1
|
Muñoz-Ruiz M, Llorian M, D'Antuono R, Pavlova A, Mavrigiannaki AM, McKenzie D, García-Cassani B, Iannitto ML, Wu Y, Dart R, Davies D, Jamal-Hanjani M, Jandke A, Ushakov DS, Hayday AC. IFN-γ-dependent interactions between tissue-intrinsic γδ T cells and tissue-infiltrating CD8 T cells limit allergic contact dermatitis. J Allergy Clin Immunol 2023; 152:1520-1540. [PMID: 37562754 DOI: 10.1016/j.jaci.2023.07.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 06/27/2023] [Accepted: 07/21/2023] [Indexed: 08/12/2023]
Abstract
BACKGROUND Elicitation of allergic contact dermatitis (ACD), an inflammatory type 4 hypersensitivity disease, induces skin infiltration by polyclonal effector CD8 αβ T cells and precursors of tissue-resident memory T (TRM) cells. Because TRM have long-term potential to contribute to body-surface immunoprotection and immunopathology, their local regulation needs a fuller understanding. OBJECTIVE We sought to investigate how TRM-cell maturation might be influenced by innate-like T cells pre-existing within many epithelia. METHODS This study examined CD8+ TRM-cell maturation following hapten-induced ACD in wild-type mice and in strains harboring altered compartments of dendritic intraepidermal γδ T cells (DETCs), a prototypic tissue-intrinsic, innate-like T-cell compartment that reportedly regulates ACD, but by no elucidated mechanism. RESULTS In addition to eliciting CD8 TRM, ACD induced DETC activation and an intimate coregulatory association of the 2 cell types. This depended on DETC sensing IFN-γ produced by CD8 cells and involved programmed death-ligand 1 (PD-L1). Thus, in mice lacking DETC or lacking IFN-γ receptor solely on γδ cells, ACD-elicited CD8 T cells showed enhanced proliferative and effector potentials and reduced motility, collectively associated with exaggerated ACD pathology. Comparable dysregulation was elicited by PD-L1 blockade in vitro, and IFN-γ-regulated PD-L1 expression was a trait of human skin-homing and intraepithelial γδ T cells. CONCLUSIONS The size and quality of the tissue-infiltrating CD8 T-cell response during ACD can be profoundly regulated by local innate-like T cells responding to IFN-γ and involving PD-L1. Thus, interindividual and tissue-specific variations in tissue-intrinsic lymphocytes may influence responses to allergens and other challenges and may underpin inflammatory pathologies such as those repeatedly observed in γδ T-cell-deficient settings.
Collapse
Affiliation(s)
- Miguel Muñoz-Ruiz
- Immunosurveillance Laboratory, The Francis Crick Institute, London, United Kingdom; Peter Gorer Department of Immunobiology, King's College London, London, United Kingdom; Department of Immunology, Ophthalmology and Ear, Nose and Throat, Complutense University School of Medicine and 12 de Octubre Health Research Institute, Madrid, Spain
| | - Miriam Llorian
- Bioinformatics and Biostatistics science technology platform (STP), The Francis Crick Institute, London, United Kingdom
| | - Rocco D'Antuono
- Light Microscopy STP, The Francis Crick Institute, London, United Kingdom
| | - Anna Pavlova
- Department of Biology, Division of Genetics, Nikolaus-Fiebiger-Center for Molecular Medicine, Erlangen, Germany
| | | | - Duncan McKenzie
- Immunosurveillance Laboratory, The Francis Crick Institute, London, United Kingdom; Peter Gorer Department of Immunobiology, King's College London, London, United Kingdom
| | - Bethania García-Cassani
- Development and Homeostasis of the Nervous System Laboratory, The Francis Crick Institute, London, United Kingdom
| | - Maria Luisa Iannitto
- Peter Gorer Department of Immunobiology, King's College London, London, United Kingdom
| | - Yin Wu
- Immunosurveillance Laboratory, The Francis Crick Institute, London, United Kingdom; Peter Gorer Department of Immunobiology, King's College London, London, United Kingdom; Centre for Inflammation Biology and Cancer Immunology, King's College London, London, United Kingdom
| | - Robin Dart
- Immunosurveillance Laboratory, The Francis Crick Institute, London, United Kingdom; Peter Gorer Department of Immunobiology, King's College London, London, United Kingdom
| | - Daniel Davies
- Immunosurveillance Laboratory, The Francis Crick Institute, London, United Kingdom; Peter Gorer Department of Immunobiology, King's College London, London, United Kingdom
| | - Mariam Jamal-Hanjani
- Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, London, United Kingdom
| | - Anett Jandke
- Immunosurveillance Laboratory, The Francis Crick Institute, London, United Kingdom; Peter Gorer Department of Immunobiology, King's College London, London, United Kingdom
| | - Dmitry S Ushakov
- Immunosurveillance Laboratory, The Francis Crick Institute, London, United Kingdom; Peter Gorer Department of Immunobiology, King's College London, London, United Kingdom; Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Greifswald-Insel Riems, Germany
| | - Adrian C Hayday
- Immunosurveillance Laboratory, The Francis Crick Institute, London, United Kingdom; Peter Gorer Department of Immunobiology, King's College London, London, United Kingdom; Centre for Inflammation Biology and Cancer Immunology, King's College London, London, United Kingdom.
| |
Collapse
|
2
|
Sotolongo Bellón J, Birkholz O, Richter CP, Eull F, Kenneweg H, Wilmes S, Rothbauer U, You C, Walter MR, Kurre R, Piehler J. Four-color single-molecule imaging with engineered tags resolves the molecular architecture of signaling complexes in the plasma membrane. CELL REPORTS METHODS 2022; 2:100165. [PMID: 35474965 PMCID: PMC9017138 DOI: 10.1016/j.crmeth.2022.100165] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 11/19/2021] [Accepted: 01/13/2022] [Indexed: 12/22/2022]
Abstract
Localization and tracking of individual receptors by single-molecule imaging opens unique possibilities to unravel the assembly and dynamics of signaling complexes in the plasma membrane. We present a comprehensive workflow for imaging and analyzing receptor diffusion and interaction in live cells at single molecule level with up to four colors. Two engineered, monomeric GFP variants, which are orthogonally recognized by anti-GFP nanobodies, are employed for efficient and selective labeling of target proteins in the plasma membrane with photostable fluorescence dyes. This labeling technique enables us to quantitatively resolve the stoichiometry and dynamics of the interferon-γ (IFNγ) receptor signaling complex in the plasma membrane of living cells by multicolor single-molecule imaging. Based on versatile spatial and spatiotemporal correlation analyses, we identify ligand-induced receptor homo- and heterodimerization. Multicolor single-molecule co-tracking and quantitative single-molecule Förster resonance energy transfer moreover reveals transient assembly of IFNγ receptor heterotetramers and confirms its structural architecture.
Collapse
Affiliation(s)
- Junel Sotolongo Bellón
- Department of Biology and Center for Cellular Nanoanalytics (CellNanOs), Osnabrück University, Osnabrück, Germany
| | - Oliver Birkholz
- Department of Biology and Center for Cellular Nanoanalytics (CellNanOs), Osnabrück University, Osnabrück, Germany
| | - Christian P. Richter
- Department of Biology and Center for Cellular Nanoanalytics (CellNanOs), Osnabrück University, Osnabrück, Germany
| | - Florian Eull
- Department of Biology and Center for Cellular Nanoanalytics (CellNanOs), Osnabrück University, Osnabrück, Germany
| | - Hella Kenneweg
- Department of Biology and Center for Cellular Nanoanalytics (CellNanOs), Osnabrück University, Osnabrück, Germany
| | - Stephan Wilmes
- Department of Biology and Center for Cellular Nanoanalytics (CellNanOs), Osnabrück University, Osnabrück, Germany
- Division of Cell Signalling and Immunology, University of Dundee, School of Life Sciences, Dundee, UK
| | - Ulrich Rothbauer
- Pharmaceutical Biotechnology, Eberhard-Karls-University, Tübingen, Germany
- NMI Natural and Medical Sciences Institute at the University of Tübingen, Reutlingen, Germany
| | - Changjiang You
- Department of Biology and Center for Cellular Nanoanalytics (CellNanOs), Osnabrück University, Osnabrück, Germany
| | - Mark R. Walter
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Rainer Kurre
- Department of Biology and Center for Cellular Nanoanalytics (CellNanOs), Osnabrück University, Osnabrück, Germany
| | - Jacob Piehler
- Department of Biology and Center for Cellular Nanoanalytics (CellNanOs), Osnabrück University, Osnabrück, Germany
| |
Collapse
|
3
|
Tarasov SA, Gorbunov EA, Don ES, Emelyanova AG, Kovalchuk AL, Yanamala N, Schleker ASS, Klein-Seetharaman J, Groenestein R, Tafani JP, van der Meide P, Epstein OI. Insights into the Mechanism of Action of Highly Diluted Biologics. THE JOURNAL OF IMMUNOLOGY 2020; 205:1345-1354. [PMID: 32727888 DOI: 10.4049/jimmunol.2000098] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Accepted: 07/04/2020] [Indexed: 12/12/2022]
Abstract
The therapeutic use of Abs in cancer, autoimmunity, transplantation, and other fields is among the major biopharmaceutical advances of the 20th century. Broader use of Ab-based drugs is constrained because of their high production costs and frequent side effects. One promising approach to overcome these limitations is the use of highly diluted Abs, which are produced by gradual reduction of an Ab concentration to an extremely low level. This technology was used to create a group of drugs for the treatment of various diseases, depending on the specificity of the used Abs. Highly diluted Abs to IFN-γ (hd-anti-IFN-γ) have been demonstrated to be efficacious against influenza and other respiratory infections in a variety of preclinical and clinical studies. In the current study, we provide evidence for a possible mechanism of action of hd-anti-IFN-γ. Using high-resolution solution nuclear magnetic resonance spectroscopy, we show that the drug induced conformational changes in the IFN-γ molecule. Chemical shift changes occurred in the amino acids located primarily at the dimer interface and at the C-terminal region of IFN-γ. These molecular changes could be crucial for the function of the protein, as evidenced by an observed hd-anti-IFN-γ-induced increase in the specific binding of IFN-γ to its receptor in U937 cells, enhanced induced production of IFN-γ in human PBMC culture, and increased survival of influenza A-infected mice.
Collapse
Affiliation(s)
- Sergey A Tarasov
- OOO "NPF "Materia Medica Holding," 127473 Moscow, Russian Federation.,The Institute of General Pathology and Pathophysiology, 125315 Moscow, Russian Federation
| | | | - Elena S Don
- OOO "NPF "Materia Medica Holding," 127473 Moscow, Russian Federation.,The Institute of General Pathology and Pathophysiology, 125315 Moscow, Russian Federation
| | - Alexandra G Emelyanova
- OOO "NPF "Materia Medica Holding," 127473 Moscow, Russian Federation.,The Institute of General Pathology and Pathophysiology, 125315 Moscow, Russian Federation
| | | | - Naveena Yanamala
- Department of Structural Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15260
| | - A Sylvia S Schleker
- Department of Structural Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15260
| | - Judith Klein-Seetharaman
- Department of Structural Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15260
| | | | | | | | - Oleg I Epstein
- OOO "NPF "Materia Medica Holding," 127473 Moscow, Russian Federation.,The Institute of General Pathology and Pathophysiology, 125315 Moscow, Russian Federation
| |
Collapse
|
4
|
Wilmes S, Hafer M, Vuorio J, Tucker JA, Winkelmann H, Löchte S, Stanly TA, Pulgar Prieto KD, Poojari C, Sharma V, Richter CP, Kurre R, Hubbard SR, Garcia KC, Moraga I, Vattulainen I, Hitchcock IS, Piehler J. Mechanism of homodimeric cytokine receptor activation and dysregulation by oncogenic mutations. Science 2020; 367:643-652. [PMID: 32029621 PMCID: PMC8117407 DOI: 10.1126/science.aaw3242] [Citation(s) in RCA: 113] [Impact Index Per Article: 22.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Revised: 10/08/2019] [Accepted: 12/20/2019] [Indexed: 12/11/2022]
Abstract
Homodimeric class I cytokine receptors are assumed to exist as preformed dimers that are activated by ligand-induced conformational changes. We quantified the dimerization of three prototypic class I cytokine receptors in the plasma membrane of living cells by single-molecule fluorescence microscopy. Spatial and spatiotemporal correlation of individual receptor subunits showed ligand-induced dimerization and revealed that the associated Janus kinase 2 (JAK2) dimerizes through its pseudokinase domain. Oncogenic receptor and hyperactive JAK2 mutants promoted ligand-independent dimerization, highlighting the formation of receptor dimers as the switch responsible for signal activation. Atomistic modeling and molecular dynamics simulations based on a detailed energetic analysis of the interactions involved in dimerization yielded a mechanistic blueprint for homodimeric class I cytokine receptor activation and its dysregulation by individual mutations.
