1
|
Nita A, Abraham SP, Elrefaay ER, Fafilek B, Cizkova E, Ursachi VC, Gudernova I, Koudelka A, Dudeja P, Gregor T, Feketova Z, Rico G, Svozilova K, Celiker C, Czyrek AA, Barta T, Trantirek L, Wiedlocha A, Krejci P, Bosakova M. FGFR2 residence in primary cilia is necessary for epithelial cell signaling. J Cell Biol 2025; 224:e202311030. [PMID: 40257378 PMCID: PMC12010920 DOI: 10.1083/jcb.202311030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 11/21/2024] [Accepted: 03/21/2025] [Indexed: 04/22/2025] Open
Abstract
Primary cilium projects from cells to provide a communication platform with neighboring cells and the surrounding environment. This is ensured by the selective entry of membrane receptors and signaling molecules, producing fine-tuned and effective responses to the extracellular cues. In this study, we focused on one family of signaling molecules, the fibroblast growth factor receptors (FGFRs), their residence within cilia, and its role in FGFR signaling. We show that FGFR1 and FGFR2, but not FGFR3 and FGFR4, localize to primary cilia of the developing mouse tissues and in vitro cells. For FGFR2, we demonstrate that the ciliary residence is necessary for its signaling and expression of target morphogenic genes. We also show that the pathogenic FGFR2 variants have minimal cilium presence, which can be rescued for the p.P253R variant associated with the Apert syndrome by using the RLY-4008 kinase inhibitor. Finally, we determine the molecular regulators of FGFR2 trafficking to cilia, including IFT144, BBS1, and the conserved T429V430 motif within FGFR2.
Collapse
Affiliation(s)
- Alexandru Nita
- Department of Biology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
- Institute of Animal Physiology and Genetics of the CAS, Brno, Czech Republic
| | - Sara P. Abraham
- Department of Biology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
- Institute of Animal Physiology and Genetics of the CAS, Brno, Czech Republic
| | - Eman R. Elrefaay
- Department of Biology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
- Institute of Animal Physiology and Genetics of the CAS, Brno, Czech Republic
| | - Bohumil Fafilek
- Department of Biology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Eliska Cizkova
- Department of Biology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Vlad Constantin Ursachi
- Department of Biology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
- International Clinical Research Center, St. Anne’s University Hospital, Brno, Czech Republic
| | - Iva Gudernova
- Department of Biology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
- Institute of Animal Physiology and Genetics of the CAS, Brno, Czech Republic
| | - Adolf Koudelka
- Department of Biology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Pooja Dudeja
- Department of Biology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
- International Clinical Research Center, St. Anne’s University Hospital, Brno, Czech Republic
| | - Tomas Gregor
- Department of Biology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Zuzana Feketova
- Department of Biology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
- International Clinical Research Center, St. Anne’s University Hospital, Brno, Czech Republic
| | - Gustavo Rico
- Department of Biology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
- International Clinical Research Center, St. Anne’s University Hospital, Brno, Czech Republic
| | - Katerina Svozilova
- Department of Biology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
- Institute of Animal Physiology and Genetics of the CAS, Brno, Czech Republic
| | - Canan Celiker
- Department of Histology and Embryology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Aleksandra A. Czyrek
- Department of Biology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
- International Clinical Research Center, St. Anne’s University Hospital, Brno, Czech Republic
| | - Tomas Barta
- Institute of Animal Physiology and Genetics of the CAS, Brno, Czech Republic
- Department of Histology and Embryology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Lukas Trantirek
- CEITEC - Central European Institute of Technology, Masaryk University, Brno, Czech Republic
| | - Antoni Wiedlocha
- Department of Molecular Cell Biology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
- Centre for Cancer Cell Reprograming, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Pavel Krejci
- Department of Biology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
- Institute of Animal Physiology and Genetics of the CAS, Brno, Czech Republic
- International Clinical Research Center, St. Anne’s University Hospital, Brno, Czech Republic
| | - Michaela Bosakova
- Department of Biology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
- Institute of Animal Physiology and Genetics of the CAS, Brno, Czech Republic
| |
Collapse
|
2
|
Bosakova M, Abraham SP, Wachtell D, Zieba JT, Kot A, Nita A, Czyrek AA, Koudelka A, Ursachi VC, Feketova Z, Rico-Llanos G, Svozilova K, Kocerova P, Fafilek B, Gregor T, Kotaskova J, Duran I, Vanhara P, Doubek M, Mayer J, Soucek K, Krakow D, Krejci P. Endoplasmic reticulum stress disrupts signaling via altered processing of transmembrane receptors. Cell Commun Signal 2025; 23:209. [PMID: 40307870 PMCID: PMC12044870 DOI: 10.1186/s12964-025-02208-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Accepted: 04/17/2025] [Indexed: 05/02/2025] Open
Abstract
Cell communication systems based on polypeptide ligands use transmembrane receptors to transmit signals across the plasma membrane. In their biogenesis, receptors depend on the endoplasmic reticulum (ER)-Golgi system for folding, maturation, transport and localization to the cell surface. ER stress, caused by protein overproduction and misfolding, is a well-known pathology in neurodegeneration, cancer and numerous other diseases. How ER stress affects cell communication via transmembrane receptors is largely unknown. In disease models of multiple myeloma, chronic lymphocytic leukemia and osteogenesis imperfecta, we show that ER stress leads to loss of the mature transmembrane receptors FGFR3, ROR1, FGFR1, LRP6, FZD5 and PTH1R at the cell surface, resulting in impaired downstream signaling. This is caused by downregulation of receptor production and increased intracellular retention of immature receptor forms. Reduction of ER stress by treatment of cells with the chemical chaperone tauroursodeoxycholic acid or by expression of the chaperone protein BiP resulted in restoration of receptor maturation and signaling. We show a previously unappreciated pathological effect of ER stress; impaired cellular communication due to altered receptor processing. Our findings have implications for disease mechanisms related to ER stress and are particularly important when receptor-based pharmacological approaches are used for treatment.
Collapse
Affiliation(s)
- Michaela Bosakova
- Department of Biology, Faculty of Medicine, Masaryk University, 62500, Brno, Czech Republic
- Institute of Animal Physiology and Genetics, Czech Academy of Sciences, 60200, Brno, Czech Republic
- International Clinical Research Center, St. Anne's University Hospital, 65691, Brno, Czech Republic
| | - Sara P Abraham
- Department of Biology, Faculty of Medicine, Masaryk University, 62500, Brno, Czech Republic
- Institute of Animal Physiology and Genetics, Czech Academy of Sciences, 60200, Brno, Czech Republic
- International Clinical Research Center, St. Anne's University Hospital, 65691, Brno, Czech Republic
| | - Davis Wachtell
- Department of Orthopaedic Surgery, Human Genetics, and Obstetrics and Gynecology, University of California at Los Angeles, Los Angeles, CA, 90095, USA
| | - Jennifer T Zieba
- Department of Orthopaedic Surgery, Human Genetics, and Obstetrics and Gynecology, University of California at Los Angeles, Los Angeles, CA, 90095, USA
| | - Alexander Kot
- Department of Orthopaedic Surgery, Human Genetics, and Obstetrics and Gynecology, University of California at Los Angeles, Los Angeles, CA, 90095, USA
| | - Alexandru Nita
- Department of Biology, Faculty of Medicine, Masaryk University, 62500, Brno, Czech Republic
- Institute of Animal Physiology and Genetics, Czech Academy of Sciences, 60200, Brno, Czech Republic
| | - Aleksandra Anna Czyrek
- Department of Biology, Faculty of Medicine, Masaryk University, 62500, Brno, Czech Republic
- International Clinical Research Center, St. Anne's University Hospital, 65691, Brno, Czech Republic
| | - Adolf Koudelka
- Department of Biology, Faculty of Medicine, Masaryk University, 62500, Brno, Czech Republic
| | - Vlad-Constantin Ursachi
- Department of Biology, Faculty of Medicine, Masaryk University, 62500, Brno, Czech Republic
- International Clinical Research Center, St. Anne's University Hospital, 65691, Brno, Czech Republic
| | - Zuzana Feketova
- Department of Biology, Faculty of Medicine, Masaryk University, 62500, Brno, Czech Republic
- International Clinical Research Center, St. Anne's University Hospital, 65691, Brno, Czech Republic
| | - Gustavo Rico-Llanos
- Department of Biology, Faculty of Medicine, Masaryk University, 62500, Brno, Czech Republic
- International Clinical Research Center, St. Anne's University Hospital, 65691, Brno, Czech Republic
| | - Katerina Svozilova
- Department of Biology, Faculty of Medicine, Masaryk University, 62500, Brno, Czech Republic
- Institute of Animal Physiology and Genetics, Czech Academy of Sciences, 60200, Brno, Czech Republic
| | - Petra Kocerova
- Department of Biology, Faculty of Medicine, Masaryk University, 62500, Brno, Czech Republic
- Institute of Animal Physiology and Genetics, Czech Academy of Sciences, 60200, Brno, Czech Republic
| | - Bohumil Fafilek
- Department of Biology, Faculty of Medicine, Masaryk University, 62500, Brno, Czech Republic
- Institute of Animal Physiology and Genetics, Czech Academy of Sciences, 60200, Brno, Czech Republic
- International Clinical Research Center, St. Anne's University Hospital, 65691, Brno, Czech Republic
| | - Tomas Gregor
- Department of Biology, Faculty of Medicine, Masaryk University, 62500, Brno, Czech Republic
- International Clinical Research Center, St. Anne's University Hospital, 65691, Brno, Czech Republic
| | - Jana Kotaskova
- Department of Internal Medicine, Hematology and Oncology, University Hospital Brno, 62500, Brno, Czech Republic
| | - Ivan Duran
- Department of Orthopaedic Surgery, Human Genetics, and Obstetrics and Gynecology, University of California at Los Angeles, Los Angeles, CA, 90095, USA
| | - Petr Vanhara
- Department of Histology and Embryology, Faculty of Medicine, Masaryk University, 62500, Brno, Czech Republic
| | - Michael Doubek
- Department of Internal Medicine, Hematology and Oncology, University Hospital Brno, 62500, Brno, Czech Republic
| | - Jiri Mayer
- Department of Internal Medicine, Hematology and Oncology, University Hospital Brno, 62500, Brno, Czech Republic
| | - Karel Soucek
- International Clinical Research Center, St. Anne's University Hospital, 65691, Brno, Czech Republic
- Department of Experimental Biology, Faculty of Science, Masaryk University, 62500, Brno, Czech Republic
- Department of Cytokinetics, Institute of Biophysics, Czech Academy of Sciences, 61265, Brno, Czech Republic
| | - Deborah Krakow
- Department of Orthopaedic Surgery, Human Genetics, and Obstetrics and Gynecology, University of California at Los Angeles, Los Angeles, CA, 90095, USA.
| | - Pavel Krejci
- Department of Biology, Faculty of Medicine, Masaryk University, 62500, Brno, Czech Republic.
- Institute of Animal Physiology and Genetics, Czech Academy of Sciences, 60200, Brno, Czech Republic.
