1
|
Delzenne NM, Bindels LB, Neyrinck AM, Walter J. The gut microbiome and dietary fibres: implications in obesity, cardiometabolic diseases and cancer. Nat Rev Microbiol 2025; 23:225-238. [PMID: 39390291 DOI: 10.1038/s41579-024-01108-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/04/2024] [Indexed: 10/12/2024]
Abstract
Dietary fibres constitute a heterogeneous class of nutrients that are key in the prevention of various chronic diseases. Most dietary fibres are fermented by the gut microbiome and may, thereby, modulate the gut microbial ecology and metabolism, impacting human health. Dietary fibres may influence the occurrence of specific bacterial taxa, with this effect varying between individuals. The effect of dietary fibres on microbial diversity is a matter of debate. Most intervention studies with dietary fibres in the context of obesity and related metabolic disorders reveal the need for an accurate assessment of the microbiome to better understand the variable response to dietary fibres. Epidemiological studies confirm that a high dietary fibre intake is strongly associated with a reduced occurrence of many types of cancer. However, there is a need to determine the impact of intervention with specific dietary fibres on cancer risk, therapy efficacy and toxicity, as well as in cancer cachexia. In this Review, we summarize the mechanisms by which the gut microbiome can mediate the physiological benefits of dietary fibres in the contexts of obesity, cardiometabolic diseases and cancer, their incidence being clearly linked to low dietary fibre intake.
Collapse
Affiliation(s)
- Nathalie M Delzenne
- Metabolism and Nutrition Research Group, Louvain Drug Research Institute, Université catholique de Louvain, Brussels, Belgium.
| | - Laure B Bindels
- Metabolism and Nutrition Research Group, Louvain Drug Research Institute, Université catholique de Louvain, Brussels, Belgium
- WELBIO Department, WEL Research Institute, Wavre, Belgium
| | - Audrey M Neyrinck
- Metabolism and Nutrition Research Group, Louvain Drug Research Institute, Université catholique de Louvain, Brussels, Belgium
| | - Jens Walter
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- Department of Medicine, University College Cork, Cork, Ireland
- School of Microbiology, University College Cork, Cork, Ireland
| |
Collapse
|
2
|
Palkovsky M, Modrackova N, Neuzil-Bunesova V, Liberko M, Soumarova R. The Bidirectional Impact of Cancer Radiotherapy and Human Microbiome: Microbiome as Potential Anti-tumor Treatment Efficacy and Toxicity Modulator. In Vivo 2025; 39:37-54. [PMID: 39740900 PMCID: PMC11705129 DOI: 10.21873/invivo.13803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 10/02/2024] [Accepted: 10/14/2024] [Indexed: 01/02/2025]
Abstract
Microbiome and radiotherapy represent bidirectionally interacting entities. The human microbiome has emerged as a pivotal modulator of the efficacy and toxicity of radiotherapy; however, a reciprocal effect of radiotherapy on microbiome composition alterations has also been observed. This review explores the relationship between the microbiome and extracranial solid tumors, particularly focusing on the bidirectional impact of radiotherapy on organ-specific microbiome. This article aims to provide a systematic review on the radiotherapy-induced microbial alteration in-field as well as in distant microbiomes. In this review, particular focus is directed to the oral and gut microbiome, its role in the development and progression of cancer, and how it is altered throughout radiotherapy. This review concludes with recommendations for future research, such as exploring microbiome modification to optimize radiotherapy-induced toxicities or enhance its anti-cancer effects.
Collapse
Affiliation(s)
- Martin Palkovsky
- Department of Oncology, University Hospital Kralovske Vinohrady, Prague, Czech Republic;
- Charles University, Third Faculty of Medicine, Department of Oncology, Prague, Czech Republic
| | - Nikol Modrackova
- Czech University of Life Sciences Prague, Department of Microbiology, Nutrition and Dietetics, Faculty of Agrobiology, Food and Natural Resources, Prague, Czech Republic
| | - Vera Neuzil-Bunesova
- Czech University of Life Sciences Prague, Department of Microbiology, Nutrition and Dietetics, Faculty of Agrobiology, Food and Natural Resources, Prague, Czech Republic
| | - Marian Liberko
- Department of Oncology, University Hospital Kralovske Vinohrady, Prague, Czech Republic
- Charles University, Third Faculty of Medicine, Department of Oncology, Prague, Czech Republic
| | - Renata Soumarova
- Department of Oncology, University Hospital Kralovske Vinohrady, Prague, Czech Republic
- Charles University, Third Faculty of Medicine, Department of Oncology, Prague, Czech Republic
| |
Collapse
|
3
|
Guevara-Ramírez P, Cadena-Ullauri S, Paz-Cruz E, Ruiz-Pozo VA, Tamayo-Trujillo R, Cabrera-Andrade A, Zambrano AK. Gut Microbiota Disruption in Hematologic Cancer Therapy: Molecular Insights and Implications for Treatment Efficacy. Int J Mol Sci 2024; 25:10255. [PMID: 39408584 PMCID: PMC11476909 DOI: 10.3390/ijms251910255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 09/13/2024] [Accepted: 09/18/2024] [Indexed: 10/20/2024] Open
Abstract
Hematologic malignancies (HMs), including leukemia, lymphoma, and multiple myeloma, involve the uncontrolled proliferation of abnormal blood cells, posing significant clinical challenges due to their heterogeneity and varied treatment responses. Despite recent advancements in therapies that have improved survival rates, particularly in chronic lymphocytic leukemia and acute lymphoblastic leukemia, treatments like chemotherapy and stem cell transplantation often disrupt gut microbiota, which can negatively impact treatment outcomes and increase infection risks. This review explores the complex, bidirectional interactions between gut microbiota and cancer treatments in patients with HMs. Gut microbiota can influence drug metabolism through mechanisms such as the production of enzymes like bacterial β-glucuronidases, which can alter drug efficacy and toxicity. Moreover, microbial metabolites like short-chain fatty acids can modulate the host immune response, enhancing treatment effectiveness. However, therapy often reduces the diversity of beneficial bacteria, such as Bifidobacterium and Faecalibacterium, while increasing pathogenic bacteria like Enterococcus and Escherichia coli. These findings highlight the critical need to preserve microbiota diversity during treatment. Future research should focus on personalized microbiome-based therapies, including probiotics, prebiotics, and fecal microbiota transplantation, to improve outcomes and quality of life for patients with hematologic malignancies.
Collapse
Affiliation(s)
- Patricia Guevara-Ramírez
- Centro de Investigación Genética y Genómica, Facultad de Ciencias de la Salud Eugenio Espejo, Universidad UTE, Quito 170129, Ecuador
| | - Santiago Cadena-Ullauri
- Centro de Investigación Genética y Genómica, Facultad de Ciencias de la Salud Eugenio Espejo, Universidad UTE, Quito 170129, Ecuador
| | - Elius Paz-Cruz
- Centro de Investigación Genética y Genómica, Facultad de Ciencias de la Salud Eugenio Espejo, Universidad UTE, Quito 170129, Ecuador
| | - Viviana A. Ruiz-Pozo
- Centro de Investigación Genética y Genómica, Facultad de Ciencias de la Salud Eugenio Espejo, Universidad UTE, Quito 170129, Ecuador
| | - Rafael Tamayo-Trujillo
- Centro de Investigación Genética y Genómica, Facultad de Ciencias de la Salud Eugenio Espejo, Universidad UTE, Quito 170129, Ecuador
| | - Alejandro Cabrera-Andrade
- Escuela de Enfermería, Facultad de Ciencias de la Salud, Universidad de Las Américas, Quito 170124, Ecuador
- Grupo de Bio-Quimioinformática, Universidad de Las Américas, Quito 170124, Ecuador
| | - Ana Karina Zambrano
- Centro de Investigación Genética y Genómica, Facultad de Ciencias de la Salud Eugenio Espejo, Universidad UTE, Quito 170129, Ecuador
| |
Collapse
|
4
|
Mondal P, Meeran SM. The emerging role of the gut microbiome in cancer cell plasticity and therapeutic resistance. Cancer Metastasis Rev 2024; 43:135-154. [PMID: 37707749 DOI: 10.1007/s10555-023-10138-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 09/08/2023] [Indexed: 09/15/2023]
Abstract
Resistance to therapeutic agents is one of the major challenges in cancer therapy. Generally, the focus is given to the genetic driver, especially the genetic mutation behind the therapeutic resistance. However, non-mutational mechanisms, such as epigenetic modifications, and TME alteration, which is mainly driven by cancer cell plasticity, are also involved in therapeutic resistance. The concept of plasticity mainly relies on the conversion of non-cancer stem cells (CSCs) to CSCs or epithelial-to-mesenchymal transition via different mechanisms and various signaling pathways. Cancer plasticity plays a crucial role in therapeutic resistance as cancer cells are able to escape from therapeutics by shifting the phenotype and thereby enhancing tumor progression. New evidence suggests that gut microbiota can change cancer cell characteristics by impacting the mechanisms involved in cancer plasticity. Interestingly, gut microbiota can also influence the therapeutic efficacy of anticancer drugs by modulating the mechanisms involved in cancer cell plasticity. The gut microbiota has been shown to reduce the toxicity of certain clinical drugs. Here, we have documented the critical role of the gut microbiota on the therapeutic efficacy of existing anticancer drugs by altering the cancer plasticity. Hence, the extended knowledge of the emerging role of gut microbiota in cancer cell plasticity can help to develop gut microbiota-based novel therapeutics to overcome the resistance or reduce the toxicity of existing drugs. Furthermore, to improve the effectiveness of therapy, it is necessary to conduct more clinical and preclinical research to fully comprehend the mechanisms of gut microbiota.
Collapse
Affiliation(s)
- Priya Mondal
- Laboratory of Nutritional Epigenetics, Department of Biochemistry, CSIR-Central Food Technological Research Institute, Mysore, 570020, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Syed Musthapa Meeran
- Laboratory of Nutritional Epigenetics, Department of Biochemistry, CSIR-Central Food Technological Research Institute, Mysore, 570020, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| |
Collapse
|
5
|
López-Gómez L, Alcorta A, Abalo R. Probiotics and Probiotic-like Agents against Chemotherapy-Induced Intestinal Mucositis: A Narrative Review. J Pers Med 2023; 13:1487. [PMID: 37888098 PMCID: PMC10607965 DOI: 10.3390/jpm13101487] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 10/02/2023] [Accepted: 10/09/2023] [Indexed: 10/28/2023] Open
Abstract
Cancer chemotherapy has allowed many patients to survive, but not without risks derived from its adverse effects. Drugs, such as 5-fluorouracil, irinotecan, oxaliplatin, methotrexate, and others, as well as different drug combinations trigger intestinal mucositis that may cause or contribute to anorexia, pain, diarrhea, weight loss, systemic infections, and even death. Dysbiosis is a hallmark of chemotherapy-induced intestinal mucositis and diarrhea, and, therefore, strategies aimed at modulating intestinal microbiota may be useful to counteract and prevent those dreadful effects. This narrative review offers an overview of the studies performed to test the efficacy of probiotics and probiotic-like agents against chemotherapy-induced intestinal mucositis and its consequences. Microbiota modulation through the oral administration of different probiotics (mainly strains of Lactobacillus and Bifidobacterium), probiotic mixtures, synbiotics, postbiotics, and paraprobiotics has been tested in different animal models and in some clinical trials. Regulation of dysbiosis, modulation of epithelial barrier permeability, anti-inflammatory effects, modulation of host immune response, reduction of oxidative stress, or prevention of apoptosis are the main mechanisms involved in their beneficial effects. However, the findings are limited by the great heterogeneity of the preclinical studies and the relative lack of studies in immunocompromised animals, as well as the scarce availability of results from clinical trials. Despite this, the results accumulated so far are promising. Hopefully, with the aid of these agents, intestinal mucositis will be less impactful to the cancer patient in the near future.
Collapse
Affiliation(s)
- Laura López-Gómez
- Department of Basic Health Sciences, Faculty of Health Sciences, University Rey Juan Carlos (URJC), 28922 Alcorcón, Spain; (L.L.-G.); (A.A.)
- High Performance Research Group in Physiopathology and Pharmacology of the Digestive System (NeuGut-URJC), University Rey Juan Carlos (URJC), 28922 Alcorcón, Spain
| | - Alexandra Alcorta
- Department of Basic Health Sciences, Faculty of Health Sciences, University Rey Juan Carlos (URJC), 28922 Alcorcón, Spain; (L.L.-G.); (A.A.)
| | - Raquel Abalo
- Department of Basic Health Sciences, Faculty of Health Sciences, University Rey Juan Carlos (URJC), 28922 Alcorcón, Spain; (L.L.-G.); (A.A.)
- High Performance Research Group in Physiopathology and Pharmacology of the Digestive System (NeuGut-URJC), University Rey Juan Carlos (URJC), 28922 Alcorcón, Spain
- Associated I+D+i Unit to the Institute of Medicinal Chemistry (IQM), Scientific Research Superior Council (CSIC), 28006 Madrid, Spain
- Working Group of Basic Sciences on Pain and Analgesia of the Spanish Pain Society, 28046 Madrid, Spain
- Working Group of Basic Sciences on Cannabinoids of the Spanish Pain Society, 28046 Madrid, Spain
| |
Collapse
|
6
|
Obermüller B, Singer G, Kienesberger B, Mittl B, Stadlbauer V, Horvath A, Miekisch W, Fuchs P, Schweiger M, Pajed L, Till H, Castellani C. Probiotic OMNi-BiOTiC ® 10 AAD Reduces Cyclophosphamide-Induced Inflammation and Adipose Tissue Wasting in Mice. Nutrients 2023; 15:3655. [PMID: 37630845 PMCID: PMC10458463 DOI: 10.3390/nu15163655] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 08/15/2023] [Accepted: 08/16/2023] [Indexed: 08/27/2023] Open
Abstract
Cancer therapy is often associated with severe side effects such as drug induced weight loss, also known as chemotherapy-induced cachexia. The aim of this study was to investigate the effects of a multispecies probiotic (OMNi-BiOTiC® 10 AAD) in a chemotherapy mouse model. A total of 24 male BALB/c mice were gavage-fed with the probiotic formulation or water, once a day for 3 weeks. In the third week, the mice received intraperitoneal cyclophosphamide. At euthanasia, the organs were dissected, and serum was sampled for cytokine analysis. Tight junction components, myosin light chain kinase, mucins, and apoptosis markers were detected in the ileum and colon using histological analyses and qRT-PCR. Lipolysis was analyzed by enzymatic activity assay, Western blotting analyses, and qRT-PCR in WAT. The fecal microbiome was measured with 16S-rRNA gene sequencing from stool samples, and fecal volatile organic compounds analysis was performed using gas chromatography/mass spectrometry. The probiotic-fed mice exhibited significantly less body weight loss and adipose tissue wasting associated with a reduced CGI58 mediated lipolysis. They showed significantly fewer pro-inflammatory cytokines and lower gut permeability compared to animals fed without the probiotic. The colons of the probiotic-fed animals showed lower inflammation scores and less goblet cell loss. qRT-PCR revealed no differences in regards to tight junction components, mucins, or apoptosis markers. No differences in microbiome alpha diversity, but differences in beta diversity, were observed between the treatment groups. Taxonomic analysis showed that the probiotic group had a lower relative abundance of Odoribacter and Ruminococcus-UCG014 and a higher abundance of Desulfovibrio. VOC analysis yielded no significant differences. The results of this study indicate that oral administration of the multispecies probiotic OMNi-BiOTiC® 10 AAD could mitigate cyclophosphamide-induced chemotherapy side effects.
Collapse
Affiliation(s)
- Beate Obermüller
- Department of Paediatric and Adolescent Surgery, Medical University of Graz, 8036 Graz, Austria; (B.O.); (B.K.); (B.M.); (H.T.); (C.C.)
| | - Georg Singer
- Department of Paediatric and Adolescent Surgery, Medical University of Graz, 8036 Graz, Austria; (B.O.); (B.K.); (B.M.); (H.T.); (C.C.)
| | - Bernhard Kienesberger
- Department of Paediatric and Adolescent Surgery, Medical University of Graz, 8036 Graz, Austria; (B.O.); (B.K.); (B.M.); (H.T.); (C.C.)