Collapse
Affiliation(s)
- Stephan Wilmes
- Department of Biology and Center of Cellular Nanoanalytics, University of Osnabrück, 49076 Osnabrück, Germany
- Division of Cell Signalling and Immunology, School of Life Sciences, University of Dundee, Dundee, UK
| | - Maximillian Hafer
- Department of Biology and Center of Cellular Nanoanalytics, University of Osnabrück, 49076 Osnabrück, Germany
| | - Joni Vuorio
- Department of Physics, University of Helsinki, Helsinki, Finland
- Computational Physics Laboratory, Tampere University, Tampere, Finland
| | - Julie A Tucker
- York Biomedical Research Institute and Department of Biology, University of York, Heslington, York YO10 5DD, UK
| | - Hauke Winkelmann
- Department of Biology and Center of Cellular Nanoanalytics, University of Osnabrück, 49076 Osnabrück, Germany
| | - Sara Löchte
- Department of Biology and Center of Cellular Nanoanalytics, University of Osnabrück, 49076 Osnabrück, Germany
| | - Tess A Stanly
- York Biomedical Research Institute and Department of Biology, University of York, Heslington, York YO10 5DD, UK
| | - Katiuska D Pulgar Prieto
- York Biomedical Research Institute and Department of Biology, University of York, Heslington, York YO10 5DD, UK
| | - Chetan Poojari
- Department of Physics, University of Helsinki, Helsinki, Finland
| | - Vivek Sharma
- Department of Physics, University of Helsinki, Helsinki, Finland
- Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | - Christian P Richter
- Department of Biology and Center of Cellular Nanoanalytics, University of Osnabrück, 49076 Osnabrück, Germany
| | - Rainer Kurre
- Department of Biology and Center of Cellular Nanoanalytics, University of Osnabrück, 49076 Osnabrück, Germany
| | - Stevan R Hubbard
- Skirball Institute and Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, NY, USA
| | - K Christopher Garcia
- Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, CA, USA
- Department of Molecular and Cellular Physiology and Department of Structural Biology, Stanford University School of Medicine, Stanford, CA, USA
| | - Ignacio Moraga
- Division of Cell Signalling and Immunology, School of Life Sciences, University of Dundee, Dundee, UK
| | - Ilpo Vattulainen
- Department of Physics, University of Helsinki, Helsinki, Finland.
- Computational Physics Laboratory, Tampere University, Tampere, Finland
| | - Ian S Hitchcock
- York Biomedical Research Institute and Department of Biology, University of York, Heslington, York YO10 5DD, UK.
| | - Jacob Piehler
- Department of Biology and Center of Cellular Nanoanalytics, University of Osnabrück, 49076 Osnabrück, Germany.
| |
Collapse
|
5
|
Mendoza JL, Escalante NK, Jude KM, Sotolongo Bellon J, Su L, Horton TM, Tsutsumi N, Berardinelli SJ, Haltiwanger RS, Piehler J, Engleman EG, Garcia KC. Structure of the IFNγ receptor complex guides design of biased agonists. Nature 2019; 567:56-60. [PMID: 30814731 PMCID: PMC6561087 DOI: 10.1038/s41586-019-0988-7] [Citation(s) in RCA: 77] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Accepted: 01/25/2019] [Indexed: 01/09/2023]
Abstract
The cytokine interferon-γ (IFNγ) is a central coordinator of innate and adaptive immunity, but its highly pleiotropic actions have diminished its prospects for use as an immunotherapeutic agent. Here, we took a structure-based approach to decoupling IFNγ pleiotropy. We engineered an affinity-enhanced variant of the ligand-binding chain of the IFNγ receptor IFNγR1, which enabled us to determine the crystal structure of the complete hexameric (2:2:2) IFNγ-IFNγR1-IFNγR2 signalling complex at 3.25 Å resolution. The structure reveals the mechanism underlying deficits in IFNγ responsiveness in mycobacterial disease syndrome resulting from a T168N mutation in IFNγR2, which impairs assembly of the full signalling complex. The topology of the hexameric complex offers a blueprint for engineering IFNγ variants to tune IFNγ receptor signalling output. Unexpectedly, we found that several partial IFNγ agonists exhibited biased gene-expression profiles. These biased agonists retained the ability to induce upregulation of major histocompatibility complex class I antigen expression, but exhibited impaired induction of programmed death-ligand 1 expression in a wide range of human cancer cell lines, offering a route to decoupling immunostimulatory and immunosuppressive functions of IFNγ for therapeutic applications.
Collapse
Affiliation(s)
- Juan L Mendoza
- Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, CA, USA
- Departments of Molecular and Cellular Physiology and Structural Biology, Stanford University School of Medicine, Stanford, CA, USA
- Institute for Molecular Engineering and Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, IL, USA
| | - Nichole K Escalante
- Stanford Blood Center, Palo Alto, CA, USA
- Department of Pathology, School of Medicine, Stanford University, Palo Alto, CA, USA
| | - Kevin M Jude
- Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, CA, USA
- Departments of Molecular and Cellular Physiology and Structural Biology, Stanford University School of Medicine, Stanford, CA, USA
| | - Junel Sotolongo Bellon
- Division of Biophysics, Department of Biology, University of Osnabruck, Osnabruck, Germany
| | - Leon Su
- Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, CA, USA
- Departments of Molecular and Cellular Physiology and Structural Biology, Stanford University School of Medicine, Stanford, CA, USA
| | - Tim M Horton
- Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, CA, USA
- Departments of Molecular and Cellular Physiology and Structural Biology, Stanford University School of Medicine, Stanford, CA, USA
| | - Naotaka Tsutsumi
- Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, CA, USA
- Departments of Molecular and Cellular Physiology and Structural Biology, Stanford University School of Medicine, Stanford, CA, USA
| | | | | | - Jacob Piehler
- Division of Biophysics, Department of Biology, University of Osnabruck, Osnabruck, Germany
| | - Edgar G Engleman
- Stanford Blood Center, Palo Alto, CA, USA
- Department of Pathology, School of Medicine, Stanford University, Palo Alto, CA, USA
| | - K Christopher Garcia
- Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, CA, USA.
- Departments of Molecular and Cellular Physiology and Structural Biology, Stanford University School of Medicine, Stanford, CA, USA.
| |
Collapse
|
6
|
Wilbers RHP, van Raaij DR, Westerhof LB, Bakker J, Smant G, Schots A. Re-evaluation of IL-10 signaling reveals novel insights on the contribution of the intracellular domain of the IL-10R2 chain. PLoS One 2017; 12:e0186317. [PMID: 29016674 PMCID: PMC5634637 DOI: 10.1371/journal.pone.0186317] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Accepted: 09/28/2017] [Indexed: 01/25/2023] Open
Abstract
Interleukin-10 (IL-10) is an anti-inflammatory cytokine that plays a key role in maintaining immune homeostasis. IL-10-mediated responses are triggered upon binding to a heterodimeric receptor complex consisting of IL-10 receptor (IL-10R)1 and IL-10R2. Engagement of the IL-10R complex activates the intracellular kinases Jak1 and Tyk2, but the exact roles of IL-10R2 and IL-10R2-associated signaling via Tyk2 remain unclear. To elucidate the contribution of IL-10R2 and its signaling to IL-10 activity, we re-evaluated IL-10-mediated responses on bone marrow-derived dendritic cells, macrophages and mast cells. By using bone marrow from IL-10R-/- mice it was revealed that IL-10-mediated responses depend on both IL-10R1 and IL-10R2 in all three cell types. On the contrary, bone marrow-derived cells from Tyk2-/- mice showed similar responses to IL-10 as wild-type cells, indicating that signaling via this IL-10R2-associated kinase only plays a limited role. Tyk2 was shown to control the amplitude of STAT3 activation and the up-regulation of downstream SOCS3 expression. SOCS3 up-regulation was found to be cell-type dependent and correlated with the lack of early suppression of LPS-induced TNF-α in dendritic cells. Further investigation of the IL-10R complex revealed that both the extracellular and intracellular domains of IL-10R2 influence the conformation of IL-10R1 and that both domains were required for transducing IL-10 signals. This observation highlights a novel role for the intracellular domain of IL-10R2 in the molecular mechanisms of IL-10R activation.
Collapse
Affiliation(s)
- Ruud H. P. Wilbers
- Wageningen University and Research, Plant Sciences Group, Laboratory of Nematology, Wageningen, The Netherlands
| | - Debbie R. van Raaij
- Wageningen University and Research, Plant Sciences Group, Laboratory of Nematology, Wageningen, The Netherlands
| | - Lotte B. Westerhof
- Wageningen University and Research, Plant Sciences Group, Laboratory of Nematology, Wageningen, The Netherlands
| | - Jaap Bakker
- Wageningen University and Research, Plant Sciences Group, Laboratory of Nematology, Wageningen, The Netherlands
| | - Geert Smant
- Wageningen University and Research, Plant Sciences Group, Laboratory of Nematology, Wageningen, The Netherlands
| | - Arjen Schots
- Wageningen University and Research, Plant Sciences Group, Laboratory of Nematology, Wageningen, The Netherlands
| |
Collapse
|
7
|
van de Vosse E, van Dissel JT. IFN-γR1 defects: Mutation update and description of the IFNGR1 variation database. Hum Mutat 2017; 38:1286-1296. [PMID: 28744922 DOI: 10.1002/humu.23302] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2017] [Revised: 07/20/2017] [Accepted: 07/23/2017] [Indexed: 12/29/2022]
Abstract
IFN-γ signaling is essential for the innate immune defense against mycobacterial infections. IFN-γ signals through the IFN-γ receptor, which consists of a tetramer of two IFN-γR1 chains in complex with two IFN-γR2 chains, where IFN-γR1 is the ligand-binding chain of the interferon-γ receptor and IFN-γR2 is the signal-transducing chain of the IFN-γ receptor. Germline mutations in the gene IFNGR1 encoding the IFN-γR1 cause a primary immunodeficiency that mainly leads to mycobacterial infections. Here, we review the molecular basis of this immunodeficiency in the 130 individuals described to date, and report mutations in five new individuals, bringing the total number to 135 individuals from 98 kindreds. Forty unique IFNGR1 mutations have been reported and they exert either an autosomal dominant or an autosomal recessive effect. Mutations resulting in premature stopcodons represent the majority of IFNGR1 mutations (60%; 24 out of 40), followed by amino acid substitutions (28%, 11 out of 40). All known mutations, as well as 287 other variations, have been deposited in the online IFNGR1 variation database (www.LOVD.nl/IFNGR1). In this article, we review the function of IFN-γR1 and molecular genetics of human IFNGR1.
Collapse
Affiliation(s)
- Esther van de Vosse
- Department of Infectious Diseases, Leiden University Medical Center, Leiden, The Netherlands
| | - Jaap T van Dissel
- Department of Infectious Diseases, Leiden University Medical Center, Leiden, The Netherlands
| |
Collapse
|
8
|
Synthetic Deletion of the Interleukin 23 Receptor (IL-23R) Stalk Region Led to Autonomous IL-23R Homodimerization and Activation. Mol Cell Biol 2017. [PMID: 28630278 DOI: 10.1128/mcb.00014-17] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Interleukin 23 (IL-23) regulates the development of TH17 cells, which are important for antimicrobial and antifungal responses and autoimmune and chronic inflammatory diseases. IL-23-induced Jak/STAT signaling is mediated via the heterodimeric IL-23 receptor (IL-23R)-IL-12 receptor β1 (IL-12Rβ1) complex. The typical signal-transducing receptor of the IL-6/IL-12 family contains three extracellular-membrane-proximal fibronectin type III (FNIII) domains, which are not involved in cytokine binding but are mandatory for signal transduction. In place of FNIII-type domains, IL-23R has a structurally undefined stalk. We hypothesized that the IL-23R stalk acts as a spacer to position the cytokine binding domains at a defined distance from the plasma membrane to enable signal transduction. Minor deletions of the murine, but not of the human, IL-23R stalk resulted in unresponsiveness to IL-23. Complete deletion of the human IL-23R stalk and the extended murine IL-23R stalk, including a 20-amino-acid-long duplication of domain 3, however, induced ligand-independent, autonomous receptor activation, as determined by STAT3 phosphorylation and cell proliferation. Ligand-independent, autonomous activity was caused by IL-23R homodimers and was independent of IL-12Rβ1. Our data show that deletion of the stalk results in biologically active IL-23R homodimers, thereby creating an as-yet-undescribed receptor complex of the IL-6/IL-12 cytokine family.