- International Clinical Research Center, St. Anne's University Hospital, 65691, Brno, Czech Republic.
| |
Collapse
|
3
|
Clark JF, Soriano P. Diverse Fgfr1 signaling pathways and endocytic trafficking regulate mesoderm development. Genes Dev 2024; 38:393-414. [PMID: 38834239 PMCID: PMC11216173 DOI: 10.1101/gad.351593.124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 05/21/2024] [Indexed: 06/06/2024]
Abstract
The fibroblast growth factor (FGF) pathway is a conserved signaling pathway required for embryonic development. Activated FGF receptor 1 (FGFR1) drives multiple intracellular signaling cascade pathways, including ERK/MAPK and PI3K/AKT, collectively termed canonical signaling. However, unlike Fgfr1-null embryos, embryos containing hypomorphic mutations in Fgfr1 lacking the ability to activate canonical downstream signals are still able to develop to birth but exhibit severe defects in all mesodermal-derived tissues. The introduction of an additional signaling mutation further reduces the activity of Fgfr1, leading to earlier lethality, reduced somitogenesis, and more severe changes in transcriptional outputs. Genes involved in migration, ECM interaction, and phosphoinositol signaling were significantly downregulated, proteomic analysis identified changes in interactions with endocytic pathway components, and cells expressing mutant receptors show changes in endocytic trafficking. Together, we identified processes regulating early mesoderm development by mechanisms involving both canonical and noncanonical Fgfr1 pathways, including direct interaction with cell adhesion components and endocytic regulation.
Collapse
Affiliation(s)
- James F Clark
- Department of Cell, Developmental, and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, New York 10029, USA
| | - Philippe Soriano
- Department of Cell, Developmental, and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, New York 10029, USA
| |
Collapse
|
4
|
Clark JF, Soriano P. Diverse Fgfr1 signaling pathways and endocytic trafficking regulate early mesoderm development. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.16.580629. [PMID: 38405698 PMCID: PMC10888970 DOI: 10.1101/2024.02.16.580629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/27/2024]
Abstract
The Fibroblast growth factor (FGF) pathway is a conserved signaling pathway required for embryonic development. Activated FGF receptor 1 (FGFR1) drives multiple intracellular signaling cascade pathways, including ERK/MAPK and PI3K/AKT, collectively termed canonical signaling. However, unlike Fgfr1 null embryos, embryos containing hypomorphic mutations in Fgfr1 lacking the ability to activate canonical downstream signals are still able to develop to birth, but exhibit severe defects in all mesodermal-derived tissues. The introduction of an additional signaling mutation further reduces the activity of Fgfr1, leading to earlier lethality, reduced somitogenesis, and more severe changes in transcriptional outputs. Genes involved in migration, ECM-interaction, and phosphoinositol signaling were significantly downregulated, proteomic analysis identified changes in interactions with endocytic pathway components, and cells expressing mutant receptors show changes in endocytic trafficking. Together, we identify processes regulating early mesoderm development by mechanisms involving both canonical and non-canonical Fgfr1 pathways, including direct interaction with cell adhesion components and endocytic regulation.
Collapse
Affiliation(s)
- James F. Clark
- Department of Cell, Developmental, and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| | - Philippe Soriano
- Department of Cell, Developmental, and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| |
Collapse
|
5
|
Nakken S, Gundersen S, Bernal FLM, Polychronopoulos D, Hovig E, Wesche J. Comprehensive interrogation of gene lists from genome-scale cancer screens with oncoEnrichR. Int J Cancer 2023; 153:1819-1828. [PMID: 37551617 DOI: 10.1002/ijc.34666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 06/19/2023] [Accepted: 07/04/2023] [Indexed: 08/09/2023]
Abstract
Genome-scale screening experiments in cancer produce long lists of candidate genes that require extensive interpretation for biological insight and prioritization for follow-up studies. Interrogation of gene lists frequently represents a significant and time-consuming undertaking, in which experimental biologists typically combine results from a variety of bioinformatics resources in an attempt to portray and understand cancer relevance. As a means to simplify and strengthen the support for this endeavor, we have developed oncoEnrichR, a flexible bioinformatics tool that allows cancer researchers to comprehensively interrogate a given gene list along multiple facets of cancer relevance. oncoEnrichR differs from general gene set analysis frameworks through the integration of an extensive set of prior knowledge specifically relevant for cancer, including ranked gene-tumor type associations, literature-supported proto-oncogene and tumor suppressor gene annotations, target druggability data, regulatory interactions, synthetic lethality predictions, as well as prognostic associations, gene aberrations and co-expression patterns across tumor types. The software produces a structured and user-friendly analysis report as its main output, where versions of all underlying data resources are explicitly logged, the latter being a critical component for reproducible science. We demonstrate the usefulness of oncoEnrichR through interrogation of two candidate lists from proteomic and CRISPR screens. oncoEnrichR is freely available as a web-based service hosted by the Galaxy platform (https://oncotools.elixir.no), and can also be accessed as a stand-alone R package (https://github.com/sigven/oncoEnrichR).
Collapse
Affiliation(s)
- Sigve Nakken
- Department of Tumor Biology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
- Centre for Cancer Cell Reprogramming, Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
- Centre for Bioinformatics, Department of Informatics, University of Oslo, Oslo, Norway
| | - Sveinung Gundersen
- Centre for Bioinformatics, Department of Informatics, University of Oslo, Oslo, Norway
| | - Fabian L M Bernal
- University Center for Information Technology, University of Oslo, Oslo, Norway
| | | | - Eivind Hovig
- Department of Tumor Biology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
- Centre for Bioinformatics, Department of Informatics, University of Oslo, Oslo, Norway
| | - Jørgen Wesche
- Department of Tumor Biology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
- Centre for Cancer Cell Reprogramming, Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| |
Collapse
|
6
|
Boichuk S, Dunaev P, Skripova V, Galembikova A, Bikinieva F, Shagimardanova E, Gazizova G, Deviatiiarov R, Valeeva E, Mikheeva E, Vasilyeva M, Kopnin P, Strelnikov V, Kiyamova R. Unraveling the Mechanisms of Sensitivity to Anti-FGF Therapies in Imatinib-Resistant Gastrointestinal Stromal Tumors (GIST) Lacking Secondary KIT Mutations. Cancers (Basel) 2023; 15:5354. [PMID: 38001614 PMCID: PMC10670741 DOI: 10.3390/cancers15225354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 11/03/2023] [Accepted: 11/06/2023] [Indexed: 11/26/2023] Open
Abstract
We showed previously that inhibition of KIT signaling in GISTs activates FGFR-signaling pathway rendering cancer cells resistant to receptor tyrosine kinase inhibitor (RTKi) imatinib mesylate (IM) (Gleevec) despite of absence of secondary KIT mutations and thereby illustrating a rationale for the combined (e.g., KIT- and FGFR-targeted) therapies. We show here that long-term culture of IM-resistant GISTs (GIST-R1) with IM substantially down-regulates KIT expression and induces activation of the FGFR-signaling cascade, evidenced by increased expression of total and phosphorylated forms of FGFR1 and 2, FGF-2, and FRS-2, the well-known adaptor protein of the FGF-signaling cascade. This resulted in activation of both AKT- and MAPK-signaling pathways shown on mRNA and protein levels, and rendered cancer cells highly sensitive to pan-FGFR-inhibitors (BGJ 398, AZD 4547, and TAS-120). Indeed, we observed a significant decrease of IC50 values for BGJ 398 in the GIST subclone (GIST-R2) derived from GIST-R1 cells continuously treated with IM for up to 12 months. An increased sensitivity of GIST-R2 cells to FGFR inhibition was also revealed on the xenograft models, illustrating a substantial (>70%) decrease in tumor size in BGJ 398-treated animals when treated with this pan-FGFR inhibitor. Similarly, an increased intra-tumoral apoptosis as detected by immunohistochemical (IHC)-staining for cleaved caspase-3 on day 5 of the treatment was found. As expected, both BGJ 398 and IM used alone lacked the pro-apoptotic and growth-inhibitory activities on GIST-R1 xenografts, thereby revealing their resistance to these TKis when used alone. Important, the knockdown of FGFR2, and, in much less content, FGF-2, abrogated BGJ 398's activity against GIST-R2 cells both in vitro and in vivo, thereby illustrating the FGF-2/FGFR2-signaling axis in IM-resistant GISTs as a primary molecular target for this RTKi. Collectively, our data illustrates that continuous inhibition of KIT signaling in IM-resistant GISTs lacking secondary KIT mutations induced clonal heterogeneity of GISTs and resulted in accumulation of cancer cells with overexpressed FGF-2 and FGFR1/2, thereby leading to activation of FGFR-signaling. This in turn rendered these cells extremely sensitive to the pan-FGFR inhibitors used in combination with IM, or even alone, and suggests a rationale to re-evaluate the effectiveness of FGFR-inhibitors in order to improve the second-line therapeutic strategies for selected subgroups of GIST patients (e.g., IM-resistant GISTs lacking secondary KIT mutations and exhibiting the activation of the FGFR-signaling pathway).
Collapse
Affiliation(s)
- Sergei Boichuk
- Department of Pathology, Kazan State Medical University, Kazan 420012, Russia; (P.D.); (A.G.); (F.B.); (E.M.)
- Department of Radiotherapy and Radiology, Russian Medical Academy of Continuous Professional Education, Moscow 127051, Russia
- Central Research Laboratory, Kazan State Medical University, Kazan 420012, Russia;
- Biomarker Research Laboratory, Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan 420008, Russia; (V.S.); (R.K.)
| | - Pavel Dunaev
- Department of Pathology, Kazan State Medical University, Kazan 420012, Russia; (P.D.); (A.G.); (F.B.); (E.M.)
| | - Vera Skripova
- Biomarker Research Laboratory, Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan 420008, Russia; (V.S.); (R.K.)
| | - Aigul Galembikova
- Department of Pathology, Kazan State Medical University, Kazan 420012, Russia; (P.D.); (A.G.); (F.B.); (E.M.)
| | - Firyuza Bikinieva
- Department of Pathology, Kazan State Medical University, Kazan 420012, Russia; (P.D.); (A.G.); (F.B.); (E.M.)
| | - Elena Shagimardanova
- Regulatory Genomics Research Center, Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan 420008, Russia; (E.S.); (G.G.); (R.D.)
- LIFT—Life Improvement by Future Technologies Institute, Moscow 121205, Russia
- Loginov Moscow Clinical Scientific Center, Moscow 111123, Russia
| | - Guzel Gazizova
- Regulatory Genomics Research Center, Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan 420008, Russia; (E.S.); (G.G.); (R.D.)
| | - Ruslan Deviatiiarov
- Regulatory Genomics Research Center, Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan 420008, Russia; (E.S.); (G.G.); (R.D.)
