1
|
Shi T, Feng Y, Ma J, Liu W, Li N, Li T, Abudurexiti A, Tuerxuntayi A, Xue S, Gao F. Single cell transcriptome sequencing indicates the cellular heterogeneity of small intestine tissue in celiac disease. Sci Rep 2025; 15:12385. [PMID: 40216823 PMCID: PMC11992159 DOI: 10.1038/s41598-025-90300-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Accepted: 02/12/2025] [Indexed: 04/14/2025] Open
Abstract
Celiac disease (CeD) is an autoimmune small intestinal disease caused by gluten protein ingestion by genetically susceptible individuals. Genome-wide association studies and transcriptomic data have limited capacity to capture intercellular genetic variations. We aimed to construct a single cell transcriptome spectrum, analyze the immune microenvironment and cellular heterogeneity, discover disease-related specific genes and markers, and explore the pathogenesis of CeD. This study performed single cell RNA sequencing (scRNA-seq) on three small intestine biopsies from patients with CeD and three matched healthy Chinese controls. Immunohistochemistry (IHC) and quantitative polymerase chain reaction (qPCR) were used to validate potential diagnostic biomarkers of disease-differential genes. A total of 10 cell subpopulations were annotated, including three types of epithelial and stromal cells and seven types of immune cells. IHC revealed a pronounced overexpression of T cell disease-differential genes, TRAT1, BCL11B, and ETS1 in intraepithelial lymphocytes in the CeD group. Further clinical validation using qPCR confirmed that ETS1 (P = 0.010), TRAT1 (P < 0.001), and BCL11B (P = 0.036) were enriched in the CeD small intestinal tissue. The CD28/CTLA-4 pathway regulates the homeostasis of Treg cells. The IFITs family genes may serve as marker genes for antiviral specific CD4+ T cell subsets. CeD-derived subsets of CD8+ T cells frequently express genes associated with cytotoxicity, including IFNG, GZMK, GZMH, GZMB, SH2D1A, PRF1, and NKG7, as well as genes related to T cell exhaustion, such as PDCD10, CTLA4, TIGIT, PDCD1, and DUSP4. Inflammation and infection pathways were enriched in different cell populations. A single cell expression profile of CeD small intestinal tissue was successfully constructed using scRNA-seq in this study. New biomarkers for CeD-specific histopathology and potential therapeutic targets were discovered, and the biomarkers observed between inflammation and infection pathways were closely related to the onset of CeD.
Collapse
Affiliation(s)
- Tian Shi
- Department of Gastroenterology, People's Hospital of Xinjiang Uygur Autonomous Region, No. 91, Tianchi Road, Tianshan District, Urumqi, 830001, Xinjiang, China
- Xinjiang Clinical Research Center for Digestive Diseases, Urumqi, China
| | - Yan Feng
- Department of Gastroenterology, People's Hospital of Xinjiang Uygur Autonomous Region, No. 91, Tianchi Road, Tianshan District, Urumqi, 830001, Xinjiang, China
- Xinjiang Clinical Research Center for Digestive Diseases, Urumqi, China
| | - Jin Ma
- Department of Gastroenterology, People's Hospital of Xinjiang Uygur Autonomous Region, No. 91, Tianchi Road, Tianshan District, Urumqi, 830001, Xinjiang, China
- Department of Pathology, People's Hospital of Xinjiang Uygur Autonomous Region, Urumqi, China
| | - Weidong Liu
- Department of Gastroenterology, People's Hospital of Xinjiang Uygur Autonomous Region, No. 91, Tianchi Road, Tianshan District, Urumqi, 830001, Xinjiang, China
- Xinjiang Clinical Research Center for Digestive Diseases, Urumqi, China
| | - Na Li
- Department of Gastroenterology, People's Hospital of Xinjiang Uygur Autonomous Region, No. 91, Tianchi Road, Tianshan District, Urumqi, 830001, Xinjiang, China
- Xinjiang Clinical Research Center for Digestive Diseases, Urumqi, China
| | - Ting Li
- Department of Gastroenterology, People's Hospital of Xinjiang Uygur Autonomous Region, No. 91, Tianchi Road, Tianshan District, Urumqi, 830001, Xinjiang, China
- Xinjiang Clinical Research Center for Digestive Diseases, Urumqi, China
| | - Adilai Abudurexiti
- Department of Gastroenterology, People's Hospital of Xinjiang Uygur Autonomous Region, No. 91, Tianchi Road, Tianshan District, Urumqi, 830001, Xinjiang, China
- Xinjiang Clinical Research Center for Digestive Diseases, Urumqi, China
| | - Ailifeire Tuerxuntayi
- Department of Gastroenterology, People's Hospital of Xinjiang Uygur Autonomous Region, No. 91, Tianchi Road, Tianshan District, Urumqi, 830001, Xinjiang, China
- Xinjiang Clinical Research Center for Digestive Diseases, Urumqi, China
| | - Shenglong Xue
- Department of Gastroenterology, People's Hospital of Xinjiang Uygur Autonomous Region, No. 91, Tianchi Road, Tianshan District, Urumqi, 830001, Xinjiang, China
- Xinjiang Clinical Research Center for Digestive Diseases, Urumqi, China
| | - Feng Gao
- Department of Gastroenterology, People's Hospital of Xinjiang Uygur Autonomous Region, No. 91, Tianchi Road, Tianshan District, Urumqi, 830001, Xinjiang, China.
- Xinjiang Clinical Research Center for Digestive Diseases, Urumqi, China.
| |
Collapse
|
2
|
Wang JB, Li HL, Ming X, Feng JX, Hu ZL, Zhou L. Causal association between allergic diseases and celiac disease: a bidirectional two-sample and multivariable Mendelian-randomization study. J Asthma 2025; 62:621-627. [PMID: 39503439 DOI: 10.1080/02770903.2024.2425370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2024] [Revised: 10/24/2024] [Accepted: 10/30/2024] [Indexed: 11/08/2024]
Abstract
OBJECTIVE This study aimed to assess the causality of allergic diseases and celiac disease. METHODS We collected summary-level data from publicly available genome-wide association studies to conduct our bidirectional two-sample and multivariable Mendelian randomization analysis. Furthermore, a series of sensitivity analyses were applied to validate our findings. RESULTS In bidirectional two-sample MR analyses, we found a significant causal effect of atopic dermatitis (AD) on CD (Inverse-variance weighted (IVW): odds ratio [OR] = 1.302, 95% confidence interval [CI] = 1.152-1.471, p < 0.001). We also found a significant causal effect of allergic rhinitis (AR) on CD (IVW: OR = 4.181, 95% CI = 1.495-11.697, p = 0.006). However, the MR-Egger method indicated a different causal effect direction compared to the IVW and weighted median method. After Bonferroni correction, the result of asthma on CD is suggestive of a causal effect (IVW: OR = 1.186, 95% CI = 1.021-1.378, p = 0.026). No causal effects were found when CD was considered as an exposure variable. In MVMR analyses, after separately and jointly adjusting for the influence of smoking and BMI, the causal effect of AD on CD remained robust. CONCLUSIONS Our study suggests that AD is a risk factor for CD and it is considered suggestive of a causal relationship between asthma and CD. Further research is needed to explore the potential mechanisms underlying this causal effect.
Collapse
Affiliation(s)
- Jun-Bo Wang
- Department of Epidemiology, School of Public Health, Chongqing Medical University, Chongqing, China
| | - Hai-Lan Li
- Department of Epidemiology, School of Public Health, Chongqing Medical University, Chongqing, China
| | - Xin Ming
- Department of Epidemiology, School of Public Health, Chongqing Medical University, Chongqing, China
- Women and Children's Hospital of Chongqing Medical University, Chongqing, China
- Chongqing Health Center for Women and Children, Chongqing, China
| | - Jin-Xiu Feng
- Department of Epidemiology, School of Public Health, Chongqing Medical University, Chongqing, China
| | - Zhi-Li Hu
- Department of Epidemiology, School of Public Health, Chongqing Medical University, Chongqing, China
| | - Li Zhou
- Department of Epidemiology, School of Public Health, Chongqing Medical University, Chongqing, China
| |
Collapse
|
3
|
Porret R, Alcaraz-Serna A, Peter B, Bernier-Latmani J, Cecchin R, Alfageme-Abello O, Ermellino L, Hafezi M, Pace E, du Pré MF, Lana E, Golshayan D, Velin D, Eyquem J, Tang Q, Petrova TV, Coukos G, Irving M, Pot C, Pantaleo G, Sollid LM, Muller YD. T cell receptor precision editing of regulatory T cells for celiac disease. Sci Transl Med 2025; 17:eadr8941. [PMID: 40106579 DOI: 10.1126/scitranslmed.adr8941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Accepted: 02/11/2025] [Indexed: 03/22/2025]
Abstract
Celiac disease, a gluten-sensitive enteropathy, demonstrates a strong human leukocyte antigen (HLA) association, with more than 90% of patients carrying the HLA-DQ2.5 allotype. No therapy is available for the condition except for a lifelong gluten-free diet. To address this gap, we explored the therapeutic potential of regulatory T cells (Tregs). By orthotopic replacement of T cell receptors (TCRs) through homology-directed repair, we generated gluten-reactive HLA-DQ2.5-restricted CD4+ engineered (e) T effector cells (Teffs) and eTregs and performed in vivo experiments in HLA-DQ2.5 transgenic mice. Of five validated TCRs, TCRs specific for two immunodominant and deamidated gluten epitopes (DQ2.5-glia-α1a and DQ2.5-glia-α2) were selected for further evaluation. CD4+ eTeffs exposed to deamidated gluten through oral gavage colocalized with dendritic and B cells in the Peyer's patches and gut-draining lymph nodes and specifically migrated to the intestine. The suppressive function of human eTregs correlated with high TCR functional activity. eTregs specific for one epitope suppressed the proliferation and gut migration of CD4+ eTeffs specific for the same and the other gluten epitope, demonstrating bystander suppression. The suppression requires an antigen-specific activation of eTregs given that polyclonal Tregs failed to suppress CD4+ eTeffs. These findings highlight the potential of gluten-reactive eTregs as a therapeutic for celiac disease.
Collapse
Affiliation(s)
- Raphaël Porret
- Division of Immunology and Allergy, Lausanne University Hospital and University of Lausanne, Lausanne CH-1005, Switzerland
| | - Ana Alcaraz-Serna
- Division of Immunology and Allergy, Lausanne University Hospital and University of Lausanne, Lausanne CH-1005, Switzerland
| | - Benjamin Peter
- Laboratories of Neuroimmunology, Service of Neurology and Neuroscience Research Center, Department of Clinical Neurosciences, Lausanne University Hospital and University of Lausanne, Lausanne CH-1005, Switzerland
| | - Jeremiah Bernier-Latmani
- Department of Oncology, Lausanne University Hospital and University of Lausanne, 1005 Lausanne, Switzerland
| | - Rebecca Cecchin
- Division of Immunology and Allergy, Lausanne University Hospital and University of Lausanne, Lausanne CH-1005, Switzerland
| | - Oscar Alfageme-Abello
- Division of Immunology and Allergy, Lausanne University Hospital and University of Lausanne, Lausanne CH-1005, Switzerland
| | - Laura Ermellino
- Division of Immunology and Allergy, Lausanne University Hospital and University of Lausanne, Lausanne CH-1005, Switzerland
| | - Morteza Hafezi
- Department of Oncology, Lausanne University Hospital and University of Lausanne, 1005 Lausanne, Switzerland
| | - Eleonora Pace
- Division of Immunology and Allergy, Lausanne University Hospital and University of Lausanne, Lausanne CH-1005, Switzerland
| | - M Fleur du Pré
- Norwegian Coeliac Disease Research Centre, Institute of Clinical Medicine, University of Oslo and Department of Immunology, Oslo University Hospital, Oslo NO-0424, Norway
| | - Erica Lana
- Division of Immunology and Allergy, Lausanne University Hospital and University of Lausanne, Lausanne CH-1005, Switzerland
| | - Dela Golshayan
- Transplantation Center, Department of Medicine, Lausanne University Hospital and University of Lausanne, Lausanne CH-1005, Switzerland
| | - Dominique Velin
- Service of Gastroenterology and Hepatology, Lausanne University Hospital and University of Lausanne, Lausanne CH-1005, Switzerland
| | - Justin Eyquem
- Department of Medicine, University of California San Francisco, San Francisco, CA 94143, USA
| | - Qizhi Tang
- Diabetes Center, University of California San Francisco, San Francisco, CA 94143, USA
| | - Tatiana V Petrova
- Department of Oncology, Lausanne University Hospital and University of Lausanne, 1005 Lausanne, Switzerland
| | - George Coukos
- Department of Oncology, Lausanne University Hospital and University of Lausanne, 1005 Lausanne, Switzerland
- Ludwig Institute for Cancer Research Lausanne Branch, 1066 Lausanne, Switzerland
| | - Melita Irving
- Department of Oncology, Lausanne University Hospital and University of Lausanne, 1005 Lausanne, Switzerland
- Ludwig Institute for Cancer Research Lausanne Branch, 1066 Lausanne, Switzerland
| | - Caroline Pot
- Laboratories of Neuroimmunology, Service of Neurology and Neuroscience Research Center, Department of Clinical Neurosciences, Lausanne University Hospital and University of Lausanne, Lausanne CH-1005, Switzerland
| | - Giuseppe Pantaleo
- Division of Immunology and Allergy, Lausanne University Hospital and University of Lausanne, Lausanne CH-1005, Switzerland
| | - Ludvig M Sollid
- Norwegian Coeliac Disease Research Centre, Institute of Clinical Medicine, University of Oslo and Department of Immunology, Oslo University Hospital, Oslo NO-0424, Norway
| | - Yannick D Muller
- Division of Immunology and Allergy, Lausanne University Hospital and University of Lausanne, Lausanne CH-1005, Switzerland
- Centre for Human Immunology Lausanne, Lausanne CH-1005, Switzerland
| |
Collapse
|
4
|
Yilmaz F, Atay K. FOXP3 expression in duodenal mucosa: Unique role in pathogenesis and differential diagnosis of celiac disease. Ann Diagn Pathol 2025; 74:152393. [PMID: 39547128 DOI: 10.1016/j.anndiagpath.2024.152393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 11/01/2024] [Accepted: 11/02/2024] [Indexed: 11/17/2024]
Abstract
Forkhead box protein P3 (FOXP3) positive regulatory T lymphocytes are indispensable in the inflammatory homeostasis of the gastrointestinal tract and represent a significant subset of regulatory cells in inflammatory, autoimmune, and neoplastic conditions. This study aimed to elucidate the potential of FOXP3 expression in diagnosing and pathogenesis of celiac disease (CD) by comparing duodenal biopsies of CD cases with non-CD ones, some of which had increased intraepithelial lymphocytes (IELs). Two hundred sixty-one duodenal tissues of patients who applied to adult gastroenterology were reevaluated for immunohistochemical analysis. After excluding patients on a gluten-free diet (n = 44), the CD (n = 97) and non-CD (n = 120) groups were divided based on clinical complaints that could be associated with CD (intestinal or extraintestinal), serologic and histologic findings. The specific threshold was determined by receiver operating characteristic (ROC) analysis, and its relationship with CD diagnosis and clinicopathological data was evaluated. ROC analysis offered a ">14" cut-off value for diagnosing CD, for which AUC (Area Under The Curve): 0.968, p < 0.0001, sensitivity: 92.8, specificity: 91.7, positive and negative predictive values were 90 % and 94 %, respectively. High FOXP3 expression was associated with higher IEL, diagnosis of CD, more severe histologic (higher Marsh score) and endoscopic (scalloping) findings, and higher anti-tissue transglutaminase and anti-endomysium IgA titers (p < 0.001). It also correlates with IEL in CD patients and is unaffected by the increase in IEL and the presence of gastric Helicobacter Pylori in the non-CD group. FOXP3 is a sensitive and specific marker for diagnosing CD despite inflammatory conditions resulting from non-CD causes.
