1
|
Xu HJ, Bai J, Tian Y, Feng X, Chen AP, Wang J, Wu J, Jin XR, Zhang F, Quan MY, Chen C, Lee KY, Zhang JS. ESE1/AGR2 axis antagonizes TGF-β-induced epithelial-mesenchymal transition in low-grade pancreatic cancer. Cancer Med 2023; 12:5979-5993. [PMID: 36329620 PMCID: PMC10028153 DOI: 10.1002/cam4.5397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 10/12/2022] [Accepted: 10/21/2022] [Indexed: 11/06/2022] Open
Abstract
Epithelium-specific ETS transcription factor 1 (ESE1) has been implicated in epithelial homeostasis, inflammation, as well as tumorigenesis, and cancer progression. However, numerous studies have reported contradictory roles-as an oncogene or a tumor suppressor of ESE1 in different cancers, and its function in the development and progression of pancreatic ductal adenocarcinoma (PDAC) has remained largely unexplored. Herein, we report that ESE1 was found upregulated in primary PDAC compared to normal pancreatic tissue, but high expression of ESE1 correlated to better relapse-free survival in patients with PDAC. Interestingly, ESE1 was found to exhibit dual roles in regulation of malignant properties of PDAC cells in that its overexpression promoted cell proliferation, whereas its downregulation enhanced epithelial-mesenchymal transition (EMT) phenotype. In the context of TGF-β-induced EMT, ESE1 is markedly downregulated at post-transcriptional level, and reconstituted ESE1 expression partially reversed TGF-β-induced EMT marker expression. Furthermore, we identify AGR2 as a novel transcriptional target of ESE1 that participates in TGF-β-induced EMT in PDAC. Collectively, our findings reveal an ESE1/AGR2 axis that interacts with TGF-β signaling to modulate EMT phenotype in PDAC.
Collapse
Affiliation(s)
- Hui-Jing Xu
- International Collaborative Center on Growth Factor Research, and School of Pharmaceutical Sciences, Wenzhou Medical University, Zhejiang, China
- College of Pharmacy and Research Institute of Drug Development, Chonnam National University, Gwangju, Republic of Korea
| | - Jing Bai
- International Collaborative Center on Growth Factor Research, and School of Pharmaceutical Sciences, Wenzhou Medical University, Zhejiang, China
| | - Ye Tian
- International Collaborative Center on Growth Factor Research, and School of Pharmaceutical Sciences, Wenzhou Medical University, Zhejiang, China
| | - Xiao Feng
- International Collaborative Center on Growth Factor Research, and School of Pharmaceutical Sciences, Wenzhou Medical University, Zhejiang, China
| | - Ai-Ping Chen
- International Collaborative Center on Growth Factor Research, and School of Pharmaceutical Sciences, Wenzhou Medical University, Zhejiang, China
| | - Jie Wang
- International Collaborative Center on Growth Factor Research, and School of Pharmaceutical Sciences, Wenzhou Medical University, Zhejiang, China
| | - Jin Wu
- International Collaborative Center on Growth Factor Research, and School of Pharmaceutical Sciences, Wenzhou Medical University, Zhejiang, China
| | - Xu-Ru Jin
- The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Zhejiang, China
| | - Feng Zhang
- The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Zhejiang, China
| | - Mei-Yu Quan
- Medical Research Center, and Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Wenzhou Medical University, Zhejiang, China
| | - Chengshui Chen
- The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Zhejiang, China
| | - Kwang-Youl Lee
- College of Pharmacy and Research Institute of Drug Development, Chonnam National University, Gwangju, Republic of Korea
| | - Jin-San Zhang
- The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Zhejiang, China
- Medical Research Center, and Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Wenzhou Medical University, Zhejiang, China
| |
Collapse
|
2
|
Roy D, Liu GS, Zeling Wang A, Zhou B, Yunus FUN, Raza G, Bharath Merugu S, Saidi Mashausi D, Li D, Zhao B. Construction and stable gene expression of AGR2xPD1 bi-specific antibody that enhances attachment between T-Cells and lung tumor cells, suppress tumor cell migration and promoting CD8 expression in cytotoxic T-cells. Saudi Pharm J 2023; 31:85-95. [PMID: 36685298 PMCID: PMC9845114 DOI: 10.1016/j.jsps.2022.11.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Accepted: 11/08/2022] [Indexed: 11/17/2022] Open
Abstract
There has been a substantial and consistent rise in the number of clinical trials to develop advanced and potent bispecific antibodies (BsAb) over the past two decades with multiple targets to improve the efficacy or tissue specificity of monoclonal antibodies (mAb) treatment for diseases with multiple determining factors or widely-expressed targets. In this study, we designed and synthesized BsAb AGR2xPD1 targeting extracellular AGR2, a paracrine signal, and PD1, an immune checkpoint protein. Our design is intended to use AGR2 binding to guide PD1 targeting for AGR2+cancer. We used this construction to produce AGR2xPD1 BsAb by generating clonally selected stable 293F cell line with high expression. Applying this BsAb in a T cell-Tumor cell co-culture system showed that targeting both PD1 and AGR2 with this BsAb induces the attachment of TALL-104 (CD8+ T-lymphocytes) cells onto co-cultured H460 AGR2+ Lung tumor cells and significantly reduces migration of H460 cells. T-cell expression of CD8 and IFNγ is also synergistically enhanced by the AGR2xPD1 BsAb treatment in the AGR2+H460 co-culture system. These effects are significantly reduced with AGR2 expression negative WI38 cells. Our results demonstrate that the AGR2xPD1 BsAb could be a potential therapeutic agent to provide better solid tumor targeting and synergetic efficacy for treating AGR2+ cancer by blocking AGR2 paracrine signaling to reduce tumor survival, and redirecting cytotoxic T-cells into AGR2+ cancer cells.
Collapse
Affiliation(s)
- Debmalya Roy
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai, China
| | - Guo-Song Liu
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai, China
| | - Aru Zeling Wang
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai, China
- Amsterdam UMC location Vrije Universiteit Amsterdam, Department of Molecular Cell Biology and Immunology, Amsterdam Infection and Immunity Institute, Cancer Center Amsterdam, Boelelaan 1117, Amsterdam, the Netherlands
| | - Bingjie Zhou
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai, China
- CAS Key Laboratory of Molecular Virology & Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Fakhar-Un-Nisa Yunus
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai, China
- Department of Zoology, Lahore College for Women University, Lahore, Pakistan
| | - Ghulam Raza
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai, China
| | - Siva Bharath Merugu
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai, China
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC, USA
| | | | - Dawei Li
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai, China
- Engineering Research Center of Cell and Therapeutic Antibody, Ministry of Education, Shanghai, China
- Corresponding authors at: School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Bo Zhao
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai, China
- Engineering Research Center of Cell and Therapeutic Antibody, Ministry of Education, Shanghai, China
- Corresponding authors at: School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China.
| |
Collapse
|
3
|
Zhang K, Li Y, Kong X, Lei C, Yang H, Wang N, Wang Z, Chang H, Xuan L. AGR2: a secreted protein worthy of attention in diagnosis and treatment of breast cancer. Front Oncol 2023; 13:1195885. [PMID: 37197416 PMCID: PMC10183570 DOI: 10.3389/fonc.2023.1195885] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 04/19/2023] [Indexed: 05/19/2023] Open
Abstract
AGR2 is a secreted protein widely existing in breast. In precancerous lesions, primary tumors and metastatic tumors, the expression of AGR2 is increased, which has aroused our interest. This review introduces the gene and protein structure of AGR2. Its endoplasmic reticulum retention sequence, protein disulfide isomerase active site and multiple protein binding sequences endow AGR2 with diverse functions inside and outside breast cancer cells. This review also enumerates the role of AGR2 in the progress and prognosis of breast cancer, and emphasizes that AGR2 can be a promising biomarker and a target for immunotherapy of breast cancer, providing new ideas for early diagnosis and treatment of breast cancer.
Collapse
Affiliation(s)
- Ke Zhang
- Department of Breast Surgical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yuan Li
- Department of Breast Surgical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xiangyi Kong
- Department of Breast Surgical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Chuqi Lei
- Department of Breast Surgical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Huaiyu Yang
- Department of Breast Surgical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Nianchang Wang
- Department of Cancer Prevention, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Zhongzhao Wang
- Department of Breast Surgical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- *Correspondence: Zhongzhao Wang, ; Hu Chang, ; Lixue Xuan,
| | - Hu Chang
- Administration Office, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- *Correspondence: Zhongzhao Wang, ; Hu Chang, ; Lixue Xuan,
| | - Lixue Xuan
- Department of Breast Surgical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- *Correspondence: Zhongzhao Wang, ; Hu Chang, ; Lixue Xuan,
| |
Collapse
|
4
|
Lin CH, Chuang HN, Hsiao TH, Kumar VB, Hsu CH, Huang CY, Lee LW, Mao CL, Ko JL, Hsu CP. AGR2 expression as a predictive biomarker for therapy response in esophageal squamous cell carcinoma. PLoS One 2022; 17:e0276990. [PMID: 36327302 PMCID: PMC9632826 DOI: 10.1371/journal.pone.0276990] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Accepted: 10/17/2022] [Indexed: 11/06/2022] Open
Abstract
Despite multidisciplinary therapy, the prognosis is poor for esophageal squamous cell carcinoma (ESCC). In the locally advanced stage, neoadjuvant chemoradiotherapy (nCRT) followed by surgery could provide survival benefits to some patients. Here, we aimed to identify for tumor therapy response a biomarker based on RNA sequencing. We collected endoscopic biopsies of 32 ESCC patients, who were divided according to nCRT response, into two groups: the complete response group (n = 13) and the non-complete response group (n = 19). RNA-sequencing data showed that 464 genes were differentially expressed. Increased in non-complete response group, 4 genes increased expressions were AGR2 (anterior gradient 2), GADD45B (growth arrest and DNA damage inducible beta), PPP1R15A (protein phosphatase 1 regulatory subunit 15A) and LRG1 (leucine rich alpha-2-glycoprotein 1). The areas under the curve (AUC) of the AGR2 gene was 0.671 according to read counts of RNA-seq and therapy response of nCRT. In vitro study showed that apoptosis cell was significantly increased in the AGR2-knockdown TE-2 cell line treated with cisplatin and 5-Fluorouracil (5-FU), when compared with si-control. Results suggest that in ESCC, the AGR2 gene is a promising and predictive gene marker for the response to anti-tumor therapy.
Collapse
Affiliation(s)
- Chih-Hung Lin
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan
- Division of Thoracic Surgery, Department of Surgery, Taichung Veteran General Hospital, Taichung, Taiwan
| | - Han-Ni Chuang
- Department of Medical Research, Taichung Veterans General Hospital, Taichung, Taiwan
| | - Tzu-Hung Hsiao
- Department of Medical Research, Taichung Veterans General Hospital, Taichung, Taiwan
- Department of Public Health, Fu Jen Catholic University, New Taipei City, Taiwan
- Institute of Genomics and Bioinformatics, National Chung Hsing University, Taichung, Taiwan
| | - V. Bharath Kumar
- Department of Medical Laboratory Science and Biotechnology, Asia University, Taichung, Taiwan
| | - Chiung-Hung Hsu
- Cardiovascular and Mitochondrial Related Disease Research Center, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan
| | - Chih-Yang Huang
- Cardiovascular and Mitochondrial Related Disease Research Center, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan
- Center of General Education, Buddhist Tzu Chi Medical Foundation, Tzu Chi University of Science and Technology, Hualien, Taiwan
- Department of Medical Research, China Medical University Hospital, China Medical University, Taichung, Taiwan
| | - Li-Wen Lee
- Division of Thoracic Surgery, Department of Surgery, Taichung Veteran General Hospital, Taichung, Taiwan
| | - Chien-Lin Mao
- Department of Medical Research, Taichung Veterans General Hospital, Taichung, Taiwan
| | - Jiunn-Liang Ko
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan
- Department of Medical Oncology and Chest Medicine, Chung Shan Medical University Hospital, Taichung, Taiwan
- * E-mail: (JLK); (CPH)
| | - Chung-Ping Hsu
- Division of Thoracic Surgery, Department of Surgery, Taichung Veteran General Hospital, Taichung, Taiwan
- Division of Thoracic Surgery, Department of Surgery, Buddhist Tzu Chi General Hospital, Hualien, Taiwan
- * E-mail: (JLK); (CPH)
| |
Collapse
|
5
|
Boisteau E, Posseme C, Di Modugno F, Edeline J, Coulouarn C, Hrstka R, Martisova A, Delom F, Treton X, Eriksson LA, Chevet E, Lièvre A, Ogier-Denis E. Anterior gradient proteins in gastrointestinal cancers: from cell biology to pathophysiology. Oncogene 2022; 41:4673-4685. [PMID: 36068336 DOI: 10.1038/s41388-022-02452-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 08/03/2022] [Accepted: 08/23/2022] [Indexed: 11/09/2022]
Abstract
Most of the organs of the digestive tract comprise secretory epithelia that require specialized molecular machines to achieve their functions. As such anterior gradient (AGR) proteins, which comprise AGR1, AGR2, and AGR3, belong to the protein disulfide isomerase family, and are involved in secretory and transmembrane protein biogenesis in the endoplasmic reticulum. They are generally expressed in epithelial cells with high levels in most of the digestive tract epithelia. To date, the vast majority of the reports concern AGR2, which has been shown to exhibit various subcellular localizations and exert pro-oncogenic functions. AGR2 overexpression has recently been associated with a poor prognosis in digestive cancers. AGR2 is also involved in epithelial homeostasis. Its deletion in mice results in severe diffuse gut inflammation, whereas in inflammatory bowel diseases, the secretion of AGR2 in the extracellular milieu participates in the reshaping of the cellular microenvironment. AGR2 thus plays a key role in inflammation and oncogenesis and may represent a therapeutic target of interest. In this review, we summarize the already known roles and mechanisms of action of the AGR family proteins in digestive diseases, their expression in the healthy digestive tract, and in digestive oncology. At last, we discuss the potential diagnostic and therapeutic implications underlying the biology of AGR proteins.
Collapse
Affiliation(s)
- Emeric Boisteau
- INSERM U1242, University of Rennes, Rennes, France
- Department of Gastroenterology, University Hospital Pontchaillou, University of Rennes, Rennes, France
| | - Céline Posseme
- INSERM U1242, University of Rennes, Rennes, France
- Centre de Lutte Contre le Cancer Eugène Marquis, Rennes, France
| | - Federico Di Modugno
- INSERM U1242, University of Rennes, Rennes, France
- Centre de Lutte Contre le Cancer Eugène Marquis, Rennes, France
| | - Julien Edeline
- INSERM U1242, University of Rennes, Rennes, France
- Centre de Lutte Contre le Cancer Eugène Marquis, Rennes, France
| | | | - Roman Hrstka
- Regional Centre for Applied Molecular Oncology, Masaryk Memorial Cancer Institute, Brno, Czech Republic
| | - Andrea Martisova
- Regional Centre for Applied Molecular Oncology, Masaryk Memorial Cancer Institute, Brno, Czech Republic
- National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Brno, Czech Republic
| | | | - Xavier Treton
- Assistance Publique-Hôpitaux de Paris, University of Paris, Clichy, France
| | - Leif A Eriksson
- Department of Chemistry and Molecular Biology, University of Gothenburg, Göteborg, Sweden
| | - Eric Chevet
- INSERM U1242, University of Rennes, Rennes, France.
- Centre de Lutte Contre le Cancer Eugène Marquis, Rennes, France.
| | - Astrid Lièvre
- INSERM U1242, University of Rennes, Rennes, France.
- Department of Gastroenterology, University Hospital Pontchaillou, University of Rennes, Rennes, France.
| | - Eric Ogier-Denis
- INSERM U1242, University of Rennes, Rennes, France.
- Centre de Lutte Contre le Cancer Eugène Marquis, Rennes, France.
| |
Collapse
|
6
|
Maarouf A, Boissard A, Henry C, Leman G, Coqueret O, Guette C, Lelièvre E. Anterior gradient protein 2 is a marker of tumor aggressiveness in breast cancer and favors chemotherapy‑induced senescence escape. Int J Oncol 2021; 60:5. [PMID: 34913074 PMCID: PMC8727137 DOI: 10.3892/ijo.2021.5295] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Accepted: 11/09/2021] [Indexed: 11/05/2022] Open
Abstract
Among the different chemotherapies available, genotoxic drugs are widely used. In response to these drugs, particularly doxorubicin, tumor cells can enter into senescence. Chemotherapy‑induced senescence (CIS) is a complex response. Long described as a definitive arrest of cell proliferation, the present authors and various groups have shown that this state may not be complete and could allow certain cells to reproliferate. The mechanism could be due to the activation of new signaling pathways. In the laboratory, the proteins involved in these pathways and triggering cell proliferation were studied. The present study determined a new role for anterior gradient protein 2 (AGR2) in vivo in patients and in vitro in a senescence escape model. AGR2's implication in breast cancer patients and proliferation of senescent cells was assessed based on a SWATH‑MS proteomic study of patients' samples and RNA interference technology on cell lines. First, AGR2 was identified and it was found that its concentration is higher in the serum of patients with breast cancer and that this high concentration is associated with metastasis occurrence. An inverse correlation between intratumoral AGR2 expression and the senescence marker p16 was also observed. This observation led to the study of the role of AGR2 in the CIS escape model. In this model, it was found that AGR2 is overexpressed in cells during senescence escape and that its loss considerably reduces this phenomenon. Furthermore, it was shown that the extracellular form of AGR2 stimulated the reproliferation of senescent cells. The power of proteomic analysis based on the SWATH‑MS approach allowed the present study to highlight the mammalian target of rapamycin (mTOR)/AKT signaling pathway in the senescence escape mechanism mediated by AGR2. Analysis of the two signaling pathways revealed that AGR2 modulated RICTOR and AKT phosphorylation. All these results showed that AGR2 expression in sera and tumors of breast cancer patients is a marker of tumor progression and metastasis occurrence. They also showed that its overexpression regulates CIS escape via activation of the mTOR/AKT signaling pathway.
