1
|
Alhamar G, Vinci C, Franzese V, Tramontana F, Le Goux N, Ludvigsson J, Nissim A, Strollo R. The role of oxidative post-translational modifications in type 1 diabetes pathogenesis. Front Immunol 2025; 16:1537405. [PMID: 40028329 PMCID: PMC11868110 DOI: 10.3389/fimmu.2025.1537405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2024] [Accepted: 01/22/2025] [Indexed: 03/05/2025] Open
Abstract
The pathogenesis of type 1 diabetes (T1D) involves a complex interplay of genetic predisposition, immune processes, and environmental factors, leading to the selective destruction of pancreatic beta-cells by the immune system. Emerging evidence suggests that intrinsic beta-cell factors, including oxidative stress and post-translational modifications (PTM) of beta-cell antigens, may also contribute to their immunogenicity, shedding new light on the multifaceted pathogenesis of T1D. Over the past 30 years, neoepitopes generated by PTMs have been hypothesized to play a role in T1D pathogenesis, but their involvement has only been systematically investigated in recent years. In this review, we explored the interplay between oxidative PTMs, neoepitopes, and T1D, highlighting oxidative stress as a pivotal factor in immune system dysfunction, beta-cell vulnerability, and disease onset.
Collapse
Affiliation(s)
- Ghadeer Alhamar
- Department of Immunology and Microbiology, Dasman Diabetes Institute, Dasman, Kuwait
| | - Chiara Vinci
- Center for Diabetes Research, Université Libre de Bruxelles, Brussels, Belgium
| | - Valentina Franzese
- Department for the Promotion of Human Science and Quality of Life, San Raffaele Open University, Rome, Italy
- Department of Medicine, Fondazione Policlinico Universitario Campus Bio-Medico di Roma, Rome, Italy
- Department of Medicine, Università Campus Bio-Medico di Roma, Rome, Italy
| | - Flavia Tramontana
- Department of Medicine, Università Campus Bio-Medico di Roma, Rome, Italy
| | - Nelig Le Goux
- Biochemical Pharmacology, William Harvey Research Institute, Queen Mary University of London, London, United Kingdom
| | - Johnny Ludvigsson
- Crown Princess Victoria Children’s Hospital and Division of Pediatrics, Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | - Ahuva Nissim
- Biochemical Pharmacology, William Harvey Research Institute, Queen Mary University of London, London, United Kingdom
| | - Rocky Strollo
- Department for the Promotion of Human Science and Quality of Life, San Raffaele Open University, Rome, Italy
- Department of Medicine, Fondazione Policlinico Universitario Campus Bio-Medico di Roma, Rome, Italy
| |
Collapse
|
2
|
Weldemariam MM, Sudhir PR, Woo J, Zhang Q. Effects of multiple stressors on pancreatic human islets proteome reveal new insights into the pathways involved. Proteomics 2023; 23:e2300022. [PMID: 37489002 PMCID: PMC10591809 DOI: 10.1002/pmic.202300022] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 07/13/2023] [Accepted: 07/17/2023] [Indexed: 07/26/2023]
Abstract
Pancreatic β-cell dysfunction is an early hallmark of type 1 diabetes mellitus. Among the potentially critical factors that cause β-cell dysfunction are cytokine attack, glucotoxicity, induction of endoplasmic reticulum (ER) or mitochondria stress. However, the exact molecular mechanism underlying β-cell's inability to maintain glucose homeostasis under severe stresses is unknown. This study used proinflammatory cytokines, thapsigargin, and rotenone in the presence of high concentration glucose to mimicking the conditions experienced by dysfunctional β-cells in human pancreatic islets, and profiled the alterations to the islet proteome with TMT-based proteomics. The results were further verified with label-free quantitative proteomics. The differentially expressed proteins under stress conditions reveal that immune related pathways are mostly perturbed by cytokines, while the respiratory electron transport chains and protein processing in ER pathways by rotenone. Thapsigargin together with high glucose induces dramatic increases of proteins in lipid synthesis and peroxisomal protein import pathways, with energy metabolism and vesicle secretion related pathways downregulated. High concentration glucose, on the other hand, alleviated complex I inhibition induced by rotenone. Our results contribute to a more comprehensive understanding of the molecular events involved in β-cell dysfunction.
Collapse
Affiliation(s)
- Mehari Muuz Weldemariam
- Center for Translational Biomedical Research, University of North Carolina at Greensboro, North Carolina Research Campus, Kannapolis, North Carolina 28081, United States
| | - Putty-Reddy Sudhir
- Center for Translational Biomedical Research, University of North Carolina at Greensboro, North Carolina Research Campus, Kannapolis, North Carolina 28081, United States
| | - Jongmin Woo
- Center for Translational Biomedical Research, University of North Carolina at Greensboro, North Carolina Research Campus, Kannapolis, North Carolina 28081, United States
| | - Qibin Zhang
- Center for Translational Biomedical Research, University of North Carolina at Greensboro, North Carolina Research Campus, Kannapolis, North Carolina 28081, United States
- Department of Chemistry and Biochemistry, University of North Carolina at Greensboro, Greensboro, North Carolina 27402, United States
| |
Collapse
|
3
|
Weldemariam MM, Woo J, Zhang Q. Pancreatic INS-1 β-Cell Response to Thapsigargin and Rotenone: A Comparative Proteomics Analysis Uncovers Key Pathways of β-Cell Dysfunction. Chem Res Toxicol 2022; 35:1080-1094. [PMID: 35544339 DOI: 10.1021/acs.chemrestox.2c00058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Insulin-secreting β-cells in the pancreatic islets are exposed to various endogenous and exogenous stressing conditions, which may lead to β-cell dysfunction or apoptosis and ultimately to diabetes mellitus. However, the detailed molecular mechanisms underlying β-cell's inability to survive under severe stresses remain to be explored. This study used two common chemical stressors, thapsigargin and rotenone, to induce endoplasmic reticulum (ER) and mitochondria stress in a rat insuloma INS-1 832/13 β-cell line, mimicking the conditions experienced by dysfunctional β-cells. Proteomic changes of cells upon treatment with stressors at IC50 were profiled with TMT-based quantitative proteomics and further verified using label-free quantitive proteomics. The differentially expressed proteins under stress conditions were selected for in-depth bioinformatic analysis. Thapsigargin treatment specifically perturbed unfolded protein response (UPR) related pathways; in addition, 58 proteins not previously linked to the UPR related pathways were identified with consistent upregulation under stress induced by thapsigargin. Conversely, rotenone treatment resulted in significant proteome changes in key mitochondria regulatory pathways such as fatty acid β-oxidation, cellular respiration, citric acid cycle, and respiratory electron transport. Our data also demonstrated that both stressors increased reactive oxygen species production and depleted adenosine triphosphate synthesis, resulting in significant dysregulation of oxidative phosphorylation signaling pathways. These novel dysregulated proteins may suggest an alternative mechanism of action in β-cell dysfunction and provide potential targets for probing ER- and mitochondria stress-induced β-cell death.
Collapse
Affiliation(s)
- Mehari Muuz Weldemariam
- Center for Translational Biomedical Research, University of North Carolina at Greensboro, North Carolina Research Campus, Kannapolis, North Carolina 28081, United States
| | - Jongmin Woo
- Center for Translational Biomedical Research, University of North Carolina at Greensboro, North Carolina Research Campus, Kannapolis, North Carolina 28081, United States
| | - Qibin Zhang
- Center for Translational Biomedical Research, University of North Carolina at Greensboro, North Carolina Research Campus, Kannapolis, North Carolina 28081, United States.,Department of Chemistry and Biochemistry, University of North Carolina at Greensboro, Greensboro, North Carolina 27402, United States
| |
Collapse
|
4
|
Yang ML, Horstman S, Gee R, Guyer P, Lam TT, Kanyo J, Perdigoto AL, Speake C, Greenbaum CJ, Callebaut A, Overbergh L, Kibbey RG, Herold KC, James EA, Mamula MJ. Citrullination of glucokinase is linked to autoimmune diabetes. Nat Commun 2022; 13:1870. [PMID: 35388005 PMCID: PMC8986778 DOI: 10.1038/s41467-022-29512-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Accepted: 03/15/2022] [Indexed: 02/06/2023] Open
Abstract
Inflammation, including reactive oxygen species and inflammatory cytokines in tissues amplify various post-translational modifications of self-proteins. A number of post-translational modifications have been identified as autoimmune biomarkers in the initiation and progression of Type 1 diabetes. Here we show the citrullination of pancreatic glucokinase as a result of inflammation, triggering autoimmunity and affecting glucokinase biological functions. Glucokinase is expressed in hepatocytes to regulate glycogen synthesis, and in pancreatic beta cells as a glucose sensor to initiate glycolysis and insulin signaling. We identify autoantibodies and autoreactive CD4+ T cells to glucokinase epitopes in the circulation of Type 1 diabetes patients and NOD mice. Finally, citrullination alters glucokinase biologic activity and suppresses glucose-stimulated insulin secretion. Our study define glucokinase as a Type 1 diabetes biomarker, providing new insights of how inflammation drives post-translational modifications to create both neoautoantigens and affect beta cell metabolism.
Collapse
Affiliation(s)
- Mei-Ling Yang
- Section of Rheumatology, Allergy and Immunology, Department of Internal Medicine, Yale University, New Haven, CT, USA
| | - Sheryl Horstman
- Center for Translational Immunology, Benaroya Research Institute at Virginia Mason, Seattle, WA, USA
| | - Renelle Gee
- Section of Rheumatology, Allergy and Immunology, Department of Internal Medicine, Yale University, New Haven, CT, USA
| | - Perrin Guyer
- Center for Translational Immunology, Benaroya Research Institute at Virginia Mason, Seattle, WA, USA
| | - TuKiet T Lam
- Department of Molecular Biophysics & Biochemistry, Yale University, New Haven, CT, USA
- Keck MS & Proteomics Resource, WM Keck Foundation Biotechnology Resource Laboratory, New Haven, CT, USA
| | - Jean Kanyo
- Keck MS & Proteomics Resource, WM Keck Foundation Biotechnology Resource Laboratory, New Haven, CT, USA
| | - Ana L Perdigoto
- Section of Endocrinology, Department of Internal Medicine, Yale University, New Haven, CT, USA
| | - Cate Speake
- Center for Interventional Immunology, Benaroya Research Institute at Virginia Mason, Seattle, WA, USA
| | - Carla J Greenbaum
- Center for Interventional Immunology, Benaroya Research Institute at Virginia Mason, Seattle, WA, USA
| | - Aïsha Callebaut
- Laboratory for Clinical and Experimental Endocrinology, KU Leuven, Leuven, Belgium
| | - Lut Overbergh
- Laboratory for Clinical and Experimental Endocrinology, KU Leuven, Leuven, Belgium
| | - Richard G Kibbey
- Section of Endocrinology, Department of Internal Medicine, Yale University, New Haven, CT, USA
- Department of Cellular & Molecular Physiology, Yale University, New Haven, CT, USA
| | - Kevan C Herold
- Section of Endocrinology, Department of Internal Medicine, Yale University, New Haven, CT, USA
- Department of Immunobiology, Yale University, New Haven, CT, USA
| | - Eddie A James
- Center for Translational Immunology, Benaroya Research Institute at Virginia Mason, Seattle, WA, USA
| | - Mark J Mamula
- Section of Rheumatology, Allergy and Immunology, Department of Internal Medicine, Yale University, New Haven, CT, USA.
| |
Collapse
|
5
|
Callebaut A, Bruggeman Y, Zamit C, Sodré FMC, Irla M, Mathieu C, Buitinga M, Overbergh L. Aberrant expression of transglutaminase 2 in pancreas and thymus of NOD mice underscores the importance of deamidation in neoantigen generation. Front Endocrinol (Lausanne) 2022; 13:908248. [PMID: 35966081 PMCID: PMC9367685 DOI: 10.3389/fendo.2022.908248] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 07/06/2022] [Indexed: 11/17/2022] Open
Abstract
Post-translational modifications can lead to a break in immune tolerance in autoimmune diseases such as type 1 diabetes (T1D). Deamidation, the conversion of glutamine to glutamic acid by transglutaminase (TGM) enzymes, is a post-translational modification of interest, with deamidated peptides being reported as autoantigens in T1D. However, little is known about how Tgm2, the most ubiquitously expressed Tgm isoform, is regulated and how tolerance against deamidated peptides is lost. Here, we report on the aberrant expression and regulation of Tgm2 in the pancreas and thymus of NOD mice. We demonstrate that Tgm2 expression is induced by the inflammatory cytokines IL1β and IFNγ in a synergistic manner and that murine pancreatic islets of NOD mice have higher Tgm2 levels, while Tgm2 levels in medullary thymic epithelial cells are reduced. We thus provide the first direct evidence to our knowledge that central tolerance establishment against deamidated peptides might be impaired due to lower Tgm2 expression in NOD medullary thymic epithelial cells, which together with the aberrantly high levels of deamidated peptides in NOD β-cells underscores the role of deamidation in amplifying T-cell reactivity.
Collapse
Affiliation(s)
- Aїsha Callebaut
- Laboratory of Clinical and Experimental Endocrinology, Department of Chronic Diseases and Metabolism, KU Leuven, Leuven, Belgium
| | - Ylke Bruggeman
- Laboratory of Clinical and Experimental Endocrinology, Department of Chronic Diseases and Metabolism, KU Leuven, Leuven, Belgium
| | - Cloé Zamit
- CNRS, INSERM, Centre d’Immunologie de Marseille-Luminy, Aix-Marseille University, Marseille, France
| | - Fernanda Marques Câmara Sodré
- Laboratory of Clinical and Experimental Endocrinology, Department of Chronic Diseases and Metabolism, KU Leuven, Leuven, Belgium
- Department of Microbiology, University of Sao Paulo, Sao Paulo, Brazil
| | - Magali Irla
- CNRS, INSERM, Centre d’Immunologie de Marseille-Luminy, Aix-Marseille University, Marseille, France
| | - Chantal Mathieu
- Laboratory of Clinical and Experimental Endocrinology, Department of Chronic Diseases and Metabolism, KU Leuven, Leuven, Belgium
| | - Mijke Buitinga
- Laboratory of Clinical and Experimental Endocrinology, Department of Chronic Diseases and Metabolism, KU Leuven, Leuven, Belgium
- Department of Nutrition and Movement Sciences, Maastricht University, Maastricht, Netherlands
- Department of Radiology and Nuclear Medicine, Maastricht University Medical Center, Maastricht, Netherlands
| | - Lut Overbergh
- Laboratory of Clinical and Experimental Endocrinology, Department of Chronic Diseases and Metabolism, KU Leuven, Leuven, Belgium
- *Correspondence: Lut Overbergh,
| |
Collapse
|
6
|
Mukherjee N, Lin L, Contreras CJ, Templin AT. β-Cell Death in Diabetes: Past Discoveries, Present Understanding, and Potential Future Advances. Metabolites 2021; 11:796. [PMID: 34822454 PMCID: PMC8620854 DOI: 10.3390/metabo11110796] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 11/15/2021] [Accepted: 11/18/2021] [Indexed: 12/19/2022] Open
Abstract
β-cell death is regarded as a major event driving loss of insulin secretion and hyperglycemia in both type 1 and type 2 diabetes mellitus. In this review, we explore past, present, and potential future advances in our understanding of the mechanisms that promote β-cell death in diabetes, with a focus on the primary literature. We first review discoveries of insulin insufficiency, β-cell loss, and β-cell death in human diabetes. We discuss findings in humans and mouse models of diabetes related to autoimmune-associated β-cell loss and the roles of autoreactive T cells, B cells, and the β cell itself in this process. We review discoveries of the molecular mechanisms that underlie β-cell death-inducing stimuli, including proinflammatory cytokines, islet amyloid formation, ER stress, oxidative stress, glucotoxicity, and lipotoxicity. Finally, we explore recent perspectives on β-cell death in diabetes, including: (1) the role of the β cell in its own demise, (2) methods and terminology for identifying diverse mechanisms of β-cell death, and (3) whether non-canonical forms of β-cell death, such as regulated necrosis, contribute to islet inflammation and β-cell loss in diabetes. We believe new perspectives on the mechanisms of β-cell death in diabetes will provide a better understanding of this pathological process and may lead to new therapeutic strategies to protect β cells in the setting of diabetes.
Collapse
Affiliation(s)
- Noyonika Mukherjee
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN 46202, USA;
- Lilly Diabetes Center of Excellence, Indiana Biosciences Research Institute, Indianapolis, IN 46202, USA; (L.L.); (C.J.C.)
| | - Li Lin
- Lilly Diabetes Center of Excellence, Indiana Biosciences Research Institute, Indianapolis, IN 46202, USA; (L.L.); (C.J.C.)
| | - Christopher J. Contreras
- Lilly Diabetes Center of Excellence, Indiana Biosciences Research Institute, Indianapolis, IN 46202, USA; (L.L.); (C.J.C.)