Collapse
Affiliation(s)
- F Yilmaz
- Mardin Training and Research Hospital, Pathology Laboratory, Mardin, Turkey.
| | - K Atay
- Mardin Training and Research Hospital, Adult Gastroenterology Clinic, Mardin, Turkey
| |
Collapse
|
5
|
Abadie V, Han AS, Jabri B, Sollid LM. New Insights on Genes, Gluten, and Immunopathogenesis of Celiac Disease. Gastroenterology 2024; 167:4-22. [PMID: 38670280 PMCID: PMC11283582 DOI: 10.1053/j.gastro.2024.03.042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 03/10/2024] [Accepted: 03/11/2024] [Indexed: 04/28/2024]
Abstract
Celiac disease (CeD) is a gluten-induced enteropathy that develops in genetically susceptible individuals upon consumption of cereal gluten proteins. It is a unique and complex immune disorder to study as the driving antigen is known and the tissue targeted by the immune reaction can be interrogated. This review integrates findings gained from genetic, biochemical, and immunologic studies, which together have revealed mechanisms of gluten peptide modification and HLA binding, thereby enabling a maladapted anti-gluten immune response. Observations in human samples combined with experimental mouse models have revealed that the gluten-induced immune response involves CD4+ T cells, cytotoxic CD8+ T cells, and B cells; their cross-talks are critical for the tissue-damaging response. The emergence of high-throughput technologies is increasing our understanding of the phenotype, location, and presumably function of the gluten-specific cells, which are all required to identify novel therapeutic targets and strategies for CeD.
Collapse
Affiliation(s)
- Valérie Abadie
- Department of Medicine, University of Chicago, Chicago, Illinois; Section of Gastroenterology, Nutrition and Hepatology, University of Chicago, Chicago, Illinois; Committee on Immunology, University of Chicago, Chicago, Illinois.
| | - Arnold S Han
- Columbia Center for Translational Immunology, Columbia University, New York, New York; Department of Microbiology and Immunology, Columbia University, New York, New York; Department of Medicine, Digestive and Liver Diseases, Columbia University, New York, New York
| | - Bana Jabri
- Department of Medicine, University of Chicago, Chicago, Illinois; Section of Gastroenterology, Nutrition and Hepatology, University of Chicago, Chicago, Illinois; Committee on Immunology, University of Chicago, Chicago, Illinois; Department of Pathology, University of Chicago, Chicago, Illinois; Department of Pediatrics, University of Chicago, Chicago, Illinois
| | - Ludvig M Sollid
- Norwegian Coeliac Disease Research Centre, Institute of Clinical Medicine, University of Oslo, Oslo, Norway; Department of Immunology, Oslo University Hospital-Rikshospitalet, Oslo, Norway
| |
Collapse
|
6
|
Ye L, Zheng W, Li X, Han W, Shen J, Lin Q, Hou L, Liao L, Zeng X. The Role of Gluten in Food Products and Dietary Restriction: Exploring the Potential for Restoring Immune Tolerance. Foods 2023; 12:4179. [PMID: 38002235 PMCID: PMC10670377 DOI: 10.3390/foods12224179] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 11/16/2023] [Accepted: 11/17/2023] [Indexed: 11/26/2023] Open
Abstract
Wheat is extensively utilized in various processed foods due to unique proteins forming from the gluten network. The gluten network in food undergoes morphological and molecular structural changes during food processing, affecting the final quality and digestibility of the food. The present review introduces the formation of the gluten network and the role of gluten in the key steps of the production of several typical food products such as bread, pasta, and beer. Also, it summarizes the factors that affect the digestibility of gluten, considering that different processing conditions probably affect its structure and properties, contributing to an in-depth understanding of the digestion of gluten by the human body under various circumstances. Nevertheless, consumption of gluten protein may lead to the development of celiac disease (CD). The best way is theoretically proposed to prevent and treat CD by the inducement of oral tolerance, an immune non-response system formed by the interaction of oral food antigens with the intestinal immune system. This review proposes the restoration of oral tolerance in CD patients through adjunctive dietary therapy via gluten-encapsulated/modified dietary polyphenols. It will reduce the dietary restriction of gluten and help patients achieve a comprehensive dietary intake by better understanding the interactions between gluten and food-derived active products like polyphenols.
Collapse
Affiliation(s)
- Li Ye
- Guangdong Key Laboratory of Intelligent Food Manufacturing, Foshan University, Foshan 528225, China; (L.Y.); (W.Z.); (X.L.); (W.H.); (J.S.); (Q.L.); (L.H.)
- Department of Food Science, Foshan University, Foshan 528000, China
| | - Wenyu Zheng
- Guangdong Key Laboratory of Intelligent Food Manufacturing, Foshan University, Foshan 528225, China; (L.Y.); (W.Z.); (X.L.); (W.H.); (J.S.); (Q.L.); (L.H.)
- Department of Food Science, Foshan University, Foshan 528000, China
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Xue Li
- Guangdong Key Laboratory of Intelligent Food Manufacturing, Foshan University, Foshan 528225, China; (L.Y.); (W.Z.); (X.L.); (W.H.); (J.S.); (Q.L.); (L.H.)
- Department of Food Science, Foshan University, Foshan 528000, China
| | - Wenmin Han
- Guangdong Key Laboratory of Intelligent Food Manufacturing, Foshan University, Foshan 528225, China; (L.Y.); (W.Z.); (X.L.); (W.H.); (J.S.); (Q.L.); (L.H.)
- Department of Food Science, Foshan University, Foshan 528000, China
| | - Jialing Shen
- Guangdong Key Laboratory of Intelligent Food Manufacturing, Foshan University, Foshan 528225, China; (L.Y.); (W.Z.); (X.L.); (W.H.); (J.S.); (Q.L.); (L.H.)
- Department of Food Science, Foshan University, Foshan 528000, China
| | - Qiuya Lin
- Guangdong Key Laboratory of Intelligent Food Manufacturing, Foshan University, Foshan 528225, China; (L.Y.); (W.Z.); (X.L.); (W.H.); (J.S.); (Q.L.); (L.H.)
- Department of Food Science, Foshan University, Foshan 528000, China
| | - Liyan Hou
- Guangdong Key Laboratory of Intelligent Food Manufacturing, Foshan University, Foshan 528225, China; (L.Y.); (W.Z.); (X.L.); (W.H.); (J.S.); (Q.L.); (L.H.)
- Department of Food Science, Foshan University, Foshan 528000, China
| | - Lan Liao
- Guangdong Key Laboratory of Intelligent Food Manufacturing, Foshan University, Foshan 528225, China; (L.Y.); (W.Z.); (X.L.); (W.H.); (J.S.); (Q.L.); (L.H.)
- Department of Food Science, Foshan University, Foshan 528000, China
| | - Xin’an Zeng
- Guangdong Key Laboratory of Intelligent Food Manufacturing, Foshan University, Foshan 528225, China; (L.Y.); (W.Z.); (X.L.); (W.H.); (J.S.); (Q.L.); (L.H.)
- Department of Food Science, Foshan University, Foshan 528000, China
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China
| |
Collapse
|
7
|
Camarca A, Rotondi Aufiero V, Mazzarella G. Role of Regulatory T Cells and Their Potential Therapeutic Applications in Celiac Disease. Int J Mol Sci 2023; 24:14434. [PMID: 37833882 PMCID: PMC10572745 DOI: 10.3390/ijms241914434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 09/12/2023] [Accepted: 09/14/2023] [Indexed: 10/15/2023] Open
Abstract
Celiac disease (CeD) is a T-cell-mediated immune disease, in which gluten-derived peptides activate lamina propria effector CD4+ T cells. While this effector T cell subset produces proinflammatory cytokines, which cause substantial tissue injury in vivo, additional subsets of T cells exist with regulatory functions (Treg). These subsets include CD4+ type 1 regulatory T cells (Tr1) and CD4+ CD25+ T cells expressing the master transcription factor forkhead box P3 (Foxp3) that may have important implications in disease pathogenesis. In this review, we provide an overview of the current knowledge about the effects of immunomodulating cytokines on CeD inflammatory status. Moreover, we outline the main Treg cell populations found in CeD and how their regulatory activity could be influenced by the intestinal microenvironment. Finally, we discuss the Treg therapeutic potential for the development of alternative strategies to the gluten-free diet (GFD).
Collapse
Affiliation(s)
- Alessandra Camarca
- Institute of Food Sciences, National Research Council—CNR, 83100 Avellino, Italy (V.R.A.)
| | - Vera Rotondi Aufiero
- Institute of Food Sciences, National Research Council—CNR, 83100 Avellino, Italy (V.R.A.)
- Department of Medical Translational Sciences and European Laboratory for the Investigation of Food-Induced Diseases, University Federico II, 80138 Naples, Italy
| | - Giuseppe Mazzarella
- Institute of Food Sciences, National Research Council—CNR, 83100 Avellino, Italy (V.R.A.)
- Department of Medical Translational Sciences and European Laboratory for the Investigation of Food-Induced Diseases, University Federico II, 80138 Naples, Italy
| |
Collapse
|
8
|
Kornberg A, Botella T, Moon CS, Rao S, Gelbs J, Cheng L, Miller J, Bacarella AM, García-Vilas JA, Vargas J, Yu X, Krupska I, Bush E, Garcia-Carrasquillo R, Lebwohl B, Krishnareddy S, Lewis S, Green PH, Bhagat G, Yan KS, Han A. Gluten induces rapid reprogramming of natural memory αβ and γδ intraepithelial T cells to induce cytotoxicity in celiac disease. Sci Immunol 2023; 8:eadf4312. [PMID: 37450575 PMCID: PMC10481382 DOI: 10.1126/sciimmunol.adf4312] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 05/26/2023] [Indexed: 07/18/2023]
Abstract
Celiac disease (CD) is an autoimmune disease in which intestinal inflammation is induced by dietary gluten. The means through which gluten-specific CD4+ T cell activation culminates in intraepithelial T cell (T-IEL)-mediated intestinal damage remain unclear. Here, we performed multiplexed single-cell analysis of intestinal and gluten-induced peripheral blood T cells from patients in different CD states and healthy controls. Untreated, active, and potential CD were associated with an enrichment of activated intestinal T cell populations, including CD4+ follicular T helper (TFH) cells, regulatory T cells (Tregs), and natural CD8+ αβ and γδ T-IELs. Natural CD8+ αβ and γδ T-IELs expressing activating natural killer cell receptors (NKRs) exhibited a distinct TCR repertoire in CD and persisted in patients on a gluten-free diet without intestinal inflammation. Our data further show that NKR-expressing cytotoxic cells, which appear to mediate intestinal damage in CD, arise from a distinct NKR-expressing memory population of T-IELs. After gluten ingestion, both αβ and γδ T cell clones from this memory population of T-IELs circulated systemically along with gluten-specific CD4+ T cells and assumed a cytotoxic and activating NKR-expressing phenotype. Collectively, these findings suggest that cytotoxic T cells in CD are rapidly mobilized in parallel with gluten-specific CD4+ T cells after gluten ingestion.