Collapse
Affiliation(s)
- Amine Maarouf
- Paul Papin ICO Cancer Center, CRCINA, INSERM U1232, Université de Nantes, Université d'Angers, 49055 Angers, France
| | - Alice Boissard
- Paul Papin ICO Cancer Center, CRCINA, INSERM U1232, Université de Nantes, Université d'Angers, 49055 Angers, France
| | - Cécile Henry
- Paul Papin ICO Cancer Center, CRCINA, INSERM U1232, Université de Nantes, Université d'Angers, 49055 Angers, France
| | - Géraldine Leman
- Paul Papin ICO Cancer Center, CRCINA, INSERM U1232, Université de Nantes, Université d'Angers, 49055 Angers, France
| | - Olivier Coqueret
- Paul Papin ICO Cancer Center, CRCINA, INSERM U1232, Université de Nantes, Université d'Angers, 49055 Angers, France
| | - Catherine Guette
- Paul Papin ICO Cancer Center, CRCINA, INSERM U1232, Université de Nantes, Université d'Angers, 49055 Angers, France
| | - Eric Lelièvre
- Paul Papin ICO Cancer Center, CRCINA, INSERM U1232, Université de Nantes, Université d'Angers, 49055 Angers, France
| |
Collapse
|
7
|
Zhang Z, Li H, Deng Y, Schuck K, Raulefs S, Maeritz N, Yu Y, Hechler T, Pahl A, Fernández-Sáiz V, Wan Y, Wang G, Engleitner T, Öllinger R, Rad R, Reichert M, Diakopoulos KN, Weber V, Li J, Shen S, Zou X, Kleeff J, Mihaljevic A, Michalski CW, Algül H, Friess H, Kong B. AGR2-Dependent Nuclear Import of RNA Polymerase II Constitutes a Specific Target of Pancreatic Ductal Adenocarcinoma in the Context of Wild-Type p53. Gastroenterology 2021; 161:1601-1614.e23. [PMID: 34303658 DOI: 10.1053/j.gastro.2021.07.030] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 06/25/2021] [Accepted: 07/17/2021] [Indexed: 12/02/2022]
Abstract
BACKGROUND & AIMS Promoted by pancreatitis, oncogenic KrasG12D triggers acinar cells' neoplastic transformation through acinar-to-ductal metaplasia (ADM) and pancreatic intraepithelial neoplasia. Anterior gradient 2 (Agr2), a known inhibitor of p53, is detected at early stage of pancreatic ductal adenocarcinoma (PDAC) development. RNA polymerase II (RNAPII) is a key nuclear enzyme; regulation of its nuclear localization in mammalian cells represents a potential therapeutic target. METHODS A mouse model of inflammation-accelerated KrasG12D-driven ADM and pancreatic intraepithelial neoplasia development was used. Pancreas-specific Agr2 ablation was performed to access its role in pancreatic carcinogenesis. Hydrophobic hexapeptides loaded in liposomes were developed to disrupt Agr2-RNAPII complex. RESULTS We found that Agr2 is up-regulated in ADM-to-pancreatic intraepithelial neoplasia transition in inflammation and KrasG12D-driven early pancreatic carcinogenesis. Genetic ablation of Agr2 specifically blocks this metaplastic-to-neoplastic process. Mechanistically, Agr2 directs the nuclear import of RNAPII via its C-terminal nuclear localization signal, undermining the ATR-dependent p53 activation in ADM lesions. Because Agr2 binds to the largest subunit of RNAPII in a peptide motif-dependent manner, we developed a hexapeptide to interfere with the nuclear import of RNAPII by competitively disrupting the Agr2-RNAPII complex. This novel hexapeptide leads to dysfunction of RNAPII with concomitant activation of DNA damage response in early neoplastic lesions; hence, it dramatically compromises PDAC initiation in vivo. Moreover, the hexapeptide sensitizes PDAC cells and patient-derived organoids harboring wild-type p53 to RNAPII inhibitors and first-line chemotherapeutic agents in vivo. Of note, this therapeutic effect is efficient across various cancer types. CONCLUSIONS Agr2 is identified as a novel adaptor protein for nuclear import of RNAPII in mammalian cells. Also, we provide genetic evidence defining Agr2-dependent nuclear import of RNAPII as a pharmaceutically accessible target for prevention and treatment in PDAC in the context of wild-type p53.
Collapse
MESH Headings
- Active Transport, Cell Nucleus
- Animals
- Antineoplastic Agents/pharmacology
- Carcinoma in Situ/drug therapy
- Carcinoma in Situ/enzymology
- Carcinoma in Situ/genetics
- Carcinoma in Situ/pathology
- Carcinoma, Pancreatic Ductal/drug therapy
- Carcinoma, Pancreatic Ductal/enzymology
- Carcinoma, Pancreatic Ductal/genetics
- Carcinoma, Pancreatic Ductal/pathology
- Cell Transformation, Neoplastic/genetics
- Cell Transformation, Neoplastic/metabolism
- Cell Transformation, Neoplastic/pathology
- Gene Expression Regulation, Neoplastic
- Metaplasia
- Mice, Inbred C57BL
- Mice, Inbred NOD
- Mice, Knockout
- Mice, SCID
- Mucoproteins/genetics
- Mucoproteins/metabolism
- Mutation
- Oligopeptides/pharmacology
- Oncogene Proteins/genetics
- Oncogene Proteins/metabolism
- Pancreatic Neoplasms/drug therapy
- Pancreatic Neoplasms/enzymology
- Pancreatic Neoplasms/genetics
- Pancreatic Neoplasms/pathology
- Proto-Oncogene Proteins p21(ras)/genetics
- RNA Polymerase II/genetics
- RNA Polymerase II/metabolism
- Tumor Suppressor Protein p53/genetics
- Tumor Suppressor Protein p53/metabolism
- Mice
Collapse
Affiliation(s)
- Zhiheng Zhang
- Department of Surgery, Klinikum rechts der Isar, School of Medicine, Technical University of Munich, Munich, Germany
| | - Hongzhen Li
- Department of Gastroenterology, the Affiliated Drum Tower Hospital of Nanjing University, Medical School, Nanjing, China; Department of Surgery, Ulm University Hospital, Ulm University, Ulm, Germany
| | - Yibin Deng
- Jiangsu Key Laboratory of Neuropsychiatric Diseases, and College of Pharmaceutical Sciences, Soochow University, Suzhou, China
| | - Kathleen Schuck
- Department of Surgery, Ulm University Hospital, Ulm University, Ulm, Germany
| | - Susanne Raulefs
- Department of Surgery, Klinikum rechts der Isar, School of Medicine, Technical University of Munich, Munich, Germany
| | - Nadja Maeritz
- Department of Surgery, Klinikum rechts der Isar, School of Medicine, Technical University of Munich, Munich, Germany
| | - Yuanyuan Yu
- Department of Surgery, Ulm University Hospital, Ulm University, Ulm, Germany
| | | | - Andreas Pahl
- Heidelberg Pharma Research GmbH, Ladenburg, Germany
| | - Vanesa Fernández-Sáiz
- Department of Medicine III, Klinikum rechts der Isar, Technische Universität München, Munich, Germany; Center for Translational Cancer Research, Technische Universität München, Munich, Germany
| | - Yuan Wan
- The Pq Laboratory of Micro/Nano BiomeDx, Department of Biomedical Engineering, Binghamton University, State University of New York, Binghamton, New York
| | - Guosheng Wang
- The Pq Laboratory of Micro/Nano BiomeDx, Department of Biomedical Engineering, Binghamton University, State University of New York, Binghamton, New York
| | - Thomas Engleitner
- Center for Translational Cancer Research, Technische Universität München, Munich, Germany; Department of Medicine II, Klinikum rechts der Isar, Technische Universität München, Munich, Germany; Comprehensive Cancer Center Munich, Technical University of Munich, Munich, Germany
| | - Rupert Öllinger
- Center for Translational Cancer Research, Technische Universität München, Munich, Germany; Department of Medicine II, Klinikum rechts der Isar, Technische Universität München, Munich, Germany; German Cancer Consortium at the partner site Munich, Munich, Germany
| | - Roland Rad
- Center for Translational Cancer Research, Technische Universität München, Munich, Germany; Department of Medicine II, Klinikum rechts der Isar, Technische Universität München, Munich, Germany; German Cancer Consortium at the partner site Munich, Munich, Germany
| | - Maximilian Reichert
- Department of Medicine II, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
| | | | - Verena Weber
- Department of Surgery, Klinikum rechts der Isar, School of Medicine, Technical University of Munich, Munich, Germany
| | - Jingjing Li
- Department of Gastroenterology, the Affiliated Drum Tower Hospital of Nanjing University, Medical School, Nanjing, China
| | - Shanshan Shen
- Department of Gastroenterology, the Affiliated Drum Tower Hospital of Nanjing University, Medical School, Nanjing, China
| | - Xiaoping Zou
- Department of Gastroenterology, the Affiliated Drum Tower Hospital of Nanjing University, Medical School, Nanjing, China
| | - Jörg Kleeff
- Department of Visceral, Vascular and Endocrine Surgery, Martin Luther University Halle-Wittenberg, Halle, Germany
| | - Andre Mihaljevic
- Department of Surgery, Ulm University Hospital, Ulm University, Ulm, Germany
| | | | - Hana Algül
- Comprehensive Cancer Center Munich, Technical University of Munich, Munich, Germany
| | - Helmut Friess
- Department of Surgery, Klinikum rechts der Isar, School of Medicine, Technical University of Munich, Munich, Germany
| | - Bo Kong
- Department of Gastroenterology, the Affiliated Drum Tower Hospital of Nanjing University, Medical School, Nanjing, China; Department of Surgery, Ulm University Hospital, Ulm University, Ulm, Germany.
| |
Collapse
|
8
|
Takabatake K, Konishi H, Arita T, Kataoka S, Shibamoto J, Furuke H, Takaki W, Shoda K, Shimizu H, Yamamoto Y, Komatsu S, Shiozaki A, Fujiwara H, Okamoto K, Otsuji E. Anterior gradient 2 regulates cancer progression in TP53‑wild‑type esophageal squamous cell carcinoma. Oncol Rep 2021; 46:260. [PMID: 34713298 DOI: 10.3892/or.2021.8211] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Accepted: 09/27/2021] [Indexed: 11/05/2022] Open
Abstract
Anterior gradient 2 (AGR2) reportedly promotes tumor growth and has an unfavorable impact on survival in several cancers. However, no comprehensive functional analysis of AGR2 in esophageal squamous cell carcinoma (ESCC) has been performed. In the present study, the function and clinical significance of AGR2 were examined using ESCC cell lines and clinical samples. AGR2 was upregulated in EC tissue and ESCC cell lines. The downregulation of AGR2 suppressed cell proliferation and increased the proportion of G2/M‑phase cells and phosphorylation of p53 in TP53‑wild‑type ESCC and osteosarcoma cells. However, these changes were not observed in TP53‑mutant ESCC cells. In addition, immunohistochemistry results demonstrated that high AGR2 and low p53 expression levels in ESCC tissues were correlated with a worse prognosis. These results suggested that although AGR2 enhanced cell proliferation by inhibiting p53 phosphorylation in TP53‑wild‑type ESCC, the same mechanism did not regulate cell functions in TP53‑mutant ESCC. Thus, AGR2 served an important role in ESCC progression and might be a useful prognostic marker in patients with TP53‑wild‑type ESCC.
Collapse
Affiliation(s)
- Kazuya Takabatake
- Division of Digestive Surgery, Department of Surgery, Kyoto Prefectural University of Medicine, Kamigyo‑ku, Kyoto 602-8566, Japan
| | - Hirotaka Konishi
- Division of Digestive Surgery, Department of Surgery, Kyoto Prefectural University of Medicine, Kamigyo‑ku, Kyoto 602-8566, Japan
| | - Tomohiro Arita
- Division of Digestive Surgery, Department of Surgery, Kyoto Prefectural University of Medicine, Kamigyo‑ku, Kyoto 602-8566, Japan
| | - Satoshi Kataoka
- Division of Digestive Surgery, Department of Surgery, Kyoto Prefectural University of Medicine, Kamigyo‑ku, Kyoto 602-8566, Japan
| | - Jun Shibamoto
- Division of Digestive Surgery, Department of Surgery, Kyoto Prefectural University of Medicine, Kamigyo‑ku, Kyoto 602-8566, Japan
| | - Hirotaka Furuke
- Division of Digestive Surgery, Department of Surgery, Kyoto Prefectural University of Medicine, Kamigyo‑ku, Kyoto 602-8566, Japan
| | - Wataru Takaki
- Division of Digestive Surgery, Department of Surgery, Kyoto Prefectural University of Medicine, Kamigyo‑ku, Kyoto 602-8566, Japan
| | - Katsutoshi Shoda
- First Department of Surgery, Faculty of Medicine, University of Yamanashi, Yamanashi 409-3898, Japan
| | - Hiroki Shimizu
- Division of Digestive Surgery, Department of Surgery, Kyoto Prefectural University of Medicine, Kamigyo‑ku, Kyoto 602-8566, Japan
| | - Yusuke Yamamoto
- Division of Digestive Surgery, Department of Surgery, Kyoto Prefectural University of Medicine, Kamigyo‑ku, Kyoto 602-8566, Japan
| | - Shuhei Komatsu
- Division of Digestive Surgery, Department of Surgery, Kyoto Prefectural University of Medicine, Kamigyo‑ku, Kyoto 602-8566, Japan
| | - Atsushi Shiozaki
- Division of Digestive Surgery, Department of Surgery, Kyoto Prefectural University of Medicine, Kamigyo‑ku, Kyoto 602-8566, Japan
| | - Hitoshi Fujiwara
- Division of Digestive Surgery, Department of Surgery, Kyoto Prefectural University of Medicine, Kamigyo‑ku, Kyoto 602-8566, Japan
| | - Kazuma Okamoto
- Division of Digestive Surgery, Department of Surgery, Kyoto Prefectural University of Medicine, Kamigyo‑ku, Kyoto 602-8566, Japan
| | - Eigo Otsuji
- Division of Digestive Surgery, Department of Surgery, Kyoto Prefectural University of Medicine, Kamigyo‑ku, Kyoto 602-8566, Japan
| |
Collapse
|
9
|
Schmeisser J, Verlhac-Trichet V, Madaro A, Lall SP, Torrissen O, Olsen RE. Molecular Mechanism Involved in Carotenoid Metabolism in Post-Smolt Atlantic Salmon: Astaxanthin Metabolism During Flesh Pigmentation and Its Antioxidant Properties. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2021; 23:653-670. [PMID: 34417678 DOI: 10.1007/s10126-021-10055-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Accepted: 08/04/2021] [Indexed: 06/13/2023]
Abstract
A better understanding of carotenoid dynamics (transport, absorption, metabolism, and deposition) is essential to develop a better strategy to improve astaxanthin (Ax) retention in muscle of Atlantic salmon. To achieve that, a comparison of post-smolt salmon with (+ Ax) or without (- Ax) dietary Ax supplementation was established based on a transcriptomic approach targeting pyloric, hepatic, and muscular tissues. Results in post-smolts showed that the pyloric caeca transcriptome is more sensitive to dietary Ax supplementation compared to the other tissues. Key genes sensitive to Ax supplementation could be identified, such as cd36 in pylorus, agr2 in liver, or fbp1 in muscle. The most modulated genes in pylorus were related to absorption but also metabolism of Ax. Additionally, genes linked to upstream regulation of the ferroptosis pathway were significantly modulated in liver, evoking the involvement of Ax as an antioxidant in this process. Finally, the muscle seemed to be less impacted by dietary Ax supplementation, except for genes related to actin remodelling and glucose homeostasis. In conclusion, the transcriptome data generated from this study showed that Ax dynamics in Atlantic salmon is characterized by a high metabolism during absorption at pyloric caeca level. In liver, a link with a potential of ferroptosis process appears likely via cellular lipid peroxidation. Our data provide insights into a better understanding of molecular mechanisms involved in dietary Ax supplementation, as well as its beneficial effects in preventing oxidative stress and related inflammation in muscle.
