1
|
Brindangnanam P, Ashokkumar K, Kamaraj S, Coumar MS. Exploring imidazo[4,5- g]quinoline-4,9-dione derivatives as Acinetobacter baumannii efflux pump inhibitor: an in silico approach. J Biomol Struct Dyn 2025; 43:53-72. [PMID: 37937796 DOI: 10.1080/07391102.2023.2279287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 10/30/2023] [Indexed: 11/09/2023]
Abstract
Antimicrobial resistance (AMR) is fast becoming a medical crisis affecting the entire global population. World Health Organization (WHO) statistics show that globally 0.7 million people are dying yearly due to the emergence of AMR. By 2050, the expected number of lives lost will be 10 million per year. Acinetobacter baumannii is a dreadful nosocomial pathogen that has developed multidrug resistance (MDR) to several currently prescribed antibiotics worldwide. Overexpression of drug efflux transporters (DETs) is one of the mechanisms of multidrug resistance (MDR) in Acinetobacter baumannii. Therefore, blocking the DET can raise the efficacy of the existing antibiotics by increasing their residence time inside the bacteria. In silico screening of five synthetic compounds against three drug efflux pump from A. baumannii has identified KSA5, a novel imidazo[4,5-g]quinoline-4,9-dione derivative, to block the efflux of antibiotics. Molecular docking and simulation results showed that KSA5 could bind to adeB, adeG, and adeJ by consistently interacting with ligand-binding site residues. KSA5 has a higher binding free energy and a lower HOMO-LUMO energy gap than PAβN, suggesting a better ability to interact and inhibit DETs. Further analysis showed that KSA5 is a drug-like molecule with optimal physicochemical and ADME properties. Hence, KSA5 could be combined with antibiotics to overcome antimicrobial resistance.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Pownraj Brindangnanam
- Department of Bioinformatics, School of Life Sciences, Pondicherry University, Kalapet, India
| | - Krishnan Ashokkumar
- Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology, Velllore, India
| | - Sriraghavan Kamaraj
- Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology, Velllore, India
| | - Mohane Selvaraj Coumar
- Department of Bioinformatics, School of Life Sciences, Pondicherry University, Kalapet, India
| |
Collapse
|
2
|
Bhatnagar A, Nath V, Kumar N, Kumar V. Discovery of novel PARP-1 inhibitors using tandem in silico studies: integrated docking, e-pharmacophore, deep learning based de novo and molecular dynamics simulation approach. J Biomol Struct Dyn 2024; 42:3396-3409. [PMID: 37216358 DOI: 10.1080/07391102.2023.2214223] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 05/05/2023] [Indexed: 05/24/2023]
Abstract
Cancer accounts for the majority of deaths worldwide, and the increasing incidence of breast cancer is a matter of grave concern. Poly (ADP-ribose) polymerase-1 (PARP-1) has emerged as an attractive target for the treatment of breast cancer as it has an important role in DNA repair. The focus of the study was to identify novel PARP-1 inhibitors using a blend of tandem structure-based screening (Docking and e-pharmacophore-based screening) and artificial intelligence (deep learning)-based de novo approaches. The scrutiny of compounds having good binding characteristics for PARP-1 was carried out using a tandem mode of screening along with parameters such as binding energy and ADME analysis. The efforts afforded compound Vab1 (PubChem ID 129142036), which was chosen as a seed for obtaining novel compounds through a trained artificial intelligence (AI)-based model. Resultant compounds were assessed for PARP-1 inhibition; binding affinity prediction and interaction pattern analysis were carried out using the extra precision (XP) mode of docking. Two best hits, Vab1-b and Vab1-g, exhibiting good dock scores and suitable interactions, were subjected to 100 nanoseconds (ns) of molecular dynamics simulation in the active site of PARP-1 and compared with the reference Protein-Ligand Complex. The stable nature of PARP-1 upon binding to these compounds was revealed through MD simulation.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Aayushi Bhatnagar
- Department of Pharmacy, School of Chemical Sciences and Pharmacy, Central University of Rajasthan, Ajmer, India
| | - Virendra Nath
- Department of Pharmacy, School of Chemical Sciences and Pharmacy, Central University of Rajasthan, Ajmer, India
| | - Neeraj Kumar
- Bhupal Nobles' College of Pharmacy, Bhupal Nobles' University, Udaipur, India
| | - Vipin Kumar
- Department of Pharmacy, School of Chemical Sciences and Pharmacy, Central University of Rajasthan, Ajmer, India
| |
Collapse
|
3
|
Saha B, Das A, Jangid K, Kumar A, Kumar V, Jaitak V. Identification of coumarin derivatives targeting acetylcholinesterase for Alzheimer's disease by field-based 3D-QSAR, pharmacophore model-based virtual screening, molecular docking, MM/GBSA, ADME and MD Simulation study. Curr Res Struct Biol 2024; 7:100124. [PMID: 38292820 PMCID: PMC10826614 DOI: 10.1016/j.crstbi.2024.100124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 01/03/2024] [Accepted: 01/03/2024] [Indexed: 02/01/2024] Open
Abstract
Alzheimer's disease (AD) leads to gradual memory loss including other compromised cognitive abilities. Acetylcholinesterase (AChE), an important biochemical enzyme from the cholinesterase (ChE) family, is recognized as primary pharmacological target for treating AD. Currently marketed drugs for AD treatment are primarily AChE inhibitors and coumarin derivatives comprising a wide variety of pharmacological activities have proved their efficacy towards AChE inhibition. Ensaculin (KA-672 HCl), a compound that belong to the coumarin family, is a clinical trial candidate for AD treatment. Therefore, a ligand library was prepared with 60 reported coumarin derivatives for field-based 3D-QSAR and pharmacophore modelling. The field-based 3D-QSAR model obtained at partial least square (PLS) factor 7, was the best validated model that predicted activity closer to original activity for each ligand introduced. The contour maps demonstrated spatial distribution of favourable and unfavorable steric, hydrophobic, electrostatic and H-bond donor and acceptor contours around coumarin nucleus. The best pharmacophore model, ADHRR_1 exhibited five essential pharmacophoric features of four different traits for optimum AChE inhibition. Virtual screening through ADHRR_1 accompanied with molecular docking and MM/GBSA identified 10 HITs from a 4,00,000 coumarin derivatives from PubChem database. HITs comprised docking scores ranging from -12.096 kcal/mol to -8.271 kcal/mol and compared with the reference drug Donepezil (-8.271 kcal/mol). ADME properties analysis led into detecting two leads (HIT 1 and HIT 2) among these 10 HITs. Molecular Dynamics Simulation indicated thermodynamic stability of the complex of lead compounds with AChE protein. Finally, thorough survey of the experimental results from 3D-QSAR modelling, pharmacophore modelling and molecular docking interactions led us to develop the lead formula I for future advancements in treating AD through AChE inhibitors.
