cargo contains SARS-CoV-2 RNA, viral proteins, inflammatory mediators, and modified host proteins that could operate as promoters of neurodegenerative and neuroinflammatory cascades, potentially leading to a future parkinsonism and PD development.
Collapse
Affiliation(s)
| | - George D. Vavougios
- Department of Neurology, Faculty of Medicine, University of Cyprus, Lefkosia 1678, Cyprus
- Laboratory of Pulmonary Testing and Rehabilitation, Department of Respiratory Medicine, Faculty of Medicine, University of Thessaly, 41110 Larissa, Greece
| | - Eirini Karamichali
- Molecular Virology Laboratory, Hellenic Pasteur Institute, 11521 Athens, Greece
| | - Stamatia Papoutsopoulou
- Department of Biochemistry and Biotechnology, Faculty of Life Sciences, University of Thessaly, Mezourlo, 41500 Larissa, Greece
| | - Vasileios T. Stavrou
- Laboratory of Pulmonary Testing and Rehabilitation, Department of Respiratory Medicine, Faculty of Medicine, University of Thessaly, 41110 Larissa, Greece
| | - Eirini Papayianni
- Laboratory of Pulmonary Testing and Rehabilitation, Department of Respiratory Medicine, Faculty of Medicine, University of Thessaly, 41110 Larissa, Greece
| | - Stylianos Boutlas
- Laboratory of Pulmonary Testing and Rehabilitation, Department of Respiratory Medicine, Faculty of Medicine, University of Thessaly, 41110 Larissa, Greece
| | - Theodoros Mavridis
- 1st Neurology Department, Eginition Hospital, Medical School, National & Kapodistrian University of Athens, 11528 Athens, Greece
| | - Pelagia Foka
- Molecular Virology Laboratory, Hellenic Pasteur Institute, 11521 Athens, Greece
| | - Sotirios G. Zarogiannis
- Department of Physiology, Faculty of Medicine, University of Thessaly, Biopolis, 41500 Larissa, Greece
| | - Konstantinos Gourgoulianis
- Laboratory of Pulmonary Testing and Rehabilitation, Department of Respiratory Medicine, Faculty of Medicine, University of Thessaly, 41110 Larissa, Greece
| | - Georgia Xiromerisiou
- Department of Neurology, University Hospital of Larissa, Faculty of Medicine, School of Health Sciences, University of Thessaly, 41110 Larissa, Greece
| |
Collapse
|
38
|
Morales RTT, Ko J. Future of Digital Assays to Resolve Clinical Heterogeneity of Single Extracellular Vesicles. ACS NANO 2022; 16:11619-11645. [PMID: 35904433 PMCID: PMC10174080 DOI: 10.1021/acsnano.2c04337] [Citation(s) in RCA: 66] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Extracellular vesicles (EVs) are complex lipid membrane vehicles with variable expressions of molecular cargo, composed of diverse subpopulations that participate in the intercellular signaling of biological responses in disease. EV-based liquid biopsies demonstrate invaluable clinical potential for overhauling current practices of disease management. Yet, EV heterogeneity is a major needle-in-a-haystack challenge to translate their use into clinical practice. In this review, existing digital assays will be discussed to analyze EVs at a single vesicle resolution, and future opportunities to optimize the throughput, multiplexing, and sensitivity of current digital EV assays will be highlighted. Furthermore, this review will outline the challenges and opportunities that impact the clinical translation of single EV technologies for disease diagnostics and treatment monitoring.
Collapse
Affiliation(s)
- Renee-Tyler T Morales
- Department of Bioengineering, School of Engineering and Applied Sciences, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Jina Ko
- Department of Bioengineering, School of Engineering and Applied Sciences, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| |
Collapse
|
39
|
Ura B, Capaci V, Aloisio M, Di Lorenzo G, Romano F, Ricci G, Monasta L. A Targeted Proteomics Approach for Screening Serum Biomarkers Observed in the Early Stage of Type I Endometrial Cancer. Biomedicines 2022; 10:1857. [PMID: 36009404 PMCID: PMC9405144 DOI: 10.3390/biomedicines10081857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 07/22/2022] [Accepted: 07/28/2022] [Indexed: 11/16/2022] Open
Abstract
Endometrial cancer (EC) is the most common gynecologic malignancy, and it arises in the inner part of the uterus. Identification of serum biomarkers is essential for diagnosing the disease at an early stage. In this study, we selected 44 healthy controls and 44 type I EC at tumor stage 1, and we used the Immuno-oncology panel and the Target 96 Oncology III panel to simultaneously detect the levels of 92 cancer-related proteins in serum, using a proximity extension assay. By applying this methodology, we identified 20 proteins, associated with the outcome at binary logistic regression, with a p-value below 0.01 for the first panel and 24 proteins with a p-value below 0.02 for the second one. The final multivariate logistic regression model, combining proteins from the two panels, generated a model with a sensitivity of 97.67% and a specificity of 83.72%. These results support the use of the proposed algorithm after a validation phase.