Collapse
Affiliation(s)
- Jerome Schmeisser
- DSM Nutritional Products - Research Centre of Animal Nutrition and Health, 68305, Saint-Louis Cedex, France.
| | - Viviane Verlhac-Trichet
- DSM Nutritional Products - Research Centre of Animal Nutrition and Health, 68305, Saint-Louis Cedex, France
| | - Angelico Madaro
- Institute of Marine Research, Animal Welfare Science Group, 5984, Matredal, Norway
| | - Santosh P Lall
- Retired From National Research Council of Canada, 1411 Oxford Street, Halifax, Canada
| | - Ole Torrissen
- Institute of Marine Research, Animal Welfare Science Group, 5984, Matredal, Norway
| | - Rolf Erik Olsen
- Institute of Marine Research, Animal Welfare Science Group, 5984, Matredal, Norway
- Department of Biology, Norwegian University of Science and Technology, 7491, Trondheim, Norway
| |
Collapse
|
10
|
Białobrzeska W, Dziąbowska K, Lisowska M, Mohtar MA, Muller P, Vojtesek B, Krejcir R, O’Neill R, Hupp TR, Malinowska N, Bięga E, Bigus D, Cebula Z, Pala K, Czaczyk E, Żołędowska S, Nidzworski D. An Ultrasensitive Biosensor for Detection of Femtogram Levels of the Cancer Antigen AGR2 Using Monoclonal Antibody Modified Screen-Printed Gold Electrodes. BIOSENSORS 2021; 11:184. [PMID: 34200338 PMCID: PMC8230265 DOI: 10.3390/bios11060184] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 05/24/2021] [Accepted: 06/06/2021] [Indexed: 12/22/2022]
Abstract
The detection of cancer antigens is a major aim of cancer research in order to develop better patient management through early disease detection. Many cancers including prostate, lung, and ovarian secrete a protein disulfide isomerase protein named AGR2 that has been previously detected in urine and plasma using mass spectrometry. Here we determine whether a previously developed monoclonal antibody targeting AGR2 can be adapted from an indirect two-site ELISA format into a direct detector using solid-phase printed gold electrodes. The screen-printed gold electrode was surface functionalized with the anti-AGR2 specific monoclonal antibody. The interaction of the recombinant AGR2 protein and the anti-AGR2 monoclonal antibody functionalized electrode changed its electrochemical impedance spectra. Nyquist diagrams were obtained after incubation in an increasing concentration of purified AGR2 protein with a range of concentrations from 0.01 fg/mL to 10 fg/mL. In addition, detection of the AGR2 antigen can be achieved from cell lysates in medium or artificial buffer. These data highlight the utility of an AGR2-specific monoclonal antibody that can be functionalized onto a gold printed electrode for a one-step capture and quantitation of the target antigen. These platforms have the potential for supporting methodologies using more complex bodily fluids including plasma and urine for improved cancer diagnostics.
Collapse
Affiliation(s)
- Wioleta Białobrzeska
- Institute of Biotechnology and Molecular Medicine, 3 Trzy Lipy St., 80-172 Gdansk, Poland; (N.M.); (E.B.); (D.B.); (Z.C.); (S.Ż.); (D.N.)
| | | | - Małgorzata Lisowska
- International Centre for Cancer Vaccine Science, University of Gdansk, Kładki 24 St., 80-822 Gdańsk, Poland; (M.L.); (T.R.H.)
| | - M. Aiman Mohtar
- UKM Medical Centre, UKM Medical Molecular Biology Institute (UMBI), Universiti Kebangsaan Malaysia, Cheras, Kuala Lumpur 56000, Malaysia;
| | - Petr Muller
- Research Centre for Applied Molecular Oncology, Masaryk Memorial Cancer Institute, 65653 Brno, Czech Republic; (P.M.); (B.V.); (R.K.)
| | - Borivoj Vojtesek
- Research Centre for Applied Molecular Oncology, Masaryk Memorial Cancer Institute, 65653 Brno, Czech Republic; (P.M.); (B.V.); (R.K.)
| | - Radovan Krejcir
- Research Centre for Applied Molecular Oncology, Masaryk Memorial Cancer Institute, 65653 Brno, Czech Republic; (P.M.); (B.V.); (R.K.)
| | - Robert O’Neill
- Cambridge Oesophagogastric Centre, Cambridge University Hospitals NHS Foundation Trust, Cambridge CB2 0QQ, UK;
| | - Ted R. Hupp
- International Centre for Cancer Vaccine Science, University of Gdansk, Kładki 24 St., 80-822 Gdańsk, Poland; (M.L.); (T.R.H.)
- Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh EH4 2XR, UK
| | - Natalia Malinowska
- Institute of Biotechnology and Molecular Medicine, 3 Trzy Lipy St., 80-172 Gdansk, Poland; (N.M.); (E.B.); (D.B.); (Z.C.); (S.Ż.); (D.N.)
| | - Ewelina Bięga
- Institute of Biotechnology and Molecular Medicine, 3 Trzy Lipy St., 80-172 Gdansk, Poland; (N.M.); (E.B.); (D.B.); (Z.C.); (S.Ż.); (D.N.)
| | - Daniel Bigus
- Institute of Biotechnology and Molecular Medicine, 3 Trzy Lipy St., 80-172 Gdansk, Poland; (N.M.); (E.B.); (D.B.); (Z.C.); (S.Ż.); (D.N.)
| | - Zofia Cebula
- Institute of Biotechnology and Molecular Medicine, 3 Trzy Lipy St., 80-172 Gdansk, Poland; (N.M.); (E.B.); (D.B.); (Z.C.); (S.Ż.); (D.N.)
| | - Katarzyna Pala
- SensDx, 14b Postępu St., 02-676 Warszawa, Poland; (K.D.); (K.P.); (E.C.)
| | - Elżbieta Czaczyk
- SensDx, 14b Postępu St., 02-676 Warszawa, Poland; (K.D.); (K.P.); (E.C.)
| | - Sabina Żołędowska
- Institute of Biotechnology and Molecular Medicine, 3 Trzy Lipy St., 80-172 Gdansk, Poland; (N.M.); (E.B.); (D.B.); (Z.C.); (S.Ż.); (D.N.)
| | - Dawid Nidzworski
- Institute of Biotechnology and Molecular Medicine, 3 Trzy Lipy St., 80-172 Gdansk, Poland; (N.M.); (E.B.); (D.B.); (Z.C.); (S.Ż.); (D.N.)
| |
Collapse
|
11
|
Sicari D, Centonze FG, Pineau R, Le Reste PJ, Negroni L, Chat S, Mohtar MA, Thomas D, Gillet R, Hupp T, Chevet E, Igbaria A. Reflux of Endoplasmic Reticulum proteins to the cytosol inactivates tumor suppressors. EMBO Rep 2021; 22:e51412. [PMID: 33710763 PMCID: PMC8724677 DOI: 10.15252/embr.202051412] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 02/11/2021] [Accepted: 02/17/2021] [Indexed: 12/03/2022] Open
Abstract
In the past decades, many studies reported the presence of endoplasmic reticulum (ER)‐resident proteins in the cytosol. However, the mechanisms by which these proteins relocate and whether they exert cytosolic functions remain unknown. We find that a subset of ER luminal proteins accumulates in the cytosol of glioblastoma cells isolated from mouse and human tumors. In cultured cells, ER protein reflux to the cytosol occurs upon ER proteostasis perturbation. Using the ER luminal protein anterior gradient 2 (AGR2) as a proof of concept, we tested whether the refluxed proteins gain new functions in the cytosol. We find that refluxed, cytosolic AGR2 binds and inhibits the tumor suppressor p53. These data suggest that ER reflux constitutes an ER surveillance mechanism to relieve the ER from its contents upon stress, providing a selective advantage to tumor cells through gain‐of‐cytosolic functions—a phenomenon we name ER to Cytosol Signaling (ERCYS).
Collapse
Affiliation(s)
- Daria Sicari
- Inserm U1242, University of Rennes, Rennes, France.,Centre de lutte contre le cancer Eugène Marquis, Rennes, France
| | - Federica G Centonze
- Inserm U1242, University of Rennes, Rennes, France.,Centre de lutte contre le cancer Eugène Marquis, Rennes, France
| | - Raphael Pineau
- Inserm U1242, University of Rennes, Rennes, France.,Centre de lutte contre le cancer Eugène Marquis, Rennes, France
| | - Pierre-Jean Le Reste
- Inserm U1242, University of Rennes, Rennes, France.,Centre de lutte contre le cancer Eugène Marquis, Rennes, France.,Neurosurgery Department, University Hospital of Rennes, Rennes, France
| | - Luc Negroni
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France.,UMR7104, Centre National de la Recherche Scientifique, Illkirch, France.,U1258, Institut National de la Santé et de la Recherche Médicale, Illkirch, France.,Université de Strasbourg, Illkirch, France
| | - Sophie Chat
- CNRS, Institut de Génétique et Développement de Rennes (IGDR), UMR6290, Univ. Rennes, Rennes, France
| | - M Aiman Mohtar
- Edinburgh Cancer Research Centre at the Institute of Genetics and Molecular Medicine, Edinburgh University, Edinburgh, UK
| | - Daniel Thomas
- CNRS, Institut de Génétique et Développement de Rennes (IGDR), UMR6290, Univ. Rennes, Rennes, France
| | - Reynald Gillet
- CNRS, Institut de Génétique et Développement de Rennes (IGDR), UMR6290, Univ. Rennes, Rennes, France
| | - Ted Hupp
- Edinburgh Cancer Research Centre at the Institute of Genetics and Molecular Medicine, Edinburgh University, Edinburgh, UK.,International Centre for Cancer Vaccine Science, Gdansk, Poland
| | - Eric Chevet
- Inserm U1242, University of Rennes, Rennes, France.,Centre de lutte contre le cancer Eugène Marquis, Rennes, France
| | - Aeid Igbaria
- Inserm U1242, University of Rennes, Rennes, France.,Centre de lutte contre le cancer Eugène Marquis, Rennes, France.,Department of Life Sciences, Ben-Gurion University of the Negev, Beer Sheva, Israel
| |
Collapse
|
12
|
Fessart D, de Barbeyrac C, Boutin I, Grenier T, Richard E, Begueret H, Bernard D, Chevet E, Robert J, Delom F. Extracellular AGR2 triggers lung tumour cell proliferation through repression of p21 CIP1. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2020; 1868:118920. [PMID: 33278424 DOI: 10.1016/j.bbamcr.2020.118920] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Revised: 10/12/2020] [Accepted: 11/05/2020] [Indexed: 01/05/2023]
Abstract
The human Anterior GRadient 2 (AGR2) protein is an Endoplasmic Reticulum (ER)-resident protein which belongs to the Protein-Disulfide Isomerase (PDI) superfamily and is involved to productive protein folding in the ER. As such AGR2, often found overexpressed in adenocarcinomas, contributes to tumour development by enhancing ER proteostasis. We previously demonstrated that AGR2 is secreted (extracellular AGR2 (eAGR2)) in the tumour microenvironment and plays extracellular roles independent of its ER functions. Herein, we show that eAGR2 triggers cell proliferation and characterize the underlying molecular mechanisms. We demonstrate that eAGR2 enhances tumour cell growth by repressing the tumour suppressor p21CIP1. Our findings shed light on a novel mechanism through which eAGR2 behaves as a growth factor in the tumour microenvironment, independently of its ER function, thus promoting tumour cell growth through repression of p21CIP1. Our results provide a rationale for targeting eAGR2/p21CIP1-based signalling as a potential therapeutic target to impede tumour growth.
Collapse
Affiliation(s)
- Delphine Fessart
- ARTiSt Group, Univ. Bordeaux, INSERM, Institut Bergonié, ACTION, U1218, F-33000 Bordeaux, France; INSERM U1242, "Chemistry, Oncogenesis Stress Signaling", Univ. Rennes, Rennes, France; Centre de Lutte Contre le Cancer Eugène Marquis, Rennes, France.
| | - Claire de Barbeyrac
- ARTiSt Group, Univ. Bordeaux, INSERM, Institut Bergonié, ACTION, U1218, F-33000 Bordeaux, France
| | - Ines Boutin
- ARTiSt Group, Univ. Bordeaux, INSERM, Institut Bergonié, ACTION, U1218, F-33000 Bordeaux, France
| | - Thomas Grenier
- ARTiSt Group, Univ. Bordeaux, INSERM, Institut Bergonié, ACTION, U1218, F-33000 Bordeaux, France
| | - Elodie Richard
- ARTiSt Group, Univ. Bordeaux, INSERM, Institut Bergonié, ACTION, U1218, F-33000 Bordeaux, France
| | - Hughes Begueret
- ARTiSt Group, Univ. Bordeaux, INSERM, Institut Bergonié, ACTION, U1218, F-33000 Bordeaux, France; Dept of Pathology, University Hospital of Bordeaux, Hopital Haut-Lévêque, Pessac, France
| | - David Bernard
- Inserm U1052, CNRS UMR 5286, Université de Lyon & Centre Léon Bérard, Centre de Recherche en Cancérologie de Lyon, Lyon, France
| | - Eric Chevet
- INSERM U1242, "Chemistry, Oncogenesis Stress Signaling", Univ. Rennes, Rennes, France; Centre de Lutte Contre le Cancer Eugène Marquis, Rennes, France
| | - Jacques Robert
- ARTiSt Group, Univ. Bordeaux, INSERM, Institut Bergonié, ACTION, U1218, F-33000 Bordeaux, France
| | - Frederic Delom
- ARTiSt Group, Univ. Bordeaux, INSERM, Institut Bergonié, ACTION, U1218, F-33000 Bordeaux, France.
| |
Collapse
|
13
|
Dagamajalu S, Vijayakumar M, Shetty R, Rex DAB, Narayana Kotimoole C, Prasad TSK. Proteogenomic examination of esophageal squamous cell carcinoma (ESCC): new lines of inquiry. Expert Rev Proteomics 2020; 17:649-662. [PMID: 33151123 DOI: 10.1080/14789450.2020.1845146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Introduction: Esophageal squamous cell carcinoma (ESCC), a histopathologic subtype of esophageal cancer is a major cause of cancer-related morbidity and mortality worldwide. This is primarily because patients are diagnosed at an advanced stage by the time symptoms appear. The genomics and mass spectrometry-based proteomics continue to provide important leads toward biomarker discovery for ESCC. However, such leads are yet to be translated into clinical utilities. Areas covered: We gathered information pertaining to proteomics and proteogenomics efforts in ESCC from the literature search until 2020. An overview of omics approaches to discover the candidate biomarkers for ESCC were highlighted. We present a summary of recent investigations of alterations in the level of gene and protein expression observed in biological samples including body fluids, tissue/biopsy and in vitro-based models. Expert opinion: A large number of protein-based biomarkers and therapeutic targets are being used in cancer therapy. Several candidates are being developed as diagnostics and prognostics for the management of cancers. High-resolution proteomic and proteogenomic approaches offer an efficient way to identify additional candidate biomarkers for diagnosis, monitoring of disease progression, prediction of response to chemo and radiotherapy. Some of these biomarkers can also be developed as therapeutic targets.
Collapse
Affiliation(s)
- Shobha Dagamajalu
- Center for Systems Biology and Molecular Medicine, Yenepoya Research Centre, Yenepoya (Deemed to Be University) , Mangalore, India
| | - Manavalan Vijayakumar
- Department of Surgical Oncology, Yenepoya Medical College, Yenepoya (Deemed to Be University) , Mangalore, India
| | - Rohan Shetty
- Department of Surgical Oncology, Yenepoya Medical College, Yenepoya (Deemed to Be University) , Mangalore, India
| | - D A B Rex
- Center for Systems Biology and Molecular Medicine, Yenepoya Research Centre, Yenepoya (Deemed to Be University) , Mangalore, India
| | - Chinmaya Narayana Kotimoole
- Center for Systems Biology and Molecular Medicine, Yenepoya Research Centre, Yenepoya (Deemed to Be University) , Mangalore, India
| | - T S Keshava Prasad
- Center for Systems Biology and Molecular Medicine, Yenepoya Research Centre, Yenepoya (Deemed to Be University) , Mangalore, India
| |
Collapse
|
14
|
Moidu NA, A Rahman NS, Syafruddin SE, Low TY, Mohtar MA. Secretion of pro-oncogenic AGR2 protein in cancer. Heliyon 2020; 6:e05000. [PMID: 33005802 PMCID: PMC7519367 DOI: 10.1016/j.heliyon.2020.e05000] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2020] [Revised: 08/25/2020] [Accepted: 09/17/2020] [Indexed: 12/12/2022] Open
Abstract
Anterior gradient-2 (AGR2) protein mediates the formation, breakage and isomerization of disulphide bonds during protein maturation in the endoplasmic reticulum (ER) and contributes to the homoeostasis of the secretory pathway. AGR2 promotes tumour development and metastasis and its elevated expression is almost completely restricted to malignant tumours. Interestingly, this supposedly ER-resident protein can be localised to other compartments of cancer cells and can also be secreted into the extracellular milieu. There are emerging evidences that describe the gain-of-function activities of the extracellular AGR2, particularly in cancer development. Here, we reviewed studies detailing the expression, pathological and physiological roles associated with AGR2 and compared the duality of localization, intracellular and extracellular, with special emphasis on the later. We also discussed the possible mechanisms of AGR2 secretion as well as deliberating the functional impacts of AGR2 in cancer settings. Last, we deliberate the current therapeutic strategies and posit the potential use AGR2, as a prognosis and diagnosis marker in cancer.