- LIFT—Life Improvement by Future Technologies Institute, Moscow 121205, Russia
| | - Elena Valeeva
- Central Research Laboratory, Kazan State Medical University, Kazan 420012, Russia;
| | - Ekaterina Mikheeva
- Department of Pathology, Kazan State Medical University, Kazan 420012, Russia; (P.D.); (A.G.); (F.B.); (E.M.)
| | - Maria Vasilyeva
- Cytogenetics Laboratory, Carcinogenesis Institute, N.N. Blokhin National Medical Research Center of Oncology, Moscow 115478, Russia; (M.V.); (P.K.)
| | - Pavel Kopnin
- Cytogenetics Laboratory, Carcinogenesis Institute, N.N. Blokhin National Medical Research Center of Oncology, Moscow 115478, Russia; (M.V.); (P.K.)
| | - Vladimir Strelnikov
- Epigenetics Laboratory, Research Centre for Medical Genetics, Moscow 115522, Russia;
| | - Ramziya Kiyamova
- Biomarker Research Laboratory, Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan 420008, Russia; (V.S.); (R.K.)
| |
Collapse
|
7
|
Lampart A, Krowarsch D, Biadun M, Sorensen V, Szymczyk J, Sluzalska K, Wiedlocha A, Otlewski J, Zakrzewska M. Intracellular FGF1 protects cells from apoptosis through direct interaction with p53. Cell Mol Life Sci 2023; 80:311. [PMID: 37783936 PMCID: PMC10545594 DOI: 10.1007/s00018-023-04964-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Revised: 08/28/2023] [Accepted: 09/12/2023] [Indexed: 10/04/2023]
Abstract
Fibroblast growth factor 1 (FGF1) acts by activating specific tyrosine kinase receptors on the cell surface. In addition to this classical mode of action, FGF1 also exhibits intracellular activity. Recently, we found that FGF1 translocated into the cell interior exhibits anti-apoptotic activity independent of receptor activation and downstream signaling. Here, we show that expression of FGF1 increases the survival of cells treated with various apoptosis inducers, but only when wild-type p53 is present. The p53-negative cells were not protected by either ectopically expressed or translocated FGF1. We also confirmed the requirement of p53 for the anti-apoptotic intracellular activity of FGF1 by silencing p53, resulting in loss of the protective effect of FGF1. In contrast, in p53-negative cells, intracellular FGF1 regained its anti-apoptotic properties after transfection with wild-type p53. We also found that FGF1 directly interacts with p53 in cells and that the binding region is located in the DBD domain of p53. We therefore postulate that intracellular FGF1 protects cells from apoptosis by directly interacting with p53.
Collapse
Affiliation(s)
- Agata Lampart
- Department of Protein Engineering, Faculty of Biotechnology, University of Wroclaw, Wroclaw, Poland
| | - Daniel Krowarsch
- Department of Protein Biotechnology, Faculty of Biotechnology, University of Wroclaw, Wroclaw, Poland
| | - Martyna Biadun
- Department of Protein Engineering, Faculty of Biotechnology, University of Wroclaw, Wroclaw, Poland
- Department of Protein Biotechnology, Faculty of Biotechnology, University of Wroclaw, Wroclaw, Poland
| | - Vigdis Sorensen
- Advanced Light Microscopy Core Facility, Dept. Core Facilities, Institute for Cancer Research, The Norwegian Radium Hospital, Oslo University Hospital, Montebello, Oslo, Norway
- Centre for Cancer Cell Reprogramming, Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Montebello, Oslo, Norway
| | - Jakub Szymczyk
- Department of Protein Engineering, Faculty of Biotechnology, University of Wroclaw, Wroclaw, Poland
| | - Katarzyna Sluzalska
- Department of Protein Engineering, Faculty of Biotechnology, University of Wroclaw, Wroclaw, Poland
| | - Antoni Wiedlocha
- Centre for Cancer Cell Reprogramming, Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Montebello, Oslo, Norway
- Department of Molecular Cell Biology, Institute for Cancer Research, Oslo University Hospital, Montebello, Oslo, Norway
| | - Jacek Otlewski
- Department of Protein Engineering, Faculty of Biotechnology, University of Wroclaw, Wroclaw, Poland
| | - Malgorzata Zakrzewska
- Department of Protein Engineering, Faculty of Biotechnology, University of Wroclaw, Wroclaw, Poland.
| |
Collapse
|
8
|
Jung M, Zimmermann R. Quantitative Mass Spectrometry Characterizes Client Spectra of Components for Targeting of Membrane Proteins to and Their Insertion into the Membrane of the Human ER. Int J Mol Sci 2023; 24:14166. [PMID: 37762469 PMCID: PMC10532041 DOI: 10.3390/ijms241814166] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 09/07/2023] [Accepted: 09/12/2023] [Indexed: 09/29/2023] Open
Abstract
To elucidate the redundancy in the components for the targeting of membrane proteins to the endoplasmic reticulum (ER) and/or their insertion into the ER membrane under physiological conditions, we previously analyzed different human cells by label-free quantitative mass spectrometry. The HeLa and HEK293 cells had been depleted of a certain component by siRNA or CRISPR/Cas9 treatment or were deficient patient fibroblasts and compared to the respective control cells by differential protein abundance analysis. In addition to clients of the SRP and Sec61 complex, we identified membrane protein clients of components of the TRC/GET, SND, and PEX3 pathways for ER targeting, and Sec62, Sec63, TRAM1, and TRAP as putative auxiliary components of the Sec61 complex. Here, a comprehensive evaluation of these previously described differential protein abundance analyses, as well as similar analyses on the Sec61-co-operating EMC and the characteristics of the topogenic sequences of the various membrane protein clients, i.e., the client spectra of the components, are reported. As expected, the analysis characterized membrane protein precursors with cleavable amino-terminal signal peptides or amino-terminal transmembrane helices as predominant clients of SRP, as well as the Sec61 complex, while precursors with more central or even carboxy-terminal ones were found to dominate the client spectra of the SND and TRC/GET pathways for membrane targeting. For membrane protein insertion, the auxiliary Sec61 channel components indeed share the client spectra of the Sec61 complex to a large extent. However, we also detected some unexpected differences, particularly related to EMC, TRAP, and TRAM1. The possible mechanistic implications for membrane protein biogenesis at the human ER are discussed and can be expected to eventually advance our understanding of the mechanisms that are involved in the so-called Sec61-channelopathies, resulting from deficient ER protein import.
Collapse
Affiliation(s)
| | - Richard Zimmermann
- Medical Biochemistry and Molecular Biology, Saarland University, 66421 Homburg, Germany;
| |
Collapse
|
9
|
Lv Z, Wang T, Cao X, Sun M, Qu Y. The role of receptor‐type protein tyrosine phosphatases in cancer. PRECISION MEDICAL SCIENCES 2023. [DOI: 10.1002/prm2.12090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Affiliation(s)
- Zhengyuan Lv
- Department of Medical Genetics, School of Basic Medical Science Nanjing Medical University Nanjing China
| | - Tianming Wang
- Department of Medical Genetics, School of Basic Medical Science Nanjing Medical University Nanjing China
- Central Laboratory, Translational Medicine Research Center The Affiliated Jiangning Hospital with Nanjing Medical University Nanjing China
| | - Xin Cao
- Department of Medical Genetics, School of Basic Medical Science Nanjing Medical University Nanjing China
| | - Mengting Sun
- Biobank of Jiangsu Institute of Cancer Research The Affiliated Cancer Hospital of Nanjing Medical University Nanjing China
| | - Yuan Qu
- Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research The Affiliated Cancer Hospital of Nanjing Medical University Nanjing China
| |
Collapse
|
10
|
Zhai LH, Chen KF, Hao BB, Tan MJ. Proteomic characterization of post-translational modifications in drug discovery. Acta Pharmacol Sin 2022; 43:3112-3129. [PMID: 36372853 PMCID: PMC9712763 DOI: 10.1038/s41401-022-01017-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 08/07/2022] [Indexed: 11/15/2022]
Abstract
Protein post-translational modifications (PTMs), which are usually enzymatically catalyzed, are major regulators of protein activity and involved in almost all celluar processes. Dysregulation of PTMs is associated with various types of diseases. Therefore, PTM regulatory enzymes represent as an attractive and important class of targets in drug research and development. Inhibitors against kinases, methyltransferases, deacetyltransferases, ubiquitin ligases have achieved remarkable success in clinical application. Mass spectrometry-based proteomics technologies serve as a powerful approach for system-wide characterization of PTMs, which facilitates the identification of drug targets, elucidation of the mechanisms of action of drugs, and discovery of biomakers in personalized therapy. In this review, we summarize recent advances of proteomics-based studies on PTM targeting drugs and discuss how proteomics strategies facilicate drug target identification, mechanism elucidation, and new therapy development in precision medicine.
Collapse
Affiliation(s)
- Lin-Hui Zhai
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
- Zhongshan Institute of Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Science, Zhongshan, 528400, China
| | - Kai-Feng Chen
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Bing-Bing Hao
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Min-Jia Tan
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
- Zhongshan Institute of Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Science, Zhongshan, 528400, China.
| |
Collapse
|
11
|
Ornitz DM, Itoh N. New developments in the biology of fibroblast growth factors. WIREs Mech Dis 2022; 14:e1549. [PMID: 35142107 PMCID: PMC10115509 DOI: 10.1002/wsbm.1549] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 11/08/2021] [Accepted: 11/09/2021] [Indexed: 01/28/2023]
Abstract
The fibroblast growth factor (FGF) family is composed of 18 secreted signaling proteins consisting of canonical FGFs and endocrine FGFs that activate four receptor tyrosine kinases (FGFRs 1-4) and four intracellular proteins (intracellular FGFs or iFGFs) that primarily function to regulate the activity of voltage-gated sodium channels and other molecules. The canonical FGFs, endocrine FGFs, and iFGFs have been reviewed extensively by us and others. In this review, we briefly summarize past reviews and then focus on new developments in the FGF field since our last review in 2015. Some of the highlights in the past 6 years include the use of optogenetic tools, viral vectors, and inducible transgenes to experimentally modulate FGF signaling, the clinical use of small molecule FGFR inhibitors, an expanded understanding of endocrine FGF signaling, functions for FGF signaling in stem cell pluripotency and differentiation, roles for FGF signaling in tissue homeostasis and regeneration, a continuing elaboration of mechanisms of FGF signaling in development, and an expanding appreciation of roles for FGF signaling in neuropsychiatric diseases. This article is categorized under: Cardiovascular Diseases > Molecular and Cellular Physiology Neurological Diseases > Molecular and Cellular Physiology Congenital Diseases > Stem Cells and Development Cancer > Stem Cells and Development.