Collapse
Affiliation(s)
- Bikram Saha
- Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab, Ghudda, Bathinda, 151401, India
| | - Agnidipta Das
- Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab, Ghudda, Bathinda, 151401, India
| | - Kailash Jangid
- Department of Chemistry, Central University of Punjab, Ghudda, Bathinda, 151401, India
| | - Amit Kumar
- Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab, Ghudda, Bathinda, 151401, India
| | - Vinod Kumar
- Department of Chemistry, Central University of Punjab, Ghudda, Bathinda, 151401, India
| | - Vikas Jaitak
- Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab, Ghudda, Bathinda, 151401, India
| |
Collapse
|
4
|
Lokhande KB, Pawar SV, Madkaiker S, Shrivastava A, Venkateswara SK, Nawani N, Wani M, Ghosh P, Singh A. Screening of potential phytomolecules against MurG as drug target in nosocomial pathogen Pseudomonas aeruginosa: perceptions from computational campaign. J Biomol Struct Dyn 2024; 42:495-508. [PMID: 36974974 DOI: 10.1080/07391102.2023.2194005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 03/15/2023] [Indexed: 03/29/2023]
Abstract
The nosocomial infection outbreak caused by Pseudomonas aeruginosa remains a public health concern. Multi-drug resistant (MDR) strains of P. aeruginosa are rapidly spreading leading to a huge mortality rate because of the unavailability of promising antimicrobials. MurG glycotransferase [UDP-N-acetylglucosamine-N-acetylmuramyl (pentapeptide) pyrophosphoryl-undecaprenol N-acetylglucosamine transferase] is located at the plasma membrane and plays a key role in murein (peptidoglycan) biosynthesis in bacteria. Since MurG is required for bacterial cell wall synthesis and is non-homologous to Homo sapiens; it can be a potential target for the antagonist to treat P. aeruginosa infection. The discovery of high-resolution crystal structure of P. aeruginosa MurG offers an opportunity for the computational identification of its prospective inhibitors. Therefore, in the present study, the crystal structure of MurG (PDB ID: 3S2U) from P. aeruginosa was selected, and computational docking analyses were performed to search for functional inhibitors of MurG. IMPPAT (Indian medicinal plants, phytochemicals and therapeutic) phytomolecule database was screened by computational methods with MurG catalytic site. Docking results identified Theobromine (-8.881 kcal/mol), demethoxycurcumin (-8.850 kcal/mol), 2-alpha-hydroxycostic acid (-8.791 kcal/mol), aurantiamide (-8.779 kcal/mol) and petasiphenol (-8.685 kcal/mol) as a potential inhibitor of the MurG activity. Further, theobromine and demethoxycurcumin were subjected to MDS (molecular dynamics simulation) and free energy (MM/GBSA) analysis to comprehend the physiological state and structural stability of MurG-phytomolecules complexes. The outcomes suggested that these two phytomolecules could act as most favorable natural hit compounds for impeding the enzymatic action of MurG in P. aeruginosa, and thus it needs further validation by both in vitro and in vivo analysis. HIGHLIGHTSThe top phytomolecules such as theobromine, demethoxycurcumin, 2-alpha-hydroxycostic acid, aurantiamide and petasiphenol displayed promising binding with MurG catalytic domain.MurG complexed with theobromine and demethoxycurcumin showed the best interaction and stable by MD simulation at 100 ns.The outcome of MurG binding phytomolecules has expanded the possibility of hit phytomolecules validation.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Kiran Bharat Lokhande
- Bioinformatics Research Laboratory, Dr. D. Y. Patil Biotechnology and Bioinformatics Institute, Dr. D. Y. Patil Vidyapeeth, Pimpri, Pune, India
- Translational Bioinformatics and Computational Genomics Research Lab, Department of Life Sciences, Shiv Nadar Institution of Eminence, Gautam Buddha Nagar, Uttar Pradesh, India
| | - Sarika Vishnu Pawar
- Microbial Diversity Research Centre, Dr. D. Y. Patil Biotechnology and Bioinformatics Institute, Dr. D. Y. Patil Vidyapeeth, Pimpri, Pune, India
| | - Smriti Madkaiker
- Microbial Diversity Research Centre, Dr. D. Y. Patil Biotechnology and Bioinformatics Institute, Dr. D. Y. Patil Vidyapeeth, Pimpri, Pune, India
| | - Ashish Shrivastava
- Translational Bioinformatics and Computational Genomics Research Lab, Department of Life Sciences, Shiv Nadar Institution of Eminence, Gautam Buddha Nagar, Uttar Pradesh, India
| | - Swamy K Venkateswara
- MIT School of Bioengineering Sciences & Research, MIT Art, Design and Technology University, Pune, Maharashtra, India
| | - Neelu Nawani
- Microbial Diversity Research Centre, Dr. D. Y. Patil Biotechnology and Bioinformatics Institute, Dr. D. Y. Patil Vidyapeeth, Pimpri, Pune, India
| | - Minal Wani
- Plant and Environmental Biotechnology Research Laboratory, Dr. D. Y. Patil Biotechnology and Bioinformatics Institute, Dr. D. Y. Patil Vidyapeeth, Pimpri, Pune, India
| | - Payel Ghosh
- Bioinformatics Centre, Savitribai Phule Pune University, Pune, Maharashtra, India
| | - Ashutosh Singh
- Translational Bioinformatics and Computational Genomics Research Lab, Department of Life Sciences, Shiv Nadar Institution of Eminence, Gautam Buddha Nagar, Uttar Pradesh, India
| |
Collapse
|
5
|
Sharma K, Panwar U, Madhavi M, Joshi I, Chopra I, Soni L, Khan A, Bhrdwaj A, Parihar AS, Mohan VP, Prajapati L, Sharma R, Agrawal S, Hussain T, Nayarisseri A, Singh SK. Unveiling the ESR1 Conformational Stability and Screening Potent Inhibitors for Breast Cancer Treatment. Med Chem 2024; 20:352-368. [PMID: 37929724 DOI: 10.2174/0115734064256978231024062937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 09/21/2023] [Accepted: 09/28/2023] [Indexed: 11/07/2023]
Abstract
BACKGROUND The current study recognizes the significance of estrogen receptor alpha (ERα) as a member of the nuclear receptor protein family, which holds a central role in the pathophysiology of breast cancer. ERα serves as a valuable prognostic marker, with its established relevance in predicting disease outcomes and treatment responses. METHODS In this study, computational methods are utilized to search for suitable drug-like compounds that demonstrate analogous ligand binding kinetics to ERα. RESULTS Docking-based simulation screened out the top 5 compounds - ZINC13377936, NCI35753, ZINC35465238, ZINC14726791, and NCI663569 against the targeted protein. Further, their dynamics studies reveal that the compounds ZINC13377936 and NCI35753 exhibit the highest binding stability and affinity. CONCLUSION Anticipating the competitive inhibition of ERα protein expression in breast cancer, we envision that both ZINC13377936 and NCI35753 compounds hold substantial promise as potential therapeutic agents. These candidates warrant thorough consideration for rigorous In vitro and In vivo evaluations within the context of clinical trials. The findings from this current investigation carry significant implications for the advancement of future diagnostic and therapeutic approaches for breast cancer.