Collapse
Affiliation(s)
- Blendi Ura
- Institute for Maternal and Child Health—IRCCS Burlo Garofolo, 34137 Trieste, Italy; (V.C.); (M.A.); (G.D.L.); (F.R.); (G.R.); (L.M.)
| | - Valeria Capaci
- Institute for Maternal and Child Health—IRCCS Burlo Garofolo, 34137 Trieste, Italy; (V.C.); (M.A.); (G.D.L.); (F.R.); (G.R.); (L.M.)
| | - Michelangelo Aloisio
- Institute for Maternal and Child Health—IRCCS Burlo Garofolo, 34137 Trieste, Italy; (V.C.); (M.A.); (G.D.L.); (F.R.); (G.R.); (L.M.)
| | - Giovanni Di Lorenzo
- Institute for Maternal and Child Health—IRCCS Burlo Garofolo, 34137 Trieste, Italy; (V.C.); (M.A.); (G.D.L.); (F.R.); (G.R.); (L.M.)
| | - Federico Romano
- Institute for Maternal and Child Health—IRCCS Burlo Garofolo, 34137 Trieste, Italy; (V.C.); (M.A.); (G.D.L.); (F.R.); (G.R.); (L.M.)
| | - Giuseppe Ricci
- Institute for Maternal and Child Health—IRCCS Burlo Garofolo, 34137 Trieste, Italy; (V.C.); (M.A.); (G.D.L.); (F.R.); (G.R.); (L.M.)
- Department of Medicine, Surgery and Health Sciences, University of Trieste, 34129 Trieste, Italy
| | - Lorenzo Monasta
- Institute for Maternal and Child Health—IRCCS Burlo Garofolo, 34137 Trieste, Italy; (V.C.); (M.A.); (G.D.L.); (F.R.); (G.R.); (L.M.)
| |
Collapse
|
40
|
Viktorsson K, Hååg P, Shah CH, Franzén B, Arapi V, Holmsten K, Sandström P, Lewensohn R, Ullén A. Profiling of extracellular vesicles of metastatic urothelial cancer patients to discover protein signatures related to treatment outcome. Mol Oncol 2022; 16:3620-3641. [PMID: 35838333 PMCID: PMC9580890 DOI: 10.1002/1878-0261.13288] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 05/21/2022] [Accepted: 07/13/2022] [Indexed: 11/19/2022] Open
Abstract
The prognosis of metastatic urothelial carcinoma (mUC) patients is poor, and early prediction of systemic therapy response would be valuable to improve outcome. In this exploratory study, we investigated protein profiles in sequential plasma‐isolated extracellular vesicles (EVs) from a subset of mUC patients treated within a Phase I trial with vinflunine combined with sorafenib. The isolated EVs were of exosome size and expressed exosome markers CD9, TSG101 and SYND‐1. We found, no association between EVs/ml plasma at baseline and progression‐free survival (PFS). Protein profiling of EVs, using an antibody‐based 92‐plex Proximity Extension Assay on the Oncology II® platform, revealed a heterogeneous protein expression pattern. Qlucore bioinformatic analyses put forward a protein signature comprising of SYND‐1, TNFSF13, FGF‐BP1, TFPI‐2, GZMH, ABL1 and ERBB3 to be putatively associated with PFS. Similarly, a protein signature from EVs that related to best treatment response was found, which included FR‐alpha, TLR 3, TRAIL and FASLG. Several of the markers in the PFS or best treatment response signatures were also identified by a machine learning classification algorithm. In conclusion, protein profiling of EVs isolated from plasma of mUC patients shows a potential to identify protein signatures that may associate with PFS and/or treatment response.