Collapse
Affiliation(s)
- David M Ornitz
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Nobuyuki Itoh
- Kyoto University Graduate School of Pharmaceutical Sciences, Sakyo, Kyoto, Japan
| |
Collapse
|
12
|
Abstract
Angiogenesis, the formation of new blood vessels, contributes fundamentally to embryonic development, tissue homeostasis, and wound healing. Basic fibroblast growth factor (FGF2) is recognized as the first proangiogenic molecule discovered and it facilitates angiogenesis by activating FGF receptor 1 (FGFR1) signaling in endothelial cells. However, the roles of FGFR and the FGF/FGFR signaling axis in angiogenesis remain unclear. Here, we report that, upon reversible, posttranslational, small ubiquitin-like modifier modification (SUMOylation), FGFR1 regulates angiogenesis by coordinating endothelial angiogenic signaling. Mechanistically, FGFR1 SUMOylation maintains the balance in the competitive recruitment of the adaptor protein FRS2α between FGFR1 and VEGFR2 receptor complexes. VEGFA/VEGFR2 signaling primarily operates under hypoxic conditions and FGF/FGFR1 signaling is more important under normoxic conditions. Angiogenesis contributes fundamentally to embryonic development, tissue homeostasis, and wound healing. Basic fibroblast growth factor (FGF2) is recognized as the first proangiogenic molecule discovered, and it facilitates angiogenesis by activating FGF receptor 1 (FGFR1) signaling in endothelial cells. However, the precise roles of FGFR and the FGF/FGFR signaling axis in angiogenesis remain unclear, especially because of the contradictory phenotypes of in vivo FGF and FGFR gene deficiency models. Our previous study results suggested a potential role of posttranslational small ubiquitin-like modifier modification (SUMOylation), with highly dynamic regulatory features, in vascular development and disorder. Here, we identified SENP1-regulated endothelial FGFR1 SUMOylation at conserved lysines responding to proangiogenic stimuli, while SENP1 functioned as the deSUMOylase. Hypoxia-enhanced FGFR1 SUMOylation restricted the tyrosine kinase activation of FGFR1 by modulating the dimerization of FGFR1 and FGFR1 binding with its phosphatase PTPRG. Consequently, it facilitated the recruitment of FRS2α to VEGFR2 but limited additional recruitment of FRS2α to FGFR1, supporting the activation of VEGFA/VEGFR2 signaling in endothelial cells. Furthermore, SUMOylation-defective mutation of FGFR1 resulted in exaggerated FGF2/FGFR1 signaling but suppressed VEGFA/VEGFR2 signaling and the angiogenic capabilities of endothelial cells, which were rescued by FRS2α overexpression. Reduced angiogenesis and endothelial sprouting in mice bearing an endothelial-specific, FGFR1 SUMOylation-defective mutant confirmed the functional significance of endothelial FGFR1 SUMOylation in vivo. Our findings identify the reversible SUMOylation of FGFR1 as an intrinsic fine-tuned mechanism in coordinating endothelial angiogenic signaling during neovascularization; SENP1-regulated FGFR1 SUMOylation and deSUMOylation controls the competitive recruitment of FRS2α by FGFR1 and VEGFR2 to switch receptor-complex formation responding to hypoxia and normoxia angiogenic environments.
Collapse
|
13
|
Hassan M, Yasir M, Shahzadi S, Kloczkowski A. Exploration of Potential Ewing Sarcoma Drugs from FDA-Approved Pharmaceuticals through Computational Drug Repositioning, Pharmacogenomics, Molecular Docking, and MD Simulation Studies. ACS OMEGA 2022; 7:19243-19260. [PMID: 35721972 PMCID: PMC9202290 DOI: 10.1021/acsomega.2c00518] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 05/12/2022] [Indexed: 05/14/2023]
Abstract
Novel drug development is a time-consuming process with relatively high debilitating costs. To overcome this problem, computational drug repositioning approaches are being used to predict the possible therapeutic scaffolds against different diseases. In the current study, computational drug repositioning approaches were employed to fetch the promising drugs from the pool of FDA-approved drugs against Ewing sarcoma. The binding interaction patterns and conformational behaviors of screened drugs within the active region of Ewing sarcoma protein (EWS) were confirmed through molecular docking profiles. Furthermore, pharmacogenomics analysis was employed to check the possible associations of selected drugs with Ewing sarcoma genes. Moreover, the stability behavior of selected docked complexes (drugs-EWS) was checked by molecular dynamics simulations. Taken together, astemizole, sulfinpyrazone, and pranlukast exhibited a result comparable to pazopanib and can be used as a possible therapeutic agent in the treatment of Ewing sarcoma.
Collapse
Affiliation(s)
- Mubashir Hassan
- Institute
of Molecular Biology and Biotechnology, The University of Lahore, Defense Road Campus, Lahore 54590, Pakistan
- The
Steve and Cindy Rasmussen Institute for Genomic Medicine, Nationwide Children’s Hospital, Columbus, Ohio 43205, United States
- ,
| | - Muhammad Yasir
- Institute
of Molecular Biology and Biotechnology, The University of Lahore, Defense Road Campus, Lahore 54590, Pakistan
| | - Saba Shahzadi
- Institute
of Molecular Sciences and Bioinformatics (IMSB), Nisbet Road, Lahore 52254, Pakistan
| | - Andrzej Kloczkowski
- The
Steve and Cindy Rasmussen Institute for Genomic Medicine, Nationwide Children’s Hospital, Columbus, Ohio 43205, United States
- Department
of Pediatrics, The Ohio State University, Columbus, Ohio 43205, United States
| |
Collapse
|
14
|
Expanding horizons of achondroplasia treatment: current options and future developments. Osteoarthritis Cartilage 2022; 30:535-544. [PMID: 34864168 DOI: 10.1016/j.joca.2021.11.017] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 11/23/2021] [Accepted: 11/28/2021] [Indexed: 02/02/2023]
Abstract
Activating mutations in the FGFR3 receptor tyrosine kinase lead to most prevalent form of genetic dwarfism in humans, the achondroplasia. Many features of the complex function of FGFR3 in growing skeleton were characterized, which facilitated identification of therapy targets, and drove progress toward treatment. In August 2021, the vosoritide was approved for treatment of achondroplasia, which is based on a stable variant of the C-natriuretic peptide. Other drugs may soon follow, as several conceptually different inhibitors of FGFR3 signaling progress through clinical trials. Here, we review the current achondroplasia therapeutics, describe their mechanisms, and illuminate motivations leading to their development. We also discuss perspectives of curing achondroplasia, and options for repurposing achondroplasia drugs for dwarfing conditions unrelated to FGFR3.
Collapse
|
15
|
Lin CC, Suen KM, Jeffrey PA, Wieteska L, Lidster JA, Bao P, Curd AP, Stainthorp A, Seiler C, Koss H, Miska E, Ahmed Z, Evans SD, Molina-París C, Ladbury JE. Receptor tyrosine kinases regulate signal transduction through a liquid-liquid phase separated state. Mol Cell 2022; 82:1089-1106.e12. [PMID: 35231400 PMCID: PMC8937303 DOI: 10.1016/j.molcel.2022.02.005] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Revised: 11/02/2021] [Accepted: 02/01/2022] [Indexed: 11/20/2022]
Abstract
The recruitment of signaling proteins into activated receptor tyrosine kinases (RTKs) to produce rapid, high-fidelity downstream response is exposed to the ambiguity of random diffusion to the target site. Liquid-liquid phase separation (LLPS) overcomes this by providing elevated, localized concentrations of the required proteins while impeding competitor ligands. Here, we show a subset of phosphorylation-dependent RTK-mediated LLPS states. We then investigate the formation of phase-separated droplets comprising a ternary complex including the RTK, (FGFR2); the phosphatase, SHP2; and the phospholipase, PLCγ1, which assembles in response to receptor phosphorylation. SHP2 and activated PLCγ1 interact through their tandem SH2 domains via a previously undescribed interface. The complex of FGFR2 and SHP2 combines kinase and phosphatase activities to control the phosphorylation state of the assembly while providing a scaffold for active PLCγ1 to facilitate access to its plasma membrane substrate. Thus, LLPS modulates RTK signaling, with potential consequences for therapeutic intervention.
Collapse
Affiliation(s)
- Chi-Chuan Lin
- School of Molecular and Cellular Biology, University of Leeds, Leeds LS2 9JT, UK.
| | - Kin Man Suen
- School of Molecular and Cellular Biology, University of Leeds, Leeds LS2 9JT, UK; Wellcome Trust Cancer Research UK Gurdon Institute, University of Cambridge, Tennis Court Road, Cambridge CB2 1QN, UK
| | | | - Lukasz Wieteska
- School of Molecular and Cellular Biology, University of Leeds, Leeds LS2 9JT, UK
| | - Jessica A Lidster
- School of Molecular and Cellular Biology, University of Leeds, Leeds LS2 9JT, UK
| | - Peng Bao
- School of Physics and Astronomy, University of Leeds, Leeds LS2 9JT, UK
| | - Alistair P Curd
- School of Molecular and Cellular Biology, University of Leeds, Leeds LS2 9JT, UK
| | - Amy Stainthorp
- School of Molecular and Cellular Biology, University of Leeds, Leeds LS2 9JT, UK
| | - Caroline Seiler
- School of Molecular and Cellular Biology, University of Leeds, Leeds LS2 9JT, UK
| | - Hans Koss
- Institute of Structural and Molecular Biology, Division of Biosciences, University College London, Gower Street, London WC1E 6BT, UK; Francis Crick Institute, London NW1 1AT, UK
| | - Eric Miska
- Wellcome Trust Cancer Research UK Gurdon Institute, University of Cambridge, Tennis Court Road, Cambridge CB2 1QN, UK
| | - Zamal Ahmed
- Department of Molecular and Cellular Oncology, University of Texas M D Anderson Cancer Center, Houston, TX 77030, USA
| | - Stephen D Evans
- School of Physics and Astronomy, University of Leeds, Leeds LS2 9JT, UK
| | | | - John E Ladbury
- School of Molecular and Cellular Biology, University of Leeds, Leeds LS2 9JT, UK.
| |
Collapse
|
16
|
Boni C, Sorio C. The Role of the Tumor Suppressor Gene Protein Tyrosine Phosphatase Gamma in Cancer. Front Cell Dev Biol 2022; 9:768969. [PMID: 35071225 PMCID: PMC8766859 DOI: 10.3389/fcell.2021.768969] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 12/16/2021] [Indexed: 12/31/2022] Open
Abstract
Members of the Protein Tyrosine Phosphatase (PTPs) family are associated with growth regulation and cancer development. Acting as natural counterpart of tyrosine kinases (TKs), mainly involved in crucial signaling pathways such as regulation of cell cycle, proliferation, invasion and angiogenesis, they represent key parts of complex physiological homeostatic mechanisms. Protein tyrosine phosphatase gamma (PTPRG) is classified as a R5 of the receptor type (RPTPs) subfamily and is broadly expressed in various isoforms in different tissues. PTPRG is considered a tumor-suppressor gene (TSG) mapped on chromosome 3p14-21, a region frequently subject to loss of heterozygosity in various tumors. However, reported mechanisms of PTPRG downregulation include missense mutations, ncRNA gene regulation and epigenetic silencing by hypermethylation of CpG sites on promoter region causing loss of function of the gene product. Inactive forms or total loss of PTPRG protein have been described in sporadic and Lynch syndrome colorectal cancer, nasopharyngeal carcinoma, ovarian, breast, and lung cancers, gastric cancer or diseases affecting the hematopoietic compartment as Lymphoma and Leukemia. Noteworthy, in Central Nervous System (CNS) PTPRZ/PTPRG appears to be crucial in maintaining glioblastoma cell-related neuronal stemness, carving out a pathological functional role also in this tissue. In this review, we will summarize the current knowledge on the role of PTPRG in various human cancers.
Collapse
Affiliation(s)
- Christian Boni
- Department of Medicine, General Pathology Division, University of Verona, Verona, Italy
| | - Claudio Sorio
- Department of Medicine, General Pathology Division, University of Verona, Verona, Italy
| |
Collapse
|
17
|
The canonical FGF-FGFR signaling system at the molecular level. POSTEP HIG MED DOSW 2022. [DOI: 10.2478/ahem-2021-0024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Abstract
Extracellular signaling molecules, among them the fibroblast growth factors (FGFs), enable cells to communicate with neighboring cells. Such signaling molecules that receive and transmit a signal require specific tyrosine kinase receptors located at the cell surface (fibroblast growth factor receptors, FGFRs). The binding of a signaling molecule to its specific receptor results in receptor dimerization and conformational changes in the cytoplasmic part of the receptor. The conformational changes lead to trans-autophosphorylation of the tyrosine kinase domains of the receptors and subsequently to induction of several downstream signaling pathways and expression of appropriate genes. The signaling pathways activated by FGFs control and coordinate cell behaviors such as cell division, migration, differentiation, and cell death. FGFs and their transmembrane receptors are widely distributed in different tissues and participate in fundamental processes during embryonic, fetal, and adult human life. The human FGF/FGFR family comprises 22 ligands and 4 high affinity receptors. In addition, FGFs bind to low affinity receptors, heparan sulfate proteoglycans at the cell surface. The availability of appropriate ligand/receptor pair, combined with the co-receptor, initiates signaling. Inappropriate FGF/FGFR signaling can cause skeletal disorders, primarily dwarfism, craniofacial malformation syndromes, mood disorders, metabolic disorders, and Kallman syndrome. In addition, aberrations in FGF/FGFR signaling have already been reported in several types of malignant diseases. Knowledge about the molecular mechanisms of FGF/FGFR activation and signaling is necessary to understand the basis of these diseases.