Collapse
Affiliation(s)
- Khushboo Sharma
- In silico Research Laboratory, Eminent Biosciences, 91, Sector A, Mahalakshmi Nagar, Indore - 452010, Madhya Pradesh, India
- Computer Aided Drug Designing and Molecular Modelling Lab, Department of Bioinformatics, Alagappa University, Karaikudi-630 003, Tamil Nadu, India
| | - Umesh Panwar
- Computer Aided Drug Designing and Molecular Modelling Lab, Department of Bioinformatics, Alagappa University, Karaikudi-630 003, Tamil Nadu, India
| | - Maddala Madhavi
- Department of Zoology, Osmania University, Hyderabad - 500007, Telangana State, India
| | - Isha Joshi
- In silico Research Laboratory, Eminent Biosciences, 91, Sector A, Mahalakshmi Nagar, Indore - 452010, Madhya Pradesh, India
| | - Ishita Chopra
- In silico Research Laboratory, Eminent Biosciences, 91, Sector A, Mahalakshmi Nagar, Indore - 452010, Madhya Pradesh, India
- School of Medicine and Health Sciences, The George Washington University, Ross Hall, 2300 Eye Street, NW Washington, D.C. - 20037, USA
| | - Lovely Soni
- In silico Research Laboratory, Eminent Biosciences, 91, Sector A, Mahalakshmi Nagar, Indore - 452010, Madhya Pradesh, India
| | - Arshiya Khan
- In silico Research Laboratory, Eminent Biosciences, 91, Sector A, Mahalakshmi Nagar, Indore - 452010, Madhya Pradesh, India
| | - Anushka Bhrdwaj
- In silico Research Laboratory, Eminent Biosciences, 91, Sector A, Mahalakshmi Nagar, Indore - 452010, Madhya Pradesh, India
| | - Abhyuday Singh Parihar
- In silico Research Laboratory, Eminent Biosciences, 91, Sector A, Mahalakshmi Nagar, Indore - 452010, Madhya Pradesh, India
| | - Vineeth Pazharathu Mohan
- In silico Research Laboratory, Eminent Biosciences, 91, Sector A, Mahalakshmi Nagar, Indore - 452010, Madhya Pradesh, India
- Department of Biosciences, School of Science and Technology, Nottingham Trent University Clifton Campus, Nottingham, NG11 8NS, United Kingdom
| | - Leena Prajapati
- In silico Research Laboratory, Eminent Biosciences, 91, Sector A, Mahalakshmi Nagar, Indore - 452010, Madhya Pradesh, India
| | - Rashmi Sharma
- In silico Research Laboratory, Eminent Biosciences, 91, Sector A, Mahalakshmi Nagar, Indore - 452010, Madhya Pradesh, India
| | - Shweta Agrawal
- In silico Research Laboratory, Eminent Biosciences, 91, Sector A, Mahalakshmi Nagar, Indore - 452010, Madhya Pradesh, India
| | - Tajamul Hussain
- Research Chair for Biomedical Applications of Nanomaterials, Biochemistry Department, College of Science, King Saud University, Riyadh, Saudi Arabia
- Center of Excellence in Biotechnology Research, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Anuraj Nayarisseri
- In silico Research Laboratory, Eminent Biosciences, 91, Sector A, Mahalakshmi Nagar, Indore - 452010, Madhya Pradesh, India
- Computer Aided Drug Designing and Molecular Modelling Lab, Department of Bioinformatics, Alagappa University, Karaikudi-630 003, Tamil Nadu, India
- Research Chair for Biomedical Applications of Nanomaterials, Biochemistry Department, College of Science, King Saud University, Riyadh, Saudi Arabia
- Bioinformatics Research Laboratory, LeGene Biosciences Pvt Ltd., Indore - 452010, Madhya Pradesh, India
| | - Sanjeev Kumar Singh
- Computer Aided Drug Designing and Molecular Modelling Lab, Department of Bioinformatics, Alagappa University, Karaikudi-630 003, Tamil Nadu, India
| |
Collapse
|
6
|
Nirmal CR, Rajadas SE, Balasubramanian M, Mohanvel SK, Aathi MS, Munishankar S, Chilamakuru NB, Thiruvenkadam K, Pandiya Raj AK, Paraman R, Dusthackeer A. Myoinositol and methyl stearate increases rifampicin susceptibility among drug-resistant Mycobacterium tuberculosis expressing Rv1819c. Chem Biol Drug Des 2023; 101:883-895. [PMID: 36533863 DOI: 10.1111/cbdd.14197] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 11/03/2022] [Accepted: 12/12/2022] [Indexed: 12/23/2022]
Abstract
The alarming increase in multidrug resistance, which includes Bedaquiline and Delamanid, stumbles success in Tuberculosis treatment outcome. Mycobacterium tuberculosis gains resistance to rifampicin, which is one of the less toxic and potent anti-TB drugs, through genetic mutations predominantly besides efflux pump mediated drug resistance. In recent decades, scientific interventions are being carried out to overcome this hurdle using novel approaches to save this drug by combining it with other drugs/molecules or by use of high dose rifampicin. This study reports five small molecules namely Ellagic acid, Methyl Stearate, Myoinositol, Rutin, and Shikimic acid that exhibit synergistic inhibitory activity with rifampicin against resistant TB isolates. In-silico examinations revealed possible blocking of Rv1819c-an ABC transporter efflux pump that was known to confer resistance in M. tuberculosis to rifampicin. The synergistic anti-TB activity was assessed using a drug combination checkerboard assay. Efflux pump inhibition activity of ellagic acid, myoinositol, and methyl stearate was observed through ethidium bromide accumulation assay in the drug-resistant M. tuberculosis clinical strains and recombinant Mycobacterium smegmatis expressing Rv1819c in coherence with the significant reduction in the minimum inhibitory concentration of rifampicin. Cytotoxicity of the active efflux inhibitors was tested using in silico and ex vivo methods. Myoinositol and methyl stearate were completely non-toxic to the hematological and epithelial cells of different organs under ex vivo conditions. Based on these findings, these molecules can be considered for adjunct TB therapy; however, their impact on other drugs of anti-TB regimen needs to be tested.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Naresh Babu Chilamakuru
- Raghavendra Institute of Pharmaceutical Education and Research (RIPER), Andhra Pradesh, India
| | | | | | - Ramalingam Paraman
- National Institute of Pharmaceutical Education and Research (NIPER), Hajipur, India
| | - Azger Dusthackeer
- ICMR-National Institute for Research in Tuberculosis, Chennai, India
| |
Collapse
|
7
|
Athar M, Gervasoni S, Catte A, Basciu A, Malloci G, Ruggerone P, Vargiu AV. Tripartite efflux pumps of the RND superfamily: what did we learn from computational studies? MICROBIOLOGY (READING, ENGLAND) 2023; 169. [PMID: 36972322 DOI: 10.1099/mic.0.001307] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
Abstract
Bacterial resistance to antibiotics has been long recognized as a priority to address for human health. Among all micro-organisms, the so-called multi-drug resistant (MDR) bacteria, which are resistant to most, if not all drugs in our current arsenal, are particularly worrisome. The World Health Organization has prioritized the ESKAPE (Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa and Enterobacter species) pathogens, which include four Gram-negative bacterial species. In these bacteria, active extrusion of antimicrobial compounds out of the cell by means of 'molecular guns' known as efflux pumps is a main determinant of MDR phenotypes. The resistance-nodulation-cell division (RND) superfamily of efflux pumps connecting the inner and outer membrane in Gram-negative bacteria is crucial to the onset of MDR and virulence, as well as biofilm formation. Thus, understanding the molecular basis of the interaction of antibiotics and inhibitors with these pumps is key to the design of more effective therapeutics. With the aim to contribute to this challenge, and complement and inspire experimental research, in silico studies on RND efflux pumps have flourished in recent decades. Here, we review a selection of such investigations addressing the main determinants behind the polyspecificity of these pumps, the mechanisms of substrate recognition, transport and inhibition, as well as the relevance of their assembly for proper functioning, and the role of protein-lipid interactions. The journey will end with a perspective on the role of computer simulations in addressing the challenges posed by these beautifully complex machineries and in supporting the fight against the spread of MDR bacteria.