- Department of Paediatric Surgery, Clinical Center of Klagenfurt, 9020 Klagenfurt, Austria
| | - Barbara Mittl
- Department of Paediatric and Adolescent Surgery, Medical University of Graz, 8036 Graz, Austria; (B.O.); (B.K.); (B.M.); (H.T.); (C.C.)
| | - Vanessa Stadlbauer
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Medical University of Graz, 8036 Graz, Austria;
- Center of Biomarker Research (CBmed), 8010 Graz, Austria;
| | - Angela Horvath
- Center of Biomarker Research (CBmed), 8010 Graz, Austria;
| | - Wolfram Miekisch
- Department of Anesthesiology and Intensive Care & Pain Therapy, Rostock University Medical Center, 18057 Rostock, Germany; (W.M.); (P.F.)
| | - Patricia Fuchs
- Department of Anesthesiology and Intensive Care & Pain Therapy, Rostock University Medical Center, 18057 Rostock, Germany; (W.M.); (P.F.)
| | - Martina Schweiger
- Institute of Molecular Biosciences, BioTechMed-Graz, BioHealth-Graz, University of Graz, 8010 Graz, Austria; (M.S.); (L.P.)
| | - Laura Pajed
- Institute of Molecular Biosciences, BioTechMed-Graz, BioHealth-Graz, University of Graz, 8010 Graz, Austria; (M.S.); (L.P.)
| | - Holger Till
- Department of Paediatric and Adolescent Surgery, Medical University of Graz, 8036 Graz, Austria; (B.O.); (B.K.); (B.M.); (H.T.); (C.C.)
| | - Christoph Castellani
- Department of Paediatric and Adolescent Surgery, Medical University of Graz, 8036 Graz, Austria; (B.O.); (B.K.); (B.M.); (H.T.); (C.C.)
- Department of Anesthesiology and Intensive Care Medicine, Weiz District Hospital, 8160 Weiz, Austria
| |
Collapse
|
7
|
Tavares LM, de Jesus LCL, Batista VL, Barroso FAL, Dos Santos Freitas A, Campos GM, Américo MF, da Silva TF, Coelho-Rocha ND, Belo GA, Drumond MM, Mancha-Agresti P, Vital KD, Fernandes SOA, Cardoso VN, Birbrair A, Ferreira E, Martins FS, Laguna JG, Azevedo V. Synergistic synbiotic containing fructooligosaccharides and Lactobacillus delbrueckii CIDCA 133 alleviates chemotherapy-induced intestinal mucositis in mice. World J Microbiol Biotechnol 2023; 39:235. [PMID: 37365380 DOI: 10.1007/s11274-023-03679-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 06/15/2023] [Indexed: 06/28/2023]
Abstract
Intestinal mucositis is a commonly reported side effect in oncology patients undergoing chemotherapy and radiotherapy. Probiotics, prebiotics, and synbiotics have been investigated as alternative therapeutic approaches against intestinal mucositis due to their well-known anti-inflammatory properties and health benefits to the host. Previous studies showed that the potential probiotic Lactobacillus delbrueckii CIDCA 133 and the prebiotic Fructooligosaccharides (FOS) alleviated the 5-Fluorouracil (5-FU) chemotherapy-induced intestinal mucosa damage. Based on these previous beneficial effects, this work evaluated the anti-inflammatory property of the synbiotic formulation containing L. delbrueckii CIDCA 133 and FOS in mice intestinal mucosa inflammation induced by 5-FU. This work showed that the synbiotic formulation was able to modulate inflammatory parameters, including reduction of cellular inflammatory infiltration, gene expression downregulation of Tlr2, Nfkb1, and Tnf, and upregulation of the immunoregulatory Il10 cytokine, thus protecting the intestinal mucosa from epithelial damage caused by the 5-FU. The synbiotic also improved the epithelial barrier function by upregulating mRNA transcript levels of the short chain fatty acid (SCFA)-associated GPR43 receptor and the occludin tight junction protein, with the subsequent reduction of paracellular intestinal permeability. The data obtained showed that this synbiotic formulation could be a promising adjuvant treatment to be explored against inflammatory damage caused by 5-FU chemotherapy.
Collapse
Affiliation(s)
- Laísa Macedo Tavares
- Department of Genetics, Ecology, and Evolution, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Luís Cláudio Lima de Jesus
- Department of Genetics, Ecology, and Evolution, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Viviane Lima Batista
- Department of Genetics, Ecology, and Evolution, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | | | - Andria Dos Santos Freitas
- Department of Genetics, Ecology, and Evolution, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Gabriela Munis Campos
- Department of Genetics, Ecology, and Evolution, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Monique Ferrary Américo
- Department of Genetics, Ecology, and Evolution, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Tales Fernando da Silva
- Department of Genetics, Ecology, and Evolution, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Nina Dias Coelho-Rocha
- Department of Genetics, Ecology, and Evolution, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Giovanna Angeli Belo
- Department of Genetics, Ecology, and Evolution, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Mariana Martins Drumond
- Federal Center for Technological Education of Minas Gerais, Department of Biological Sciences, Belo Horizonte, Brazil
- Federal Center for Technological Education of Minas Gerais, Materials Engineering Post- Graduation Program, Belo Horizonte, Brazil
| | - Pamela Mancha-Agresti
- Federal Center for Technological Education of Minas Gerais, Department of Biological Sciences, Belo Horizonte, Brazil
- Federal Center for Technological Education of Minas Gerais, Materials Engineering Post- Graduation Program, Belo Horizonte, Brazil
| | - Kátia Duarte Vital
- Department of Clinical and Toxicological Analysis, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | | | - Valbert Nascimento Cardoso
- Department of Clinical and Toxicological Analysis, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Alexander Birbrair
- Department of General Pathology, Federal University of Minas Gerais, Belo Horizonte, Brazil
- Department of Dermatology, University of Wisconsin-Madison, Madison, WI, USA
- Department of Radiology, Columbia University Medical Center, New York, NY, USA
| | - Enio Ferreira
- Department of General Pathology, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | | | - Juliana Guimarães Laguna
- Department of Genetics, Ecology, and Evolution, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Vasco Azevedo
- Department of Genetics, Ecology, and Evolution, Federal University of Minas Gerais, Belo Horizonte, Brazil.
| |
Collapse
|
8
|
Singh NK, Beckett JM, Kalpurath K, Ishaq M, Ahmad T, Eri RD. Synbiotics as Supplemental Therapy for the Alleviation of Chemotherapy-Associated Symptoms in Patients with Solid Tumours. Nutrients 2023; 15:nu15071759. [PMID: 37049599 PMCID: PMC10096799 DOI: 10.3390/nu15071759] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 03/27/2023] [Accepted: 03/30/2023] [Indexed: 04/07/2023] Open
Abstract
Chemotherapy is still the first line of treatment for most cancer patients. Patients receiving chemotherapy are generally prone to infections, which result in complications, such as sepsis, mucositis, colitis, and diarrhoea. Several nutritional approaches have been trialled to counter the chemotherapy-associated side effects in cancer patients, but none have yet been approved for routine clinical use. One of the approaches to reduce or avoid chemotherapy-associated complications is to restore the gut microbiota. Gut microbiota is essential for the healthy functioning of the immune system, metabolism, and the regulation of other molecular responses in the body. Chemotherapy erodes the mucosal layer of the gastrointestinal tract and results in the loss of gut microbiota. One of the ways to restore the gut microbiota is through the use of probiotics. Probiotics are the ‘good’ bacteria that may provide health benefits if consumed in appropriate amounts. Some studies have highlighted that the consumption of probiotics in combination with prebiotics, known as synbiotics, may provide better health benefits when compared to probiotics alone. This review discusses the different nutritional approaches that have been studied in an attempt to combat chemotherapy-associated side effects in cancer patients with a particular focus on the use of pre-, pro- and synbiotics.
Collapse
Affiliation(s)
- Neeraj K. Singh
- School of Health Sciences, University of Tasmania, Newnham, Launceston 7248, Australia
| | - Jeffrey M. Beckett
- School of Health Sciences, University of Tasmania, Newnham, Launceston 7248, Australia
| | - Krishnakumar Kalpurath
- School of Health Sciences, University of Tasmania, Newnham, Launceston 7248, Australia
- Mersey Community Hospital, Latrobe 7307, Australia
| | - Muhammad Ishaq
- School of Health Sciences, University of Tasmania, Newnham, Launceston 7248, Australia
| | - Tauseef Ahmad
- School of Health Sciences, University of Tasmania, Newnham, Launceston 7248, Australia
| | - Rajaraman D. Eri
- School of Health Sciences, University of Tasmania, Newnham, Launceston 7248, Australia
- School of Science, STEM College, RMIT University, Melbourne 3083, Australia
| |
Collapse
|
9
|
Chrysostomou D, Roberts LA, Marchesi JR, Kinross JM. Gut Microbiota Modulation of Efficacy and Toxicity of Cancer Chemotherapy and Immunotherapy. Gastroenterology 2023; 164:198-213. [PMID: 36309208 DOI: 10.1053/j.gastro.2022.10.018] [Citation(s) in RCA: 98] [Impact Index Per Article: 49.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 10/02/2022] [Accepted: 10/16/2022] [Indexed: 01/31/2023]
Abstract
Accumulating evidence supports not only the functional role of the gut microbiome in cancer development and progression but also its role in defining the efficacy and toxicity of chemotherapeutic agents (5-fluorouracil, cyclophosphamide, irinotecan, oxaliplatin, gemcitabine, methotrexate) and immunotherapeutic compounds (anti-programmed death-ligand 1/anti-programmed cell death protein 1 and anti-cytotoxic T-lymphocyte-associated antigen 4). This evidence is supported in numerous in vitro, animal, and clinical studies that highlight the importance of microbial mechanisms in defining therapeutic responses. The microbiome therefore shapes oncologic outcomes and is now being leveraged for the development of novel personalized therapeutic approaches in cancer treatment. However, if the microbiome is to be successfully translated into next-generation oncologic treatments, a new multimodal model of the oncomicrobiome must be conceptualized that incorporates gut microbial cometabolism of pharmacologic agents into cancer care. The objective of this review is therefore to outline the current knowledge of oncologic pharmacomicrobiomics and to describe how the multiparametric functions of the gut microbiome influence treatment response across cancer types. The secondary objective is to propose innovative approaches for modulating the gut microbiome in clinical environments that improve therapy efficacy and diminish toxic effects derived from antineoplastic agents for patient benefit.
Collapse
Affiliation(s)
- Despoina Chrysostomou
- Centre for Digestive Diseases, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, United Kingdom
| | - Lauren A Roberts
- Centre for Digestive Diseases, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, United Kingdom
| | - Julian R Marchesi
- Centre for Digestive Diseases, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, United Kingdom
| | - James M Kinross
- Department of Surgery and Cancer, Imperial College London, London, United Kingdom.
| |
Collapse
|
10
|
Mohammed AI, Celentano A, Paolini R, Low JT, McCullough MJ, O' Reilly LA, Cirillo N. Characterization of a novel dual murine model of chemotherapy-induced oral and intestinal mucositis. Sci Rep 2023; 13:1396. [PMID: 36697446 PMCID: PMC9876945 DOI: 10.1038/s41598-023-28486-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 01/19/2023] [Indexed: 01/26/2023] Open
Abstract
Oral and intestinal mucositis are debilitating inflammatory diseases observed in cancer patients undergoing chemo-radiotherapy. These are devastating clinical conditions which often lead to treatment disruption affecting underlying malignancy management. Although alimentary tract mucositis involves the entire gastrointestinal tract, oral and intestinal mucositis are often studied independently utilizing distinct organ-specific pre-clinical models. This approach has however hindered the development of potentially effective whole-patient treatment strategies. We now characterize a murine model of alimentary tract mucositis using 5-Fluorouracil (5-FU). Mice were given 5-FU intravenously (50 mg/kg) or saline every 48 h for 2 weeks. Post initial injection, mice were monitored clinically for weight loss and diarrhea. The incidence and extent of oral mucositis was assessed macroscopically. Microscopical and histomorphometric analyses of the tongue and intestinal tissues were conducted at 3 interim time points during the experimental period. Repeated 5-FU treatment caused severe oral and intestinal atrophy, including morphological damage, accompanied by body weight loss and mild to moderate diarrhea in up to 77.8% of mice. Oral mucositis was clinically evident throughout the observation period in 88.98% of mice. Toluidine blue staining of the tongue revealed that the ulcer size peaked at day-14. In summary, we have developed a model reproducing the clinical and histologic features of both oral and intestinal mucositis, which may represent a useful in vivo pre-clinical model for the study of chemotherapy-induced alimentary tract mucositis and the development of preventative therapies.
Collapse
Affiliation(s)
- Ali I Mohammed
- Melbourne Dental School, The University of Melbourne, 720 Swanston Street, Carlton, VIC, 3053, Australia. .,College of Dentistry, The University of Tikrit, Tikrit, Iraq.
| | - Antonio Celentano
- Melbourne Dental School, The University of Melbourne, 720 Swanston Street, Carlton, VIC, 3053, Australia
| | - Rita Paolini
- Melbourne Dental School, The University of Melbourne, 720 Swanston Street, Carlton, VIC, 3053, Australia
| | - Jun T Low
- The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, VIC, 3052, Australia
| | - Michael J McCullough
- Melbourne Dental School, The University of Melbourne, 720 Swanston Street, Carlton, VIC, 3053, Australia
| | - Lorraine A O' Reilly
- The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, VIC, 3052, Australia.,Department of Medical Biology, University of Melbourne, Parkville, VIC, 3000, Australia
| | - Nicola Cirillo
- Melbourne Dental School, The University of Melbourne, 720 Swanston Street, Carlton, VIC, 3053, Australia.
| |
Collapse
|
11
|
Pirini F, Cortesi M, Tumedei MM, Zanoni M, Ravaioli S, Bravaccini S. Tumor resident microbiota and response to therapies: An insight on tissue bacterial microbiota. Front Cell Dev Biol 2023; 10:1048360. [PMID: 36684442 PMCID: PMC9845623 DOI: 10.3389/fcell.2022.1048360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Accepted: 12/15/2022] [Indexed: 01/06/2023] Open
Abstract
The role of the intestinal microbiota in the promotion, progression, and response to therapies is gaining importance, but recent studies confirm the presence of microbiota also in the tumor, thus becoming a component of the tumor microenvironment. There is not much knowledge on the characteristics and mechanisms of action of the tumor resident microbiota, but there are already indications of its involvement in conditioning the response to therapies. In this review, we discuss recent publications on the interaction between microbiota and anticancer treatments, mechanisms of resistance and possible strategies for manipulating the microbiota that could improve treatments in a personalized medicine perspective.
Collapse
|
12
|
Jin W, Jiang L, Hu S, Zhu A. Metabolite features of serum and intestinal microbiota response of largemouth bass (Micropterus salmoides) after Aeromonas hydrophila challenge. Comp Biochem Physiol C Toxicol Pharmacol 2023; 263:109496. [PMID: 36306998 DOI: 10.1016/j.cbpc.2022.109496] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 10/07/2022] [Accepted: 10/23/2022] [Indexed: 11/29/2022]
Abstract
The enteric morphology, enteric microbiota structure and serum metabolomics of M. salmoides before and after infected by A. hydrophila were analysed to explore the pathogenic mechanism of A. hydrophila infection in M. salmoides. The results revealed that, after the infection of A. hydrophila, the villus boundary of largemouth bass became less obvious; the relative abundance of Proteobacteria and decreasing relative abundance of Tenericutes were increasing; genera relative abundance of putatively beneficial bacteria (Mycoplasma) were decreasing, whereas the genus Aeromonas increased after infection; serum metabolomic analysis showed that infection with A. hydrophila caused disorder to the metabolic processes of largemouth bass, particularly amino acid metabolism, and caused inflammation; several potential pathogen infection-related and significantly differential intestinal microbiota-related metabolite markers were identified, such as 6-hydroxy-5-methoxyindole glucuronide, zalcitabine, bilirubin, aciclovir. This study may provide new insights into the potential association between enteric microbiota and serum metabolism and the pathogenic mechanism of M. salmoides infected by A. hydrophila, providing a scientific basis for disease control in largemouth bass breeding.