Collapse
|
18
|
Tahir R, Madugundu AK, Udainiya S, Cutler JA, Renuse S, Wang L, Pearson NA, Mitchell CJ, Mahajan N, Pandey A, Wu X. Proximity-Dependent Biotinylation to Elucidate the Interactome of TNK2 Nonreceptor Tyrosine Kinase. J Proteome Res 2021; 20:4566-4577. [PMID: 34428048 DOI: 10.1021/acs.jproteome.1c00551] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Nonreceptor tyrosine kinases (NRTKs) represent an important class of signaling molecules driving diverse cellular pathways. Aberrant expression and hyperphosphorylation of TNK2, an NRTK, have been implicated in multiple cancers. However, the exact proteins and cellular events that mediate phenotypic changes downstream of TNK2 are unclear. Biological systems that employ proximity-dependent biotinylation methods, such as BioID, are being increasingly used to map protein-protein interactions, as they provide increased sensitivity in discovering interaction partners. In this study, we employed stable isotope labeling with amino acids in cell culture and BioID coupled to the biotinylation site identification technology (BioSITe) method that we recently developed to quantitatively explore the interactome of TNK2. By performing a controlled comparative analysis between full-length TNK2 and its truncated counterpart, we were able to not only identify site-level biotinylation of previously well-established TNK2 binders and substrates including NCK1, NCK2, CTTN, and STAT3, but also discover several novel TNK2 interacting partners. We also performed co-immunoprecipitation and immunofluorescence analysis to validate the interaction between TNK2 and CLINT1, a novel TNK2 interacting protein. Overall, this work reveals the power of the BioSITe method coupled to BioID and highlights several molecules that warrant further exploration to assess their functional significance in TNK2-mediated signaling.
Collapse
Affiliation(s)
- Raiha Tahir
- Biochemistry, Cellular and Molecular Biology Graduate Program, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, United States.,Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, United States.,Ginkgo Bioworks, Boston, Massachusetts 02210, United States
| | - Anil K Madugundu
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, United States.,Institute of Bioinformatics, International Technology Park, Bangalore 560066, Karnataka, India.,Manipal Academy of Higher Education (MAHE), Manipal 576104, Karnataka, India.,Center for Molecular Medicine, National Institute of Mental Health and Neurosciences (NIMHANS), Hosur Road, Bangalore 560029, Karnataka, India.,Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota 55905, United States
| | - Savita Udainiya
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, United States.,Center for Molecular Medicine, National Institute of Mental Health and Neurosciences (NIMHANS), Hosur Road, Bangalore 560029, Karnataka, India.,Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota 55905, United States
| | - Jevon A Cutler
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, United States.,Pre-Doctoral Training Program in Human Genetics, McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, United States
| | - Santosh Renuse
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, United States.,Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota 55905, United States.,Center for Individualized Medicine, Mayo Clinic, Rochester, Minnesota 55905, United States
| | - Li Wang
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota 55905, United States
| | - Nicole A Pearson
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota 55905, United States
| | | | - Nupam Mahajan
- Siteman Cancer Center, Washington University, St. Louis, Missouri 63110, United States
| | - Akhilesh Pandey
- Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, United States.,McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, United States.,Center for Molecular Medicine, National Institute of Mental Health and Neurosciences (NIMHANS), Hosur Road, Bangalore 560029, Karnataka, India.,Departments of Pathology and Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, United States.,Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota 55905, United States.,Center for Individualized Medicine, Mayo Clinic, Rochester, Minnesota 55905, United States
| | - Xinyan Wu
- Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, United States.,McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, United States.,Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota 55905, United States.,Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, Minnesota 55905, United States
| |
Collapse
|
19
|
Mandal S, Bandyopadhyay S, Tyagi K, Roy A. Recent advances in understanding the molecular role of phosphoinositide-specific phospholipase C gamma 1 as an emerging onco-driver and novel therapeutic target in human carcinogenesis. Biochim Biophys Acta Rev Cancer 2021; 1876:188619. [PMID: 34454048 DOI: 10.1016/j.bbcan.2021.188619] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 08/04/2021] [Accepted: 08/21/2021] [Indexed: 02/07/2023]
Abstract
Phosphoinositide metabolism is crucial intracellular signaling system that regulates a plethora of biological functions including mitogenesis, cell proliferation and division. Phospholipase C gamma 1 (PLCγ1) which belongs to phosphoinositide-specific phospholipase C (PLC) family, is activated by many extracellular stimuli including hormones, neurotransmitters, growth factors and modulates several cellular and physiological functions necessary for tumorigenesis such as cell survival, migration, invasion and angiogenesis by generating inositol 1,4,5-triphosphate (IP3) and diacylglycerol (DAG) via hydrolysis of phosphatidylinositol 4,5-biphosphate (PIP2). Cancer remains as a leading cause of global mortality and aberrant expression and regulation of PLCγ1 is linked to a plethora of deadly human cancers including carcinomas of the breast, lung, pancreas, stomach, prostate and ovary. Although PLCγ1 cross-talks with many onco-drivers and signaling circuits including PI3K, AKT, HIF1-α and RAF/MEK/ERK cascade, its precise role in carcinogenesis is not completely understood. This review comprehensively discussed the status quo of this ubiquitously expressed phospholipase as a tumor driver and highlighted its significance as a novel therapeutic target in cancer. Furthermore, we have highlighted the significance of somatic driver mutations in PLCG1 gene and molecular roles of PLCγ1 in several major human cancers, a knowledgebase that can be utilized to develop novel, isoform-specific small molecule inhibitors of PLCγ1.
Collapse
Affiliation(s)
- Supratim Mandal
- Department of Microbiology, University of Kalyani, Kalyani, Nadia, West Bengal 741235, India.
| | - Shrabasti Bandyopadhyay
- Department of Microbiology, University of Kalyani, Kalyani, Nadia, West Bengal 741235, India
| | - Komal Tyagi
- Amity Institute of Molecular Medicine & Stem Cell Research, Amity University, Sector 125, Noida, Uttar Pradesh 201303, India
| | - Adhiraj Roy
- Amity Institute of Molecular Medicine & Stem Cell Research, Amity University, Sector 125, Noida, Uttar Pradesh 201303, India.
| |
Collapse
|
20
|
Su X, Liu Z, Yue L, Wu X, Wei W, Que H, Ye T, Luo Y, Zhang Y. Design, synthesis and biological evaluation of 1 H-pyrrolo[2,3- b]pyridine derivatives as potent fibroblast growth factor receptor inhibitors. RSC Adv 2021; 11:20651-20661. [PMID: 35479379 PMCID: PMC9033946 DOI: 10.1039/d1ra02660g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Accepted: 05/18/2021] [Indexed: 02/05/2023] Open
Abstract
Abnormal activation of FGFR signaling pathway plays an essential role in various types of tumors. Therefore, targeting FGFRs represents an attractive strategy for cancer therapy. Herein, we report a series of 1H-pyrrolo[2,3-b]pyridine derivatives with potent activities against FGFR1, 2, and 3. Among them, compound 4h exhibited potent FGFR inhibitory activity (FGFR1–4 IC50 values of 7, 9, 25 and 712 nM, respectively). In vitro, 4h inhibited breast cancer 4T1 cell proliferation and induced its apoptosis. In addition, 4h also significantly inhibited the migration and invasion of 4T1 cells. Furthermore, 4h with low molecular weight would be an appealing lead compound which was beneficial to the subsequent optimization. In general, this research has been developing a class of 1H-pyrrolo[2,3-b]pyridine derivatives targeting FGFR with development prospects. Discovery of a new class of 1H- pyrrorole [2,3-b]pyridine FGFR inhibitors with high ligand efficiency.![]()
Collapse
Affiliation(s)
- Xingping Su
- Sichuan University-University of Oxford Huaxi Joint Centre for Gastrointestinal Cancer, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University Chengdu Sichuan 610041 China
| | - Zhihao Liu
- Sichuan University-University of Oxford Huaxi Joint Centre for Gastrointestinal Cancer, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University Chengdu Sichuan 610041 China
| | - Lin Yue
- Sichuan University-University of Oxford Huaxi Joint Centre for Gastrointestinal Cancer, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University Chengdu Sichuan 610041 China
| | - Xiuli Wu
- Sichuan University-University of Oxford Huaxi Joint Centre for Gastrointestinal Cancer, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University Chengdu Sichuan 610041 China
| | - Wei Wei
- Sichuan University-University of Oxford Huaxi Joint Centre for Gastrointestinal Cancer, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University Chengdu Sichuan 610041 China
| | - Hanyun Que
- Sichuan University-University of Oxford Huaxi Joint Centre for Gastrointestinal Cancer, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University Chengdu Sichuan 610041 China
| | - Tinghong Ye
- Sichuan University-University of Oxford Huaxi Joint Centre for Gastrointestinal Cancer, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University Chengdu Sichuan 610041 China
| | - Yi Luo
- Department of Orthopedics, West China Hospital of Sichuan University Wai Nan Guo Xue Xiang 37# 610041 Chengdu Sichuan China
| | - Yiwen Zhang
- Sichuan University-University of Oxford Huaxi Joint Centre for Gastrointestinal Cancer, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University Chengdu Sichuan 610041 China
| |
Collapse
|
21
|
Szybowska P, Kostas M, Wesche J, Haugsten EM, Wiedlocha A. Negative Regulation of FGFR (Fibroblast Growth Factor Receptor) Signaling. Cells 2021; 10:cells10061342. [PMID: 34071546 PMCID: PMC8226934 DOI: 10.3390/cells10061342] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 05/25/2021] [Accepted: 05/25/2021] [Indexed: 02/06/2023] Open
Abstract
FGFR (fibroblast growth factor receptor) signaling controls fundamental processes in embryonic, fetal and adult human life. The magnitude, duration, and location of FGFR signaling must be strictly controlled in order to induce the correct biological response. Uncontrolled receptor signaling has been shown to lead to a variety of diseases, such as skeletal disorders and cancer. Here we review the numerous cellular mechanisms that regulate and turn off FGFR signaling, once the receptor is activated. These mechanisms include endocytosis and endocytic sorting, phosphatase activity, negative regulatory proteins and negative feedback phosphorylation events. The mechanisms act together simultaneously or sequentially, controlling the same or different steps in FGFR signaling. Although more work is needed to fully understand the regulation of FGFR signaling, it is clear that the cells in our body have evolved an extensive repertoire of mechanisms that together keep FGFR signaling tightly controlled and prevent excess FGFR signaling.