Collapse
Affiliation(s)
- Adam Kornberg
- Columbia Center for Translational Immunology, Columbia University; New York, NY
- Department of Microbiology and Immunology, Columbia University; New York, NY
| | - Theo Botella
- Columbia Center for Human Development, Columbia University; New York, NY
- Department of Medicine, Digestive and Liver Diseases, Columbia University; New York, NY
- Department of Genetics and Development, Columbia University; New York, NY
| | - Christine S. Moon
- Columbia Center for Translational Immunology, Columbia University; New York, NY
- Columbia Center for Human Development, Columbia University; New York, NY
- Department of Medicine, Digestive and Liver Diseases, Columbia University; New York, NY
- Department of Genetics and Development, Columbia University; New York, NY
| | - Samhita Rao
- Columbia Center for Translational Immunology, Columbia University; New York, NY
- Department of Microbiology and Immunology, Columbia University; New York, NY
| | - Jared Gelbs
- Columbia Center for Translational Immunology, Columbia University; New York, NY
- Department of Pediatrics, Columbia University; New York, NY
| | - Liang Cheng
- Columbia Center for Human Development, Columbia University; New York, NY
- Department of Medicine, Digestive and Liver Diseases, Columbia University; New York, NY
- Department of Genetics and Development, Columbia University; New York, NY
| | - Jonathan Miller
- Columbia Center for Human Development, Columbia University; New York, NY
- Department of Medicine, Digestive and Liver Diseases, Columbia University; New York, NY
- Department of Genetics and Development, Columbia University; New York, NY
| | | | - Javier A. García-Vilas
- Columbia Center for Translational Immunology, Columbia University; New York, NY
- Department of Microbiology and Immunology, Columbia University; New York, NY
- Department of Medicine, Digestive and Liver Diseases, Columbia University; New York, NY
| | - Justin Vargas
- Department of Medicine, Digestive and Liver Diseases, Columbia University; New York, NY
- Celiac Disease Center, Columbia University; New York, NY
| | - Xuechen Yu
- Celiac Disease Center, Columbia University; New York, NY
| | - Izabela Krupska
- Department of Systems Biology, Columbia University; New York, NY
| | - Erin Bush
- Department of Systems Biology, Columbia University; New York, NY
| | | | - Benjamin Lebwohl
- Department of Medicine, Digestive and Liver Diseases, Columbia University; New York, NY
- Celiac Disease Center, Columbia University; New York, NY
| | - Suneeta Krishnareddy
- Department of Medicine, Digestive and Liver Diseases, Columbia University; New York, NY
- Celiac Disease Center, Columbia University; New York, NY
| | - Suzanne Lewis
- Department of Medicine, Digestive and Liver Diseases, Columbia University; New York, NY
- Celiac Disease Center, Columbia University; New York, NY
| | - Peter H.R. Green
- Department of Medicine, Digestive and Liver Diseases, Columbia University; New York, NY
- Celiac Disease Center, Columbia University; New York, NY
| | - Govind Bhagat
- Celiac Disease Center, Columbia University; New York, NY
- Department of Pathology and Cell Biology, Columbia University; New York, NY
| | - Kelley S. Yan
- Columbia Center for Human Development, Columbia University; New York, NY
- Department of Medicine, Digestive and Liver Diseases, Columbia University; New York, NY
- Department of Genetics and Development, Columbia University; New York, NY
| | - Arnold Han
- Columbia Center for Translational Immunology, Columbia University; New York, NY
- Department of Microbiology and Immunology, Columbia University; New York, NY
- Department of Medicine, Digestive and Liver Diseases, Columbia University; New York, NY
- Celiac Disease Center, Columbia University; New York, NY
| |
Collapse
|
9
|
Golpour F, Abbasi-Alaei M, Babaei F, Mirzababaei M, Parvardeh S, Mohammadi G, Nassiri-Asl M. Short chain fatty acids, a possible treatment option for autoimmune diseases. Biomed Pharmacother 2023; 163:114763. [PMID: 37105078 DOI: 10.1016/j.biopha.2023.114763] [Citation(s) in RCA: 43] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 04/09/2023] [Accepted: 04/20/2023] [Indexed: 04/29/2023] Open
Abstract
Gut microbiota can interact with the immune system through its metabolites. Short-chain fatty acids (SCFAs), as one of the most abundant metabolites of the resident gut microbiota play an important role in this crosstalk. SCFAs (acetate, propionate, and butyrate) regulate nearly every type of immune cell in the gut's immune cell repertoire regarding their development and function. SCFAs work through several pathways to impose protection towards colonic health and against local or systemic inflammation. Additionally, SCFAs play a role in the regulation of immune or non-immune pathways that can slow the development of autoimmunity either systematically or in situ. The present study aims to summarize the current knowledge on the immunomodulatory roles of SCFAs and the association between the SCFAs and autoimmune disorders such as celiac disease (CD), inflammatory bowel disease (IBD), rheumatoid arthritis (RA), multiple sclerosis (MS), systemic lupus erythematosus (SLE), type 1 diabetes (T1D) and other immune-mediated diseases, uncovering a brand-new therapeutic possibility to prevent or treat autoimmunity.
Collapse
Affiliation(s)
- Faezeh Golpour
- School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mehrsa Abbasi-Alaei
- School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Fatemeh Babaei
- Department of Clinical Biochemistry, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammadreza Mirzababaei
- Department of Clinical Biochemistry, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Siavash Parvardeh
- Department of Pharmacology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ghazaleh Mohammadi
- Cellular and Molecular Research Center, Research Institute for Prevention of Non-Communicable Diseases, Qazvin University of Medical Sciences, Qazvin, Iran; Department of Molecular Medicine, School of Medicine, Qazvin University of Medical Sciences, Qazvin, Iran.
| | - Marjan Nassiri-Asl
- Department of Pharmacology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Neurobiology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
10
|
Abstract
Among human leukocyte antigen (HLA)-associated disorders, celiac disease has an immunopathogenesis that is particularly well understood. The condition is characterized by hypersensitivity to cereal gluten proteins, and the disease lesion is localized in the gut. Still, the diagnosis can be made by detection of highly disease-specific autoantibodies to transglutaminase 2 in the blood. We now have mechanistic insights into how the disease-predisposing HLA-DQ molecules, via presentation of posttranslationally modified gluten peptides, are connected to the generation of these autoantibodies. This review presents our current understanding of the immunobiology of this common disorder that is positioned in the border zone between food hypersensitivity and autoimmunity.
Collapse
Affiliation(s)
- Rasmus Iversen
- KG Jebsen Coeliac Disease Research Centre, Institute of Clinical Medicine, University of Oslo, Oslo, Norway; .,Department of Immunology, Oslo University Hospital-Rikshospitalet, Oslo, Norway
| | - Ludvig M Sollid
- KG Jebsen Coeliac Disease Research Centre, Institute of Clinical Medicine, University of Oslo, Oslo, Norway; .,Department of Immunology, Oslo University Hospital-Rikshospitalet, Oslo, Norway
| |
Collapse
|
11
|
Reduced frequency of circulating regulatory T cells and their related immunosuppressive mediators in treated celiac patients. Mol Biol Rep 2022; 49:8527-8535. [PMID: 35723802 DOI: 10.1007/s11033-022-07674-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Accepted: 06/01/2022] [Indexed: 10/18/2022]
Abstract
BACKGROUND Regulatory T cells (Tregs) have an important role in the control of the immune responses. This study aimed to compare the frequency of peripheral blood (PB) CD4+ CD25+ FoxP3+ Treg cells and PB and duodenal expression levels of pro- and anti-inflammatory mediators in treated celiac disease (CD) patients and healthy controls. METHODS AND RESULTS Duodenal biopsy specimens and PB samples were collected from 60 treated CD patients and 60 controls. Flow cytometry analysis was conducted on peripheral blood mononuclear cell (PBMC) specimens and relative PB and duodenal mRNA expression levels of CD25, forkhead box P3 (Foxp3), interleukin (IL)-10 and granzyme B (GrzB) were evaluated using quantitative real-time PCR. The levels of serum IL-10 and IL-6 were tested with sandwich enzyme-linked immunosorbent assay kits. p values < 0.05 were considered significant. Flow cytometry analysis showed a significant decrease in the number of Tregs in CD patients' PBMC specimens (p = 0.012). CD25 and Foxp3 PB mRNA expressions were also lower in CD patients without reaching the significance level (p > 0.05). IL-10 PB mRNA and protein expression did not differ between the groups (p > 0.05), and GrzB PB expression was significantly reduced in CD patients (p = 0.001). In duodenal specimens of CD patients, while significantly increased CD25, Foxp3 mRNA expression (p = 0.01 and 0.001, respectively) and decreased IL-10 mRNA expression (p = 0.02) were observed, GrzB mRNA expression did not differ between groups (p > 0.05). Moreover, a high serum level of IL-6 was observed in CD patients (p = 0.001). CONCLUSIONS Despite following the gluten free diet, there may still be residual inflammation in the intestine of CD patients. Accordingly, finding a therapeutic approach based on strengthening the function of Treg cells in CD might be helpful.
Collapse
|
12
|
Treppiccione L, Luongo D, Maurano F, Rossi M. Next generation strategies to recover immunological tolerance in celiac disease. Int Rev Immunol 2022; 42:237-245. [PMID: 35225129 DOI: 10.1080/08830185.2022.2044807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Celiac disease (CD) is an autoimmune disease that occurs in genetically predisposed individuals following the ingestion of gluten. Its prevalence is rising worldwide. A gluten-free (GF) diet is mandatory for the management of CD. However, several issues persist regarding the nutritional quality of GF products. Importantly, deep knowledge about the pathogenic mechanisms in CD highlights the central role of CD4+ T cell-mediated immunity in CD. Furthermore, intestinal T regulatory cells are functional in CD, but cytokines such as IL-15, produced under inflammatory conditions, hamper their activity. This paves the way for the development of immunomodulatory strategies to the GF diet. From this perspective, microbiological approaches were considered able to modulate the gluten-specific immune response. Interestingly, gliadin peptide-based immunotherapy to abolish the inflammatory CD4+T cell-mediated response has been explored in CD patients. Furthermore, different biotechnological approaches based on the use of chemically/enzymatically modified gluten molecules have been proved effective in different models of CD. However, the choice of the right age in infants to introduce the antigen and thus induce tolerance still remains an important issue to solve. Addressing all these points should help to design an effective intervention strategy for preventing CD.
Collapse
Affiliation(s)
| | | | | | - Mauro Rossi
- Institute of Food Sciences, CNR, Avellino, Italy
| |
Collapse
|
13
|
Asri N, Nazemalhosseini Mojarad E, Mirjalali H, Mohebbi SR, Baghaei K, Rostami-Nejad M, Yadegar A, Rezaei-Tavirani M, Asadzadeh Aghdaei H, Rostami K, Masotti A. Toward finding the difference between untreated celiac disease and COVID-19 infected patients in terms of CD4, CD25 (IL-2 Rα), FOXP3 and IL-6 expressions as genes affecting immune homeostasis. BMC Gastroenterol 2021; 21:462. [PMID: 34895167 PMCID: PMC8665626 DOI: 10.1186/s12876-021-02056-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/14/2021] [Accepted: 12/07/2021] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Coronavirus disease 2019 (COVID-19) is defined as an emerging infectious disease caused by severe acute respiratory syndrome coronavirus 2 and celiac disease (CD) is one of the autoimmune multiorgan diseases, which can be accompanied by an increased risk of viral infections. CD patients, especially untreated subjects, may be at greater risk of infections such as viral illnesses. Interleukin (IL)-6, CD4, CD25, and FOXP3 are known as genes affecting immune homeostasis and relate to the inflammation state. This study aimed to compare the expression levels of aforementioned genes in peripheral blood samples of CD and severe COVID-19 patients. METHODS Sixty newly diagnosed CD patients with median age (mean ± SD) of 35.40 ± 24.12 years; thirty confirmed severe COVID-19 patients with median age (mean ± SD) of 59.67 ± 17.22, and 60 healthy subjects with median age (mean ± SD) of 35.6 ± 13.02 years; were recruited from March to September 2020. Fresh whole blood samples were collected, total RNA was obtained and cDNA synthesis was carried out. RNA expression levels of IL-6, CD4, CD25, and FOXP3 genes were assessed using real-time quantitative RT-PCR according to the 2-∆∆Ct formula. Statistical analysis was performed using SPSS (V.21) and GraphPad, Prism (V.6). RESULTS While increased expression of CD4, CD25, and FOXP3 was observed in CD patients compared to the control group (p = 0.02, p = 0.03, and p < 0.0001 respectively) and COVID-19 patients group (p < 0.0001 for all of them), their expression levels in COVID-19 patients decreased compared to controls (p < 0.0001, p = 0.01, p = 0.007, respectively). Increased IL-6 expression was observed in both groups of patients compared to controls (p < 0.0001 for both of them). CONCLUSIONS Although untreated CD patients may be at greater risk of developing into severe COVID-19 if they are infected by SARS-CoV-2 virus (due to their high expression of IL-6), increased expression of anti-inflammatory markers in these patients may be beneficial for them with the ability of reducing the severity of COVID-19 disease, which needs to be proven in future studies involving celiac patients infected with COVID-19.