Collapse
Affiliation(s)
- Wangyang Jin
- Marine Science and Technology College, National Engineering Research Center for Marine Aquaculture, Zhejiang Ocean University, Zhoushan 316022, China
| | - Lihua Jiang
- Marine Science and Technology College, National Engineering Research Center for Marine Aquaculture, Zhejiang Ocean University, Zhoushan 316022, China
| | - Siling Hu
- Marine Science and Technology College, National Engineering Research Center for Marine Aquaculture, Zhejiang Ocean University, Zhoushan 316022, China
| | - Aiyi Zhu
- Marine Science and Technology College, National Engineering Research Center for Marine Aquaculture, Zhejiang Ocean University, Zhoushan 316022, China.
| |
Collapse
|
13
|
Paulino do Nascimento LC, Lacerda DC, Ferreira DJS, de Souza EL, de Brito Alves JL. Limosilactobacillus fermentum, Current Evidence on the Antioxidant Properties and Opportunities to be Exploited as a Probiotic Microorganism. Probiotics Antimicrob Proteins 2022; 14:960-979. [PMID: 35467236 DOI: 10.1007/s12602-022-09943-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/15/2022] [Indexed: 12/14/2022]
Abstract
The unbalance in the production and removal of oxygen-reactive species in the human organism leads to oxidative stress, a physiological condition commonly linked to the occurrence of cancer, neurodegenerative, inflammatory, and metabolic disorders. The implications of oxidative stress in the gut have been associated with gut microbiota impairments and gut dysbiosis. Some lactobacilli strains have shown an efficient antioxidant system capable of protecting against oxidative stress and related-chronic diseases. Recently, in vitro and experimental studies and some clinical trials have demonstrated the efficacy of the administration of various Limosilactobacillus fermentum strains to modulate beneficially the host antioxidant system resulting in the amelioration of a variety of systemic diseases phenotypes. This review presents and discusses the currently available studies on identifying L. fermentum strains with anti-oxidant properties, their sources, range of the administered doses, and duration of the intervention in experiments with animals and clinical trials. This review strives to serve as a relevant and well-cataloged reference of L. fermentum strains with capabilities of inducing anti-oxidant effects and health-promoting benefits to the host, envisaging their broad applicability to disease control.
Collapse
Affiliation(s)
| | - Diego Cabral Lacerda
- Department of Nutrition, Health Sciences Center, Federal University of Paraíba, Campus I - João Pessoa, Paraíba, Brazil
| | | | - Evandro Leite de Souza
- Department of Nutrition, Health Sciences Center, Federal University of Paraíba, Campus I - João Pessoa, Paraíba, Brazil
| | - José Luiz de Brito Alves
- Department of Nutrition, Health Sciences Center, Federal University of Paraíba, Campus I - João Pessoa, Paraíba, Brazil.
| |
Collapse
|
14
|
Al-Khrashi LA, Badr AM, Al-Amin MA, Mahran YF. Thymol ameliorates 5-fluorouracil-induced intestinal mucositis: Evidence of down-regulatory effect on TGF-β/MAPK pathways through NF-κB. J Biochem Mol Toxicol 2022; 36:e22932. [PMID: 34665902 DOI: 10.1002/jbt.22932] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2020] [Revised: 08/31/2021] [Accepted: 10/06/2021] [Indexed: 12/11/2022]
Abstract
5-Fluorouracil (5-FU) is a front-line cytotoxic therapy. However, intestinal mucositis is a well-known adverse event of 5-FU, which limits its therapeutic use. Indeed, thymol, which is a monoterpene component of the essential oil derived from thymus, has a potential anti-inflammatory and immunomodulatory activity. Therefore, this study aimed to investigate the potential chemoprotective effect of thymol against 5-FU-induced intestinal mucositis. Rats were either exposed to two doses of 5-FU (150 mg/kg, ip) and/or treated with thymol (60 or 120 mg/kg). Oxidative stress and inflammatory markers, as well as pathological changes, were assessed. 5-FU-induced severe intestinal damages as were evidenced by histopathological changes as well as oxidative and inflammatory responses. Thymol pretreatment inhibited 5-FU-induced oxidative stress by reducing lipid peroxidation and increasing intestinal levels of antioxidant systems. Moreover, inflammatory response markers, such as interleukin-6, prostaglandin E2, and COX-2 were also improved. The immunoblotting analysis also showed that thymol significantly inhibited the 5-FU-induced expression of nuclear factor-κB, tumor necrosis factor-α, and transforming growth factor β-1 (TGF-β1), in addition to the suppression of p38 and phosphorylated c-Jun N-terminal kinases (p-JNK) mitogen-activated protein kinase proteins' expressions. Our study is the first to demonstrate the promising protective effect of thymol against 5-FU-induced intestinal mucositis through inhibition of oxidative, inflammatory pathways, and suppression of TGF-β/p38/p-JNK signaling.
Collapse
Affiliation(s)
- Layla A Al-Khrashi
- Department of Pharmacology and Toxicology, College of Pharmacy, KSU, Riyadh, Saudi Arabia
| | - Amira M Badr
- Department of Pharmacology and Toxicology, College of Pharmacy, KSU, Riyadh, Saudi Arabia
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | - Maha A Al-Amin
- Department of Pharmacology and Toxicology, College of Pharmacy, KSU, Riyadh, Saudi Arabia
| | - Yasmen F Mahran
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| |
Collapse
|
15
|
A Perspective on the Role of Microbiome for Colorectal Cancer Treatment. Cancers (Basel) 2021; 13:cancers13184623. [PMID: 34572850 PMCID: PMC8468110 DOI: 10.3390/cancers13184623] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 09/13/2021] [Accepted: 09/13/2021] [Indexed: 02/07/2023] Open
Abstract
Simple Summary Colorectal cancer is the third most diagnosed cancer worldwide and contributes significantly to global mortality and morbidity. The gut microbiome, composed of the trillions of microbes endemic to the human gastrointestinal tract, has been shown to be implicated in colorectal cancer oncogenesis; however, the roles of microbiota and dysbiosis in CRC treatment remain poorly understood. This review sought to characterize this relationship and in doing so, identify how these interactions may inform future treatments in the form of synbiotics designed to alter the host microbiota to achieve optimized treatment outcomes. Abstract In healthy hosts, trillions of microbes colonise the gut and oral cavity in a well-balanced state, maintaining a mutually beneficial relationship. Loss of this balance, termed dysbiosis, is strongly implicated in the pathogenesis of colorectal cancer (CRC). However, the roles of microbiota and dysbiosis in CRC treatment remain poorly understood. Recent studies suggest that the gut microbiota has the ability to affect the host response to chemotherapeutic agents by enhancing drug efficacy, promoting chemoresistance and mediating chemotherapy-induced toxicity and side effects via a variety of mechanisms. Several other studies have also proposed manipulation of the microbiota to optimise CRC treatment. In this review, we summarise the current advancement of knowledge on how microbiota and CRC treatments interact with each other and how this interaction may shed some light on the development of personalised microbiota manipulations that improve CRC treatment outcomes.
Collapse
|
16
|
Miknevicius P, Zulpaite R, Leber B, Strupas K, Stiegler P, Schemmer P. The Impact of Probiotics on Intestinal Mucositis during Chemotherapy for Colorectal Cancer: A Comprehensive Review of Animal Studies. Int J Mol Sci 2021; 22:9347. [PMID: 34502251 PMCID: PMC8430988 DOI: 10.3390/ijms22179347] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 07/26/2021] [Accepted: 08/21/2021] [Indexed: 02/07/2023] Open
Abstract
Colorectal cancer (CRC) is the second most commonly diagnosed cancer in females (incidence 16.4/10,000) and the third in males (incidence 23.4/10,000) worldwide. Surgery, chemotherapy (CTx), radiation therapy (RTx), or a combined treatment of those are the current treatment modalities for primary CRC. Chemotherapeutic drug-induced gastrointestinal (GIT) toxicity mainly presents as mucositis and diarrhea. Preclinical studies revealed that probiotic supplementation helps prevent CTx-induced side effects by reducing oxidative stress and proinflammatory cytokine production and promoting crypt cell proliferation. Moreover, probiotics showed significant results in preventing the loss of body weight (BW) and reducing diarrhea. However, further clinical studies are needed to elucidate the exact doses and most promising combination of strains to reduce or prevent chemotherapy-induced side effects. The aim of this review is to overview currently available literature on the impact of probiotics on CTx-induced side effects in animal studies concerning CRC treatment and discuss the potential mechanisms based on experimental studies' outcomes.
Collapse
Affiliation(s)
- Povilas Miknevicius
- General, Visceral and Transplant Surgery, Department of Surgery, Medical University of Graz, Auenbruggerpl. 2, 8036 Graz, Austria; (P.M.); (R.Z.); (B.L.); (P.S.)
- Faculty of Medicine, Vilnius University, 03101 Vilnius, Lithuania;
| | - Ruta Zulpaite
- General, Visceral and Transplant Surgery, Department of Surgery, Medical University of Graz, Auenbruggerpl. 2, 8036 Graz, Austria; (P.M.); (R.Z.); (B.L.); (P.S.)
- Faculty of Medicine, Vilnius University, 03101 Vilnius, Lithuania;
| | - Bettina Leber
- General, Visceral and Transplant Surgery, Department of Surgery, Medical University of Graz, Auenbruggerpl. 2, 8036 Graz, Austria; (P.M.); (R.Z.); (B.L.); (P.S.)
| | - Kestutis Strupas
- Faculty of Medicine, Vilnius University, 03101 Vilnius, Lithuania;
| | - Philipp Stiegler
- General, Visceral and Transplant Surgery, Department of Surgery, Medical University of Graz, Auenbruggerpl. 2, 8036 Graz, Austria; (P.M.); (R.Z.); (B.L.); (P.S.)
| | - Peter Schemmer
- General, Visceral and Transplant Surgery, Department of Surgery, Medical University of Graz, Auenbruggerpl. 2, 8036 Graz, Austria; (P.M.); (R.Z.); (B.L.); (P.S.)
| |
Collapse
|
17
|
Coutinho JOPA, Quintanilha MF, Campos MRA, Ferreira E, de Menezes GCA, Rosa LH, Rosa CA, Vital KD, Fernandes SOA, Cardoso VN, Nicoli JR, Tiago FCP, Martins FS. Antarctic Strain of Rhodotorula mucilaginosa UFMGCB 18,377 Attenuates Mucositis Induced by 5-Fluorouracil in Mice. Probiotics Antimicrob Proteins 2021; 14:486-500. [PMID: 34255281 DOI: 10.1007/s12602-021-09817-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/01/2021] [Indexed: 12/17/2022]
Abstract
Mucositis is one of the most strenuous side effects caused by chemotherapy drugs, such as 5-fluorouracil (5-FU), during the treatment of several types of cancers. The disease is so prevalent and aggressive that many patients cannot resist such symptoms. However, despite its frequency and clinical significance, there is no effective treatment to prevent or treat mucositis. Thus, the use of probiotics as an adjuvant for the treatment has gained prominence. In the present study, we evaluated the effectiveness of oral administration of the Antarctic strain of Rhodotorula mucilaginosa UFMGCB 18,377 as an alternative to minimize side effects of 5-FU-induced mucositis in mice. Body weight, food consumption, stool consistency, and presence of blood in the feces were assessed daily in mice orally treated or not with the yeast and submitted or not to experimental mucositis. Blood, bones, and intestinal tissues and fluid were used to determine intestinal permeability and immunological, microbiological, and histopathological parameters. Treatment with R. mucilaginosa UFMGCB 18,377 was able to decrease clinical signs of the disease, such as reduction of food intake and body weight loss, and also decreased the number of intestinal enterobacteria and intestinal length shortening. Additionally, treatment was able to decrease the levels of MPO and EPO activities and inflammatory infiltrates, as well as the histopathological lesions characteristic of mucositis in the jejunum and ileum. Results of the present study showed that the oral administration of R. mucilaginosa UFMGCB 18,377 protected mice against mucositis induced by 5-FU.
Collapse
Affiliation(s)
- Joana O P A Coutinho
- Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Mônica F Quintanilha
- Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Marina R A Campos
- Departamento de Patologia Geral, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Enio Ferreira
- Departamento de Patologia Geral, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Graciéle C A de Menezes
- Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Luiz H Rosa
- Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Carlos A Rosa
- Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Katia D Vital
- Departamento de Análises Clínicas E Toxicológicas, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Simone O A Fernandes
- Departamento de Análises Clínicas E Toxicológicas, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Valbert N Cardoso
- Departamento de Análises Clínicas E Toxicológicas, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Jacques R Nicoli
- Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Fabiana C P Tiago
- Centro Federal de Educação Tecnológica de Minas Gerais (CEFET-MG), Belo Horizonte, MG, Brazil
| | - Flaviano S Martins
- Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil. .,Laboratório de Agentes Bioterapêuticos, Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Av. Antônio Carlos 6627, Belo Horizonte, MG, 30270-901, Brazil.
| |
Collapse
|
18
|
Liu JH, Hsieh CH, Liu CY, Chang CW, Chen YJ, Tsai TH. Anti-inflammatory effects of Radix Aucklandiae herbal preparation ameliorate intestinal mucositis induced by 5-fluorouracil in mice. JOURNAL OF ETHNOPHARMACOLOGY 2021; 271:113912. [PMID: 33567307 DOI: 10.1016/j.jep.2021.113912] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2020] [Revised: 02/04/2021] [Accepted: 02/05/2021] [Indexed: 06/12/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE 5-Fluorouracil (5-FU) is a chemotherapy agent that is widely used in clinical oncologic practice. However, intestinal mucositis is the most frequently occurring side effect of cancer therapy with 5-FU. Based on a literature survey, Radix Aucklandiae herbal preparation potentially ameliorates intestinal mucositis in 5-FU-treated mice. AIM OF THE STUDY The aim of this study was to investigate the inflammation and gastrointestinal regulation of intestinal mucositis induced by 5-FU, including the intestinal morphology, as well as the reduction in food intake, body weight loss, and diarrhea. MATERIALS AND METHODS Intestinal mucositis was induced in mice by 5-FU (30 mg/kg, i.p., for 5 consecutive days). The dose-dependent Radix Aucklandiae herbal preparation (0.3, 1, and 3 g/kg/day, p.o.), loperamide (3 mg/kg/day, p.o.) or celecoxib (40 mg/kg/day, p.o.) was concurrently administered until the 7th day. Physical status observation, diarrhea assessment, serum proinflammatory cytokine levels, intestinal villus height and crypt depth, and total goblet cells from tissues were assessed. RESULTS The dosage regimen of 5-FU administration caused severe intestinal mucositis in mice, including damage to the intestinal morphology, accompanied by a reduction in food intake, body weight loss, and diarrhea. The high-dose Radix Aucklandiae herbal preparation significantly relieves 5-FU-induced intestinal mucositis by enhancing proliferative activity in epithelial crypts; improving anepithymia, body weight loss, and diarrhea; and displaying protective effects on goblet cells in intestinal mucosal epithelia. Activation of NF-κB in the intestinal mucositis model was also suppressed by the Radix Aucklandiae herbal preparation, suggesting that it is a potent inhibitor of NF-κB and proinflammatory cytokines, such as IL-1β, IL-6, TNF-α, and COX-2. CONCLUSIONS Our data support the conclusion that the Radix Aucklandiae herbal preparation could effectively ameliorate 5-FU-induced gastrointestinal toxicity and be applied clinically for the prevention of intestinal mucositis during chemotherapy.