Collapse
Affiliation(s)
- Kristina Viktorsson
- Department of Oncology-Pathology, Karolinska Institutet, SE-171 64, Solna, Sweden
| | - Petra Hååg
- Department of Oncology-Pathology, Karolinska Institutet, SE-171 64, Solna, Sweden
| | - Carl-Henrik Shah
- Department of Oncology-Pathology, Karolinska Institutet, SE-171 64, Solna, Sweden.,Department of Pelvic cancer, Genitourinary oncology and urology unit, Karolinska University Hospital, SE-171 64, Solna, Sweden
| | - Bo Franzén
- Department of Oncology-Pathology, Karolinska Institutet, SE-171 64, Solna, Sweden
| | - Vasiliki Arapi
- Department of Oncology-Pathology, Karolinska Institutet, SE-171 64, Solna, Sweden
| | - Karin Holmsten
- Department of Oncology-Pathology, Karolinska Institutet, SE-171 64, Solna, Sweden.,Department of Oncology, Capio Sankt Görans Hospital, SE-112 19, Stockholm, Sweden
| | - Per Sandström
- Department of Oncology-Pathology, Karolinska Institutet, SE-171 64, Solna, Sweden
| | - Rolf Lewensohn
- Department of Oncology-Pathology, Karolinska Institutet, SE-171 64, Solna, Sweden.,Theme Cancer, Medical Unit head and neck, lung, and skin tumors, Thoracic Oncology Center, Karolinska University Hospital, SE-171 64, Solna, Sweden
| | - Anders Ullén
- Department of Oncology-Pathology, Karolinska Institutet, SE-171 64, Solna, Sweden.,Department of Pelvic cancer, Genitourinary oncology and urology unit, Karolinska University Hospital, SE-171 64, Solna, Sweden
| |
Collapse
|
41
|
Shaba E, Vantaggiato L, Governini L, Haxhiu A, Sebastiani G, Fignani D, Grieco GE, Bergantini L, Bini L, Landi C. Multi-Omics Integrative Approach of Extracellular Vesicles: A Future Challenging Milestone. Proteomes 2022; 10:proteomes10020012. [PMID: 35645370 PMCID: PMC9149947 DOI: 10.3390/proteomes10020012] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 04/14/2022] [Accepted: 04/19/2022] [Indexed: 02/01/2023] Open
Abstract
In the era of multi-omic sciences, dogma on singular cause-effect in physio-pathological processes is overcome and system biology approaches have been providing new perspectives to see through. In this context, extracellular vesicles (EVs) are offering a new level of complexity, given their role in cellular communication and their activity as mediators of specific signals to target cells or tissues. Indeed, their heterogeneity in terms of content, function, origin and potentiality contribute to the cross-interaction of almost every molecular process occurring in a complex system. Such features make EVs proper biological systems being, therefore, optimal targets of omic sciences. Currently, most studies focus on dissecting EVs content in order to either characterize it or to explore its role in various pathogenic processes at transcriptomic, proteomic, metabolomic, lipidomic and genomic levels. Despite valuable results being provided by individual omic studies, the categorization of EVs biological data might represent a limit to be overcome. For this reason, a multi-omic integrative approach might contribute to explore EVs function, their tissue-specific origin and their potentiality. This review summarizes the state-of-the-art of EVs omic studies, addressing recent research on the integration of EVs multi-level biological data and challenging developments in EVs origin.
Collapse
Affiliation(s)
- Enxhi Shaba
- Functional Proteomics Lab, Department of Life Sciences, University of Siena, 53100 Siena, Italy; (L.V.); (L.B.); (C.L.)
- Correspondence:
| | - Lorenza Vantaggiato
- Functional Proteomics Lab, Department of Life Sciences, University of Siena, 53100 Siena, Italy; (L.V.); (L.B.); (C.L.)
| | - Laura Governini
- Department of Molecular and Developmental Medicine, University of Siena, 53100 Siena, Italy; (L.G.); (A.H.)
| | - Alesandro Haxhiu
- Department of Molecular and Developmental Medicine, University of Siena, 53100 Siena, Italy; (L.G.); (A.H.)
| | - Guido Sebastiani
- Diabetes Unit, Department of Medicine, Surgery and Neurosciences, University of Siena, 53100 Siena, Italy; (G.S.); (D.F.); (G.E.G.)
- Fondazione Umberto Di Mario, c/o Toscana Life Sciences, 53100 Siena, Italy
| | - Daniela Fignani
- Diabetes Unit, Department of Medicine, Surgery and Neurosciences, University of Siena, 53100 Siena, Italy; (G.S.); (D.F.); (G.E.G.)