Collapse
Affiliation(s)
- Nastaran Asri
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ehsan Nazemalhosseini Mojarad
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hamed Mirjalali
- Foodborne and Waterborne Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Seyed Reza Mohebbi
- Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Kaveh Baghaei
- Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Rostami-Nejad
- Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Abbas Yadegar
- Foodborne and Waterborne Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mostafa Rezaei-Tavirani
- Proteomics Research Center, Faculty of Paramedical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hamid Asadzadeh Aghdaei
- Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Kamran Rostami
- Department of Gastroenterology, MidCentral DHB, Palmerston North, New Zealand
| | - Andrea Masotti
- Research Laboratories, Bambino Gesù Children's Hospital-IRCCS, Rome, Italy
| |
Collapse
|
14
|
Anderson RP. Emergence of an adaptive immune paradigm to explain celiac disease: a perspective on new evidence and implications for future interventions and diagnosis. Expert Rev Clin Immunol 2021; 18:75-91. [PMID: 34767744 DOI: 10.1080/1744666x.2021.2006636] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
INTRODUCTION Recent patient studies have shown that gluten-free diet is less effective in treating celiac disease than previously believed, and additionally patients remain vulnerable to gluten-induced acute symptoms and systemic cytokine release. Safe and effective pharmacological adjuncts to gluten-free diet are in preclinical and clinical development. Clear understanding of the pathogenesis of celiac disease is critical for drug target identification, establishing efficacy endpoints and to develop non-invasive biomarkers suitable to monitor and potentially diagnose celiac disease. AREAS COVERED The role and clinical effects of CD4+ T cells directed against deamidated gluten in the context of an "adaptive immune paradigm" are reviewed. Alternative hypotheses of gluten toxicity are discussed and contrasted. In the context of recent patient studies, implications of the adaptive immune paradigm for future strategies to prevent, diagnose, and treat celiac disease are outlined. EXPERT OPINION Effective therapeutics for celiac disease are likely to be approved and necessitate a variety of new clinical instruments and tests to stratify patient need, monitor remission, and confirm diagnosis in uncertain cases. Sensitive assessments of CD4+ T cells specific for deamidated gluten are likely to play a central role in clinical management, and to facilitate research and pharmaceutical development.
Collapse
|
15
|
Voisine J, Abadie V. Interplay Between Gluten, HLA, Innate and Adaptive Immunity Orchestrates the Development of Coeliac Disease. Front Immunol 2021; 12:674313. [PMID: 34149709 PMCID: PMC8206552 DOI: 10.3389/fimmu.2021.674313] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Accepted: 05/18/2021] [Indexed: 12/26/2022] Open
Abstract
Several environmental, genetic, and immune factors create a "perfect storm" for the development of coeliac disease: the antigen gluten, the strong association of coeliac disease with HLA, the deamidation of gluten peptides by the enzyme transglutaminase 2 (TG2) generating peptides that bind strongly to the predisposing HLA-DQ2 or HLA-DQ8 molecules, and the ensuing unrestrained T cell response. T cell immunity is at the center of the disease contributing to the inflammatory process through the loss of tolerance to gluten and the differentiation of HLA-DQ2 or HLA-DQ8-restricted anti-gluten inflammatory CD4+ T cells secreting pro-inflammatory cytokines and to the killing of intestinal epithelial cells by cytotoxic intraepithelial CD8+ lymphocytes. However, recent studies emphasize that the individual contribution of each of these cell subsets is not sufficient and that interactions between these different populations of T cells and the simultaneous activation of innate and adaptive immune pathways in distinct gut compartments are required to promote disease immunopathology. In this review, we will discuss how tissue destruction in the context of coeliac disease results from the complex interactions between gluten, HLA molecules, TG2, and multiple innate and adaptive immune components.
Collapse
Affiliation(s)
- Jordan Voisine
- Department of Medicine, The University of Chicago, Chicago, IL, United States.,Committee on Immunology, The University of Chicago, Chicago, IL, United States
| | - Valérie Abadie
- Department of Medicine, The University of Chicago, Chicago, IL, United States.,Section of Gastroenterology, Nutrition and Hepatology, The University of Chicago, Chicago, IL, United States
| |
Collapse
|
16
|
Luongo D, Bonavita R, Rossi S, Rotondi Aufiero V, Feliciello NR, Maurano F, Iaquinto G, Mazzarella G, Rossi M. Tailoring the immune response to wheat gliadin by enzymatic transamidation. Cytokine 2019; 117:23-29. [PMID: 30784897 DOI: 10.1016/j.cyto.2019.02.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Revised: 01/10/2019] [Accepted: 02/01/2019] [Indexed: 02/08/2023]
Abstract
Enzymatic transamidation of wheat gliadin by microbial transglutaminase inhibits IFN-γ secretion by intestinal T cell lines from celiac disease (CD) patients. Here, we analysed its effects on intestinal biopsies from CD patients and studied the underlying mechanisms in HLA-DQ8 transgenic (tg) mice, a model of T-cell mediated gluten sensitivity. In vitro challenge with a soluble form of transamidated gliadin (spf) upregulated IL-10 transcript levels in human biopsy samples. Furthermore, the ratio of IL-10/IFN-γ transcripts was significantly increased following treatment with spf. In DQ8 tg mice, recall responses in vitro in the presence of dendritic cells pulsed with transamidated gliadin showed that gliadin-specific CD4+ T cells did not produce IFN-γ at any tested dose. On the contrary, spf-specific CD4+ T cells still secreted IFN-γ, but they also produced significant levels of IL-10 with both native and transamidated gliadin. Interestingly, this anti-inflammatory activity was restricted to a specific reverse-phase high-pressure liquid chromatography (RP-HPLC) fraction encompassing α-gliadins. These findings suggested an ability of transamidated gliadin to revert, as well as to prevent, the inflammatory phenotype triggered by native gliadin. This property was intrinsically associated with specific components of the α-gliadin fraction.
Collapse
Affiliation(s)
| | | | - Stefano Rossi
- Institute of Food Sciences, CNR, 83100 Avellino, Italy
| | | | | | | | - Gaetano Iaquinto
- Gastroenterology Department, San G. Moscati Hospital, 83100 Avellino, Italy
| | | | - Mauro Rossi
- Institute of Food Sciences, CNR, 83100 Avellino, Italy.
| |
Collapse
|
17
|
Abstract
Gluten‐related disorders are a complex group of diseases that involve the activation of the immune system triggered by the ingestion of gluten. Among these, celiac disease, with a prevalence of 1 %, is the most investigated, but recently, a new pathology, named nonceliac gluten sensitivity, was reported with a general prevalence of 7 %. Finally, there other less‐prevalent gluten‐related diseases such as wheat allergy, gluten ataxia, and dermatitis herpetiformis (with an overall prevalence of less than 0.1 %). As mentioned, the common molecular trigger is gluten, a complex mixture of storage proteins present in wheat, barley, and a variety of oats that are not fully degraded by humans. The most‐studied protein related to disease is gliadin, present in wheat, which possesses in its sequence many pathological fragments. Despite a lot of effort to treat these disorders, the only effective method is a long‐life gluten‐free diet. This Review summarizes the actual knowledge of gluten‐related disorders from a translational chemistry point of view. We discuss what is currently known from the literature about the interaction of gluten with the gut and the critical host responses it evokes and, finally, connect them to our current and novel molecular understanding of the supramolecular organization of gliadin and the 33‐mer gliadin peptide fragment under physiological conditions.
Collapse
Affiliation(s)
- Karen M Lammers
- Laboratory Immunogenetics, Department of Medical Microbiology and Infection Control VU University Medical Center 1081 Amsterdam Netherlands
| | - Maria G Herrera
- Faculty of Pharmacy and Biochemistry Institute of biological chemistry and Physicochemical CONICET-University of Buenos Aires Junín 956 C1113AAD Buenos Aires Argentina
| | - Veronica I Dodero
- Department of Chemistry, Organic Chemistry III Bielefeld University Universitätsstraße 25 33615 Bielefeld Germany
| |
Collapse
|
18
|
Serena G, Yan S, Camhi S, Patel S, Lima RS, Sapone A, Leonard MM, Mukherjee R, Nath BJ, Lammers KM, Fasano A. Proinflammatory cytokine interferon-γ and microbiome-derived metabolites dictate epigenetic switch between forkhead box protein 3 isoforms in coeliac disease. Clin Exp Immunol 2017; 187:490-506. [PMID: 27936497 DOI: 10.1111/cei.12911] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2016] [Revised: 11/16/2016] [Accepted: 11/17/2016] [Indexed: 12/21/2022] Open
Abstract
Coeliac disease (CD) is an autoimmune enteropathy triggered by gluten and characterized by a strong T helper type 1 (Th1)/Th17 immune response in the small intestine. Regulatory T cells (Treg ) are CD4+ CD25++ forkhead box protein 3 (FoxP3+ ) cells that regulate the immune response. Conversely to its counterpart, FoxP3 full length (FL), the alternatively spliced isoform FoxP3 Δ2, cannot properly down-regulate the Th17-driven immune response. As the active state of CD has been associated with impairments in Treg cell function, we aimed at determining whether imbalances between FoxP3 isoforms may be associated with the disease. Intestinal biopsies from patients with active CD showed increased expression of FOXP3 Δ2 isoform over FL, while both isoforms were expressed similarly in non-coeliac control subjects (HC). Conversely to what we saw in the intestine, peripheral blood mononuclear cells (PBMC) from HC subjects did not show the same balance between isoforms. We therefore hypothesized that the intestinal microenvironment may play a role in modulating alternative splicing. The proinflammatory intestinal microenvironment of active patients has been reported to be enriched in butyrate-producing bacteria, while high concentrations of lactate have been shown to characterize the preclinical stage of the disease. We show that the combination of interferon (IFN)-γ and butyrate triggers the balance between FoxP3 isoforms in HC subjects, while the same does not occur in CD patients. Furthermore, we report that lactate increases both isoforms in CD patients. Collectively, these findings highlight the importance of the ratio between FoxP3 isoforms in CD and, for the first time, associate the alternative splicing process mechanistically with microbial-derived metabolites.
Collapse
Affiliation(s)
- G Serena
- Massachusetts General Hospital and Division of Pediatric Gastroenterology and Nutrition, Center for Celiac Research, Mucosal Immunology and Biology Research Center, Boston, MA, USA.,Graduate Program in Life Sciences, University of Maryland School of Medicine, Baltimore, MD, USA
| | - S Yan
- Massachusetts General Hospital and Division of Pediatric Gastroenterology and Nutrition, Center for Celiac Research, Mucosal Immunology and Biology Research Center, Boston, MA, USA
| | - S Camhi
- Massachusetts General Hospital and Division of Pediatric Gastroenterology and Nutrition, Center for Celiac Research, Mucosal Immunology and Biology Research Center, Boston, MA, USA
| | - S Patel
- Massachusetts General Hospital and Division of Pediatric Gastroenterology and Nutrition, Center for Celiac Research, Mucosal Immunology and Biology Research Center, Boston, MA, USA
| | - R S Lima
- Massachusetts General Hospital and Division of Pediatric Gastroenterology and Nutrition, Center for Celiac Research, Mucosal Immunology and Biology Research Center, Boston, MA, USA
| | - A Sapone
- Massachusetts General Hospital and Division of Pediatric Gastroenterology and Nutrition, Center for Celiac Research, Mucosal Immunology and Biology Research Center, Boston, MA, USA.,Celiac Center, Division of Gastroenterology, Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, USA
| | - M M Leonard
- Massachusetts General Hospital and Division of Pediatric Gastroenterology and Nutrition, Center for Celiac Research, Mucosal Immunology and Biology Research Center, Boston, MA, USA
| | - R Mukherjee
- Celiac Center, Division of Gastroenterology, Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, USA
| | - B J Nath
- Department of Gastroenterology, Massachusetts General Hospital, Boston, MA, USA
| | - K M Lammers
- Massachusetts General Hospital and Division of Pediatric Gastroenterology and Nutrition, Center for Celiac Research, Mucosal Immunology and Biology Research Center, Boston, MA, USA
| | - A Fasano
- Massachusetts General Hospital and Division of Pediatric Gastroenterology and Nutrition, Center for Celiac Research, Mucosal Immunology and Biology Research Center, Boston, MA, USA.,European Biomedical Research Institute of Salerno (EBRIS), Salerno, Italy
| |
Collapse
|
19
|
Hardy MY, Tye-Din JA. Coeliac disease: a unique model for investigating broken tolerance in autoimmunity. Clin Transl Immunology 2016; 5:e112. [PMID: 27990287 PMCID: PMC5133362 DOI: 10.1038/cti.2016.58] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Revised: 09/12/2016] [Accepted: 09/12/2016] [Indexed: 01/06/2023] Open
Abstract
Coeliac disease, a prevalent immune-mediated enteropathy driven by dietary gluten, provides an exceptional human model to dissect the genetic, environmental and immunologic factors operating in autoimmunity. Despite the causative antigen being an exogenous food protein, coeliac disease has many features in common with autoimmune disease including a strong HLA class II association and the presence of pathogenic CD4+ T cells and autoantibodies. CD8+ intraepithelial lymphocytes specifically target and destroy intestinal epithelium in response to stress signals and not a specific antigen. A unique feature of coeliac disease is the ability to remove gluten to induce disease remission and reintroduce it to trigger a memory response. This provides an unparalleled opportunity to study disease-relevant CD4+ T cells that have been expanded in vivo. As a result, the causative peptides have been characterised at a level unprecedented for any autoimmune disease. Despite the complexity of the gluten proteome, resistance to gastrointestinal proteolysis and susceptibility to post-translational modification by transglutaminase help shape a restricted repertoire of immunogenic gluten peptides that have high affinity for disease-associated HLA. The critical steps in coeliac disease pathogenesis have been broadly elucidated and provide the basis for experimental therapies in pre-clinical or clinical development. However, little is known about how and why tolerance to gluten sometimes breaks or fails to develop. Understanding the interactions between genes, the environment, gluten immunity and the microbiome may provide novel approaches for the prevention and treatment of disease.