Collapse
Affiliation(s)
- Mohd Athar
- Physics Department, University of Cagliari, Cittadella Universitaria, SP 8 km 0.700, 09042, Monserrato (CA), Italy
| | - Silvia Gervasoni
- Physics Department, University of Cagliari, Cittadella Universitaria, SP 8 km 0.700, 09042, Monserrato (CA), Italy
| | - Andrea Catte
- Physics Department, University of Cagliari, Cittadella Universitaria, SP 8 km 0.700, 09042, Monserrato (CA), Italy
| | - Andrea Basciu
- Physics Department, University of Cagliari, Cittadella Universitaria, SP 8 km 0.700, 09042, Monserrato (CA), Italy
| | - Giuliano Malloci
- Physics Department, University of Cagliari, Cittadella Universitaria, SP 8 km 0.700, 09042, Monserrato (CA), Italy
| | - Paolo Ruggerone
- Physics Department, University of Cagliari, Cittadella Universitaria, SP 8 km 0.700, 09042, Monserrato (CA), Italy
| | - Attilio Vittorio Vargiu
- Physics Department, University of Cagliari, Cittadella Universitaria, SP 8 km 0.700, 09042, Monserrato (CA), Italy
| |
Collapse
|
8
|
Garg A, Goel N, Abhinav N, Varma T, Achari A, Bhattacharjee P, Kamal IM, Chakrabarti S, Ravichandiran V, Reddy AM, Gupta S, Jaisankar P. Virtual screening of natural products inspired in-house library to discover potential lead molecules against the SARS-CoV-2 main protease. J Biomol Struct Dyn 2023; 41:2033-2045. [PMID: 35043750 DOI: 10.1080/07391102.2022.2027271] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
SARS-CoV-2, a new coronavirus emerged in 2019, causing a global healthcare epidemic. Although a variety of drug targets have been identified as potential antiviral therapies, and effective candidate against SARS-CoV-2 remains elusive. One of the most promising targets for combating COVID-19 is SARS-CoV-2 Main protease (Mpro, a protein responsible for viral replication. In this work, an in-house curated library was thoroughly evaluated for druggability against Mpro. We identified four ligands (FG, Q5, P5, and PJ4) as potential inhibitors based on docking scores, predicted binding energies (MMGBSA), in silico ADME, and RMSD trajectory analysis. Among the selected ligands, FG, a natural product from Andrographis nallamalayana, exhibited the highest binding energy of -10.31 kcal/mol close to the docking score of clinical candidates Boceprevir and GC376. Other ligands (P5, natural product from cardiospermum halicacabum and two synthetic molecules Q5 and PJ4) have shown comparable docking scores ranging -7.65 kcal/mol to -7.18 kcal/mol. Interestingly, we found all four top ligands had Pi bond interaction with the main amino acid residues HIS41 and CYS145 (catalytic dyad), H-bonding interactions with GLU166, ARG188, and GLN189, and hydrophobic interactions with MET49 and MET165 in the binding site of Mpro. According to the ADME analysis, Q5 and P5 are within the acceptable range of drug likeliness, compared to FG and PJ4. The interaction stability of the lead molecules with viral protease was verified using replicated MD simulations. Thus, the present study opens up the opportunity of developing drug candidates targeting SARS-CoV-2 main protease (Mpro) to mitigate the disease.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Aakriti Garg
- National Institute of Pharmaceutical Education and Research (NIPER), Kolkata, Chunilal Bhawan, Kolkata, India.,Department of Organic and Medicinal Chemistry, CSIR-Indian Institute of Chemical Biology, Kolkata, India
| | - Narender Goel
- National Institute of Pharmaceutical Education and Research (NIPER), Kolkata, Chunilal Bhawan, Kolkata, India.,Department of Organic and Medicinal Chemistry, CSIR-Indian Institute of Chemical Biology, Kolkata, India
| | - Nipun Abhinav
- National Institute of Pharmaceutical Education and Research (NIPER), Kolkata, Chunilal Bhawan, Kolkata, India.,Department of Organic and Medicinal Chemistry, CSIR-Indian Institute of Chemical Biology, Kolkata, India
| | - Tanmay Varma
- National Institute of Pharmaceutical Education and Research (NIPER), Kolkata, Chunilal Bhawan, Kolkata, India
| | - Anushree Achari
- Department of Organic and Medicinal Chemistry, CSIR-Indian Institute of Chemical Biology, Kolkata, India
| | - Pinaki Bhattacharjee
- Department of Organic and Medicinal Chemistry, CSIR-Indian Institute of Chemical Biology, Kolkata, India
| | - Izaz Monir Kamal
- Department of Structural Biology and Bioinformatics, CSIR-Indian Institute of Chemical Biology, Kolkata, India
| | - Saikat Chakrabarti
- Department of Structural Biology and Bioinformatics, CSIR-Indian Institute of Chemical Biology, Kolkata, India
| | - Velayutham Ravichandiran
- National Institute of Pharmaceutical Education and Research (NIPER), Kolkata, Chunilal Bhawan, Kolkata, India
| | | | - Sreya Gupta
- National Institute of Pharmaceutical Education and Research (NIPER), Kolkata, Chunilal Bhawan, Kolkata, India
| | - Parasuraman Jaisankar
- Department of Organic and Medicinal Chemistry, CSIR-Indian Institute of Chemical Biology, Kolkata, India
| |
Collapse
|
9
|
Shoaib M, Shehzadi I, Asif MU, Shen Y, Ni J. Identification of fungus-growing termite-associated halogenated-PKS maduralactomycin a as a potential inhibitor of MurF protein of multidrug-resistant Acinetobacter baumannii. Front Mol Biosci 2023; 10:1183073. [PMID: 37152898 PMCID: PMC10160657 DOI: 10.3389/fmolb.2023.1183073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 04/13/2023] [Indexed: 05/09/2023] Open
Abstract
Multidrug-resistant Acinetobacter baumannii infections have become a major public health concern globally. Inhibition of its essential MurF protein has been proposed as a potential target for broad-spectrum drugs. This study aimed to evaluate the potential of a novel ecological niche of 374 fungus-growing termite associated Natural Products (NPs). The molecular docking and computational pharmacokinetics screened four compounds, i.e., Termstrin B, Fridamycin A, Maduralactomycin A, and Natalenamide C, as potential compounds that have higher binding affinities and favourable protein-ligand interactions. The compound Maduralactomycin A induced more stability based on its lowest average RMSD value (2.31 Å) and low standard deviation (0.35) supported by the consistent flexibility and β-factor during the protein's time-dependent motion. While hydrogen bond analysis indicated that Termstrin B has formed the strongest intra-protein interaction, solvent accessibility was in good agreement with Maduralactomycin A compactness. Maduralactomycin A has the strongest binding energy among all the compounds (-348.48 kcal/mol) followed by Termstrin B (-321.19 kcal/mol). Since these findings suggest Maduralactomycin A and Termstrin B as promising candidates for inhibition of MurF protein, the favourable binding energies of Maduralactomycin A make it a more important compound to warrant further investigation. However, experimental validation using animal models and clinical trials is recommended before reaching any final conclusions.
Collapse
Affiliation(s)
- Muhammad Shoaib
- State Key Laboratory of Microbial Technology, Microbial Technology Institute, Shandong University, Qingdao, Shandong, China
| | | | | | - Yulong Shen
- State Key Laboratory of Microbial Technology, Microbial Technology Institute, Shandong University, Qingdao, Shandong, China
- *Correspondence: Yulong Shen, ; Jinfeng Ni,
| | - Jinfeng Ni
- State Key Laboratory of Microbial Technology, Microbial Technology Institute, Shandong University, Qingdao, Shandong, China
- *Correspondence: Yulong Shen, ; Jinfeng Ni,
| |
Collapse
|
10
|
Targeting and ultrabroad insight into molecular basis of Resistance-nodulation-cell division efflux pumps. Sci Rep 2022; 12:16130. [PMID: 36168028 PMCID: PMC9515154 DOI: 10.1038/s41598-022-20278-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Accepted: 09/12/2022] [Indexed: 11/09/2022] Open
Abstract
Resistance-nodulation-cell devision (RND) efflux pump variants have attracted a great deal of attention for efflux of many antibiotic classes, which leads to multidrug-resistant bacteria. The present study aimed to discover the interaction between the RND efflux pumps and antibiotics, find the conserved and hot spot residues, and use this information to target the most frequent RND efflux pumps. Protein sequence and 3D conformational alignments, pharmacophore modeling, molecular docking, and molecular dynamics simulation were used in the first level for discovering the function of the residues in interaction with antibiotics. In the second level, pharmacophore-based screening, structural-based screening, multistep docking, GRID MIF, pharmacokinetic modeling, fragment molecular orbital, and MD simulation were utilized alongside the former level information to find the most proper inhibitors. Five conserved residues, containing Ala209, Tyr404, Leu415, Asp416, and Ala417, as well as their counterparts in other OMPs were evaluated as the crucial conserved residues. MD simulation confirmed that a number of these residues had a key role in the performance of the efflux antibiotics; therefore, some of them were hot spot residues. Fourteen ligands were selected, four of which interacted with all the crucial conserved residues. NPC100251 was the fittest OMP inhibitor after pharmacokinetic computations. The second-level MD simulation and FMO supported the efficacy of the NPC100251. It was exhibited that perhaps OMPs worked as the intelligent and programable protein. NPC100251 was the strongest OMPs inhibitor, and may be a potential therapeutic candidate for MDR infections.