Collapse
Affiliation(s)
- Nurshahirah Ashikin Moidu
- UKM Medical Molecular Biology Institute (UMBI), Universiti Kebangsaan Malaysia, Cheras 56000 Kuala Lumpur, Malaysia
| | - Nisa Syakila A Rahman
- UKM Medical Molecular Biology Institute (UMBI), Universiti Kebangsaan Malaysia, Cheras 56000 Kuala Lumpur, Malaysia
| | - Saiful Effendi Syafruddin
- UKM Medical Molecular Biology Institute (UMBI), Universiti Kebangsaan Malaysia, Cheras 56000 Kuala Lumpur, Malaysia
| | - Teck Yew Low
- UKM Medical Molecular Biology Institute (UMBI), Universiti Kebangsaan Malaysia, Cheras 56000 Kuala Lumpur, Malaysia
| | - M Aiman Mohtar
- UKM Medical Molecular Biology Institute (UMBI), Universiti Kebangsaan Malaysia, Cheras 56000 Kuala Lumpur, Malaysia
| |
Collapse
|
15
|
Yuan Z, Ye M, Qie J, Ye T. FOXA1 Promotes Cell Proliferation and Suppresses Apoptosis in HCC by Directly Regulating miR-212-3p/FOXA1/AGR2 Signaling Pathway. Onco Targets Ther 2020; 13:5231-5240. [PMID: 32606743 PMCID: PMC7293390 DOI: 10.2147/ott.s252890] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2020] [Accepted: 05/06/2020] [Indexed: 12/22/2022] Open
Abstract
Background Forkhead box protein A1 (FOXA1), acting as a transcriptional activator for liver-specific transcripts, plays a vital part in proliferation, apoptosis and cell cycle. Methods The mRNA expression of FOXA1 in 90 HCC tissues and matched adjacent non-tumor tissues was determined by qRT-PCR. The downstream and upstream regulators of FOXA1 were identified by bioinformatics analysis and experimental confirmation. Results We found out that the expression of FOXA1 was obviously higher in hepatocellular carcinoma (HCC) tissues than that in matched non-tumor tissues. Similarly, FOXA1 is also highly expressed in HCC cell lines as compared with normal human hepatic cell line L02. Clinical association analysis indicated that high expression of FOXA1 was prominently correlated with high HBV level, large tumor size, high venous infiltration, high Edmondson-Steiner grading, and advanced tumor-node-metastasis tumor stage. Furthermore, the in vitro tests showed that ectopic expression of FOXA1 promoted HepG2 cell proliferation and suppressed apoptosis. In contrast, the downregulation of FOXA1 inhibited cell proliferation, and induced apoptosis in Hep3B cells. To investigate the functional mechanism of FOXA1, anterior gradient 2 (AGR2), an executor in proliferation and apoptosis, was identified as the direct target gene of FOXA1. Meanwhile, we also found the expression of FOXA1 could be inhibited by miR-212-3p, which working as a tumor suppressor downregulated in HCC. Conclusion We revealed that FOXA1 exerted its biological function by regulating AGR2 expression, and its ectopic expression may be blamed for low expression of miR-212-3p.
Collapse
Affiliation(s)
- Zhen Yuan
- Department of Oncology, Minhang Hospital, Fudan University, Shanghai, People's Republic of China.,Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, People's Republic of China
| | - Mu Ye
- Department of General Surgery, Jinshan Hospital, Fudan University, Shanghai, People's Republic of China
| | - Jingbo Qie
- Department of Oncology, Minhang Hospital, Fudan University, Shanghai, People's Republic of China.,Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, People's Republic of China
| | - Tao Ye
- Department of Oncology, Minhang Hospital, Fudan University, Shanghai, People's Republic of China.,Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, People's Republic of China
| |
Collapse
|
16
|
Delom F, Mohtar MA, Hupp T, Fessart D. The anterior gradient-2 interactome. Am J Physiol Cell Physiol 2020; 318:C40-C47. [DOI: 10.1152/ajpcell.00532.2018] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
The anterior gradient-2 (AGR2) is an endoplasmic reticulum (ER)-resident protein belonging to the protein disulfide isomerase family that mediates the formation of disulfide bonds and assists the protein quality control in the ER. In addition to its role in proteostasis, extracellular AGR2 is responsible for various cellular effects in many types of cancer, including cell proliferation, survival, and metastasis. Various OMICs approaches have been used to identify AGR2 binding partners and to investigate the functions of AGR2 in the ER and outside the cell. Emerging data showed that AGR2 exists not only as monomer, but it can also form homodimeric structure and thus interact with different partners, yielding different biological outcomes. In this review, we summarize the AGR2 “interactome” and discuss the pathological and physiological role of such AGR2 interactions.
Collapse
Affiliation(s)
- Frederic Delom
- University of Bordeaux, ACTION, Bordeaux, France
- Institut National de la Santé et de la Recherche Médicale, Bordeaux, France
- Institut Bergonié, Bordeaux, France
| | - M. Aiman Mohtar
- University Kebangsaan Malaysia, Medical Molecular Biology Institute (UMBI), The National University of Malaysia, Kuala Lumpur, Malaysia
| | - Ted Hupp
- University of Edinburgh, Institute of Genetics and Molecular Medicine, Edinburgh, Scotland, United Kingdom
- University of Gdansk, International Centre for Cancer Vaccine Science, Gdansk, Poland
| | - Delphine Fessart
- University of Bordeaux, ACTION, Bordeaux, France
- Institut National de la Santé et de la Recherche Médicale, Bordeaux, France
- Institut Bergonié, Bordeaux, France
| |
Collapse
|
17
|
Mangukiya HB, Negi H, Merugu SB, Sehar Q, Mashausi DS, Yunus FUN, Wu Z, Li D. Paracrine signalling of AGR2 stimulates RhoA function in fibroblasts and modulates cell elongation and migration. Cell Adh Migr 2019; 13:332-344. [PMID: 31710263 PMCID: PMC6844563 DOI: 10.1080/19336918.2019.1685928] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Revised: 07/09/2019] [Accepted: 08/29/2019] [Indexed: 12/31/2022] Open
Abstract
The most prominent cancer-associated fibroblasts (CAFs) in tumor stroma is known to form a protective structure to support tumor growth. Anterior gradient-2 (AGR2), a tumor secretory protein is believed to play a pivotal role during tumor microenvironment (TME) development. Here, we report that extracellular AGR2 enhances fibroblasts elongation and migration significantly. The early stimulation of RhoA showed the association of AGR2 by upregulation of G1-S phase-regulatory protein cyclin D1 and FAK phosphorylation through fibroblasts growth factor receptor (FGFR) and vascular endothelial growth factor receptor (VEGFR). Our finding indicates that secretory AGR2 alters fibroblasts elongation, migration, and organization suggesting the secretory AGR2 as a potential molecular target that might be responsible to alter fibroblasts infiltration to support tumor growth.
Collapse
Affiliation(s)
| | - Hema Negi
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai, China
| | | | - Qudsia Sehar
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai, China
| | | | | | - Zhenghua Wu
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai, China
| | - Dawei Li
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai, China
- Engineering Research center of Cell and Therapeutic Antibody of Ministry of Education, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
18
|
Worfolk JC, Bell S, Simpson LD, Carne NA, Francis SL, Engelbertsen V, Brown AP, Walker J, Viswanath YK, Benham AM. Elucidation of the AGR2 Interactome in Esophageal Adenocarcinoma Cells Identifies a Redox-Sensitive Chaperone Hub for the Quality Control of MUC-5AC. Antioxid Redox Signal 2019; 31:1117-1132. [PMID: 31436131 DOI: 10.1089/ars.2018.7647] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Aims: AGR2 is a tissue-restricted member of the protein disulfide isomerase family that has attracted interest because it is highly expressed in a number of cancers, including gastroesophageal adenocarcinoma. The behavior of AGR2 was analyzed under oxidizing conditions, and an alkylation trapping and immunoprecipitation approach were developed to identify novel AGR2 interacting proteins. Results: The data show that AGR2 is induced in esophageal adenocarcinoma, where it participates in redox-responsive, disulfide-dependent complexes. AGR2 preferentially engages with MUC-5 as a primary client and is coexpressed with the acidic mucin in Barrett's esophagus and esophageal adenocarcinoma tissue. Innovation: New partner chaperones for AGR2 have been identified, including peroxiredoxin IV, ERp44, P5, ERp29, and Ero1α. AGR2 interacts with unexpected metabolic enzymes, including aldehyde dehydrogenase (ALDH)3A1, and engages in an alkylation-sensitive association with the autophagy receptor SQSTM1, suggesting a potential mechanism for the postendoplasmic reticulum targeting of AGR2 to mucin granules. Disulfide-driven AGR2 complex formation provides a framework for a limited number of client proteins to interact, rather than for the recruitment of multiple novel clients. Conclusion: The extended AGR2 interactome will facilitate the development of therapeutics to target AGR2/mucin pathways in esophageal cancer and other conditions, including chronic obstructive pulmonary disease.
Collapse
Affiliation(s)
- Jack C Worfolk
- Department of Biosciences, Durham University, Durham, United Kingdom
| | - Steven Bell
- Department of Biosciences, Durham University, Durham, United Kingdom
| | - Lee D Simpson
- Department of Biosciences, Durham University, Durham, United Kingdom
| | - Naomi A Carne
- Department of Biosciences, Durham University, Durham, United Kingdom
| | - Sarah L Francis
- Department of Biosciences, Durham University, Durham, United Kingdom
| | - Vibecke Engelbertsen
- Department of Surgery, James Cook University Hospital, Middlesbrough, United Kingdom
| | - Adrian P Brown
- Department of Biosciences, Durham University, Durham, United Kingdom
| | - Julie Walker
- Department of Surgery, James Cook University Hospital, Middlesbrough, United Kingdom
| | | | - Adam M Benham
- Department of Biosciences, Durham University, Durham, United Kingdom
| |
Collapse
|
19
|
Xu Q, Shao Y, Zhang J, Zhang H, Zhao Y, Liu X, Guo Z, Chong W, Gu F, Ma Y. Anterior Gradient 3 Promotes Breast Cancer Development and Chemotherapy Response. Cancer Res Treat 2019; 52:218-245. [PMID: 31291711 PMCID: PMC6962492 DOI: 10.4143/crt.2019.217] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Accepted: 06/29/2019] [Indexed: 01/01/2023] Open
Abstract
PURPOSE Anterior gradient 3 (AGR3) belongs to human anterior gradient (AGR) family. The function of AGR3 on cancer remains unknown. This research aimed to investigate if AGR3 had prognostic values in invasive ductal carcinoma (IDC) of breast cancer and could promote tumor progression. Materials and Methods AGR3 expression was detected in breast benign lesions, ductal carcinoma in situ and IDC by immunohistochemistry analysis. AGR3's correlations with clinicopathological features and prognosis of IDC patients were analyzed. By cell function experiments, collagen gel droplet-embedded culture drug sensitivity test and cytotoxic analysis, AGR3's impacts on proliferation, invasion ability, and chemotherapeutic drug sensitivity of breast cancer cells were also detected. RESULTS AGR3 was up-regulated in luminal subtype of histological grade I-II of IDC patients and positively correlated with high risks of recurrence and distant metastasis. AGR3 high expression could lead to bone or liver metastasis and predict poor prognosis of luminal B. In cell lines, AGR3 could promote proliferation and invasion ability of breast cancer cells which were consistent with clinical analysis. Besides, AGR3 could indicate poor prognosis of breast cancer patients treated with taxane but a favorable prognosis with 5-fluoropyrimidines. And breast cancer cells with AGR3 high expression were resistant to taxane but sensitive to 5-fluoropyrimidines. CONCLUSION AGR3 might be a potential prognostic indicator in luminal B subtype of IDC patients of histological grade I-II. And patients with AGR3 high expression should be treated with chemotherapy regimens consisting of 5-fluoropyrimidines but no taxane.
Collapse
Affiliation(s)
- Qiao Xu
- Department of Tumor Cell Biology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, China.,Tianjin's Clinical Research Center for Cancer, Tianjin, China.,Key Laboratory of Cancer Prevention and Therapy, Tianjin, Chin.,Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, Tianjin, China
| | - Ying Shao
- Department of Tumor Cell Biology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, China.,Tianjin's Clinical Research Center for Cancer, Tianjin, China.,Key Laboratory of Cancer Prevention and Therapy, Tianjin, Chin.,Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, Tianjin, China.,Department of Breast Cancer Pathology and Research Laboratory, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Jinman Zhang
- Department of Tumor Cell Biology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, China.,Tianjin's Clinical Research Center for Cancer, Tianjin, China.,Key Laboratory of Cancer Prevention and Therapy, Tianjin, Chin.,Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, Tianjin, China.,Department of Breast Cancer Pathology and Research Laboratory, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Huikun Zhang
- Department of Tumor Cell Biology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, China
| | - Yawen Zhao
- Department of Tumor Cell Biology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, China
| | - Xiaoli Liu
- Department of Tumor Cell Biology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, China
| | - Zhifang Guo
- Department of Tumor Cell Biology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, China
| | - Wei Chong
- Department of Breast Cancer Pathology and Research Laboratory, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Feng Gu
- Department of Breast Cancer Pathology and Research Laboratory, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Yongjie Ma
- Department of Tumor Cell Biology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, China.,Tianjin's Clinical Research Center for Cancer, Tianjin, China.,Key Laboratory of Cancer Prevention and Therapy, Tianjin, Chin.,Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, Tianjin, China
| |
Collapse
|
20
|
Alsereihi R, Schulten HJ, Bakhashab S, Saini K, Al-Hejin AM, Hussein D. Leveraging the Role of the Metastatic Associated Protein Anterior Gradient Homologue 2 in Unfolded Protein Degradation: A Novel Therapeutic Biomarker for Cancer. Cancers (Basel) 2019; 11:890. [PMID: 31247903 PMCID: PMC6678570 DOI: 10.3390/cancers11070890] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2019] [Revised: 06/18/2019] [Accepted: 06/21/2019] [Indexed: 12/15/2022] Open
Abstract
Effective diagnostic, prognostic and therapeutic biomarkers can help in tracking disease progress, predict patients' survival, and considerably affect the drive for successful clinical management. The present review aims to determine how the metastatic-linked protein anterior gradient homologue 2 (AGR2) operates to affect cancer progression, and to identify associated potential diagnostic, prognostic and therapeutic biomarkers, particularly in central nervous system (CNS) tumors. Studies that show a high expression level of AGR2, and associate the protein expression with the resilience to chemotherapeutic treatments or with poor cancer survival, are reported. The primary protein structures of the seven variants of AGR2, including their functional domains, are summarized. Based on experiments in various biological models, this review shows an orchestra of multiple molecules that regulate AGR2 expression, including a feedback loop with p53. The AGR2-associated molecular functions and pathways including genomic integrity, proliferation, apoptosis, angiogenesis, adhesion, migration, stemness, and inflammation, are detailed. In addition, the mechanisms that can enable the rampant oncogenic effects of AGR2 are clarified. The different strategies used to therapeutically target AGR2-positive cancer cells are evaluated in light of the current evidence. Moreover, novel associated pathways and clinically relevant deregulated genes in AGR2 high CNS tumors are identified using a meta-analysis approach.
Collapse
Affiliation(s)
- Reem Alsereihi
- Neurooncology Translational Group, King Fahd Medical Research Center, King Abdulaziz University, P.O. Box 80216, Jeddah, 21589, Saudi Arabia.
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia.
| | - Hans-Juergen Schulten
- Center of Excellence in Genomic Medicine Research, King Abdulaziz University, P.O. Box 80216, Jeddah 21589, Saudi Arabia.
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia.
| | - Sherin Bakhashab
- Center of Excellence in Genomic Medicine Research, King Abdulaziz University, P.O. Box 80216, Jeddah 21589, Saudi Arabia.
- Biochemistry Department, King Abdulaziz University, P.O. Box 80218, Jeddah 21589, Saudi Arabia.
| | - Kulvinder Saini
- School of Biotechnology, Eternal University, Baru Sahib-173101, Himachal Pradesh, India.
| | - Ahmed M Al-Hejin
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia.
- Microbiology Unit, King Fahad Medical Research Center, King Abdulaziz University, P.O. Box 80216, Jeddah 21589, Saudi Arabia.
| | - Deema Hussein
- Neurooncology Translational Group, King Fahd Medical Research Center, King Abdulaziz University, P.O. Box 80216, Jeddah, 21589, Saudi Arabia.
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia.
| |
Collapse
|
21
|
Kriseman M, Monsivais D, Agno J, Masand RP, Creighton CJ, Matzuk MM. Uterine double-conditional inactivation of Smad2 and Smad3 in mice causes endometrial dysregulation, infertility, and uterine cancer. Proc Natl Acad Sci U S A 2019; 116:3873-3882. [PMID: 30651315 PMCID: PMC6397514 DOI: 10.1073/pnas.1806862116] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
SMAD2 and SMAD3 are downstream proteins in the transforming growth factor-β (TGF β) signaling pathway that translocate signals from the cell membrane to the nucleus, bind DNA, and control the expression of target genes. While SMAD2/3 have important roles in the ovary, we do not fully understand the roles of SMAD2/3 in the uterus and their implications in the reproductive system. To avoid deleterious effects of global deletion, and given previous data showing redundant function of Smad2 and Smad3, a double-conditional knockout was generated using progesterone receptor-cre (Smad2/3 cKO) mice. Smad2/3 cKO mice were infertile due to endometrial hyperproliferation observed as early as 6 weeks of postnatal life. Endometrial hyperplasia worsened with age, and all Smad2/3 cKO mice ultimately developed bulky endometrioid-type uterine cancers with 100% mortality by 8 months of age. The phenotype was hormone-dependent and could be prevented with removal of the ovaries at 6 weeks of age but not at 12 weeks. Uterine tumor epithelium was associated with decreased expression of steroid biosynthesis genes, increased expression of inflammatory response genes, and abnormal expression of cell cycle checkpoint genes. Our results indicate the crucial role of SMAD2/3 in maintaining normal endometrial function and confirm the hormone-dependent nature of SMAD2/3 in the uterus. The hyperproliferation of the endometrium affected both implantation and maintenance of pregnancy. Our findings generate a mouse model to study the roles of SMAD2/3 in the uterus and serve to provide insight into the mechanism by which the endometrium can escape the plethora of growth regulatory proteins.