- Fondazione Umberto Di Mario, c/o Toscana Life Sciences, 53100 Siena, Italy
| | - Giuseppina Emanuela Grieco
- Diabetes Unit, Department of Medicine, Surgery and Neurosciences, University of Siena, 53100 Siena, Italy; (G.S.); (D.F.); (G.E.G.)
- Fondazione Umberto Di Mario, c/o Toscana Life Sciences, 53100 Siena, Italy
| | - Laura Bergantini
- Respiratory Diseases and Lung Transplant Unit, Department of Medical Sciences, Surgery and Neurosciences, University of Siena, 53100 Siena, Italy;
| | - Luca Bini
- Functional Proteomics Lab, Department of Life Sciences, University of Siena, 53100 Siena, Italy; (L.V.); (L.B.); (C.L.)
| | - Claudia Landi
- Functional Proteomics Lab, Department of Life Sciences, University of Siena, 53100 Siena, Italy; (L.V.); (L.B.); (C.L.)
| |
Collapse
|
42
|
Newman LA, Muller K, Rowland A. Circulating cell-specific extracellular vesicles as biomarkers for the diagnosis and monitoring of chronic liver diseases. Cell Mol Life Sci 2022; 79:232. [PMID: 35397694 PMCID: PMC8995281 DOI: 10.1007/s00018-022-04256-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Revised: 03/02/2022] [Accepted: 03/17/2022] [Indexed: 11/30/2022]
Abstract
AbstractChronic liver diseases represent a burgeoning health problem affecting billions of people worldwide. The insufficient performance of current minimally invasive tools is recognised as a significant barrier to the clinical management of these conditions. Extracellular vesicles (EVs) have emerged as a rich source of circulating biomarkers closely linked to pathological processes in originating tissues. Here, we summarise the contribution of EVs to normal liver function and to chronic liver pathologies; and explore the use of circulating EV biomarkers, with a particular focus on techniques to isolate and analyse cell- or tissue-specific EVs. Such approaches present a novel strategy to inform disease status and monitor changes in response to treatment in a minimally invasive manner. Emerging technologies that support the selective isolation and analysis of circulating EVs derived only from hepatic cells, have driven recent advancements in EV-based biomarker platforms for chronic liver diseases and show promise to bring these techniques to clinical settings.
Collapse
Affiliation(s)
- Lauren A Newman
- Department of Clinical Pharmacology, College of Medicine and Public Health, Flinders University, Adelaide, SA, Australia
| | - Kate Muller
- Department of Gastroenterology and Hepatology, College of Medicine and Public Health, Flinders Medical Centre, Adelaide, SA, Australia
| | - Andrew Rowland
- Department of Clinical Pharmacology, College of Medicine and Public Health, Flinders University, Adelaide, SA, Australia.
| |
Collapse
|
43
|
Lavin KM, Coen PM, Baptista LC, Bell MB, Drummer D, Harper SA, Lixandrão ME, McAdam JS, O’Bryan SM, Ramos S, Roberts LM, Vega RB, Goodpaster BH, Bamman MM, Buford TW. State of Knowledge on Molecular Adaptations to Exercise in Humans: Historical Perspectives and Future Directions. Compr Physiol 2022; 12:3193-3279. [PMID: 35578962 PMCID: PMC9186317 DOI: 10.1002/cphy.c200033] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
For centuries, regular exercise has been acknowledged as a potent stimulus to promote, maintain, and restore healthy functioning of nearly every physiological system of the human body. With advancing understanding of the complexity of human physiology, continually evolving methodological possibilities, and an increasingly dire public health situation, the study of exercise as a preventative or therapeutic treatment has never been more interdisciplinary, or more impactful. During the early stages of the NIH Common Fund Molecular Transducers of Physical Activity Consortium (MoTrPAC) Initiative, the field is well-positioned to build substantially upon the existing understanding of the mechanisms underlying benefits associated with exercise. Thus, we present a comprehensive body of the knowledge detailing the current literature basis surrounding the molecular adaptations to exercise in humans to provide a view of the state of the field at this critical juncture, as well as a resource for scientists bringing external expertise to the field of exercise physiology. In reviewing current literature related to molecular and cellular processes underlying exercise-induced benefits and adaptations, we also draw attention to existing knowledge gaps warranting continued research effort. © 2021 American Physiological Society. Compr Physiol 12:3193-3279, 2022.