Collapse
Affiliation(s)
- Patrycja Szybowska
- Department of Tumor Biology, Institute for Cancer Research, The Norwegian Radium Hospital, Oslo University Hospital, Montebello, 0379 Oslo, Norway; (P.S.); (M.K.); (J.W.)
- Centre for Cancer Cell Reprogramming, Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Montebello, 0379 Oslo, Norway
| | - Michal Kostas
- Department of Tumor Biology, Institute for Cancer Research, The Norwegian Radium Hospital, Oslo University Hospital, Montebello, 0379 Oslo, Norway; (P.S.); (M.K.); (J.W.)
- Centre for Cancer Cell Reprogramming, Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Montebello, 0379 Oslo, Norway
| | - Jørgen Wesche
- Department of Tumor Biology, Institute for Cancer Research, The Norwegian Radium Hospital, Oslo University Hospital, Montebello, 0379 Oslo, Norway; (P.S.); (M.K.); (J.W.)
- Centre for Cancer Cell Reprogramming, Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Montebello, 0379 Oslo, Norway
| | - Ellen Margrethe Haugsten
- Department of Tumor Biology, Institute for Cancer Research, The Norwegian Radium Hospital, Oslo University Hospital, Montebello, 0379 Oslo, Norway; (P.S.); (M.K.); (J.W.)
- Centre for Cancer Cell Reprogramming, Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Montebello, 0379 Oslo, Norway
- Correspondence: (E.M.H.); (A.W.); Tel.: +47-2278-1785 (E.M.H.); +47-2278-1930 (A.W.)
| | - Antoni Wiedlocha
- Centre for Cancer Cell Reprogramming, Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Montebello, 0379 Oslo, Norway
- Department of Molecular Cell Biology, Institute for Cancer Research, The Norwegian Radium Hospital, Oslo University Hospital, Montebello, 0379 Oslo, Norway
- Military Institute of Hygiene and Epidemiology, 01-163 Warsaw, Poland
- Correspondence: (E.M.H.); (A.W.); Tel.: +47-2278-1785 (E.M.H.); +47-2278-1930 (A.W.)
| |
Collapse
|
22
|
Zhang GZ, Wu ZL, Li CY, Ren EH, Yuan WH, Deng YJ, Xie QQ. Development of a Machine Learning-Based Autophagy-Related lncRNA Signature to Improve Prognosis Prediction in Osteosarcoma Patients. Front Mol Biosci 2021; 8:615084. [PMID: 34095215 PMCID: PMC8176230 DOI: 10.3389/fmolb.2021.615084] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Accepted: 03/29/2021] [Indexed: 12/15/2022] Open
Abstract
Background Osteosarcoma is a frequent bone malignancy in children and young adults. Despite the availability of some prognostic biomarkers, most of them fail to accurately predict prognosis in osteosarcoma patients. In this study, we used bioinformatics tools and machine learning algorithms to establish an autophagy-related long non-coding RNA (lncRNA) signature to predict the prognosis of osteosarcoma patients. Methods We obtained expression and clinical data from osteosarcoma patients in the Therapeutically Applicable Research to Generate Effective Treatments (TARGET) and Gene Expression Omnibus (GEO) databases. We acquired an autophagy gene list from the Human Autophagy Database (HADb) and identified autophagy-related lncRNAs by co-expression analyses. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses of the autophagy-related lncRNAs were conducted. Univariate and multivariate Cox regression analyses were performed to assess the prognostic value of the autophagy-related lncRNA signature and validate the relationship between the signature and osteosarcoma patient survival in an independent cohort. We also investigated the relationship between the signature and immune cell infiltration. Results We initially identified 69 autophagy-related lncRNAs, 13 of which were significant predictors of overall survival in osteosarcoma patients. Kaplan-Meier analyses revealed that the 13 autophagy-related lncRNAs could stratify patients based on their outcomes. Receiver operating characteristic curve analyses confirmed the superior prognostic value of the lncRNA signature compared to clinically used prognostic biomarkers. Importantly, the autophagy-related lncRNA signature predicted patient prognosis independently of clinicopathological characteristics. Furthermore, we found that the expression levels of the autophagy-related lncRNA signature were significantly associated with the infiltration levels of different immune cell subsets, including T cells, NK cells, and dendritic cells. Conclusion The autophagy-related lncRNA signature established here is an independent and robust predictor of osteosarcoma patient survival. Our findings also suggest that the expression of these 13 autophagy-related lncRNAs may promote osteosarcoma progression by regulating immune cell infiltration in the tumor microenvironment.
Collapse
Affiliation(s)
- Guang-Zhi Zhang
- The Second Clinical Medical College, Lanzhou University, Lanzhou, China.,Department of Orthopedics, Lanzhou University Second Hospital, Lanzhou, China.,Lintao County Traditional Chinese Medicine Hospital of Gansu Province, Lintao, China
| | - Zuo-Long Wu
- The Second Clinical Medical College, Lanzhou University, Lanzhou, China.,Department of Orthopedics, Lanzhou University Second Hospital, Lanzhou, China
| | - Chun-Ying Li
- The Fourth People's Hospital of Qinghai Province, Xining, China
| | - En-Hui Ren
- The Second Clinical Medical College, Lanzhou University, Lanzhou, China.,Department of Orthopedics, Lanzhou University Second Hospital, Lanzhou, China.,Department of Orthopaedics, Xining First People's Hospital, Xining, China
| | - Wen-Hua Yuan
- The Second Clinical Medical College, Lanzhou University, Lanzhou, China.,Department of Orthopedics, Lanzhou University Second Hospital, Lanzhou, China
| | - Ya-Jun Deng
- The Second Clinical Medical College, Lanzhou University, Lanzhou, China.,Department of Orthopedics, Lanzhou University Second Hospital, Lanzhou, China
| | - Qi-Qi Xie
- Affiliated Hospital of Qinghai University, Xining, China.,Affiliated Cancer Hospital of Qinghai University, Xining, China.,Breast Disease Diagnosis and Treatment Center, Affiliated Hospital of Qinghai University & Affiliated Cancer Hospital of Qinghai University, Xining, China
| |
Collapse
|
23
|
Ferguson HR, Smith MP, Francavilla C. Fibroblast Growth Factor Receptors (FGFRs) and Noncanonical Partners in Cancer Signaling. Cells 2021; 10:1201. [PMID: 34068954 PMCID: PMC8156822 DOI: 10.3390/cells10051201] [Citation(s) in RCA: 68] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 05/06/2021] [Accepted: 05/09/2021] [Indexed: 02/07/2023] Open
Abstract
Increasing evidence indicates that success of targeted therapies in the treatment of cancer is context-dependent and is influenced by a complex crosstalk between signaling pathways and between cell types in the tumor. The Fibroblast Growth Factor (FGF)/FGF receptor (FGFR) signaling axis highlights the importance of such context-dependent signaling in cancer. Aberrant FGFR signaling has been characterized in almost all cancer types, most commonly non-small cell lung cancer (NSCLC), breast cancer, glioblastoma, prostate cancer and gastrointestinal cancer. This occurs primarily through amplification and over-expression of FGFR1 and FGFR2 resulting in ligand-independent activation. Mutations and translocations of FGFR1-4 are also identified in cancer. Canonical FGF-FGFR signaling is tightly regulated by ligand-receptor combinations as well as direct interactions with the FGFR coreceptors heparan sulfate proteoglycans (HSPGs) and Klotho. Noncanonical FGFR signaling partners have been implicated in differential regulation of FGFR signaling. FGFR directly interacts with cell adhesion molecules (CAMs) and extracellular matrix (ECM) proteins, contributing to invasive and migratory properties of cancer cells, whereas interactions with other receptor tyrosine kinases (RTKs) regulate angiogenic, resistance to therapy, and metastatic potential of cancer cells. The diversity in FGFR signaling partners supports a role for FGFR signaling in cancer, independent of genetic aberration.
Collapse
Affiliation(s)
- Harriet R. Ferguson
- Division of Molecular and Cellular Function, School of Biological Science, Faculty of Biology Medicine and Health (FBMH), The University of Manchester, Manchester M13 9PT, UK;
| | - Michael P. Smith
- Division of Molecular and Cellular Function, School of Biological Science, Faculty of Biology Medicine and Health (FBMH), The University of Manchester, Manchester M13 9PT, UK;
| | - Chiara Francavilla
- Division of Molecular and Cellular Function, School of Biological Science, Faculty of Biology Medicine and Health (FBMH), The University of Manchester, Manchester M13 9PT, UK;
- Manchester Breast Centre, Manchester Cancer Research Centre, The University of Manchester, Manchester M20 4GJ, UK
| |
Collapse
|
24
|
Cell Communications among Microorganisms, Plants, and Animals: Origin, Evolution, and Interplays. Int J Mol Sci 2020; 21:ijms21218052. [PMID: 33126770 PMCID: PMC7663094 DOI: 10.3390/ijms21218052] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 10/17/2020] [Accepted: 10/27/2020] [Indexed: 02/06/2023] Open
Abstract
Cellular communications play pivotal roles in multi-cellular species, but they do so also in uni-cellular species. Moreover, cells communicate with each other not only within the same individual, but also with cells in other individuals belonging to the same or other species. These communications occur between two unicellular species, two multicellular species, or between unicellular and multicellular species. The molecular mechanisms involved exhibit diversity and specificity, but they share common basic features, which allow common pathways of communication between different species, often phylogenetically very distant. These interactions are possible by the high degree of conservation of the basic molecular mechanisms of interaction of many ligand-receptor pairs in evolutionary remote species. These inter-species cellular communications played crucial roles during Evolution and must have been positively selected, particularly when collectively beneficial in hostile environments. It is likely that communications between cells did not arise after their emergence, but were part of the very nature of the first cells. Synchronization of populations of non-living protocells through chemical communications may have been a mandatory step towards their emergence as populations of living cells and explain the large commonality of cell communication mechanisms among microorganisms, plants, and animals.
Collapse
|
25
|
Pozniak M, Sokolowska-Wedzina A, Jastrzebski K, Szymczyk J, Porebska N, Krzyscik MA, Zakrzewska M, Miaczynska M, Otlewski J, Opalinski L. FGFR1 clustering with engineered tetravalent antibody improves the efficiency and modifies the mechanism of receptor internalization. Mol Oncol 2020; 14:1998-2021. [PMID: 32511887 PMCID: PMC7463352 DOI: 10.1002/1878-0261.12740] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 05/22/2020] [Accepted: 06/03/2020] [Indexed: 12/14/2022] Open
Abstract
Fibroblast growth factor receptor 1 (FGFR1) transmits signals through the plasma membrane regulating essential cellular processes like division, motility, metabolism, and death. Overexpression of FGFR1 is observed in numerous tumors and thus constitutes an attractive molecular target for selective cancer treatment. Targeted anti‐cancer therapies aim for the precise delivery of drugs into cancer cells, sparing the healthy ones and thus limiting unwanted side effects. One of the key steps in targeted drug delivery is receptor‐mediated endocytosis. Here, we show that the efficiency and the mechanism of FGFR1 internalization are governed by the spatial distribution of the receptor in the plasma membrane. Using engineered antibodies of different valency, we demonstrate that dimerization of FGFR1 with bivalent antibody triggers clathrin‐mediated endocytosis (CME) of the receptor. Clustering of FGFR1 into larger oligomers with tetravalent antibody stimulates fast and highly efficient uptake of the receptor that occurs via two distinct mechanisms: CME and dynamin‐dependent clathrin‐independent endocytic routes. Furthermore, we show that all endocytic pathways engaged in FGFR1 internalization do not require receptor activation. Our data provide novel insights into the mechanisms of intracellular trafficking of FGFR1 and constitute guidelines for development of highly internalizing antibody‐based drug carriers for targeted therapy of FGFR1‐overproducing cancers.