Collapse
Affiliation(s)
- Maya Kriseman
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX 77030
- Reproductive Endocrinology and Infertility, Baylor College of Medicine/Texas Children's Hospital Women's Pavilion, Houston, TX 77030
| | - Diana Monsivais
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX 77030
- Center for Drug Discovery, Baylor College of Medicine, Houston, TX 77030
| | - Julio Agno
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX 77030
| | - Ramya P Masand
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX 77030
| | - Chad J Creighton
- Department of Medicine, Baylor College of Medicine, Houston, TX 77030
- Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX 77030
| | - Martin M Matzuk
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX 77030;
- Center for Drug Discovery, Baylor College of Medicine, Houston, TX 77030
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030
- Department of Pharmacology and Chemical Biology, Baylor College of Medicine, Houston, TX 77030
| |
Collapse
|
22
|
Wang D, Xu Q, Yuan Q, Jia M, Niu H, Liu X, Zhang J, Young CY, Yuan H. Proteasome inhibition boosts autophagic degradation of ubiquitinated-AGR2 and enhances the antitumor efficiency of bevacizumab. Oncogene 2019; 38:3458-3474. [PMID: 30647455 PMCID: PMC6756021 DOI: 10.1038/s41388-019-0675-z] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Revised: 11/24/2018] [Accepted: 12/21/2018] [Indexed: 11/09/2022]
Abstract
Anterior gradient 2 (AGR2), a protein belonging to the protein disulfide isomerase (PDI) family, is overexpressed in multiple cancers and promotes angiogenesis to drive cancer progression. The mechanisms controlling AGR2 abundance in cancer remain largely unknown. Here, we observed that AGR2 expression is significantly suppressed by proteasome inhibitor MG132/bortezomib at mRNA and protein levels in lung cancer cells. MG132-mediated repression of AGR2 transcription was independent of ROS generation and ER stress induction, but partially resulted from the downregulated E2F1. Further investigation revealed that MG132 facilitated polyubiquitinated AGR2 degradation through activation of autophagy, as evidenced by predominant restoration of AGR2 level in cells genetic depletion of Atg5 and Atg7, or by autophagy inhibitors. Activation of autophagy by rapamycin noticeably reduced the AGR2 protein in cells and in the mouse tissue samples administrated with bortezomib. We also provided evidence identifying the K48-linked polyubiquitin chains conjugating onto K89 of AGR2 by an E3 ligase UBR5. In addition, an autophagy receptor NBR1 was demonstrated to be important in polyubiquitinated AGR2 clearance in response to MG132 or bortezomib. Importantly, downregulation of AGR2 by proteasome inhibition significantly enhanced antitumor activity of bevacizumab, highlighting the importance of AGR2 as a predictive marker for selection of subgroup patients in chemotherapy.
Collapse
Affiliation(s)
- Dawei Wang
- Key Laboratory of Experimental Teratology of the Ministry of Education, Institute of Medical Sciences, The Second Hospital of Shandong University, Jinan, China
| | - Qingqing Xu
- Key Laboratory of Experimental Teratology of the Ministry of Education, Institute of Medical Sciences, The Second Hospital of Shandong University, Jinan, China
| | - Quan Yuan
- Key Laboratory of Experimental Teratology of the Ministry of Education, Institute of Medical Sciences, The Second Hospital of Shandong University, Jinan, China
| | - Mengqi Jia
- Key Laboratory of Experimental Teratology of the Ministry of Education, Institute of Medical Sciences, The Second Hospital of Shandong University, Jinan, China
| | - Huanmin Niu
- Key Laboratory of Experimental Teratology of the Ministry of Education, Institute of Medical Sciences, The Second Hospital of Shandong University, Jinan, China
| | - Xiaofei Liu
- Key Laboratory of Experimental Teratology of the Ministry of Education, Institute of Medical Sciences, The Second Hospital of Shandong University, Jinan, China
| | - Jinsan Zhang
- Department of Urology, Mayo Clinic College of Medicine, Mayo Clinic, Rochester, MN, USA
| | - Charles Yf Young
- Department of Urology, Mayo Clinic College of Medicine, Mayo Clinic, Rochester, MN, USA
| | - Huiqing Yuan
- Key Laboratory of Experimental Teratology of the Ministry of Education, Institute of Medical Sciences, The Second Hospital of Shandong University, Jinan, China.
| |
Collapse
|
23
|
Lan J, Wu X, Luo L, Liu J, Yang L, Wang F. Fluorescent Ag clusters conjugated with anterior gradient-2 antigen aptamer for specific detection of cancer cells. Talanta 2018; 197:86-91. [PMID: 30771992 DOI: 10.1016/j.talanta.2018.12.089] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Revised: 12/21/2018] [Accepted: 12/25/2018] [Indexed: 11/29/2022]
Abstract
Anterior gradient protein 2 homolog (AGR) is a potential tumor biomarker and plays an important role in tissue development and regeneration. The intracellular detection of AGR is rarely reported. By conjugating the AGR aptamer with a cytosine base sequence as Ag cluster template, a highly fluorescent probe (MA@AgNCs) was synthesized for targeting intracellular AGR. The MA@AgNCs display a maximum fluorescence peak at 565 nm, and possess an excellent quantum yield (QY = 87.43%), small size, great biocompatibility, low toxicity, and good stability. Moreover, the as synthesized MA@AgNCs show high specificity on recognizing breast cancer cells.
Collapse
Affiliation(s)
- Jinze Lan
- Laboratory of Environmental Sciences and Technology, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi, Xinjiang 830011, China; University of Chinese Academy of Sciences, No. 19 Yuquan Road, Beijing 100049, China.
| | - Xiaoxia Wu
- Laboratory of Environmental Sciences and Technology, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi, Xinjiang 830011, China.
| | - Liang Luo
- Laboratory of Environmental Sciences and Technology, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi, Xinjiang 830011, China.
| | - Jing Liu
- Laboratory of Environmental Sciences and Technology, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi, Xinjiang 830011, China.
| | - Lingyan Yang
- Laboratory of Environmental Sciences and Technology, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi, Xinjiang 830011, China.
| | - Fu Wang
- Laboratory of Environmental Sciences and Technology, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi, Xinjiang 830011, China.
| |
Collapse
|
24
|
Shih AJ, Menzin A, Whyte J, Lovecchio J, Liew A, Khalili H, Bhuiya T, Gregersen PK, Lee AT. Identification of grade and origin specific cell populations in serous epithelial ovarian cancer by single cell RNA-seq. PLoS One 2018; 13:e0206785. [PMID: 30383866 PMCID: PMC6211742 DOI: 10.1371/journal.pone.0206785] [Citation(s) in RCA: 74] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Accepted: 10/18/2018] [Indexed: 12/15/2022] Open
Abstract
Here we investigated different cell populations within ovarian cancer using single-cell RNA seq: fourteen samples from nine patients with differing grades (high grade, low grade and benign) as well as different origin sites (primary and metastatic tumor site, ovarian in origin and fallopian in origin). We were able to identify sixteen distinct cell populations with specific cells correlated to high grade tumors, low grade tumors, benign and one population unique to a patient with a breast cancer relapse. Furthermore the proportion of these populations changes from primary to metastatic in a shift from mainly epithelial cells to leukocytes with few cancer epithelial cells in the metastases. Differential gene expression shows myeloid lineage cells are the primary cell group expressing soluble factors in primary samples while fibroblasts do so in metastatic samples. The leukocytes that were captured did not seem to be suppressed through known pro-tumor cytokines from any of the cell populations. Single cell RNA-seq is necessary to de-tangle cellular heterogeneity for better understanding of ovarian cancer progression.
Collapse
Affiliation(s)
- Andrew J. Shih
- Robert S. Boas Center for Genomics and Human Genetics, The Feinstein Institute for Medical Research, Manhasset, New York, United States of America
- * E-mail:
| | - Andrew Menzin
- Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, New York, United States of America
| | - Jill Whyte
- Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, New York, United States of America
| | - John Lovecchio
- Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, New York, United States of America
| | - Anthony Liew
- Robert S. Boas Center for Genomics and Human Genetics, The Feinstein Institute for Medical Research, Manhasset, New York, United States of America
| | - Houman Khalili
- Robert S. Boas Center for Genomics and Human Genetics, The Feinstein Institute for Medical Research, Manhasset, New York, United States of America
| | - Tawfiqul Bhuiya
- Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, New York, United States of America
| | - Peter K. Gregersen
- Robert S. Boas Center for Genomics and Human Genetics, The Feinstein Institute for Medical Research, Manhasset, New York, United States of America
- Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, New York, United States of America
| | - Annette T. Lee
- Robert S. Boas Center for Genomics and Human Genetics, The Feinstein Institute for Medical Research, Manhasset, New York, United States of America
- Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, New York, United States of America
| |
Collapse
|
25
|
Kim J, Chung JY, Kim TJ, Lee JW, Kim BG, Bae DS, Choi CH, Hewitt SM. Genomic Network-Based Analysis Reveals Pancreatic Adenocarcinoma Up-Regulating Factor-Related Prognostic Markers in Cervical Carcinoma. Front Oncol 2018; 8:465. [PMID: 30406031 PMCID: PMC6206228 DOI: 10.3389/fonc.2018.00465] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Accepted: 10/02/2018] [Indexed: 02/01/2023] Open
Abstract
We previously showed that PAUF is involved in tumor development and metastases in cervical cancer. This study was conducted to discover novel molecular markers linked with PAUF in cervical cancer using genomic network analysis and to assess their prognostic value in cervical cancer. Three PAUF-related genes were identified using in-silico network-based analysis of the open genome datasets. To assess the expression of these genes and their relationship to the outcome of cervical cancer, immunohistochemical analysis was performed using cervical cancer TMA. The associations of the identified proteins with clinicopathologic characteristics and prognosis were examined. AGR2, BRD7, and POM121 were identified as interconnected with PAUF through in-silico network-based analysis. AGR2 (r = 0.213, p < 0.001) and POM121 (r = 0.135, p = 0.013) protein expression were positively correlated with PAUF. BRD7High and AGR2Low were significantly associated with favorable disease-free survival (DFS) (p = 0.009 and p < 0.001, respectively), and in combination with PAUFHigh, even more significantly favorable DFS observed (p < 0.001 for both). In multivariate analysis, AGR2High (HR = 3.16, p = 0.01) and BRD7High (HR = 0.5, p = 0.025) showed independent prognostic value for DFS. In a random survival forest (RSF) model, the combined clinical and molecular variable model predicted DFS with significantly improved power compared with that of the clinical variable model (C-index of 0.79 vs. 0.75, p < 0.001). In conclusion, AGR2 and BRD7 expression have prognostic significance in cervical cancer and provide opportunities for improved treatment options. Genomic network-based approaches using the cBioPortal may facilitate the discovery of additional biomarkers for the prognosis of cervical cancer and may provide new insights into the biology of cervical carcinogenesis.
Collapse
Affiliation(s)
- Jihye Kim
- Departments of Obstetrics and Gynecology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea
| | - Joon-Yong Chung
- Experimental Pathology Laboratory, Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States
| | - Tae-Joong Kim
- Departments of Obstetrics and Gynecology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea
| | - Jeong-Won Lee
- Departments of Obstetrics and Gynecology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea
| | - Byoung-Gie Kim
- Departments of Obstetrics and Gynecology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea
| | - Duk-Soo Bae
- Departments of Obstetrics and Gynecology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea
| | - Chel Hun Choi
- Departments of Obstetrics and Gynecology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea
| | - Stephen M Hewitt
- Experimental Pathology Laboratory, Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States
| |
Collapse
|
26
|
miR-217 sensitizes chronic myelogenous leukemia cells to tyrosine kinase inhibitors by targeting pro-oncogenic anterior gradient 2. Exp Hematol 2018; 68:80-88.e2. [PMID: 30195077 DOI: 10.1016/j.exphem.2018.09.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Revised: 08/30/2018] [Accepted: 09/01/2018] [Indexed: 12/21/2022]
Abstract
BCR-ABL1-independent mechanisms had been thought to mediate drug resistance to tyrosine kinase inhibitors (TKIs) in patients with chronic myelogenous leukemia (CML). The pro-oncogenic anterior gradient 2 (AGR2) mediates drug resistance of cancer cells. In this study, we observed an increased level of AGR2 in TKI-resistant CML cells. Silence of AGR2 in dasatinib-resistant K562 (K562DR) cells led to restored sensitivity to dasatinib both in vitro and in vivo. Exposure to dasatinib induced upregulation of AGR2 in K562 cells, which indicated a probable treatment-related drug resistance. We further investigated the potential interaction between microRNA (miRNA) and AGR2 in K562DR cells and found that downregulation of miR-217 was associated with overexpression of AGR2 in K562DR cells. Luciferase reporter assay identified that miR-217 negatively regulated expression of AGR2 through binding the 3'-untranslated region of AGR2. Hypermethylation of the CpG island on the promoter region of the MIR217 gene is a probable reason for the downregulation of miR-217 in dasatinib-treated K562 cells. Forced expression of miR-217 led to decreased expression of AGR2 as well as compromised TKI-resistant potential of K562DR cells. Similarly, overexpression of miR-217 resensitized K562DR cells to dasatinib treatment in a murine xenograft transplantation model. TKI treatment-induced drug resistance is correlated with a decrease of miR-217 and upregulation of AGR2. The miR-217/AGR2 interaction might be a potential therapeutic target in treating CML patients with TKI resistance.
Collapse
|
27
|
An aberrantly spliced isoform of anterior gradient-2, AGR2vH promotes migration and invasion of cholangiocarcinoma cell. Biomed Pharmacother 2018; 107:109-116. [PMID: 30086457 DOI: 10.1016/j.biopha.2018.07.154] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Revised: 07/25/2018] [Accepted: 07/30/2018] [Indexed: 11/21/2022] Open
Abstract
Cholangiocarcinoma (CCA) is a cancer of bile duct, considered to be an incurable and lethal cancer. High mortality rate of CCA patients is underlined by cancer metastasis, an ability of the cancer cells that spread to secondary organs. Recently, we have identified Anterior Gradient-2 (AGR2), from a pair of non-metastatic/metastatic cell lines (KKU-213/KKU-213L5), as a gene that is highly and specifically upregulated in the metastatic cell line. AGR2 encodes for a disulfide isomerase enzyme, ubiquitously detected in mucus-secreting tissues. Overexpression of AGR2 has been reported in several types of human cancer. Role of the overexpressed AGR2 in cancer is still unclear. Here, we found that upregulation of AGR2 in metastatic CCA cells coincides with an aberrant splicing of AGR2 mRNA, and that isoforms of AGR2 RNA, such as AGR2vE, AGR2vF, and AGR2vH are specific to the metastatic cells. We demonstrated that the AGR2vH isoform enables metastatic-associated phenotypes in CCA cells. Depletion of AGR2vH by an isoform-specific interfering RNA in metastatic KKU-213L5 cell results in significant reduction of cancer cell migration and invasion, and a slight decrease of cell adhesion. Overexpression of AGR2vH in non-metastatic KKU-213 cells promotes cancer cell migration, invasion, adhesion, and moderate cell proliferation. Moreover, we found that expression of a metastasis-associated gene, vimentin, positively correlates with expression of AGR2vH. Our results support the notion that aberrant alternative splicing of AGR2 facilitates an accumulation of the oncogenic AGR2vH isoform, in turn, contributes to the pathogenesis and severity of CCA.
Collapse
|
28
|
Alves MR, E Melo NC, Barros-Filho MC, do Amaral NS, Silva FIDB, Baiocchi Neto G, Soares FA, de Brot Andrade L, Rocha RM. Downregulation of AGR2, p21, and cyclin D and alterations in p53 function were associated with tumor progression and chemotherapy resistance in epithelial ovarian carcinoma. Cancer Med 2018; 7:3188-3199. [PMID: 29845750 PMCID: PMC6051166 DOI: 10.1002/cam4.1530] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Revised: 04/04/2018] [Accepted: 04/09/2018] [Indexed: 12/15/2022] Open
Abstract
Anterior gradient 2 protein belongs to a family of chaperone‐like proteins, namely protein disulfide isomerase. Generally, AGR2 is highly expressed in mucus‐secreting cells and endocrine organs, and in this study, we aimed to evaluate AGR2 and cell cycle molecules in epithelial ovarian cancer and its implications on prognosis. One hundred seventy‐five patient's samples that were diagnosed with primary epithelial ovarian carcinoma were selected. All the patients were treated with platinum‐taxane standard chemotherapy after surgery and CA125 serum levels were routinely determined. Four‐micrometer‐thick sections were processed by immunohistochemistry using an automated immunostainer, Ventana BenchMark AutoStainer with AGR2, cyclin D1, p21WAF1, and p53. Forty‐nine of 167 cases (29.3%) showed strong to moderate cytoplasmic marking of AGR2, and 118 (70.7%) had weak to negative expression. The absence of the AGR2 protein was observed in high‐grade serous carcinoma (P < .001) and significantly associated with disease‐free survival (DFS; P = .034). The expression of G1‐S phase‐regulatory proteins showed loss of p21 in high‐grade serous carcinoma (P < .001) and was related with poor DFS (P = .003). Strong and diffuse immunoexpression of p53 plus complete absence of p53 staining was interpreted as likely indicating a TP53 gene mutation. This result showed worse DFS alone (P = .012) and combined with low levels of AGR2 (P = .005). The expression profile of AGR2 and cell cycle proteins here presented was showed as good prognosis marker in epithelial ovarian cancer. This finding suggests AGR2 and as putative biomarker of disease progression in chemotherapy‐treated high‐grade serous carcinoma patients.