Collapse
Affiliation(s)
- Kaleen M. Lavin
- Center for Exercise Medicine, The University of Alabama at Birmingham, Birmingham, Alabama, USA
- Department of Cell, Developmental, and Integrative Biology, The University of Alabama at Birmingham, Birmingham, Alabama, USA
- Center for Human Health, Resilience, and Performance, Institute for Human and Machine Cognition, Pensacola, Florida, USA
| | - Paul M. Coen
- Translational Research Institute for Metabolism and Diabetes, Advent Health, Orlando, Florida, USA
- Sanford Burnham Prebys Medical Discovery Institute, Orlando, Florida, USA
| | - Liliana C. Baptista
- Center for Exercise Medicine, The University of Alabama at Birmingham, Birmingham, Alabama, USA
- Department of Medicine, Division of Gerontology, Geriatrics and Palliative Care, The University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Margaret B. Bell
- Center for Exercise Medicine, The University of Alabama at Birmingham, Birmingham, Alabama, USA
- Department of Cell, Developmental, and Integrative Biology, The University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Devin Drummer
- Center for Exercise Medicine, The University of Alabama at Birmingham, Birmingham, Alabama, USA
- Department of Cell, Developmental, and Integrative Biology, The University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Sara A. Harper
- Center for Exercise Medicine, The University of Alabama at Birmingham, Birmingham, Alabama, USA
- Department of Medicine, Division of Gerontology, Geriatrics and Palliative Care, The University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Manoel E. Lixandrão
- Center for Exercise Medicine, The University of Alabama at Birmingham, Birmingham, Alabama, USA
- Department of Cell, Developmental, and Integrative Biology, The University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Jeremy S. McAdam
- Center for Exercise Medicine, The University of Alabama at Birmingham, Birmingham, Alabama, USA
- Department of Cell, Developmental, and Integrative Biology, The University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Samia M. O’Bryan
- Center for Exercise Medicine, The University of Alabama at Birmingham, Birmingham, Alabama, USA
- Department of Cell, Developmental, and Integrative Biology, The University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Sofhia Ramos
- Translational Research Institute for Metabolism and Diabetes, Advent Health, Orlando, Florida, USA
- Sanford Burnham Prebys Medical Discovery Institute, Orlando, Florida, USA
| | - Lisa M. Roberts
- Center for Exercise Medicine, The University of Alabama at Birmingham, Birmingham, Alabama, USA
- Department of Medicine, Division of Gerontology, Geriatrics and Palliative Care, The University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Rick B. Vega
- Translational Research Institute for Metabolism and Diabetes, Advent Health, Orlando, Florida, USA
- Sanford Burnham Prebys Medical Discovery Institute, Orlando, Florida, USA
| | - Bret H. Goodpaster
- Translational Research Institute for Metabolism and Diabetes, Advent Health, Orlando, Florida, USA
- Sanford Burnham Prebys Medical Discovery Institute, Orlando, Florida, USA
| | - Marcas M. Bamman
- Center for Exercise Medicine, The University of Alabama at Birmingham, Birmingham, Alabama, USA
- Department of Cell, Developmental, and Integrative Biology, The University of Alabama at Birmingham, Birmingham, Alabama, USA
- Center for Human Health, Resilience, and Performance, Institute for Human and Machine Cognition, Pensacola, Florida, USA
| | - Thomas W. Buford
- Center for Exercise Medicine, The University of Alabama at Birmingham, Birmingham, Alabama, USA
- Department of Medicine, Division of Gerontology, Geriatrics and Palliative Care, The University of Alabama at Birmingham, Birmingham, Alabama, USA
| |
Collapse
|
44
|
Role of Extracellular Vesicle-Based Cell-to-Cell Communication in Multiple Myeloma Progression. Cells 2021; 10:cells10113185. [PMID: 34831408 PMCID: PMC8625088 DOI: 10.3390/cells10113185] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 11/04/2021] [Accepted: 11/12/2021] [Indexed: 02/07/2023] Open
Abstract
Multiple myeloma (MM) progression closely depends on the bidirectional crosstalk between tumor cells and the surrounding microenvironment, which leads to the creation of a tumor supportive niche. Extracellular vesicles (EVs) have emerged as key players in the pathological interplay between the malignant clone and near/distal bone marrow (BM) cells through their biologically active cargo. Here, we describe the role of EVs derived from MM and BM cells in reprogramming the tumor microenvironment and in fostering bone disease, angiogenesis, immunosuppression, drug resistance, and, ultimately, tumor progression. We also examine the emerging role of EVs as new therapeutic agents for the treatment of MM, and their potential use as clinical biomarkers for early diagnosis, disease classification, and therapy monitoring.