- Department of Medicine, Roudebush Veterans Affairs Medical Center, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Andrew T. Templin
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN 46202, USA;
- Lilly Diabetes Center of Excellence, Indiana Biosciences Research Institute, Indianapolis, IN 46202, USA; (L.L.); (C.J.C.)
- Department of Medicine, Roudebush Veterans Affairs Medical Center, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Center for Diabetes and Metabolic Diseases, School of Medicine, Indiana University, Indianapolis, IN 46202, USA
| |
Collapse
|
7
|
Yang ML, Sodré FMC, Mamula MJ, Overbergh L. Citrullination and PAD Enzyme Biology in Type 1 Diabetes - Regulators of Inflammation, Autoimmunity, and Pathology. Front Immunol 2021; 12:678953. [PMID: 34140951 PMCID: PMC8204103 DOI: 10.3389/fimmu.2021.678953] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Accepted: 05/11/2021] [Indexed: 02/06/2023] Open
Abstract
The generation of post-translational modifications (PTMs) in human proteins is a physiological process leading to structural and immunologic variety in proteins, with potentially altered biological functions. PTMs often arise through normal responses to cellular stress, including general oxidative changes in the tissue microenvironment and intracellular stress to the endoplasmic reticulum or immune-mediated inflammatory stresses. Many studies have now illustrated the presence of 'neoepitopes' consisting of PTM self-proteins that induce robust autoimmune responses. These pathways of inflammatory neoepitope generation are commonly observed in many autoimmune diseases including systemic lupus erythematosus, rheumatoid arthritis, multiple sclerosis, and type 1 diabetes (T1D), among others. This review will focus on one specific PTM to self-proteins known as citrullination. Citrullination is mediated by calcium-dependent peptidylarginine deiminase (PAD) enzymes, which catalyze deimination, the conversion of arginine into the non-classical amino acid citrulline. PADs and citrullinated peptides have been associated with different autoimmune diseases, notably with a prominent role in the diagnosis and pathology of rheumatoid arthritis. More recently, an important role for PADs and citrullinated self-proteins has emerged in T1D. In this review we will provide a comprehensive overview on the pathogenic role for PADs and citrullination in inflammation and autoimmunity, with specific focus on evidence for their role in T1D. The general role of PADs in epigenetic and transcriptional processes, as well as their crucial role in histone citrullination, neutrophil biology and neutrophil extracellular trap (NET) formation will be discussed. The latter is important in view of increasing evidence for a role of neutrophils and NETosis in the pathogenesis of T1D. Further, we will discuss the underlying processes leading to citrullination, the genetic susceptibility factors for increased recognition of citrullinated epitopes by T1D HLA-susceptibility types and provide an overview of reported autoreactive responses against citrullinated epitopes, both of T cells and autoantibodies in T1D patients. Finally, we will discuss recent observations obtained in NOD mice, pointing to prevention of diabetes development through PAD inhibition, and the potential role of PAD inhibitors as novel therapeutic strategy in autoimmunity and in T1D in particular.
Collapse
Affiliation(s)
- Mei-Ling Yang
- Section of Rheumatology, Allergy and Clinical Immunology, Department of Internal Medicine, Yale University, New Haven, CT, United States
| | - Fernanda M C Sodré
- Department of Chronic Diseases, Metabolism and Ageing, Laboratory of Clinical and Experimental Endocrinology (CEE), KU Leuven, Leuven, Belgium
| | - Mark J Mamula
- Section of Rheumatology, Allergy and Clinical Immunology, Department of Internal Medicine, Yale University, New Haven, CT, United States
| | - Lut Overbergh
- Department of Chronic Diseases, Metabolism and Ageing, Laboratory of Clinical and Experimental Endocrinology (CEE), KU Leuven, Leuven, Belgium
| |
Collapse
|
8
|
Mule SN, Gomes VDM, Wailemann RAM, Macedo-da-Silva J, Rosa-Fernandes L, Larsen MR, Labriola L, Palmisano G. HSPB1 influences mitochondrial respiration in ER-stressed beta cells. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2021; 1869:140680. [PMID: 34051341 DOI: 10.1016/j.bbapap.2021.140680] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Revised: 05/04/2021] [Accepted: 05/13/2021] [Indexed: 01/02/2023]
Abstract
Beta-cell death and dysfunction are involved in the development of type 1 and 2 diabetes. ER-stress impairs beta-cells function resulting in pro-apoptotic stimuli that promote cell death. Hence, the identification of protective mechanisms in response to ER-stress could lead to novel therapeutic targets and insight in the pathology of these diseases. Here, we report the identification of proteins involved in dysregulated pathways upon thapsigargin treatment of MIN6 cells. Utilizing quantitative proteomics we identified upregulation of proteins involved in protein folding, unfolded protein response, redox homeostasis, proteasome processes associated with endoplasmic reticulum and downregulation of TCA cycle, cellular respiration, lipid metabolism and ribosome assembly processes associated to mitochondria and eukaryotic initiation translation factor components. Subsequently, pro-inflammatory cytokine treatment was performed to mimic pathological changes observed in beta-cells during diabetes. Cytokines induced ER stress and impaired mitochondrial function in beta-cells corroborating the results obtained with the proteomic approach. HSPB1 levels are increased by prolactin on pancreatic beta-cells and this protein is a key factor for cytoprotection although its role has not been fully elucidated. Here we show that while up-regulation of HSPB1 was able to restore the mitochondrial dysfunction induced by beta-cells' exposure to inflammatory cytokines, silencing of this chaperone abrogated the beneficial effects promoted by PRL. Taken together, our results outline the importance of HSPB1 to mitigate beta-cell dysfunction. Further studies are needed to elucidate its role in diabetes.
Collapse
Affiliation(s)
- Simon Ngao Mule
- GlycoProteomics laboratory, Department of Parasitology, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, Brazil
| | - Vinícius De Morais Gomes
- GlycoProteomics laboratory, Department of Parasitology, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, Brazil; Department of Biochemistry, Institute of Chemistry, University of Sao Paulo, Sao Paulo, Brazil
| | - Rosangela A M Wailemann
- Department of Biochemistry, Institute of Chemistry, University of Sao Paulo, Sao Paulo, Brazil
| | - Janaina Macedo-da-Silva
- GlycoProteomics laboratory, Department of Parasitology, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, Brazil
| | - Livia Rosa-Fernandes
- GlycoProteomics laboratory, Department of Parasitology, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, Brazil
| | - Martin R Larsen
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Denmark
| | - Letícia Labriola
- Department of Biochemistry, Institute of Chemistry, University of Sao Paulo, Sao Paulo, Brazil.
| | - Giuseppe Palmisano
- GlycoProteomics laboratory, Department of Parasitology, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, Brazil.
| |
Collapse
|
9
|
Sala E, Vived C, Luna J, Saavedra-Ávila NA, Sengupta U, Castaño AR, Villar-Pazos S, Haba L, Verdaguer J, Ropero AB, Stratmann T, Pizarro J, Vázquez-Carrera M, Nadal A, Lahti JM, Mora C. CDK11 Promotes Cytokine-Induced Apoptosis in Pancreatic Beta Cells Independently of Glucose Concentration and Is Regulated by Inflammation in the NOD Mouse Model. Front Immunol 2021; 12:634797. [PMID: 33664748 PMCID: PMC7923961 DOI: 10.3389/fimmu.2021.634797] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Accepted: 01/07/2021] [Indexed: 11/13/2022] Open
Abstract
Background Pancreatic islets are exposed to strong pro-apoptotic stimuli: inflammation and hyperglycemia, during the progression of the autoimmune diabetes (T1D). We found that the Cdk11(Cyclin Dependent Kinase 11) is downregulated by inflammation in the T1D prone NOD (non-obese diabetic) mouse model. The aim of this study is to determine the role of CDK11 in the pathogenesis of T1D and to assess the hierarchical relationship between CDK11 and Cyclin D3 in beta cell viability, since Cyclin D3, a natural ligand for CDK11, promotes beta cell viability and fitness in front of glucose. Methods We studied T1D pathogenesis in NOD mice hemideficient for CDK11 (N-HTZ), and, in N-HTZ deficient for Cyclin D3 (K11HTZ-D3KO), in comparison to their respective controls (N-WT and K11WT-D3KO). Moreover, we exposed pancreatic islets to either pro-inflammatory cytokines in the presence of increasing glucose concentrations, or Thapsigargin, an Endoplasmic Reticulum (ER)-stress inducing agent, and assessed apoptotic events. The expression of key ER-stress markers (Chop, Atf4 and Bip) was also determined. Results N-HTZ mice were significantly protected against T1D, and NS-HTZ pancreatic islets exhibited an impaired sensitivity to cytokine-induced apoptosis, regardless of glucose concentration. However, thapsigargin-induced apoptosis was not altered. Furthermore, CDK11 hemideficiency did not attenuate the exacerbation of T1D caused by Cyclin D3 deficiency. Conclusions This study is the first to report that CDK11 is repressed in T1D as a protection mechanism against inflammation-induced apoptosis and suggests that CDK11 lies upstream Cyclin D3 signaling. We unveil the CDK11/Cyclin D3 tandem as a new potential intervention target in T1D.
Collapse
Affiliation(s)
- Ester Sala
- Immunology Unit, Department of Experimental Medicine, Faculty of Medicine, University of Lleida, Lleida, Spain
- Institut de Recerca Biomèdica Lleida (IRB-LLeida), Lleida, Spain
| | - Celia Vived
- Immunology Unit, Department of Experimental Medicine, Faculty of Medicine, University of Lleida, Lleida, Spain
- Institut de Recerca Biomèdica Lleida (IRB-LLeida), Lleida, Spain
| | - Júlia Luna
- Immunology Unit, Department of Experimental Medicine, Faculty of Medicine, University of Lleida, Lleida, Spain
- Institut de Recerca Biomèdica Lleida (IRB-LLeida), Lleida, Spain
| | - Noemí Alejandra Saavedra-Ávila
- Immunology Unit, Department of Experimental Medicine, Faculty of Medicine, University of Lleida, Lleida, Spain
- Institut de Recerca Biomèdica Lleida (IRB-LLeida), Lleida, Spain
| | - Upasana Sengupta
- Immunology Unit, Department of Experimental Medicine, Faculty of Medicine, University of Lleida, Lleida, Spain
- Institut de Recerca Biomèdica Lleida (IRB-LLeida), Lleida, Spain
| | - A. Raúl Castaño
- Departament of Cell Biology, Physiology and Immunology, Autonomous University of Barcelona, Barcelona, Spain
| | - Sabrina Villar-Pazos
- Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche, IDiBE, Universidad Miguel Hernandez, Elche, Spain
- Department of Tumor Cell Biology, St. Jude Children’s Research Hospital, Memphis, TN, United States
| | - Laura Haba
- Experimental Diabetes Laboratory, Institute for Biomedical Research August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Joan Verdaguer
- Immunology Unit, Department of Experimental Medicine, Faculty of Medicine, University of Lleida, Lleida, Spain
- Institut de Recerca Biomèdica Lleida (IRB-LLeida), Lleida, Spain
| | - Ana B. Ropero
- Instituto de Bioingeniería, Universidad Miguel Hernández, Elche, Spain
| | - Thomas Stratmann
- Department of Cell Biology, Physiology and Immunology, Faculty of Biology, University of Barcelona, Barcelona, Spain
| | - Javier Pizarro
- Department of Pharmacology, Toxicology and Therapeutic Chemistry, Faculty of Pharmacy and Food Sciences and Institute of Biomedicine (IBUB), University of Barcelona, Barcelona, Spain
- Spanish Biomedical Research Center in Diabetes and Associated Metabolic Diseases (CIBERDEM)—Instituto de Salud Carlos III, Madrid, Spain
- Pediatric Research Institute, Hospital Sant Joan de Déu, Esplugues de Llobregat, Spain
| | - Manuel Vázquez-Carrera
- Department of Pharmacology, Toxicology and Therapeutic Chemistry, Faculty of Pharmacy and Food Sciences and Institute of Biomedicine (IBUB), University of Barcelona, Barcelona, Spain
- Spanish Biomedical Research Center in Diabetes and Associated Metabolic Diseases (CIBERDEM)—Instituto de Salud Carlos III, Madrid, Spain
- Pediatric Research Institute, Hospital Sant Joan de Déu, Esplugues de Llobregat, Spain
| | - Angel Nadal
- Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche, IDiBE, Universidad Miguel Hernandez, Elche, Spain
- Diabetes and Associated Metabolic Disorders CIBERDEM, Universidad Miguel Hernández de Elche, Elche, Spain
| | - Jill M. Lahti
- Department of Tumor Cell Biology, St. Jude Children’s Research Hospital, Memphis, TN, United States
| | - Conchi Mora
- Immunology Unit, Department of Experimental Medicine, Faculty of Medicine, University of Lleida, Lleida, Spain
- Institut de Recerca Biomèdica Lleida (IRB-LLeida), Lleida, Spain
| |
Collapse
|
10
|
Kalita B, Bano S, Vavachan VM, Taunk K, Seshadri V, Rapole S. Application of mass spectrometry based proteomics to understand diabetes: A special focus on interactomics. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2020; 1868:140469. [DOI: 10.1016/j.bbapap.2020.140469] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 05/07/2020] [Accepted: 06/04/2020] [Indexed: 12/11/2022]
|
11
|
Gallart-Palau X, Tan LM, Serra A, Gao Y, Ho HH, Richards AM, Kandiah N, Chen CP, Kalaria RN, Sze SK. Degenerative protein modifications in the aging vasculature and central nervous system: A problem shared is not always halved. Ageing Res Rev 2019; 53:100909. [PMID: 31116994 DOI: 10.1016/j.arr.2019.100909] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Revised: 04/16/2019] [Accepted: 05/16/2019] [Indexed: 02/08/2023]
Abstract
Aging influences the pathogenesis and progression of several major diseases affecting both the cardiovascular system (CVS) and central nervous system (CNS). Defining the common molecular features that underpin these disorders in these crucial body systems will likely lead to increased quality of life and improved 'health-span' in the global aging population. Degenerative protein modifications (DPMs) have been strongly implicated in the molecular pathogenesis of several age-related diseases affecting the CVS and CNS, including atherosclerosis, heart disease, dementia syndromes, and stroke. However, these isolated findings have yet to be integrated into a wider framework, which considers the possibility that, despite their distinct features, CVS and CNS disorders may in fact be closely related phenomena. In this work, we review the current literature describing molecular roles of the major age-associated DPMs thought to significantly impact on human health, including carbamylation, citrullination and deamidation. In particular, we focus on data indicating that specific DPMs are shared between multiple age-related diseases in both CVS and CNS settings. By contextualizing these data, we aim to assist future studies in defining the universal mechanisms that underpin both vascular and neurological manifestations of age-related protein degeneration.
Collapse
|
12
|
Nakayasu ES, Qian WJ, Evans-Molina C, Mirmira RG, Eizirik DL, Metz TO. The role of proteomics in assessing beta-cell dysfunction and death in type 1 diabetes. Expert Rev Proteomics 2019; 16:569-582. [PMID: 31232620 PMCID: PMC6628911 DOI: 10.1080/14789450.2019.1634548] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Accepted: 06/18/2019] [Indexed: 12/17/2022]
Abstract
Introduction: Type 1 diabetes (T1D) is characterized by autoimmune-induced dysfunction and destruction of the pancreatic beta cells. Unfortunately, this process is poorly understood, and the current best treatment for type 1 diabetes is the administration of exogenous insulin. To better understand these mechanisms and to develop new therapies, there is an urgent need for biomarkers that can reliably predict disease stage. Areas covered: Mass spectrometry (MS)-based proteomics and complementary techniques play an important role in understanding the autoimmune response, inflammation and beta-cell death. MS is also a leading technology for the identification of biomarkers. This, and the technical difficulties and new technologies that provide opportunities to characterize small amounts of sample in great depth and to analyze large sample cohorts will be discussed in this review. Expert opinion: Understanding disease mechanisms and the discovery of disease-associated biomarkers are highly interconnected goals. Ideal biomarkers would be molecules specific to the different stages of the disease process that are released from beta cells to the bloodstream. However, such molecules are likely to be present in trace amounts in the blood due to the small number of pancreatic beta cells in the human body and the heterogeneity of the target organ and disease process.