Collapse
Affiliation(s)
| | - Natalia Cruz E Melo
- Molecular Gynecology Laboratory, Gynecologic Department, Federal University of São Paulo, São Paulo, Brazil
| | | | | | | | | | | | | | - Rafael Malagoli Rocha
- Molecular Gynecology Laboratory, Gynecologic Department, Federal University of São Paulo, São Paulo, Brazil
| |
Collapse
|
29
|
Jia M, Guo Y, Zhu D, Zhang N, Li L, Jiang J, Dong Y, Xu Q, Zhang X, Wang M, Yu H, Wang F, Tian K, Zhang J, Young CYF, Lou H, Yuan H. Pro-metastatic activity of AGR2 interrupts angiogenesis target bevacizumab efficiency via direct interaction with VEGFA and activation of NF-κB pathway. Biochim Biophys Acta Mol Basis Dis 2018; 1864:1622-1633. [PMID: 29410027 DOI: 10.1016/j.bbadis.2018.01.021] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Revised: 01/15/2018] [Accepted: 01/23/2018] [Indexed: 01/16/2023]
Abstract
Anterior gradient 2 (AGR2), an endoplasmic reticulum (ER)-resident protein-disulfide isomerase (PDI), is associated with cancer development and malignant progression. Here, we show that high level of AGR2 promotes the aggressive phenotype of prostate cancer (PCa) mouse models developed by either patient-derived xenografts or surgical intra-prostate implantation of PCa cells, associated with enrichment of the blood vessel network in tumor tissues. Angiogenesis markers VEGFR2 and CD34, accompanied with the invasive marker Vimentin, were predominantly stained in metastatic liver tissues. Secreted AGR2 was defined to enhance VEGFR2 activity as evidenced by physical interaction of purified recombinant human AGR2 (rhAGR2) with rhVEGFA through the formation of a disulfide bond. Mutant or deleted thioredoxin motif in rhAGR2 was also unable to bind to rhVEGFA that led to the significant abolishment in the vessel formation, but partially affecting the aggressive process, implicating alternative mechanisms are required for AGR2-conferring metastasis. Cytosolic AGR2 contributed to cell metastasis ascribed to its stabilizing effect on p65 protein, which subsequently activated the NF-κB and facilitated epithelial to mesenchymal transition (EMT). Importantly, GSH and cabozantinib, but not bevacizumab, effectively blocked the pro-angiogenic effect of rhAGR2 in vitro and in vivo, providing evidence that secreted AGR2 acts as a predictive biomarker for selection of angiogenesis-targeting therapeutic drugs based on its levels in the circular system.
Collapse
Affiliation(s)
- Mengqi Jia
- Department of Biochemistry and Molecular Biology, Shandong University School of Medicine, Jinan, China
| | - Yanxia Guo
- Department of Biochemistry and Molecular Biology, Shandong University School of Medicine, Jinan, China
| | - Deyu Zhu
- Department of Biochemistry and Molecular Biology, Shandong University School of Medicine, Jinan, China
| | - Nianzhao Zhang
- Department of Urology, Qilu Hospital of Shandong University, Jinan, China
| | - Lin Li
- Department of Nature Product Chemistry, Key Laboratory of Chemical Biology of Ministry of Education, Shandong University School of Pharmaceutical Sciences, Jinan, China
| | - Jin Jiang
- Department of Biochemistry and Molecular Biology, Shandong University School of Medicine, Jinan, China
| | - Yiwen Dong
- Department of Biochemistry and Molecular Biology, Shandong University School of Medicine, Jinan, China
| | - Qingqing Xu
- Department of Biochemistry and Molecular Biology, Shandong University School of Medicine, Jinan, China
| | - Xiulei Zhang
- Department of Biochemistry and Molecular Biology, Shandong University School of Medicine, Jinan, China
| | - Meijuan Wang
- Department of Biochemistry and Molecular Biology, Shandong University School of Medicine, Jinan, China
| | - Haina Yu
- Department of Biochemistry and Molecular Biology, Shandong University School of Medicine, Jinan, China
| | - Fang Wang
- Center for Stem Cell and Regenerative Medicine, The Second Hospital of Shandong University, Jinan, China
| | - Keli Tian
- Department of Biochemistry and Molecular Biology, Shandong University School of Medicine, Jinan, China
| | - Jinsan Zhang
- School of Pharmaceutical Sciences and Center for Precision Medicine, The First Affiliated Hospital, Wenzhou Medical University, China; Institute of Life Sciences, Wenzhou University, Wenzhou, Zhejiang, China
| | - Charles Y F Young
- Department of Urology, Mayo Clinic College of Medicine, Mayo Clinic, Rochester, MN, USA
| | - Hongxiang Lou
- Department of Nature Product Chemistry, Key Laboratory of Chemical Biology of Ministry of Education, Shandong University School of Pharmaceutical Sciences, Jinan, China
| | - Huiqing Yuan
- Department of Biochemistry and Molecular Biology, Shandong University School of Medicine, Jinan, China.
| |
Collapse
|
30
|
Anterior Gradient 2 is Correlated with EGFR Mutation in Lung Adenocarcinoma Tissues. Int J Biol Markers 2018; 30:e234-42. [PMID: 25634032 DOI: 10.5301/jbm.5000131] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/02/2014] [Indexed: 11/20/2022]
Abstract
Background Epidermal growth factor receptor (EGFR)–tyrosine kinase inhibitor (TKI) has demonstrated a promising therapeutic response in lung adenocarcinoma patients with EGFR gene mutations. However, the predictive factors for this therapy have not been established, except for the EGFR gene mutation status of carcinoma cells. Methods We first performed microarray analysis in EGFR-TKI–sensitive lung adenocarcinoma cell lines. The results indicated anterior gradient 2 (AGR2) as a potential surrogate marker of EGFR-TKI. Therefore, we then evaluated the correlation between the status of AGR2 immunoreactivity and clinicopathological factors including overall survival (OS), progression-free survival (PFS) and clinical response to EGFR-TKI, in 147 cases of surgically resected lung adenocarcinoma. The biological significance of AGR2 was further evaluated by transfecting small interfering RNA (siRNA) against AGR2 in these cells. Results The status of AGR2 immunoreactivity was significantly higher in lung adenocarcinoma cases with EGFR gene mutations than in those with the wild type (p<0.0001), but there were no significant differences in OS, PFS and response of EGFR-TKI between the AGR2 high and low carcinoma cases. Knockdown of AGR2 gene expression following siRNA transfection resulted in a significantly lower response to EGFR-TKI in EGFR-mutated PC-3. Conclusions AGR2 could serve as an adjunctive surrogate protein marker possibly reflecting EGFR gene mutations in lung adenocarcinoma patients. Results from in vitro analysis indicated that AGR2 could be a potential clinical biomarker of EGFR-TKI therapeutic sensitivity in lung adenocarcinoma cells.
Collapse
|
31
|
Li Y, Wang W, Liu Z, Jiang Y, Lu J, Xie H, Tang F. AGR2 diagnostic value in nasopharyngeal carcinoma prognosis. Clin Chim Acta 2017; 484:323-327. [PMID: 29269202 DOI: 10.1016/j.cca.2017.12.023] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Revised: 12/13/2017] [Accepted: 12/17/2017] [Indexed: 12/23/2022]
Abstract
BACKGROUND Anterior Gradient (AGR) 2 concentration increases in the serum of tumor patients, and their diagnostic and prognostic significances were evaluated in some tumors. The previous works showed that AGR2 high express in nasopharyngeal carcinoma (NPC) biopsy tissues. However, whether AGR2 serves as a diagnostic and prognostic marker for NPC remains unclear. METHODS 42 healthy volunteers, 34 breast cancer patients and 124 NPC patients were enrolled into this study, and the serum samples were collected from these healthy volunteers, breast cancer patients and NPC patients. Concomitantly, 79 frozen nasopharyngeal specimens consisted of 65 NPC tissues and 14 normal nasopharyngeal tissues were enrolled in the observation. The enzyme linked immunosorbent assay (ELISA) was used to estimate AGR2 concentration in the serum samples, and AGR2 mRNA expressions in the frozen tissue samples were detected by real time RT-PCR. RESULTS The real time RT-PCR results showed that AGR2 mRNA level was increased in NPC tissues compared with the normal nasopharyngeal tissues (p<0.05). The ELISA data showed that AGR2 concentration in NPC serum was significantly higher in NPC patient serums than that in the health population (p<0.05). And, AGR2 expression showed a correlation with tumor node metastasis (TNM) grade (p<0.05) and Recurrence (p<0.05). Moreover, the cumulative survival rate of patients with high concentration of AGR2 was significantly lower than that of patients with low concentration of AGR2 (p<0.05), and the cumulative hazard rate of patients with high concentration of AGR2 was significantly higher than that with low concentration of AGR2 (p<0.05). CONCLUSION Serum AGR2 can be used as a serum marker for clinical prognosis of nasopharyngeal carcinoma. However, serum AGR2 levels could not provide advantages in clinical practice for the differential diagnosis of cancer.
Collapse
Affiliation(s)
- Yuejin Li
- Clinical Laboratory of Hunan Cancer Hospital, Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China; Clinical Laboratory of Zhuhai People's Hospital, Zhuhai Hospital of Jinan University, Zhuhai, China
| | - Weiwei Wang
- Clinical Laboratory of Hunan Cancer Hospital, Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China; Clinical Laboratory of Zhuhai People's Hospital, Zhuhai Hospital of Jinan University, Zhuhai, China
| | - Zheliang Liu
- Clinical Laboratory of Hunan Cancer Hospital, Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
| | - Yuan Jiang
- Clinical Laboratory of Hunan Cancer Hospital, Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
| | - Jinping Lu
- Clinical Laboratory of Zhuhai People's Hospital, Zhuhai Hospital of Jinan University, Zhuhai, China
| | - Haitao Xie
- Clinical Laboratory, First Affiliated Hospital of Nanhua University, Hengyang, China
| | - Faqing Tang
- Clinical Laboratory of Hunan Cancer Hospital, Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China; Clinical Laboratory of Zhuhai People's Hospital, Zhuhai Hospital of Jinan University, Zhuhai, China.
| |
Collapse
|
32
|
Tian SB, Tao KX, Hu J, Liu ZB, Ding XL, Chu YN, Cui JY, Shuai XM, Gao JB, Cai KL, Wang JL, Wang GB, Wang L, Wang Z. The prognostic value of AGR2 expression in solid tumours: a systematic review and meta-analysis. Sci Rep 2017; 7:15500. [PMID: 29138453 PMCID: PMC5686151 DOI: 10.1038/s41598-017-15757-z] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Accepted: 11/01/2017] [Indexed: 12/26/2022] Open
Abstract
The prognostic value of anterior gradient-2 (AGR2) in tumours remains inconclusive. Here, we systematically reviewed the literature evidence and assessed the association between AGR2 expression and prognosis in solid tumours. The primary outcomes were overall survival (OS), disease-specific survival (DSS), and disease-free survival (DFS)/recurrence-free survival (RFS)/progression-free survival (PFS). All analyses were performed by STATA 12.0, with the hazard ratio (HR) or odds ratios (OR), and 95% confidence interval (CI) as the effect size estimate. A total of 20 studies containing 3285 cases were included. Pooled analyses revealed that AGR2 overexpression had an unfavourable impact on OS (HR 1.93, 95% CI 1.32-2.81) and time to tumour progression (TTP) (DFS/RFS/PFS) (HR 1.60 95% CI 1.06-2.40) in solid tumour patients. Subgroup analyses indicated that AGR2 overexpression in breast cancer patients was significantly associated with poor OS (HR 3.02, 95% CI 1.03-8.81) and TTP (HR 1.93, 95% CI 1.17-3.20). Excluding breast cancer, AGR2 overexpression was also found to have a significant correlation with poor OS in the remaining solid tumour patients (HR 1.51, 95% CI 1.04-2.19). Overall, AGR2 might be a potential biomarker to predict prognosis in solid tumour patients.
Collapse
Affiliation(s)
- Shao-Bo Tian
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Research Centre for Tissue Engineering and Regenerative Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Kai-Xiong Tao
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Jia Hu
- Research Centre for Tissue Engineering and Regenerative Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Zhi-Bo Liu
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Research Centre for Tissue Engineering and Regenerative Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Xue-Liang Ding
- Research Centre for Tissue Engineering and Regenerative Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Ya-Nan Chu
- Research Centre for Tissue Engineering and Regenerative Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Jin-Yuan Cui
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Xiao-Ming Shuai
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Jin-Bo Gao
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Kai-Lin Cai
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Ji-Liang Wang
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Guo-Bin Wang
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.
| | - Lin Wang
- Research Centre for Tissue Engineering and Regenerative Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.
- Department of Clinical Laboratory, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.
| | - Zheng Wang
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.
- Research Centre for Tissue Engineering and Regenerative Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.
| |
Collapse
|
33
|
Sommerova L, Ondrouskova E, Vojtesek B, Hrstka R. Suppression of AGR2 in a TGF-β-induced Smad regulatory pathway mediates epithelial-mesenchymal transition. BMC Cancer 2017; 17:546. [PMID: 28810836 PMCID: PMC5557473 DOI: 10.1186/s12885-017-3537-5] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Accepted: 08/04/2017] [Indexed: 12/18/2022] Open
Abstract
Background During cancer progression, epithelial cancer cells can be reprogrammed into mesenchymal-like cells with increased migratory potential through the process of epithelial-mesenchymal transition (EMT), representing an essential step of tumor progression towards metastatic state. AGR2 protein was shown to regulate several cancer-associated processes including cellular proliferation, survival and drug resistance. Methods The expression of AGR2 was analyzed in cancer cell lines exposed to TGF-β alone or to combined treatment with TGF-β and the Erk1/2 inhibitor PD98059 or the TGF-β receptor specific inhibitor SB431542. The impact of AGR2 silencing by specific siRNAs or CRISPR/Cas9 technology on EMT was investigated by western blot analysis, quantitative PCR, immunofluorescence analysis, real-time invasion assay and adhesion assay. Results Induction of EMT was associated with decreased AGR2 along with changes in cellular morphology, actin reorganization, inhibition of E-cadherin and induction of the mesenchymal markers vimentin and N-cadherin in various cancer cell lines. Conversely, induction of AGR2 caused reversion of the mesenchymal phenotype back to the epithelial phenotype and re-acquisition of epithelial markers. Activated Smad and Erk signaling cascades were identified as mutually complementary pathways responsible for TGF-β-mediated inhibition of AGR2. Conclusion Taken together our results highlight a crucial role for AGR2 in maintaining the epithelial phenotype by preventing the activation of key factors involved in the process of EMT. Electronic supplementary material The online version of this article (doi:10.1186/s12885-017-3537-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Lucia Sommerova
- RECAMO, Masaryk Memorial Cancer Institute, Zluty kopec 7, 656 53, Brno, Czech Republic
| | - Eva Ondrouskova
- RECAMO, Masaryk Memorial Cancer Institute, Zluty kopec 7, 656 53, Brno, Czech Republic
| | - Borivoj Vojtesek
- RECAMO, Masaryk Memorial Cancer Institute, Zluty kopec 7, 656 53, Brno, Czech Republic
| | - Roman Hrstka
- RECAMO, Masaryk Memorial Cancer Institute, Zluty kopec 7, 656 53, Brno, Czech Republic.
| |
Collapse
|
34
|
von Furstenberg RJ, Li J, Stolarchuk C, Feder R, Campbell A, Kruger L, Gonzalez LM, Blikslager AT, Cardona DM, McCall SJ, Henning SJ, Garman KS. Porcine Esophageal Submucosal Gland Culture Model Shows Capacity for Proliferation and Differentiation. Cell Mol Gastroenterol Hepatol 2017; 4:385-404. [PMID: 28936470 PMCID: PMC5602779 DOI: 10.1016/j.jcmgh.2017.07.005] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Accepted: 07/13/2017] [Indexed: 02/09/2023]
Abstract
BACKGROUND & AIMS Although cells comprising esophageal submucosal glands (ESMGs) represent a potential progenitor cell niche, new models are needed to understand their capacity to proliferate and differentiate. By histologic appearance, ESMGs have been associated with both overlying normal squamous epithelium and columnar epithelium. Our aim was to assess ESMG proliferation and differentiation in a 3-dimensional culture model. METHODS We evaluated proliferation in human ESMGs from normal and diseased tissue by proliferating cell nuclear antigen immunohistochemistry. Next, we compared 5-ethynyl-2'-deoxyuridine labeling in porcine ESMGs in vivo before and after esophageal injury with a novel in vitro porcine organoid ESMG model. Microarray analysis of ESMGs in culture was compared with squamous epithelium and fresh ESMGs. RESULTS Marked proliferation was observed in human ESMGs of diseased tissue. This activated ESMG state was recapitulated after esophageal injury in an in vivo porcine model, ESMGs assumed a ductal appearance with increased proliferation compared with control. Isolated and cultured porcine ESMGs produced buds with actively cycling cells and passaged to form epidermal growth factor-dependent spheroids. These spheroids were highly proliferative and were passaged multiple times. Two phenotypes of spheroids were identified: solid squamous (P63+) and hollow/ductal (cytokeratin 7+). Microarray analysis showed spheroids to be distinct from parent ESMGs and enriched for columnar transcripts. CONCLUSIONS Our results suggest that the activated ESMG state, seen in both human disease and our porcine model, may provide a source of cells to repopulate damaged epithelium in a normal manner (squamous) or abnormally (columnar epithelium). This culture model will allow the evaluation of factors that drive ESMGs in the regeneration of injured epithelium. The raw microarray data have been uploaded to the National Center for Biotechnology Information Gene Expression Omnibus (accession number: GSE100543).