Collapse
|
45
|
Wik L, Nordberg N, Broberg J, Björkesten J, Assarsson E, Henriksson S, Grundberg I, Pettersson E, Westerberg C, Liljeroth E, Falck A, Lundberg M. Proximity Extension Assay in Combination with Next-Generation Sequencing for High-throughput Proteome-wide Analysis. Mol Cell Proteomics 2021; 20:100168. [PMID: 34715355 PMCID: PMC8633680 DOI: 10.1016/j.mcpro.2021.100168] [Citation(s) in RCA: 155] [Impact Index Per Article: 38.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 10/14/2021] [Accepted: 10/21/2021] [Indexed: 01/21/2023] Open
Abstract
Understanding the dynamics of the human proteome is crucial for developing biomarkers to be used as measurable indicators for disease severity and progression, patient stratification, and drug development. The Proximity Extension Assay (PEA) is a technology that translates protein information into actionable knowledge by linking protein-specific antibodies to DNA-encoded tags. In this report we demonstrate how we have combined the unique PEA technology with an innovative and automated sample preparation and high-throughput sequencing readout enabling parallel measurement of nearly 1500 proteins in 96 samples generating close to 150,000 data points per run. This advancement will have a major impact on the discovery of new biomarkers for disease prediction and prognosis and contribute to the development of the rapidly evolving fields of wellness monitoring and precision medicine.
Collapse
|
46
|
Hu Y, Thaler J, Nieuwland R. Extracellular Vesicles in Human Milk. Pharmaceuticals (Basel) 2021; 14:1050. [PMID: 34681274 PMCID: PMC8539554 DOI: 10.3390/ph14101050] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 10/05/2021] [Accepted: 10/11/2021] [Indexed: 12/13/2022] Open
Abstract
Milk supports the growth and development of infants. An increasing number of mostly recent studies have demonstrated that milk contains a hitherto undescribed component called extracellular vesicles (EVs). This presents questions regarding why milk contains EVs and what their function is. Recently, we showed that EVs in human milk expose tissue factor, the protein that triggers coagulation or blood clotting, and that milk-derived EVs promote coagulation. Because bovine milk, which also contains EVs, completely lacks this coagulant activity, important differences are present in the biological functions of human milk-derived EVs between species. In this review, we will summarize the current knowledge regarding the presence and biochemical composition of milk EVs, their function(s) and potential clinical applications such as in probiotics, and the unique problems that milk EVs encounter in vivo, including survival of the gastrointestinal conditions encountered in the newborn. The main focus of this review will be human milk-derived EVs, but when available, we will also include information regarding non-human milk for comparison.
Collapse
Affiliation(s)
- Yong Hu
- Laboratory of Experimental Clinical Chemistry and Vesicle Observation Center, Amsterdam University Medical Center, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands;
- Biomedical Engineering & Physics, Amsterdam University Medical Center, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands
| | - Johannes Thaler
- Clinical Division of Haematology and Haemostaseology, Department of Medicine I, Medical University of Vienna, Währinger Gürtel 18–20, 1090 Vienna, Austria;
| | - Rienk Nieuwland
- Laboratory of Experimental Clinical Chemistry and Vesicle Observation Center, Amsterdam University Medical Center, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands;
| |
Collapse
|
47
|
Dadras MS, Caja L, Mezheyeuski A, Liu S, Gélabert C, Gomez-Puerto MC, Gallini R, Rubin CJ, Ten Dijke P, Heldin CH, Moustakas A. The polarity protein Par3 coordinates positively self-renewal and negatively invasiveness in glioblastoma. Cell Death Dis 2021; 12:932. [PMID: 34642295 PMCID: PMC8511086 DOI: 10.1038/s41419-021-04220-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2020] [Revised: 09/15/2021] [Accepted: 09/28/2021] [Indexed: 12/13/2022]
Abstract
Glioblastoma (GBM) is a brain malignancy characterized by invasiveness to the surrounding brain tissue and by stem-like cells, which propagate the tumor and may also regulate invasiveness. During brain development, polarity proteins, such as Par3, regulate asymmetric cell division of neuro-glial progenitors and neurite motility. We, therefore, studied the role of the Par3 protein (encoded by PARD3) in GBM. GBM patient transcriptomic data and patient-derived culture analysis indicated diverse levels of expression of PARD3 across and independent from subtypes. Multiplex immunolocalization in GBM tumors identified Par3 protein enrichment in SOX2-, CD133-, and NESTIN-positive (stem-like) cells. Analysis of GBM cultures of the three subtypes (proneural, classical, mesenchymal), revealed decreased gliomasphere forming capacity and enhanced invasiveness upon silencing Par3. GBM cultures with suppressed Par3 showed low expression of stemness (SOX2 and NESTIN) but higher expression of differentiation (GFAP) genes. Moreover, Par3 silencing reduced the expression of a set of genes encoding mitochondrial enzymes that generate ATP. Accordingly, silencing Par3 reduced ATP production and concomitantly increased reactive oxygen species. The latter was required for the enhanced migration observed upon silencing of Par3 as anti-oxidants blocked the enhanced migration. These findings support the notion that Par3 exerts homeostatic redox control, which could limit the tumor cell-derived pool of oxygen radicals, and thereby the tumorigenicity of GBM.