Collapse
Affiliation(s)
- Melinda Y Hardy
- Immunology Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia; Department of Medical Biology, The University of Melbourne, Parkville, Victoria, Australia
| | - Jason A Tye-Din
- Immunology Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia; Department of Medical Biology, The University of Melbourne, Parkville, Victoria, Australia; Centre of Food and Allergy Research, Murdoch Children's Research Institute, Parkville, Victoria, Australia; Department of Gastroenterology, The Royal Melbourne Hospital, Parkville, Victoria, Australia
| |
Collapse
|
20
|
Vorobjova T, Ress K, Luts K, Uibo O, Uibo R. The impact of langerin (CD207)+ dendritic cells and FOXP3+ Treg cells in the small bowel mucosa of children with celiac disease and atopic dermatitis in comparison to children with functional gastrointestinal disorders. APMIS 2016; 124:689-696. [PMID: 27200487 DOI: 10.1111/apm.12552] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2015] [Accepted: 04/16/2016] [Indexed: 12/17/2022]
Abstract
In the present study we aimed to evaluate the impact of langerin (CD207)+ dendritic cells (DCs) and FOXP3+ Treg cells in the intestinal mucosa of children with celiac disease (CD) and atopic dermatitis (AD) in comparison to children with functional gastrointestinal disorders (FGD). Seventy-five children (37 male, mean age 8.4 ± 4.8 years), who randomly underwent small bowel biopsy, were studied. The CD was diagnosed in 14 children, including five persons with concomitant AD (all positive for anti-tissue transglutaminase IgA antibodies and with small bowel atrophy). Normal small bowel mucosa was found in eight patients with AD and in 53 patients with FGD. The sera of all patients were tested for total and specific IgE antibodies to food allergen panels. Staining for CD11c+, langerin (CD207+) DCs, CD4+, and FOXP3+ Treg cells was performed on paraffin-embedded sections of bioptates using immunohistochemistry. The density of CD11c+ DCs, CD4+, and FOXP3+ Treg cells was higher in the CD patients compared to the AD and FGD patients (p = 0.02; p = 0.001). In AD, significantly higher density of CD11c+ DCs was detected in patients positive for specific IgE to food allergen panels (p = 0.02). The FGD patients with elevated total IgE had increased density of langerin (CD207)+ DCs compared to the patients with normal total IgE levels (p = 0.01). The increased density of FOXP3+ Treg cells, CD4+, cells and CD11c+ DCs was associated with CD but not with AD. The elevated level of total IgE or specific IgE to food allergens was associated with more pronounced expression of DCs, indicating a possible link between the presence of these cells in small bowel mucosa with elevated level of serum IgE.
Collapse
Affiliation(s)
- Tamara Vorobjova
- Department of Immunology, Institute of Biomedicine and Translational Medicine, University of Tartu, Tartu, Estonia
| | - Krista Ress
- Department of Immunology, Institute of Biomedicine and Translational Medicine, University of Tartu, Tartu, Estonia
- East-Tallinn Central Hospital, Tallinn, Estonia
| | - Katrin Luts
- Tallinn Children's Hospital, Tallinn, Estonia
| | - Oivi Uibo
- Department of Pediatrics, University of Tartu, Tartu, Estonia
- Children's Clinic of Tartu University Hospital, Tartu, Estonia
| | - Raivo Uibo
- Department of Immunology, Institute of Biomedicine and Translational Medicine, University of Tartu, Tartu, Estonia
| |
Collapse
|
21
|
Christophersen A, Risnes LF, Bergseng E, Lundin KEA, Sollid LM, Qiao SW. Healthy HLA-DQ2.5+ Subjects Lack Regulatory and Memory T Cells Specific for Immunodominant Gluten Epitopes of Celiac Disease. THE JOURNAL OF IMMUNOLOGY 2016; 196:2819-26. [DOI: 10.4049/jimmunol.1501152] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2015] [Accepted: 01/13/2016] [Indexed: 11/19/2022]
|
22
|
Mazzarella G. Effector and suppressor T cells in celiac disease. World J Gastroenterol 2015; 21:7349-7356. [PMID: 26139981 PMCID: PMC4481430 DOI: 10.3748/wjg.v21.i24.7349] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2015] [Revised: 04/09/2015] [Accepted: 05/02/2015] [Indexed: 02/06/2023] Open
Abstract
Celiac disease (CD) is a T-cell mediated immune disease in which gliadin-derived peptides activate lamina propria effector CD4+ T cells. This activation leads to the release of cytokines, compatible with a Th1-like pattern, which play a crucial role in the pathogenesis of CD, controlling many aspects of the inflammatory immune response. Recent studies have shown that a novel subset of effector T cells, characterized by expression of high levels of IL-17A, termed Th17 cells, plays a pathogenic role in CD. While these effector T cell subsets produce proinflammatory cytokines, which cause substantial tissue injury in vivo in CD, recent studies have suggested the existence of additional CD4(+) T cell subsets with suppressor functions. These subsets include type 1 regulatory T cells and CD25(+)CD4(+) regulatory T cells, expressing the master transcription factor Foxp3, which have important implications for disease progression.
Collapse
|
23
|
Åkesson K, Tompa A, Rydén A, Faresjö M. Low expression of CD39(+) /CD45RA(+) on regulatory T cells (Treg ) cells in type 1 diabetic children in contrast to high expression of CD101(+) /CD129(+) on Treg cells in children with coeliac disease. Clin Exp Immunol 2015; 180:70-82. [PMID: 25421756 DOI: 10.1111/cei.12559] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/19/2014] [Indexed: 12/19/2022] Open
Abstract
Type 1 diabetes (T1D) and coeliac disease are both characterized by an autoimmune feature. As T1D and coeliac disease share the same risk genes, patients risk subsequently developing the other disease. This study aimed to investigate the expression of T helper (Th), T cytotoxic (Tc) and regulatory T cells (Treg ) in T1D and/or coeliac disease children in comparison to healthy children. Subgroups of T cells (Th : CD4(+) or Tc : CD8(+) ); naive (CD27(+) CD28(+) CD45RA(+) CCR7(+) ), central memory (CD27(+) CD28(+) CD45RA(-) CCR7(+) ), effector memory (early differentiated; CD27(+) CD28(+) CD45RA(-) CCR7(-) and late differentiated; CD27(-) CD28(-) CD45RA(-) CCR7(-) ), terminally differentiated effector cells (TEMRA; CD27(-) CD28(-) CD45RA(+) CCR7(-) ) and Treg (CD4(+) CD25(+) FOXP3(+) CD127(-) ) cells, and their expression of CD39, CD45RA, CD101 and CD129, were studied by flow cytometry in T1D and/or coeliac disease children or without any of these diseases (reference group). Children diagnosed with both T1D and coeliac disease showed a higher percentage of TEMRA CD4(+) cells (P < 0·05), but lower percentages of both early and late effector memory CD8(+) cells (P < 0·05) compared to references. Children with exclusively T1D had lower median fluorescence intensity (MFI) of forkhead box protein 3 (FoxP3) (P < 0·05) and also a lower percentage of CD39(+) and CD45RA(+) within the Treg population (CD4(+) CD25(+) FOXP3(+) CD127(-) ) (P < 0·05). Children with exclusively coeliac disease had a higher MFI of CD101 (P < 0·01), as well as a higher percentage of CD129(+) (P < 0·05), in the CD4(+) CD25(hi) lymphocyte population, compared to references. In conclusion, children with combined T1D and coeliac disease have a higher percentage of differentiated CD4(+) cells compared to CD8(+) cells. T1D children show signs of low CD39(+) /CD45RA(+) Treg cells that may indicate loss of suppressive function. Conversely, children with coeliac disease show signs of CD101(+) /CD129(+) Treg cells that may indicate suppressor activity.
Collapse
Affiliation(s)
- K Åkesson
- Department of Pediatrics, Ryhov County Hospital, Jönköping, Sweden; Futurum - the Academy for Health and Care in Jönköping County Council, Jönköping, Sweden
| | | | | | | |
Collapse
|
24
|
Abstract
BACKGROUND Celiac disease (CD) results from an alteration in the oral tolerance to dietary gluten. The response to gluten is normally tightly regulated and involves the secretion of TGF-β and IL-10 from different subtypes of regulatory T cells (Tregs). Interestingly, in addition to proinflammatory cytokines, the inflamed CD mucosa also contains high levels of T cell-derived IL-10 compared with treated CD patients or normal donors. Furthermore, most studies describe an increase in the number of Foxp3+ Tregs in the small intestinal mucosa in CD patients compared to controls. This paradoxical condition suggests that regulatory mechanisms might operate to counterbalance the abnormal gliadin-triggered immune activation in untreated mucosa. Indeed, addition of exogenous IL-10 to mucosal cultures from treated CD patients can suppress gliadin-induced T cell activation. Considering the central role of adaptive immunity in CD, the development of strategies to stimulate these mechanisms is a primary goal of efforts to restore gluten tolerance. Key Messages: Different immunomodulatory strategies have been explored. NexVax2, a desensitizing vaccine that uses three dominant gluten peptides administered subcutaneously to induce a tolerogenic response in CD patients, is under development. Alternatively, the potential of substituted, cyclic or dimeric peptide analogues as blockers to prevent HLA from binding to the immunodominant gliadin epitopes has been demonstrated in vitro. In line with these results, we recently found that modified (transamidated) gliadins influenced the immune response in intestinal biopsy samples from CD patients with overt disease by drastically reducing the production of IFN-γ. Notably, in a mouse model, transamidated gliadins reverted the phenotype of the gliadin-inducible immune response from an inflammatory phenotype to an anti-inflammatory phenotype. CONCLUSIONS Various approaches are currently under investigation to recover gluten tolerance based on the use of both modified and native antigen molecules. More specific studies are now required to test the efficacy of such strategies for preventing CD.
Collapse
Affiliation(s)
- Mauro Rossi
- Institute of Food Sciences, CNR, Avellino, Italy
| |
Collapse
|
25
|
Vorobjova T, Uibo O, Heilman K, Uibo R. Increased density of tolerogenic dendritic cells in the small bowel mucosa of celiac patients. World J Gastroenterol 2015; 21:439-452. [PMID: 25593459 PMCID: PMC4292275 DOI: 10.3748/wjg.v21.i2.439] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2014] [Revised: 05/15/2014] [Accepted: 07/22/2014] [Indexed: 02/06/2023] Open
Abstract
AIM To investigate the densities of dendritic cells (DCs) and FOXP3(+) regulatory T cells (Tregs) and their interrelations in the small bowel mucosa in untreated celiac disease (CD) patients with and without type 1 diabetes (T1D). METHODS Seventy-four patients (45 female, 29 male, mean age 11.1 ± 6.8 years) who underwent small bowel biopsy were studied. CD without T1D was diagnosed in 18 patients, and CD with T1D was diagnosed in 15 patients. Normal small bowel mucosa was found in two T1D patients. Thirty-nine patients (mean age 12.8 ± 4.9 years) with other diagnoses (functional dyspepsia, duodenal ulcer, erosive gastritis, etc.) formed the control group. All CD patients had partial or subtotal villous atrophy according to the Marsh classification: Marsh grade IIIa in 9, grade IIIb in 21 and grade IIIc in 3 cases. Thirty-nine patients without CD and 2 with T1D had normal small bowel mucosa (Marsh grade 0). The densities of CD11c(+), IDO(+), CD103(+), Langerin (CD207(+)) DCs and FOXP3(+) Tregs were investigated by immunohistochemistry (on paraffin-embedded specimens) and immunofluorescence (on cryostat sections) methods using a combination of mono- and double-staining. Sixty-six serum samples were tested for IgA-tissue transglutaminase (tTG) using a fully automated EliA™ Celikey(®) IgA assay (Pharmacia Diagnostics, Freiburg, Germany). RESULTS The density of CD11c(+) DCs was significantly increased in CD patients compared with patients with normal mucosa (21.67 ± 2.49 vs 13.58 ± 1.51, P = 0.007). The numbers of FOXP3(+) cells were significantly higher in CD patients (10.66 ± 1.50 vs 1.92 ± 0.37, P = 0.0002) and in patients with CD and coexisting T1D (8.11 ± 1.64 vs 1.92 ± 0.37, P = 0.002) compared with patients with normal mucosa. The density of FOXP3(+) cells significantly correlated with the histological grade of atrophic changes in the small bowel mucosa according to the March classification (r = 0.62; P < 0.0001) and with levels of IgA antibody (r = 0.55; P < 0.0001). The densities of IDO(+) DCs were significantly higher in CD patients (21.6 ± 2.67 vs 6.26 ± 0.84, P = 0.00003) and in patients with CD and coexisting T1D (19.08 ± 3.61 vs 6.26 ± 0.84, P = 0.004) compared with patients with normal mucosa. A significant correlation was identified between the densities of IDO(+) DCs and FOXP3(+) T cells (r = 0.76; P = 0.0001). The mean values of CD103(+) DCs were significantly higher in CD patients (10.66 ± 1.53 vs 6.34 ± 0.61, P = 0.01) and in patients with CD and associated T1D (11.13 ± 0.72 vs 6.34 ± 0.61, P = 0.00002) compared with subjects with normal small bowel mucosa. The mean value of Langerin(+) DCs was higher in CD patients compared with persons with normal mucosa (7.4 ± 0.92 vs 5.64 ± 0.46, P = 0.04). CONCLUSION The participation of diverse DC subsets in the pathological processes of CD and the possible involvement of tolerogenic DCs in Tregs development to maintain intestinal immunological tolerance in CD patients are revealed.