Collapse
Affiliation(s)
- Ernesto S. Nakayasu
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Wei-Jun Qian
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Carmella Evans-Molina
- Center for Diabetes and Metabolic Diseases, Herman B. Wells Center for Pediatric Research, Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Raghavendra G. Mirmira
- Center for Diabetes and Metabolic Diseases, Herman B. Wells Center for Pediatric Research, Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Decio L. Eizirik
- ULB Center for Diabetes Research, Medical Faculty, Université Libre de Bruxelles, Brussels, Belgium
| | - Thomas O. Metz
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, USA
| |
Collapse
|
13
|
Vig S, Buitinga M, Rondas D, Crèvecoeur I, van Zandvoort M, Waelkens E, Eizirik DL, Gysemans C, Baatsen P, Mathieu C, Overbergh L. Cytokine-induced translocation of GRP78 to the plasma membrane triggers a pro-apoptotic feedback loop in pancreatic beta cells. Cell Death Dis 2019; 10:309. [PMID: 30952835 PMCID: PMC6450900 DOI: 10.1038/s41419-019-1518-0] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Revised: 03/04/2019] [Accepted: 03/05/2019] [Indexed: 11/16/2022]
Abstract
The 78-kDa glucose-regulated protein (GRP78) is an ubiquitously expressed endoplasmic reticulum chaperone, with a central role in maintaining protein homeostasis. Recently, an alternative role for GRP78 under stress conditions has been proposed, with stress-induced extracellular secretion and translocation of GRP78 to the cell surface where it acts as a multifunctional signaling receptor. Here we demonstrate translocation of GRP78 to the surface of human EndoC-βH1 cells and primary human islets upon cytokine exposure, in analogy to observations in rodent INS-1E and MIN6 beta cell lines. We show that GRP78 is shuttled via the anterograde secretory pathway, through the Golgi complex and secretory granules, and identify the DNAJ homolog subfamily C member 3 (DNAJC3) as a GRP78-interacting protein that facilitates its membrane translocation. Evaluation of downstream signaling pathways, using N- and C-terminal anti-GRP78 blocking antibodies, demonstrates that both GRP78 signaling domains initiate pro-apoptotic signaling cascades in beta cells. Extracellular GRP78 itself is identified as a ligand for cell surface GRP78 (sGRP78), increasing caspase 3/7 activity and cell death upon binding, which is accompanied by enhanced Chop and Bax mRNA expression. These results suggest that inflammatory cytokines induce a self-destructive pro-apoptotic feedback loop through the secretion and membrane translocation of GRP78. This proapoptotic function distinguishes the role of sGRP78 in beta cells from its reported anti-apoptotic and proliferative role in cancer cells, opening the road for the use of compounds that block sGRP78 as potential beta cell-preserving therapies in type 1 diabetes.
Collapse
Affiliation(s)
- Saurabh Vig
- Clinical and Experimental Endocrinology, KU Leuven, Leuven, Belgium
| | - Mijke Buitinga
- Clinical and Experimental Endocrinology, KU Leuven, Leuven, Belgium
| | - Dieter Rondas
- Clinical and Experimental Endocrinology, KU Leuven, Leuven, Belgium
| | - Inne Crèvecoeur
- Clinical and Experimental Endocrinology, KU Leuven, Leuven, Belgium
| | - Marc van Zandvoort
- Department of Molecular Cell Biology and School for Nutrition and Translational Research in Metabolism NUTRIM, Maastricht University, Maastricht, The Netherlands
| | - Etienne Waelkens
- Laboratory of Protein Phosphorylation and Proteomics, KU Leuven, Leuven, Belgium.,SyBioMa, KU Leuven, Leuven, Belgium
| | - Decio L Eizirik
- ULB Center for Diabetes Research, Universite Libre de Bruxelles, Brussels, Belgium
| | - Conny Gysemans
- Clinical and Experimental Endocrinology, KU Leuven, Leuven, Belgium
| | - Pieter Baatsen
- Electron Microscopy Platform of VIB Bio Imaging Core at KU Leuven and VIB-KU Leuven Center for Brain & Disease Research, Leuven, Belgium
| | - Chantal Mathieu
- Clinical and Experimental Endocrinology, KU Leuven, Leuven, Belgium
| | - Lut Overbergh
- Clinical and Experimental Endocrinology, KU Leuven, Leuven, Belgium.
| |
Collapse
|
14
|
Buitinga M, Callebaut A, Marques Câmara Sodré F, Crèvecoeur I, Blahnik-Fagan G, Yang ML, Bugliani M, Arribas-Layton D, Marré M, Cook DP, Waelkens E, Mallone R, Piganelli JD, Marchetti P, Mamula MJ, Derua R, James EA, Mathieu C, Overbergh L. Inflammation-Induced Citrullinated Glucose-Regulated Protein 78 Elicits Immune Responses in Human Type 1 Diabetes. Diabetes 2018; 67:2337-2348. [PMID: 30348823 PMCID: PMC6973547 DOI: 10.2337/db18-0295] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Accepted: 07/31/2018] [Indexed: 12/16/2022]
Abstract
The β-cell has become recognized as a central player in the pathogenesis of type 1 diabetes with the generation of neoantigens as potential triggers for breaking immune tolerance. We report that posttranslationally modified glucose-regulated protein 78 (GRP78) is a novel autoantigen in human type 1 diabetes. When human islets were exposed to inflammatory stress induced by interleukin-1β, tumor necrosis factor-α, and interferon-γ, arginine residue R510 within GRP78 was converted into citrulline, as evidenced by liquid chromatography-tandem mass spectrometry. This conversion, known as citrullination, led to the generation of neoepitopes, which effectively could be presented by HLA-DRB1*04:01 molecules. With the use of HLA-DRB1*04:01 tetramers and ELISA techniques, we demonstrate enhanced antigenicity of citrullinated GRP78 with significantly increased CD4+ T-cell responses and autoantibody titers in patients with type 1 diabetes compared with healthy control subjects. Of note, patients with type 1 diabetes had a predominantly higher percentage of central memory cells and a lower percentage of effector memory cells directed against citrullinated GRP78 compared with the native epitope. These results strongly suggest that citrullination of β-cell proteins, exemplified here by the citrullination of GRP78, contributes to loss of self-tolerance toward β-cells in human type 1 diabetes, indicating that β-cells actively participate in their own demise.
Collapse
Affiliation(s)
- Mijke Buitinga
- Laboratory for Clinical and Experimental Endocrinology, KU Leuven, Leuven, Belgium
| | - Aïsha Callebaut
- Laboratory for Clinical and Experimental Endocrinology, KU Leuven, Leuven, Belgium
| | | | - Inne Crèvecoeur
- Laboratory for Clinical and Experimental Endocrinology, KU Leuven, Leuven, Belgium
| | | | | | | | | | - Meghan Marré
- Division of Pediatric Surgery, University of Pittsburgh, Pittsburgh, PA
| | - Dana P Cook
- Laboratory for Clinical and Experimental Endocrinology, KU Leuven, Leuven, Belgium
| | - Etienne Waelkens
- Laboratory of Protein Phosphorylation and Proteomics, KU Leuven, Leuven, Belgium
- SyBioMa, KU Leuven, Leuven, Belgium
| | - Roberto Mallone
- INSERM, U1016, CNRS, UMR8104, Paris Descartes University, Sorbonne Paris Cité, Cochin Institute, Paris, France
| | - Jon D Piganelli
- Division of Pediatric Surgery, University of Pittsburgh, Pittsburgh, PA
| | | | | | - Rita Derua
- Laboratory of Protein Phosphorylation and Proteomics, KU Leuven, Leuven, Belgium
- SyBioMa, KU Leuven, Leuven, Belgium
| | | | - Chantal Mathieu
- Laboratory for Clinical and Experimental Endocrinology, KU Leuven, Leuven, Belgium
| | - Lut Overbergh
- Laboratory for Clinical and Experimental Endocrinology, KU Leuven, Leuven, Belgium
| |
Collapse
|
15
|
Crèvecoeur I, Vig S, Mathieu C, Overbergh L. Understanding type 1 diabetes through proteomics. Expert Rev Proteomics 2017. [DOI: 10.1080/14789450.2017.1345633] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Inne Crèvecoeur
- Laboratory for Clinical and Experimental Endocrinology, KU Leuven, Leuven, Belgium
| | - Saurabh Vig
- Laboratory for Clinical and Experimental Endocrinology, KU Leuven, Leuven, Belgium
| | - Chantal Mathieu
- Laboratory for Clinical and Experimental Endocrinology, KU Leuven, Leuven, Belgium
| | - Lut Overbergh
- Laboratory for Clinical and Experimental Endocrinology, KU Leuven, Leuven, Belgium
| |
Collapse
|
16
|
Abstract
In 1974, the discovery of a mouse and a rat that spontaneously developed hyperglycemia led to the development of 2 autoimmune diabetes models: nonobese diabetic (NOD) mouse and Bio-Breeding rat. These models have contributed to our understanding of autoimmune diabetes, provided tools to dissect autoimmune islet damage, and facilitated development of early detection, prevention, and treatment of type 1 diabetes. The genetic characterization, monoclonal antibodies, and congenic strains have made NOD mice especially useful.Although the establishment of the inbred NOD mouse strain was documented by Makino et al (Jikken Dobutsu. 1980;29:1-13), this review will focus on the not-as-well-known history leading to the discovery of a glycosuric female mouse by Yoshihiro Tochino. This discovery was spearheaded by years of effort by Japanese scientists from different disciplines and dedicated animal care personnel and by the support of the Shionogi Pharmaceutical Company, Osaka, Japan. The history is based on the early literature, mostly written in Japanese, and personal communications especially with Dr Tochino, who was involved in diabetes animal model development and who contributed to the release of NOD mice to the international scientific community. This article also reviews the scientific contributions made by the Bio-Breeding rat to autoimmune diabetes.
Collapse
|
17
|
Crèvecoeur I, Gudmundsdottir V, Vig S, Marques Câmara Sodré F, D'Hertog W, Fierro AC, Van Lommel L, Gysemans C, Marchal K, Waelkens E, Schuit F, Brunak S, Overbergh L, Mathieu C. Early differences in islets from prediabetic NOD mice: combined microarray and proteomic analysis. Diabetologia 2017; 60:475-489. [PMID: 28078386 DOI: 10.1007/s00125-016-4191-1] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2016] [Accepted: 11/25/2016] [Indexed: 10/20/2022]
Abstract
AIMS/HYPOTHESIS Type 1 diabetes is an endocrine disease where a long preclinical phase, characterised by immune cell infiltration in the islets of Langerhans, precedes elevated blood glucose levels and disease onset. Although several studies have investigated the role of the immune system in this process of insulitis, the importance of the beta cells themselves in the initiation of type 1 diabetes is less well understood. The aim of this study was to investigate intrinsic differences present in the islets from diabetes-prone NOD mice before the onset of insulitis. METHODS The islet transcriptome and proteome of 2-3-week-old mice was investigated by microarray and 2-dimensional difference gel electrophoresis (2D-DIGE), respectively. Subsequent analyses using sophisticated pathway analysis and ranking of differentially expressed genes and proteins based on their relevance in type 1 diabetes were performed. RESULTS In the preinsulitic period, alterations in general pathways related to metabolism and cell communication were already present. Additionally, our analyses pointed to an important role for post-translational modifications (PTMs), especially citrullination by PAD2 and protein misfolding due to low expression levels of protein disulphide isomerases (PDIA3, 4 and 6), as causative mechanisms that induce beta cell stress and potential auto-antigen generation. CONCLUSIONS/INTERPRETATION We conclude that the pancreatic islets, irrespective of immune differences, may contribute to the initiation of the autoimmune process. DATA AVAILABILITY All microarray data are available in the ArrayExpress database ( www.ebi.ac.uk/arrayexpress ) under accession number E-MTAB-5264.
Collapse
Affiliation(s)
- Inne Crèvecoeur
- Laboratory for Clinical and Experimental Endocrinology, KU Leuven, Herestraat 49 bus 902, 3000, Leuven, Belgium
| | - Valborg Gudmundsdottir
- Department of Bio and Health Informatics, Technical University of Denmark, Lyngby, Denmark
| | - Saurabh Vig
- Laboratory for Clinical and Experimental Endocrinology, KU Leuven, Herestraat 49 bus 902, 3000, Leuven, Belgium
| | | | - Wannes D'Hertog
- Laboratory for Clinical and Experimental Endocrinology, KU Leuven, Herestraat 49 bus 902, 3000, Leuven, Belgium
| | - Ana Carolina Fierro
- Department of Information Technology, IMinds, Faculty of Sciences, Ghent University, Ghent, Belgium
| | - Leentje Van Lommel
- Gene Expression Unit, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
| | - Conny Gysemans
- Laboratory for Clinical and Experimental Endocrinology, KU Leuven, Herestraat 49 bus 902, 3000, Leuven, Belgium
| | - Kathleen Marchal
- Department of Information Technology, IMinds, Faculty of Sciences, Ghent University, Ghent, Belgium
| | - Etienne Waelkens
- SyBioMa, KU Leuven, Leuven, Belgium
- Laboratory of Protein Phosphorylation and Proteomics, KU Leuven, Leuven, Belgium
| | - Frans Schuit
- Gene Expression Unit, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
| | - Søren Brunak
- Department of Bio and Health Informatics, Technical University of Denmark, Lyngby, Denmark
- The Novo Nordisk Foundation Center for Protein Research, University of Copenhagen, Copenhagen, Denmark
| | - Lut Overbergh
- Laboratory for Clinical and Experimental Endocrinology, KU Leuven, Herestraat 49 bus 902, 3000, Leuven, Belgium.
| | - Chantal Mathieu
- Laboratory for Clinical and Experimental Endocrinology, KU Leuven, Herestraat 49 bus 902, 3000, Leuven, Belgium
| |
Collapse
|
18
|
Gorasia DG, Dudek NL, Safavi-Hemami H, Perez RA, Schittenhelm RB, Saunders PM, Wee S, Mangum JE, Hubbard MJ, Purcell AW. A prominent role of PDIA6 in processing of misfolded proinsulin. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2016; 1864:715-723. [PMID: 26947243 DOI: 10.1016/j.bbapap.2016.03.002] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2015] [Revised: 02/22/2016] [Accepted: 03/02/2016] [Indexed: 11/17/2022]
Abstract
Despite its critical role in maintaining glucose homeostasis, surprisingly little is known about proinsulin folding in the endoplasmic reticulum. In this study we aimed to understand the chaperones involved in the maturation and degradation of proinsulin. We generated pancreatic beta cell lines expressing FLAG-tagged proinsulin. Several chaperones (including BiP, PDIA6, calnexin, calreticulin, GRP170, Erdj3 and ribophorin II) co-immunoprecipitated with proinsulin suggesting a role for these proteins in folding. To investigate the chaperones responsible for targeting misfolded proinsulin for degradation, we also created a beta cell line expressing FLAG-tagged proinsulin carrying the Akita mutation (Cys96Tyr). All chaperones found to be associated with wild type proinsulin also co-immunoprecipitated with Akita proinsulin. However, one additional protein, namely P58(IPK), specifically precipitated with Akita proinsulin and approximately ten fold more PDIA6, but not other PDI family members, was bound to Akita proinsulin. The latter suggests that PDIA6 may act as a key reductase and target misfolded proinsulin to the ER-degradation pathway. The preferential association of PDIA6 to Akita proinsulin was also confirmed in another beta cell line (βTC-6). Furthermore, for the first time, a physiologically relevant substrate for PDIA6 has been evidenced. Thus, this study has identified several chaperones/foldases that associated with wild type proinsulin and has also provided a comprehensive interactome for Akita misfolded proinsulin.
Collapse
Affiliation(s)
- Dhana G Gorasia
- Department of Biochemistry and Molecular Biology, The Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Victoria, Australia
| | - Nadine L Dudek
- Department of Biochemistry and Molecular Biology, The Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Victoria, Australia; Infection and Immunity Program, Biomolecular Discovery Institute and Department of Biochemistry and Molecular Biology, School of Biomedical Sciences, Monash University, Clayton, Victoria, Australia
| | - Helena Safavi-Hemami
- Department of Biochemistry and Molecular Biology, The Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Victoria, Australia
| | - Rochelle Ayala Perez
- Infection and Immunity Program, Biomolecular Discovery Institute and Department of Biochemistry and Molecular Biology, School of Biomedical Sciences, Monash University, Clayton, Victoria, Australia
| | - Ralf B Schittenhelm
- Infection and Immunity Program, Biomolecular Discovery Institute and Department of Biochemistry and Molecular Biology, School of Biomedical Sciences, Monash University, Clayton, Victoria, Australia
| | - Philippa M Saunders
- Department of Microbiology and Immunology, The University of Melbourne, Parkville, Victoria, Australia
| | - Sheena Wee
- Department of Biochemistry and Molecular Biology, The Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Victoria, Australia
| | - Jon E Mangum
- Department of Pharmacology and Therapeutics, The University of Melbourne, Melbourne, Victoria, Australia
| | - Michael J Hubbard
- Department of Pharmacology and Therapeutics, The University of Melbourne, Melbourne, Victoria, Australia; Department of Paediatrics, The University of Melbourne, Melbourne, Victoria, Australia
| | - Anthony W Purcell
- Department of Biochemistry and Molecular Biology, The Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Victoria, Australia; Infection and Immunity Program, Biomolecular Discovery Institute and Department of Biochemistry and Molecular Biology, School of Biomedical Sciences, Monash University, Clayton, Victoria, Australia.
| |
Collapse
|
19
|
Pavlikova N, Smetana P, Halada P, Kovar J. Effect of prolonged exposure to sublethal concentrations of DDT and DDE on protein expression in human pancreatic beta cells. ENVIRONMENTAL RESEARCH 2015; 142:257-263. [PMID: 26186133 DOI: 10.1016/j.envres.2015.06.046] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2015] [Revised: 06/16/2015] [Accepted: 06/30/2015] [Indexed: 06/04/2023]
Abstract
Pollution of the environment represents one of less explored potential reasons for the worldwide epidemic of type 2 diabetes. One of the most prevalent organochlorine pollutants remains the pesticide DDT and its degradation product DDE. Despite some epidemiologic correlations between levels of DDT and DDE in human organism and the prevalence of diabetes, there is almost no information about the exact targets of these compounds inside pancreatic beta cells. To detect functional areas of pancreatic beta cells that could be affected by exposure to DDT and DDE, we analyzed changes in protein expression in the NES2Y human pancreatic beta cell line exposed to three sublethal concentrations (0.1 μM, 1 μM, 10 μM) of DDT and DDE for 1 month. Protein separation and identification was achieved using high-resolution 2D-electrophoresis, computer analysis and mass spectrometry. With these techniques, four proteins were found downregulated after exposure to 10 μM DDT: three cytoskeletal proteins (cytokeratin 8, cytokeratin 18 and actin) and one protein involved in glycolysis (alpha-enolase). Two proteins were downregulated after exposure to 10 μM DDE: cytokeratin 18 and heterogenous nuclear ribonucleoprotein H1 (HNRH1). These changes correlate with previously described effects of other stress conditions (e.g. exposure to palmitate, hyperglycemia, imidazoline derivative, and cytokines) on protein expression in pancreatic beta cells. We conclude that cytoskeletal proteins and their processing, glucose metabolism, and mRNA processing may represent targets affected by exposure to conditions hostile to pancreatic beta cells, including exposure to DDT and DDE.