Collapse
Affiliation(s)
- Mahsa Shahidi Dadras
- Department of Medical Biochemistry and Microbiology, Science for Life Laboratory, Box 582, Biomedical Center, Uppsala University, SE-75123, Uppsala, Sweden.,Department of Immunology, Genetics and Pathology, Rudbeck Laboratory, Science for Life Laboratory, Uppsala University, SE-75185, Uppsala, Sweden.,Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, 10021, USA
| | - Laia Caja
- Department of Medical Biochemistry and Microbiology, Science for Life Laboratory, Box 582, Biomedical Center, Uppsala University, SE-75123, Uppsala, Sweden
| | - Artur Mezheyeuski
- Department of Immunology, Genetics and Pathology, Rudbeck Laboratory, Science for Life Laboratory, Uppsala University, SE-75185, Uppsala, Sweden
| | - Sijia Liu
- Department of Cell and Chemical Biology, Oncode Institute, Leiden University Medical Center, Leiden, The Netherlands
| | - Caroline Gélabert
- Department of Medical Biochemistry and Microbiology, Science for Life Laboratory, Box 582, Biomedical Center, Uppsala University, SE-75123, Uppsala, Sweden
| | - Maria Catalina Gomez-Puerto
- Department of Cell and Chemical Biology, Oncode Institute, Leiden University Medical Center, Leiden, The Netherlands
| | - Radiosa Gallini
- Department of Immunology, Genetics and Pathology, Rudbeck Laboratory, Science for Life Laboratory, Uppsala University, SE-75185, Uppsala, Sweden
| | - Carl-Johan Rubin
- Department of Medical Biochemistry and Microbiology, Science for Life Laboratory, Box 582, Biomedical Center, Uppsala University, SE-75123, Uppsala, Sweden
| | - Peter Ten Dijke
- Department of Cell and Chemical Biology, Oncode Institute, Leiden University Medical Center, Leiden, The Netherlands
| | - Carl-Henrik Heldin
- Department of Medical Biochemistry and Microbiology, Science for Life Laboratory, Box 582, Biomedical Center, Uppsala University, SE-75123, Uppsala, Sweden
| | - Aristidis Moustakas
- Department of Medical Biochemistry and Microbiology, Science for Life Laboratory, Box 582, Biomedical Center, Uppsala University, SE-75123, Uppsala, Sweden.
| |
Collapse
|
48
|
The Molecular Biology of Susceptibility to Post-Traumatic Stress Disorder: Highlights of Epigenetics and Epigenomics. Int J Mol Sci 2021; 22:ijms221910743. [PMID: 34639084 PMCID: PMC8509551 DOI: 10.3390/ijms221910743] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 09/28/2021] [Accepted: 09/29/2021] [Indexed: 12/13/2022] Open
Abstract
Exposure to trauma is one of the most important and prevalent risk factors for mental and physical ill-health. Excessive or prolonged stress exposure increases the risk of a wide variety of mental and physical symptoms. However, people differ strikingly in their susceptibility to develop signs and symptoms of mental illness after traumatic stress. Post-traumatic stress disorder (PTSD) is a debilitating disorder affecting approximately 8% of the world’s population during their lifetime, and typically develops after exposure to a traumatic event. Despite that exposure to potentially traumatizing events occurs in a large proportion of the general population, about 80–90% of trauma-exposed individuals do not develop PTSD, suggesting an inter-individual difference in vulnerability to PTSD. While the biological mechanisms underlying this differential susceptibility are unknown, epigenetic changes have been proposed to underlie the relationship between exposure to traumatic stress and the susceptibility to develop PTSD. Epigenetic mechanisms refer to environmentally sensitive modifications to DNA and RNA molecules that regulate gene transcription without altering the genetic sequence itself. In this review, we provide an overview of various molecular biological, biochemical and physiological alterations in PTSD, focusing on changes at the genomic and epigenomic level. Finally, we will discuss how current knowledge may aid us in early detection and improved management of PTSD patients.