Collapse
|
26
|
Mansueto P, Seidita A, D'Alcamo A, Carroccio A. Non-celiac gluten sensitivity: literature review. J Am Coll Nutr 2014; 33:39-54. [PMID: 24533607 DOI: 10.1080/07315724.2014.869996] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
BACKGROUND A significant percentage of the general population report problems caused by wheat and/or gluten ingestion, even though they do not have celiac disease (CD) or wheat allergy (WA), because they test negative both for CD-specific serology and histopathology and for immunoglobulin E (IgE)-mediated assays. Most patients report both gastrointestinal and nongastrointestinal symptoms, and all report improvement of symptoms on a gluten-free diet. This clinical condition has been named non-celiac gluten sensitivity (NCGS). AIM We attempt to define the current pathogenic, clinical, and diagnostic criteria of this "new" disease, to provide a practical view that might be useful to evaluate, diagnose, and manage NCGS patients. METHODS We reviewed the international literature through PubMed and Medline, using the search terms "wheat (hyper)sensitivity," "wheat allergy," "wheat intolerance," "gluten (hyper)sensitivity," and "gluten intolerance," and we discuss current knowledge about NCGS. RESULTS It has been demonstrated that patients suffering from NCGS are a heterogeneous group, composed of several subgroups, each characterized by different pathogenesis, clinical history, and, probably, clinical course. NCGS diagnosis can be reached only by excluding CD and WA. Recent evidence shows that a personal history of food allergy in infancy, coexistent atopy, positive for immunoglobulin G (IgG) antigliadin antibodies and flow cytometric basophil activation test, with wheat and duodenal and/or ileum-colon intraepithelial and lamina propria eosinophil counts, could be useful to identify NCGS patients. CONCLUSIONS Future research should aim to identify reliable biomarkers for NCGS diagnosis and to better define the different NCGS subgroups. Key teaching points: • Most patients report both gastrointestinal and nongastrointestinal symptoms, and all agree that there is an improvement of symptoms on a gluten-free diet. • NCGS diagnosis can be reached only by excluding celiac disease and wheat allergy. • Patients suffering from NCGS are a heterogeneous group, composed of several subgroups, each characterized by different pathogenesis, clinical history, and, probably, clinical course. • A personal history of food allergy in infancy, coexistent atopy, positive IgG antigliadin antibodies (AGA) and flow cytometric basophil activation test, with wheat and duodenal and/or ileum-colon intraepithelial and lamina propria eosinophil counts, could be useful to identify NCGS patients. • Future research should aim to identify reliable biomarkers for NCGS diagnosis and to better define the different NCGS subgroup.
Collapse
Affiliation(s)
- Pasquale Mansueto
- a Internal Medicine, University Hospital of Palermo , Palermo , ITALY
| | | | | | | |
Collapse
|
27
|
Ress K, Annus T, Putnik U, Luts K, Uibo R, Uibo O. Celiac disease in children with atopic dermatitis. Pediatr Dermatol 2014; 31:483-8. [PMID: 24831884 DOI: 10.1111/pde.12372] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Celiac disease (CD) is an autoimmune disorder of the small intestine with highly variable clinical presentation and frequently associated with various immune-mediated diseases. Among these immune-mediated diseases, atopy has been found frequently in individuals with CD. We aimed to study the prevalence of CD in Estonian children with atopic dermatitis (AD), a common multifactorial chronic inflammatory skin disease. We recruited 351 consecutive children with active AD (mean age 5.8 yrs, 57.6% boys) at Tallinn Children's Hospital, Estonia. Sera of all patients were tested for total serum immunoglobulin (Ig) A, for IgA- and IgG-type autoantibodies to tissue transglutaminase (IgA-anti-TG2, IgG-anti-TG2) and to deamidated gliadin peptides (IgA-anti-DGP, IgG-anti-DGP). The diagnosis of CD was confirmed histologically by small intestine biopsy according to the European Society of Paediatric Gastroenterology, Hepatology and Nutrition diagnostic criteria. IgA deficiency was detected in nine patients with AD (2.6%), none of whom had IgG-anti-TG2 or IgG-anti-DGP seropositivity. IgA-anti-TG2 positivity was found in 4 (1.1%), IgG-anti-TG2 positivity in 2 (0.6%), IgA-anti-DGP positivity in 11 (3.1%), and IgG-anti-DGP in 10 (2.8%) patients. Celiac disease was confirmed in five (1.4%) patients with AD (95% confidence interval 0.46, 3.32) and all were histologically characterized as Marsh IIIa-IIIc stages and two presented with silent CD. In AD patients, CD prevalence was more than four times as high as in previously studied randomly selected schoolchildren in Estonia. Two patients with AD diagnosed with CD had no symptoms indicative of CD, in spite of extensive histologic changes in the small intestine mucosa. Therefore our study emphasizes the need for evaluating the cost-effectiveness of screening individuals with AD for CD in time to prevent long-term complications.
Collapse
Affiliation(s)
- Krista Ress
- Department of Immunology, Institute of Biomedicine and Translational Medicine, University of Tartu, Tartu, Estonia; Centre of Excellence for Translational Medicine, University of Tartu, Tartu, Estonia
| | | | | | | | | | | |
Collapse
|
28
|
Borrelli M, Salvati VM, Maglio M, Zanzi D, Ferrara K, Santagata S, Ponticelli D, Aitoro R, Mazzarella G, Lania G, Gianfrani C, Auricchio R, Troncone R. Immunoregulatory pathways are active in the small intestinal mucosa of patients with potential celiac disease. Am J Gastroenterol 2013; 108:1775-1784. [PMID: 24060758 DOI: 10.1038/ajg.2013.303] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2013] [Accepted: 07/23/2013] [Indexed: 12/11/2022]
Abstract
OBJECTIVES Potential celiac disease (CD) relates to subjects with a normal small intestinal mucosa who are at increased risk of developing CD as indicated by positive CD-associated serology. The objective of this study was to investigate in the small intestinal mucosa of such patients the state of immunological activation with special emphasis on immunoregulatory circuits. METHODS Duodenal biopsies from active CD (n=48), potential CD (n=58), and control patients (n=45) were studied. RNA expression for interferon γ (IFNγ) and interleukin-10 (IL-10) were quantified by real-time quantitative PCR. The percentage of CD4+CD25+Foxp3+ T regulatory cells (Foxp3+Tregs) was determinated by flow cytometry and the number of Foxp3+ and IL-15+ cells by immunohistochemistry. Furthermore, we analyzed the suppressive function of CD4+CD25+ T cells, isolated from potential CD biopsy samples, as well as the effect of IL-15, on autologous peripheral blood responder CD4+CD25- T cells. RESULTS In potential CD patients with Marsh 1 lesion, IFNγ-RNA expression was significantly less than in active, but enhanced if compared with potential CD patients with Marsh 0 lesion and with controls (P<0.001). The number of IL-15+ cells in subjects with potential CD was increased in comparison with controls (P<0.05), but lower than active CD (P<0.01). IL-10-RNA expression was upregulated in Marsh 0 potential CD patients if compared with those with Marsh 1 lesion (P<0.01) and controls (P<0.001), whereas there were no differences with active CD. The ratio IL-10/IFNγ reached the highest value in Marsh 0 potential CD compared with the other groups (P<0.05). The percentage of Foxp3+Tregs was also higher in potential CD compared with controls (P<0.05), although it was lower than in active CD (P<0.01). In co-culture assay, intestinal CD4+CD25+ T cells from potential CD patients exerted suppressive effects on T responder cells, and their activity was not impaired by IL-15. CONCLUSIONS Potential CD patients show a low grade of inflammation that likely could be due to active regulatory mechanisms preventing the progression toward a mucosal damage.
Collapse
Affiliation(s)
- Melissa Borrelli
- Department of Pediatrics and European Laboratory for the Investigation of Food-Induced Diseases, University Federico II, Naples, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Volta U, Caio G, Tovoli F, De Giorgio R. Non-celiac gluten sensitivity: questions still to be answered despite increasing awareness. Cell Mol Immunol 2013; 10:383-392. [PMID: 23934026 PMCID: PMC4003198 DOI: 10.1038/cmi.2013.28] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2013] [Revised: 05/30/2013] [Accepted: 05/31/2013] [Indexed: 02/06/2023] Open
Abstract
Recently, the increasing number of patients worldwide who are sensitive to dietary gluten without evidence of celiac disease or wheat allergy has contributed to the identification of a new gluten-related syndrome defined as non-celiac gluten sensitivity. Our knowledge regarding this syndrome is still lacking, and many aspects of this syndrome remain unknown. Its pathogenesis is heterogeneous, with a recognized pivotal role for innate immunity; many other factors also contribute, including low-grade intestinal inflammation, increased intestinal barrier function and changes in the intestinal microbiota. Gluten and other wheat proteins, such as amylase trypsin inhibitors, are the primary triggers of this syndrome, but it has also been hypothesized that a diet rich in fermentable monosaccharides and polyols may elicit its functional gastrointestinal symptoms. The epidemiology of this condition is far from established; its prevalence in the general population is highly variable, ranging from 0.63% to 6%. From a clinical point of view, non-celiac gluten sensitivity is characterized by a wide array of gastrointestinal and extraintestinal symptoms that occur shortly after the ingestion of gluten and improve or disappear when gluten is withdrawn from the diet. These symptoms recur when gluten is reintroduced. Because diagnostic biomarkers have not yet been identified, a double-blind placebo-controlled gluten challenge is currently the diagnostic method with the highest accuracy. Future research is needed to generate more knowledge regarding non-celiac gluten sensitivity, a condition that has global acceptance but has only a few certainties and many unresolved issues.
Collapse
Affiliation(s)
- Umberto Volta
- Department of Medical and Surgical Sciences, St. Orsola-Malpighi Hospital, University of Bologna, Bologna, Italy.
| | | | | | | |
Collapse
|
30
|
van Leeuwen MA, du Pré MF, van Wanrooij RL, de Ruiter LF, Raatgeep H(RC, Lindenbergh-Kortleve DJ, Mulder CJ, de Ridder L, Escher JC, Samsom JN. Changes in natural Foxp3(+)Treg but not mucosally-imprinted CD62L(neg)CD38(+)Foxp3(+)Treg in the circulation of celiac disease patients. PLoS One 2013; 8:e68432. [PMID: 23874626 PMCID: PMC3709933 DOI: 10.1371/journal.pone.0068432] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2013] [Accepted: 05/29/2013] [Indexed: 01/29/2023] Open
Abstract
Background Celiac disease (CD) is an intestinal inflammation driven by gluten-reactive CD4+ T cells. Due to lack of selective markers it has not been determined whether defects in inducible regulatory T cell (Treg) differentiation are associated with CD. This is of importance as changes in numbers of induced Treg could be indicative of defects in mucosal tolerance development in CD. Recently, we have shown that, after encounter of retinoic acid during differentiation, circulating gut-imprinted T cells express CD62LnegCD38+. Using this new phenotype, we now determined whether alterations occur in the frequency of natural CD62L+Foxp3+ Treg or mucosally-imprinted CD62LnegCD38+Foxp3+ Treg in peripheral blood of CD patients. In particular, we compared pediatric CD, aiming to select for disease at onset, with adult CD. Methods Cell surface markers, intracellular Foxp3 and Helios were determined by flow cytometry. Foxp3 expression was also detected by immunohistochemistry in duodenal tissue of CD patients. Results In children, the percentages of peripheral blood CD4+Foxp3+ Treg were comparable between CD patients and healthy age-matched controls. Differentiation between natural and mucosally-imprinted Treg on the basis of CD62L and CD38 did not uncover differences in Foxp3. In adult patients on gluten-free diet and in refractory CD increased percentages of circulating natural CD62L+Foxp3+ Treg, but normal mucosally-imprinted CD62LnegCD38+Foxp3+ Treg frequencies were observed. Conclusions Our data exclude that significant numeric deficiency of mucosally-imprinted or natural Foxp3+ Treg explains exuberant effector responses in CD. Changes in natural Foxp3+ Treg occur in a subset of adult patients on a gluten-free diet and in refractory CD patients.
Collapse
Affiliation(s)
- Marieke A. van Leeuwen
- Laboratory of Pediatrics, Division of Gastroenterology and Nutrition, Erasmus Medical Center-Sophia Children’s Hospital, Rotterdam, The Netherlands
| | - M. Fleur du Pré
- Laboratory of Pediatrics, Division of Gastroenterology and Nutrition, Erasmus Medical Center-Sophia Children’s Hospital, Rotterdam, The Netherlands
- Center for Immune Regulation, Institute of Immunology, University of Oslo and Oslo University Hospital-Rikshospitalet, Oslo, Norway
| | - Roy L. van Wanrooij
- Department of Gastroenterology and Hepatology, VU University Medical Center, Amsterdam, The Netherlands
| | - Lilian F. de Ruiter
- Laboratory of Pediatrics, Division of Gastroenterology and Nutrition, Erasmus Medical Center-Sophia Children’s Hospital, Rotterdam, The Netherlands
| | - H. (Rolien) C. Raatgeep
- Laboratory of Pediatrics, Division of Gastroenterology and Nutrition, Erasmus Medical Center-Sophia Children’s Hospital, Rotterdam, The Netherlands
| | - Dicky J. Lindenbergh-Kortleve
- Laboratory of Pediatrics, Division of Gastroenterology and Nutrition, Erasmus Medical Center-Sophia Children’s Hospital, Rotterdam, The Netherlands
| | - Chris J. Mulder
- Department of Gastroenterology and Hepatology, VU University Medical Center, Amsterdam, The Netherlands
| | - Lissy de Ridder
- Department of Pediatric Gastroenterology, Erasmus MC-Sophia Children’s Hospital, Rotterdam, The Netherlands
| | - Johanna C. Escher
- Department of Pediatric Gastroenterology, Erasmus MC-Sophia Children’s Hospital, Rotterdam, The Netherlands
| | - Janneke N. Samsom
- Laboratory of Pediatrics, Division of Gastroenterology and Nutrition, Erasmus Medical Center-Sophia Children’s Hospital, Rotterdam, The Netherlands
- * E-mail:
| |
Collapse
|
31
|
Meng J, Xie CE, Li JX. Advances in research of non-coeliac gluten sensitivity. Shijie Huaren Xiaohua Zazhi 2013; 21:427-433. [DOI: 10.11569/wcjd.v21.i5.427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Non-celiac gluten sensitivity (NCGS) is a newly recognized clinical entity that is characterized by a wide variety of intestinal or extra-intestinal manifestations, and it may be the most common one in the spectrum of gluten-related disorders. The symptoms of NCGS improve or disappear after gluten withdrawal and relapse if gluten is reintroduced. There are no specific serological markers for NCGS although nearly half of patients are positive for antigliadin IgG antibodies. Since small intestinal biopsy is normal, the double-blind, placebo-controlled food challenge (DBPCFC) and an exclusion of wheat allergy or coeliac disease are necessary for diagnosis. The pathogenesis is still unclear although immunology may play a role in its pathogenesis. This review will summarize our current knowledge about non-coeliac gluten sensitivity and outline pathogenic and epidemiological differences between NCGS and coeliac disease.