Collapse
Key Words
- 3D Culture
- 3D, 3-dimensional
- ANOVA, analysis of variance
- Acinar Ductal Metaplasia
- Adult Stem Cell
- BE, Barrett’s esophagus
- Barrett’s Esophagus
- CK7, cytokeratin 7
- DMSO, dimethyl sulfoxide
- EAC, esophageal adenocarcinoma
- EGF, epidermal growth factor
- ESMG, esophageal submucosal gland
- EdU, 5-ethynyl-2′-deoxyuridine
- Esophagus
- IHC, immunohistochemistry
- PBS, phosphate-buffered saline
- PCNA, proliferating cell nuclear antigen
- RFA, radiofrequency ablation
Collapse
Affiliation(s)
| | - Joy Li
- Division of Gastroenterology, Department of Medicine, Duke University, Durham, North Carolina
| | - Christina Stolarchuk
- Division of Gastroenterology, Department of Medicine, Duke University, Durham, North Carolina
| | - Rachel Feder
- Division of Gastroenterology, Department of Medicine, Duke University, Durham, North Carolina
| | - Alexa Campbell
- Division of Gastroenterology, Department of Medicine, Duke University, Durham, North Carolina
| | - Leandi Kruger
- Department of Clinical Sciences, North Carolina State University, College of Veterinary Medicine, Raleigh, North Carolina
| | - Liara M. Gonzalez
- Department of Clinical Sciences, North Carolina State University, College of Veterinary Medicine, Raleigh, North Carolina
| | - Anthony T. Blikslager
- Department of Clinical Sciences, North Carolina State University, College of Veterinary Medicine, Raleigh, North Carolina
| | - Diana M. Cardona
- Department of Pathology, Duke University, Durham, North Carolina
| | | | - Susan J. Henning
- Division of Gastroenterology, Department of Medicine, University of North Carolina Chapel Hill, Chapel Hill, North Carolina
| | - Katherine S. Garman
- Division of Gastroenterology, Department of Medicine, Duke University, Durham, North Carolina,Correspondence Address correspondence to: Katherine S. Garman, MD, Division of Gastroenterology, Department of Medicine, Duke University Medical Center, Box 3913, Durham, North Carolina 27710. fax: (919) 684-4983.Division of GastroenterologyDepartment of MedicineDuke University Medical CenterBox 3913DurhamNorth Carolina 27710
| |
Collapse
|
35
|
Kasalová V, Hrstka R, Hernychová L, Coufalová D, Ostatná V. Chronopotentiometric sensing of anterior gradient 2 protein. Electrochim Acta 2017. [DOI: 10.1016/j.electacta.2017.04.090] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
36
|
O'Neill JR, Pak HS, Pairo-Castineira E, Save V, Paterson-Brown S, Nenutil R, Vojtěšek B, Overton I, Scherl A, Hupp TR. Quantitative Shotgun Proteomics Unveils Candidate Novel Esophageal Adenocarcinoma (EAC)-specific Proteins. Mol Cell Proteomics 2017; 16:1138-1150. [PMID: 28336725 PMCID: PMC5461543 DOI: 10.1074/mcp.m116.065078] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Revised: 02/26/2017] [Indexed: 12/11/2022] Open
Abstract
Esophageal cancer is the eighth most common cancer worldwide and the majority of patients have systemic disease at presentation. Esophageal adenocarcinoma (OAC), the predominant subtype in western countries, is largely resistant to current chemotherapy regimens. Selective markers are needed to enhance clinical staging and to allow targeted therapies yet there are minimal proteomic data on this cancer type. After histological review, lysates from OAC and matched normal esophageal and gastric samples from seven patients were subjected to LC MS/MS after tandem mass tag labeling and OFFGEL fractionation. Patient matched samples of OAC, normal esophagus, normal stomach, lymph node metastases and uninvolved lymph nodes were used from an additional 115 patients for verification of expression by immunohistochemistry (IHC). Over six thousand proteins were identified and quantified across samples. Quantitative reproducibility was excellent between technical replicates and a moderate correlation was seen across samples with the same histology. The quantitative accuracy was verified across the dynamic range for seven proteins by immunohistochemistry (IHC) on the originating tissues. Multiple novel tumor-specific candidates are proposed and EPCAM was verified by IHC. This shotgun proteomic study of OAC used a comparative quantitative approach to reveal proteins highly expressed in specific tissue types. Novel tumor-specific proteins are proposed and EPCAM was demonstrated to be specifically overexpressed in primary tumors and lymph node metastases compared with surrounding normal tissues. This candidate and others proposed in this study could be developed as tumor-specific targets for novel clinical staging and therapeutic approaches.
Collapse
Affiliation(s)
- J Robert O'Neill
- From the ‡Edinburgh Cancer Research Centre at the Institute of Genetics and Molecular Medicine, Edinburgh University; Robert.o'.,§Department of Surgery, Royal Infirmary of Edinburgh
| | - Hui-Song Pak
- ¶Department of Human Protein Sciences, Faculty of Medicine, University of Geneva
| | - Erola Pairo-Castineira
- ‖Centre for Medical Informatics, Usher Institute of Population Health Sciences and Informatics, University of Edinburgh.,**MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, Edinburgh University
| | - Vicki Save
- ‡‡Department of Pathology, Royal Infirmary of Edinburgh
| | | | - Rudolf Nenutil
- §§Regional Centre for Applied Molecular Oncology, Masaryk Memorial Cancer Institute, Brno
| | - Bořivoj Vojtěšek
- §§Regional Centre for Applied Molecular Oncology, Masaryk Memorial Cancer Institute, Brno
| | - Ian Overton
- ‖Centre for Medical Informatics, Usher Institute of Population Health Sciences and Informatics, University of Edinburgh.,**MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, Edinburgh University
| | - Alex Scherl
- ¶Department of Human Protein Sciences, Faculty of Medicine, University of Geneva
| | - Ted R Hupp
- From the ‡Edinburgh Cancer Research Centre at the Institute of Genetics and Molecular Medicine, Edinburgh University.,§§Regional Centre for Applied Molecular Oncology, Masaryk Memorial Cancer Institute, Brno
| |
Collapse
|
37
|
Liu Z, Hu Y, Gong Y, Zhang W, Liu C, Wang Q, Deng H. Hydrogen peroxide mediated mitochondrial UNG1-PRDX3 interaction and UNG1 degradation. Free Radic Biol Med 2016; 99:54-62. [PMID: 27480846 DOI: 10.1016/j.freeradbiomed.2016.07.030] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Revised: 07/09/2016] [Accepted: 07/29/2016] [Indexed: 01/13/2023]
Abstract
Isoform 1 of uracil-DNA glycosylase (UNG1) is the major protein for initiating base-excision repair in mitochondria and is in close proximity to the respiratory chain that generates reactive oxygen species (ROS). Effects of ROS on the stability of UNG1 have not been well characterized. In the present study, we found that overexpression of UNG1 enhanced cells' resistance to oxidative stress and protected mitochondrial DNA (mtDNA) from oxidation. Proteomics analysis showed that UNG1 bound to eight proteins in the mitochondria, including PAPSS2, CD70 antigen, and AGR2 under normal growth conditions, whereas UNG1 mainly bound to Peroxiredoxin 3 (PRDX3) via a disulfide linkage under oxidative stress. We further demonstrated that the UNG1-PRDX3 interaction protected UNG1 from ROS-mediated degradation and prevented mtDNA oxidation. Moreover, our results show that ROS-mediated UNG1 degradation was Lon protease 1 (LonP1)-dependent and mitochondrial UNG1 degradation was aggravated by knockdown of PRDX3 expression. Taken together, these results reveal a novel function of UNG1 in the recruitment of PRDX3 to mtDNA under oxidative stress, enabling protection of UNG1 and UNG1-bound DNA from ROS damage and enhancing cell resistance to oxidative stress.
Collapse
Affiliation(s)
- Zhilei Liu
- MOE Key Laboratory of Bioinformatics and the Center of Biomedical Analsis, School of Life Sciences, Tsinghua University, Beijing, China
| | - Yadong Hu
- MOE Key Laboratory of Bioinformatics and the Center of Biomedical Analsis, School of Life Sciences, Tsinghua University, Beijing, China; Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
| | - Yiyi Gong
- MOE Key Laboratory of Bioinformatics and the Center of Biomedical Analsis, School of Life Sciences, Tsinghua University, Beijing, China
| | - Wenhao Zhang
- MOE Key Laboratory of Bioinformatics and the Center of Biomedical Analsis, School of Life Sciences, Tsinghua University, Beijing, China
| | - Chongdong Liu
- Beijing Chaoyang Hospital Affiliated to Capital Medical University, Beijing, China
| | - Qingtao Wang
- Beijing Chaoyang Hospital Affiliated to Capital Medical University, Beijing, China
| | - Haiteng Deng
- MOE Key Laboratory of Bioinformatics and the Center of Biomedical Analsis, School of Life Sciences, Tsinghua University, Beijing, China.
| |
Collapse
|
38
|
An integrated model of clinical information and gene expression for prediction of survival in ovarian cancer patients. Transl Res 2016; 172:84-95.e11. [PMID: 27059002 DOI: 10.1016/j.trsl.2016.03.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2015] [Revised: 03/01/2016] [Accepted: 03/02/2016] [Indexed: 11/20/2022]
Abstract
Accumulating evidence shows that clinical factors alone are not adequate for predicting the survival of patients with ovarian cancer (OvCa), and many genes have been found to be associated with OvCa prognosis. The objective of this study was to develop a model that integrates clinical information and a gene signature to predict the survival durations of patients diagnosed with OvCa. We constructed mRNA and microRNA expression profiles and gathered the corresponding clinical data of 552 OvCa patients and 8 normal controls from The Cancer Genome Atlas. Using univariate Cox regression followed by a permutation test, elastic net-regulated Cox regression, and ridge regression, we generated a prognosis index consisting of 2 clinical variables, 7 protective mRNAs, 12 risky mRNAs, and 1 protective microRNA. The area under the curve of the receiver operating characteristic of the integrated clinical-and-gene model was 0.756, larger than that of the clinical-alone model (0.686) or the gene-alone model (0.703). OvCa patients in the high-risk group had a significantly shorter overall survival time compared with patients in the low-risk group (hazard ratio = 8.374, 95% confidence interval = 4.444-15.780, P = 4.90 × 10(-11), by the Wald test). The reliability of the gene signature was confirmed by a public external data set from the Gene Expression Omnibus. Our conclusions that we have identified an integrated clinical-and-gene model superior to the traditional clinical-alone model in ascertaining the survival prognosis of patients with OvCa. Our findings may prove valuable for improving the clinical management of OvCa.
Collapse
|
39
|
Clarke DJ, Murray E, Faktor J, Mohtar A, Vojtesek B, MacKay CL, Smith PL, Hupp TR. Mass spectrometry analysis of the oxidation states of the pro-oncogenic protein anterior gradient-2 reveals covalent dimerization via an intermolecular disulphide bond. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2016; 1864:551-61. [DOI: 10.1016/j.bbapap.2016.02.011] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2015] [Revised: 01/23/2016] [Accepted: 02/09/2016] [Indexed: 10/22/2022]
|
40
|
Anterior gradient protein 2 expression in high grade head and neck squamous cell carcinoma correlated with cancer stem cell and epithelial mesenchymal transition. Oncotarget 2016; 6:8807-21. [PMID: 25871396 PMCID: PMC4496185 DOI: 10.18632/oncotarget.3556] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2014] [Accepted: 02/10/2015] [Indexed: 12/20/2022] Open
Abstract
Anterior gradient protein 2 (AGR2) is a novel biomarker with potential oncogenic role. We sought to investigate the diagnostic and prognostic role of AGR2 on head and neck squamous cell carcinoma (HNSCC) with an emphasis on its correlation of cancer stemloid cells (CSC) and epithelial mesenchymal transition (EMT). We found that AGR2 protein levels were higher in HNSCC than in normal oral mucosa. High levels of AGR2 were associated with the T category, pathological grade and lymph node metastasis of HNSCC. Expression of AGR2 increased in recurring HNSCC after radiotherapy and in post cisplatin-based chemotherapeutic tissues. In HNSCC cell lines, knock-down of AGR2 induced apoptosis, reduced sphere formation, and down-regulated Survivin, Cyclin D1, Bcl2, Bcl2l1, Slug, Snail, Nanog and Oct4. In addition, over-expressed AGR2 in transgenic mice with spontaneous HNSCC was associated with lost function of Tgfbr1 and/or lost function of Pten. In vitro knockdown TGFBR1 in HNSCC cell lines increased AGR2 expression. These results suggest that AGR2 is involved in EMT and self-renewal of CSC and may present a potential therapeutic target (oncotarget) for HNSCC.
Collapse
|
41
|
Zhang J, Jin Y, Xu S, Zheng J, Zhang QI, Wang Y, Chen J, Huang Y, He X, Zhao Z. AGR2 is associated with gastric cancer progression and poor survival. Oncol Lett 2016; 11:2075-2083. [PMID: 26998125 PMCID: PMC4774612 DOI: 10.3892/ol.2016.4160] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2014] [Accepted: 11/05/2015] [Indexed: 12/19/2022] Open
Abstract
Anterior gradient protein 2 (AGR2) has been reported as a novel biomarker with a potential oncogenic role. However, its association with the prognosis and survival rate of gastric cancer (GC) has not yet been determined. Therefore, the present study aimed to examine the expression and prognostic significance of AGR2 in patients with GC. Immunohistochemistry was used to analyze AGR2 and cathepsin D (CTSD) protein expression in 436 clinicopathologically characterized GC cases and 92 noncancerous tissue samples. AGR2 and CTSD expression were both elevated in GC lesions compared with noncancerous tissues. In 204/436 (46.8%) GC patients, high expression of AGR2 was positively correlated with the expression of CTSD (r=0.577, P<0.01). Furthermore, several clinicopathological parameters were significantly associated with AGR2 expression level, including tumor size, depth of invasion and TNM stage (P<0.05). Using Kaplan-Meier survival analysis, it was determined that the mean survival time of patients with low levels of AGR2 expression was significantly longer than those with high ARG2 expression (in stages I, II and III; P<0.05). For stage IV disease, no significant difference in survival time was identified. Multivariate survival analysis demonstrated that AGR2 was an independent prognostic factor and was associated in the progression of GC. The findings of the present study indicate that AGR2 expression is significantly associated with location and size of GC, depth of invasion, TNM stage, lymphatic metastasis, vessel invasion, distant metastasis, Lauren's classification, high CTSD expression and poor prognosis. Thus, AGR2 may be a novel GC marker and may present a potential therapeutic target for GC.
Collapse
Affiliation(s)
- Jun Zhang
- Department of Orthopaedics, Zhejiang Provincial People's Hospital, Hangzhou, Zhejiang 310014, P.R. China
| | - Yongming Jin
- Department of Orthopaedics, Zhejiang Provincial People's Hospital, Hangzhou, Zhejiang 310014, P.R. China
| | - Shaonan Xu
- Department of Orthopaedics, Zhejiang Provincial People's Hospital, Hangzhou, Zhejiang 310014, P.R. China
| | - Jiayin Zheng
- Department of Probability and Statistics, School of Mathematical Sciences, Peking University, Beijing 100871, P.R. China
| | - Q I Zhang
- Department of Surgery, Zhejiang Provincial People's Hospital, Hangzhou, Zhejiang 310014, P.R. China
| | - Yuanyu Wang
- Department of Surgery, Zhejiang Provincial People's Hospital, Hangzhou, Zhejiang 310014, P.R. China
| | - Jinping Chen
- Department of Orthopaedics, Zhejiang Provincial People's Hospital, Hangzhou, Zhejiang 310014, P.R. China
| | - Yazeng Huang
- Department of Orthopaedics, Zhejiang Provincial People's Hospital, Hangzhou, Zhejiang 310014, P.R. China
| | - Xujun He
- Key Laboratory of Gastroenterology of Zhejiang, Hangzhou, Zhejiang 310014, P.R. China
| | - Zhongsheng Zhao
- Department of Pathology, Zhejiang Provincial People's Hospital, Hangzhou, Zhejiang 310014, P.R. China
| |
Collapse
|
42
|
Hrstka R, Bouchalova P, Michalova E, Matoulkova E, Muller P, Coates PJ, Vojtesek B. AGR2 oncoprotein inhibits p38 MAPK and p53 activation through a DUSP10-mediated regulatory pathway. Mol Oncol 2015; 10:652-62. [PMID: 26733232 DOI: 10.1016/j.molonc.2015.12.003] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2015] [Revised: 11/12/2015] [Accepted: 12/03/2015] [Indexed: 12/17/2022] Open
Abstract
The tumor suppressor p53 plays a key role in malignant transformation and tumor development. However, the frequency of p53 mutations within individual types of cancer is different, suggesting the existence of other mechanisms attenuating p53 tumor suppressor activity. Changes in upstream regulators of p53 such as MDM2 amplification and overexpression, expression of viral oncoproteins, estrogen receptor signaling, or changes in p53 transcriptional target genes were previously described in wild-type p53 tumors. We identified a novel pathway responsible for attenuation of p53 activity in human cancers. We demonstrate that AGR2, which is overexpressed in a variety of human cancers and provides a poor prognosis, up-regulates DUSP10 which subsequently inhibits p38 MAPK and prevents p53 activation by phosphorylation. Analysis of human breast cancers reveals that AGR2 specifically provides a poor prognosis in ER+ breast cancers with wild-type p53 but not ER- or mutant p53 breast cancers, and analysis of independent data sets show that DUSP10 levels also have prognostic significance in this specific sub-group of patients. These data not only reveal a novel pro-oncogenic signaling pathway mediating resistance to DNA damaging agents in human tumors, but also has implications for designing alternative strategies for modulation of wild-type p53 activity in cancer therapy.