Collapse
|
49
|
Nagelkerke A, Ojansivu M, van der Koog L, Whittaker TE, Cunnane EM, Silva AM, Dekker N, Stevens MM. Extracellular vesicles for tissue repair and regeneration: Evidence, challenges and opportunities. Adv Drug Deliv Rev 2021; 175:113775. [PMID: 33872693 DOI: 10.1016/j.addr.2021.04.013] [Citation(s) in RCA: 112] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 03/20/2021] [Accepted: 04/15/2021] [Indexed: 12/13/2022]
Abstract
Extracellular vesicles (EVs) are biological nanoparticles naturally secreted by cells, acting as delivery vehicles for molecular messages. During the last decade, EVs have been assigned multiple functions that have established their potential as therapeutic mediators for a variety of diseases and conditions. In this review paper, we report on the potential of EVs in tissue repair and regeneration. The regenerative properties that have been associated with EVs are explored, detailing the molecular cargo they carry that is capable of mediating such effects, the signaling cascades triggered in target cells and the functional outcome achieved. EV interactions and biodistribution in vivo that influence their regenerative effects are also described, particularly upon administration in combination with biomaterials. Finally, we review the progress that has been made for the successful implementation of EV regenerative therapies in a clinical setting.
Collapse
Affiliation(s)
- Anika Nagelkerke
- Pharmaceutical Analysis, Groningen Research Institute of Pharmacy, University of Groningen, P.O. Box 196, XB20, 9700 AD Groningen, the Netherlands.
| | - Miina Ojansivu
- Department of Medical Biochemistry and Biophysics, Karolinska Institute, Stockholm, Sweden.
| | - Luke van der Koog
- Molecular Pharmacology, Groningen Research Institute of Pharmacy, University of Groningen, P.O. Box 196, XB10, 9700 AD Groningen, the Netherlands; GRIAC Research Institute, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands.
| | - Thomas E Whittaker
- Department of Materials, Imperial College London, London, UK; Department of Bioengineering, Imperial College London, London, UK; Institute of Biomedical Engineering, Imperial College London, London, UK
| | - Eoghan M Cunnane
- Department of Materials, Imperial College London, London, UK; Department of Bioengineering, Imperial College London, London, UK; Institute of Biomedical Engineering, Imperial College London, London, UK.
| | - Andreia M Silva
- Discovery Biology, Discovery Sciences, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden.
| | - Niek Dekker
- Discovery Biology, Discovery Sciences, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden.
| | - Molly M Stevens
- Department of Medical Biochemistry and Biophysics, Karolinska Institute, Stockholm, Sweden; Department of Materials, Imperial College London, London, UK; Department of Bioengineering, Imperial College London, London, UK; Institute of Biomedical Engineering, Imperial College London, London, UK.
| |
Collapse
|
50
|
Fostering "Education": Do Extracellular Vesicles Exploit Their Own Delivery Code? Cells 2021; 10:cells10071741. [PMID: 34359911 PMCID: PMC8305232 DOI: 10.3390/cells10071741] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 07/06/2021] [Accepted: 07/08/2021] [Indexed: 12/15/2022] Open
Abstract
Extracellular vesicles (EVs), comprising large microvesicles (MVs) and exosomes (EXs), play a key role in intercellular communication, both in physiological and in a wide variety of pathological conditions. However, the education of EV target cells has so far mainly been investigated as a function of EX cargo, while few studies have focused on the characterization of EV surface membrane molecules and the mechanisms that mediate the addressability of specific EVs to different cell types and tissues. Identifying these mechanisms will help fulfill the diagnostic, prognostic, and therapeutic promises fueled by our growing knowledge of EVs. In this review, we first discuss published studies on the presumed EV “delivery code” and on the combinations of the hypothesized EV surface membrane “sender” and “recipient” molecules that may mediate EV targeting in intercellular communication. Then we briefly review the main experimental approaches and techniques, and the bioinformatic tools that can be used to identify and characterize the structure and functional role of EV surface membrane molecules. In the final part, we present innovative techniques and directions for future research that would improve and deepen our understandings of EV-cell targeting.
Collapse
|