Collapse
|
11
|
Suvaithenamudhan S, Ananth S, Mariappan V, Dhayabaran VV, Parthasarathy S, Ganesh PS, Shankar EM. In Silico Evaluation of Bioactive Compounds of Artemisia pallens Targeting the Efflux Protein of Multidrug-Resistant Acinetobacter baumannii (LAC-4 Strain). Molecules 2022; 27:molecules27165188. [PMID: 36014428 PMCID: PMC9414700 DOI: 10.3390/molecules27165188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 08/04/2022] [Accepted: 08/08/2022] [Indexed: 11/16/2022] Open
Abstract
Acinetobacter baumannii (A. baumannii) is one of the major representative aetiologies of recalcitrant nosocomial infections. Genotypic and phenotypic alterations in A. baumannii have resulted in a significant surge in multidrug resistance (MDR). Of all the factors responsible for the development of antimicrobial resistance (AMR), efflux protein pumps play a paramount role. In pursuit of a safe alternative for the prevention and control of A. baumannii infections, bioactive compounds from the aerial parts of the medicinal plant Artemisia pallens were studied. GC-MS analysis of the ethanol extract of A. pallens detected five major compounds: lilac alcohol A, spathulenol, lilac alcohol C, n-hexadecanoic acid, and vulgarin. In silico examinations were performed using the Schrödinger suite. Homology modelling was performed to predict the structure of the efflux protein of A. baumannii-LAC-4 strain (MDR Ab-EP). The identified bioactive compounds were analysed for their binding efficiency with MDR Ab-EP. High binding efficiency was observed with vulgarin with a glide score of −4.775 kcal/mol and stereoisomers of lilac alcohol A (−3.706 kcal/mol) and lilac alcohol C (−3.706 kcal/mol). Our molecular dynamic simulation studies unveiled the stability of the ligand–efflux protein complex. Vulgarin and lilac alcohol A possessed strong and stable binding efficiency with MDR Ab-EP. Furthermore, validation of the absorption, distribution, metabolism, excretion, and toxicity (ADMET) properties of the ligands strongly suggested that these compounds could serve as a lead molecule in the development of an alternate drug from A. pallens.
Collapse
Affiliation(s)
- Suvaiyarasan Suvaithenamudhan
- Infection Biology, Department of Life Sciences, School of Life Sciences, Central University of Tamil Nadu, Thiruvarur 610 005, Tamil Nadu, India
- Correspondence: (S.S.); (V.M.); (E.M.S.)
| | - Sivapunniyam Ananth
- Sivan Bioscience Research and Training Laboratory, Kumbakonam 612 401, Tamil Nadu, India
| | - Vanitha Mariappan
- Center for Toxicology and Health Risk Studies, Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, Kuala Lumpur 50300, Malaysia
- Correspondence: (S.S.); (V.M.); (E.M.S.)
| | - Victor Violet Dhayabaran
- Department of Biotechnology and Bioinformatics, Bishop Heber College, Tiruchirappalli 620 017, Tamil Nadu, India
| | - Subbiah Parthasarathy
- Department of Bioinformatics, School of Life Sciences, Bharathidasan University, Tiruchirappalli 620 024, Tamil Nadu, India
| | - Pitchaipillai Sankar Ganesh
- Department of Microbiology, Saveetha Dental College and Hospital, Saveetha Institute of Medical and Technical Sciences, Chennai 600 077, Tamil Nadu, India
| | - Esaki Muthu Shankar
- Infection Biology, Department of Life Sciences, School of Life Sciences, Central University of Tamil Nadu, Thiruvarur 610 005, Tamil Nadu, India
- Correspondence: (S.S.); (V.M.); (E.M.S.)
| |
Collapse
|
12
|
Paul RK, Ahmad I, Patel H, Kumar V, Raza K. Phytochemicals from Amberboa ramosa as potential DPP-IV inhibitors for the management of Type-II Diabetes Mellitus: Inferences from In-silico Investigations. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.134045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
13
|
Tiwari V. Pharmacophore screening, denovo designing, retrosynthetic analysis, and combinatorial synthesis of a novel lead VTRA1.1 against RecA protein of Acinetobacter baumannii. Chem Biol Drug Des 2022; 99:839-856. [PMID: 35278346 DOI: 10.1111/cbdd.14037] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 02/15/2022] [Accepted: 03/05/2022] [Indexed: 01/08/2023]
Abstract
Antibiotics and disinfectants resistance is acquired by activating RecA-mediated DNA repair, which maintains ROS-dependent DNA damage caused by the antimicrobial molecules. To increase the efficacy of different antimicrobials, an inhibitor can be developed against RecA protein. The present study aims to design a denovo inhibitor against RecA protein of Acinetobacter baumannii. Pharmacophore-based screening, molecular mechanics, molecular dynamics simulation (MDS), retrosynthetic analysis, and combinatorial synthesis were used to design lead VTRA1.1 against RecA of A. baumannii. Pharmacophore models (structure-based and ligand-based) were created, and a phase library of FDA-approved drugs was prepared. Screening of the phase library against these pharmacophore models selected thirteen lead molecules. These filtered leads were used for the denovo fragment-based design, which produced 253 combinations. These designed molecules were further analyzed for its interaction with active site of RecA that selected a hybrid VTRA1. Further, retrosynthetic analysis and combinatorial synthesis produced 1000 analogs of VTRA1 by more than 100 modifications. These analogs were used for XP docking, binding free energy calculation, and MDS analysis which finally select lead VTRA1.1 against RecA protein. Further, mutations at the interacting residues of RecA with VTRA1.1, alter the unfolding rate of RecA, which suggests the binding of VTRA1.1 to these residues may alter the stability of RecA. It is also found that VTRA1.1 had reduced interaction of RecA with LexA and ssDNA polydT, showing the lead's efficacy in controlling the SOS response. Further, it was also observed that VTRA1.1 does not contain any predicted human off-targets and no cytotoxicity to cell lines. As functional RecA is involved in antimicrobial resistance, denovo designed lead VTRA1.1 against RecA may be further developed as a significant combination for therapeutic uses against A. baumannii.
Collapse
Affiliation(s)
- Vishvanath Tiwari
- Department of Biochemistry, Central University of Rajasthan, Ajmer, India
| |
Collapse
|
14
|
Zhu X, Yang C, Zhang L, Li J. Identification of novel dual inhibitors targeting XOR and URAT1 via multiple virtual screening methods. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.132567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
15
|
Yadav M, Abdalla M, Madhavi M, Chopra I, Bhrdwaj A, Soni L, Shaheen U, Prajapati L, Sharma M, Sikarwar MS, Albogami S, Hussain T, Nayarisseri A, Singh SK. Structure-Based Virtual Screening, Molecular Docking, Molecular Dynamics Simulation and Pharmacokinetic modelling of Cyclooxygenase-2 (COX-2) inhibitor for the clinical treatment of Colorectal Cancer. MOLECULAR SIMULATION 2022. [DOI: 10.1080/08927022.2022.2068799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Manasi Yadav
- In silico Research Laboratory, Eminent Biosciences, Indore, Madhya Pradesh, India
| | - Mohnad Abdalla
- Key Laboratory of Chemical Biology (Ministry of Education), Department of Pharmaceutics, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong Province, PR People’s Republic of China
| | - Maddala Madhavi
- Department of Zoology, Osmania University, Hyderabad, Telangana State, India
| | - Ishita Chopra
- In silico Research Laboratory, Eminent Biosciences, Indore, Madhya Pradesh, India
- Bioinformatics Research Laboratory, LeGene Biosciences Pvt Ltd, Indore, Madhya Pradesh, India
| | - Anushka Bhrdwaj
- In silico Research Laboratory, Eminent Biosciences, Indore, Madhya Pradesh, India
- Computer Aided Drug Designing and Molecular Modeling Lab, Department of Bioinformatics, Alagappa University, Karaikudi, Tamil Nadu, India
| | - Lovely Soni
- In silico Research Laboratory, Eminent Biosciences, Indore, Madhya Pradesh, India
| | - Uzma Shaheen
- In silico Research Laboratory, Eminent Biosciences, Indore, Madhya Pradesh, India
| | - Leena Prajapati
- In silico Research Laboratory, Eminent Biosciences, Indore, Madhya Pradesh, India
| | - Megha Sharma
- In silico Research Laboratory, Eminent Biosciences, Indore, Madhya Pradesh, India
| | | | - Sarah Albogami
- Department of Biotechnology, College of Science, Taif University, Taif, Saudi Arabia
| | - Tajamul Hussain
- Research Chair for Biomedical Applications of Nanomaterials, Biochemistry Department, College of Science, King Saud University, Riyadh, Saudi Arabia