Collapse
|
9
|
Li H, Sharma N, General IJ, Schreiber G, Bahar I. Dynamic Modulation of Binding Affinity as a Mechanism for Regulating Interferon Signaling. J Mol Biol 2017; 429:2571-2589. [PMID: 28648616 PMCID: PMC5545807 DOI: 10.1016/j.jmb.2017.06.011] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Revised: 06/15/2017] [Accepted: 06/16/2017] [Indexed: 12/22/2022]
Abstract
How structural dynamics affects cytokine signaling is under debate. Here, we investigated the dynamics of the type I interferon (IFN) receptor, IFNAR1, and its effect on signaling upon binding IFN and IFNAR2 using a combination of structure-based mechanistic studies, in situ binding, and gene induction assays. Our study reveals that IFNAR1 flexibility modulates ligand-binding affinity, which, in turn, regulates biological signaling. We identified the hinge sites and key interactions implicated in IFNAR1 inter-subdomain (SD1-SD4) movements. We showed that the predicted cooperative movements are essential to accommodate intermolecular interactions. Engineered disulfide bridges, computationally predicted to interfere with IFNAR1 dynamics, were experimentally confirmed. Notably, introducing disulfide bonds between subdomains SD2 and SD3 modulated IFN binding and activity in accordance with the relative attenuation of cooperative movements with varying distance from the hinge center, whereas locking the SD3-SD4 interface flexibility in favor of an extended conformer increased activity.
Collapse
Affiliation(s)
- Hongchun Li
- Department of Computational and Systems Biology, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Nanaocha Sharma
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Ignacio J General
- Department of Computational and Systems Biology, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA; School of Science and Technology, and CONICET, Universidad Nacional de San Martin, San Martin, Buenos Aires 1650, Argentina
| | - Gideon Schreiber
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot 76100, Israel.
| | - Ivet Bahar
- Department of Computational and Systems Biology, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA.
| |
Collapse
|
10
|
Ligand-induced type II interleukin-4 receptor dimers are sustained by rapid re-association within plasma membrane microcompartments. Nat Commun 2017; 8:15976. [PMID: 28706306 PMCID: PMC5519985 DOI: 10.1038/ncomms15976] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2016] [Accepted: 05/16/2017] [Indexed: 12/14/2022] Open
Abstract
The spatiotemporal organization of cytokine receptors in the plasma membrane is still debated with models ranging from ligand-independent receptor pre-dimerization to ligand-induced receptor dimerization occurring only after receptor uptake into endosomes. Here, we explore the molecular and cellular determinants governing the assembly of the type II interleukin-4 receptor, taking advantage of various agonists binding the receptor subunits with different affinities and rate constants. Quantitative kinetic studies using artificial membranes confirm that receptor dimerization is governed by the two-dimensional ligand–receptor interactions and identify a critical role of the transmembrane domain in receptor dimerization. Single molecule localization microscopy at physiological cell surface expression levels, however, reveals efficient ligand-induced receptor dimerization by all ligands, largely independent of receptor binding affinities, in line with the similar STAT6 activation potencies observed for all IL-4 variants. Detailed spatiotemporal analyses suggest that kinetic trapping of receptor dimers in actin-dependent microcompartments sustains robust receptor dimerization and signalling. The contribution of ligands for cytokine receptor dimerization is still not fully understood. Here, the authors show the efficient ligand-induced dimerization of type II interleukin-4 receptor at the plasma membrane and the kinetic trapping of signalling complexes by actin-dependent membrane microdomains.
Collapse
|
11
|
Blouin CM, Hamon Y, Gonnord P, Boularan C, Kagan J, Viaris de Lesegno C, Ruez R, Mailfert S, Bertaux N, Loew D, Wunder C, Johannes L, Vogt G, Contreras FX, Marguet D, Casanova JL, Galès C, He HT, Lamaze C. Glycosylation-Dependent IFN-γR Partitioning in Lipid and Actin Nanodomains Is Critical for JAK Activation. Cell 2016; 166:920-934. [PMID: 27499022 DOI: 10.1016/j.cell.2016.07.003] [Citation(s) in RCA: 92] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2015] [Revised: 04/21/2016] [Accepted: 07/05/2016] [Indexed: 02/04/2023]
Abstract
Understanding how membrane nanoscale organization controls transmembrane receptors signaling activity remains a challenge. We studied interferon-γ receptor (IFN-γR) signaling in fibroblasts from homozygous patients with a T168N mutation in IFNGR2. By adding a neo-N-glycan on IFN-γR2 subunit, this mutation blocks IFN-γ activity by unknown mechanisms. We show that the lateral diffusion of IFN-γR2 is confined by sphingolipid/cholesterol nanodomains. In contrast, the IFN-γR2 T168N mutant diffusion is confined by distinct actin nanodomains where conformational changes required for Janus-activated tyrosine kinase/signal transducer and activator of transcription (JAK/STAT) activation by IFN-γ could not occur. Removing IFN-γR2 T168N-bound galectins restored lateral diffusion in lipid nanodomains and JAK/STAT signaling in patient cells, whereas adding galectins impaired these processes in control cells. These experiments prove the critical role of dynamic receptor interactions with actin and lipid nanodomains and reveal a new function for receptor glycosylation and galectins. Our study establishes the physiological relevance of membrane nanodomains in the control of transmembrane receptor signaling in vivo. VIDEO ABSTRACT.
Collapse
Affiliation(s)
- Cédric M Blouin
- Institut Curie, PSL Research University, CNRS UMR3666, INSERM U1143, 75005 Paris, France
| | - Yannick Hamon
- Centre d'Immunologie de Marseille-Luminy, Aix Marseille Université, Inserm, CNRS, Marseille, France
| | - Pauline Gonnord
- Centre de Physiologie Toulouse-Purpan (CPTP), INSERM U1043, 31300 Toulouse, France
| | - Cédric Boularan
- Institut des Maladies Métaboliques et Cardiovasculaires, Université Toulouse III Paul Sabatier, INSERM U1048, 31432 Toulouse, France
| | - Jérémy Kagan
- Institut Curie, PSL Research University, CNRS UMR3666, INSERM U1143, 75005 Paris, France
| | | | - Richard Ruez
- Institut Curie, PSL Research University, CNRS UMR3666, INSERM U1143, 75005 Paris, France
| | - Sébastien Mailfert
- Centre d'Immunologie de Marseille-Luminy, Aix Marseille Université, Inserm, CNRS, Marseille, France
| | - Nicolas Bertaux
- Institut Fresnel, Aix Marseille Université, Centrale Marseille, CNRS, Marseille, France
| | - Damarys Loew
- Proteomics and Mass Spectrometry Laboratory, Institut Curie, PSL Research University, 75005 Paris, France
| | - Christian Wunder
- Institut Curie, PSL Research University, CNRS UMR3666, INSERM U1143, 75005 Paris, France
| | - Ludger Johannes
- Institut Curie, PSL Research University, CNRS UMR3666, INSERM U1143, 75005 Paris, France
| | - Guillaume Vogt
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY 10065, USA; Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Necker Hospital for Sick Children, Imagine Institute, INSERM UMR1163, 75015 Paris, France; University Paris Descartes, 75006 Paris, France
| | - Francesc-Xabier Contreras
- Instituto Biofísica (UPV/EHU, CSIC), P.O. Box 644, 48080 Bilbao, Spain; Departamento de Bioquímica y Biologia Molecular, Universidad del País Vasco, P.O. Box 644, 48080 Bilbao, Spain; IKERBASQUE, Basque Foundation for Science, 48011 Bilbao, Spain
| | - Didier Marguet
- Centre d'Immunologie de Marseille-Luminy, Aix Marseille Université, Inserm, CNRS, Marseille, France
| | - Jean-Laurent Casanova
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY 10065, USA; Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Necker Hospital for Sick Children, Imagine Institute, INSERM UMR1163, 75015 Paris, France; University Paris Descartes, 75006 Paris, France; Howard Hughes Medical Institute, New York, NY 10065, USA; Pediatric Hematology-Immunology Unit, Necker Hospital for Sick Children, 75015 Paris, France
| | - Céline Galès
- Institut des Maladies Métaboliques et Cardiovasculaires, Université Toulouse III Paul Sabatier, INSERM U1048, 31432 Toulouse, France
| | - Hai-Tao He
- Centre d'Immunologie de Marseille-Luminy, Aix Marseille Université, Inserm, CNRS, Marseille, France.
| | - Christophe Lamaze
- Institut Curie, PSL Research University, CNRS UMR3666, INSERM U1143, 75005 Paris, France.
| |
Collapse
|
12
|
Sharma N, Longjam G, Schreiber G. Type I Interferon Signaling Is Decoupled from Specific Receptor Orientation through Lenient Requirements of the Transmembrane Domain. J Biol Chem 2015; 291:3371-84. [PMID: 26679999 DOI: 10.1074/jbc.m115.686071] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2015] [Indexed: 01/09/2023] Open
Abstract
Type I interferons serve as the first line of defense against pathogen invasion. Binding of IFNs to its receptors, IFNAR1 and IFNAR2, is leading to activation of the IFN response. To determine whether structural perturbations observed during binding are propagated to the cytoplasmic domain, multiple mutations were introduced into the transmembrane helix and its surroundings. Insertion of one to five alanine residues near either the N or C terminus of the transmembrane domain (TMD) likely promotes a rotation of 100° and a translation of 1.5 Å per added residue. Surprisingly, the added alanines had little effect on the binding affinity of IFN to the cell surface receptors, STAT phosphorylation, or gene induction. Similarly, substitution of the juxtamembrane residues of the TMD with alanines, or replacement of the TMD of IFNAR1 with that of IFNAR2, did not affect IFN binding or activity. Finally, only the addition of 10 serine residues (but not 2 or 4) between the extracellular domain of IFNAR1 and the TMD had some effect on signaling. Bioinformatic analysis shows a correlation between high sequence conservation of TMDs of cytokine receptors and the ability to transmit structural signals. Sequence conservation near the TMD of IFNAR1 is low, suggesting limited functional importance for this region. Our results suggest that IFN binding to the extracellular domains of IFNAR1 and IFNAR2 promotes proximity between the intracellular domains and that differential signaling is a function of duration of activation and affinity of binding rather than specific conformational changes transmitted from the outside to the inside of the cell.
Collapse
Affiliation(s)
- Nanaocha Sharma
- From the Department of Biological Chemistry, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Geeta Longjam
- From the Department of Biological Chemistry, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Gideon Schreiber
- From the Department of Biological Chemistry, Weizmann Institute of Science, Rehovot 76100, Israel
| |
Collapse
|
13
|
Wilmes S, Beutel O, Li Z, Francois-Newton V, Richter CP, Janning D, Kroll C, Hanhart P, Hötte K, You C, Uzé G, Pellegrini S, Piehler J. Receptor dimerization dynamics as a regulatory valve for plasticity of type I interferon signaling. ACTA ACUST UNITED AC 2015; 209:579-93. [PMID: 26008745 PMCID: PMC4442803 DOI: 10.1083/jcb.201412049] [Citation(s) in RCA: 98] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Type I interferons (IFNs) activate differential cellular responses through a shared cell surface receptor composed of the two subunits, IFNAR1 and IFNAR2. We propose here a mechanistic model for how IFN receptor plasticity is regulated on the level of receptor dimerization. Quantitative single-molecule imaging of receptor assembly in the plasma membrane of living cells clearly identified IFN-induced dimerization of IFNAR1 and IFNAR2. The negative feedback regulator ubiquitin-specific protease 18 (USP18) potently interferes with the recruitment of IFNAR1 into the ternary complex, probably by impeding complex stabilization related to the associated Janus kinases. Thus, the responsiveness to IFNα2 is potently down-regulated after the first wave of gene induction, while IFNβ, due to its ∼100-fold higher binding affinity, is still able to efficiently recruit IFNAR1. Consistent with functional data, this novel regulatory mechanism at the level of receptor assembly explains how signaling by IFNβ is maintained over longer times compared with IFNα2 as a temporally encoded cause of functional receptor plasticity.