Collapse
Affiliation(s)
- Nela Pavlikova
- Department of Cell and Molecular Biology, Third Faculty of Medicine, Charles University, Prague, Czech Republic.
| | - Pavel Smetana
- Department of Cell and Molecular Biology, Third Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Petr Halada
- Laboratory of Molecular Structure Characterization, Institute of Microbiology, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | - Jan Kovar
- Department of Cell and Molecular Biology, Third Faculty of Medicine, Charles University, Prague, Czech Republic
| |
Collapse
|
20
|
El Ouaamari A, Zhou JY, Liew CW, Shirakawa J, Dirice E, Gedeon N, Kahraman S, De Jesus DF, Bhatt S, Kim JS, Clauss TR, Camp DG, Smith RD, Qian WJ, Kulkarni RN. Compensatory Islet Response to Insulin Resistance Revealed by Quantitative Proteomics. J Proteome Res 2015; 14:3111-3122. [PMID: 26151086 DOI: 10.1021/acs.jproteome.5b00587] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Compensatory islet response is a distinct feature of the prediabetic insulin-resistant state in humans and rodents. To identify alterations in the islet proteome that characterize the adaptive response, we analyzed islets from 5 month old male control, high-fat diet fed (HFD), or obese ob/ob mice by LC-MS/MS and quantified ~1100 islet proteins (at least two peptides) with a false discovery rate < 1%. Significant alterations in abundance were observed for ~350 proteins among groups. The majority of alterations were common to both models, and the changes of a subset of ~40 proteins and 12 proteins were verified by targeted quantification using selected reaction monitoring and western blots, respectively. The insulin-resistant islets in both groups exhibited reduced expression of proteins controlling energy metabolism, oxidative phosphorylation, hormone processing, and secretory pathways. Conversely, an increased expression of molecules involved in protein synthesis and folding suggested effects in endoplasmic reticulum stress response, cell survival, and proliferation in both insulin-resistant models. In summary, we report a unique comparison of the islet proteome that is focused on the compensatory response in two insulin-resistant rodent models that are not overtly diabetic. These data provide a valuable resource of candidate proteins to the scientific community to undertake further studies aimed at enhancing β-cell mass in patients with diabetes. The data are available via the MassIVE repository, under accession no. MSV000079093.
Collapse
Affiliation(s)
- Abdelfattah El Ouaamari
- Islet Cell & Regenerative Biology, Joslin Diabetes Center, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02215
| | - Jian-Ying Zhou
- Biological Sciences Division and Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, Washington 99352
| | - Chong Wee Liew
- Department of Physiology and Biophysics, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Jun Shirakawa
- Islet Cell & Regenerative Biology, Joslin Diabetes Center, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02215
| | - Ercument Dirice
- Islet Cell & Regenerative Biology, Joslin Diabetes Center, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02215
| | - Nicholas Gedeon
- Islet Cell & Regenerative Biology, Joslin Diabetes Center, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02215
| | - Sevim Kahraman
- Islet Cell & Regenerative Biology, Joslin Diabetes Center, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02215
| | - Dario F De Jesus
- Islet Cell & Regenerative Biology, Joslin Diabetes Center, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02215
| | - Shweta Bhatt
- Islet Cell & Regenerative Biology, Joslin Diabetes Center, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02215
| | - Jong-Seo Kim
- Biological Sciences Division and Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, Washington 99352
| | - Therese Rw Clauss
- Biological Sciences Division and Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, Washington 99352
| | - David G Camp
- Biological Sciences Division and Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, Washington 99352
| | - Richard D Smith
- Biological Sciences Division and Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, Washington 99352
| | - Wei-Jun Qian
- Biological Sciences Division and Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, Washington 99352
| | - Rohit N Kulkarni
- Islet Cell & Regenerative Biology, Joslin Diabetes Center, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02215
| |
Collapse
|
21
|
Rondas D, Gudmundsdottir V, D'Hertog W, Crèvecoeur I, Waelkens E, Brunak S, Mathieu C, Overbergh L. A proteomic study of the regulatory role for STAT-1 in cytokine-induced beta-cell death. Proteomics Clin Appl 2015; 9:938-52. [DOI: 10.1002/prca.201400124] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2014] [Revised: 01/19/2015] [Accepted: 02/18/2015] [Indexed: 12/26/2022]
Affiliation(s)
- Dieter Rondas
- Division of Clinical and Experimental Endocrinology; KU Leuven Leuven Belgium
| | - Valborg Gudmundsdottir
- Department of Systems Biology; Center for Biological Sequence Analysis; Technical University of Denmark; Lyngby Denmark
| | - Wannes D'Hertog
- Division of Clinical and Experimental Endocrinology; KU Leuven Leuven Belgium
| | - Inne Crèvecoeur
- Division of Clinical and Experimental Endocrinology; KU Leuven Leuven Belgium
| | - Etienne Waelkens
- Laboratory of Protein Phosphorylation and Proteomics; KU Leuven Leuven Belgium
- SyBioMa; KU Leuven Leuven Belgium
| | - Soren Brunak
- Department of Systems Biology; Center for Biological Sequence Analysis; Technical University of Denmark; Lyngby Denmark
- The Novo Nordisk Foundation Center for Protein Research; University of Copenhagen; Copenhagen Denmark
| | - Chantal Mathieu
- Division of Clinical and Experimental Endocrinology; KU Leuven Leuven Belgium
| | - Lut Overbergh
- Division of Clinical and Experimental Endocrinology; KU Leuven Leuven Belgium
| |
Collapse
|
22
|
Crèvecoeur I, Rondas D, Mathieu C, Overbergh L. The beta-cell in type 1 diabetes: What have we learned from proteomic studies? Proteomics Clin Appl 2015; 9:755-66. [PMID: 25641783 DOI: 10.1002/prca.201400135] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2014] [Revised: 12/05/2014] [Accepted: 01/27/2015] [Indexed: 01/03/2023]
Abstract
Pancreatic beta-cells have a crucial role in the regulation of blood glucose homeostasis by the production and secretion of insulin. In type 1 diabetes (T1D), an autoimmune reaction against the beta-cells together with the presence of inflammatory cytokines and ROS in the islets leads to beta-cell dysfunction and death. This review gives an overview of proteomic studies that lead to better understanding of beta-cell functioning in T1D. Protein profiling of isolated islets and beta-cell lines in health and T1D contributed to the unraveling of pathways involved in cytokine-induced cell death. In addition, by studying the serological proteome of T1D patients, new biomarkers and beta-cell autoantigens were discovered, which may improve screening tests and follow-up of T1D development. Interestingly, an important role for PTMs was demonstrated in the generation of beta-cell autoantigens. To conclude, proteomic techniques are of indispensable value to improve the knowledge on beta-cell function in T1D and the search toward therapeutic targets.
Collapse
Affiliation(s)
- Inne Crèvecoeur
- Laboratory for Clinical and Experimental Endocrinology, KU Leuven, Leuven, Belgium
| | - Dieter Rondas
- Laboratory for Clinical and Experimental Endocrinology, KU Leuven, Leuven, Belgium
| | - Chantal Mathieu
- Laboratory for Clinical and Experimental Endocrinology, KU Leuven, Leuven, Belgium
| | - Lut Overbergh
- Laboratory for Clinical and Experimental Endocrinology, KU Leuven, Leuven, Belgium
| |
Collapse
|
23
|
Rondas D, Crèvecoeur I, D'Hertog W, Ferreira GB, Staes A, Garg AD, Eizirik DL, Agostinis P, Gevaert K, Overbergh L, Mathieu C. Citrullinated glucose-regulated protein 78 is an autoantigen in type 1 diabetes. Diabetes 2015; 64:573-86. [PMID: 25204978 DOI: 10.2337/db14-0621] [Citation(s) in RCA: 128] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Posttranslational modifications of self-proteins play a substantial role in the initiation or propagation of the autoimmune attack in several autoimmune diseases, but their contribution to type 1 diabetes is only recently emerging. In the current study, we demonstrate that inflammatory stress, induced by the cytokines interleukin-1β and interferon-γ, leads to citrullination of GRP78 in β-cells. This is coupled with translocation of this endoplasmic reticulum chaperone to the β-cell plasma membrane and subsequent secretion. Importantly, expression and activity of peptidylarginine deiminase 2, one of the five enzymes responsible for citrullination and a candidate gene for type 1 diabetes in mice, is increased in islets from diabetes-prone nonobese diabetic (NOD) mice. Finally, (pre)diabetic NOD mice have autoantibodies and effector T cells that react against citrullinated GRP78, indicating that inflammation-induced citrullination of GRP78 in β-cells generates a novel autoantigen in type 1 diabetes, opening new avenues for biomarker development and therapeutic intervention.
Collapse
Affiliation(s)
- Dieter Rondas
- Laboratory for Clinical and Experimental Endocrinology, KU Leuven, Leuven, Belgium
| | - Inne Crèvecoeur
- Laboratory for Clinical and Experimental Endocrinology, KU Leuven, Leuven, Belgium
| | - Wannes D'Hertog
- Laboratory for Clinical and Experimental Endocrinology, KU Leuven, Leuven, Belgium
| | | | - An Staes
- Department of Medical Protein Research, VIB, Ghent, Belgium Department of Biochemistry, Ghent University, Ghent, Belgium
| | - Abhishek D Garg
- Laboratory for Cell Death Research and Therapy, KU Leuven, Leuven, Belgium
| | - Decio L Eizirik
- Laboratory of Experimental Medicine and Université Libre de Bruxelles Center for Diabetes Research, Medical Faculty, Université Libre de Bruxelles, Brussels, Belgium
| | - Patrizia Agostinis
- Laboratory for Cell Death Research and Therapy, KU Leuven, Leuven, Belgium
| | - Kris Gevaert
- Department of Medical Protein Research, VIB, Ghent, Belgium Department of Biochemistry, Ghent University, Ghent, Belgium
| | - Lut Overbergh
- Laboratory for Clinical and Experimental Endocrinology, KU Leuven, Leuven, Belgium
| | - Chantal Mathieu
- Laboratory for Clinical and Experimental Endocrinology, KU Leuven, Leuven, Belgium
| |
Collapse
|
24
|
Diaz-Ganete A, Baena-Nieto G, Lomas-Romero IM, Lopez-Acosta JF, Cozar-Castellano I, Medina F, Segundo C, Lechuga-Sancho AM. Ghrelin's Effects on Proinflammatory Cytokine Mediated Apoptosis and Their Impact on β-Cell Functionality. Int J Endocrinol 2015; 2015:235727. [PMID: 26257781 PMCID: PMC4519548 DOI: 10.1155/2015/235727] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2015] [Revised: 06/05/2015] [Accepted: 06/18/2015] [Indexed: 02/07/2023] Open
Abstract
Ghrelin is a peptidic hormone, which stimulates cell proliferation and inhibits apoptosis in several tissues, including pancreas. In preclinical stage of type 1 diabetes, proinflammatory cytokines generate a destructive environment for β-cells known as insulitis, which results in loss of β-cell mass and impaired insulin secretion, leading to diabetes. Our aim was to demonstrate that ghrelin could preserve β-cell viability, turnover rate, and insulin secretion acting as a counter balance of cytokines. In the present work we reproduced proinflammatory milieu found in insulitis stage by treating murine cell line INS-1E and rat islets with a cytokine cocktail including IL-1β, IFNγ, and TNFα and/or ghrelin. Several proteins involved in survival pathways (ERK 1/2 and Akt/PKB) and apoptosis (caspases and Bcl-2 protein family and endoplasmic reticulum stress markers) as well as insulin secretion were analyzed. Our results show that ghrelin alone has no remarkable effects on β-cells in basal conditions, but interestingly it activates cell survival pathways, downregulates apoptotic mediators and endoplasmic reticulum stress, and restores insulin secretion in response to glucose when beta-cells are cytokine-exposed. These data suggest a potential role of ghrelin in preventing or slowing down the transition from a preclinical to clinically established diabetes by ameliorating the effects of insulitis on β-cells.
Collapse
Affiliation(s)
| | - Gloria Baena-Nieto
- Research Unit, Puerta del Mar University Hospital, 11009 Cadiz, Spain
- Department of Endocrinology and Nutrition, Jerez de la Frontera General Hospital, 11407 Jerez de la Frontera, Spain
| | - Isabel M. Lomas-Romero
- Research Unit, Puerta del Mar University Hospital, 11009 Cadiz, Spain
- Andalusian Cellular Reprogramming Laboratory, 41092 Sevilla, Spain
| | - Jose Francisco Lopez-Acosta
- Research Unit, Puerta del Mar University Hospital, 11009 Cadiz, Spain
- Genetics and Molecular Biology Research Institute, University of Valladolid-CSIC, 47003 Valladolid, Spain
| | - Irene Cozar-Castellano
- Genetics and Molecular Biology Research Institute, University of Valladolid-CSIC, 47003 Valladolid, Spain
| | - Francisco Medina
- Research Unit, Puerta del Mar University Hospital, 11009 Cadiz, Spain
- Salus Infirmorum Faculty of Nursing, Cadiz University, 11001 Cadiz, Spain
| | - Carmen Segundo
- Research Unit, Puerta del Mar University Hospital, 11009 Cadiz, Spain
- Salus Infirmorum Faculty of Nursing, Cadiz University, 11001 Cadiz, Spain
- *Carmen Segundo: and
| | - Alfonso M. Lechuga-Sancho
- Research Unit, Puerta del Mar University Hospital, 11009 Cadiz, Spain
- Department of Maternal and Pediatric Medicine and Radiology, Pediatrics Unit, Puerta del Mar University Hospital, 11009 Cadiz, Spain
- *Alfonso M. Lechuga-Sancho:
| |
Collapse
|
25
|
Gorasia DG, Dudek NL, Veith PD, Shankar R, Safavi-Hemami H, Williamson NA, Reynolds EC, Hubbard MJ, Purcell AW. Pancreatic beta cells are highly susceptible to oxidative and ER stresses during the development of diabetes. J Proteome Res 2014; 14:688-99. [PMID: 25412008 DOI: 10.1021/pr500643h] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The complex interplay of many cell types and the temporal heterogeneity of pancreatic islet composition obscure the direct role of resident alpha and beta cells in the development of Type 1 diabetes. Therefore, in addition to studying islets isolated from non-obese diabetic mice, we analyzed homogeneous cell populations of murine alpha (αTC-1) and beta (NIT-1) cell lines to understand the role and differential survival of these two predominant islet cell populations. A total of 56 proteins in NIT-1 cells and 50 in αTC-1 cells were differentially expressed when exposed to proinflammatory cytokines. The major difference in the protein expression between cytokine-treated NIT-1 and αTC-1 cells was free radical scavenging enzymes. A similar observation was made in cytokine-treated whole islets, where a comprehensive analysis of subcellular fractions revealed that 438 unique proteins were differentially expressed under inflammatory conditions. Our data indicate that beta cells are relatively susceptible to ER and oxidative stress and reveal key pathways that are dysregulated in beta cells during cytokine exposure. Additionally, in the islets, inflammation also leads to enhanced antigen presentation, which completes a three-way insult on beta cells, rendering them targets of infiltrating T lymphocytes.