Collapse
Affiliation(s)
- Ju-Han Liu
- School of Nursing, National Taipei University of Nursing and Health Sciences, Taipei, 112, Taiwan; Institute of Traditional Medicine, School of Medicine, National Yang Ming Chiao Tung University, Taipei, 112, Taiwan; Graduate Institute of Acupuncture Science, China Medical University, Taichung, 404, Taiwan
| | - Chen-Hsi Hsieh
- Institute of Traditional Medicine, School of Medicine, National Yang Ming Chiao Tung University, Taipei, 112, Taiwan; Department of Radiation Oncology, Far Eastern Memorial Hospital, Taipei, 220, Taiwan; Faculty of Medicine, School of Medicine, National Yang Ming Chiao Tung University, Taipei, 112, Taiwan.
| | - Chia-Yuan Liu
- Institute of Traditional Medicine, School of Medicine, National Yang Ming Chiao Tung University, Taipei, 112, Taiwan; Division of Gastroenterology, Department of Internal Medicine, MacKay Memorial Hospital, Taipei, 251, Taiwan; Department of Medicine, MacKay Medical College, New Taipei City, 252, Taiwan; Mackay Junior College of Medicine, Nursing and Management, Taipei, 112, Taiwan
| | - Ching-Wei Chang
- Institute of Traditional Medicine, School of Medicine, National Yang Ming Chiao Tung University, Taipei, 112, Taiwan; Division of Gastroenterology, Department of Internal Medicine, MacKay Memorial Hospital, Taipei, 251, Taiwan; Department of Medicine, MacKay Medical College, New Taipei City, 252, Taiwan; Mackay Junior College of Medicine, Nursing and Management, Taipei, 112, Taiwan
| | - Yu-Jen Chen
- Institute of Traditional Medicine, School of Medicine, National Yang Ming Chiao Tung University, Taipei, 112, Taiwan; Department of Medicine, MacKay Medical College, New Taipei City, 252, Taiwan; Department of Radiation Oncology, MacKay Memorial Hospital, Taipei, 251, Taiwan
| | - Tung-Hu Tsai
- Institute of Traditional Medicine, School of Medicine, National Yang Ming Chiao Tung University, Taipei, 112, Taiwan; Graduate Institute of Acupuncture Science, China Medical University, Taichung, 404, Taiwan; School of Pharmacy, College of Pharmacy, Kaohsiung Medical University, Kaohsiung, 807, Taiwan.
| |
Collapse
|
19
|
Luo Y, Zhou T. Connecting the dots: Targeting the microbiome in drug toxicity. Med Res Rev 2021; 42:83-111. [PMID: 33856076 DOI: 10.1002/med.21805] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 03/22/2021] [Accepted: 03/31/2021] [Indexed: 12/13/2022]
Abstract
The gut microbiota has a vast influence on human health and its role in initiating, aggravating, or ameliorating diseases is beginning to emerge. Recently, its contribution to heterogeneous toxicological responses is also gaining attention, especially in drug-induced toxicity. Whether they are orally administered or not, drugs may interact with the gut microbiota directly or indirectly, which leads to altered toxicity. Present studies focus more on the unidirectional influence of how xenobiotics disturb intestinal microbial composition and functions, and thus induce altered homeostasis. However, interactions between the gut microbiota and xenobiotics are bidirectional and the impact of the gut microbiota on xenobiotics, especially on drugs, should not be neglected. Thus, in this review, we focus on how the gut microbiota modulates drug toxicity by highlighting the microbiome, microbial enzyme, and microbial metabolites. We connect the dots between drugs, the microbiome, microbial enzymes or metabolites, drug metabolites, and host toxicological responses to facilitate the discovery of microbial targets and mechanisms associated with drug toxicity. Besides this, current mainstream strategies to manipulate drug toxicity by targeting the microbiome are summarized and discussed. The review provides technical reference for the evaluation of medicinal properties in the research and development of innovative drugs, and for the future exploitation of strategies to reduce drug toxicity by targeting the microbiome.
Collapse
Affiliation(s)
- Yusha Luo
- Department of Pharmaceutical Analysis, School of Pharmacy, Second Military Medical University, Shanghai, China.,Shanghai Key Laboratory for Pharmaceutical Metabolite Research, School of Pharmacy, Second Military Medical University, Shanghai, China
| | - Tingting Zhou
- Department of Pharmaceutical Analysis, School of Pharmacy, Second Military Medical University, Shanghai, China.,Shanghai Key Laboratory for Pharmaceutical Metabolite Research, School of Pharmacy, Second Military Medical University, Shanghai, China
| |
Collapse
|
20
|
Yazbeck R, Howarth GS, Kosek M, Davidson GP, Butler RN. Breath 13CO 2-evidence for a noninvasive biomarker to measure added refined sugar uptake. J Appl Physiol (1985) 2021; 130:1025-1032. [PMID: 33444124 DOI: 10.1152/japplphysiol.00648.2020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Accepted: 01/08/2021] [Indexed: 01/25/2023] Open
Abstract
Increased consumption of added sucrose and high-fructose corn syrup in the human diet has been associated with increasing incidence of obesity and metabolic disease. There are currently no reliable, objective biomarkers for added sugar intake that could be used in individuals or population settings. 13C is a stable isotope of carbon, and measurement of blood 13C content has been proposed as a marker of added sugar consumption. This study aimed to determine if breath 13CO2 could represent an alternative, noninvasive biomarker to monitor added sugar intake. We undertook retrospective analyses of eight preclinical and human 13C-breath studies to define baseline breath 13CO2 characteristics. All samples were analyzed using isotope ratio mass spectrometry, and breath 13CO2 was expressed as the delta value, δ expressed as parts per thousand (‰). All data are expressed as mean ± SEM, with statistical significance considered at P < 0.05. Breath δ13CO2 was significantly elevated in a cumulative manner in rats and mice that consumed a diet containing at least 15% sucrose. Mice fed an American rodent chow diet containing 50% sucrose and 15% corn starch had a significantly higher breath δ13CO2 compared with rodents consuming an Australian rodent chow diet. Furthermore, breath δ13CO2 was significantly increased in a dose-dependent manner in humans that ingested a bolus dose of sucrose. These findings suggest application for baseline breath δ13CO2 as a noninvasive biomarker for added sugar consumption, with broad application for longitudinal assessment of population sugar intake and obesity management strategies.NEW & NOTEWORTHY We have found that breath 13CO2 is increased in rats and mice consuming diets high in sucrose. We also found that human breath 13CO2 is increased in humans consuming increasing amounts of sucrose. Our collective findings suggest that breath 13CO2 represents a potential marker of added dietary sugar consumption.
Collapse
Affiliation(s)
- Roger Yazbeck
- College of Medicine and Public Health, Flinders University, Adelaide, South Australia
| | - Gordon S Howarth
- School of Animal and Veterinary Sciences, University of Adelaide, Roseworthy Campus, South Australia
| | - Margaret Kosek
- Centre for Paediatric and Adolescent Gastroenterology, Children, Youth and Women's Health Service, North Adelaide, South Australia
| | - Geoffrey P Davidson
- Division of Infectious Diseases and International Health, University of Virginia, Charlottesville, Virginia
| | - Ross N Butler
- Discipline of Paediatrics, University of Adelaide, Adelaide, South Australia
| |
Collapse
|
21
|
Yeung CY, Chiau JSC, Cheng ML, Chan WT, Chang SW, Jiang CB, Lee HC. Immune Modulation Effects of Lactobacillus casei Variety rhamnosus on Enterocytes and Intestinal Stem Cells in a 5-FU-Induced Mucositis Mouse Model. Gastroenterol Res Pract 2021; 2021:3068393. [PMID: 33564301 PMCID: PMC7850847 DOI: 10.1155/2021/3068393] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 11/10/2020] [Accepted: 01/04/2021] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Intestinal mucositis remains one of the most deleterious side effects in cancer patients undergoing chemotherapy. We hypothesize that the probiotics could preserve gut ecology, ameliorate inflammation, and protect epithelia via immune modulations of enterocytes and intestinal stem cells. Our aim is to characterize these changes and the safety of probiotics via a 5-fluorouracil- (5-FU-) induced intestinal mucositis mouse model. METHODS 5-FU-injected BALB/c mice were either orally administrated with saline or probiotic suspension of Lactobacillus casei variety rhamnosus (Lcr35). Diarrhea scores, serum proinflammatory cytokines, and T-cell subtypes were assessed. Immunostaining analyses for the proliferation of intestinal stem cells CD44 and Ki67 were processed. Samples of blood and internal organs were investigated for bacterial translocation. RESULTS Diarrhea was attenuated after oral Lcr35 administration. Serum proinflammatory cytokines were significantly increased in the 5-FU group and were reversed by Lcr35. A tremendous rise of the CD3+/CD8+ count and a significant decrease of CD3+CD4+/CD3+CD8+ ratios were found in the 5-FU group and were both reversed by Lcr35. 5-FU significantly stimulated the expression of CD44 stem cells, and the expression was restored by Lcr35. 5-FU could increase the number of Ki67 proliferative cells. No bacterial translocation was found in this study. CONCLUSIONS Our results showed that 5-FU caused intestinal inflammation mainly via Th1 and Th17 responses. 5-FU could stimulate stem cells and proliferation cells in a mouse model. We demonstrate chemotherapy could decrease immune competence. Probiotics were shown to modulate the immune response. This is the first study to analyze the immune modulation effects and safety of Lactobacillus strain on enterocytes and intestinal stem cells in a mouse model.
Collapse
Affiliation(s)
- Chun-Yan Yeung
- Department of Pediatric Gastroenterology, Hepatology and Nutrition, MacKay Children's Hospital, Taipei, Taiwan
- Department of Medical Research, MacKay Memorial Hospital, Taipei, Taiwan
- Department of Medicine, MacKay Medical College, New Taipei City, Taiwan
| | | | - Mei-Lien Cheng
- Department of Medical Research, MacKay Memorial Hospital, Taipei, Taiwan
| | - Wai-Tao Chan
- Department of Pediatric Gastroenterology, Hepatology and Nutrition, MacKay Children's Hospital, Taipei, Taiwan
- Department of Medicine, MacKay Medical College, New Taipei City, Taiwan
| | - Szu-Wen Chang
- Department of Pediatric Gastroenterology, Hepatology and Nutrition, MacKay Children's Hospital, Taipei, Taiwan
| | - Chuen-Bin Jiang
- Department of Pediatric Gastroenterology, Hepatology and Nutrition, MacKay Children's Hospital, Taipei, Taiwan
- Department of Medicine, MacKay Medical College, New Taipei City, Taiwan
| | - Hung-Chang Lee
- Department of Pediatric Gastroenterology, Hepatology and Nutrition, MacKay Children's Hospital, Taipei, Taiwan
- Department of Medical Research, MacKay Memorial Hospital, Taipei, Taiwan
- Department of Medicine, MacKay Medical College, New Taipei City, Taiwan
| |
Collapse
|
22
|
Oral delivery of bacteria: Basic principles and biomedical applications. J Control Release 2020; 327:801-833. [DOI: 10.1016/j.jconrel.2020.09.011] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Accepted: 09/05/2020] [Indexed: 12/18/2022]
|
23
|
Ciobanu L, Tefas C, Oancea DM, Berce C, Vodnar D, Mester A, Onica S, Toma C, Taulescu M. Effect of Lactobacillus plantarum ACTT 8014 on 5-fluorouracil induced intestinal mucositis in Wistar rats. Exp Ther Med 2020; 20:209. [PMID: 33149773 PMCID: PMC7604756 DOI: 10.3892/etm.2020.9339] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Accepted: 09/29/2020] [Indexed: 12/21/2022] Open
Abstract
Some previous studies reported that probiotics might decrease the severity of chemotherapy-induced mucositis. This study assessed the potential protective effect of Lactobacillus plantarum ATCC 8014 on 5-fluorouracil (5-FU) induced intestinal mucositis in the Wistar rats. The Crl:WI rats were divided into two groups of six animals (F, L) and one group of 5 animals (M). Group L received for 9 days 3.32x109 CFU/ml of Lactobacillus plantarum orally. In the 7th day of the experiment 400 mg of 5-FU was administered intraperitoneally in groups L and F. Group M received only the vehicles. All animals were sacrificed in the 9th day. Eleven histological characteristics of mucositis were quantified from 0 (normal) to 3 (severe) for duodenum, jejunum and colon. Semiquantitative grades measured Toll-like receptor 4 (TLR4) immunopositive cells. The independent groups were analyzed using the Kruskal-Wallis test, Mann-Whitney U test, with a Bonferroni correction for alpha (P≤0.016). In the group F, treated with 5-FU, the most affected areas were the jejunum and the duodenum. The medium score of histological lesions was 27 for jejunum (minimum 25, maximum 32) and 21 for duodenum (minimum 18, maximum 29). Graded microscopic mucosal changes of the jejunum were significantly lower in group L compared with group F (U=0, P=0.009, Mann-Whitney test). The histological changes depicted on the duodenal and colonic mucosa were less severe in group L than in group F, but without reaching the statistical significance (duodenum: U=6, P=0.172, Mann-Whitney test; colon: U=12, P=0.916, Mann-Whitney test). Although the TLR4 immunoexpression was more intense in group L, no significant statistical difference was revealed at duodenum, jejunum or colonic mucosa. Significantly fewer microscopic changes were depicted in L group on the jejunum, suggesting a potential beneficial effect of Lactobacillus plantarum at this level in 5-FU induced mucositis.
Collapse
Affiliation(s)
- Lidia Ciobanu
- Department of Internal Medicine, 'Iuliu Hatieganu' University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania.,Department of Gastroenterology, 'Professor Doctor Octavian Fodor' Regional Institute of Gastroenterology and Hepatology, 400162 Cluj-Napoca, Romania
| | - Cristian Tefas
- Department of Internal Medicine, 'Iuliu Hatieganu' University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania.,Department of Gastroenterology, 'Professor Doctor Octavian Fodor' Regional Institute of Gastroenterology and Hepatology, 400162 Cluj-Napoca, Romania
| | - Diana Maria Oancea
- Department of Internal Medicine, 'Iuliu Hatieganu' University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania
| | - Cristian Berce
- Department of Internal Medicine, 'Iuliu Hatieganu' University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania
| | - Dan Vodnar
- Institute of Life Sciences, Faculty of Food Science and Technology, University ofAgricultural Sciences and Veterinary Medicine, 400372 Cluj-Napoca, Romania
| | - Alexandru Mester
- Department of Internal Medicine, 'Iuliu Hatieganu' University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania
| | - Sorina Onica
- Department of Internal Medicine, 'Iuliu Hatieganu' University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania
| | - Corina Toma
- Department of Veterinary Pathology, Faculty of Veterinary Medicine, University ofAgricultural Sciences and Veterinary Medicine, 400372 Cluj-Napoca, Romania
| | - Marian Taulescu
- Department of Veterinary Pathology, Faculty of Veterinary Medicine, University ofAgricultural Sciences and Veterinary Medicine, 400372 Cluj-Napoca, Romania
| |
Collapse
|
24
|
Batista VL, da Silva TF, de Jesus LCL, Coelho-Rocha ND, Barroso FAL, Tavares LM, Azevedo V, Mancha-Agresti P, Drumond MM. Probiotics, Prebiotics, Synbiotics, and Paraprobiotics as a Therapeutic Alternative for Intestinal Mucositis. Front Microbiol 2020; 11:544490. [PMID: 33042054 PMCID: PMC7527409 DOI: 10.3389/fmicb.2020.544490] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2020] [Accepted: 08/24/2020] [Indexed: 12/12/2022] Open
Abstract
Intestinal mucositis, a cytotoxic side effect of the antineoplastic drug 5-fluorouracil (5-FU), is characterized by ulceration, inflammation, diarrhea, and intense abdominal pain, making it an important issue for clinical medicine. Given the seriousness of the problem, therapeutic alternatives have been sought as a means to ameliorate, prevent, and treat this condition. Among the alternatives available to address this side effect of treatment with 5-FU, the most promising has been the use of probiotics, prebiotics, synbiotics, and paraprobiotics. This review addresses the administration of these "biotics" as a therapeutic alternative for intestinal mucositis caused by 5-FU. It describes the effects and benefits related to their use as well as their potential for patient care.