Collapse
|
32
|
Himmel ME, Yao Y, Orban PC, Steiner TS, Levings MK. Regulatory T-cell therapy for inflammatory bowel disease: more questions than answers. Immunology 2012; 136:115-22. [PMID: 22348589 DOI: 10.1111/j.1365-2567.2012.03572.x] [Citation(s) in RCA: 99] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
T regulatory (Treg) cells are critical for maintaining immune homeostasis and establishing tolerance to foreign, non-pathogenic antigens including those found in commensal bacteria and food. Because of their multiple suppressive mechanisms, Tregs represent a promising strategy for engineering tolerance to self and non-self antigens in chronic inflammatory diseases. Already in clinical trials in the transplantation setting, the question remains whether this therapy would be effective for the treatment of mucosal inflammatory diseases that do not pose an immediate threat to life. In this review we will discuss evidence from both animal models and patients suggesting that Treg therapy would be beneficial in the context of inflammatory bowel disease (IBD). We will examine the role of T-cell versus Treg dysfunction in IBD and discuss the putative antigens that could be potential targets of antigen-directed Treg therapy. Finally, the challenges of using Treg therapy in IBD will be discussed, with a specific emphasis on the role that the microbiota may play in the outcome of this treatment. As Treg therapy becomes a bedside reality in the field of transplantation, there is great hope that it will soon also be deployed in the setting of IBD and ultimately prove more effective than the current non-specific immunosuppressive therapies.
Collapse
Affiliation(s)
- Megan E Himmel
- Department of Surgery, University of British Columbia & Child and Family Research Centre, Vancouver, BC, Canada
| | | | | | | | | |
Collapse
|
33
|
Himmel ME, Yao Y, Orban PC, Steiner TS, Levings MK. Regulatory T-cell therapy for inflammatory bowel disease: more questions than answers. Immunology 2012. [PMID: 22348589 DOI: 10.1111/j.1365-2567.2012.03572.x.] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
T regulatory (Treg) cells are critical for maintaining immune homeostasis and establishing tolerance to foreign, non-pathogenic antigens including those found in commensal bacteria and food. Because of their multiple suppressive mechanisms, Tregs represent a promising strategy for engineering tolerance to self and non-self antigens in chronic inflammatory diseases. Already in clinical trials in the transplantation setting, the question remains whether this therapy would be effective for the treatment of mucosal inflammatory diseases that do not pose an immediate threat to life. In this review we will discuss evidence from both animal models and patients suggesting that Treg therapy would be beneficial in the context of inflammatory bowel disease (IBD). We will examine the role of T-cell versus Treg dysfunction in IBD and discuss the putative antigens that could be potential targets of antigen-directed Treg therapy. Finally, the challenges of using Treg therapy in IBD will be discussed, with a specific emphasis on the role that the microbiota may play in the outcome of this treatment. As Treg therapy becomes a bedside reality in the field of transplantation, there is great hope that it will soon also be deployed in the setting of IBD and ultimately prove more effective than the current non-specific immunosuppressive therapies.
Collapse
Affiliation(s)
- Megan E Himmel
- Department of Surgery, University of British Columbia & Child and Family Research Centre, Vancouver, BC, Canada
| | | | | | | | | |
Collapse
|
34
|
Impaired control of effector T cells by regulatory T cells: a clue to loss of oral tolerance and autoimmunity in celiac disease? Am J Gastroenterol 2012; 107:604-11. [PMID: 22108452 DOI: 10.1038/ajg.2011.397] [Citation(s) in RCA: 83] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
OBJECTIVES Regulatory T cells (Tregs) are instrumental for tolerance to self-antigens and dietary proteins. We have previously shown that interleukin (IL)-15, a cytokine overexpressed in the intestine of patients with celiac disease (CD), does not impair the generation of functional Tregs but renders human T cells resistant to Treg suppression. Treg numbers and responses of intestinal and peripheral T lymphocytes to suppression by Tregs were therefore compared in CD patients and controls. METHODS Intraepithelial lymphocytes (IELs) and lamina propria lymphocytes (LPLs) were isolated from duodenal biopsy specimens of CD patients and controls. Concomitantly, CD4+CD25+ T lymphocytes (Tregs) were purified from blood. Responses of IELs and of LPLs, and peripheral lymphocytes (PBLs) to suppression by Tregs were tested by analyzing anti-CD3-induced proliferation and interferon (IFN)-γ production in the presence or absence of peripheral Tregs. Lamina propria and peripheral CD4+CD25+FOXP3+ T cells were assessed by flow cytometry. RESULTS Although percentages of CD4+CD25+FOXP3+ LPLs were significantly increased in patients with active CD, proliferation and IFN-γ production of intestinal T lymphocytes were significantly less inhibited by autologous or heterologous Tregs in CD patients than in controls (P < 0.01). In all tested CD patients, IEL were unable to respond to Tregs. Resistance of LPLs and PBLs to Treg suppression was observed in patients with villous atrophy who had significantly enhanced serum levels of IL-15 compared with patients without villous atrophy and controls. CONCLUSIONS Our results indicate that effector T lymphocytes from active CD become resistant to suppression by Tregs. This resistance might cause loss of tolerance to gluten, but also to self-antigens.
Collapse
|
35
|
Abstract
Among gluten-related disorders, gluten sensitivity is an emerging entity that is characterized by a wide array of manifestations. In particular, patients complain of IBS-like symptoms and extraintestinal manifestations that occur shortly after the ingestion of gluten. Symptoms improve or disappear when gluten is withdrawn from the diet, and recur if gluten is reintroduced. Laboratory tests are usually unhelpful for diagnosis, although ~50% of patients are positive for IgG antigliadin antibodies. The natural history of gluten sensitivity is unknown; in particular, it is still to be clarified whether this disorder is permanent or transient and whether it is linked to autoimmunity. The pathogenesis of gluten sensitivity is unclear; data so far demonstrate a predominant activation of innate immune responses. Further research is necessary to establish the main clinicopathological features of gluten sensitivity, thus enabling physicians to improve their management of the increasing number of patients who are sensitive to dietary gluten.
Collapse
|
36
|
Ben Ahmed M, Zaraa I, Rekik R, Elbeldi-Ferchiou A, Kourda N, Belhadj Hmida N, Abdeladhim M, Karoui O, Ben Osman A, Mokni M, Louzir H. Functional defects of peripheral regulatory T lymphocytes in patients with progressive vitiligo. Pigment Cell Melanoma Res 2011; 25:99-109. [DOI: 10.1111/j.1755-148x.2011.00920.x] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
37
|
Vorobjova T, Uibo O, Ojakivi I, Teesalu K, Panarina M, Heilman K, Uibo R. Lower expression of tight junction protein 1 gene and increased FOXP3 expression in the small bowel mucosa in coeliac disease and associated type 1 diabetes mellitus. Int Arch Allergy Immunol 2011; 156:451-461. [PMID: 21832836 DOI: 10.1159/000324456] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2010] [Accepted: 01/17/2011] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND The role of regulatory T cells expressing FOXP3 in the pathogenesis of coeliac disease (CD) and type 1 diabetes (T1D) has been reported. Recent data have placed special focus on the interplay between the intestinal barrier and immunoregulatory processes. We aimed to determine whether the expression of tight junction protein 1 (TJP1), which reflects small bowel mucosa permeability, is changed in CD and T1D. METHODS Transcription levels of TJP1 and FOXP3 genes were evaluated in the small bowel biopsies of 14 children with CD, 12 with CD and coexisting T1D and 40 controls using real-time PCR. Serum IgA and IgG to deamidated gliadin, bovine β-lactoglobulin, bovine α-casein and human tissue transglutaminase (tTG) were determined by ELISA. RESULTS The highest expression of FOXP3 mRNA was seen in patients with CD and T1D compared to patients with CD alone and controls (p = 0.02). In contrast, the lowest level of TJP1 mRNA expression was found in patients with CD and T1D (p = 0.01). The levels of IgA to deamidated gliadin and tTG were highest in patients with CD and T1D (p = 0.0001 and 0.01, respectively). The expression of FOXP3 mRNA correlated highly with the level of anti-gliadin IgA (p = 0.02) and anti-tTG IgA antibodies (p = 0.004). CONCLUSION The significant decline in TJP1 expression in CD patients, particularly in those with coexisting T1D, was accompanied by an increase in FOXP3 expression. This might reflect an attempt to maintain immune tolerance to counterbalance the loss of mucosal integrity in the small intestine in CD associated with T1D.
Collapse
Affiliation(s)
- Tamara Vorobjova
- Institute of General and Molecular Pathology, Department of Immunology, University of Tartu, Ravila 19, Tartu, Estonia.
| | | | | | | | | | | | | |
Collapse
|
38
|
Villanacci V, Not T, Nascimbeni R, Ferrara F, Tommasini A, Manenti S, Antonelli E, Bassotti G. Gastrointestinal Foxp3 expression in normal, inflammatory and neoplastic conditions. Pathology 2011; 43:465-471. [PMID: 21670722 DOI: 10.1097/pat.0b013e3283485e37] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
BACKGROUND Foxp3(+) regulatory T lymphocytes (T-regs) represent an important regulatory cell subset in inflammatory, preneoplastic and neoplastic conditions of the gastrointestinal tract. METHODS Inflammatory, preneoplastic and neoplastic conditions of the gastrointestinal tract (189 cases) were studied with the evaluation of Foxp3 regulatory T cells based on immunohistochemistry. RESULTS Few Foxp3(+) cells were found in controls and inflammatory conditions (oesophagitis, gastritis, coeliac disease, inflammatory bowel disease); in preneoplastic and neoplastic conditions the number of Foxp3(+) cells was significatively increased. CONCLUSIONS In normal conditions the number of mucosal lymphocytes is very low throughout the gastro-intestinal tract; in active coeliac disease patients or on a gluten-free diet, only a slight increase in Foxp3(+) cells may be found. Gastrointestinal cancers are associated with higher Foxp3(+) cell proportion, compared with microscopically normal tissue and with precancerous conditions. However, it is uncertain whether the increase in these regulatory cells is a cause or a consequence of tumour progression.
Collapse
|
39
|
Zanzi D, Stefanile R, Santagata S, Iaffaldano L, Iaquinto G, Giardullo N, Lania G, Vigliano I, Vera AR, Ferrara K, Auricchio S, Troncone R, Mazzarella G. IL-15 interferes with suppressive activity of intestinal regulatory T cells expanded in Celiac disease. Am J Gastroenterol 2011; 106:1308-1317. [PMID: 21468011 DOI: 10.1038/ajg.2011.80] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
OBJECTIVES Celiac disease (CD) is a condition in which the regulation of the mucosal immune response to dietary gliadin might be altered. The transcription factor forkhead box P3 (Foxp3) has been identified as a marker of a subset of regulatory T cells (Treg). In this study, we have investigated the presence and the suppressive function of Treg cells in the celiac small intestinal mucosa, their correlation with the disease state, and the inducibility by gliadin in an organ culture system; moreover, we tried to define whether interleukin 15 (IL-15), overexpressed in CD, could influence the regulatory activity of such cells. METHODS The expression of Foxp3, CD3, CD4, and CD8 were analyzed by immunohistochemistry and flow cytometry in duodenal biopsies taken from patients with untreated CD, treated CD, and from non-CD controls, as well as in vitro cultured biopsy samples from treated CD patients, upon challenge with gliadin. Furthermore, we analyzed the suppressive function of CD4+CD25+ T cells, isolated from untreated CD biopsy samples, on autologous responder CD4+CD25- T cells, in the presence of a polyclonal stimulus, with or without IL-15. RESULTS Higher density of CD4+CD25+Foxp3+ T cells was seen in duodenal biopsy samples from active CD patients in comparison with treated CD and non-CD controls. In coculture, CD4+CD25+ T cells were functionally suppressive, but their activity was impaired by IL-15. Cells from CD subjects showed increased sensitivity to the IL-15 action, likely due to enhanced expression of IL-15 receptor. Finally, we demonstrated an expansion of Foxp3 in treated CD mucosa following in vitro challenge with gliadin. CONCLUSIONS These data suggest that CD4+CD25+Foxp3+ T cells are induced in situ by gliadin. However, their suppressor capacity might be impaired in vivo by IL-15; this phenomenon contributes to maintain and expand the local inflammatory response in CD.