Collapse
Affiliation(s)
- Stephan Wilmes
- Department of Biology, Division of Biophysics, University of Osnabrück, 49074 Osnabrück, Germany
| | - Oliver Beutel
- Department of Biology, Division of Biophysics, University of Osnabrück, 49074 Osnabrück, Germany
| | - Zhi Li
- Institut Pasteur, Cytokine Signaling Unit, Centre National de la Recherche Scientifique URA1961, 75724 Paris, France
| | - Véronique Francois-Newton
- Institut Pasteur, Cytokine Signaling Unit, Centre National de la Recherche Scientifique URA1961, 75724 Paris, France
| | - Christian P Richter
- Department of Biology, Division of Biophysics, University of Osnabrück, 49074 Osnabrück, Germany
| | - Dennis Janning
- Department of Biology, Division of Biophysics, University of Osnabrück, 49074 Osnabrück, Germany
| | - Cindy Kroll
- Department of Biology, Division of Biophysics, University of Osnabrück, 49074 Osnabrück, Germany
| | - Patrizia Hanhart
- Department of Biology, Division of Biophysics, University of Osnabrück, 49074 Osnabrück, Germany
| | - Katharina Hötte
- Department of Biology, Division of Biophysics, University of Osnabrück, 49074 Osnabrück, Germany
| | - Changjiang You
- Department of Biology, Division of Biophysics, University of Osnabrück, 49074 Osnabrück, Germany
| | - Gilles Uzé
- Centre National de la Recherche Scientifique Montpellier, 34095 Montpellier, France
| | - Sandra Pellegrini
- Institut Pasteur, Cytokine Signaling Unit, Centre National de la Recherche Scientifique URA1961, 75724 Paris, France
| | - Jacob Piehler
- Department of Biology, Division of Biophysics, University of Osnabrück, 49074 Osnabrück, Germany
| |
Collapse
|
14
|
The molecular basis for functional plasticity in type I interferon signaling. Trends Immunol 2015; 36:139-49. [DOI: 10.1016/j.it.2015.01.002] [Citation(s) in RCA: 136] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2014] [Revised: 01/13/2015] [Accepted: 01/13/2015] [Indexed: 01/16/2023]
|
15
|
Löchte S, Waichman S, Beutel O, You C, Piehler J. Live cell micropatterning reveals the dynamics of signaling complexes at the plasma membrane. ACTA ACUST UNITED AC 2015; 207:407-18. [PMID: 25385185 PMCID: PMC4226739 DOI: 10.1083/jcb.201406032] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
The use of micropatterned surfaces that bind HaloTag fusion proteins allows spatial organization of plasma membrane proteins for efficient visualization and quantification of protein–protein interactions in live cells. Interactions of proteins in the plasma membrane are notoriously challenging to study under physiological conditions. We report in this paper a generic approach for spatial organization of plasma membrane proteins into micropatterns as a tool for visualizing and quantifying interactions with extracellular, intracellular, and transmembrane proteins in live cells. Based on a protein-repellent poly(ethylene glycol) polymer brush, micropatterned surface functionalization with the HaloTag ligand for capturing HaloTag fusion proteins and RGD peptides promoting cell adhesion was devised. Efficient micropatterning of the type I interferon (IFN) receptor subunit IFNAR2 fused to the HaloTag was achieved, and highly specific IFN binding to the receptor was detected. The dynamics of this interaction could be quantified on the single molecule level, and IFN-induced receptor dimerization in micropatterns could be monitored. Assembly of active signaling complexes was confirmed by immunostaining of phosphorylated Janus family kinases, and the interaction dynamics of cytosolic effector proteins recruited to the receptor complex were unambiguously quantified by fluorescence recovery after photobleaching.
Collapse
Affiliation(s)
- Sara Löchte
- Department of Biology, University of Osnabrück, 49076 Osnabrück, Germany
| | - Sharon Waichman
- Department of Biology, University of Osnabrück, 49076 Osnabrück, Germany
| | - Oliver Beutel
- Department of Biology, University of Osnabrück, 49076 Osnabrück, Germany
| | - Changjiang You
- Department of Biology, University of Osnabrück, 49076 Osnabrück, Germany
| | - Jacob Piehler
- Department of Biology, University of Osnabrück, 49076 Osnabrück, Germany
| |
Collapse
|
16
|
Doll D, Barr TL, Simpkins JW. Cytokines: their role in stroke and potential use as biomarkers and therapeutic targets. Aging Dis 2014; 5:294-306. [PMID: 25276489 DOI: 10.14336/ad.2014.0500294] [Citation(s) in RCA: 80] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2014] [Revised: 05/16/2014] [Accepted: 05/27/2014] [Indexed: 12/30/2022] Open
Abstract
Inflammatory mechanisms both in the periphery and in the CNS are important in the pathophysiologic processes occurring after the onset of ischemic stroke (IS). Cytokines are key players in the inflammatory mechanism and contribute to the progression of ischemic damage. This literature review focuses on the effects of inflammation on ischemic stroke, and the role pro-inflammatory and anti-inflammatory cytokines play on deleterious or beneficial stroke outcome. The discovery of biomarkers and novel therapeutics for stroke has been the focus of extensive research recently; thus, understanding the roles of pro-inflammatory and anti-inflammatory cytokines that are up-regulated during stroke will help us further understand how inflammation contributes to the progression of ischemic damage and provide potential targets for novel therapeutics and biomarkers for diagnosis and prognosis of stroke.
Collapse
Affiliation(s)
| | - Taura L Barr
- School of Nursing, West Virginia University Health Sciences Center, Morgantown, WV 26506, USA ; Center for Basic and Translational Stroke Research, West Virginia University Health Sciences Center, Morgantown, WV 26506, USA
| | - James W Simpkins
- Department of Physiology and Pharmacology, School of Medicine, West Virginia University Health Sciences Center, Morgantown, WV 26506, USA ; Center for Basic and Translational Stroke Research, West Virginia University Health Sciences Center, Morgantown, WV 26506, USA
| |
Collapse
|
17
|
Krause CD, Izotova LS, Pestka S. Analytical use of multi-protein Fluorescence Resonance Energy Transfer to demonstrate membrane-facilitated interactions within cytokine receptor complexes. Cytokine 2013; 64:298-309. [PMID: 23769803 PMCID: PMC3770794 DOI: 10.1016/j.cyto.2013.05.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2012] [Revised: 05/17/2013] [Accepted: 05/18/2013] [Indexed: 12/17/2022]
Abstract
Experiments measuring Fluorescence Resonance Energy Transfer (FRET) between cytokine receptor chains and their associated proteins led to hypotheses describing their organization in intact cells. These interactions occur within a larger protein complex or within a given nano-environment. To illustrate this complexity empirically, we developed a protocol to analyze FRET among more than two fluorescent proteins (multi-FRET). In multi-FRET, we model FRET among more than two fluorophores as the sum of all possible pairwise interactions within the complex. We validated our assumption by demonstrating that FRET among pairs within a fluorescent triplet resembled FRET between each pair measured in the absence of the third fluorophore. FRET between two receptor chains increases with increasing FRET between the ligand-binding chain (e.g., IFN-γR1, IL-10R1 and IFN-λR1) and an acylated fluorescent protein that preferentially resides within subsections of the plasma membrane. The interaction of IL-10R2 with IFN-λR1 or IL-10R1 results in decreased FRET between IL-10R2 and the acylated fluorescent protein. Finally, we analyzed FRET among four fluorescent proteins to demonstrate that as FRET between IFN-γR1 and IFN-γR2 or between IFN-αR1 and IFN-αR2c increases, FRET among other pairs of proteins changes within each complex.
Collapse
Affiliation(s)
- Christopher D Krause
- Department of Biochemistry and Molecular Biology, Robert Wood Johnson Medical School - The University of Medicine and Dentistry of New Jersey, 675 Hoes Lane West, Piscataway, NJ 08855, USA.
| | | | | |
Collapse
|
18
|
Krause CD, Digioia G, Izotova LS, Pestka S. Improving the spectral analysis of Fluorescence Resonance Energy Transfer in live cells: application to interferon receptors and Janus kinases. Cytokine 2013; 64:272-85. [PMID: 23796694 PMCID: PMC3868223 DOI: 10.1016/j.cyto.2013.05.026] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2012] [Revised: 04/22/2013] [Accepted: 05/29/2013] [Indexed: 01/21/2023]
Abstract
The observed Fluorescence Resonance Energy Transfer (FRET) between fluorescently labeled proteins varies in cells. To understand how this variation affects our interpretation of how proteins interact in cells, we developed a protocol that mathematically separates donor-independent and donor-dependent excitations of acceptor, determines the electromagnetic interaction of donors and acceptors, and quantifies the efficiency of the interaction of donors and acceptors. By analyzing large populations of cells, we found that misbalanced or insufficient expression of acceptor or donor as well as their inefficient or reversible interaction influenced FRET efficiency in vivo. Use of red-shifted donors and acceptors gave spectra with less endogenous fluorescence but produced lower FRET efficiency, possibly caused by reduced quenching of red-shifted fluorophores in cells. Additionally, cryptic interactions between jellyfish FPs artefactually increased the apparent FRET efficiency. Our protocol can distinguish specific and nonspecific protein interactions even within highly constrained environments as plasma membranes. Overall, accurate FRET estimations in cells or within complex environments can be obtained by a combination of proper data analysis, study of sufficient numbers of cells, and use of properly empirically developed fluorescent proteins.
Collapse
Affiliation(s)
- Christopher D Krause
- Department of Biochemistry and Molecular Biology, Robert Wood Johnson Medical School, The University of Medicine and Dentistry of New Jersey, 675 Hoes Lane West, Piscataway, NJ 08855, USA.
| | | | | | | |
Collapse
|
19
|
Krause CD, Digioia G, Izotova LS, Xie J, Kim Y, Schwartz BJ, Mirochnitchenko OV, Pestka S. Ligand-independent interaction of the type I interferon receptor complex is necessary to observe its biological activity. Cytokine 2013; 64:286-97. [PMID: 23830819 PMCID: PMC3770802 DOI: 10.1016/j.cyto.2013.06.309] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2012] [Revised: 04/23/2013] [Accepted: 06/10/2013] [Indexed: 10/26/2022]
Abstract
Ectopic coexpression of the two chains of the Type I and Type III interferon (IFN) receptor complexes (IFN-αR1 and IFN-αR2c, or IFN-λR1 and IL-10R2) yielded sensitivity to IFN-alpha or IFN-lambda in only some cells. We found that IFN-αR1 and IFN-αR2c exhibit FRET only when expressed at equivalent and low levels. Expanded clonal cell lines expressing both IFN-αR1 and IFN-αR2c were sensitive to IFN-alpha only when IFN-αR1 and IFN-αR2c exhibited FRET in the absence of human IFN-alpha. Coexpression of RACK-1 or Jak1 enhanced the affinity of the interaction between IFN-αR1 and IFN-αR2c. Both IFN-αR1 and IFN-αR2c exhibited FRET with Jak1 and Tyk2. Together with data showing that disruption of the preassociation between the IFN-gamma receptor chains inhibited its biological activity, we propose that biologically active IFN receptors require ligand-independent juxtaposition of IFN receptor chains assisted by their associated cytosolic proteins.