Collapse
Affiliation(s)
- Dhana G Gorasia
- Department of Biochemistry and Molecular Biology, ‡The Bio21 Molecular Science and Biotechnology Institute, §Oral Health Cooperative Research Centre, Melbourne Dental School, and Bio21 Institute, ∥Departments of Paediatrics and Pharmacology, The University of Melbourne , Parkville, Victoria 3010, Australia
| | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Abstract
Menin, the product of the MEN1 gene, functions as a tumor suppressor and was first identified in 1997 due to its causative role in the endocrine tumor disorder multiple endocrine neoplasia, type 1 (MEN1). More recently, menin has been identified as a key player in pancreatic islet biology with the observation of an inverse relationship between menin levels and pancreatic islet proliferation. However, the factors regulating menin and the MEN1 gene in the pancreas are poorly understood. Here, we describe the regulation of menin by miR-24 and demonstrate that miR-24 directly decreases menin levels and impacts downstream cell cycle inhibitors in MIN6 insulinoma cells and in βlox5 immortalized β-cells. This regulation of menin impacts cell viability and proliferation in βlox5 cells. Furthermore, our data show a feedback regulation between miR-24 and menin that is present in the pancreas, suggesting that miR-24 regulates menin levels in the pancreatic islet.
Collapse
Affiliation(s)
- Jyothi Vijayaraghavan
- Department of Genetics, School of Medicine, Louisiana State University Health Sciences Center, New Orleans, Louisiana
| | - Elaine C Maggi
- Department of Genetics, School of Medicine, Louisiana State University Health Sciences Center, New Orleans, Louisiana
| | - Judy S Crabtree
- Department of Genetics, School of Medicine, Louisiana State University Health Sciences Center, New Orleans, Louisiana
| |
Collapse
|
27
|
Van de Poel B, Vandenzavel N, Smet C, Nicolay T, Bulens I, Mellidou I, Vandoninck S, Hertog ML, Derua R, Spaepen S, Vanderleyden J, Waelkens E, De Proft MP, Nicolai BM, Geeraerd AH. Tissue specific analysis reveals a differential organization and regulation of both ethylene biosynthesis and E8 during climacteric ripening of tomato. BMC PLANT BIOLOGY 2014; 14:11. [PMID: 24401128 PMCID: PMC3900696 DOI: 10.1186/1471-2229-14-11] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2013] [Accepted: 01/04/2014] [Indexed: 05/02/2023]
Abstract
BACKGROUND Solanum lycopersicum or tomato is extensively studied with respect to the ethylene metabolism during climacteric ripening, focusing almost exclusively on fruit pericarp. In this work the ethylene biosynthesis pathway was examined in all major tomato fruit tissues: pericarp, septa, columella, placenta, locular gel and seeds. The tissue specific ethylene production rate was measured throughout fruit development, climacteric ripening and postharvest storage. All ethylene intermediate metabolites (1-aminocyclopropane-1-carboxylic acid (ACC), malonyl-ACC (MACC) and S-adenosyl-L-methionine (SAM)) and enzyme activities (ACC-oxidase (ACO) and ACC-synthase (ACS)) were assessed. RESULTS All tissues showed a similar climacteric pattern in ethylene productions, but with a different amplitude. Profound differences were found between tissue types at the metabolic and enzymatic level. The pericarp tissue produced the highest amount of ethylene, but showed only a low ACC content and limited ACS activity, while the locular gel accumulated a lot of ACC, MACC and SAM and showed only limited ACO and ACS activity. Central tissues (septa, columella and placenta) showed a strong accumulation of ACC and MACC. These differences indicate that the ethylene biosynthesis pathway is organized and regulated in a tissue specific way. The possible role of inter- and intra-tissue transport is discussed to explain these discrepancies. Furthermore, the antagonistic relation between ACO and E8, an ethylene biosynthesis inhibiting protein, was shown to be tissue specific and developmentally regulated. In addition, ethylene inhibition by E8 is not achieved by a direct interaction between ACO and E8, as previously suggested in literature. CONCLUSIONS The Ethylene biosynthesis pathway and E8 show a tissue specific and developmental differentiation throughout tomato fruit development and ripening.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | - Annemie H Geeraerd
- Division of Mechatronics, Biostatistics and Sensors (MeBioS), Department of Biosystems (BIOSYST), KU Leuven, Willem de Croylaan 42, bus 2428, 3001 Leuven, Belgium.
| |
Collapse
|
28
|
Tapia-Limonchi R, Díaz I, Cahuana GM, Bautista M, Martín F, Soria B, Tejedo JR, Bedoya FJ. Impact of exposure to low concentrations of nitric oxide on protein profile in murine and human pancreatic islet cells. Islets 2014; 6:e995997. [PMID: 25658244 PMCID: PMC4398281 DOI: 10.1080/19382014.2014.995997] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Homeostatic levels of nitric oxide (NO) protect efficiently against apoptotic death in both human and rodent pancreatic β cells, but the protein profile of this action remains to be determined. We have applied a 2 dimensional LC-MS-MALDI-TOF/TOF-based analysis to study the impact of protective NO in rat insulin-producing RINm5F cell line and in mouse and human pancreatic islets (HPI) exposed to serum deprivation condition. 24 proteins in RINm5F and 22 in HPI were identified to undergo changes in at least one experimental condition. These include stress response mitochondrial proteins (UQCRC2, VDAC1, ATP5C1, ATP5A1) in RINm5F cells and stress response endoplasmic reticulum proteins (HSPA5, PDIA6, VCP, GANAB) in HPI. In addition, metabolic and structural proteins, oxidoreductases and chaperones related with protein metabolism are also regulated by NO treatment. Network analysis of differentially expressed proteins shows their interaction in glucocorticoid receptor and NRF2-mediated oxidative stress response pathways and eNOS signaling. The results indicate that exposure to exogenous NO counteracts the impact of serum deprivation on pancreatic β cell proteome. Species differences in the proteins involved are apparent.
Collapse
Affiliation(s)
- Rafael Tapia-Limonchi
- Andalusian Center for Molecular Biology and
Regenerative Medicine (CABIMER)- Pablo de Olavide University; Biomedical Research
Network (CIBER) of Diabetes and Related Metabolic Diseases; RED-TERCEL;
Seville, Spain
| | - Irene Díaz
- Andalusian Center for Molecular Biology and
Regenerative Medicine (CABIMER)- Pablo de Olavide University; Biomedical Research
Network (CIBER) of Diabetes and Related Metabolic Diseases; RED-TERCEL;
Seville, Spain
| | - Gladys M Cahuana
- Andalusian Center for Molecular Biology and
Regenerative Medicine (CABIMER)- Pablo de Olavide University; Biomedical Research
Network (CIBER) of Diabetes and Related Metabolic Diseases; RED-TERCEL;
Seville, Spain
| | - Mario Bautista
- Andalusian Center for Molecular Biology and
Regenerative Medicine (CABIMER)- Pablo de Olavide University; Biomedical Research
Network (CIBER) of Diabetes and Related Metabolic Diseases; RED-TERCEL;
Seville, Spain
| | - Franz Martín
- Andalusian Center for Molecular Biology and
Regenerative Medicine (CABIMER)- Pablo de Olavide University; Biomedical Research
Network (CIBER) of Diabetes and Related Metabolic Diseases; RED-TERCEL;
Seville, Spain
| | - Bernat Soria
- Andalusian Center for Molecular Biology and
Regenerative Medicine (CABIMER)-Fundación Progreso y Salud; Biomedical Research
Network (CIBER) of Diabetes and Related Metabolic Diseases; RED-TERCEL;
Seville, Spain
| | - Juan R Tejedo
- Andalusian Center for Molecular Biology and
Regenerative Medicine (CABIMER)- Pablo de Olavide University; Biomedical Research
Network (CIBER) of Diabetes and Related Metabolic Diseases; RED-TERCEL;
Seville, Spain
| | - Francisco J Bedoya
- Andalusian Center for Molecular Biology and
Regenerative Medicine (CABIMER)- Pablo de Olavide University; Biomedical Research
Network (CIBER) of Diabetes and Related Metabolic Diseases; RED-TERCEL;
Seville, Spain
- Correspondence to: Francisco J. Bedoya;
| |
Collapse
|
29
|
Størling J, Overgaard AJ, Brorsson CA, Piva F, Bang-Berthelsen CH, Haase C, Nerup J, Pociot F. Do post-translational beta cell protein modifications trigger type 1 diabetes? Diabetologia 2013; 56:2347-54. [PMID: 24048671 DOI: 10.1007/s00125-013-3045-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2013] [Accepted: 06/04/2013] [Indexed: 12/20/2022]
Abstract
Type 1 diabetes is considered an autoimmune disease characterised by specific T cell-mediated destruction of the insulin-producing beta cells. Yet, except for insulin, no beta cell-specific antigens have been discovered. This may imply that the autoantigens in type 1 diabetes exist in modified forms capable of specifically triggering beta cell destruction. In other immune-mediated diseases, autoantigens targeted by the immune system have undergone post-translational modification (PTM), thereby creating tissue-specific neo-epitopes. In a similar manner, PTM of beta cell proteins might create beta cell-specific neo-epitopes. We suggest that the current paradigm of type 1 diabetes as a classical autoimmune disease should be reconsidered since the immune response may not be directed against native beta cell proteins. A modified model for the pathogenetic events taking place in islets leading to the T cell attack against beta cells is presented. In this model, PTM plays a prominent role in triggering beta cell destruction. We discuss literature of relevance and perform genetic and human islet gene expression analyses. Both direct and circumstantial support for the involvement of PTM in type 1 diabetes exists in the published literature. Furthermore, we report that cytokines change the expression levels of several genes encoding proteins involved in PTM processes in human islets, and that there are type 1 diabetes-associated polymorphisms in a number of these. In conclusion, data from the literature and presented experimental data support the notion that PTM of beta cell proteins may be involved in triggering beta cell destruction in type 1 diabetes. If the beta cell antigens recognised by the immune system foremost come from modified proteins rather than native ones, the concept of type 1 diabetes as a classical autoimmune disease is open for debate.
Collapse
Affiliation(s)
- Joachim Størling
- Copenhagen Diabetes Research Center (DIRECT), Herlev University Hospital, Herlev Ringvej 75, 2730, Herlev, Denmark,
| | | | | | | | | | | | | | | |
Collapse
|
30
|
Mechanisms of toxicity by proinflammatory cytokines in a novel human pancreatic beta cell line, 1.1B4. Biochim Biophys Acta Gen Subj 2013; 1840:136-45. [PMID: 24005237 DOI: 10.1016/j.bbagen.2013.08.022] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2013] [Revised: 08/07/2013] [Accepted: 08/26/2013] [Indexed: 12/17/2022]
Abstract
BACKGROUND Molecular mechanisms of toxicity and cell damage were investigated in the novel human beta cell line, 1.1B4, after exposure to proinflammatory cytokines - IL-1β, IFN-γ, TNF-α. METHODS MTT assay, insulin radioimmunoassay, glucokinase assay, real time reverse transcription PCR, western blotting, nitrite assay, caspase assay and comet assay were used to investigate mechanisms of cytokine toxicity. RESULTS Viability of 1.1B4 cells decreased after 18h cytokine exposure. Cytokines significantly reduced cellular insulin content and impaired insulin secretion induced by glucose, alanine, KCl, elevated Ca(2+), GLP-1 or forskolin. Glucokinase enzyme activity, regulation of intracellular Ca(2+) and PDX1 protein expression were significantly reduced by cytokines. mRNA expression of genes involved in secretory function - INS, GCK, PCSK2 and GJA1 was downregulated in cytokine treated 1.1B4 cells. Upregulation of transcription of genes involved in antioxidant defence - SOD2 and GPX1 was observed, suggesting involvement of oxidative stress. Cytokines also upregulated transcriptions of NFKB1 and STAT1, which was accompanied by a significant increase in NOS2 transcription and accumulation of nitrite in culture medium, implicating nitrosative stress. Oxidative and nitrosative stresses induced apoptosis was evident from increased % tail DNA, DNA fragmentation, caspase 3/7 activity, apoptotic cells and lower BCL2 protein expression. CONCLUSIONS This study delineates molecular mechanisms of cytokine toxicity in 1.1B4 cells, which agree with earlier observations using human islets and rodent beta cells. GENERAL SIGNIFICANCE This study emphasizes the potential usefulness of this cell line as a human beta cell model for research investigating autoimmune destruction of pancreatic beta cells.
Collapse
|
31
|
Rondas D, Bugliani M, D'Hertog W, Lage K, Masini M, Waelkens E, Marchetti P, Mathieu C, Overbergh L. Glucagon-like peptide-1 protects human islets against cytokine-mediated β-cell dysfunction and death: a proteomic study of the pathways involved. J Proteome Res 2013; 12:4193-206. [PMID: 23937086 DOI: 10.1021/pr400527q] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Glucagon-like peptide-1 (GLP-1) has been shown to protect pancreatic β-cells against cytokine-induced dysfunction and destruction. The mechanisms through which GLP-1 exerts its effects are complex and still poorly understood. The aim of this study was to analyze the protein expression profiles of human islets of Langerhans treated with cytokines (IL-1β and IFN-γ) in the presence or absence of GLP-1 by 2D difference gel electrophoresis and subsequent protein interaction network analysis to understand the molecular pathways involved in GLP-1-mediated β-cell protection. Co-incubation of cytokine-treated human islets with GLP-1 resulted in a marked protection of β-cells against cytokine-induced apoptosis and significantly attenuated cytokine-mediated inhibition of glucose-stimulated insulin secretion. The cytoprotective effects of GLP-1 coincided with substantial alterations in the protein expression profile of cytokine-treated human islets, illustrating a counteracting effect on proteins from different functional classes such as actin cytoskeleton, chaperones, metabolic proteins, and islet regenerating proteins. In summary, GLP-1 alters in an integrated manner protein networks in cytokine-exposed human islets while protecting them against cytokine-mediated cell death and dysfunction. These data illustrate the beneficial effects of GLP-1 on human islets under immune attack, leading to a better understanding of the underlying mechanisms involved, a prerequisite for improving therapies for diabetic patients.
Collapse
Affiliation(s)
- Dieter Rondas
- Laboratory for Clinical and Experimental Endocrinology, KU Leuven, Herestraat 49, 3000 Leuven, Belgium
| | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Russo L, Marsella C, Nardo G, Massignan T, Alessio M, Piermarini E, La Rosa S, Finzi G, Bonetto V, Bertuzzi F, Maechler P, Massa O. Transglutaminase 2 transamidation activity during first-phase insulin secretion: natural substrates in INS-1E. Acta Diabetol 2013; 50:61-72. [PMID: 22382775 DOI: 10.1007/s00592-012-0381-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2012] [Accepted: 02/08/2012] [Indexed: 11/28/2022]
Abstract
Transglutaminase 2 (TG2) is a multifunctional protein with Ca(2+)-dependent transamidating and G protein activity. Previously, we reported that tgm2 -/- mice have an impaired insulin secretion and that naturally occurring TG2 mutations associated with familial, early-onset type 2 diabetes, show a defective transamidating activity. Aim of this study was to get a better insight into the role of TG2 in insulin secretion by identifying substrates of TG2 transamidating activity in the pancreatic beta cell line INS-1E. To this end, we labeled INS-1E that are capable of secreting insulin upon glucose stimulation in the physiologic range, with an artificial acyl acceptor (biotinamido-pentylamine) or donor (biotinylated peptide), in basal condition and after stimulus with glucose for 2, 5, and 8 min. Biotinylated proteins were analyzed by two-dimensional electrophoresis and mass spectrometry. In addition, subcellular localization of TG2 in human endocrine pancreas was studied by electron microscopy. Among several TG2's transamidating substrates in INS-1E, mass spectrometry identified cytoplasmic actin (a result confirmed in human pancreatic islet), tropomyosin, and molecules that participate in insulin granule structure (e.g., GAPDH), glucose metabolism, or [Ca(2+)] sensing (e.g., calreticulin). Physical interaction between TG2 and cytoplasmic actin during glucose-stimulated first-phase insulin secretion was confirmed by co-immunoprecipitation. Electron microscopy revealed that TG2 is localized close to insulin and glucagon granules in human pancreatic islet. We propose that TG2's role in insulin secretion may involve cytoplasmic actin remodeling and may have a regulative action on other proteins during granule movement. A similar role of TG2 in glucagon secretion is also suggested.