Collapse
Affiliation(s)
- Viviane Lima Batista
- Laboratório de Genética Celular e Molecular (LGCM), Departamento de Biologia Geral, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Brazil
| | - Tales Fernando da Silva
- Laboratório de Genética Celular e Molecular (LGCM), Departamento de Biologia Geral, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Brazil
| | - Luís Cláudio Lima de Jesus
- Laboratório de Genética Celular e Molecular (LGCM), Departamento de Biologia Geral, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Brazil
| | - Nina Dias Coelho-Rocha
- Laboratório de Genética Celular e Molecular (LGCM), Departamento de Biologia Geral, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Brazil
| | - Fernanda Alvarenga Lima Barroso
- Laboratório de Genética Celular e Molecular (LGCM), Departamento de Biologia Geral, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Brazil
| | - Laisa Macedo Tavares
- Laboratório de Genética Celular e Molecular (LGCM), Departamento de Biologia Geral, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Brazil
| | - Vasco Azevedo
- Laboratório de Genética Celular e Molecular (LGCM), Departamento de Biologia Geral, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Brazil
| | - Pamela Mancha-Agresti
- Laboratório de Genética Celular e Molecular (LGCM), Departamento de Biologia Geral, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Brazil
- Faculdade de Minas, FAMINAS-BH, Belo Horizonte, Brazil
| | - Mariana Martins Drumond
- Laboratório de Genética Celular e Molecular (LGCM), Departamento de Biologia Geral, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Brazil
- Centro Federal de Educação Tecnológica de Minas Gerais (CEFET/MG), Departamento de Ciências Biológicas, Belo Horizonte, Brazil
| |
Collapse
|
25
|
Inamura K. Gut microbiota contributes towards immunomodulation against cancer: New frontiers in precision cancer therapeutics. Semin Cancer Biol 2020; 70:11-23. [PMID: 32580023 DOI: 10.1016/j.semcancer.2020.06.006] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 06/10/2020] [Accepted: 06/11/2020] [Indexed: 02/08/2023]
Abstract
The microbiota influences human health and the development of diverse diseases, including cancer. Microbes can influence tumor initiation and development in either a positive or negative manner. In addition, the composition of the gut microbiota affects the efficacy and toxicity of cancer therapeutics as well as therapeutic resistance. The striking impact of microbiota on oncogenesis and cancer therapy provides compelling evidence to support the notion that manipulating microbial networks represents a promising strategy for treating and preventing cancer. Specific microbes or the microbial ecosystem can be modified via a multiplicity of processes, and therapeutic methods and approaches have been evolving. Microbial manipulation can be applied as an adjunct to traditional cancer therapies such as chemotherapy and immunotherapy. Furthermore, this approach displays great promise as a stand-alone therapy following the failure of standard therapy. Moreover, such strategies may also benefit patients by avoiding the emergence of toxic side effects that result in treatment discontinuation. A better understanding of the host-microbial ecosystem in patients with cancer, together with the development of methodologies for manipulating the microbiome, will help expand the frontiers of precision cancer therapeutics, thereby improving patient care. This review discusses the roles of the microbiota in oncogenesis and cancer therapy, with a focus on efforts to harness the microbiota to fight cancer.
Collapse
Affiliation(s)
- Kentaro Inamura
- Division of Pathology, The Cancer Institute, Japanese Foundation for Cancer Research, 3-8-31 Ariake, Koto-ku, Tokyo 135-8550, Japan.
| |
Collapse
|
26
|
Yeung CY, Chiang Chiau JS, Cheng ML, Chan WT, Chang SW, Chang YH, Jiang CB, Lee HC. Modulations of probiotics on gut microbiota in a 5-fluorouracil-induced mouse model of mucositis. J Gastroenterol Hepatol 2020; 35:806-814. [PMID: 31674687 DOI: 10.1111/jgh.14890] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2019] [Revised: 08/29/2019] [Accepted: 10/04/2019] [Indexed: 12/12/2022]
Abstract
BACKGROUND AND AIM Intestinal mucositis remained one of the most deleterious complications in cancer patients undergoing chemotherapy. 5-FU treatment was reported to affect the abundance of gut microbiota and cause mucositis, which might be ameliorated by probiotics. We investigate the potential changes of 5-FU treatment and the modulations of probiotics on gut microbiota in a mouse model. METHODS Male BALB/c mice received either 5-FU or saline (S). They were separated and fed saline, Lactobacillus casei variety rhamnosus (Lcr) and Lactobacillus reuteri DSM 17938 (BG). Lcr and BG were simultaneously administered with 5-FU for 5 days. Stool specimens were collected for DNA extraction and pyrosequenced for bioinformatic analysis. RESULTS Fecal microbial communities were obviously diverse. Bacteroides and Bacteroidaceae were the most abundant microbiota in FU.BG group while S24_7 was the most in S.S group. At phylum and class levels, abundances of Betaproteobacteria, Erysipelotrichi, Gammaproteobacteria, and Verrucomicrobia were significantly increased in the FU groups. Probiotics supplementation did increase the abundances of Enterobacteriales and Turicibacterales. We demonstrated that probiotics did modulate the abundance and diversity of gut microbiota. Bacterial motility proteins were found enriched and upregulated in the S.BG group. No mortality was noted. No bacterial translocation was found in spleen and blood among the six groups. CONCLUSION Gut microbiota of mice undergoing chemotherapy exhibited a distinct disruption in bacterial composition. Probiotic did modulate the abundance and diversity of gut microbiota. This is the first study to analyze the effects and safety of Lactobacillus strains on 5-FU-induced mucositis systematically and assess changes in the intestinal microbiota after probiotic intervention.
Collapse
Affiliation(s)
- Chun-Yan Yeung
- Department of Pediatric Gastroenterology, Hepatology and Nutrition, MacKay Children's Hospital, Taipei, Taiwan
- Department of Medical Research, MacKay Memorial Hospital, Taipei, Taiwan
- Department of Medicine, MacKay Medical College, New Taipei City, Taiwan
| | | | - Mei-Lein Cheng
- Department of Medical Research, MacKay Memorial Hospital, Taipei, Taiwan
| | - Wai-Tao Chan
- Department of Pediatric Gastroenterology, Hepatology and Nutrition, MacKay Children's Hospital, Taipei, Taiwan
- Department of Medicine, MacKay Medical College, New Taipei City, Taiwan
| | - Szu-Wen Chang
- Department of Pediatric Gastroenterology, Hepatology and Nutrition, MacKay Children's Hospital, Taipei, Taiwan
| | - Yuan-Hao Chang
- Department of Pediatric Gastroenterology, Hepatology and Nutrition, MacKay Children's Hospital, Taipei, Taiwan
| | - Chuen-Bin Jiang
- Department of Pediatric Gastroenterology, Hepatology and Nutrition, MacKay Children's Hospital, Taipei, Taiwan
- Department of Medicine, MacKay Medical College, New Taipei City, Taiwan
| | - Hung-Chang Lee
- Department of Pediatric Gastroenterology, Hepatology and Nutrition, MacKay Children's Hospital, Taipei, Taiwan
- Department of Medical Research, MacKay Memorial Hospital, Taipei, Taiwan
- Department of Medicine, MacKay Medical College, New Taipei City, Taiwan
| |
Collapse
|
27
|
Park JE, Oh SH, Cha YS. Lactobacillus Brevis OPK-3 from Kimchi Prevents Obesity and Modulates the Expression of Adipogenic and Pro-Inflammatory Genes in Adipose Tissue of Diet-Induced Obese Mice. Nutrients 2020; 12:nu12030604. [PMID: 32110872 PMCID: PMC7146405 DOI: 10.3390/nu12030604] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Revised: 02/20/2020] [Accepted: 02/24/2020] [Indexed: 12/15/2022] Open
Abstract
Our previous study reported that lactic acid bacteria (L. brevis OPK-3) isolated from kimchi ameliorated intracellular lipid accumulation in 3T3-L1 adipocyte. The current study explored potential roles of L. brevis OPK-3 (KLAB) on preventing body weight gain and its effect on the inflammatory response of adipose tissue. Male C57BL/6 mice (n = 10) were divided into four groups: normal diet with distilled water (NDC), high-fat diet with distilled water (HDC), high-fat diet with L-ornithine (OTC) or high-fat diet with KLAB. The KLAB supplement resulted in significantly lower body weight, lower epididymal fat tissue mass, and lower serum and hepatic TG levels than the HDC. KLAB supplementation improved serum cytokines, and real-time polymerase chain reaction (PCR) analysis showed significantly lower inflammatory cytokine mRNA levels in epididymal adipose tissue. These results suggest that the administration of KLAB inhibits the induction of inflammation in adipose tissue along with the inhibition of weight gain. Therefore, this study demonstrates the therapeutic and beneficial value of this strain produced during the fermentation of kimchi.
Collapse
Affiliation(s)
- Jung Eun Park
- Department of Food Science and Human Nutrition, Jeonbuk National University and Obesity Research Center, Jeonju, 54896 Jeonbuk, Korea;
| | - Suk-Heung Oh
- Department of Food and Biotechnology, Woosuk University, Samnye-eup, Wanju-gun 55338, Jeonbuk, Korea;
| | - Youn-Soo Cha
- Department of Food Science and Human Nutrition, Jeonbuk National University and Obesity Research Center, Jeonju, 54896 Jeonbuk, Korea;
- Correspondence: ; Tel.: +82-63-270-4258
| |
Collapse
|
28
|
Yazbeck R, Lindsay RJ, Geier MS, Butler RN, Howarth GS. Prebiotics Fructo-, Galacto-, and Mannan-Oligosaccharide Do Not Protect against 5-Fluorouracil-Induced Intestinal Mucositis in Rats. J Nutr 2019; 149:2164-2173. [PMID: 31504729 DOI: 10.1093/jn/nxz192] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Revised: 03/19/2019] [Accepted: 07/24/2019] [Indexed: 01/03/2023] Open
Abstract
BACKGROUND Prebiotics selectively stimulate the growth of beneficial bacteria within the gastrointestinal tract, and have been investigated in human and animal studies for their capacity to improve intestinal health. OBJECTIVE We investigated the prebiotics fructo-oligosaccharide (FOS), galacto-oligosaccharide (GOS), and mannan-oligosaccharide (MOS) for their potential to alleviate intestinal damage in rats. METHODS Female Dark Agouti rats (6-8 wk old, 110-150 g) were allocated to 1 of the following treatment groups (n = 8/group): saline/water, saline/FOS, saline/GOS, saline/MOS, 5-fluorouracil (5FU)/water, 5FU/FOS, 5FU/GOS, and 5FU/MOS. Rats were pretreated with either 5% GOS, MOS, or FOS or vehicle (water) from day -12 to day 0. On day 0, rats received a single intraperitoneal injection of saline or 5FU. Metabolic data were recorded daily and all rats were killed on day 3. Histopathology was quantified in hematoxylin and eosin-stained sections. Intestinal sucrase and myeloperoxidase activity were quantified by biochemical assay. Fecal SCFAs-acetic, propionic, and butyric acid-were also measured. Statistical analysis was by repeated-measures, 2-factor ANOVA or Kruskal-Wallis and Mann-Whitney U test; P < 0.05 was considered statistically significant. RESULTS Body weight was significantly decreased in all treatment groups after 5FU injection, with no change in body weight observed in any prebiotic treatment group. Total food intake was lower by ≥7% in the GOS treatment group pre-5FU than in all other groups (P < 0.05). Ileal villus height was 18% higher in GOS-treated rats pre-5FU than in respective water controls (P < 0.05). Jejunal and ileal villus height and crypt depth were significantly decreased in all treatment groups after 5FU injection, with no prebiotic effect observed. SCFAs were differentially increased in prebiotic treatment groups compared with water-only controls (P < 0.05). CONCLUSIONS FOS, GOS, and MOS have differential effects in modifying small intestinal pathology and SCFA profiles in rats with healthy and damaged small intestinal mucosa.
Collapse
Affiliation(s)
- Roger Yazbeck
- College of Medicine and Public Health and Flinders Centre for Innovation in Cancer, Flinders University, Bedford Park, South Australia, Australia
| | - Ruth J Lindsay
- School of Animal and Veterinary Sciences, University of Adelaide, Roseworthy, South Australia, Australia
| | - Mark S Geier
- School of Animal and Veterinary Sciences, University of Adelaide, Roseworthy, South Australia, Australia
| | - Ross N Butler
- College of Medicine and Public Health and Flinders Centre for Innovation in Cancer, Flinders University, Bedford Park, South Australia, Australia
| | - Gordon S Howarth
- School of Animal and Veterinary Sciences, University of Adelaide, Roseworthy, South Australia, Australia
- Centre for Paediatric and Adolescent Gastroenterology, Children, Youth, and Women's Health Service, North Adelaide, South Australia, Australia
| |
Collapse
|
29
|
Zhang L, Jin Y, Peng J, Chen W, Lisha L, Lin J. Qingjie Fuzheng Granule attenuates 5-fluorouracil-induced intestinal mucosal damage. Biomed Pharmacother 2019; 118:109223. [PMID: 31325706 DOI: 10.1016/j.biopha.2019.109223] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2019] [Revised: 07/10/2019] [Accepted: 07/10/2019] [Indexed: 11/27/2022] Open
Abstract
OBJECTIVE 5-Fluorouracil (5-FU)-based chemotherapy often causes several drawbacks including weight loss, diarrhea, myelosuppression, and the intestinal mucositis. This study aimed to evaluate the protective effect of Qingjie Fuzheng Granule (QFG) on 5-FU-induced intestinal mucositis in CT-26 tumor-bearing xenograft mice and investigated the possible molecular mechanism. METHODS Tumor xenograft models of CT-26 cells were generated in BALB/c nude mice, the mice were randomly divided into 4 groups including control, QFG, 5-FU and 5-FU combined QFG groups. The body weight, volume of tumor and diarrhea score of each group were recorded daily. On the fifth day, the blood of mice was collected, the mice were subsequently euthanized and their thymus, spleen, intestine and tumor were removed for the following analysis. RESULTS QFG alleviated severe diarrhea and reversed the decrease in the number of white blood cell including granulocyte and lymphocyte induced by 5-FU. QFG could also significantly improve 5-FU-induced several intestinal mucosal damages, and characterized by integrity villus and crypts, the reduction of necrotic cells. QFG decreased the serum levels of TNF-α, IL-1β, and IL-6 and increased the levels of IL-10. Furthermore, QFG inhibited the cellular apoptosis in the jejunum tissue caused by 5-FU via the increasing Bcl-2 expression and decreasing Bax expression. In addition, QFG promoted the cell proliferation via elevating the expression of Cyclin D1 and CDK4 and reducing p21 expression. Meanwhile, QFG could not further impact on the cell apoptosis and proliferation of tumors caused by 5-FU. CONCLUSION QFG attenuated the intestinal mucositis and diarrhea induced by 5-FU via preventive effect on inflammation and its improvement of the intestinal barrier function, inhibiting cell apoptosis and promoting cell proliferation, and without affecting the 5-FU treatment efficiency. The results suggest that QFG may act as a potential agent against chemotherapy-induced intestinal mucositis.