Collapse
Affiliation(s)
- Christopher D. Krause
- Department of Biochemistry and Molecular Biology, Robert Wood Johnson Medical School - The University of Medicine and Dentistry of New Jersey, 675 Hoes Lane West, Piscataway, NJ 08855 USA
| | - Gina Digioia
- Department of Biochemistry and Molecular Biology, Robert Wood Johnson Medical School - The University of Medicine and Dentistry of New Jersey, 675 Hoes Lane West, Piscataway, NJ 08855 USA
- Pestka Biomedical Laboratories, 131 Ethel Road West, Suite 6, Piscataway, NJ 08854 USA
| | - Lara S. Izotova
- Department of Biochemistry and Molecular Biology, Robert Wood Johnson Medical School - The University of Medicine and Dentistry of New Jersey, 675 Hoes Lane West, Piscataway, NJ 08855 USA
| | - Junxia Xie
- Department of Biochemistry and Molecular Biology, Robert Wood Johnson Medical School - The University of Medicine and Dentistry of New Jersey, 675 Hoes Lane West, Piscataway, NJ 08855 USA
| | - Youngsun Kim
- Department of Biochemistry and Molecular Biology, Robert Wood Johnson Medical School - The University of Medicine and Dentistry of New Jersey, 675 Hoes Lane West, Piscataway, NJ 08855 USA
| | - Barbara J. Schwartz
- Department of Biochemistry and Molecular Biology, Robert Wood Johnson Medical School - The University of Medicine and Dentistry of New Jersey, 675 Hoes Lane West, Piscataway, NJ 08855 USA
| | - Olga V. Mirochnitchenko
- Department of Biochemistry and Molecular Biology, Robert Wood Johnson Medical School - The University of Medicine and Dentistry of New Jersey, 675 Hoes Lane West, Piscataway, NJ 08855 USA
| | - Sidney Pestka
- Department of Biochemistry and Molecular Biology, Robert Wood Johnson Medical School - The University of Medicine and Dentistry of New Jersey, 675 Hoes Lane West, Piscataway, NJ 08855 USA
- Pestka Biomedical Laboratories, 131 Ethel Road West, Suite 6, Piscataway, NJ 08854 USA
| |
Collapse
|
20
|
Partial IFN-γR2 deficiency is due to protein misfolding and can be rescued by inhibitors of glycosylation. Blood 2013; 122:2390-401. [PMID: 23963039 DOI: 10.1182/blood-2013-01-480814] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
We report a molecular study of the two known patients with autosomal recessive, partial interferon-γ receptor (IFN-γR)2 deficiency (homozygous for mutations R114C and G227R), and three novel, unrelated children, homozygous for S124F (P1) and G141R (P2 and P3). IFN-γR2 levels on the surface of the three latter patients' cells are slightly lower than those on control cells. The patients' cells also display impaired, but not abolished, response to IFN-γ. Moreover, the R114C, S124F, G141R and G227R IFNGR2 hypomorphic alleles all encode misfolded proteins with abnormal N-glycosylation. The mutants are largely retained in the endoplasmic reticulum, although a small proportion reach and function at the cell surface. Strikingly, the IFN-γ response of the patients' cells is enhanced by chemical modifiers of N-glycosylation, as previously shown for patients with gain-of-glysosylation T168N and misfolding 382-387dup null mutations. All four in-frame IFNGR2 hypomorphic mutant alleles encoding surface-expressed receptors are thus deleterious by a mechanism involving abnormal N-glycosylation and misfolding of the IFN-γR2 protein. The diagnosis of partial IFN-γR2 deficiency is clinically useful, as affected patients should be treated with IFN-γ, [corrected] unlike patients with complete IFN-γR2 deficiency. Moreover, inhibitors of glycosylation might be beneficial in patients with complete or partial IFN-γR2 deficiency due to misfolding or gain-of-glycosylation receptors.
Collapse
|
21
|
Hamm P, Zewail AH, Fleming GR. A tribute to Robin Hochstrasser. Chem Phys 2013. [DOI: 10.1016/j.chemphys.2013.05.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
22
|
Kearney S, Delgado C, Lenz LL. Differential effects of type I and II interferons on myeloid cells and resistance to intracellular bacterial infections. Immunol Res 2013; 55:187-200. [PMID: 22983898 DOI: 10.1007/s12026-012-8362-y] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The type I and II interferons (IFNs) play important roles in regulating immune responses during viral and bacterial infections and in the context of autoimmune and neoplastic diseases. These two IFN types bind to distinct cell surface receptors that are expressed by nearly all cells to trigger signal transduction events and elicit diverse cellular responses. In some cases, type I and II IFNs trigger similar cellular responses, while in other cases, the IFNs have unique or antagonistic effects on host cells. Negative regulators of IFN signaling also modulate cellular responses to the IFNs and play important roles in maintaining immunological homeostasis. In this review, we provide an overview of how IFNs stimulate cellular responses. We discuss the disparate effects of type I and II IFNs on host resistance to certain intracellular bacterial infections and provide an overview of models that have been proposed to account for these disparate effects. Mechanisms of antagonistic cross talk between type I and II IFNs are also introduced.
Collapse
Affiliation(s)
- Staci Kearney
- Integrated Department of Immunology, University of Colorado School of Medicine, Aurora, CO, USA
| | | | | |
Collapse
|
23
|
Gambin A, Charzyńska A, Ellert-Miklaszewska A, Rybiński M. Computational models of the JAK1/2-STAT1 signaling. JAKSTAT 2013; 2:e24672. [PMID: 24069559 PMCID: PMC3772111 DOI: 10.4161/jkst.24672] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2013] [Revised: 04/10/2013] [Accepted: 04/11/2013] [Indexed: 12/13/2022] Open
Abstract
Despite a conceptually simple mechanism of signaling, the JAK-STAT pathway exhibits considerable behavioral complexity. Computational pathway models are tools to investigate in detail signaling process. They integrate well with experimental studies, helping to explain molecular dynamics and to state new hypotheses, most often about the structure of interactions. A relatively small amount of experimental data is available for a JAK1/2-STAT1 variant of the pathway, hence, only several computational models were developed. Here we review a dominant approach of kinetic modeling of the JAK1/2-STAT1 pathway, based on ordinary differential equations. We also give a brief overview of attempts to computationally infer topology of this pathway.
Collapse
Affiliation(s)
- Anna Gambin
- Institute of Informatics; University of Warsaw; Warsaw, Poland ; Mossakowski Medical Research Centre; Polish Academy of Sciences; Warsaw, Poland
| | | | | | | |
Collapse
|
24
|
Atanasova M, Whitty A. Understanding cytokine and growth factor receptor activation mechanisms. Crit Rev Biochem Mol Biol 2012; 47:502-30. [PMID: 23046381 DOI: 10.3109/10409238.2012.729561] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Our understanding of the detailed mechanism of action of cytokine and growth factor receptors - and particularly our quantitative understanding of the link between structure, mechanism and function - lags significantly behind our knowledge of comparable functional protein classes such as enzymes, G protein-coupled receptors, and ion channels. In particular, it remains controversial whether such receptors are activated by a mechanism of ligand-induced oligomerization, versus a mechanism in which the ligand binds to a pre-associated receptor dimer or oligomer that becomes activated through subsequent conformational rearrangement. A major limitation to progress has been the relative paucity of methods for performing quantitative mechanistic experiments on unmodified receptors expressed at endogenous levels on live cells. In this article, we review the current state of knowledge on the activation mechanisms of cytokine and growth factor receptors, critically evaluate the evidence for and against the different proposed mechanisms, and highlight other key questions that remain unanswered. New approaches and techniques have led to rapid recent progress in this area, and the field is poised for major advances in the coming years which promise to revolutionize our understanding of this large and biologically and medically important class of receptors.
Collapse
Affiliation(s)
- Mariya Atanasova
- Department of Chemistry, Boston University, Boston, MA 02215, USA
| | | |
Collapse
|
25
|
Rybiński M, Gambin A. Model-based selection of the robust JAK-STAT activation mechanism. J Theor Biol 2012; 309:34-46. [PMID: 22677400 DOI: 10.1016/j.jtbi.2012.04.031] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2011] [Revised: 04/20/2012] [Accepted: 04/24/2012] [Indexed: 11/15/2022]
Abstract
JAK-STAT pathway family is a principal signaling mechanism in eukaryotic cells. Evolutionary conserved roles of this mechanism include control over fundamental processes such as cell growth or apoptosis. Deregulation of the JAK-STAT signaling is frequently associated with cancerogenesis. JAK-STAT pathways become hyper-activated in many human tumors. Therefore, components of these pathways are an attractive target for drugs, which design requires as adequate models as possible. Although, in principle, JAK-STAT signaling is relatively simple, the ambiguities in a receptor activation prevent a clear explanation of the underlying molecular mechanism. Here, we compare four variants of a computational model of the JAK1/2-STAT1 signaling pathway. These variants capture known, basic discrepancies in the mechanism of activation of a cytokine receptor, in the context of all key components of the pathway. We carry out a comparative analysis using mass action kinetics. The investigated differences are so marginal that all models satisfy a goodness of fit criteria to the extent that the state of the art Bayesian model selection (BMS) method fails to significantly promote one model. Therefore, we comparatively investigate changes in a robustness of the JAK1/2-STAT1 pathway variants using the global sensitivity analysis method (GSA), complemented with the identifiability analysis (IA). Both BMS and GSA are used to analyze the models for the varying parameter values. We found out that, both BMS and GSA, narrowed down to the receptor activation component, slightly promote the least complex model. Further, insightful, comprehensive GSA, motivated by the concept of robustness, allowed us to show that the precise order of reactions of a ligand binding and a receptor dimerization is not as important as the on-membrane pre-assembly of the dimers in the absence of ligand. The main value of this work is an evaluation of the usefulness of different model selection methods in a frequently encountered, but not much discussed case of a model of a considerable size, which has several variants differing at peripheries. In such situation, all considered variants can reach nearly perfect agreement with respect to their numerical simulations results and, most often, the sufficient experimental data to test against is not available. We argue that in such an adverse setting, the GSA and IA, although not directly corresponding to the model selection problem, can be more informative than the representative, generalizability-based approaches to this task. An additional insight into how the responsibility for the network dynamics spreads among model parameters, enables more conscious, expert-mediated choice of the preferred model.
Collapse
Affiliation(s)
- Mikołaj Rybiński
- Institute of Informatics, University of Warsaw, ul. Banacha 2, Warsaw, Poland.
| | | |
Collapse
|
26
|
Blanco R, Alarcón B. TCR Nanoclusters as the Framework for Transmission of Conformational Changes and Cooperativity. Front Immunol 2012; 3:115. [PMID: 22582078 PMCID: PMC3348506 DOI: 10.3389/fimmu.2012.00115] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2011] [Accepted: 04/22/2012] [Indexed: 12/30/2022] Open
Abstract
Increasing evidence favors the notion that, before triggering, the T cell antigen receptor (TCR) forms nanometer-scale oligomers that are called nanoclusters. The organization of the TCR in pre-existing oligomers cannot be ignored when analyzing the properties of ligand (pMHC) recognition and signal transduction. As with other membrane receptors, the existence of TCR oligomers points out to cooperativity phenomena. We review the data in support of conformational changes in the TCR as the basic principle to transduce the activation signal to the cytoplasm and the incipient data suggesting cooperativity within nanoclusters.
Collapse
Affiliation(s)
- Raquel Blanco
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid Madrid, Spain
| | | |
Collapse
|
27
|
Abstract
Ligand binding to cell membrane receptors sets off a series of protein interactions that convey the nuances of ligand identity to the cell interior. The information may be encoded in conformational changes, the interaction kinetics and, in the case of multichain immunoreceptors, by chain rearrangements. The signals may be modulated by dynamic compartmentalization of the cell membrane, cellular architecture, motility, and activation-all of which are difficult to reconstitute for studies of receptor signaling in vitro. In this paper, we will discuss how protein interactions in general and receptor signaling in particular can be studied in living cells by different fluorescence imaging techniques. Particularly versatile are methods that exploit Förster resonance energy transfer (FRET), which is exquisitely sensitive to the nanometer-range proximity and orientation between fluorophores. Fluorescence correlation microscopy (FCM) can provide complementary information about the stoichiometry and diffusion kinetics of large complexes, while bimolecular fluorescence complementation (BiFC) and other complementation techniques can capture transient interactions. A continuing challenge is extracting from the imaging data the quantitative information that is necessary to verify different models of signal transduction.
Collapse
Affiliation(s)
- Tomasz Zal
- Department of Immunology, University of Texas, MD Anderson Cancer Center, Houston TX, USA
| |
Collapse
|
28
|
Soft X-ray Laser Microscopy of Lipid Rafts towards GPCR-Based Drug Discovery Using Time-Resolved FRET Spectroscopy. Pharmaceuticals (Basel) 2011. [PMCID: PMC4053801 DOI: 10.3390/ph4030524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Many signaling molecules involved in G protein-mediated signal transduction, which are present in the lipid rafts and believed to be controlled spatially and temporally, influence the potency and efficacy of neurotransmitter receptors and transporters. This has focus interest on lipid rafts and the notion that these microdomains acts as a kind of signaling platform and thus have an important role in the expression of membrane receptor-mediated signal transduction, cancer, immune responses, neurotransmission, viral infections and various other phenomena due to specific and efficient signaling according to extracellular stimuli. However, the real structure of lipid rafts has not been observed so far due to its small size and a lack of sufficiently sophisticated observation systems. A soft X-ray microscope using a coherent soft X-ray laser in the water window region (2.3–4.4 nm) should prove to be a most powerful tool to observe the dynamic structure of lipid rafts of several tens of nanometers in size in living cells. We have developed for the X-ray microscope a new compact soft X-ray laser using strongly induced plasma high harmonic resonance. We have also developed a time-resolved highly sensitive fluorescence resonance energy transfer (FRET) system and confirmed protein-protein interactions coupled with ligands. The simultaneous use of these new tools for observation of localization of G-protein coupled receptors (GPCRs) in rafts has become an important and optimum tool system to analyze the dynamics of signal transduction through rafts as signaling platform. New technology to visualize rafts is expected to lead to the understanding of those dynamics and innovative development of drug discovery that targets GPCRs localized in lipid rafts.