Collapse
Affiliation(s)
- Lucia Russo
- Laboratory of Mendelian Diabetes, Bambino Gesù Children's Hospital, Research Institute, Rome, Italy
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Maris M, Robert S, Waelkens E, Derua R, Hernangomez MH, D'Hertog W, Cnop M, Mathieu C, Overbergh L. Role of the saturated nonesterified fatty acid palmitate in beta cell dysfunction. J Proteome Res 2012; 12:347-62. [PMID: 23170928 DOI: 10.1021/pr300596g] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Sustained elevated levels of saturated free fatty acids, such as palmitate, contribute to beta cell dysfunction, a phenomenon aggravated by high glucose levels. The aim of this study was to investigate the mechanisms of palmitate-induced beta cell dysfunction and death, combined or not with high glucose. Protein profiling of INS-1E cells, exposed to 0.5 mmol/L palmitate and combined or not with 25 mmol/L glucose, for 24 h was done by 2D-DIGE, both on full cell lysate and on an enriched endoplasmic reticulum (ER) fraction. Eighty-three differentially expressed proteins (P < 0.05) were identified by MALDI-TOF/TOF mass spectrometry and proteomic results were confirmed by functional assays. 2D-DIGE analysis of whole cell lysates and ER enriched samples revealed a high number of proteins compared to previous reports. Palmitate induced beta cell dysfunction and death via ER stress, hampered insulin maturation, generation of harmful metabolites during triglycerides synthesis and altered intracellular trafficking. In combination with high glucose, palmitate induced increased shunting of excess glucose, increased mitochondrial reactive oxygen species production and an elevation in many transcription-related proteins. This study contributes to a better understanding and revealed novel mechanisms of palmitate-induced beta cell dysfunction and death and may provide new targets for drug discovery.
Collapse
Affiliation(s)
- Michael Maris
- Laboratory of Clinical and Experimental Endocrinology, Herestraat 49, KU Leuven, Leuven, Belgium
| | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Novotny GW, Lundh M, Backe MB, Christensen DP, Hansen JB, Dahllöf MS, Pallesen EMH, Mandrup-Poulsen T. Transcriptional and translational regulation of cytokine signaling in inflammatory β-cell dysfunction and apoptosis. Arch Biochem Biophys 2012; 528:171-84. [PMID: 23063755 DOI: 10.1016/j.abb.2012.09.014] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2012] [Revised: 09/20/2012] [Accepted: 09/22/2012] [Indexed: 12/19/2022]
Abstract
Disease is conventionally viewed as the chaotic inappropriate outcome of deranged tissue function resulting from aberrancies in cellular processes. Yet the patho-biology of cellular dysfunction and death encompasses a coordinated network no less sophisticated and regulated than maintenance of homeostatic balance. Cellular demise is far from passive subordination to stress but requires controlled coordination of energy-requiring activities including gene transcription and protein translation that determine the graded transition between defensive mechanisms, cell cycle regulation, dedifferentiation and ultimately to the activation of death programmes. In fact, most stressors stimulate both homeostasis and regeneration on one hand and impairment and destruction on the other, depending on the ambient circumstances. Here we illustrate this bimodal ambiguity in cell response by reviewing recent progress in our understanding of how the pancreatic β cell copes with inflammatory stress by changing gene transcription and protein translation by the differential and interconnected action of reactive oxygen and nitric oxide species, microRNAs and posttranslational protein modifications.
Collapse
Affiliation(s)
- Guy W Novotny
- Section of Endocrinological Research, Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| | | | | | | | | | | | | | | |
Collapse
|
35
|
Dunne JL, Overbergh L, Purcell AW, Mathieu C. Posttranslational modifications of proteins in type 1 diabetes: the next step in finding the cure? Diabetes 2012; 61:1907-14. [PMID: 22826307 PMCID: PMC3402302 DOI: 10.2337/db11-1675] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The overall role of modification of β-cell antigens in type 1 diabetes has not been elucidated and was the focus of a recent workshop on posttranslational modification of proteins in type 1 diabetes. The prevailing opinion of the workshop attendees was that novel insights into the mechanism of loss of immune tolerance might be gained and that novel diagnostic and therapeutic approaches could be developed for type 1 diabetes if protein modifications were shown to play a critical role in the disease.
Collapse
Affiliation(s)
- Jessica L Dunne
- Juvenile Diabetes Research Foundation, New York, New York, USA.
| | | | | | | |
Collapse
|
36
|
Palmisano G, Jensen SS, Le Bihan MC, Lainé J, McGuire JN, Pociot F, Larsen MR. Characterization of membrane-shed microvesicles from cytokine-stimulated β-cells using proteomics strategies. Mol Cell Proteomics 2012; 11:230-43. [PMID: 22345510 PMCID: PMC3412958 DOI: 10.1074/mcp.m111.012732] [Citation(s) in RCA: 114] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2011] [Revised: 02/10/2012] [Indexed: 01/14/2023] Open
Abstract
Microparticles and exosomes are two of the most well characterized membrane-derived microvesicles released either directly from the plasma membrane or released through the fusion of intracellular multivesicular bodies with the plasma membrane, respectively. They are thought to be involved in many significant biological processes such as cell to cell communication, rescue from apoptosis, and immunological responses. Here we report for the first time a quantitative study of proteins from β-cell-derived microvesicles generated after cytokine induced apoptosis using stable isotope labeled amino acids in cell culture combined with mass spectrometry. We identified and quantified a large number of β-cell-specific proteins and proteins previously described in microvesicles from other cell types in addition to new proteins located to these vesicles. In addition, we quantified specific sites of protein phosphorylation and N-linked sialylation in proteins associated with microvesicles from β-cells. Using pathway analysis software, we were able to map the most distinctive changes between microvesicles generated during growth and after cytokine stimulation to several cell death and cell signaling molecules including tumor necrosis factor receptor superfamily member 1A, tumor necrosis factor, α-induced protein 3, tumor necrosis factor-interacting kinase receptor-interacting serine-threonine kinase 1, and intercellular adhesion molecule 1.
Collapse
Affiliation(s)
- Giuseppe Palmisano
- From the ‡Department of Biochemistry and Molecular Biology, University of Southern Denmark, DK-5230 Odense M, Denmark
| | - Søren Skov Jensen
- From the ‡Department of Biochemistry and Molecular Biology, University of Southern Denmark, DK-5230 Odense M, Denmark
| | - Marie-Catherine Le Bihan
- From the ‡Department of Biochemistry and Molecular Biology, University of Southern Denmark, DK-5230 Odense M, Denmark
- ‖UMR S 974 INSERM, Institut de Myologie, Paris 75013, France
| | - Jeanne Lainé
- From the ‡Department of Biochemistry and Molecular Biology, University of Southern Denmark, DK-5230 Odense M, Denmark
| | | | | | - Martin Røssel Larsen
- From the ‡Department of Biochemistry and Molecular Biology, University of Southern Denmark, DK-5230 Odense M, Denmark
| |
Collapse
|
37
|
Zhou JY, Dann GP, Liew CW, Smith RD, Kulkarni RN, Qian WJ. Unraveling pancreatic islet biology by quantitative proteomics. Expert Rev Proteomics 2012; 8:495-504. [PMID: 21819304 DOI: 10.1586/epr.11.39] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The pancreatic islets of Langerhans play a critical role in maintaining blood glucose homeostasis by secreting insulin and several other important peptide hormones. Impaired insulin secretion due to islet dysfunction is linked to the pathogenesis underlying both Type 1 and Type 2 diabetes. Over the past 5 years, emerging proteomic technologies have been applied to dissect the signaling pathways that regulate islet functions and gain an understanding of the mechanisms of islet dysfunction relevant to diabetes. Herein, we briefly review some of the recent quantitative proteomic studies involving pancreatic islets geared towards gaining a better understanding of islet biology relevant to metabolic diseases.
Collapse
Affiliation(s)
- Jian-Ying Zhou
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99352, USA
| | | | | | | | | | | |
Collapse
|
38
|
Talkowski ME, Rosenfeld JA, Blumenthal I, Pillalamarri V, Chiang C, Heilbut A, Ernst C, Hanscom C, Rossin E, Lindgren A, Pereira S, Ruderfer D, Kirby A, Ripke S, Harris D, Lee JH, Ha K, Kim HG, Solomon BD, Gropman AL, Lucente D, Sims K, Ohsumi TK, Borowsky ML, Loranger S, Quade B, Lage K, Miles J, Wu BL, Shen Y, Neale B, Shaffer LG, Daly MJ, Morton CC, Gusella JF. Sequencing chromosomal abnormalities reveals neurodevelopmental loci that confer risk across diagnostic boundaries. Cell 2012; 149:525-37. [PMID: 22521361 PMCID: PMC3340505 DOI: 10.1016/j.cell.2012.03.028] [Citation(s) in RCA: 437] [Impact Index Per Article: 33.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2011] [Revised: 02/27/2012] [Accepted: 03/28/2012] [Indexed: 01/18/2023]
Abstract
Balanced chromosomal abnormalities (BCAs) represent a relatively untapped reservoir of single-gene disruptions in neurodevelopmental disorders (NDDs). We sequenced BCAs in patients with autism or related NDDs, revealing disruption of 33 loci in four general categories: (1) genes previously associated with abnormal neurodevelopment (e.g., AUTS2, FOXP1, and CDKL5), (2) single-gene contributors to microdeletion syndromes (MBD5, SATB2, EHMT1, and SNURF-SNRPN), (3) novel risk loci (e.g., CHD8, KIRREL3, and ZNF507), and (4) genes associated with later-onset psychiatric disorders (e.g., TCF4, ZNF804A, PDE10A, GRIN2B, and ANK3). We also discovered among neurodevelopmental cases a profoundly increased burden of copy-number variants from these 33 loci and a significant enrichment of polygenic risk alleles from genome-wide association studies of autism and schizophrenia. Our findings suggest a polygenic risk model of autism and reveal that some neurodevelopmental genes are sensitive to perturbation by multiple mutational mechanisms, leading to variable phenotypic outcomes that manifest at different life stages.
Collapse
Affiliation(s)
- Michael E. Talkowski
- Center for Human Genetic Research, Massachusetts General Hospital, Boston, MA
- Department of Neurology, Harvard Medical School, Boston, MA
- Program in Medical and Population Genetics, Broad Institute, Cambridge, MA
| | | | - Ian Blumenthal
- Center for Human Genetic Research, Massachusetts General Hospital, Boston, MA
| | - Vamsee Pillalamarri
- Center for Human Genetic Research, Massachusetts General Hospital, Boston, MA
| | - Colby Chiang
- Center for Human Genetic Research, Massachusetts General Hospital, Boston, MA
| | - Adrian Heilbut
- Center for Human Genetic Research, Massachusetts General Hospital, Boston, MA
| | - Carl Ernst
- Center for Human Genetic Research, Massachusetts General Hospital, Boston, MA
| | - Carrie Hanscom
- Center for Human Genetic Research, Massachusetts General Hospital, Boston, MA
| | - Elizabeth Rossin
- Center for Human Genetic Research, Massachusetts General Hospital, Boston, MA
- Program in Medical and Population Genetics, Broad Institute, Cambridge, MA
- Analytical and Translational Genetics Unit, Massachusetts General Hospital, Boston, MA
| | - Amelia Lindgren
- Departments of Obstetrics, Gynecology and Reproductive Biology, Brigham and Women’s Hospital, Boston, MA
| | - Shahrin Pereira
- Departments of Obstetrics, Gynecology and Reproductive Biology, Brigham and Women’s Hospital, Boston, MA
| | - Douglas Ruderfer
- Center for Human Genetic Research, Massachusetts General Hospital, Boston, MA
- Program in Medical and Population Genetics, Broad Institute, Cambridge, MA
| | - Andrew Kirby
- Center for Human Genetic Research, Massachusetts General Hospital, Boston, MA
- Program in Medical and Population Genetics, Broad Institute, Cambridge, MA
- Analytical and Translational Genetics Unit, Massachusetts General Hospital, Boston, MA
| | - Stephan Ripke
- Center for Human Genetic Research, Massachusetts General Hospital, Boston, MA
- Program in Medical and Population Genetics, Broad Institute, Cambridge, MA
- Analytical and Translational Genetics Unit, Massachusetts General Hospital, Boston, MA
| | - David Harris
- Division of Clinical Genetics, Children’s Hospital of Boston, Boston, MA
| | - Ji-Hyun Lee
- Center for Human Genetic Research, Massachusetts General Hospital, Boston, MA
| | - Kyungsoo Ha
- Cancer Research Center, Georgia Health Sciences University, Augusta, GA
| | - Hyung-Goo Kim
- Department of OB/GYN, IMMAG, Georgia Health Sciences University, Augusta, GA
| | - Benjamin D. Solomon
- Medical Genetics Branch, National Human Genome Research Institute, Bethesda, MD, USA
| | - Andrea L. Gropman
- Department of Neurology, Children’s National Medical Center, Washington, DC, USA
- Department of Neurology, George Washington University of Health Sciences, Washington, DC, USA
| | - Diane Lucente
- Center for Human Genetic Research, Massachusetts General Hospital, Boston, MA
| | - Katherine Sims
- Center for Human Genetic Research, Massachusetts General Hospital, Boston, MA
| | - Toshiro K. Ohsumi
- Department of Molecular Biology, Massachusetts General Hospital, Boston, MA
| | - Mark L. Borowsky
- Department of Molecular Biology, Massachusetts General Hospital, Boston, MA
| | | | - Bradley Quade
- Department of Pathology, Massachusetts General Hospital, Boston, MA
| | - Kasper Lage
- Program in Medical and Population Genetics, Broad Institute, Cambridge, MA
- Analytical and Translational Genetics Unit, Massachusetts General Hospital, Boston, MA
- Pediatric Surgical Research Laboratories, MassGeneral Hospital for Children, Massachusetts General Hospital, Boston, MA, USA
- Center for Biological Sequence Analysis, Department of Systems Biology, Technical University of Denmark, Lyngby, Denmark
- Center for Protein Research, University of Copenhagen, Copenhagen, Denmark
| | - Judith Miles
- Departments of Pediatrics, Medical Genetics & Pathology, The Thompson Center for Autism & Neurodevelopmental Disorders, University of Missouri Hospitals and Clinics, Columbia, MO
| | - Bai-Lin Wu
- Department of Pathology, Massachusetts General Hospital, Boston, MA
- Department of Laboratory Medicine, Children’s Hospital Boston, Boston, MA
- Children’s Hospital and Institutes of Biomedical Science, Fudan University, Shanghai, China
| | - Yiping Shen
- Center for Human Genetic Research, Massachusetts General Hospital, Boston, MA
- Department of Pathology, Massachusetts General Hospital, Boston, MA
- Department of Laboratory Medicine, Children’s Hospital Boston, Boston, MA
- Shanghai Children’s Medical Center, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Benjamin Neale
- Center for Human Genetic Research, Massachusetts General Hospital, Boston, MA
- Program in Medical and Population Genetics, Broad Institute, Cambridge, MA
- Analytical and Translational Genetics Unit, Massachusetts General Hospital, Boston, MA
| | - Lisa G. Shaffer
- Signature Genomic Laboratories, PerkinElmer, Inc., Spokane, WA
| | - Mark J. Daly
- Center for Human Genetic Research, Massachusetts General Hospital, Boston, MA
- Program in Medical and Population Genetics, Broad Institute, Cambridge, MA
- Analytical and Translational Genetics Unit, Massachusetts General Hospital, Boston, MA
- Autism Consortium of Boston, Boston, MA
| | - Cynthia C. Morton
- Program in Medical and Population Genetics, Broad Institute, Cambridge, MA
- Departments of Obstetrics, Gynecology and Reproductive Biology, Brigham and Women’s Hospital, Boston, MA
- Department of Pathology, Massachusetts General Hospital, Boston, MA
| | - James F. Gusella
- Center for Human Genetic Research, Massachusetts General Hospital, Boston, MA
- Program in Medical and Population Genetics, Broad Institute, Cambridge, MA
- Autism Consortium of Boston, Boston, MA
- Department of Genetics, Harvard Medical School, Boston, MA
| |
Collapse
|
39
|
Coppola A, Tomasello L, Pizzolanti G, Pucci-Minafra I, Albanese N, Di Cara G, Cancemi P, Pitrone M, Bommarito A, Carissimi E, Zito G, Criscimanna A, Galluzzo A, Giordano C. In vitro phenotypic, genomic and proteomic characterization of a cytokine-resistant murine β-TC3 cell line. PLoS One 2012; 7:e32109. [PMID: 22393382 PMCID: PMC3290556 DOI: 10.1371/journal.pone.0032109] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2011] [Accepted: 01/23/2012] [Indexed: 11/19/2022] Open
Abstract
Type 1 diabetes mellitus (T1DM) is caused by the selective destruction of insulin-producing β-cells. This process is mediated by cells of the immune system through release of nitric oxide, free radicals and pro-inflammatory cytokines, which induce a complex network of intracellular signalling cascades, eventually affecting the expression of genes involved in β-cell survival. The aim of our study was to investigate possible mechanisms of resistance to cytokine-induced β-cell death. To this purpose, we created a cytokine-resistant β-cell line (β-TC3R) by chronically treating the β-TC3 murine insulinoma cell line with IL-1β + IFN-γ. β-TC3R cells exhibited higher proliferation rate and resistance to cytokine-mediated cell death in comparison to the parental line. Interestingly, they maintained expression of β-cell specific markers, such as PDX1, NKX6.1, GLUT2 and insulin. The analysis of the secretory function showed that β-TC3R cells have impaired glucose-induced c-peptide release, which however was only moderately reduced after incubation with KCl and tolbutamide. Gene expression analysis showed that β-TC3R cells were characterized by downregulation of IL-1β and IFN-γ receptors and upregulation of SOCS3, the classical negative regulator of cytokines signaling. Comparative proteomic analysis showed specific upregulation of 35 proteins, mainly involved in cell death, stress response and folding. Among them, SUMO4, a negative feedback regulator in NF-kB and JAK/STAT signaling pathways, resulted hyper-expressed. Silencing of SUMO4 was able to restore sensitivity to cytokine-induced cell death in β-TC3R cells, suggesting it may play a key role in acquired cytokine resistance by blocking JAK/STAT and NF-kB lethal signaling. In conclusion, our study represents the first extensive proteomic characterization of a murine cytokine-resistant β-cell line, which might represent a useful tool for studying the mechanisms involved in resistance to cytokine-mediated β-cell death. This knowledge may be of potential benefit for patients with T1DM. In particular, SUMO4 could be used as a therapeutical target.