Collapse
Affiliation(s)
- Ling Zhang
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, 350122, China; Fujian Key Laboratory of Integrative Medicine on Geriatrics, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, 350122, China.
| | - Yiyi Jin
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, 350122, China.
| | - Jun Peng
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, 350122, China; Fujian Key Laboratory of Integrative Medicine on Geriatrics, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, 350122, China.
| | - Wujin Chen
- Oncology Department, Affiliated People's Hospital of Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, 350004, China.
| | - Lu Lisha
- Oncology Department, Affiliated People's Hospital of Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, 350004, China.
| | - Jiumao Lin
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, 350122, China; Fujian Key Laboratory of Integrative Medicine on Geriatrics, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, 350122, China.
| |
Collapse
|
30
|
Huang L, Chiang Chiau JS, Cheng ML, Chan WT, Jiang CB, Chang SW, Yeung CY, Lee HC. SCID/NOD mice model for 5-FU induced intestinal mucositis: Safety and effects of probiotics as therapy. Pediatr Neonatol 2019; 60:252-260. [PMID: 30150027 DOI: 10.1016/j.pedneo.2018.07.007] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2017] [Revised: 04/20/2018] [Accepted: 07/09/2018] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND For chemotherapy patients, intestinal mucositis is a frequent complication. Previously, we evaluated the beneficial effect of oral probiotics in 5-Fluorouracil (5-FU) induced mucositis in BALB/c mice. Here, we used SCID/NOD mice instead to simulate the immunodeficiency of chemotherapy patients: first, to evaluate the safety of probiotic supplementation and second, to determine the probiotic effect in response to 5-FU intestinal mucositis. METHODS Thirty-six SCID/NOD mice were injected with saline (three control groups) or 5-FU (three experimental groups) intraperitoneally daily for five days. Mice were given either oral saline daily, probiotic suspension of Lactobacillus casei variety rhamnosus (Lcr35, Antibiophilus™, France) or Lactobacillus acidophilus and Bifidobacterium bifidum (LaBi, Infloran™, Italy). Blood, liver, spleen, and lymph node tissue samples were evaluated for probiotic translocation via culture and Q-PCR. Weight change, diarrhea score, jejunal villus height (VH) and crypt depth (CD), and serum cytokine levels of TNF-α, IFNγ, IL-1β, IL-6, IL-4, IL-10, IL-13, and IL-17 were also assessed. RESULTS No weight loss was found in the SCID control group. Mean weight loss of 10.63 ± 0.87% was noted by day five in 5-FU group without probiotics but it was only 6.2 ± 0.43% if mice were given Lcr35 (p < 0.01) and 7.1 ± 1.80% (p < 0.01) if they were given LaBi. Diarrhea score of 5-FU group without probiotics was 2.0 ± 0.0 by day five, which dropped to 1.33 ± 0.17 (p < 0.05) and 1.42 ± 0.24 (p < 0.05) with Lcr35 and LaBi, respectively. Average VH significantly decreased and CD significantly increased in SCID mice given 5-FU. With probiotics, average CD improved (p < 0.05) while VH lengthened as well. Besides IL-13, all cytokine levels increased in 5-FU SCID mice. Both Lcr35 and LaBi significantly inhibited serum cytokines (p < 0.05). No probiotic strains were detected in blood cultures of any mice. CONCLUSION Using SCID/NOD mice as a novel model for 5-FU induced intestinal mucositis, we find that probiotics Lcr35 and LaBi do not lead to bacteremia, can improve diarrhea and body weight, can restore jejunal crypt depth, and significantly inhibit cytokines TNF-α, IL-1β, IFNγ, IL-6, IL-4, IL-10, and IL-17.
Collapse
Affiliation(s)
- Lawrence Huang
- Division of Gastroenterology and Nutrition, Department of Pediatrics, MacKay Children's Hospital, Taipei, Taiwan; Yonghe Cardinal Tien Hospital, New Taipei City, Taiwan
| | | | - Mei-Lien Cheng
- Department of Medical Research, MacKay Memorial Hospital, Taipei, Taiwan
| | - Wai-Tao Chan
- Division of Gastroenterology and Nutrition, Department of Pediatrics, MacKay Children's Hospital, Taipei, Taiwan
| | - Chuen-Bin Jiang
- Division of Gastroenterology and Nutrition, Department of Pediatrics, MacKay Children's Hospital, Taipei, Taiwan; MacKay Junior College of Medicine, Nursing, and Management, Taipei, Taiwan
| | - Szu-Wen Chang
- Division of Gastroenterology and Nutrition, Department of Pediatrics, MacKay Children's Hospital, Taipei, Taiwan
| | - Chun-Yan Yeung
- Division of Gastroenterology and Nutrition, Department of Pediatrics, MacKay Children's Hospital, Taipei, Taiwan; Department of Medicine, MacKay Medical College, New Taipei City, Taiwan.
| | - Hung-Chang Lee
- Division of Gastroenterology and Nutrition, Department of Pediatrics, MacKay Children's Hospital, Taipei, Taiwan; Department of Medicine, MacKay Medical College, New Taipei City, Taiwan; Department of Pediatrics, Taipei Medical University, Taipei, Taiwan.
| |
Collapse
|
31
|
Treatment with selenium-enriched Saccharomyces cerevisiae UFMG A-905 partially ameliorates mucositis induced by 5-fluorouracil in mice. Cancer Chemother Pharmacol 2019; 84:117-126. [PMID: 31079219 DOI: 10.1007/s00280-019-03865-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Accepted: 05/04/2019] [Indexed: 02/07/2023]
Abstract
PURPOSE Gastrointestinal mucositis is a major problem associated with cancer therapy. To minimize these deleterious effects, simultaneous administration of antioxidant components, such as selenium, can be considered. There is a growing interest in the use of yeasts because they are able to convert inorganic selenium into selenomethionine. In the present study, oral administration of Saccharomyces cerevisiae UFMG A-905 enriched with selenium was evaluated as an alternative in minimizing the side effects of 5FU-induced mucositis in mice. METHODS Mice body weight, food consumption, faeces consistency and the presence of blood in faeces were assessed daily during experimental mucositis induced by 5-fluorouracil (5FU). Blood was used for intestinal permeability determination, and small intestine for oxidative stress, immunological and histopathological examination. RESULTS The increased intestinal permeability observed with mucositis induction was partially reverted by S. cerevisiae and selenium-enriched yeast. Both treatments were able to reduce myeloperoxidase activity, but only selenium-enriched yeast reduced eosinophil peroxidase activity. CXCL1/KC levels, histopathological tissue damage and oxidative stress (lipid peroxidation and nitrite production) in the small intestine were reduced by both treatments; however, this reduction was always higher when treatment with selenium-enriched yeast was evaluated. CONCLUSIONS Results of the present study showed that the oral administration of S. cerevisiae UFMG A-905 protected mice against mucositis induced by 5-FU, and that this effect was potentiated when the yeast was enriched with selenium.
Collapse
|
32
|
De Jesus LCL, Drumond MM, de Carvalho A, Santos SS, Martins FS, Ferreira Ê, Fernandes RS, de Barros ALB, do Carmo FL, Perez PF, Azevedo V, Mancha-Agresti P. Protective effect of Lactobacillus delbrueckii subsp. Lactis CIDCA 133 in a model of 5 Fluorouracil-Induced intestinal mucositis. J Funct Foods 2019. [DOI: 10.1016/j.jff.2018.12.027] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
|
33
|
High-Fiber Diets in Gastrointestinal Tract Diseases. DIETARY INTERVENTIONS IN GASTROINTESTINAL DISEASES 2019. [DOI: 10.1016/b978-0-12-814468-8.00019-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
34
|
Chen D, Zhao J, Cong W. Chinese Herbal Medicines Facilitate the Control of Chemotherapy-Induced Side Effects in Colorectal Cancer: Progress and Perspective. Front Pharmacol 2018; 9:1442. [PMID: 30581388 PMCID: PMC6294045 DOI: 10.3389/fphar.2018.01442] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2018] [Accepted: 11/22/2018] [Indexed: 12/24/2022] Open
Abstract
Side effects, including nausea, vomiting, mucositis, peripheral neuropathy, and diarrhea, have been frequently reported in colorectal cancer (CRC) patients undergoing chemotherapy. Chinese Herbal Medicines (CHMs) display distinct clinical outcomes, as a result, they have been increasingly used as an adjuvant therapy to manage chemotherapy-induced side effects. In this review, we aim to intensively explore the molecular mechanisms of CHMs, underline the significance of CHMs in mitigating the side effects induced by chemotherapy, and examine the necessary studies required to understand the role of CHMs in alleviating chemotherapy-induced side effects. Specifically, ginger, Astragali Radix, and Liujunzi Decoction have been verified to ameliorate nausea and vomiting. Banxia Xiexin Decoction and Huangqin Decoction have been confirmed to be beneficial to mucositis and delayed-onset of diarrhea. Moreover, Niuche Shenqi Wan, Guilong Tongluo Decoction, Huangqi Guizhi Wuwu Decoction, and tumeric have been found to display potential therapeutic effects for preventing the genesis and development of peripheral neurotoxicity. These findings have further emphasized the pivotal role of CHMs in improving the outcomes of chemotherapy-induced side effects in CRC. Nonetheless, more molecular evidence is required to comprehensively understand and more appropriately apply CHMs in routine clinical practice for CRC.
Collapse
Affiliation(s)
- Dongmei Chen
- Xiyuan Hospital of China Academy of Chinese Medical Sciences, Beijing, China.,Graduate School, Beijing University of Chinese Medicine, Beijing, China.,The University of Texas, MD Anderson Cancer Center, Houston, TX, United States
| | - Jun Zhao
- The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Weihong Cong
- Xiyuan Hospital of China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
35
|
Pretreatment and treatment with fructo-oligosaccharides attenuate intestinal mucositis induced by 5-FU in mice. J Funct Foods 2018. [DOI: 10.1016/j.jff.2018.09.012] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
|
36
|
Levit R, Savoy de Giori G, de Moreno de LeBlanc A, LeBlanc J. Folate-producing lactic acid bacteria reduce inflammation in mice with induced intestinal mucositis. J Appl Microbiol 2018; 125:1494-1501. [DOI: 10.1111/jam.14038] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Revised: 05/31/2018] [Accepted: 06/25/2018] [Indexed: 02/05/2023]
Affiliation(s)
- R. Levit
- Centro de Referencia para Lactobacilos (CERELA-CONICET); San Miguel de Tucumán Tucumán Argentina
| | - G. Savoy de Giori
- Centro de Referencia para Lactobacilos (CERELA-CONICET); San Miguel de Tucumán Tucumán Argentina
- Cátedra de Microbiología Superior; Facultad de Bioquímica, Química y Farmacia; Universidad Nacional de Tucumán; San Miguel de Tucumán Tucumán Argentina
| | - A. de Moreno de LeBlanc
- Centro de Referencia para Lactobacilos (CERELA-CONICET); San Miguel de Tucumán Tucumán Argentina
| | - J.G. LeBlanc
- Centro de Referencia para Lactobacilos (CERELA-CONICET); San Miguel de Tucumán Tucumán Argentina
| |
Collapse
|
37
|
Kim SH, Chun HJ, Choi HS, Kim ES, Keum B, Seo YS, Jeen YT, Lee HS, Um SH, Kim CD. Ursodeoxycholic acid attenuates 5-fluorouracil-induced mucositis in a rat model. Oncol Lett 2018; 16:2585-2590. [PMID: 30008943 PMCID: PMC6036549 DOI: 10.3892/ol.2018.8893] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2017] [Accepted: 05/22/2018] [Indexed: 12/12/2022] Open
Abstract
Intestinal mucositis is a commonly encountered complication of chemotherapy. However, there are few effective treatments or preventive methods. Ursodeoxycholic acid (UDCA) stabilizes cell membranes, acts as an antioxidant and inhibits apoptosis, thereby exerting cytoprotective effects. The aim of the present study was to examine the ability of UDCA to protecting against chemotherapy-associated mucositis. Sprague-Dawley rats were randomly assigned to five groups: Control, vehicle + 5-fluorouracil (5-FU), 5-FU + UDCA (10 mg/kg/day), 5-FU + UDCA (100 mg/kg/day) and 5-FU + UDCA (500 mg/kg/day). Following randomization, a single dose of 5-FU was injected and varying amounts of UDCA was administered to each group. UDCA was administered orally to rats for 6 days, beginning 1 day prior to 5-FU administration. The rats were sacrificed 1 day following the last UDCA administration and intestinal tissue specimens were prepared for analysis. UDCA administration attenuated body weight loss, decreased inflammatory cytokine levels and curbed intestinal villus damage in the 10 and 100 mg/kg/day groups. When compared with the jejunal villi lengths in the vehicle+5-FU group (212.8±58.0 µm), those in the 5-FU + UDCA (10 mg/kg/day) and 5-FU + UDCA (100 mg/kg/day) groups were significantly greater [331.3±18.0 µm (P=0.001) and 310.0±112.6 µm (P=0.046), respectively]. Tumor necrosis factor-α and interleukin-6 levels were reduced in the 10 and 100 mg/kg/day UDCA groups (P<0.05). UDCA considerably attenuated the elevation in inflammatory cytokines and intestinal villus damage. The results of the study suggest that UDCA may be used as a protective agent against chemotherapy-associated intestinal mucositis.
Collapse
Affiliation(s)
- Seung Han Kim
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Institute of Gastrointestinal Medical Instrument Research, Korea University College of Medicine, Seoul 02841, Republic of Korea
| | - Hoon Jai Chun
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Institute of Gastrointestinal Medical Instrument Research, Korea University College of Medicine, Seoul 02841, Republic of Korea
| | - Hyuk Soon Choi
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Institute of Gastrointestinal Medical Instrument Research, Korea University College of Medicine, Seoul 02841, Republic of Korea
| | - Eun Sun Kim
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Institute of Gastrointestinal Medical Instrument Research, Korea University College of Medicine, Seoul 02841, Republic of Korea
| | - Bora Keum
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Institute of Gastrointestinal Medical Instrument Research, Korea University College of Medicine, Seoul 02841, Republic of Korea
| | - Yeon Seok Seo
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Institute of Gastrointestinal Medical Instrument Research, Korea University College of Medicine, Seoul 02841, Republic of Korea
| | - Yoon Tae Jeen
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Institute of Gastrointestinal Medical Instrument Research, Korea University College of Medicine, Seoul 02841, Republic of Korea
| | - Hong Sik Lee
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Institute of Gastrointestinal Medical Instrument Research, Korea University College of Medicine, Seoul 02841, Republic of Korea
| | - Soon Ho Um
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Institute of Gastrointestinal Medical Instrument Research, Korea University College of Medicine, Seoul 02841, Republic of Korea
| | - Chang Duck Kim
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Institute of Gastrointestinal Medical Instrument Research, Korea University College of Medicine, Seoul 02841, Republic of Korea
| |
Collapse
|
38
|
Panebianco C, Andriulli A, Pazienza V. Pharmacomicrobiomics: exploiting the drug-microbiota interactions in anticancer therapies. MICROBIOME 2018; 6:92. [PMID: 29789015 PMCID: PMC5964925 DOI: 10.1186/s40168-018-0483-7] [Citation(s) in RCA: 208] [Impact Index Per Article: 29.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Accepted: 05/14/2018] [Indexed: 05/18/2023]
Abstract
Cancer is a major health burden worldwide, and despite continuous advances in medical therapies, resistance to standard drugs and adverse effects still represent an important cause of therapeutic failure. There is a growing evidence that gut bacteria can affect the response to chemo- and immunotherapeutic drugs by modulating either efficacy or toxicity. Moreover, intratumor bacteria have been shown to modulate chemotherapy response. At the same time, anticancer treatments themselves significantly affect the microbiota composition, thus disrupting homeostasis and exacerbating discomfort to the patient. Here, we review the existing knowledge concerning the role of the microbiota in mediating chemo- and immunotherapy efficacy and toxicity and the ability of these therapeutic options to trigger dysbiotic condition contributing to the severity of side effects. In addition, we discuss the use of probiotics, prebiotics, synbiotics, postbiotics, and antibiotics as emerging strategies for manipulating the microbiota in order to improve therapeutic outcome or at least ensure patients a better quality of life all along of anticancer treatments.