Collapse
|
29
|
Chaperone Hsp27 modulates AUF1 proteolysis and AU-rich element-mediated mRNA degradation. Mol Cell Biol 2011; 31:1419-31. [PMID: 21245386 DOI: 10.1128/mcb.00907-10] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
AUF1 is an AU-rich element (ARE)-binding protein that recruits translation initiation factors, molecular chaperones, and mRNA degradation enzymes to the ARE for mRNA destruction. We recently found chaperone Hsp27 to be an AUF1-associated ARE-binding protein required for tumor necrosis factor alpha (TNF-α) mRNA degradation in monocytes. Hsp27 is a multifunctional protein that participates in ubiquitination of proteins for their degradation by proteasomes. A variety of extracellular stimuli promote Hsp27 phosphorylation on three serine residues--Ser(15), Ser(78), and Ser(82)-by a number of kinases, including the mitogen-activated protein (MAP) pathway kinases p38 and MK2. Activating either kinase stabilizes ARE mRNAs. Likewise, ectopic expression of phosphomimetic mutant forms of Hsp27 stabilizes reporter ARE mRNAs. Here, we continued to examine the contributions of Hsp27 to mRNA degradation. As AUF1 is ubiquitinated and degraded by proteasomes, we addressed the hypothesis that Hsp27 phosphorylation controls AUF1 levels to modulate ARE mRNA degradation. Indeed, selected phosphomimetic mutants of Hsp27 promote proteolysis of AUF1 in a proteasome-dependent fashion and render ARE mRNAs more stable. Our results suggest that the p38 MAP kinase (MAPK)-MK2-Hsp27 signaling axis may target AUF1 destruction by proteasomes, thereby promoting ARE mRNA stabilization.
Collapse
|
30
|
Biarc J, Chalkley RJ, Burlingame AL, Bradshaw RA. Receptor tyrosine kinase signaling--a proteomic perspective. ADVANCES IN ENZYME REGULATION 2010; 51:293-305. [PMID: 21056590 PMCID: PMC3079071 DOI: 10.1016/j.advenzreg.2010.10.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2010] [Accepted: 10/29/2010] [Indexed: 12/16/2022]
Abstract
The RTKs are one of the most important families mediating transmembrane signaling and they participate and are instrumental in regulating a broad range of physiological activities. Indeed, tyrosine kinases in general, and the processes that they control and/or stimulate, provide a rich source of drug targets, particularly in growth related disorders such as cancer (Zwick et al., 2002; Krause and Van Etten, 2005). However, there remain many questions regarding their activation and downstream signaling and the application of proteomic analyses promises to answer many of them. There have been relatively few detailed studies of this type to date and it will require considerably more of them to better define the pathways with respect to both the major and minor PTMs that, along with the protein-protein interactions, are the means to direct the flow of the signals generated. It will take such approaches to define the specificity that characterize the individual families, even appreciating that to some degree all are capable of activating many, if not all, of the principal pathways. It will also be necessary to understand, in the highly complex networks of intracellular phosphorylation (that contain thousands of sites of modification and clearly have not yet been fully determined in any paradigm), exactly which kinases modify which substrates, and to work out the inter-relationships with other modifications such as O-GlcNAcylation and acetylation. Only then will it be possible to determine which modifications are physiologically significant and which are simply background. Along theway, these studies should continue to provide potential drug targets and perhaps improve the current lackluster biomarker discovery track record.
Collapse
Affiliation(s)
- Jordane Biarc
- Department of Pharmaceutical Chemistry, University of California, San Francisco, CA 94158, USA
| | | | | | | |
Collapse
|
31
|
Suthaus J, Tillmann A, Lorenzen I, Bulanova E, Rose-John S, Scheller J. Forced homo- and heterodimerization of all gp130-type receptor complexes leads to constitutive ligand-independent signaling and cytokine-independent growth. Mol Biol Cell 2010; 21:2797-807. [PMID: 20554759 PMCID: PMC2912364 DOI: 10.1091/mbc.e10-03-0240] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
We present a novel strategy to enforce cytokine-independent, constitutive signaling of heterodimeric gp130 receptor complexes. Replacing the extracellular domain of gp130-type receptors by IL-15/IL-15R is sufficient to heterodimerize gp130-like receptors and as a consequence leading to sustained cytokine-independent receptor activation. Naturally ligand independent constitutively active gp130 variants were described to be responsible for inflammatory hepatocellular adenomas. Recently, we genetically engineered a ligand-independent constitutively active gp130 variant based on homodimerization of Jun leucine zippers. Because also heterodimeric complexes within the gp130 family may have tumorigenic potential, we seek to generate ligand-independent constitutively active heterodimers for all known gp130-receptor complexes based on IL-15/IL-15Rα-sushi fusion proteins. Ligand-independent heterodimerization of gp130 with WSX-1, LIFR, and OSMR and of OSMR with GPL led to constitutive, ligand-independent STAT1 and/or STAT3 and ERK1/2 phosphorylation. Moreover, these receptor combinations induced transcription of the STAT3 target genes c-myc and Pim-1 and factor-independent growth of stably transduced Ba/F3-gp130 cells. Here, we establish the IL-15/IL-15Rα-sushi system as a new system to mimic constitutive and ligand-independent activation of homo- and heterodimeric receptor complexes, which might be applicable to other heterodimeric receptor families. A mutated IL-15 protein, which was still able to bind the IL-15Rα-sushi domain, but not to β- and γ-receptor chains, in combination with the 2A peptide technology may be used to translate our in vitro data into the in vivo situation to assess the tumorigenic potential of gp130-heterodimeric receptor complexes.
Collapse
Affiliation(s)
- Jan Suthaus
- *Department of Biochemistry, Christian-Albrechts-Universität, D-24098 Kiel, Germany
| | | | | | | | | | | |
Collapse
|
32
|
Gomez JA, Sun W, Gama V, Hajkova D, Yoshida T, Wu Z, Miyagi M, Pink JJ, Jackson MW, Danielpour D, Matsuyama S. The C-terminus of interferon gamma receptor beta chain (IFNgammaR2) has antiapoptotic activity as a Bax inhibitor. Cancer Biol Ther 2009; 8:1771-86. [PMID: 19657228 DOI: 10.4161/cbt.8.18.9323] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Bax is a pro-apoptotic protein that mediates intrinsic cell-death signaling. Using a yeast-based functional screening approach, we identified interferon gamma receptor beta chain (IFNgammaR2) as a new Bax suppressor. IFNgammaR2 is a component of the IFNgamma receptor complex along with the IFNgammaR alpha chain (IFNgammaR1). Upon IFNgamma binding, a conformational change in the receptor complex occurs that activates the Jak2/STAT1 signaling cascade. We found that the C-terminal region (amino acids 296-337) of IFNgammaR2 (IFNgammaR2(296-337)) contains a novel Bax inhibitory domain. This portion does not contain the Jak2-binding domain; therefore, the antiapoptotic function of IFNgammaR2 is independent of JAK/STAT signaling. IFNgammaR2(296-337) rescued human cells from apoptosis induced by overexpression of Bax but not Bak. Overexpression of IFNgammaR2 (wild type and IFNgammaR2(296-337)) rescued cells from etoposide and staurosporine, which are known to induce Bax-mediated cell death. Interestingly, IFNgammaR2 inhibited apoptosis induced by the BH3-only protein Bim-EL, suggesting that IFNgammaR2 inhibits Bax activation through a BH3-only protein. Bax and IFNgammaR2 were co-immunoprecipitated from cell lysates prepared from HEK293 and DAMI cells. Furthermore, direct binding of purified recombinant proteins of Bax and IFNgammaR2 was also confirmed. Addition of recombinant Bcl-2 protein to cell lysates significantly reduced the interaction of IFNgammaR2 and Bax, suggesting that Bcl-2 and IFNgammaR2 bind a similar domain of Bax. We found that the C-terminal fragment (cytoplasmic domain) of IFNgammaR2 is expressed in human cancer cell lines of megakaryocytic cancer (DAMI), breast cancer (MDA-MD-468), and prostate cancer (PC3 cells). The presence of the C-terminal fragment of IFNgammaR2 may confer on cancer cells resistance to apoptotic stresses. Our discovery of the anti-Bax activity of the cytoplasmic domain of IFNgammaR2 may shed new light on the mechanism of how cell death is controlled by IFNgamma and Bax.
Collapse
Affiliation(s)
- Jose A Gomez
- Department of Medicine, Division of Hematology/Oncology, Case Western Reserve University, Cleveland, OH 44106 , USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Claudinon J, Gonnord P, Beslard E, Marchetti M, Mitchell K, Boularan C, Johannes L, Eid P, Lamaze C. Palmitoylation of interferon-alpha (IFN-alpha) receptor subunit IFNAR1 is required for the activation of Stat1 and Stat2 by IFN-alpha. J Biol Chem 2009; 284:24328-40. [PMID: 19561067 DOI: 10.1074/jbc.m109.021915] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Type I interferons (IFNs) bind IFNAR receptors and activate Jak kinases and Stat transcription factors to stimulate the transcription of genes downstream from IFN-stimulated response elements. In this study, we analyze the role of protein palmitoylation, a reversible post-translational lipid modification, in the functional properties of IFNAR. We report that pharmacological inhibition of protein palmitoylation results in severe defects of IFN receptor endocytosis and signaling. We generated mutants of the IFNAR1 subunit of the type I IFN receptor, in which each or both of the two cysteines present in the cytoplasmic domain are replaced by alanines. We show that cysteine 463 of IFNAR1, the more proximal of the two cytoplasmic cysteines, is palmitoylated. A thorough microscopic and biochemical analysis of the palmitoylation-deficient IFNAR1 mutant revealed that IFNAR1 palmitoylation is not required for receptor endocytosis, intracellular distribution, or stability at the cell surface. However, the lack of IFNAR1 palmitoylation affects selectively the activation of Stat2, which results in a lack of efficient Stat1 activation and nuclear translocation and IFN-alpha-activated gene transcription. Thus, receptor palmitoylation is a previously undescribed mechanism of regulating signaling activity by type I IFNs in the Jak/Stat pathway.
Collapse
Affiliation(s)
- Julie Claudinon
- Institut Curie, Centre de Recherche, Laboratoire Trafic, Signalisation et Ciblage Intracellulaires, 75248 Paris Cedex 05, France
| | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Savan R, Ravichandran S, Collins JR, Sakai M, Young HA. Structural conservation of interferon gamma among vertebrates. Cytokine Growth Factor Rev 2009; 20:115-24. [PMID: 19268624 PMCID: PMC2755191 DOI: 10.1016/j.cytogfr.2009.02.006] [Citation(s) in RCA: 107] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Interferon gamma (IFN-gamma), being the hallmark of the T-cell T(H)1 response, has been extensively studied with respect to its expression and regulation of immune function. This gene has been extensively characterized in many mammalian species, making it one of the most widely cloned immunoregulatory genes. Recently, the gene has been identified in avian and piscine species and we have identified the gene in the frog genome. Based on these identified DNA sequences, we have constructed an evolutionary history of IFN-gamma that shows this molecule can be traced back more than 450 million years ago. Our analysis shows that type II interferon (IFN-gamma) function evolved before the tetrapod-fish split, a finding that contrasts earlier studies showing its origins in tetrapods. The IFN-gamma gene has undergone a further duplication event in teleosts after the tetrapod-fish split suggesting a specific-evolutionary adaptation in fish. The analyses of IFN-gamma, IL-22 and IL-26 genomic region in mammals, chicken, frog and fish reveal an evolutionary conservation of the loci and several regulatory elements controlling IFN-gamma gene transcription. Furthermore, across the vertebrata, the first intron of IFN-gamma gene contains a polymorphic microsatellite that has been closely correlated with disease susceptibility. Comparative-modeling of IFN-gamma structure revealed differences among the representative species but with an overall conservation of the fold, dimer interface and some interactions with the receptor. The structural and functional conservation of IFN-gamma suggests the presence of an innate, natural killer (NK) like response or even an adaptive T(H)1 immune response in lower vertebrates.