Collapse
Affiliation(s)
- Antonina Coppola
- Section of Endocrinology, Dipartimento Biomedico di Medicina Interna e Specialistica (DIBIMIS), University of Palermo, Palermo, Italy
| | - Laura Tomasello
- Section of Endocrinology, Dipartimento Biomedico di Medicina Interna e Specialistica (DIBIMIS), University of Palermo, Palermo, Italy
| | - Giuseppe Pizzolanti
- Section of Endocrinology, Dipartimento Biomedico di Medicina Interna e Specialistica (DIBIMIS), University of Palermo, Palermo, Italy
| | - Ida Pucci-Minafra
- Centro di Oncobiologia Sperimentale (COBS), University of Palermo, Palermo, Italy
| | - Nadia Albanese
- Department of Physics, Centro di Oncobiologia Sperimentale (COBS), University of Palermo, Palermo, Italy
| | - Gianluca Di Cara
- Centro di Oncobiologia Sperimentale (COBS), University of Palermo, Palermo, Italy
| | - Patrizia Cancemi
- Section of Experimental Oncology, Dipartimento Biomedico di Medicina Interna e Specialistica (DIBIMIS), University of Palermo, Palermo, Italy
| | - Maria Pitrone
- Section of Endocrinology, Dipartimento Biomedico di Medicina Interna e Specialistica (DIBIMIS), University of Palermo, Palermo, Italy
| | - Alessandra Bommarito
- Section of Endocrinology, Dipartimento Biomedico di Medicina Interna e Specialistica (DIBIMIS), University of Palermo, Palermo, Italy
| | - Elvira Carissimi
- Section of Endocrinology, Dipartimento Biomedico di Medicina Interna e Specialistica (DIBIMIS), University of Palermo, Palermo, Italy
| | - Giovanni Zito
- Section of Endocrinology, Dipartimento Biomedico di Medicina Interna e Specialistica (DIBIMIS), University of Palermo, Palermo, Italy
| | - Angela Criscimanna
- Section of Endocrinology, Dipartimento Biomedico di Medicina Interna e Specialistica (DIBIMIS), University of Palermo, Palermo, Italy
| | - Aldo Galluzzo
- Section of Endocrinology, Dipartimento Biomedico di Medicina Interna e Specialistica (DIBIMIS), University of Palermo, Palermo, Italy
| | - Carla Giordano
- Section of Endocrinology, Dipartimento Biomedico di Medicina Interna e Specialistica (DIBIMIS), University of Palermo, Palermo, Italy
- Institute of Biomedicine and Molecular Immunology “A. Monroy” (CNR – IBIM), Palermo, Italy
- * E-mail:
| |
Collapse
|
40
|
Differentiation of mesenchymal stem cells derived from pancreatic islets and bone marrow into islet-like cell phenotype. PLoS One 2011; 6:e28175. [PMID: 22194812 PMCID: PMC3241623 DOI: 10.1371/journal.pone.0028175] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2011] [Accepted: 11/02/2011] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Regarding regenerative medicine for diabetes, accessible sources of Mesenchymal Stem Cells (MSCs) for induction of insular beta cell differentiation may be as important as mastering the differentiation process itself. METHODOLOGY/PRINCIPAL FINDINGS In the present work, stem cells from pancreatic islets (human islet-mesenchymal stem cells, HI-MSCs) and from human bone marrow (bone marrow mesenchymal stem cells, BM-MSCs) were cultured in custom-made serum-free medium, using suitable conditions in order to induce differentiation into Islet-like Cells (ILCs). HI-MSCs and BM-MSCs were positive for the MSC markers CD105, CD73, CD90, CD29. Following this induction, HI-MSC and BM-MSC formed evident islet-like structures in the culture flasks. To investigate functional modifications after induction to ILCs, ultrastructural analysis and immunofluorescence were performed. PDX1 (pancreatic duodenal homeobox gene-1), insulin, C peptide and Glut-2 were detected in HI-ILCs whereas BM-ILCs only expressed Glut-2 and insulin. Insulin was also detected in the culture medium following glucose stimulation, confirming an initial differentiation that resulted in glucose-sensitive endocrine secretion. In order to identify proteins that were modified following differentiation from basal MSC (HI-MSCs and BM-MSCs) to their HI-ILCs and BM-ILCs counterparts, proteomic analysis was performed. Three new proteins (APOA1, ATL2 and SODM) were present in both ILC types, while other detected proteins were verified to be unique to the single individual differentiated cells lines. Hierarchical analysis underscored the limited similarities between HI-MSCs and BM-MSCs after induction of differentiation, and the persistence of relevant differences related to cells of different origin. CONCLUSIONS/SIGNIFICANCE Proteomic analysis highlighted differences in the MSCs according to site of origin, reflecting spontaneous differentiation and commitment. A more detailed understanding of protein assets may provide insights required to master the differentiation process of HI-MSCs to functional beta cells based only upon culture conditioning. These findings may open new strategies for the clinical use of BM-MSCs in diabetes.
Collapse
|
41
|
Ferreira GB, Kleijwegt FS, Waelkens E, Lage K, Nikolic T, Hansen DA, Workman CT, Roep BO, Overbergh L, Mathieu C. Differential protein pathways in 1,25-dihydroxyvitamin d(3) and dexamethasone modulated tolerogenic human dendritic cells. J Proteome Res 2011; 11:941-71. [PMID: 22103328 DOI: 10.1021/pr200724e] [Citation(s) in RCA: 85] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Tolerogenic dendritic cells (DC) that are maturation-resistant and locked in a semimature state are promising tools in clinical applications for tolerance induction. Different immunomodulatory agents have been shown to induce a tolerogenic DC phenotype, such as the biologically active form of vitamin D (1,25(OH)(2)D(3)), glucocorticoids, and a synergistic combination of both. In this study, we aimed to characterize the protein profile, function and phenotype of DCs obtained in vitro in the presence of 1,25(OH)(2)D(3), dexamethasone (DEX), and a combination of both compounds (combi). Human CD14(+) monocytes were differentiated toward mature DCs, in the presence or absence of 1,25(OH)(2)D(3) and/or DEX. Cells were prefractionated into cytoplasmic and microsomal fractions and protein samples were separated in two different pH ranges (pH 3-7NL and 6-9), analyzed by 2D-DIGE and differentially expressed spots (p < 0.05) were identified after MALDI-TOF/TOF analysis. In parallel, morphological and phenotypical analyses were performed, revealing that 1,25(OH)(2)D(3)- and combi-mDCs are closer related to each other than DEX-mDCs. This was translated in their protein profile, indicating that 1,25(OH)(2)D(3) is more potent than DEX in inducing a tolerogenic profile on human DCs. Moreover, we demonstrate that combining 1,25(OH)(2)D(3) with DEX induces a unique protein expression pattern with major imprinting of the 1,25(OH)(2)D(3) effect. Finally, protein interaction networks and pathway analysis suggest that 1,25(OH)(2)D(3), rather than DEX treatment, has a severe impact on metabolic pathways involving lipids, glucose, and oxidative phosphorylation, which may affect the production of or the response to ROS generation. These findings provide new insights on the molecular basis of DC tolerogenicity induced by 1,25(OH)(2)D(3) and/or DEX, which may lead to the discovery of new pathways involved in DC immunomodulation.
Collapse
Affiliation(s)
- Gabriela Bomfim Ferreira
- Laboratory for Experimental Medicine and Endocrinology (LEGENDO), University Hospital Gasthuisberg, Catholic University of Leuven, Herestraat 49, box 902, B-3000 Leuven, Belgium
| | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Maris M, Waelkens E, Cnop M, D'Hertog W, Cunha DA, Korf H, Koike T, Overbergh L, Mathieu C. Oleate-induced beta cell dysfunction and apoptosis: a proteomic approach to glucolipotoxicity by an unsaturated fatty acid. J Proteome Res 2011; 10:3372-85. [PMID: 21707097 DOI: 10.1021/pr101290n] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
High levels of fatty acids contribute to loss of functional beta cell mass in type 2 diabetes, in particular in combination with high glucose levels. The aim of this study was to elucidate the role of the unsaturated free fatty acid oleate in glucolipotoxicity and to unravel the molecular pathways involved. INS-1E cells were exposed to 0.5 mM oleate, combined or not with 25 mM glucose, for 24 h. Protein profiling of INS-1E cells was done by 2D-DIGE, covering pH ranges 4-7 and 6-9 (n = 4). Identification of differentially expressed proteins (P < 0.05) was based on MALDI-TOF analysis using Peptide Mass Fingerprint (PMF) and fragmentation (MS/MS) of the most intense peaks of PMF and proteomic results were confirmed by functional assays. Oleate impaired glucose-stimulated insulin secretion and decreased insulin content. 2D-DIGE analysis revealed 53 and 54 differentially expressed proteins for oleate and the combination of oleate and high glucose, respectively. Exposure to oleate down-regulated chaperones, hampered insulin processing and ubiquitin-related proteasomal degradation, and induced perturbations in vesicle transport and budding. In combination with high glucose, shunting of excess amounts of glucose toward reactive oxygen species production worsened beta cell death. The present findings provide new insights in oleate-induced beta cell dysfunction and identify target proteins for preservation of functional beta cell mass in type 2 diabetes.
Collapse
Affiliation(s)
- Michael Maris
- Laboratory for Experimental Medicine and Endocrinology (LEGENDO), Herestraat 49, Catholic University of Leuven, Leuven, Belgium
| | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Thapsigargin affinity purification of intracellular P2A-type Ca2+ ATPases. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2011; 1813:1118-27. [DOI: 10.1016/j.bbamcr.2010.12.020] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2010] [Revised: 12/22/2010] [Accepted: 12/23/2010] [Indexed: 11/23/2022]
|
44
|
Chang TJ, Weaver JR, Bowman A, Leone K, Raab R, Vinik AI, Pittenger GL, Taylor-Fishwick DA. Targeted expression of islet neogenesis associated protein to beta cells enhances glucose tolerance and confers resistance to streptozotocin-induced hyperglycemia. Mol Cell Endocrinol 2011; 335:104-9. [PMID: 21187123 DOI: 10.1016/j.mce.2010.12.026] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2010] [Revised: 12/01/2010] [Accepted: 12/20/2010] [Indexed: 01/09/2023]
Abstract
Islet neogenesis associated protein (INGAP) stimulates experimental pancreatic islet growth, as evidenced by elevated markers of beta cell mass, in rodents, dogs and primates. Previous analyses of mice that have a transgenic expression of INGAP targeted to the exocrine pancreas have indicated additional biological activity attributed to INGAP. In this study we report on mice with a targeted expression of INGAP to the islet beta cell. The beta cell transgenic mice (IP-INGAP) showed enhanced normalization of blood glucose during IPGTT. Further, IP-INGAP mice had a significant delay in development of hyperglycemia following a diabetogenic dose of streptozotocin. INGAP conferred beta cell protection and enhanced islet function. Analysis of oxidative stress genes in IP-INGAP mice revealed a decrease in islet expression of the NADPH oxidase, NOX1, in both basal state and in response to pro-inflammatory cytokine stimulation. These data are consistent with a pleiotropic role for INGAP and reveal new pathways to target in the discovery of improved diabetic therapies.
Collapse
Affiliation(s)
- Tien-Jyun Chang
- Strelitz Diabetes Center, Department of Internal Medicine, Eastern Virginia Medical School, Norfolk, VA 23507, USA
| | | | | | | | | | | | | | | |
Collapse
|
45
|
D'Hertog W, Maris M, Thorrez L, Waelkens E, Overbergh L, Mathieu C. Two-dimensional gel proteome reference map of INS-1E cells. Proteomics 2011; 11:1365-9. [PMID: 21365744 DOI: 10.1002/pmic.201000006] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2010] [Revised: 11/15/2010] [Accepted: 12/30/2010] [Indexed: 01/30/2023]
Abstract
The insulin-producing INS-1E rat cell line is widely used as a model for studying β-cells. It is a well-characterized cell line, mainly used in diabetes research. We established a 2-DE reference map for INS-1E cells. Using MALDI-TOF/TOF-MS/MS, we identified 546 spots. These included various proteins with an important role in β-cell physiology and with known roles as crucial proteins for diabetes development. We believe that the availability of this reference map will enhance our knowledge of β-cell physiology.
Collapse
Affiliation(s)
- Wannes D'Hertog
- Laboratory for Experimental Medicine and Endocrinology, Catholic University of Leuven, Leuven, Belgium
| | | | | | | | | | | |
Collapse
|
46
|
Maris M, Ferreira GB, D’Hertog W, Cnop M, Waelkens E, Overbergh L, Mathieu C. High Glucose Induces Dysfunction in Insulin Secretory Cells by Different Pathways: A Proteomic Approach. J Proteome Res 2010; 9:6274-87. [DOI: 10.1021/pr100557w] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Affiliation(s)
- Michael Maris
- Laboratory for Experimental Medicine and Endocrinology (LEGENDO), Herestraat 49, Catholic University of Leuven, Leuven, Belgium, Laboratory of Experimental Medicine, Université Libre de Bruxelles (ULB), Route de Lennik, 808, 1070 Brussels, Belgium, Division of Endocrinology, Erasmus Hospital, Université Libre de Bruxelles (ULB), Route de Lennik, 1070 Brussels, Belgium, Laboratory of Protein Phosphorylation and Proteomics, Catholic University of Leuven, Leuven, Belgium, and ProMeta, Catholic University of
| | - Gabriela B. Ferreira
- Laboratory for Experimental Medicine and Endocrinology (LEGENDO), Herestraat 49, Catholic University of Leuven, Leuven, Belgium, Laboratory of Experimental Medicine, Université Libre de Bruxelles (ULB), Route de Lennik, 808, 1070 Brussels, Belgium, Division of Endocrinology, Erasmus Hospital, Université Libre de Bruxelles (ULB), Route de Lennik, 1070 Brussels, Belgium, Laboratory of Protein Phosphorylation and Proteomics, Catholic University of Leuven, Leuven, Belgium, and ProMeta, Catholic University of
| | - Wannes D’Hertog
- Laboratory for Experimental Medicine and Endocrinology (LEGENDO), Herestraat 49, Catholic University of Leuven, Leuven, Belgium, Laboratory of Experimental Medicine, Université Libre de Bruxelles (ULB), Route de Lennik, 808, 1070 Brussels, Belgium, Division of Endocrinology, Erasmus Hospital, Université Libre de Bruxelles (ULB), Route de Lennik, 1070 Brussels, Belgium, Laboratory of Protein Phosphorylation and Proteomics, Catholic University of Leuven, Leuven, Belgium, and ProMeta, Catholic University of
| | - Miriam Cnop
- Laboratory for Experimental Medicine and Endocrinology (LEGENDO), Herestraat 49, Catholic University of Leuven, Leuven, Belgium, Laboratory of Experimental Medicine, Université Libre de Bruxelles (ULB), Route de Lennik, 808, 1070 Brussels, Belgium, Division of Endocrinology, Erasmus Hospital, Université Libre de Bruxelles (ULB), Route de Lennik, 1070 Brussels, Belgium, Laboratory of Protein Phosphorylation and Proteomics, Catholic University of Leuven, Leuven, Belgium, and ProMeta, Catholic University of
| | - Etienne Waelkens
- Laboratory for Experimental Medicine and Endocrinology (LEGENDO), Herestraat 49, Catholic University of Leuven, Leuven, Belgium, Laboratory of Experimental Medicine, Université Libre de Bruxelles (ULB), Route de Lennik, 808, 1070 Brussels, Belgium, Division of Endocrinology, Erasmus Hospital, Université Libre de Bruxelles (ULB), Route de Lennik, 1070 Brussels, Belgium, Laboratory of Protein Phosphorylation and Proteomics, Catholic University of Leuven, Leuven, Belgium, and ProMeta, Catholic University of
| | - Lut Overbergh
- Laboratory for Experimental Medicine and Endocrinology (LEGENDO), Herestraat 49, Catholic University of Leuven, Leuven, Belgium, Laboratory of Experimental Medicine, Université Libre de Bruxelles (ULB), Route de Lennik, 808, 1070 Brussels, Belgium, Division of Endocrinology, Erasmus Hospital, Université Libre de Bruxelles (ULB), Route de Lennik, 1070 Brussels, Belgium, Laboratory of Protein Phosphorylation and Proteomics, Catholic University of Leuven, Leuven, Belgium, and ProMeta, Catholic University of
| | - Chantal Mathieu
- Laboratory for Experimental Medicine and Endocrinology (LEGENDO), Herestraat 49, Catholic University of Leuven, Leuven, Belgium, Laboratory of Experimental Medicine, Université Libre de Bruxelles (ULB), Route de Lennik, 808, 1070 Brussels, Belgium, Division of Endocrinology, Erasmus Hospital, Université Libre de Bruxelles (ULB), Route de Lennik, 1070 Brussels, Belgium, Laboratory of Protein Phosphorylation and Proteomics, Catholic University of Leuven, Leuven, Belgium, and ProMeta, Catholic University of
| |
Collapse
|
47
|
Hansson SF, Henriksson Å, Johansson L, Korsgren O, Eriksson JW, Tornqvist H, Davidsson P. Membrane Protein Profiling of Human Islets of Langerhans Using Several Extraction Methods. Clin Proteomics 2010. [DOI: 10.1007/s12014-010-9060-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Abstract
Introduction
Proteomic characterization of the human pancreatic islets, containing the insulin producing beta-cells, is likely to be of great importance for improved treatment and understanding of the pathophysiology of diabetes mellitus.