Collapse
Affiliation(s)
- Concetta Panebianco
- Division of Gastroenterology, IRCCS "Casa Sollievo della Sofferenza" Hospital, Viale dei Cappuccini, 1, 71013, San Giovanni Rotondo, FG, Italy
| | - Angelo Andriulli
- Division of Gastroenterology, IRCCS "Casa Sollievo della Sofferenza" Hospital, Viale dei Cappuccini, 1, 71013, San Giovanni Rotondo, FG, Italy
| | - Valerio Pazienza
- Division of Gastroenterology, IRCCS "Casa Sollievo della Sofferenza" Hospital, Viale dei Cappuccini, 1, 71013, San Giovanni Rotondo, FG, Italy.
| |
Collapse
|
39
|
Trindade L, Martins V, Rodrigues N, Souza E, Martins F, Costa G, Almeida-Leite C, Faria A, Cardoso V, Maioli T, Generoso S. Oral administration of Simbioflora® (synbiotic) attenuates intestinal damage in a mouse model of 5-fluorouracil-induced mucositis. Benef Microbes 2018; 9:477-486. [DOI: 10.3920/bm2017.0082] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The use of probiotics to prevent or treat mucosal inflammation has been studied; however, the combined effect of probiotics and prebiotics is unclear. The aim of this study was to test whether oral administration of a synbiotic (Simbioflora®) preparation containing Lactobacillus paracasei, Lactobacillus rhamnosus, Lactobacillus acidophilus and Bifidobacterium lactis plus fructooligosaccharide could help control mucosal inflammation in experimental mucositis induced by 5-fluorouracil (5-FU). Male BALB/c mice were randomly divided into six groups: control (CTL), control + prebiotic (CTL+P), control + synbiotic (CTL+S), mucositis (MUC), mucositis + prebiotic (MUC+P), and mucositis + synbiotic (MUC+S). Mice from the CTL+S, MUC+S, CTL+P, and MUC+P groups received synbiotic or prebiotic daily by oral gavage for 13 days. Mice in the CTL and MUC groups received the same volume of saline. On day 11, mice in the MUC, MUC+P, and MUC+S groups received an intraperitoneal injection of 300 mg/kg 5-FU to induce mucositis. After 72 h, all mice were euthanised. Intestinal permeability, intestinal histology, and biochemical parameters were analysed. Group MUC showed a greater weight loss and increased intestinal permeability (0.020 counts per min [cpm]/g) compared to the CTL group (0.01 cpm/g) P<0.05. Both treatments attenuated weight loss compared to the MUC group. Nonetheless, the synbiotic caused a greater reduction in intestinal permeability (0.012 cpm/g) compared to the MUC (0.020 cpm/g) and MUC+P (0.016 cpm/g) groups P<0.05. Mice in groups MUC+P and MUC+S displayed significant recovery of lesions and maintenance of the mucus layer. There were no differences in the short-chain fatty acid concentrations in the faeces between the MUC and CTL groups (P>0.05). Increased acetate and propionate concentrations were evidenced in the faeces of the MUC+P and MUC+S groups. Only the synbiotic treatment increased the butyrate concentration (P<0.05). The results indicate that administration of synbiotic can decrease mucosal damage caused by mucositis.
Collapse
Affiliation(s)
- L.M. Trindade
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Av. Pres. Antônio Carlos 6627, Belo Horizonte, MG 31270-901, Brazil
| | - V.D. Martins
- Departamento de Análises Clínicas e Toxicológicas, Escola de Farmácia, Universidade Federal de Minas Gerais, Av. Pres. Antônio Carlos 6627, Belo Horizonte, MG 31270-901, Brazil
| | - N.M. Rodrigues
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Av. Pres. Antônio Carlos 6627, Belo Horizonte, MG 31270-901, Brazil
| | - E.L.S. Souza
- Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Av. Pres. Antônio Carlos 6627, Belo Horizonte, MG 31270-901, Brazil
| | - F.S. Martins
- Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Av. Pres. Antônio Carlos 6627, Belo Horizonte, MG 31270-901, Brazil
| | - G.M.F. Costa
- Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Av. Pres. Antônio Carlos 6627, Belo Horizonte, MG 31270-901, Brazil
| | - C.M. Almeida-Leite
- Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Av. Pres. Antônio Carlos 6627, Belo Horizonte, MG 31270-901, Brazil
| | - A.M.C. Faria
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Av. Pres. Antônio Carlos 6627, Belo Horizonte, MG 31270-901, Brazil
| | - V.N. Cardoso
- Departamento de Análises Clínicas e Toxicológicas, Escola de Farmácia, Universidade Federal de Minas Gerais, Av. Pres. Antônio Carlos 6627, Belo Horizonte, MG 31270-901, Brazil
| | - T.U. Maioli
- Departamento de Nutrição, Escola de Enfermagem, Universidade Federal de Minas Gerais, Av Alfredo Balena 190, Belo Horizonte, MG 30130-100, Brazil
| | - S.V. Generoso
- Departamento de Nutrição, Escola de Enfermagem, Universidade Federal de Minas Gerais, Av Alfredo Balena 190, Belo Horizonte, MG 30130-100, Brazil
| |
Collapse
|
40
|
Levit R, Savoy de Giori G, de Moreno de LeBlanc A, LeBlanc JG. Protective effect of the riboflavin-overproducing strain Lactobacillus plantarum CRL2130 on intestinal mucositis in mice. Nutrition 2018; 54:165-172. [PMID: 29982144 DOI: 10.1016/j.nut.2018.03.056] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Revised: 03/07/2018] [Accepted: 03/26/2018] [Indexed: 01/29/2023]
Abstract
OBJECTIVES Intestinal mucositis (IM) is a local inflammatory response that causes alterations of the intestinal structure that in turn affect nutrient absorption and a side effect that is commonly associated with cancer treatments. Lactobacillus plantarum CRL2130 is a riboflavin-overproducing strain that has previously been shown to provide antiinflammatory properties. The objective of this study was to evaluate the effects of this riboflavin-producing strain in a chemically induced murine mucositis model. METHODS Mucositis was induced by daily injections of 5-fluororacil (5-FU) after which mice were either given L. plantarum CRL2130, CRL725 (strain from which CRL2130 was derived that does not overproduce riboflavin), or commercial riboflavin twice daily during 6 d of chemotherapy agent injections. The effect of the strains and riboflavin was also evaluated in vitro using Caco-2 intestinal cancer cell cultures to determine if they interfere with 5-FU's anticancer activity. RESULTS The administration of L. plantarum CRL2130 significantly attenuated the pathologic changes induced by 5-FU in mice such as body weight loss, diarrhea, shortening of villus height, increases in proinflammatory cytokine concentrations, and elevated production of interleukin 10. In vitro assays using Caco-2 cells showed that the effectiveness of 5-FU was not affected by L. plantarum CRL2130 and that this strain exerted an inhibitory mechanism against oxidative stress. CONCLUSIONS These results indicate that the riboflavin-overproducing strain L. plantarum CRL2130 could be useful to prevent mucositis during cancer treatments and would not affect the primary treatment.
Collapse
Affiliation(s)
- Romina Levit
- Centro de Referencia para Lactobacilos (CERELA-CONICET), Tucumán, Argentina
| | - Graciela Savoy de Giori
- Centro de Referencia para Lactobacilos (CERELA-CONICET), Tucumán, Argentina; Cátedra de Microbiología Superior, Facultad de Bioquímica, Química y Farmacia, Universidad Nacional de Tucumán, Tucumán, Argentina
| | | | - Jean Guy LeBlanc
- Centro de Referencia para Lactobacilos (CERELA-CONICET), Tucumán, Argentina.
| |
Collapse
|
41
|
Determining risk of severe gastrointestinal toxicity based on pretreatment gut microbial community in patients receiving cancer treatment: a new predictive strategy in the quest for personalized cancer medicine. Curr Opin Support Palliat Care 2018; 11:125-132. [PMID: 28333867 DOI: 10.1097/spc.0000000000000265] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
PURPOSE OF REVIEW Currently, our ability to accurately predict a patient's risk of developing severe gastrointestinal toxicity from their cancer treatment is limited. Risk stratification continues to rely on traditional patient-related and treatment-related factors including age, ethnicity, sex, comorbidities, genetics, agent, dose and schedule. Although informative, these crude measures continue to underestimate toxicity risk, and hence alternative methods of risk prediction must be investigated. Given the increasing focus on the gut microbiome in driving disease, this review will provide an overview of the current literature proposing the gut microbiome as a novel predictive tool for treatment-induced gastrointestinal toxicity. RECENT FINDINGS Predictive gut microbial phenotypes have been identified for gastrointestinal toxicity induced by radiation and the checkpoint blocker, Ipilimumab. Each study employed slightly different methods of gut microbiome assessment; however, in all cases, separation of toxic versus nontoxic patients was achieved. No studies have investigated chemotherapy-induced gastrointestinal toxicity. SUMMARY The gut microbiome offers an exciting new method of risk stratification for gastrointestinal toxicity. This would enable identification of high-risk patients prior to treatment, enabling tailored treatment regimens based on personalized risk assessment and the proactive provision of supportive care measures. Based on the plasticity of the gut microbiome, methods of risk mitigation may be investigated.
Collapse
|
42
|
Gerhard D, Sousa FJDSSD, Andraus RAC, Pardo PE, Nai GA, Neto HB, Messora MR, Maia LP. Probiotic therapy reduces inflammation and improves intestinal morphology in rats with induced oral mucositis. Braz Oral Res 2017; 31:e71. [PMID: 28678976 DOI: 10.1590/1807-3107bor-2017.vol31.0071] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2017] [Accepted: 06/07/2017] [Indexed: 01/06/2023] Open
Abstract
The aim of the present study was to evaluate the effect of systemic administration of probiotics (PROB) on the progression of experimentally induced oral and intestinal mucositis in rats immunosuppressed by chemotherapy (5-fluorouracil: 5-FU). Twenty-four rats were divided into the following groups (n=6): GC (control), GPROB, G5FU and G5-FU/PROB. Groups GPROB and G5-FU/PROB received 1 g of probiotic incorporated into each 100 g of feed (Bacillus subtilis, Bifidobacterium bifidum, Enterococcus faecium and Lactobacilllus acidophilus), beginning 30 days before oral mucositis induction. Groups G5FU and G5-FU/PROB received 60 mg/kg of 5-FU on days 0 and 2. The left oral mucosa of each animal was irritated by mechanical trauma (days 1 and 2). On days 3 and 7, three animals from each group were sacrificed, and their oral mucosa and small intestine were biopsied and processed for histopathological analysis. Groups G5-FU and G5-FU/PROB showed ulcerated oral lesions at day 3, with progression in group G5-FU and regression in group G5-FU/PROB at day 7. Histologically, less severe signs of inflammation in the oral mucosa were observed in group G5-FU/PROB than in group G5-FU. Regarding the intestine, villus-related defects of lesser magnitude were observed in group G5-FU/PROB, compared with group G5-FU. Group GPROB showed greater villus height than group GC. It can be concluded that probiotic supplementation reduced oral and intestinal inflammation in immunosuppressed rats with experimentally induced mucositis, and may protect the intestine from changes induced by chemotherapy, thus contributing to overall health.
Collapse
Affiliation(s)
- Dayana Gerhard
- Universidade do Oeste Paulista - Unoeste, School of Dentistry, Presidente Prudente, SP, Brazil
| | | | | | - Paulo Eduardo Pardo
- Universidade do Oeste Paulista - Unoeste, Department of Veterinary Medicine, Presidente Prudente, SP, Brazil (retired)
| | - Gisele Alborguetti Nai
- Universidade do Oeste Paulista - Unoeste, Department of Pathology, Presidente Prudente, SP, Brazil
| | - Hermann Bremer Neto
- Universidade do Oeste Paulista - Unoeste, Department of Functional Sciences, Presidente Prudente, SP, Brazil
| | - Michel Reis Messora
- Universidade de São Paulo - USP, School of Dentistry of Ribeirão Preto, Ribeirão Preto, SP, Brazil
| | - Luciana Prado Maia
- Universidade do Oeste Paulista - Unoeste, Graduate Program in Dentistry, Presidente Prudente, SP, Brazil
| |
Collapse
|
43
|
Shi Y, Zhai Q, Li D, Mao B, Liu X, Zhao J, Zhang H, Chen W. Restoration of cefixime-induced gut microbiota changes by Lactobacillus cocktails and fructooligosaccharides in a mouse model. Microbiol Res 2017; 200:14-24. [DOI: 10.1016/j.micres.2017.04.001] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Revised: 12/21/2016] [Accepted: 04/01/2017] [Indexed: 12/22/2022]
|
44
|
Carvalho RDDO, do Carmo FLR, de Oliveira Junior A, Langella P, Chatel JM, Bermúdez-Humarán LG, Azevedo V, de Azevedo MS. Use of Wild Type or Recombinant Lactic Acid Bacteria as an Alternative Treatment for Gastrointestinal Inflammatory Diseases: A Focus on Inflammatory Bowel Diseases and Mucositis. Front Microbiol 2017; 8:800. [PMID: 28536562 PMCID: PMC5422521 DOI: 10.3389/fmicb.2017.00800] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Accepted: 04/19/2017] [Indexed: 12/26/2022] Open
Abstract
The human gastrointestinal tract (GIT) is highly colonized by bacterial communities, which live in a symbiotic relationship with the host in normal conditions. It has been shown that a dysfunctional interaction between the intestinal microbiota and the host immune system, known as dysbiosis, is a very important factor responsible for the development of different inflammatory conditions of the GIT, such as the idiopathic inflammatory bowel diseases (IBD), a complex and multifactorial disorder of the GIT. Dysbiosis has also been implicated in the pathogenesis of other GIT inflammatory diseases such as mucositis usually caused as an adverse effect of chemotherapy. As both diseases have become a great clinical problem, many research groups have been focusing on developing new strategies for the treatment of IBD and mucositis. In this review, we show that lactic acid bacteria (LAB) have been capable in preventing and treating both disorders in animal models, suggesting they may be ready for clinical trials. In addition, we present the most current studies on the use of wild type or genetically engineered LAB strains designed to express anti-inflammatory proteins as a promising strategy in the treatment of IBD and mucositis.
Collapse
Affiliation(s)
| | - Fillipe L R do Carmo
- Federal University of Minas Gerais - Instituto de Ciências BiológicasBelo Horizonte, Brazil
| | | | - Philippe Langella
- Micalis Institute, Institut National de la Recherche Agronomique, AgroParisTech, Université Paris-SaclayJouy-en-Josas, France
| | - Jean-Marc Chatel
- Micalis Institute, Institut National de la Recherche Agronomique, AgroParisTech, Université Paris-SaclayJouy-en-Josas, France
| | - Luis G Bermúdez-Humarán
- Micalis Institute, Institut National de la Recherche Agronomique, AgroParisTech, Université Paris-SaclayJouy-en-Josas, France
| | - Vasco Azevedo
- Federal University of Minas Gerais - Instituto de Ciências BiológicasBelo Horizonte, Brazil
| | - Marcela S de Azevedo
- Federal University of Minas Gerais - Instituto de Ciências BiológicasBelo Horizonte, Brazil
| |
Collapse
|
45
|
Carvalho RD, Breyner N, Menezes-Garcia Z, Rodrigues NM, Lemos L, Maioli TU, da Gloria Souza D, Carmona D, de Faria AMC, Langella P, Chatel JM, Bermúdez-Humarán LG, Figueiredo HCP, Azevedo V, de Azevedo MS. Secretion of biologically active pancreatitis-associated protein I (PAP) by genetically modified dairy Lactococcus lactis NZ9000 in the prevention of intestinal mucositis. Microb Cell Fact 2017; 16:27. [PMID: 28193209 PMCID: PMC5307810 DOI: 10.1186/s12934-017-0624-x] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2016] [Accepted: 01/03/2017] [Indexed: 12/22/2022] Open
Abstract
Background Mucositis is one of the most relevant gastrointestinal inflammatory conditions in humans, generated by the use of chemotherapy drugs, such as 5-fluoracil (5-FU). 5-FU-induced mucositis affects 80% of patients undergoing oncological treatment causing mucosal gut dysfunctions and great discomfort. As current therapy drugs presents limitations in alleviating mucositis symptoms, alternative strategies are being pursued. Recent studies have shown that the antimicrobial pancreatitis-associated protein (PAP) has a protective role in intestinal inflammatory processes. Indeed, it was demonstrated that a recombinant strain of Lactococcus lactis expressing human PAP (LL-PAP) could prevent and improve murine DNBS-induced colitis, an inflammatory bowel disease (IBD) that causes severe inflammation of the colon. Hence, in this study we sought to evaluate the protective effects of LL-PAP on 5-FU-induced experimental mucositis in BALB/c mice as a novel approach to treat the disease. Results Our results show that non-recombinant L. lactis NZ9000 have antagonistic activity, in vitro, against the enteroinvasive gastrointestinal pathogen L. monocytogenes and confirmed PAP inhibitory effect against Opportunistic E. faecalis. Moreover, L. lactis was able to prevent histological damage, reduce neutrophil and eosinophil infiltration and secretory Immunoglobulin-A in mice injected with 5-FU. Recombinant lactococci carrying antimicrobial PAP did not improve those markers of inflammation, although its expression was associated with villous architecture preservation and increased secretory granules density inside Paneth cells in response to 5-FU inflammation. Conclusions We have demonstrated for the first time that L. lactis NZ9000 by itself, is able to prevent 5-FU-induced intestinal inflammation in BALB/c mice. Moreover, PAP delivered by recombinant L. lactis strain showed additional protective effects in mice epithelium, revealing to be a promising strategy to treat intestinal mucositis.