Collapse
Affiliation(s)
- Ram Savan
- Laboratory for Experimental Immunology, Cancer and Inflammation Program, Center of Cancer Research, National Cancer Institute at Frederick, Frederick, MD, 21702 USA
| | - Sarangan Ravichandran
- Advanced Biomedical Computing Center, National Cancer Institute at Frederick, Frederick, MD, 21702 USA
| | - Jack R. Collins
- Advanced Biomedical Computing Center, National Cancer Institute at Frederick, Frederick, MD, 21702 USA
| | - Masahiro Sakai
- Laboratory of Marine Biotechnology, University of Miyazaki, Gakuen kibanadai nishi 1-1, Miyazaki city 889-2192, Miyazaki, Japan
| | - Howard A. Young
- Laboratory for Experimental Immunology, Cancer and Inflammation Program, Center of Cancer Research, National Cancer Institute at Frederick, Frederick, MD, 21702 USA
| |
Collapse
|
35
|
Risueño RM, Ortiz AR, Alarcón B. Conformational Model. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2008; 640:103-12. [DOI: 10.1007/978-0-387-09789-3_10] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
36
|
Abstract
Interferon (IFN) was the first cytokine discovered 50 years ago, with a wide range of biological properties, including immunomodulatory, proapoptotic and antiangiogenic activities, that rapidly raised interest in its therapeutic use in malignancies. IFN-receptor characterization was also pivotal in the discovery of the JAK/STAT signaling pathway. Among the large IFN family, mainly one of the type I IFN, IFN-alpha2, is used in therapy. Many clinical trials have shown remarkable efficacy of IFN-alpha in bcr-abl-negative myeloproliferative neoplasms (MPNs), especially polycythemia vera (PV), and essential thrombocythemia (ET). IFN-alpha induces about 80% of hematological responses in those diseases and is able to reduce splenomegaly, as well as relieve pruritus and other constitutional symptoms. Yet its use was limited by toxicity, leading to early treatment discontinuation in about 20% of the patients. However, its lack of leukemogenic potential and its possible use during pregnancy have already made IFN-alpha the drug of choice for younger MPN patients. In addition, several studies have shown a probably selective effect of IFN-alpha on PV and ET clones, as shown by cytogenetic remissions, reversions to polyclonal hematopoiesis, and more recently by induction of JAK2V617F complete molecular remissions in PV which may widen the indications of IFN-alpha in JAK2-mutated MPN.
Collapse
|
37
|
Chaperone Hsp27, a novel subunit of AUF1 protein complexes, functions in AU-rich element-mediated mRNA decay. Mol Cell Biol 2008; 28:5223-37. [PMID: 18573886 DOI: 10.1128/mcb.00431-08] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Controlled, transient cytokine production by monocytes depends heavily upon rapid mRNA degradation, conferred by 3' untranslated region-localized AU-rich elements (AREs) that associate with RNA-binding proteins. The ARE-binding protein AUF1 forms a complex with cap-dependent translation initiation factors and heat shock proteins to attract the mRNA degradation machinery. We refer to this protein assembly as the AUF1- and signal transduction-regulated complex, ASTRC. Rapid degradation of ARE-bearing mRNAs (ARE-mRNAs) requires ubiquitination of AUF1 and its destruction by proteasomes. Activation of monocytes by adhesion to capillary endothelium at sites of tissue damage and subsequent proinflammatory cytokine induction are prominent features of inflammation, and ARE-mRNA stabilization plays a critical role in the induction process. Here, we demonstrate activation-induced subunit rearrangements within ASTRC and identify chaperone Hsp27 as a novel subunit that is itself an ARE-binding protein essential for rapid ARE-mRNA degradation. As Hsp27 has well-characterized roles in protein ubiquitination as well as in adhesion-induced cytoskeletal remodeling and cell motility, its association with ASTRC may provide a sensing mechanism to couple proinflammatory cytokine induction with monocyte adhesion and motility.
Collapse
|
38
|
Zaks-Zilberman M, Harrington AE, Ishino T, Chaiken IM. Interleukin-5 receptor subunit oligomerization and rearrangement revealed by fluorescence resonance energy transfer imaging. J Biol Chem 2008; 283:13398-406. [PMID: 18326494 DOI: 10.1074/jbc.m710230200] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Interleukin (IL)-5 exerts hematopoietic functions through binding to the IL-5 receptor subunits, alpha and betac. Specific assembly steps of full-length subunits as they occur in cell membranes, ultimately leading to receptor activation, are not well understood. We tracked the oligomerization of IL-5 receptor subunits using fluorescence resonance energy transfer (FRET) imaging. Full-length IL-5Ralpha and betac were expressed in Phoenix cells as chimeric proteins fused to enhanced cyan or yellow fluorescent protein (CFP or YFP, respectively). A time- and dose-dependent increase in FRET signal between IL-5Ralpha-CFP and betac-YFP was observed in response to IL-5, indicative of heteromeric receptor alpha-betac subunit interaction. This response was inhibited by AF17121, a peptide antagonist of IL-5Ralpha. Substantial FRET signals with betac-CFP and betac-YFP co-expressed in the absence of IL-5Ralpha demonstrated that betac subunits exist as preformed homo-oligomers. IL-5 had no effect on this betac-alone FRET signal. Interestingly, the addition of IL-5 to cells co-expressing betac-CFP, betac-YFP, and nontagged IL-5Ralpha led to further increase in FRET efficiency. Observation of preformed betac oligomers fits with the view that this form can lead to rapid cellular responses upon IL-5 stimulation. The IL-5-induced effects on betac assembly in the presence of nontagged IL-5Ralpha provide direct evidence that IL-5 can cause higher order rearrangements of betac homo-oligomers. These results suggest that IL-5 and perhaps other betac cytokines (IL-3 and granulocyte/macrophage colony-stimulating factor) trigger cellular responses by the sequential binding of cytokine ligand to the specificity receptor (subunit alpha), followed by binding of the ligand-subunit alpha complex to, and consequent rearrangement of, a ground state form of betac oligomers.
Collapse
Affiliation(s)
- Meirav Zaks-Zilberman
- Department of Biochemistry and Molecular Biology, Drexel University College of Medicine, Philadelphia, Pennsylvania 19102, USA
| | | | | | | |
Collapse
|
39
|
Strunk JJ, Gregor I, Becker Y, Li Z, Gavutis M, Jaks E, Lamken P, Walz T, Enderlein J, Piehler J. Ligand binding induces a conformational change in ifnar1 that is propagated to its membrane-proximal domain. J Mol Biol 2008; 377:725-39. [PMID: 18294654 DOI: 10.1016/j.jmb.2008.01.017] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2007] [Revised: 12/20/2007] [Accepted: 01/07/2008] [Indexed: 10/22/2022]
Abstract
The type I interferon (IFN) receptor plays a key role in innate immunity against viral and bacterial infections. Here, we show by intramolecular Förster resonance energy transfer spectroscopy that ligand binding induces substantial conformational changes in the ectodomain of ifnar1 (ifnar1-EC). Binding of IFN alpha 2 and IFN beta induce very similar conformations of ifnar1, which were confirmed by single-particle electron microscopy analysis of the ternary complexes formed by IFN alpha 2 or IFN beta with the two receptor subunits ifnar1-EC and ifnar2-EC. Photo-induced electron-transfer-based fluorescence quenching and single-molecule fluorescence lifetime measurements revealed that the ligand-induced conformational change in the membrane-distal domains of ifnar1-EC is propagated to its membrane-proximal domain, which is not involved in ligand recognition but is essential for signal activation. Temperature-dependent ligand binding studies as well as stopped-flow fluorescence experiments corroborated a multistep conformational change in ifnar1 upon ligand binding. Our results thus suggest that the relatively intricate architecture of the type I IFN receptor complex is designed to propagate the ligand binding event to and possibly even across the membrane by conformational changes.
Collapse
Affiliation(s)
- Jennifer Julia Strunk
- Institute of Biochemistry, Johann Wolfgang Goethe-University, Biocenter N210, Max-von-Laue-Strasse 9, 60438 Frankfurt am Main, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Shen F, Gaffen SL. Structure-function relationships in the IL-17 receptor: implications for signal transduction and therapy. Cytokine 2008; 41:92-104. [PMID: 18178098 DOI: 10.1016/j.cyto.2007.11.013] [Citation(s) in RCA: 200] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2007] [Revised: 10/18/2007] [Accepted: 11/16/2007] [Indexed: 12/18/2022]
Abstract
IL-17 is the defining cytokine of a newly-described "Th17" population that plays critical roles in mediating inflammation and autoimmunity. The IL-17/IL-17 receptor superfamily is the most recent class of cytokines and receptors to be described, and until recently very little was known about its function or molecular biology. However, in the last year important new insights into the composition and dynamics of the receptor complex and mechanisms of downstream signal transduction have been made, which will be reviewed here.
Collapse
Affiliation(s)
- Fang Shen
- Department of Oral Biology, School of Dental Medicine, University at Buffalo, State University of New York, Buffalo, NY, USA
| | | |
Collapse
|
41
|
Zal T. Visualization of protein interactions in living cells. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2008; 640:183-97. [PMID: 19065792 PMCID: PMC5788009 DOI: 10.1007/978-0-387-09789-3_14] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Abstract
Ligand binding to cell membrane receptors sets off a series of protein interactions that convey the nuances ofligand identity to the cell interior. The information may be encoded in conformational changes, the interaction kinetics and, in the case of multichain immunoreceptors, by chain rearrangements. The signals may be modulated by dynamic compartmentalization of the cell membrane, cellular architecture, motility, and activation--all of which are difficult to reconstitute for studies of receptor signaling in vitro. In this chapter, we will discuss how protein interactions in general and receptor signaling in particular can be studied in living cells by different fluorescence imaging techniques. Particularly versatile are methods that exploit Förster resonance energy transfer (FRET), which is exquisitely sensitive to the nanometer-range proximity and orientation between fluorophores. Fluorescence correlation microscopy (FCM) can provide complementary information about the stoichiometry and diffusion kinetics of large complexes, while bimolecular fluorescence complementation (BiFC) and other complementation techniques can capture transient interactions. A continuing challenge is extracting from the imaging data the quantitative information that is necessary to verify different models of signal transduction.
Collapse
Affiliation(s)
- Tomasz Zal
- Department of Immunology, University of Texas, MD Anderson Cancer Center, Unit 902, 7455 Fannin, Houston TX, USA.
| |
Collapse
|
42
|
Abstract
Interferons (IFNs) were discovered 50 years ago independently by Isaacs and Lindemann and by Nagata and Kojima. When it was later realized that IFNs are active at very low concentrations, research began to determine how their powerful effects were generated from such a small initial signal. It has since been established that interferons, as well as all other cytokines, employ cell surface receptors to translate their presence in the serum to a potent cellular response to a viral infection. These receptor complexes are composed of multiple distinct glycosylated transmembrane polypeptides, a number of protein tyrosine kinases, and interact transiently with a large variety of other proteins including transcription factors, phosphatases, signaling repressors, and adaptor proteins coupling the receptor to alternative signaling pathways. Three major receptor complexes exist that are exclusive to each of three major classes of interferon. Even though the effects of each major class of interferon vary physiologically, each receptor complex interacts with its ligand in similar ways and activates similar signaling cascades. In this mini-review, we take a historical perspective at the major events in the characterization of interferon receptors, discussing interesting results that still need to be explained.
Collapse
Affiliation(s)
- Christopher D Krause
- Department of Molecular Genetics, Microbiology, and Immunology, Robert Wood Johnson Medical School - The University of Medicine and Dentistry of New Jersey, Piscataway, NJ 08854, USA
| | | |
Collapse
|
43
|
Abstract
The interferons (IFNs) and their receptors represent a subset of the class 2 alpha-helical cytokines that have been in chordates for millions of years. This brief review focuses on the discovery and purification of interferons, cloning of human IFN-alpha and IFN-beta, interferon receptors, activities and therapeutic uses of interferons, and the side effects of interferons.
Collapse
Affiliation(s)
- Sidney Pestka
- Department of Molecular Genetics, Microbiology, and Immunology, Robert Wood Johnson Medical School, Piscataway, NJ 08854, USA.
| |
Collapse
|
44
|
Shudo E, Yang J, Yoshimura A, Iwasa Y. Robustness of the signal transduction system of the mammalian JAK/STAT pathway and dimerization steps. J Theor Biol 2007; 246:1-9. [PMID: 17241643 DOI: 10.1016/j.jtbi.2006.11.016] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2006] [Revised: 11/16/2006] [Accepted: 11/30/2006] [Indexed: 01/03/2023]
Abstract
In the interferon-gamma (IFNgamma)-activated Janus Kinase (JAK)/signal transducer and activator of transcription 1 (STAT1) pathway, multiple steps of STAT1 dimerization are required prior to gene expression that produce antiviral molecules. By interpreting experimental results, an existing mathematical model suggested that only phosphorylated STAT1 dimers could translocate to the nucleus and activate gene transcription. In this paper, we examine the role of STAT1 dimerization steps by studying the dynamic behaviors of four alternative models. By analyzing several system properties at low input IFNgamma signal including the steady-state antiviral molecule production, to the input, the delay of responses triggered by input, and the parameter sensitivity, we found that the mice JAK/STAT1 system identified by experiments (1) suppresses antiviral molecule production at low input signal, (2) has slow kinetics of antiviral molecule production and (3) has low parameter sensitivity of antiviral molecule production at steady state. We conclude that the observed structure of the JAK/STAT1 pathway is responsible for the robust system behavior.