Collapse
Affiliation(s)
- Delia Zanzi
- Department of Paediatrics University Federico II, Naples, Italy.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Sapone A, Lammers KM, Casolaro V, Cammarota M, Giuliano MT, De Rosa M, Stefanile R, Mazzarella G, Tolone C, Russo MI, Esposito P, Ferraraccio F, Cartenì M, Riegler G, de Magistris L, Fasano A. Divergence of gut permeability and mucosal immune gene expression in two gluten-associated conditions: celiac disease and gluten sensitivity. BMC Med 2011; 9:23. [PMID: 21392369 PMCID: PMC3065425 DOI: 10.1186/1741-7015-9-23] [Citation(s) in RCA: 328] [Impact Index Per Article: 23.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2011] [Accepted: 03/09/2011] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Celiac disease (CD) is an autoimmune enteropathy triggered by the ingestion of gluten. Gluten-sensitive individuals (GS) cannot tolerate gluten and may develop gastrointestinal symptoms similar to those in CD, but the overall clinical picture is generally less severe and is not accompanied by the concurrence of tissue transglutaminase autoantibodies or autoimmune comorbidities. By studying and comparing mucosal expression of genes associated with intestinal barrier function, as well as innate and adaptive immunity in CD compared with GS, we sought to better understand the similarities and differences between these two gluten-associated disorders. METHODS CD, GS and healthy, gluten-tolerant individuals were enrolled in this study. Intestinal permeability was evaluated using a lactulose and mannitol probe, and mucosal biopsy specimens were collected to study the expression of genes involved in barrier function and immunity. RESULTS Unlike CD, GS is not associated with increased intestinal permeability. In fact, this was significantly reduced in GS compared with controls (P = 0.0308), paralleled by significantly increased expression of claudin (CLDN) 4 (P = 0.0286). Relative to controls, adaptive immunity markers interleukin (IL)-6 (P = 0.0124) and IL-21 (P = 0.0572) were expressed at higher levels in CD but not in GS, while expression of the innate immunity marker Toll-like receptor (TLR) 2 was increased in GS but not in CD (P = 0.0295). Finally, expression of the T-regulatory cell marker FOXP3 was significantly reduced in GS relative to controls (P = 0.0325) and CD patients (P = 0.0293). CONCLUSIONS This study shows that the two gluten-associated disorders, CD and GS, are different clinical entities, and it contributes to the characterization of GS as a condition associated with prevalent gluten-induced activation of innate, rather than adaptive, immune responses in the absence of detectable changes in mucosal barrier function.
Collapse
Affiliation(s)
- Anna Sapone
- Department of Internal and Experimental Medicine Magrassi-Lanzara, Seconda Università degli Studi di Napoli, Naples, Italy
- Mucosal Biology Research Center, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Karen M Lammers
- Mucosal Biology Research Center, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Vincenzo Casolaro
- Mucosal Biology Research Center, University of Maryland School of Medicine, Baltimore, MD, USA
- Johns Hopkins Asthma and Allergy Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Marcella Cammarota
- Department of Experimental Medicine, Seconda Università di Napoli, Naples, Italy
| | | | - Mario De Rosa
- Department of Experimental Medicine, Seconda Università di Napoli, Naples, Italy
| | - Rosita Stefanile
- Institute of Food, Consiglio Nazionale delle Ricerche (CNR), Avellino, Italy
| | - Giuseppe Mazzarella
- Institute of Food, Consiglio Nazionale delle Ricerche (CNR), Avellino, Italy
| | - Carlo Tolone
- Department of Pediatrics, Seconda Università degli Studi di Napoli, Naples, Italy
| | - Maria Itria Russo
- Servizio di Endoscopia Digestiva, Seconda Università degli Studi di Napoli, Naples, Italy
| | - Pasquale Esposito
- Servizio di Endoscopia Digestiva, Seconda Università degli Studi di Napoli, Naples, Italy
| | | | - Maria Cartenì
- Department of Experimental Medicine, Seconda Università di Napoli, Naples, Italy
| | - Gabriele Riegler
- Department of Internal and Experimental Medicine Magrassi-Lanzara, Seconda Università degli Studi di Napoli, Naples, Italy
| | - Laura de Magistris
- Department of Internal and Experimental Medicine Magrassi-Lanzara, Seconda Università degli Studi di Napoli, Naples, Italy
| | - Alessio Fasano
- Mucosal Biology Research Center, University of Maryland School of Medicine, Baltimore, MD, USA
| |
Collapse
|
41
|
Uibo R, Panarina M, Teesalu K, Talja I, Sepp E, Utt M, Mikelsaar M, Heilman K, Uibo O, Vorobjova T. Celiac disease in patients with type 1 diabetes: a condition with distinct changes in intestinal immunity? Cell Mol Immunol 2011; 8:150-156. [PMID: 21317917 PMCID: PMC4003136 DOI: 10.1038/cmi.2010.66] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2010] [Accepted: 12/09/2010] [Indexed: 02/06/2023] Open
Abstract
Two common chronic childhood diseases-celiac disease (CD) and type 1 diabetes (T1D)-result from complex pathological mechanisms where genetic susceptibility, environmental exposure, alterations in intestinal permeability and immune responses play central roles. In this study, we investigated whether these characteristics were universal for CD independently of T1D association. For this purpose, we studied 36 children with normal small-bowel mucosa and 26 children with active CD, including 12 patients with T1D. In samples from the small-bowel mucosa, we detected the lowest expression of tight junction protein 1 (TJP1) mRNA in CD patients with T1D, indicating an increase in intestinal permeability. Furthermore, these samples displayed the highest expression of forkhead box P3 (FoxP3) mRNA, a marker for regulatory T cells, as compared with other patient groups. At the same time, serum levels of IgA antibodies specific for the CD-related antigens deamidated gliadin and tissue transglutaminase (tTG) were the highest in CD patients with T1D. In contrast, no significant differences were found in IgA or IgG antibodies specific for bovine beta-lactoglobulin or Bifidobacterium adolescentis DSM 20083-derived proteins. There were also no differences in the transamidating activity of serum autoantibodies between patients and control individuals. Our results show that patients with T1D and newly detected CD exhibit severely altered intestinal permeability, strong local immune activation and increased immunoregulatory mechanisms in the small bowel. Further study is required to determine whether these extreme changes in this CD subgroup are due to some specific environmental factors (virus infections), unknown genetic effects or autoimmune reactions to antigenic targets in intracellular tight junctions.
Collapse
Affiliation(s)
- Raivo Uibo
- Department of Immunology, University of Tartu, Tartu, Estonia.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Cseh Á, Vásárhelyi B, Szalay B, Molnár K, Nagy-Szakál D, Treszl A, Vannay Á, Arató A, Tulassay T, Veres G. Immune phenotype of children with newly diagnosed and gluten-free diet-treated celiac disease. Dig Dis Sci 2011; 56:792-798. [PMID: 20683660 DOI: 10.1007/s10620-010-1363-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2010] [Accepted: 07/15/2010] [Indexed: 12/12/2022]
Abstract
BACKGROUND Recent data suggest the involvement of both the adaptive and the innate immune system in celiac disease (CD). However, little is known about the immune phenotype of children with CD and its alteration upon dietary intervention. AIMS We characterized the prevalence of major interacting members of the adaptive and innate immune system in peripheral blood of newly diagnosed children with CD and tested its alteration with the improvement of clinical signs after the introduction of gluten-free diet (GFD). METHODS Peripheral blood was taken from ten children with biopsy-proven CD at the time of diagnosis and after the resolution of clinical symptoms following GFD. As controls, 15 children with functional abdominal pain were enrolled. The prevalence of the cells of adaptive and innate immunity was measured with labeled antibodies against surface markers and intracellular FoxP3 using a flow cytometer. RESULTS Patients with CD were found to have lower T helper, Th1 and natural killer (NK), NKT and invariant NKT cell prevalence and with higher prevalence of activated CD4(+) cells, myeloid dendritic cells (DC) and Toll-like receptor (TLR) 2 and TLR-4 positive DCs and monocytes compared to controls. After resolution of symptoms on GFD, the majority of these changes normalized, although the prevalence of NK and NKT cell, DC and TLR-2 expressing DCs and monocytes remained abnormal. CONCLUSIONS The immune phenotype in childhood CD indicates the implication of both adaptive and innate immune system. The normalization of immune abnormalities occurs on GFD, but the kinetics of this process probably differs among different cell types.
Collapse
Affiliation(s)
- Áron Cseh
- Research Group for Pediatrics and Nephrology, Semmelweis University and Hungarian Academy of Sciences, First Department of Pediatrics, Bókay u. 53, 1083, Budapest, Hungary.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Uibo R, Tian Z, Gershwin ME. Celiac disease: a model disease for gene-environment interaction. Cell Mol Immunol 2011; 8:93-5. [PMID: 21317918 DOI: 10.1038/cmi.2010.62] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Celiac sprue remains a model autoimmune disease for dissection of genetic and environmental influences on disease progression. The 2010 Congress of Autoimmunity included several key sessions devoted to genetics and environment. Several papers from these symposia were selected for in-depth discussion and publication. This issue is devoted to this theme. The goal is not to discuss genetic and environmental interactions, but rather to focus on key elements of diagnosis, the inflammatory response and the mechanisms of autoimmunity.
Collapse
Affiliation(s)
- Raivo Uibo
- Immunology Group, IGMP, University of Tartu, Ravila 19, Tartu, Estonia
| | | | | |
Collapse
|
44
|
Alam C, Valkonen S, Palagani V, Jalava J, Eerola E, Hänninen A. Inflammatory tendencies and overproduction of IL-17 in the colon of young NOD mice are counteracted with diet change. Diabetes 2010; 59:2237-46. [PMID: 20547977 PMCID: PMC2927946 DOI: 10.2337/db10-0147] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
OBJECTIVE Dietary factors influence diabetes development in the NOD mouse. Diet affects the composition of microbiota in the distal intestine, which may subsequently influence intestinal immune homeostasis. However, the specific effects of antidiabetogenic diets on gut immunity and the explicit associations between intestinal immune disruption and type 1 diabetes onset remain unclear. RESEARCH DESIGN AND METHODS Gut microbiota of NOD mice fed a conventional diet or ProSobee formula were compared using gas chromatography. Colonic lamina propria immune cells were characterized in terms of activation markers, cytokine mRNA and Th17 and Foxp3(+) T-cell numbers, using real-time PCR and flow cytometry. Activation of diabetogenic CD4 T-cells by purified B-cells was assessed in both groups. Immune tolerance to autologous commensal bacteria was evaluated in vitro using thymidine-incorporation tests. RESULTS Young NOD mice showed a disturbed tolerance to autologous commensal bacteria. Increased numbers of activated CD4 T-cells and (CD11b(+)CD11c(+)) dendritic cells and elevated levels of Th17 cells and IL23 mRNA were moreover observed in colon lamina propria. These phenomena were abolished when mice were fed an antidiabetogenic diet. The antidiabetogenic diet also altered the expression levels of costimulatory molecules and the capacity of peritoneal B-cells to induce insulin-specific CD4 T-cell proliferation. CONCLUSIONS Young NOD mice show signs of subclinical colitis, but the symptoms are alleviated by a diet change to an antidiabetogenic diet. Disrupted immune tolerance in the distal intestine may influence peritoneal cell pools and B-cell-mediated activation of diabetogenic T-cells.
Collapse
Affiliation(s)
- Catharina Alam
- Department of Medical Microbiology and Immunology, University of Turku, Turku, Finland
| | - Suvi Valkonen
- Department of Medical Microbiology and Immunology, University of Turku, Turku, Finland
| | - Vindhya Palagani
- Department of Medical Microbiology and Immunology, University of Turku, Turku, Finland
| | - Jari Jalava
- Antimicrobial Research Laboratory, National Institute for Health and Welfare (THL), Turku, Finland
| | - Erkki Eerola
- Department of Medical Microbiology and Immunology, University of Turku, Turku, Finland
| | - Arno Hänninen
- Department of Medical Microbiology and Immunology, University of Turku, Turku, Finland
- Corresponding author: Arno Hänninen,
| |
Collapse
|
45
|
Uibo O, Heilman K, Rägo T, Shor R, Paal M, Metsküla K, Tillmann V, Uibo R. Symptomless celiac disease in type 1 diabetes: 12-year experience in Estonia. Pediatr Int 2010; 52:230-3. [PMID: 19744227 DOI: 10.1111/j.1442-200x.2009.02955.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
BACKGROUND We aimed to determine the prevalence and characteristics of celiac disease in children with type 1 diabetes in Estonia, a country with a formerly low frequency of both diseases. METHODS Altogether, 271 patients with diabetes were studied over 12 years (1995-2006): 122 at diagnosis and 149 patients 0.1-14.8 years after diagnosis. In addition, 73 patients were followed up over 1-6 years. Immunoglobulin A type endomysium and tissue transglutaminase antibodies were determined. Patients with antibodies and/or with celiac-disease-related symptoms were invited for a small-intestinal biopsy. RESULTS At the primary screening, celiac disease was histologically confirmed in nine patients (all without symptoms), that is, in 3.3% (95% confidence interval: 1.63-6.42) of type 1 diabetes cases. At follow up, celiac disease was additionally detected in two (2.7%) of 73 diabetic patients, that is, in 0.016 (95% confidence interval: 0-0.072) celiac disease cases per follow-up year. CONCLUSION The prevalence of celiac disease among type 1 diabetes patients in Estonia is similar to that in countries with a high incidence of celiac disease and type 1 diabetes. As celiac disease is mostly symptomless, all children with type 1 diabetes, irrespective of their geographic origin, should be regularly screened for celiac disease.
Collapse
Affiliation(s)
- Oivi Uibo
- Department of Pediatrics, University of Tartu, Lunini 6, Tartu, 51014, Estonia.
| | | | | | | | | | | | | | | |
Collapse
|
46
|
Sonier B, Patrick C, Ajjikuttira P, Scott FW. Intestinal Immune Regulation as a Potential Diet-Modifiable Feature of Gut Inflammation and Autoimmunity. Int Rev Immunol 2009; 28:414-45. [DOI: 10.3109/08830180903208329] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
47
|
Porro GB. This month in the Scandinavian Journal of Gastroenterology. Scand J Gastroenterol 2009; 44:388-9. [PMID: 19308853 DOI: 10.1080/00365520902799242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|