Collapse
Affiliation(s)
- Marta Pozniak
- Faculty of Biotechnology, Department of Protein Engineering, University of Wroclaw, Poland
| | | | - Kamil Jastrzebski
- Laboratory of Cell Biology, International Institute of Molecular and Cell Biology, Poland
| | - Jakub Szymczyk
- Faculty of Biotechnology, Department of Protein Engineering, University of Wroclaw, Poland
| | - Natalia Porebska
- Faculty of Biotechnology, Department of Protein Engineering, University of Wroclaw, Poland
| | - Mateusz Adam Krzyscik
- Faculty of Biotechnology, Department of Protein Engineering, University of Wroclaw, Poland.,Faculty of Biotechnology, Department of Protein Biotechnology, University of Wroclaw, Poland
| | - Malgorzata Zakrzewska
- Faculty of Biotechnology, Department of Protein Engineering, University of Wroclaw, Poland
| | - Marta Miaczynska
- Laboratory of Cell Biology, International Institute of Molecular and Cell Biology, Poland
| | - Jacek Otlewski
- Faculty of Biotechnology, Department of Protein Engineering, University of Wroclaw, Poland
| | - Lukasz Opalinski
- Faculty of Biotechnology, Department of Protein Engineering, University of Wroclaw, Poland
| |
Collapse
|
26
|
Kucińska M, Porębska N, Lampart A, Latko M, Knapik A, Zakrzewska M, Otlewski J, Opaliński Ł. Differential regulation of fibroblast growth factor receptor 1 trafficking and function by extracellular galectins. Cell Commun Signal 2019; 17:65. [PMID: 31208421 PMCID: PMC6572767 DOI: 10.1186/s12964-019-0371-1] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Accepted: 05/14/2019] [Indexed: 01/18/2023] Open
Abstract
Fibroblast growth factor receptors (FGFRs) are integral membrane proteins that transmit signals through the plasma membrane. FGFRs signaling needs to be precisely adjusted as aberrant FGFRs function is associated with development of human cancers or severe metabolic diseases. The subcellular localization, trafficking and function of FGFRs rely on the formation of multiprotein complexes. In this study we revealed galectins, lectin family members implicated in cancer development and progression, as novel FGFR1 binding proteins. We demonstrated that galectin-1 and galectin-3 directly bind to the sugar chains of the glycosylated extracellular part of FGFR1. Although both galectins compete for the same binding sites on FGFR1, these proteins elicit different impact on FGFR1 function and cellular trafficking. Galectin-1 mimics fibroblast growth factor as it efficiently activates FGFR1 and receptor-downstream signaling pathways that result in cell proliferation and apoptotic evasion. In contrast, galectin-3 induces extensive clustering of FGFR1 on the cell surface that inhibits constitutive internalization of FGFR1. Our data point on the interplay between extracellular galectins and FGFRs in the regulation of cell fate.
Collapse
Affiliation(s)
- Marika Kucińska
- Faculty of Biotechnology, Department of Protein Engineering, University of Wroclaw, Joliot-Curie 14a, 50-383, Wroclaw, Poland
| | - Natalia Porębska
- Faculty of Biotechnology, Department of Protein Engineering, University of Wroclaw, Joliot-Curie 14a, 50-383, Wroclaw, Poland
| | - Agata Lampart
- Faculty of Biotechnology, Department of Protein Engineering, University of Wroclaw, Joliot-Curie 14a, 50-383, Wroclaw, Poland
| | - Marta Latko
- Faculty of Biotechnology, Department of Protein Engineering, University of Wroclaw, Joliot-Curie 14a, 50-383, Wroclaw, Poland
| | - Agata Knapik
- Faculty of Biotechnology, Department of Protein Engineering, University of Wroclaw, Joliot-Curie 14a, 50-383, Wroclaw, Poland
| | - Małgorzata Zakrzewska
- Faculty of Biotechnology, Department of Protein Engineering, University of Wroclaw, Joliot-Curie 14a, 50-383, Wroclaw, Poland
| | - Jacek Otlewski
- Faculty of Biotechnology, Department of Protein Engineering, University of Wroclaw, Joliot-Curie 14a, 50-383, Wroclaw, Poland
| | - Łukasz Opaliński
- Faculty of Biotechnology, Department of Protein Engineering, University of Wroclaw, Joliot-Curie 14a, 50-383, Wroclaw, Poland.
| |
Collapse
|
27
|
Szybowska P, Kostas M, Wesche J, Wiedlocha A, Haugsten EM. Cancer Mutations in FGFR2 Prevent a Negative Feedback Loop Mediated by the ERK1/2 Pathway. Cells 2019; 8:cells8060518. [PMID: 31146385 PMCID: PMC6627556 DOI: 10.3390/cells8060518] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Revised: 05/24/2019] [Accepted: 05/28/2019] [Indexed: 01/21/2023] Open
Abstract
Tight regulation of signaling from receptor tyrosine kinases is required for normal cellular functions and uncontrolled signaling can lead to cancer. Fibroblast growth factor receptor 2 (FGFR2) is a receptor tyrosine kinase that induces proliferation and migration. Deregulation of FGFR2 contributes to tumor progression and activating mutations in FGFR2 are found in several types of cancer. Here, we identified a negative feedback loop regulating FGFR2 signaling. FGFR2 stimulates the Ras/MAPK signaling pathway consisting of Ras-Raf-MEK1/2-ERK1/2. Inhibition of this pathway using a MEK1/2 inhibitor increased FGFR2 signaling. The putative ERK1/2 phosphorylation site at serine 780 (S780) in FGFR2 corresponds to serine 777 in FGFR1 which is directly phosphorylated by ERK1/2. Substitution of S780 in FGFR2 to an alanine also increased signaling. Truncated forms of FGFR2 lacking the C-terminal tail, including S780, have been identified in cancer and S780 has been found mutated to leucine in bladder cancer. Substituting S780 in FGFR2 with leucine increased FGFR2 signaling. Importantly, cells expressing these mutated versions of S780 migrated faster than cells expressing wild-type FGFR2. Thus, ERK1/2-mediated phosphorylation of S780 in FGFR2 constitutes a negative feedback loop and inactivation of this feedback loop in cancer cells causes hyperactivation of FGFR2 signaling, which may result in increased invasive properties.
Collapse
Affiliation(s)
- Patrycja Szybowska
- Department of Molecular Cell Biology, Institute for Cancer Research, The Norwegian Radium Hospital, Oslo University Hospital, Montebello, 0379 Oslo, Norway.
- Centre for Cancer Cell Reprogramming, Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Montebello, 0379 Oslo, Norway.
| | - Michal Kostas
- Centre for Cancer Cell Reprogramming, Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Montebello, 0379 Oslo, Norway.
- Department of Tumor Biology, Institute for Cancer Research, The Norwegian Radium Hospital, Oslo University Hospital, Montebello, 0379 Oslo, Norway.
| | - Jørgen Wesche
- Centre for Cancer Cell Reprogramming, Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Montebello, 0379 Oslo, Norway.
- Department of Tumor Biology, Institute for Cancer Research, The Norwegian Radium Hospital, Oslo University Hospital, Montebello, 0379 Oslo, Norway.
| | - Antoni Wiedlocha
- Department of Molecular Cell Biology, Institute for Cancer Research, The Norwegian Radium Hospital, Oslo University Hospital, Montebello, 0379 Oslo, Norway.
- Centre for Cancer Cell Reprogramming, Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Montebello, 0379 Oslo, Norway.
- Military Institute of Hygiene and Epidemiology, 01-163 Warsaw, Poland.
| | - Ellen Margrethe Haugsten
- Centre for Cancer Cell Reprogramming, Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Montebello, 0379 Oslo, Norway.
- Department of Tumor Biology, Institute for Cancer Research, The Norwegian Radium Hospital, Oslo University Hospital, Montebello, 0379 Oslo, Norway.
| |
Collapse
|
28
|
Pandey G, Borcherding N, Kolb R, Kluz P, Li W, Sugg S, Zhang J, Lai DA, Zhang W. ROR1 Potentiates FGFR Signaling in Basal-Like Breast Cancer. Cancers (Basel) 2019; 11:cancers11050718. [PMID: 31137681 PMCID: PMC6562526 DOI: 10.3390/cancers11050718] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Revised: 05/13/2019] [Accepted: 05/23/2019] [Indexed: 01/01/2023] Open
Abstract
Among all breast cancer types, basal-like breast cancer (BLBC) represents an aggressive subtype that lacks targeted therapy. We and others have found that receptor tyrosine kinase-like orphan receptor 1 (ROR1) is overexpressed in BLBC and other types of cancer and that ROR1 is significantly correlated with patient prognosis. In addition, using primary patient-derived xenografts (PDXs) and ROR1-knockout BLBC cells, we found that ROR1+ cells form tumors in immunodeficient mice. We developed an anti-ROR1 immunotoxin and found that targeting ROR1 significantly kills ROR1+ cancer cells and slows down tumor growth in ROR1+ xenografts. Our bioinformatics analysis revealed that ROR1 expression is commonly associated with the activation of FGFR-mediated signaling pathway. Further biochemical analysis confirmed that ROR1 stabilized FGFR expression at the posttranslational level by preventing its degradation. CRISPR/Cas9-mediated ROR1 knockout significantly reduced cancer cell invasion at cellular levels by lowering FGFR protein and consequent inactivation of AKT. Our results identified a novel signaling regulation from ROR1 to FGFR and further confirm that ROR1 is a potential therapeutic target for ROR1+ BLBC cells.
Collapse
Affiliation(s)
- Gaurav Pandey
- Department of Pathology, College of Medicine, University of Iowa, Iowa City, IA 52242, USA.
| | - Nicholas Borcherding
- Department of Pathology, College of Medicine, University of Iowa, Iowa City, IA 52242, USA.
- Cancer Biology Graduate Program, College of Medicine, University of Iowa, Iowa City, IA 52242, USA.