Collapse
Affiliation(s)
- Roman Hrstka
- Regional Centre for Applied Molecular Oncology (RECAMO), Masaryk Memorial Cancer Institute, Zluty kopec 7, 656 53, Brno, Czech Republic
| | - Pavla Bouchalova
- Regional Centre for Applied Molecular Oncology (RECAMO), Masaryk Memorial Cancer Institute, Zluty kopec 7, 656 53, Brno, Czech Republic
| | - Eva Michalova
- Regional Centre for Applied Molecular Oncology (RECAMO), Masaryk Memorial Cancer Institute, Zluty kopec 7, 656 53, Brno, Czech Republic
| | - Eva Matoulkova
- Regional Centre for Applied Molecular Oncology (RECAMO), Masaryk Memorial Cancer Institute, Zluty kopec 7, 656 53, Brno, Czech Republic
| | - Petr Muller
- Regional Centre for Applied Molecular Oncology (RECAMO), Masaryk Memorial Cancer Institute, Zluty kopec 7, 656 53, Brno, Czech Republic
| | - Philip J Coates
- Regional Centre for Applied Molecular Oncology (RECAMO), Masaryk Memorial Cancer Institute, Zluty kopec 7, 656 53, Brno, Czech Republic
| | - Borivoj Vojtesek
- Regional Centre for Applied Molecular Oncology (RECAMO), Masaryk Memorial Cancer Institute, Zluty kopec 7, 656 53, Brno, Czech Republic.
| |
Collapse
|
43
|
Model of fibrolamellar hepatocellular carcinomas reveals striking enrichment in cancer stem cells. Nat Commun 2015; 6:8070. [PMID: 26437858 PMCID: PMC4600730 DOI: 10.1038/ncomms9070] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2015] [Accepted: 07/14/2015] [Indexed: 12/12/2022] Open
Abstract
The aetiology of human fibrolamellar hepatocellular carcinomas (hFL-HCCs), cancers occurring increasingly in children to young adults, is poorly understood. We present a transplantable tumour line, maintained in immune-compromised mice, and validate it as a bona fide model of hFL-HCCs by multiple methods. RNA-seq analysis confirms the presence of a fusion transcript (DNAJB1-PRKACA) characteristic of hFL-HCC tumours. The hFL-HCC tumour line is highly enriched for cancer stem cells as indicated by limited dilution tumourigenicity assays, spheroid formation and flow cytometry. Immunohistochemistry on the hFL-HCC model, with parallel studies on 27 primary hFL-HCC tumours, provides robust evidence for expression of endodermal stem cell traits. Transcriptomic analyses of the tumour line and of multiple, normal hepatic lineage stages reveal a gene signature for hFL-HCCs closely resembling that of biliary tree stem cells—newly discovered precursors for liver and pancreas. This model offers unprecedented opportunities to investigate mechanisms underlying hFL-HCCs pathogenesis and potential therapies. With no cell lines available, investigating the aetiology of human fibrolamellar hepatocellular carcinomas (hFL-HCCs) has proved problematic. Here, Oikawa et al. establish a model of hFL-HCCs as a transplantable tumour line maintained in immune-compromised mice, which proves rich in cancer stem cells.
Collapse
|
44
|
Novel roles of the unfolded protein response in the control of tumor development and aggressiveness. Semin Cancer Biol 2015; 33:67-73. [DOI: 10.1016/j.semcancer.2015.04.007] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2014] [Revised: 04/22/2015] [Accepted: 04/23/2015] [Indexed: 11/20/2022]
|
45
|
Brychtova V, Mohtar A, Vojtesek B, Hupp TR. Mechanisms of anterior gradient-2 regulation and function in cancer. Semin Cancer Biol 2015; 33:16-24. [PMID: 25937245 DOI: 10.1016/j.semcancer.2015.04.005] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2015] [Revised: 04/10/2015] [Accepted: 04/21/2015] [Indexed: 01/12/2023]
Abstract
Proteins targeted to secretory pathway enter the endoplasmic reticulum where they undergo post-translational modification and subsequent quality control executed by exquisite catalysts of protein folding, protein disulphide isomerases (PDIs). These enzymes can often provide strict conformational protein folding solutions to highly cysteine-rich cargo as they facilitate disulphide rearrangement in the endoplasmic reticulum. Under conditions when PDI substrates are not isomerised properly, secreted proteins can accumulate in the endoplasmic reticulum leading to endoplasmic reticulum stress initiation with implications for human disease development. Anterior Gradient-2 (AGR2) is an endoplasmic reticulum-resident PDI superfamily member that has emerged as a dominant effector of basic biological properties in vertebrates including blastoderm formation and limb regeneration. AGR2 perturbation in mammals influences disease processes including cancer progression and drug resistance, asthma, and inflammatory bowel disease. This review will focus on the molecular characteristics, function, and regulation of AGR2, views on its emerging biological functions and misappropriation in disease, and prospects for therapeutic intervention into endoplasmic reticulum-resident protein folding pathways for improving the treatment of human disease.
Collapse
Affiliation(s)
- Veronika Brychtova
- Masaryk Memorial Cancer Institute, RECAMO, Zluty kopec 7, 65653 Brno, Czech Republic
| | - Aiman Mohtar
- Institute of Genetics and Molecular Medicine, Edinburgh Cancer Research Centre Cell Signalling Unit, University of Edinburgh, Crewe Road South, Edinburgh EH4 2XR, UK
| | - Borivoj Vojtesek
- Masaryk Memorial Cancer Institute, RECAMO, Zluty kopec 7, 65653 Brno, Czech Republic
| | - Ted R Hupp
- Masaryk Memorial Cancer Institute, RECAMO, Zluty kopec 7, 65653 Brno, Czech Republic; Institute of Genetics and Molecular Medicine, Edinburgh Cancer Research Centre Cell Signalling Unit, University of Edinburgh, Crewe Road South, Edinburgh EH4 2XR, UK.
| |
Collapse
|
46
|
Garczyk S, von Stillfried S, Antonopoulos W, Hartmann A, Schrauder MG, Fasching PA, Anzeneder T, Tannapfel A, Ergönenc Y, Knüchel R, Rose M, Dahl E. AGR3 in breast cancer: prognostic impact and suitable serum-based biomarker for early cancer detection. PLoS One 2015; 10:e0122106. [PMID: 25875093 PMCID: PMC4398490 DOI: 10.1371/journal.pone.0122106] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2014] [Accepted: 02/20/2015] [Indexed: 11/19/2022] Open
Abstract
Blood-based early detection of breast cancer has recently gained novel momentum, as liquid biopsy diagnostics is a fast emerging field. In this study, we aimed to identify secreted proteins which are up-regulated both in tumour tissue and serum samples of breast cancer patients compared to normal tissue and sera. Based on two independent tissue cohorts (n = 75 and n = 229) and one serum cohort (n = 80) of human breast cancer and healthy serum samples, we characterised AGR3 as a novel potential biomarker both for breast cancer prognosis and early breast cancer detection from blood. AGR3 expression in breast tumours is significantly associated with oestrogen receptor α (P<0.001) and lower tumour grade (P<0.01). Interestingly, AGR3 protein expression correlates with unfavourable outcome in low (G1) and intermediate (G2) grade breast tumours (multivariate hazard ratio: 2.186, 95% CI: 1.008-4.740, P<0.05) indicating an independent prognostic impact. In sera analysed by ELISA technique, AGR3 protein concentration was significantly (P<0.001) elevated in samples from breast cancer patients (n = 40, mainly low stage tumours) compared to healthy controls (n = 40). To develop a suitable biomarker panel for early breast cancer detection, we measured AGR2 protein in human serum samples in parallel. The combined AGR3/AGR2 biomarker panel achieved a sensitivity of 64.5% and a specificity of 89.5% as shown by receiver operating characteristic (ROC) curve statistics. Thus our data clearly show the potential usability of AGR3 and AGR2 as biomarkers for blood-based early detection of human breast cancer.
Collapse
Affiliation(s)
- Stefan Garczyk
- Molecular Oncology Group, Institute of Pathology, Medical Faculty of the RWTH Aachen University, Aachen, Germany
| | - Saskia von Stillfried
- Molecular Oncology Group, Institute of Pathology, Medical Faculty of the RWTH Aachen University, Aachen, Germany
| | - Wiebke Antonopoulos
- Molecular Oncology Group, Institute of Pathology, Medical Faculty of the RWTH Aachen University, Aachen, Germany
| | - Arndt Hartmann
- Institute of Pathology, University Hospital Erlangen, Erlangen, Germany
| | - Michael G. Schrauder
- Department of Gynaecology and Obstetrics, University Hospital Erlangen, Erlangen, Germany
| | - Peter A. Fasching
- Department of Gynaecology and Obstetrics, University Hospital Erlangen, Erlangen, Germany
| | - Tobias Anzeneder
- Patients' Tumor Bank of Hope (PATH) Foundation, München, Germany
| | - Andrea Tannapfel
- Institute of Pathology, Ruhr-University Bochum, Bochum, Germany, on behalf of the PATH Biobank group
| | - Yavuz Ergönenc
- Department for Senology, St Anna Hospital, Herne, Germany, on behalf of the PATH Biobank group
| | - Ruth Knüchel
- Molecular Oncology Group, Institute of Pathology, Medical Faculty of the RWTH Aachen University, Aachen, Germany
| | - Michael Rose
- Molecular Oncology Group, Institute of Pathology, Medical Faculty of the RWTH Aachen University, Aachen, Germany
| | - Edgar Dahl
- Molecular Oncology Group, Institute of Pathology, Medical Faculty of the RWTH Aachen University, Aachen, Germany
| |
Collapse
|
47
|
Tsuji T, Satoyoshi R, Aiba N, Kubo T, Yanagihara K, Maeda D, Goto A, Ishikawa K, Yashiro M, Tanaka M. Agr2 mediates paracrine effects on stromal fibroblasts that promote invasion by gastric signet-ring carcinoma cells. Cancer Res 2014; 75:356-66. [PMID: 25488752 DOI: 10.1158/0008-5472.can-14-1693] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Agr2 is a disulfide isomerase residing in the endoplasmic reticulum (ER), which physiologically regulates protein folding and mediates resistance to ER stress. Agr2 is overexpressed in adenocarcinomas of various organs, where it participates in neoplastic transformation and metastasis, therefore acts as a pro-oncogenic protein. Besides its normal localization in the ER, Agr2 is also found in the serum and urine of cancer patients, although the physiological significance of extracellular Agr2 is poorly understood. In this study, we demonstrated that extracellular Agr2 can activate stromal fibroblasts and promote fibroblast-associated cancer invasion in gastric signet-ring cell carcinoma (SRCC), where Agr2 is highly expressed. Agr2 secreted from SRCC cells was incorporated by the surrounding gastric fibroblasts and promoted invasion by these cells. In turn, activated fibroblasts coordinated the invasive behavior of fibroblasts and cancer cells. Our findings suggested that Agr2 drives progression of gastric SRCC by exerting paracrine effects on fibroblasts in the tumor microenvironment, acting also to increase the growth and resistance of SRCC cells to oxidative and hypoxic stress as cell autonomous effects.
Collapse
Affiliation(s)
- Tadahiro Tsuji
- Department of Molecular Medicine and Biochemistry, Akita University Graduate School of Medicine, Akita, Japan. Department of Otorhinolaryngology, Akita University Graduate School of Medicine, Akita, Japan
| | - Rika Satoyoshi
- Department of Molecular Medicine and Biochemistry, Akita University Graduate School of Medicine, Akita, Japan
| | - Namiko Aiba
- Department of Molecular Medicine and Biochemistry, Akita University Graduate School of Medicine, Akita, Japan
| | - Takanori Kubo
- Department of Life Sciences, Yasuda Women's University Faculty of Pharmacy, Asaminami-ku, Hiroshima, Japan
| | - Kazuyoshi Yanagihara
- Division of Translational Research, Exploratory Oncology and Clinical Trial Center, National Cancer Center, Chiba, Japan
| | - Daichi Maeda
- Department of Cellular and Organ pathology, Akita University Graduate School of Medicine, Akita, Japan
| | - Akiteru Goto
- Department of Cellular and Organ pathology, Akita University Graduate School of Medicine, Akita, Japan
| | - Kazuo Ishikawa
- Department of Otorhinolaryngology, Akita University Graduate School of Medicine, Akita, Japan
| | - Masakazu Yashiro
- Department of Surgical Oncology, Osaka City University Graduate School of Medicine, Abeno-ku, Osaka, Japan
| | - Masamitsu Tanaka
- Department of Molecular Medicine and Biochemistry, Akita University Graduate School of Medicine, Akita, Japan.
| |
Collapse
|
48
|
Kim SJ, Jun S, Cho HY, Lee DC, Yeom YI, Kim JH, Kang D. Knockdown of anterior gradient 2 expression extenuates tumor-associated phenotypes of SNU-478 ampulla of Vater cancer cells. BMC Cancer 2014; 14:804. [PMID: 25367337 PMCID: PMC4228270 DOI: 10.1186/1471-2407-14-804] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2014] [Accepted: 10/23/2014] [Indexed: 01/07/2023] Open
Abstract
Background Anterior gradient 2 (AGR2) has been implicated in tumor-associated phenotypes such as cell viability, invasion and metastasis in various human cancers. However, the tumor promoting activity of AGR2 has not yet been determined in biliary tract cancers. Thus, we examined the expression of AGR2 and its tumor-promoting activity in biliary tract cancer cells in this study. Methods Expression of AGR2 mRNA and protein was analyzed by real time RT-PCR and western blotting, respectively. MTT assay was employed to measure cell viability and pulsed BrdU incorporation by proliferating cells was monitored by flow cytometry. Soft agar colony formation assay and transwell invasion assay were employed to determine anchorage-independent growth and in vitro invasion of the tumor cells, respectively. In vivo tumor formation was examined by injection of tumor cells into immunocompromised mice subcutaneously. Statistical analysis was performed with 2-tailed unpaired Student’s t-test for continuous data and with one-way ANOVA for multiple group comparisons. Bonferroni tests were used for post hoc 2-sample comparisons. Results AGR2 mRNA was detected in SNU-245, SNU-478, and SNU-1196 cell lines, and its protein expression was confirmed in SNU-478 and SNU-245 cell lines by western blot analysis. Knockdown of AGR2 expression with an AGR2-specific short hairpin RNA (shRNA) in SNU-478, an ampulla of Vater cancer cell line resulted in decreased cell viability and in decreased anchorage-independent growth by 98%. The AGR2 knockdown also increased the sensitivity of the cells to chemotherapeutic drugs, including gemcitabine, 5-fluorouracil and cisplatin. In addition, SNU-478 cells expressing AGR2-shRNA failed to form detectable tumor xenografts in nude mice, whereas control cells formed tumors with an average size of 179 ± 84 mm3 in 3 weeks. Overexpression of AGR2 in SNU-869 cells significantly increased cell viability through enhanced cell proliferation and the number of Matrigel™-invading cells compared with AGR2-negative SNU-869 cells. Conclusions Our findings implicate that AGR2 expression augments tumor-associated phenotypes by increasing proliferative and invasive capacities of the ampulla of Vater cancer cells.
Collapse
Affiliation(s)
| | | | | | | | | | - Jong Hyeok Kim
- Departments of Internal Medicine, Hallym University Sacred Heart Hospital, Hallym University College of Medicine, Anyang, Korea.
| | | |
Collapse
|
49
|
Shishkin SS, Eremina LS, Kovalev LI, Kovaleva MA. AGR2, ERp57/GRP58, and some other human protein disulfide isomerases. BIOCHEMISTRY (MOSCOW) 2014; 78:1415-30. [PMID: 24490732 DOI: 10.1134/s000629791313004x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
This review considers the major features of human proteins AGR2 and ERp57/GRP58 and of other members of the protein disulfide isomerase (PDI) family. The ability of both AGR2 and ERp57/GRP58 to catalyze the formation of disulfide bonds in proteins is the parameter most important for assigning them to a PDI family. Moreover, these proteins and also other members of the PDI family have specific structural features (thioredoxin-like domains, special C-terminal motifs characteristic for proteins localized in the endoplasmic reticulum, etc.) that are necessary for their assignment to a PDI family. Data demonstrating the role of these two proteins in carcinogenesis are analyzed. Special attention is given to data indicating the presence of biomarker features in AGR2 and ERp57/GRP58. It is now thought that there is sufficient reason for studies of AGR2 and ERp57/GRP58 for possible use of these proteins in diagnosis of tumors. There are also prospects for studies on AGR2 and ERp57/GRP58 leading to developments in chemotherapy. Thus, we suppose that further studies on different members of the PDI family using modern postgenomic technologies will broaden current concepts about functions of these proteins, and this will be helpful for solution of urgent biomedical problems.
Collapse
Affiliation(s)
- S S Shishkin
- Bach Institute of Biochemistry, Russian Academy of Sciences, Moscow, 119071, Russia.
| | | | | | | |
Collapse
|
50
|
Surprisal analysis characterizes the free energy time course of cancer cells undergoing epithelial-to-mesenchymal transition. Proc Natl Acad Sci U S A 2014; 111:13235-40. [PMID: 25157127 DOI: 10.1073/pnas.1414714111] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
The epithelial-to-mesenchymal transition (EMT) initiates the invasive and metastatic behavior of many epithelial cancers. Mechanisms underlying EMT are not fully known. Surprisal analysis of mRNA time course data from lung and pancreatic cancer cells stimulated to undergo TGF-β1-induced EMT identifies two phenotypes. Examination of the time course for these phenotypes reveals that EMT reprogramming is a multistep process characterized by initiation, maturation, and stabilization stages that correlate with changes in cell metabolism. Surprisal analysis characterizes the free energy time course of the expression levels throughout the transition in terms of two state variables. The landscape of the free energy changes during the EMT for the lung cancer cells shows a stable intermediate state. Existing data suggest this is the previously proposed maturation stage. Using a single-cell ATP assay, we demonstrate that the TGF-β1-induced EMT for lung cancer cells, particularly during the maturation stage, coincides with a metabolic shift resulting in increased cytosolic ATP levels. Surprisal analysis also characterizes the absolute expression levels of the mRNAs and thereby examines the homeostasis of the transcription system during EMT.
Collapse
|