- Center of Excellence in Biotechnology Research, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Anuraj Nayarisseri
- In silico Research Laboratory, Eminent Biosciences, Indore, Madhya Pradesh, India
- Bioinformatics Research Laboratory, LeGene Biosciences Pvt Ltd, Indore, Madhya Pradesh, India
- Research Chair for Biomedical Applications of Nanomaterials, Biochemistry Department, College of Science, King Saud University, Riyadh, Saudi Arabia
- Computer Aided Drug Designing and Molecular Modeling Lab, Department of Bioinformatics, Alagappa University, Karaikudi, Tamil Nadu, India
| | - Sanjeev Kumar Singh
- Computer Aided Drug Designing and Molecular Modeling Lab, Department of Bioinformatics, Alagappa University, Karaikudi, Tamil Nadu, India
| |
Collapse
|
16
|
Halder D, Das S, Joseph A, Jeyaprakash RS. Molecular docking and dynamics approach to in silico drug repurposing for inflammatory bowels disease by targeting TNF alpha. J Biomol Struct Dyn 2022; 41:3462-3475. [PMID: 35285757 DOI: 10.1080/07391102.2022.2050948] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Inflammatory bowel disease is a chronic disorder of the large intestine with the prevalence of approximately 400 cases in 100000, and it is rising day by day. However, several drugs like sulfasalazine (composed of sulfapyridine and 5-aminosalicylic acid or 5-ASA), corticosteroids, and immunosuppressants manage the disease. But there are no absolute treatments for the pain and inflammation of the disease. TNFα is an important target, and drugs like infliximab and adalimumab have pharmacological potency but with pronounced toxicity. So, we choose this major target TNFα for the virtual screening of US-FDA-approved drugs for its repurposing using the in silico method. The protein TNFα (PDB ID: 2AZ5) with small molecule inhibitor and the US-FDA-approved drug molecules (from Zinc database) were first imported and prepared using Protein Preparation Wizard and LigPrep, respectively, followed by molecular docking, ADMET analysis and prime MMGBSA. After that, the drugs were shortlisted according to dock score, ADMET parameters and MM GBSA dG binding score. After that, the shortlisted drug molecules were subjected to an induced-fit docking analysis. Two of the most promising molecules, ZINC000003830957 (Iopromide) and ZINC000003830635 (Deferoxamine), were chosen for molecular dynamics simulation. Finally, the bioisosteric replacement was used to improve the ADMET properties of these molecules. This research provides an idea for drug exploration and computational tools for drug discovery in treating inflammatory bowel disease.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Debojyoti Halder
- Department of Pharmaceutical Chemistry, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Subham Das
- Department of Pharmaceutical Chemistry, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Alex Joseph
- Department of Pharmaceutical Chemistry, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - R S Jeyaprakash
- Department of Pharmaceutical Chemistry, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, India
| |
Collapse
|
17
|
Xiao T, Cui M, Zheng C, Zhang P, Ren S, Bao J, Gao D, Sun R, Wang M, Lin J, Zhang L, Li M, Li D, Zhou H, Yang C. Both Baicalein and Gallocatechin Gallate Effectively Inhibit SARS-CoV-2 Replication by Targeting M pro and Sepsis in Mice. Inflammation 2021; 45:1076-1088. [PMID: 34822072 PMCID: PMC8613464 DOI: 10.1007/s10753-021-01602-z] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 10/18/2021] [Accepted: 11/17/2021] [Indexed: 12/24/2022]
Abstract
The emergence of severe acute syndrome coronavirus 2 (SARS-CoV-2) in December 2019 has led to the global COVID-19 pandemic. Although the symptoms of most COVID-19 patients are mild or self-curable, most of severe patients have sepsis caused by cytokine storms, which greatly increases the case fatality rate. Moreover, there is no effective drug that can limit the novel coronavirus thus far, so it is more needed to develop antiviral drugs for the SARS-CoV-2. In our research, we employed the techniques of molecular docking to screen 35 flavonoid compounds among which 29 compounds have Z-scores lower than − 6. Then, ( −)-gallocatechin gallate, ( +)-gallocatechin and baicalein were identified to have potent inhibitory activity against SARS-CoV-2 Mpro with IC50 values of 5.774 ± 0.805 μM, 13.14 ± 2.081 μM and 5.158 ± 0.928 μM respectively by FRET assay. Molecular docking results also showed that ( −)-gallocatechin gallate, ( +)-gallocatechin and baicalein can non-covalently bind to Mpro through π-π stacking and hydrogen bonds in the Cys145 catalytic site. We further evaluated the effect of ( −)-gallocatechin gallate and baicalein on cytokine storms using a mouse model of sepsis. ( −)-Gallocatechin gallate and baicalein significantly reduced sepsis of mouse models on weight, murine sepsis score, and survival rate and reduced the inflammatory factor levels, such as TNF-α, IL-1α, IL-4, and IL-10. Overall, ( −)-gallocatechin gallate and baicalein show certain potential of treatment against COVID-19.
Collapse
Affiliation(s)
- Ting Xiao
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Haihe Education Park, 38 Tongyan Road, Tianjin, 300353, People's Republic of China.,Tianjin Key Laboratory of Molecular Drug Research, Tianjin International Joint Academy of Biomedicine, Tianjin, China
| | - Mengqi Cui
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Haihe Education Park, 38 Tongyan Road, Tianjin, 300353, People's Republic of China.,Tianjin Key Laboratory of Molecular Drug Research, Tianjin International Joint Academy of Biomedicine, Tianjin, China
| | - Caijuan Zheng
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Haihe Education Park, 38 Tongyan Road, Tianjin, 300353, People's Republic of China
| | - Peipei Zhang
- Department of Neurology, The Fifth Central Hospital of Tianjin Binhai Hospital of Peking University, Tianjin, 300450, China
| | - Shanfa Ren
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Haihe Education Park, 38 Tongyan Road, Tianjin, 300353, People's Republic of China.,Tianjin Key Laboratory of Molecular Drug Research, Tianjin International Joint Academy of Biomedicine, Tianjin, China
| | - Jiali Bao
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Haihe Education Park, 38 Tongyan Road, Tianjin, 300353, People's Republic of China.,Tianjin Key Laboratory of Molecular Drug Research, Tianjin International Joint Academy of Biomedicine, Tianjin, China
| | - Dandi Gao
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Haihe Education Park, 38 Tongyan Road, Tianjin, 300353, People's Republic of China.,Tianjin Key Laboratory of Molecular Drug Research, Tianjin International Joint Academy of Biomedicine, Tianjin, China
| | - Ronghao Sun
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Haihe Education Park, 38 Tongyan Road, Tianjin, 300353, People's Republic of China.,Tianjin Key Laboratory of Molecular Drug Research, Tianjin International Joint Academy of Biomedicine, Tianjin, China
| | - Ming Wang
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Haihe Education Park, 38 Tongyan Road, Tianjin, 300353, People's Republic of China
| | - Jianping Lin
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Haihe Education Park, 38 Tongyan Road, Tianjin, 300353, People's Republic of China
| | - Liang Zhang
- Department of Thoracic Surgery, Tianjin First Central Hospital, Nankai University, 300192, Tianjin, People's Republic of China
| | - Mingjiang Li
- Department of Thoracic Surgery, Tianjin First Central Hospital, Nankai University, 300192, Tianjin, People's Republic of China
| | - Dongmei Li
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Haihe Education Park, 38 Tongyan Road, Tianjin, 300353, People's Republic of China.
| | - Honggang Zhou
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Haihe Education Park, 38 Tongyan Road, Tianjin, 300353, People's Republic of China. .,Tianjin Key Laboratory of Molecular Drug Research, Tianjin International Joint Academy of Biomedicine, Tianjin, China.
| | - Cheng Yang
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Haihe Education Park, 38 Tongyan Road, Tianjin, 300353, People's Republic of China. .,Tianjin Key Laboratory of Molecular Drug Research, Tianjin International Joint Academy of Biomedicine, Tianjin, China.