- Medical Scientist Training Program, College of Medicine, University of Iowa, Iowa City, IA 52242, USA.
| | - Ryan Kolb
- Department of Pathology, Immunology, and Laboratory Medicine, University of Florida, Gainesville, FL 32610, USA.
| | - Paige Kluz
- Department of Pathology, College of Medicine, University of Iowa, Iowa City, IA 52242, USA.
| | - Wei Li
- Department of Pathology, Immunology, and Laboratory Medicine, University of Florida, Gainesville, FL 32610, USA.
| | - Sonia Sugg
- Department of Surgery, College of Medicine, University of Iowa, Iowa City, IA 52242, USA.
| | - Jun Zhang
- Division of Hematology, Oncology and Blood & Marrow Transplantation, Department of Internal Medicine, College of Medicine, University of Iowa, Iowa City, IA 52242, USA.
| | - Dazhi A Lai
- Speed Biosystems, Gaithersburg, MD 20878, USA.
| | - Weizhou Zhang
- Department of Pathology, Immunology, and Laboratory Medicine, University of Florida, Gainesville, FL 32610, USA.
| |
Collapse
|
29
|
Cross-Talk between Fibroblast Growth Factor Receptors and Other Cell Surface Proteins. Cells 2019; 8:cells8050455. [PMID: 31091809 PMCID: PMC6562592 DOI: 10.3390/cells8050455] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Revised: 05/08/2019] [Accepted: 05/13/2019] [Indexed: 12/14/2022] Open
Abstract
Fibroblast growth factors (FGFs) and their receptors (FGFRs) constitute signaling circuits that transmit signals across the plasma membrane, regulating pivotal cellular processes like differentiation, migration, proliferation, and apoptosis. The malfunction of FGFs/FGFRs signaling axis is observed in numerous developmental and metabolic disorders, and in various tumors. The large diversity of FGFs/FGFRs functions is attributed to a great complexity in the regulation of FGFs/FGFRs-dependent signaling cascades. The function of FGFRs is modulated at several levels, including gene expression, alternative splicing, posttranslational modifications, and protein trafficking. One of the emerging ways to adjust FGFRs activity is through formation of complexes with other integral proteins of the cell membrane. These proteins may act as coreceptors, modulating binding of FGFs to FGFRs and defining specificity of elicited cellular response. FGFRs may interact with other cell surface receptors, like G-protein-coupled receptors (GPCRs) or receptor tyrosine kinases (RTKs). The cross-talk between various receptors modulates the strength and specificity of intracellular signaling and cell fate. At the cell surface FGFRs can assemble into large complexes involving various cell adhesion molecules (CAMs). The interplay between FGFRs and CAMs affects cell–cell interaction and motility and is especially important for development of the central nervous system. This review summarizes current stage of knowledge about the regulation of FGFRs by the plasma membrane-embedded partner proteins and highlights the importance of FGFRs-containing membrane complexes in pathological conditions, including cancer.
Collapse
|
30
|
Crosstalk between p38 and Erk 1/2 in Downregulation of FGF1-Induced Signaling. Int J Mol Sci 2019; 20:ijms20081826. [PMID: 31013829 PMCID: PMC6514807 DOI: 10.3390/ijms20081826] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Revised: 01/25/2019] [Accepted: 04/10/2019] [Indexed: 11/16/2022] Open
Abstract
Mitogen-activated protein kinases (MAPK): Erk1 and Erk2 are key players in negative-feedback regulation of fibroblast growth factor (FGF) signaling. Upon activation, Erk1 and Erk2 directly phosphorylate FGF receptor 1 (FGFR1) at a specific serine residue in the C-terminal part of the receptor, substantially reducing the tyrosine phosphorylation in the receptor kinase domain and its signaling. Similarly, active Erks can also phosphorylate multiple threonine residues in the docking protein FGF receptor substrate 2 (FRS2), a major mediator of FGFR signaling. Here, we demonstrate that in NIH3T3 mouse fibroblasts and human osteosarcoma U2OS cells stably expressing FGFR1, in addition to Erk1 and Erk2, p38 kinase is able to phosphorylate FRS2. Simultaneous inhibition of Erk1/2 and p38 kinase led to a significant change in the phosphorylation pattern of FRS2 that in turn resulted in prolonged tyrosine phosphorylation of FGFR1 and FRS2 and in sustained signaling, as compared to the selective inhibition of Erks. Furthermore, excessive activation of p38 with anisomycin partially compensated the lack of Erks activity. These experiments reveal a novel crosstalk between p38 and Erk1/2 in downregulation of FGF-induced signaling.
Collapse
|
31
|
Porębska N, Latko M, Kucińska M, Zakrzewska M, Otlewski J, Opaliński Ł. Targeting Cellular Trafficking of Fibroblast Growth Factor Receptors as a Strategy for Selective Cancer Treatment. J Clin Med 2018; 8:jcm8010007. [PMID: 30577533 PMCID: PMC6352210 DOI: 10.3390/jcm8010007] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Revised: 12/17/2018] [Accepted: 12/17/2018] [Indexed: 12/13/2022] Open
Abstract
Fibroblast growth factor receptors (FGFRs) in response to fibroblast growth factors (FGFs) transmit signals across the cell membrane, regulating important cellular processes, like differentiation, division, motility, and death. The aberrant activity of FGFRs is often observed in various diseases, especially in cancer. The uncontrolled FGFRs' function may result from their overproduction, activating mutations, or generation of FGFRs' fusion proteins. Besides their typical subcellular localization on the cell surface, FGFRs are often found inside the cells, in the nucleus and mitochondria. The intracellular pool of FGFRs utilizes different mechanisms to facilitate cancer cell survival and expansion. In this review, we summarize the current stage of knowledge about the role of FGFRs in oncogenic processes. We focused on the mechanisms of FGFRs' cellular trafficking-internalization, nuclear translocation, and mitochondrial targeting, as well as their role in carcinogenesis. The subcellular sorting of FGFRs constitutes an attractive target for anti-cancer therapies. The blocking of FGFRs' nuclear and mitochondrial translocation can lead to the inhibition of cancer invasion. Moreover, the endocytosis of FGFRs can serve as a tool for the efficient and highly selective delivery of drugs into cancer cells overproducing these receptors. Here, we provide up to date examples how the cellular sorting of FGFRs can be hijacked for selective cancer treatment.
Collapse
Affiliation(s)
- Natalia Porębska
- Department of Protein Engineering, Faculty of Biotechnology, University of Wrocław, Joliot-Curie 14a, 50-383 Wroclaw, Poland.
| | - Marta Latko
- Department of Protein Engineering, Faculty of Biotechnology, University of Wrocław, Joliot-Curie 14a, 50-383 Wroclaw, Poland.
| | - Marika Kucińska
- Department of Protein Engineering, Faculty of Biotechnology, University of Wrocław, Joliot-Curie 14a, 50-383 Wroclaw, Poland.
| | - Małgorzata Zakrzewska
- Department of Protein Engineering, Faculty of Biotechnology, University of Wrocław, Joliot-Curie 14a, 50-383 Wroclaw, Poland.
| | - Jacek Otlewski
- Department of Protein Engineering, Faculty of Biotechnology, University of Wrocław, Joliot-Curie 14a, 50-383 Wroclaw, Poland.
| | - Łukasz Opaliński
- Department of Protein Engineering, Faculty of Biotechnology, University of Wrocław, Joliot-Curie 14a, 50-383 Wroclaw, Poland.
| |
Collapse
|
32
|
Fafilek B, Balek L, Bosakova MK, Varecha M, Nita A, Gregor T, Gudernova I, Krenova J, Ghosh S, Piskacek M, Jonatova L, Cernohorsky NH, Zieba JT, Kostas M, Haugsten EM, Wesche J, Erneux C, Trantirek L, Krakow D, Krejci P. The inositol phosphatase SHIP2 enables sustained ERK activation downstream of FGF receptors by recruiting Src kinases. Sci Signal 2018; 11:11/548/eaap8608. [PMID: 30228226 DOI: 10.1126/scisignal.aap8608] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Sustained activation of extracellular signal-regulated kinase (ERK) drives pathologies caused by mutations in fibroblast growth factor receptors (FGFRs). We previously identified the inositol phosphatase SHIP2 (also known as INPPL1) as an FGFR-interacting protein and a target of the tyrosine kinase activities of FGFR1, FGFR3, and FGFR4. We report that loss of SHIP2 converted FGF-mediated sustained ERK activation into a transient signal and rescued cell phenotypes triggered by pathologic FGFR-ERK signaling. Mutant forms of SHIP2 lacking phosphoinositide phosphatase activity still associated with FGFRs and did not prevent FGF-induced sustained ERK activation, demonstrating that the adaptor rather than the catalytic activity of SHIP2 was required. SHIP2 recruited Src family kinases to the FGFRs, which promoted FGFR-mediated phosphorylation and assembly of protein complexes that relayed signaling to ERK. SHIP2 interacted with FGFRs, was phosphorylated by active FGFRs, and promoted FGFR-ERK signaling at the level of phosphorylation of the adaptor FRS2 and recruitment of the tyrosine phosphatase PTPN11. Thus, SHIP2 is an essential component of canonical FGF-FGFR signal transduction and a potential therapeutic target in FGFR-related disorders.
Collapse
Affiliation(s)
- Bohumil Fafilek
- Department of Biology, Masaryk University, 62500 Brno, Czech Republic.,International Clinical Research Center, St. Anne's University Hospital, 65691 Brno, Czech Republic
| | - Lukas Balek
- Department of Biology, Masaryk University, 62500 Brno, Czech Republic
| | - Michaela Kunova Bosakova
- Department of Biology, Masaryk University, 62500 Brno, Czech Republic.,International Clinical Research Center, St. Anne's University Hospital, 65691 Brno, Czech Republic
| | - Miroslav Varecha
- Department of Biology, Masaryk University, 62500 Brno, Czech Republic.,International Clinical Research Center, St. Anne's University Hospital, 65691 Brno, Czech Republic
| | - Alexandru Nita
- Department of Biology, Masaryk University, 62500 Brno, Czech Republic
| | - Tomas Gregor
- Central European Institute of Technology, Masaryk University, 62500 Brno, Czech Republic
| | - Iva Gudernova
- Department of Biology, Masaryk University, 62500 Brno, Czech Republic
| | - Jitka Krenova
- Department of Biology, Masaryk University, 62500 Brno, Czech Republic
| | - Somadri Ghosh
- Institut de Recherche Interdisciplinaire en Biologie Humaine et moléculaire, Université Libre de Bruxelles, 1070 Bruxelles, Belgium
| | - Martin Piskacek
- Department of Pathological Physiology, Faculty of Medicine, Masaryk University, 62500 Brno, Czech Republic
| | - Lucie Jonatova
- Department of Biology, Masaryk University, 62500 Brno, Czech Republic
| | | | - Jennifer T Zieba
- Department of Orthopedic Surgery, University of California Los Angeles, CA 90095, USA
| | - Michal Kostas
- Department of Tumor Biology, Institute for Cancer Research, Norwegian Radium Hospital, 0379 Oslo, Norway.,Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, 0379 Oslo, Norway
| | - Ellen Margrethe Haugsten
- Department of Tumor Biology, Institute for Cancer Research, Norwegian Radium Hospital, 0379 Oslo, Norway.,Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, 0379 Oslo, Norway
| | - Jørgen Wesche
- Department of Tumor Biology, Institute for Cancer Research, Norwegian Radium Hospital, 0379 Oslo, Norway.,Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, 0379 Oslo, Norway
| | - Christophe Erneux
- Institut de Recherche Interdisciplinaire en Biologie Humaine et moléculaire, Université Libre de Bruxelles, 1070 Bruxelles, Belgium
| | - Lukas Trantirek
- Central European Institute of Technology, Masaryk University, 62500 Brno, Czech Republic
| | - Deborah Krakow
- Department of Orthopedic Surgery, University of California Los Angeles, CA 90095, USA.,Department of Human Genetics, University of California Los Angeles, CA 90095, USA.,Department of Obstetrics and Gynecology, David Geffen School of Medicine, University of California Los Angeles, CA 90095, USA
| | - Pavel Krejci
- Department of Biology, Masaryk University, 62500 Brno, Czech Republic. .,International Clinical Research Center, St. Anne's University Hospital, 65691 Brno, Czech Republic.,Institute of Animal Physiology and Genetics of the Czech Academy of Sciences, 60200 Brno, Czech Republic
| |
Collapse
|