Collapse
Affiliation(s)
- Rodrigo D Carvalho
- Federal University of Minas Gerais (UFMG-ICB), Av. Antônio Carlos, 6627, CP 486, Belo Horizonte, MG, 31270-901, Brazil
| | - Natalia Breyner
- Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay, 78350, Jouy-En-Josas, France
| | - Zelia Menezes-Garcia
- Federal University of Minas Gerais (UFMG-ICB), Av. Antônio Carlos, 6627, CP 486, Belo Horizonte, MG, 31270-901, Brazil
| | - Nubia M Rodrigues
- Federal University of Minas Gerais (UFMG-ICB), Av. Antônio Carlos, 6627, CP 486, Belo Horizonte, MG, 31270-901, Brazil
| | - Luisa Lemos
- Federal University of Minas Gerais (UFMG-ICB), Av. Antônio Carlos, 6627, CP 486, Belo Horizonte, MG, 31270-901, Brazil
| | - Tatiane U Maioli
- Federal University of Minas Gerais (UFMG-ICB), Av. Antônio Carlos, 6627, CP 486, Belo Horizonte, MG, 31270-901, Brazil
| | - Danielle da Gloria Souza
- Federal University of Minas Gerais (UFMG-ICB), Av. Antônio Carlos, 6627, CP 486, Belo Horizonte, MG, 31270-901, Brazil.,Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay, 78350, Jouy-En-Josas, France
| | - Denise Carmona
- Federal University of Minas Gerais (UFMG-ICB), Av. Antônio Carlos, 6627, CP 486, Belo Horizonte, MG, 31270-901, Brazil
| | - Ana M C de Faria
- Federal University of Minas Gerais (UFMG-ICB), Av. Antônio Carlos, 6627, CP 486, Belo Horizonte, MG, 31270-901, Brazil
| | - Philippe Langella
- Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay, 78350, Jouy-En-Josas, France
| | - Jean-Marc Chatel
- Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay, 78350, Jouy-En-Josas, France
| | - Luis G Bermúdez-Humarán
- Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay, 78350, Jouy-En-Josas, France
| | - Henrique C P Figueiredo
- Federal University of Minas Gerais (UFMG-ICB), Av. Antônio Carlos, 6627, CP 486, Belo Horizonte, MG, 31270-901, Brazil
| | - Vasco Azevedo
- Federal University of Minas Gerais (UFMG-ICB), Av. Antônio Carlos, 6627, CP 486, Belo Horizonte, MG, 31270-901, Brazil
| | - Marcela S de Azevedo
- Federal University of Minas Gerais (UFMG-ICB), Av. Antônio Carlos, 6627, CP 486, Belo Horizonte, MG, 31270-901, Brazil.
| |
Collapse
|
46
|
Kuchay RAH. A review of complementary therapies for chemotherapy induced gastrointestinal mucositis. Drug Discov Ther 2017; 10:292-299. [PMID: 27746417 DOI: 10.5582/ddt.2016.01059] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Administration of chemotherapy often leads to gastrointestinal mucositis (GIM). GIM manifests as nausea, abdominal pain and diarrhoea in recipients of chemotherapy. GIM is a major complication occurring in approximately 80% of patients receiving 5-flurouracil treatment. These side-effects may become so severe that significant dose reductions are required, ultimately affecting treatment efficacy and patient survival. Complementary and alternative medicine (CAM) is a growing area of public interest. This review will provide an overview of current knowledge of complementary medicinal therapies for chemotherapy induced GIM. An understanding of this evolving literature is useful in discussing these therapies with patients who are considering using them.
Collapse
|
47
|
Mashtoub S, Lampton LS, Eden GL, Cheah KY, Lymn KA, Bajic JE, Howarth GS. Emu Oil Combined with Lyprinol™ Reduces Small Intestinal Damage in a Rat Model of Chemotherapy-Induced Mucositis. Nutr Cancer 2016; 68:1171-1180. [PMID: 27618153 DOI: 10.1080/01635581.2016.1208829] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Chemotherapy-induced mucositis is characterized by inflammation and ulcerating lesions lining the alimentary tract. Emu Oil and Lyprinol™ have independently demonstrated their therapeutic potential in intestinal inflammatory disorders, including mucositis. We investigated Emu Oil and Lyprinol™ in combination for their further potential to alleviate chemotherapy-induced mucositis in rats. Rats were gavaged with (1 ml) water, Olive Oil, Emu Oil + Olive Oil, Lyprinol™ + Olive Oil or Emu Oil + Lyprinol™ from Days 0 to 7, injected with saline (control) or 5-Fluorouracil (5-FU) on Day 5 and euthanized on Day 8. Myeloperoxidase (MPO) activity (indicative of acute inflammation), histological severity scores, and intestinal architecture were quantified. Myeloperoxidase activity was significantly increased in the jejunum and ileum following 5-FU, compared to saline controls. Both Olive Oil and Emu Oil + Lyprinol™ significantly reduced jejunal MPO levels (1.8-fold and 1.7-fold, respectively), whereas only Emu Oil + Lyprinol™ significantly decreased ileal MPO levels, relative to 5-FU controls. All oil treatments decreased histological severity scores in the jejunum and ileum, and normalized crypt depth in the mid small intestine, relative to 5-FU controls. Emu Oil combined with Lyprinol™ partially reduced acute small intestinal inflammation. Isolating bioactive constituents of these naturally sourced oils could provide a more targeted strategy to protect against intestinal mucositis.
Collapse
Affiliation(s)
- Suzanne Mashtoub
- a School of Medicine and Pharmacology, The University of Western Australia, Harry Perkins Institute for Medical Research, Fiona Stanley Hospital , Murdoch , Western Australia
- b Department of Gastroenterology , Women's and Children's Hospital , North Adelaide , South Australia
- c Discipline of Physiology, School of Medical Sciences, Faculty of Health Sciences, The University of Adelaide , Adelaide , South Australia
| | - Lorrinne S Lampton
- d School of Animal and Veterinary Sciences, The University of Adelaide, Roseworthy Campus , Roseworthy , South Australia
| | - Georgina L Eden
- d School of Animal and Veterinary Sciences, The University of Adelaide, Roseworthy Campus , Roseworthy , South Australia
| | - Ker Y Cheah
- b Department of Gastroenterology , Women's and Children's Hospital , North Adelaide , South Australia
| | - Kerry A Lymn
- d School of Animal and Veterinary Sciences, The University of Adelaide, Roseworthy Campus , Roseworthy , South Australia
- e Women's and Children's Health Research Institute, Women's and Children's Hospital , North Adelaide , South Australia
| | - Juliana E Bajic
- c Discipline of Physiology, School of Medical Sciences, Faculty of Health Sciences, The University of Adelaide , Adelaide , South Australia
| | - Gordon S Howarth
- b Department of Gastroenterology , Women's and Children's Hospital , North Adelaide , South Australia
- c Discipline of Physiology, School of Medical Sciences, Faculty of Health Sciences, The University of Adelaide , Adelaide , South Australia
- d School of Animal and Veterinary Sciences, The University of Adelaide, Roseworthy Campus , Roseworthy , South Australia
| |
Collapse
|
48
|
Wang H, Geier MS, Howarth GS. Prebiotics: A Potential Treatment Strategy for the Chemotherapy-damaged Gut? Crit Rev Food Sci Nutr 2016; 56:946-956. [PMID: 25162145 DOI: 10.1080/10408398.2012.741082] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Mucositis, characterized by ulcerative lesions along the alimentary tract, is a common consequence of many chemotherapy regimens. Chemotherapy negatively disrupts the intestinal microbiota, resulting in increased numbers of potentially pathogenic bacteria, such as Clostridia and Enterobacteriaceae, and decreased numbers of "beneficial" bacteria, such as Lactobacilli and Bifidobacteria. Agents capable of restoring homeostasis in the bowel microbiota could, therefore, be applicable to mucositis. Prebiotics are indigestible compounds, commonly oligosaccharides, that seek to reverse chemotherapy-induced intestinal dysbiosis through selective colonization of the intestinal microbiota by probiotic bacteria. In addition, evidence is emerging that certain prebiotics contribute to nutrient digestibility and absorption, modulate intestinal barrier function through effects on mucin expression, and also modify mucosal immune responses, possibly via inflammasome-mediated processes. This review examines the known mechanisms of prebiotic action, and explores their potential for reducing the severity of chemotherapy-induced mucositis in the intestine.
Collapse
Affiliation(s)
- Hanru Wang
- a School of Animal and Veterinary Sciences, University of Adelaide , Roseworthy Campus , South Australia
| | - Mark S Geier
- a School of Animal and Veterinary Sciences, University of Adelaide , Roseworthy Campus , South Australia
- b South Australian Research and Development Institute, Pig and Poultry Production Institute, Nutrition Research Laboratory , Roseworthy , South Australia
| | - Gordon S Howarth
- a School of Animal and Veterinary Sciences, University of Adelaide , Roseworthy Campus , South Australia
- c Centre for Paediatric and Adolescent Gastroenterology, Children, Youth and Women's Health Service , North Adelaide , South Australia
| |
Collapse
|
49
|
Yeung CY, Chan WT, Jiang CB, Cheng ML, Liu CY, Chang SW, Chiang Chiau JS, Lee HC. Amelioration of Chemotherapy-Induced Intestinal Mucositis by Orally Administered Probiotics in a Mouse Model. PLoS One 2015; 10:e0138746. [PMID: 26406888 PMCID: PMC4583404 DOI: 10.1371/journal.pone.0138746] [Citation(s) in RCA: 105] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2015] [Accepted: 09/03/2015] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND AND AIMS Intestinal mucositis is a frequently encountered side effect in oncology patients undergoing chemotherapy. No well-established or up to date therapeutic strategies are available. To study a novel way to alleviate mucositis, we investigate the effects and safety of probiotic supplementation in ameliorating 5-FU-induced intestinal mucositis in a mouse model. METHODS Seventy-two mice were injected saline or 5-Fluorouracil (5-FU) intraperitoneally daily. Mice were either orally administrated daily saline, probiotic suspension of Lactobacillus casei variety rhamnosus (Lcr35) or Lactobacillus acidophilus and Bifidobacterium bifidum (LaBi). Diarrhea score, pro-inflammatory cytokines serum levels, intestinal villus height and crypt depth and total RNA from tissue were assessed. Samples of blood, liver and spleen tissues were assessed for translocation. RESULTS Marked diarrhea developed in the 5-FU groups but was attenuated after oral Lcr35 and LaBi administrations. Diarrhea scores decreased significantly from 2.64 to 1.45 and 0.80, respectively (P<0.001). Those mice in 5-FU groups had significantly higher proinflammatory cytokine levels (TNF-α: 234.80 vs. 29.10, P<0.001, IL-6: 25.13 vs. 7.43, P<0.001, IFN-γ: 22.07 vs. 17.06, P = 0.137). A repairing of damage in jejunal villi was observed following probiotics administration. We also found TNF-α, IL-1β and IL-6 mRNA expressions were up-regulated in intestinal mucositis tissues following 5-FU treatment (TNF-α: 4.35 vs. 1.18, IL-1β: 2.29 vs. 1.07, IL-6: 1.49 vs. 1.02) and that probiotics treatment suppressed this up-regulation (P<0.05). No bacterial translocation was found in this study. CONCLUSIONS In conclusion, our results show that oral administration of probiotics Lcr35 and LaBi can ameliorate chemotherapy-induced intestinal mucositis in a mouse model. This suggests probiotics may serve as an alternative therapeutic strategy for the prevention or management of chemotherapy-induced mucositis in the future.
Collapse
Affiliation(s)
- Chun-Yan Yeung
- Division of Gastroenterology and Nutrition, Department of Pediatrics, MacKay Memorial Hospital, Taipei, Taiwan
- Department of Medicine, MacKay Medical College, New Taipei City, Taiwan
- MacKay Junior College of Medicine, Nursing and Management, Taipei, Taiwan
- Department of Medical Research, MacKay Memorial Hospital, Taipei, Taiwan
| | - Wai-Tao Chan
- Division of Gastroenterology and Nutrition, Department of Pediatrics, MacKay Memorial Hospital, Taipei, Taiwan
| | - Chun-Bin Jiang
- Division of Gastroenterology and Nutrition, Department of Pediatrics, MacKay Memorial Hospital, Taipei, Taiwan
| | - Mei-Lien Cheng
- Department of Medical Research, MacKay Memorial Hospital, Taipei, Taiwan
| | - Chia-Yuan Liu
- Department of Medical Research, MacKay Memorial Hospital, Taipei, Taiwan
- Department of Hepatology and Gastroenterology, MacKay Memorial Hospital, Taipei, Taiwan
| | - Szu-Wen Chang
- Division of Gastroenterology and Nutrition, Department of Pediatrics, MacKay Memorial Hospital, Taipei, Taiwan
| | | | - Hung-Chang Lee
- Division of Gastroenterology and Nutrition, Department of Pediatrics, Hsinchu MacKay Memorial Hospital, Hsinchu, Taiwan
- Department of Pediatrics, Taipei Medical University, Taipei, Taiwan
| |
Collapse
|
50
|
Generoso SDV, Rodrigues NM, Trindade LM, Paiva NC, Cardoso VN, Carneiro CM, Ferreira AVDM, Faria AMC, Maioli TU. Dietary supplementation with omega-3 fatty acid attenuates 5-fluorouracil induced mucositis in mice. Lipids Health Dis 2015; 14:54. [PMID: 26063053 PMCID: PMC4473827 DOI: 10.1186/s12944-015-0052-z] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2015] [Accepted: 05/28/2015] [Indexed: 12/14/2022] Open
Abstract
Background Studies showed the positive effects of omega-3 fatty acid (n-3 FA) for the treatment of inflammatory bowel disease as it alleviated the symptoms and promoted better mucosal integrity. The objective of this study was to determine whether a diet with the addition of n-3 FA helps control the inflammation observed in 5-fluorouracil (5-FU) induced mucositis. Methods BALB/c mice were randomly divided into four groups as follows: 1: control (CTL), fed a standard chow diet; 2: CTL + n-3 FA – n-3 FA, fed a diet with n-3; 3: mucositis (MUC), fed a standard chow diet and subjected to mucositis; and 4: MUC+ n-3 FA, fed a diet with n-3 FA and subjected to mucositis. On the 8th day, the animals of the MUC and MUC + n-3 FA groups received an intraperitoneal injection of 300 mg/kg 5-FU for mucositis induction. After 24 h or 72 h, all mice were euthanized and evaluated for intestinal permeability, bacterial translocation, intestinal histology and apoptosis. Results Mice that received the diet with n-3 FA and a 5-FU injection showed less weight loss compared to the animals of the MUC group (p < 0.005). Decreased intestinal permeability and bacterial translocation were also observed in animals fed n-3 FA, and these mice underwent mucositis compared to the MUC group (p < 0.005). These data were associated with mucosal integrity and a reduced number of apoptotic cells in the ileum mucosa compared to the mice that received the control diet and 5-FU injection. Conclusion Together, these results show that omega-3 fatty acid decreases the mucosal damage caused by 5-FU-induced mucositis.
Collapse
Affiliation(s)
| | - Núbia Morais Rodrigues
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil.
| | - Luísa Martins Trindade
- Departamento de Nutrição, Escola de Enfermagem, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil.
| | - Nivea Carolina Paiva
- Núcleo de Pesquisa em Ciências Biológicas, Instituto de Ciências Exatas e Biológicas, Universidade Federal de Ouro Preto, Ouro Preto, Brazil.
| | - Valbert Nascimento Cardoso
- Departamento de Análises Clínicas e Toxicológicas, Escola de Farmácia, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil.
| | - Cláudia Martins Carneiro
- Núcleo de Pesquisa em Ciências Biológicas, Instituto de Ciências Exatas e Biológicas, Universidade Federal de Ouro Preto, Ouro Preto, Brazil.
| | | | - Ana Maria Caetano Faria
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil.
| | - Tatiani Uceli Maioli
- Departamento de Nutrição, Escola de Enfermagem, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil.
| |
Collapse
|