Collapse
Affiliation(s)
- Emi Shudo
- Department of Biology, Faculty of Sciences, Kyushu University, Fukuoka, Fukuoka 812-8581, Japan.
| | | | | | | |
Collapse
|
45
|
Garcia CS, Curiel RE, Mwatibo JM, Pestka S, Li H, Espinoza-Delgado I. The antineoplastic agent bryostatin-1 differentially regulates IFN-gamma receptor subunits in monocytic cells: transcriptional and posttranscriptional control of IFN-gamma R2. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2006; 177:2707-16. [PMID: 16888033 DOI: 10.4049/jimmunol.177.4.2707] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Bryostatin-1 (Bryo-1) is a potent ligand and modulator of protein kinase C that exerts antineoplastic and immunomodulatory activities both in vitro and in vivo. We have previously reported that Bryo-1 synergized with IFN-gamma to induce NO synthase and NO by macrophages. To determine whether this effect was associated with changes in levels of IFN-gammaR, we investigated the effects of Bryo-1 on the expression and regulation of IFN-gammaR chains in monocytic cells. Northern blot analysis revealed that Bryo-1 treatment of the human monocytic cell lines MonoMac6 and THP-1 and human monocytes enhanced the expression of IFN-gammaR2 mRNA but did not affect IFN-gammaR1 mRNA expression. Bryo-1 increased IFN-gammaR2 mRNA in a dose-dependent manner as early as 3 h posttreatment. Bryo-1-induced up-regulation of IFN-gammaR2 mRNA levels is not dependent on de novo protein synthesis as shown by cell treatment with the protein-synthesis inhibitor cycloheximide. Bryo-1 treatment increased the IFN-gammaR2 mRNA half-life by 2 h. EMSA analysis from Bryo-1-treated MonoMac6 cells showed an increased nuclear protein binding to the NF-kappaB motif present in the 5' flanking region of the human IFN-gammaR2 promoter that was markedly decreased by pretreatment with the NF-kappaB inhibitor SN50. These results show for the first time that Bryo-1 up-regulates IFN-gammaR2 expression in monocytic cells. Given the pivotal role that IFN-gamma exerts on monocyte activation and in the initiation and outcome of the immune response, the induction of IFN-gammaR2 by Bryo-1 has significant implications in immunomodulation and could overcome some of the immune defects observed in cancer patients.
Collapse
Affiliation(s)
- Carmen S Garcia
- Department of Medicine and Stanley S. Scott Cancer Center, Louisiana State University Medical Center, New Orleans, LA 70112, USA
| | | | | | | | | | | |
Collapse
|
46
|
Scheller J, Grötzinger J, Rose-John S. Updating interleukin-6 classic- and trans-signaling. ACTA ACUST UNITED AC 2006. [DOI: 10.1002/sita.200600086] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
47
|
Stuhlmann-Laeisz C, Lang S, Chalaris A, Krzysztof P, Enge S, Eichler J, Klingmüller U, Samuel M, Ernst M, Rose-John S, Scheller J. Forced dimerization of gp130 leads to constitutive STAT3 activation, cytokine-independent growth, and blockade of differentiation of embryonic stem cells. Mol Biol Cell 2006; 17:2986-95. [PMID: 16624864 PMCID: PMC1483035 DOI: 10.1091/mbc.e05-12-1129] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2005] [Revised: 03/27/2006] [Accepted: 04/07/2006] [Indexed: 02/03/2023] Open
Abstract
The mode of activation of glycoprotein 130 kDa (gp130) and the transmission of the activation status through the plasma membrane are incompletely understood. In particular, the molecular function of the three juxtamembrane fibronectin III-like domains of gp130 in signal transmission remains unclear. To ask whether forced dimerization of gp130 is sufficient for receptor activation, we replaced the entire extracellular portion of gp130 with the c-jun leucine zipper region in the chimeric receptor protein L-gp130. On expression in cells, L-gp130 stimulates ligand-independent signal transducer and activator of transcription (STAT) 3 and extracellular signal-regulated kinase 1/2 phosphorylation. gp130 activation could be abrogated by the addition of a competing peptide comprising the leucine zipper region of c-fos. When stably expressed in the interleukin-3-dependent Ba/F3 murine pre-B-cells, these cells showed constitutive STAT3 activation and cytokine-independent growth over several months. Because gp130 stimulation completely suppressed differentiation of murine embryonic stem cells in vitro, we also stably expressed L-gp130 in these cells, which completely blocked their differentiation in the absence of cytokine stimulation and was consistent with high constitutive expression levels of the stem cell factor OCT-4. Thus, L-gp130 can be used in vitro and in vivo to mimic constitutive and ligand-independent activation of gp130 and STAT3, the latter of which is frequently observed in neoplastic diseases.
Collapse
Affiliation(s)
| | - Sigrid Lang
- *Department of Biochemistry, Christian-Albrechts-Universität, D-24098 Kiel, Germany
| | - Athena Chalaris
- *Department of Biochemistry, Christian-Albrechts-Universität, D-24098 Kiel, Germany
| | - Paliga Krzysztof
- *Department of Biochemistry, Christian-Albrechts-Universität, D-24098 Kiel, Germany
| | - Sudarman Enge
- Gesellschaft für Biotechnologische Forschung GmbH, D-38124 Braunschweig, Germany
| | - Jutta Eichler
- Gesellschaft für Biotechnologische Forschung GmbH, D-38124 Braunschweig, Germany
| | | | - Michael Samuel
- Colon Molecular and Cell Biology Laboratory, Ludwig Institute for Cancer Research, Parkville VIC 3050, Australia
| | - Matthias Ernst
- Colon Molecular and Cell Biology Laboratory, Ludwig Institute for Cancer Research, Parkville VIC 3050, Australia
| | - Stefan Rose-John
- *Department of Biochemistry, Christian-Albrechts-Universität, D-24098 Kiel, Germany
| | - Jürgen Scheller
- *Department of Biochemistry, Christian-Albrechts-Universität, D-24098 Kiel, Germany
| |
Collapse
|
48
|
Kramer JM, Yi L, Shen F, Maitra A, Jiao X, Jin T, Gaffen SL. Evidence for ligand-independent multimerization of the IL-17 receptor. THE JOURNAL OF IMMUNOLOGY 2006; 176:711-5. [PMID: 16393951 PMCID: PMC2973994 DOI: 10.4049/jimmunol.176.2.711] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
IL-17 and its receptor are founding members of a novel inflammatory cytokine family. To date, only one IL-17 receptor subunit has been identified, termed IL-17RA. All known cytokine receptors consist of a complex of multiple subunits. Although IL-17-family cytokines exist as homodimers, the configuration and stoichiometry of the IL-17R complex remain unknown. We used fluorescence resonance energy transfer (FRET) to determine whether IL-17RA subunits multimerize, and, if so, whether they are preassembled in the plasma membrane. HEK293 cells coexpressing IL-17RA fused to cyan or yellow fluorescent proteins (CFP or YFP) were used to evaluate FRET before and after IL-17A or IL-17F treatment. In the absence of ligand, IL-17RA molecules exhibited significant specific FRET efficiency, demonstrating that they exist in a multimeric, preformed receptor complex. Strikingly, treatment with IL-17A or IL-17F markedly reduced FRET efficiency, suggesting that IL-17RA subunits within the IL-17R complex undergo a conformational change upon ligand binding.
Collapse
Affiliation(s)
- Jill M. Kramer
- Department of Oral Biology, School of Dental Medicine, University at Buffalo, State University of New York, Buffalo, NY 14214
| | - Ling Yi
- Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health Twinbrook II Facility, Bethesda, MD 20852
| | - Fang Shen
- Department of Oral Biology, School of Dental Medicine, University at Buffalo, State University of New York, Buffalo, NY 14214
| | - Amarnath Maitra
- Department of Oral Biology, School of Dental Medicine, University at Buffalo, State University of New York, Buffalo, NY 14214
| | - Xuanmao Jiao
- Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health Twinbrook II Facility, Bethesda, MD 20852
| | - Tian Jin
- Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health Twinbrook II Facility, Bethesda, MD 20852
- Address correspondence and reprint requests to Dr. Sarah L. Gaffen, Department of Oral Biological School of Dental Medicine, University at Buffalo, State University of New York, 3435 Main Street, Buffalo, NY 14214; or Dr. Tian Jin, National Institute of Allergy and Infectious Diseases, Twinbrook II Facility, Bethesda, MD 20852;
| | - Sarah L. Gaffen
- Department of Oral Biology, School of Dental Medicine, University at Buffalo, State University of New York, Buffalo, NY 14214
- Department of Microbiology and Immunology, School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, NY 14214
- Address correspondence and reprint requests to Dr. Sarah L. Gaffen, Department of Oral Biological School of Dental Medicine, University at Buffalo, State University of New York, 3435 Main Street, Buffalo, NY 14214; or Dr. Tian Jin, National Institute of Allergy and Infectious Diseases, Twinbrook II Facility, Bethesda, MD 20852;
| |
Collapse
|
49
|
Krause CD, Mei E, Mirochnitchenko O, Lavnikova N, Xie J, Jia Y, Hochstrasser RM, Pestka S. Interactions among the components of the interleukin-10 receptor complex. Biochem Biophys Res Commun 2006; 340:377-85. [PMID: 16364239 DOI: 10.1016/j.bbrc.2005.11.182] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2005] [Accepted: 11/29/2005] [Indexed: 11/18/2022]
Abstract
We used fluorescence resonance energy transfer previously to show that the interferon-gamma (IFN-gamma) receptor complex is a preformed entity mediated by constitutive interactions between the IFN-gammaR2 and IFN-gammaR1 chains, and that this preassembled entity changes its structure after the treatment of cells with IFN-gamma. We applied this technique to determine the structure of the interleukin-10 (IL-10) receptor complex and whether it undergoes a similar conformational change after treatment of cells with IL-10. We report that, like the IFN-gamma receptor complex, the IL-10 receptor complex is preassembled: constitutive but weaker interactions occur between the IL-10R1 and IL-10R2 chains, and between two IL-10R2 chains. The IL-10 receptor complex undergoes no major conformational changes when cells are treated with cellular or Epstein-Barr viral IL-10. Receptor complex preassembly may be an inherent feature of Class 2 cytokine receptor complexes.
Collapse
Affiliation(s)
- Christopher D Krause
- Department of Molecular Genetics, Microbiology, and Immunology, The University of Medicine and Dentistry of New Jersey-Robert Wood Johnson Medical School, 675 Hoes Lane West, Piscataway, NJ 08854, USA
| | | | | | | | | | | | | | | |
Collapse
|
50
|
Krause CD, Lavnikova N, Xie J, Mei E, Mirochnitchenko OV, Jia Y, Hochstrasser RM, Pestka S. Preassembly and ligand-induced restructuring of the chains of the IFN-gamma receptor complex: the roles of Jak kinases, Stat1 and the receptor chains. Cell Res 2006; 16:55-69. [PMID: 16467876 DOI: 10.1038/sj.cr.7310008] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
We previously demonstrated using noninvasive technologies that the interferon-gamma (IFN-gamma) receptor complex is preassembled (1). In this report we determined how the receptor complex is preassembled and how the ligand-mediated conformational changes occur. The interaction of Stat1 with IFN-gammaR1 results in a conformational change localized to IFN-gammaR1. Jak1 but not Jak2 is required for the two chains of the IFN-gamma receptor complex (IFN-gammaR1 and IFN-gammaR2) to interact; however, the presence of both Jak1 and Jak2 is required to see any ligand-dependant conformational change. Two IFN-gammaR2 chains interact through species-specific determinants in their extracellular domains. Finally, these determinants also participate in the interaction of IFN-gammaR2 with IFN-gammaR1. These results agree with a detailed model of the IFN-gamma receptor that requires the receptor chains to be pre-associated constitutively for the receptor to be active.
Collapse
Affiliation(s)
- Christopher D Krause
- Department of Molecular Genetics, Microbiology and Immunology, The University of Medicine and Dentistry of New Jersey, Robert Wood Johnson Medical School, 675 Hoes Lane West, Piscataway, 08854, USA
| | | | | | | | | | | | | | | |
Collapse
|