| |
Collapse
|
18
|
Zuo S, Wang B, Liu J, Kong D, Cui H, Jia Y, Wang C, Xu X, Chen G, Wang Y, Yang L, Zhang K, Ai D, Du J, Shen Y, Yu Y. ER-anchored CRTH2 antagonizes collagen biosynthesis and organ fibrosis via binding LARP6. EMBO J 2021; 40:e107403. [PMID: 34223653 PMCID: PMC8365266 DOI: 10.15252/embj.2020107403] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 05/11/2021] [Accepted: 05/20/2021] [Indexed: 02/06/2023] Open
Abstract
Excessive deposition of extracellular matrix, mainly collagen protein, is the hallmark of organ fibrosis. The molecular mechanisms regulating fibrotic protein biosynthesis are unclear. Here, we find that chemoattractant receptor homologous molecule expressed on TH2 cells (CRTH2), a plasma membrane receptor for prostaglandin D2, is trafficked to the endoplasmic reticulum (ER) membrane in fibroblasts in a caveolin-1-dependent manner. ER-anchored CRTH2 binds the collagen mRNA recognition motif of La ribonucleoprotein domain family member 6 (LARP6) and promotes the degradation of collagen mRNA in these cells. In line, CRTH2 deficiency increases collagen biosynthesis in fibroblasts and exacerbates injury-induced organ fibrosis in mice, which can be rescued by LARP6 depletion. Administration of CRTH2 N-terminal peptide reduces collagen production by binding to LARP6. Similar to CRTH2, bumetanide binds the LARP6 mRNA recognition motif, suppresses collagen biosynthesis, and alleviates bleomycin-triggered pulmonary fibrosis in vivo. These findings reveal a novel anti-fibrotic function of CRTH2 in the ER membrane via the interaction with LARP6, which may represent a therapeutic target for fibrotic diseases.
Collapse
Affiliation(s)
- Shengkai Zuo
- Tianjin Key Laboratory of Inflammatory BiologyCenter for Cardiovascular DiseasesKey Laboratory of Immune Microenvironment and Disease (Ministry of Education)Department of PharmacologyThe Province and Ministry Co‐sponsored Collaborative Innovation Center for Medical EpigeneticsSchool of Basic Medical SciencesTianjin Medical UniversityTianjinChina
| | - Bei Wang
- Tianjin Key Laboratory of Inflammatory BiologyCenter for Cardiovascular DiseasesKey Laboratory of Immune Microenvironment and Disease (Ministry of Education)Department of PharmacologyThe Province and Ministry Co‐sponsored Collaborative Innovation Center for Medical EpigeneticsSchool of Basic Medical SciencesTianjin Medical UniversityTianjinChina
| | - Jiao Liu
- Tianjin Key Laboratory of Inflammatory BiologyCenter for Cardiovascular DiseasesKey Laboratory of Immune Microenvironment and Disease (Ministry of Education)Department of PharmacologyThe Province and Ministry Co‐sponsored Collaborative Innovation Center for Medical EpigeneticsSchool of Basic Medical SciencesTianjin Medical UniversityTianjinChina
| | - Deping Kong
- Tianjin Key Laboratory of Inflammatory BiologyCenter for Cardiovascular DiseasesKey Laboratory of Immune Microenvironment and Disease (Ministry of Education)Department of PharmacologyThe Province and Ministry Co‐sponsored Collaborative Innovation Center for Medical EpigeneticsSchool of Basic Medical SciencesTianjin Medical UniversityTianjinChina
| | - Hui Cui
- School of Life Science and TechnologyShanghai Tech UniversityShanghaiChina
| | - Yaonan Jia
- School of Pharmaceutical SciencesZhengzhou UniversityZhengzhouChina
| | - Chenyao Wang
- Department of Inflammation and ImmunityLerner Research InstituteCleveland ClinicClevelandOHUSA
| | - Xin Xu
- Tianjin Key Laboratory of Inflammatory BiologyCenter for Cardiovascular DiseasesKey Laboratory of Immune Microenvironment and Disease (Ministry of Education)Department of PharmacologyThe Province and Ministry Co‐sponsored Collaborative Innovation Center for Medical EpigeneticsSchool of Basic Medical SciencesTianjin Medical UniversityTianjinChina
| | - Guilin Chen
- Tianjin Key Laboratory of Inflammatory BiologyCenter for Cardiovascular DiseasesKey Laboratory of Immune Microenvironment and Disease (Ministry of Education)Department of PharmacologyThe Province and Ministry Co‐sponsored Collaborative Innovation Center for Medical EpigeneticsSchool of Basic Medical SciencesTianjin Medical UniversityTianjinChina
| | - Yuanyang Wang
- Tianjin Key Laboratory of Inflammatory BiologyCenter for Cardiovascular DiseasesKey Laboratory of Immune Microenvironment and Disease (Ministry of Education)Department of PharmacologyThe Province and Ministry Co‐sponsored Collaborative Innovation Center for Medical EpigeneticsSchool of Basic Medical SciencesTianjin Medical UniversityTianjinChina
| | - Linlin Yang
- Department of PharmacologySchool of Basic Medical SciencesZhengzhou UniversityZhengzhouChina
| | - Kai Zhang
- Department of Biochemistry and Molecular BiologySchool of Basic Medical SciencesTianjin Medical UniversityTianjinChina
| | - Ding Ai
- Department of Physiology and PathophysiologySchool of Basic Medical SciencesTianjin Medical UniversityTianjinChina
| | - Jie Du
- Beijing Anzhen Hospital of Capital Medical University and Beijing Institute of Heart Lung and Blood Vessel DiseasesBeijingChina
| | - Yujun Shen
- Tianjin Key Laboratory of Inflammatory BiologyCenter for Cardiovascular DiseasesKey Laboratory of Immune Microenvironment and Disease (Ministry of Education)Department of PharmacologyThe Province and Ministry Co‐sponsored Collaborative Innovation Center for Medical EpigeneticsSchool of Basic Medical SciencesTianjin Medical UniversityTianjinChina
| | - Ying Yu
- Tianjin Key Laboratory of Inflammatory BiologyCenter for Cardiovascular DiseasesKey Laboratory of Immune Microenvironment and Disease (Ministry of Education)Department of PharmacologyThe Province and Ministry Co‐sponsored Collaborative Innovation Center for Medical EpigeneticsSchool of Basic Medical SciencesTianjin Medical UniversityTianjinChina
| |
Collapse
|
19
|
Solanki V, Tiwari M, Tiwari V. Subtractive proteomic analysis of antigenic extracellular proteins and design a multi-epitope vaccine against Staphylococcus aureus. Microbiol Immunol 2021; 65:302-316. [PMID: 33368661 DOI: 10.1111/1348-0421.12870] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 12/08/2020] [Accepted: 12/21/2020] [Indexed: 01/04/2023]
Abstract
Staphylococcus aureus is a versatile Gram's positive bacterium that can reside as an asymptomatic colonizer, which can cause a wide range of skin, soft-tissue, and nosocomial infections. A vaccine against multi-drug resistant S. aureus, therefore, is urgently needed. Subtractive proteomics and reverse vaccinology are newly emerging techniques to design multiepitope-based vaccines. The analysis of 7290 proteomes (sensitive and resistant strains), five potent nonhuman homologous vaccine targets [(UNIPORT ID Q2FZL3 (Staphopain B), Q2G2R8 (Staphopain A), Q2FWP0 (uncharacterized leukocidin-like protein 1), Q2G1S6 (uncharacterized protein), and Q2FWV3 (Staphylokinase, putative)] were selected. These proteins were absent in the gut microbiome, which further enhances the significance of these proteins in vaccine design. These five virulence-associated proteins mainly have a role in the invasion mechanism in the host phagocyte cells. MHC I, MHC II, and B cell epitopes were identified in these five proteins. Finalized epitopes were examined by different online servers to screen suitable epitopes for multi-epitope based vaccine design. Shortlisted antigenic and nonallergenic associated epitopes were joined with linkers to design 30 variants (VSA1-VSA30) of multi-epitope vaccine conjugates. The antigenicity and allergenicity of all the 30 vaccine constructs were identified, and VSA30 was found to have the highest antigenicity and lowest allergenicity, and hence was selected for further study. Accordingly, VSA30 was docked with different HLA allelic variants, and the best-docked complex (VSA30-1SYS) was further analyzed by molecular dynamics simulation (MDS). The MDS result confirms the interaction of VSA30 with MHC (HLA-allelic variant). Thus, the final vaccine construct was in silico cloned in the pET28a vector for suitable expression in a heterologous system. Therefore, the designed vaccine construct VSA-30 can be developed as an appropriate vaccine to target S. aureus infection. VSA-30 still needs experimental validation to assure the antigenic and immunogenic properties.