Objective
The focus of this study was to characterize the human islet membrane proteome.
Methods
In order to identify as many membrane proteins as possible, five different extraction procedures were used, i.e., phase separation using Triton X-114, a plasma membrane protein kit, cell surface protein biotinylation, total protein extraction, and lipid-based protein immobilization flow cell. Digested protein extracts were analyzed by nanoflow liquid chromatography tandem mass spectrometry. Then the identified proteins were categorized according to cellular location using their gene ontology annotation and by prediction of transmembrane helices in the sequence. This information was used to estimate the amount of membrane proteins identified.
Results
By combining the results from all extraction procedures, the total number of membrane proteins identified from the human islets was increased, accentuating that a combination of methods usually gives a higher coverage of the proteome. A total of 1,700 proteins were identified (≥2 unique peptides), and 735 of these proteins were annotated as membrane proteins while 360 proteins had at least one predicted transmembrane helix. The extraction method using phase separation with Triton X-114 yielded both the highest number and the highest proportion of membrane proteins.
Conclusion
This study gave an enhanced characterization of the human islet membrane proteome which may contribute to a better understanding of islet biology.
Collapse
|
48
|
D’Hertog W, Maris M, Ferreira GB, Verdrengh E, Lage K, Hansen DA, Cardozo AK, Workman CT, Moreau Y, Eizirik DL, Waelkens E, Overbergh L, Mathieu C. Novel Insights into the Global Proteome Responses of Insulin-Producing INS-1E Cells To Different Degrees of Endoplasmic Reticulum Stress. J Proteome Res 2010; 9:5142-52. [DOI: 10.1021/pr1004086] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Wannes D’Hertog
- Laboratory for Experimental Medicine and Endocrinology (LEGENDO), University Hospital Gasthuisberg, Catholic University of Leuven, Herestraat 49, box 902, B-3000 Leuven, Belgium, Center for Biological Sequence Analysis, Department of Systems Biology, Technical University of Denmark, Building 208, DK-2800 Kgs. Lyngby, Denmark, Pediatric Surgical Research Laboratories, MassGeneral Hospital for Children, Massachusetts General Hospital, Boston, Massachusetts 02114, Harvard Medical School, Boston,
| | - Michael Maris
- Laboratory for Experimental Medicine and Endocrinology (LEGENDO), University Hospital Gasthuisberg, Catholic University of Leuven, Herestraat 49, box 902, B-3000 Leuven, Belgium, Center for Biological Sequence Analysis, Department of Systems Biology, Technical University of Denmark, Building 208, DK-2800 Kgs. Lyngby, Denmark, Pediatric Surgical Research Laboratories, MassGeneral Hospital for Children, Massachusetts General Hospital, Boston, Massachusetts 02114, Harvard Medical School, Boston,
| | - Gabriela B. Ferreira
- Laboratory for Experimental Medicine and Endocrinology (LEGENDO), University Hospital Gasthuisberg, Catholic University of Leuven, Herestraat 49, box 902, B-3000 Leuven, Belgium, Center for Biological Sequence Analysis, Department of Systems Biology, Technical University of Denmark, Building 208, DK-2800 Kgs. Lyngby, Denmark, Pediatric Surgical Research Laboratories, MassGeneral Hospital for Children, Massachusetts General Hospital, Boston, Massachusetts 02114, Harvard Medical School, Boston,
| | - Eefje Verdrengh
- Laboratory for Experimental Medicine and Endocrinology (LEGENDO), University Hospital Gasthuisberg, Catholic University of Leuven, Herestraat 49, box 902, B-3000 Leuven, Belgium, Center for Biological Sequence Analysis, Department of Systems Biology, Technical University of Denmark, Building 208, DK-2800 Kgs. Lyngby, Denmark, Pediatric Surgical Research Laboratories, MassGeneral Hospital for Children, Massachusetts General Hospital, Boston, Massachusetts 02114, Harvard Medical School, Boston,
| | - Kasper Lage
- Laboratory for Experimental Medicine and Endocrinology (LEGENDO), University Hospital Gasthuisberg, Catholic University of Leuven, Herestraat 49, box 902, B-3000 Leuven, Belgium, Center for Biological Sequence Analysis, Department of Systems Biology, Technical University of Denmark, Building 208, DK-2800 Kgs. Lyngby, Denmark, Pediatric Surgical Research Laboratories, MassGeneral Hospital for Children, Massachusetts General Hospital, Boston, Massachusetts 02114, Harvard Medical School, Boston,
| | - Daniel A. Hansen
- Laboratory for Experimental Medicine and Endocrinology (LEGENDO), University Hospital Gasthuisberg, Catholic University of Leuven, Herestraat 49, box 902, B-3000 Leuven, Belgium, Center for Biological Sequence Analysis, Department of Systems Biology, Technical University of Denmark, Building 208, DK-2800 Kgs. Lyngby, Denmark, Pediatric Surgical Research Laboratories, MassGeneral Hospital for Children, Massachusetts General Hospital, Boston, Massachusetts 02114, Harvard Medical School, Boston,
| | - Alessandra K. Cardozo
- Laboratory for Experimental Medicine and Endocrinology (LEGENDO), University Hospital Gasthuisberg, Catholic University of Leuven, Herestraat 49, box 902, B-3000 Leuven, Belgium, Center for Biological Sequence Analysis, Department of Systems Biology, Technical University of Denmark, Building 208, DK-2800 Kgs. Lyngby, Denmark, Pediatric Surgical Research Laboratories, MassGeneral Hospital for Children, Massachusetts General Hospital, Boston, Massachusetts 02114, Harvard Medical School, Boston,
| | - Christopher T. Workman
- Laboratory for Experimental Medicine and Endocrinology (LEGENDO), University Hospital Gasthuisberg, Catholic University of Leuven, Herestraat 49, box 902, B-3000 Leuven, Belgium, Center for Biological Sequence Analysis, Department of Systems Biology, Technical University of Denmark, Building 208, DK-2800 Kgs. Lyngby, Denmark, Pediatric Surgical Research Laboratories, MassGeneral Hospital for Children, Massachusetts General Hospital, Boston, Massachusetts 02114, Harvard Medical School, Boston,
| | - Yves Moreau
- Laboratory for Experimental Medicine and Endocrinology (LEGENDO), University Hospital Gasthuisberg, Catholic University of Leuven, Herestraat 49, box 902, B-3000 Leuven, Belgium, Center for Biological Sequence Analysis, Department of Systems Biology, Technical University of Denmark, Building 208, DK-2800 Kgs. Lyngby, Denmark, Pediatric Surgical Research Laboratories, MassGeneral Hospital for Children, Massachusetts General Hospital, Boston, Massachusetts 02114, Harvard Medical School, Boston,
| | - Decio L. Eizirik
- Laboratory for Experimental Medicine and Endocrinology (LEGENDO), University Hospital Gasthuisberg, Catholic University of Leuven, Herestraat 49, box 902, B-3000 Leuven, Belgium, Center for Biological Sequence Analysis, Department of Systems Biology, Technical University of Denmark, Building 208, DK-2800 Kgs. Lyngby, Denmark, Pediatric Surgical Research Laboratories, MassGeneral Hospital for Children, Massachusetts General Hospital, Boston, Massachusetts 02114, Harvard Medical School, Boston,
| | - Etienne Waelkens
- Laboratory for Experimental Medicine and Endocrinology (LEGENDO), University Hospital Gasthuisberg, Catholic University of Leuven, Herestraat 49, box 902, B-3000 Leuven, Belgium, Center for Biological Sequence Analysis, Department of Systems Biology, Technical University of Denmark, Building 208, DK-2800 Kgs. Lyngby, Denmark, Pediatric Surgical Research Laboratories, MassGeneral Hospital for Children, Massachusetts General Hospital, Boston, Massachusetts 02114, Harvard Medical School, Boston,
| | - Lutgart Overbergh
- Laboratory for Experimental Medicine and Endocrinology (LEGENDO), University Hospital Gasthuisberg, Catholic University of Leuven, Herestraat 49, box 902, B-3000 Leuven, Belgium, Center for Biological Sequence Analysis, Department of Systems Biology, Technical University of Denmark, Building 208, DK-2800 Kgs. Lyngby, Denmark, Pediatric Surgical Research Laboratories, MassGeneral Hospital for Children, Massachusetts General Hospital, Boston, Massachusetts 02114, Harvard Medical School, Boston,
| | - Chantal Mathieu
- Laboratory for Experimental Medicine and Endocrinology (LEGENDO), University Hospital Gasthuisberg, Catholic University of Leuven, Herestraat 49, box 902, B-3000 Leuven, Belgium, Center for Biological Sequence Analysis, Department of Systems Biology, Technical University of Denmark, Building 208, DK-2800 Kgs. Lyngby, Denmark, Pediatric Surgical Research Laboratories, MassGeneral Hospital for Children, Massachusetts General Hospital, Boston, Massachusetts 02114, Harvard Medical School, Boston,
| |
Collapse
|
49
|
Flamez D, Roland I, Berton A, Kutlu B, Dufrane D, Beckers MC, De Waele E, Rooman I, Bouwens L, Clark A, Lonneux M, Jamar JF, Goldman S, Maréchal D, Goodman N, Gianello P, Van Huffel C, Salmon I, Eizirik DL. A genomic-based approach identifies FXYD domain containing ion transport regulator 2 (FXYD2)gammaa as a pancreatic beta cell-specific biomarker. Diabetologia 2010; 53:1372-83. [PMID: 20379810 DOI: 10.1007/s00125-010-1714-z] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2009] [Accepted: 01/13/2010] [Indexed: 01/09/2023]
Abstract
AIMS/HYPOTHESIS Non-invasive imaging of the pancreatic beta cell mass (BCM) requires the identification of novel and specific beta cell biomarkers. We have developed a systems biology approach to the identification of promising beta cell markers. METHODS We followed a functional genomics strategy based on massive parallel signal sequencing (MPSS) and microarray data obtained in human islets, purified primary rat beta cells, non-beta cells and INS-1E cells to identify promising beta cell markers. Candidate biomarkers were validated and screened using established human and macaque (Macacus cynomolgus) tissue microarrays. RESULTS After a series of filtering steps, 12 beta cell-specific membrane proteins were identified. For four of the proteins we selected or produced antibodies targeting specifically the human proteins and their splice variants; all four candidates were confirmed as islet-specific in human pancreas. Two splice variants of FXYD domain containing ion transport regulator 2 (FXYD2), a regulating subunit of the Na(+)-K(+)-ATPase, were identified as preferentially present in human pancreatic islets. The presence of FXYD2gammaa was restricted to pancreatic islets and selectively detected in pancreatic beta cells. Analysis of human fetal pancreas samples showed the presence of FXYD2gammaa at an early stage (15 weeks). Histological examination of pancreatic sections from individuals with type 1 diabetes or sections from pancreases of streptozotocin-treated Macacus cynomolgus monkeys indicated a close correlation between loss of FXYD2gammaa and loss of insulin-positive cells. CONCLUSIONS/INTERPRETATION We propose human FXYD2gammaa as a novel beta cell-specific biomarker.
Collapse
Affiliation(s)
- D Flamez
- Laboratory of Experimental Medicine, Université Libre de Bruxelles, Route de Lennik 808, 1070, Brussels, Belgium.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Lage K, Møllgård K, Greenway S, Wakimoto H, Gorham JM, Workman CT, Bendsen E, Hansen NT, Rigina O, Roque FS, Wiese C, Christoffels VM, Roberts AE, Smoot LB, Pu WT, Donahoe PK, Tommerup N, Brunak S, Seidman CE, Seidman JG, Larsen LA. Dissecting spatio-temporal protein networks driving human heart development and related disorders. Mol Syst Biol 2010; 6:381. [PMID: 20571530 PMCID: PMC2913399 DOI: 10.1038/msb.2010.36] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2009] [Accepted: 04/27/2010] [Indexed: 11/27/2022] Open
Abstract
Aberrant organ development is associated with a wide spectrum of disorders, from schizophrenia to congenital heart disease, but systems-level insight into the underlying processes is very limited. Using heart morphogenesis as general model for dissecting the functional architecture of organ development, we combined detailed phenotype information from deleterious mutations in 255 genes with high-confidence experimental interactome data, and coupled the results to thorough experimental validation. Hereby, we made the first systematic analysis of spatio-temporal protein networks driving many stages of a developing organ identifying several novel signaling modules. Our results show that organ development relies on surprisingly few, extensively recycled, protein modules that integrate into complex higher-order networks. This design allows the formation of a complicated organ using simple building blocks, and suggests how mutations in the same genes can lead to diverse phenotypes. We observe a striking temporal correlation between organ complexity and the number of discrete functional modules coordinating morphogenesis. Our analysis elucidates the organization and composition of spatio-temporal protein networks that drive the formation of organs, which in the future may lay the foundation of novel approaches in treatments, diagnostics, and regenerative medicine.
Collapse
Affiliation(s)
- Kasper Lage
- Pediatric Surgical Research Laboratories, MassGeneral Hospital for Children, Massachusetts General Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Center for Biological Sequence Analysis, Department of Systems Biology, Technical University of Denmark, Lyngby, Denmark
- Center for Protein Research, University of Copenhagen, Copenhagen, Denmark
| | - Kjeld Møllgård
- Developmental Biology Unit, Department of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Steven Greenway
- Department of Genetics, Harvard Medical School, Boston, MA, USA
| | - Hiroko Wakimoto
- Department of Genetics, Harvard Medical School, Boston, MA, USA
| | - Joshua M Gorham
- Department of Genetics, Harvard Medical School, Boston, MA, USA
| | - Christopher T Workman
- Center for Biological Sequence Analysis, Department of Systems Biology, Technical University of Denmark, Lyngby, Denmark
| | - Eske Bendsen
- Fertility Clinic, Department of Obstetrics and Gynaecology, University Hospital of Odense, Odense, Denmark
| | - Niclas T Hansen
- Center for Biological Sequence Analysis, Department of Systems Biology, Technical University of Denmark, Lyngby, Denmark
| | - Olga Rigina
- Center for Biological Sequence Analysis, Department of Systems Biology, Technical University of Denmark, Lyngby, Denmark
| | - Francisco S Roque
- Center for Biological Sequence Analysis, Department of Systems Biology, Technical University of Denmark, Lyngby, Denmark
- Center for Protein Research, University of Copenhagen, Copenhagen, Denmark
| | - Cornelia Wiese
- Center for Heart Failure Research, Academic Medical Centre, Amsterdam, The Netherlands
| | | | - Amy E Roberts
- Partners HealthCare Center for Genetics and Genomics, Boston, MA, USA
- Department of Cardiology, Children's Hospital, Boston, MA, USA
| | - Leslie B Smoot
- Department of Cardiology, Children's Hospital, Boston, MA, USA
| | - William T Pu
- Department of Cardiology, Children's Hospital, Boston, MA, USA
- Harvard Stem Cell Institute, Harvard University, Cambridge, MA, USA
| | - Patricia K Donahoe
- Pediatric Surgical Research Laboratories, MassGeneral Hospital for Children, Massachusetts General Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Niels Tommerup
- Wilhelm Johannsen Centre for Functional Genome Research, Department of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Søren Brunak
- Center for Biological Sequence Analysis, Department of Systems Biology, Technical University of Denmark, Lyngby, Denmark
- Center for Protein Research, University of Copenhagen, Copenhagen, Denmark
| | | | | | - Lars A Larsen
- Wilhelm Johannsen Centre for Functional Genome Research, Department of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|