Collapse
Affiliation(s)
- Vandana Solanki
- Department of Biochemistry, Central University of Rajasthan, Ajmer, India
| | - Monalisa Tiwari
- Department of Biochemistry, Central University of Rajasthan, Ajmer, India
| | - Vishvanath Tiwari
- Department of Biochemistry, Central University of Rajasthan, Ajmer, India
| |
Collapse
|
20
|
Bhunia SS, Saxena AK. Efficiency of Homology Modeling Assisted Molecular Docking in G-protein Coupled Receptors. Curr Top Med Chem 2021; 21:269-294. [PMID: 32901584 DOI: 10.2174/1568026620666200908165250] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 08/20/2020] [Accepted: 09/01/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND Molecular docking is in regular practice to assess ligand affinity on a target protein crystal structure. In the absence of protein crystal structure, the homology modeling or comparative modeling is the best alternative to elucidate the relationship details between a ligand and protein at the molecular level. The development of accurate homology modeling (HM) and its integration with molecular docking (MD) is essential for successful, rational drug discovery. OBJECTIVE The G-protein coupled receptors (GPCRs) are attractive therapeutic targets due to their immense role in human pharmacology. The GPCRs are membrane-bound proteins with the complex constitution, and the understanding of their activation and inactivation mechanisms is quite challenging. Over the past decade, there has been a rapid expansion in the number of solved G-protein-coupled receptor (GPCR) crystal structures; however, the majority of the GPCR structures remain unsolved. In this context, HM guided MD has been widely used for structure-based drug design (SBDD) of GPCRs. METHODS The focus of this review is on the recent (i) developments on HM supported GPCR drug discovery in the absence of GPCR crystal structures and (ii) application of HM in understanding the ligand interactions at the binding site, virtual screening, determining receptor subtype selectivity and receptor behaviour in comparison with GPCR crystal structures. RESULTS The HM in GPCRs has been extremely challenging due to the scarcity in template structures. In such a scenario, it is difficult to get accurate HM that can facilitate understanding of the ligand-receptor interactions. This problem has been alleviated to some extent by developing refined HM based on incorporating active /inactive ligand information and inducing protein flexibility. In some cases, HM proteins were found to outscore crystal structures. CONCLUSION The developments in HM have been highly operative to gain insights about the ligand interaction at the binding site and receptor functioning at the molecular level. Thus, HM guided molecular docking may be useful for rational drug discovery for the GPCRs mediated diseases.
Collapse
Affiliation(s)
- Shome S Bhunia
- Global Institute of Pharmaceutical Education and Research, Kashipur, Uttarakhand, India
| | - Anil K Saxena
- Division of Medicinal and Process Chemistry, CSIR-CDRI, Lucknow 226031, India
| |
Collapse
|
21
|
Salari-Jazi A, Mahnam K, Sadeghi P, Damavandi MS, Faghri J. Discovery of potential inhibitors against New Delhi metallo-β-lactamase-1 from natural compounds: in silico-based methods. Sci Rep 2021; 11:2390. [PMID: 33504907 PMCID: PMC7841178 DOI: 10.1038/s41598-021-82009-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Accepted: 01/13/2021] [Indexed: 11/16/2022] Open
Abstract
New Delhi metallo-β-lactamase variants and different types of metallo-β-lactamases have attracted enormous consideration for hydrolyzing almost all β-lactam antibiotics, which leads to multi drug resistance bacteria. Metallo-β-lactamases genes have disseminated in hospitals and all parts of the world and became a public health concern. There is no inhibitor for New Delhi metallo-β-lactamase-1 and other metallo-β-lactamases classes, so metallo-β-lactamases inhibitor drugs became an urgent need. In this study, multi-steps virtual screening was done over the NPASS database with 35,032 natural compounds. At first Captopril was extracted from 4EXS PDB code and use as a template for the first structural screening and 500 compounds obtained as hit compounds by molecular docking. Then the best ligand, i.e. NPC120633 was used as templet and 800 similar compounds were obtained. As a final point, ten compounds i.e. NPC171932, NPC100251, NPC18185, NPC98583, NPC112380, NPC471403, NPC471404, NPC472454, NPC473010 and NPC300657 had proper docking scores, and a 50 ns molecular dynamics simulation was performed for calculation binding free energy of each compound with New Delhi metallo-β-lactamase. Protein sequence alignment, 3D conformational alignment, pharmacophore modeling on all New Delhi metallo-β-lactamase variants and all types of metallo-β-lactamases were done. Quantum chemical perspective based on the fragment molecular orbital (FMO) method was performed to discover conserved and crucial residues in the catalytic activity of metallo-β-lactamases. These residues had similar 3D coordinates of spatial location in the 3D conformational alignment. So it is posibble that all types of metallo-β-lactamases can inhibit by these ten compounds. Therefore, these compounds were proper to mostly inhibit all metallo-β-lactamases in experimental studies.
Collapse
Affiliation(s)
- Azhar Salari-Jazi
- Department of Microbiology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Karim Mahnam
- Biology Department, Faculty of Sciences, Shehrekord University, Shahrekord, Iran
| | - Parisa Sadeghi
- Department of Microbiology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mohamad Sadegh Damavandi
- Department of Microbiology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Jamshid Faghri
- Department of Microbiology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran.
| |
Collapse
|
22
|
Drug Repurposing Approach against Novel Coronavirus Disease (COVID-19) through Virtual Screening Targeting SARS-CoV-2 Main Protease. BIOLOGY 2020; 10:biology10010002. [PMID: 33374717 PMCID: PMC7822464 DOI: 10.3390/biology10010002] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 12/16/2020] [Accepted: 12/19/2020] [Indexed: 02/07/2023]
Abstract
Simple Summary With the urgent necessity of potential treatment against novel coronavirus disease, we used several computational methods to search for active drugs from an extensive database. The results of our investigation suggested several established drugs that can be subjected to further analysis for the treatment of novel coronavirus disease. Various methods used in this study proved the effectiveness of the retrieved drugs. Therefore, our findings highly recommend the mentioned drugs to be scrutinized to discover drugs against novel coronavirus. Abstract Novel coronavirus disease (COVID-19) was identified from China in December 2019 and spread rapidly through human-to-human transmission, affecting so many people worldwide. Until now, there has been no specific treatment against the disease and repurposing of the drug. Our investigation aimed to screen potential inhibitors against coronavirus for the repurposing of drugs. Our study analyzed sequence comparison among SARS-CoV, SARS-CoV-2, and MERS-CoV to determine the identity matrix using discovery studio. SARS-CoV-2 Mpro was targeted to generate an E-pharmacophore hypothesis to screen drugs from the DrugBank database having similar features. Promising drugs were used for docking-based virtual screening at several precisions. Best hits from virtual screening were subjected to MM/GBSA analysis to evaluate binding free energy, followed by the analysis of binding interactions. Furthermore, the molecular dynamics simulation approaches were carried out to assess the docked complex’s conformational stability. A total of 33 drug classes were found from virtual screening based on their docking scores. Among them, seven potential drugs with several anticancer, antibiotic, and immunometabolic categories were screened and showed promising MM/GBSA scores. During interaction analysis, these drugs exhibited different types of hydrogen and hydrophobic interactions with amino acid residue. Besides, 17 experimental drugs selected from virtual screening might be crucial for drug discovery against COVID-19. The RMSD, RMSF, SASA, Rg, and MM/PBSA descriptors from molecular dynamics simulation confirmed the complex’s firm nature. Seven promising drugs for repurposing against SARS-CoV-2 main protease (Mpro), namely sapanisertib, ornidazole, napabucasin, lenalidomide, daniquidone, indoximod, and salicylamide, could be vital for the treatment of COVID-19. However, extensive in vivo and in vitro studies are required to evaluate the mentioned drug’s activity.
Collapse
|
23
|
Rathi E, Kumar A, Kini SG. Computational approaches in efflux pump inhibitors: current status and prospects. Drug Discov Today 2020; 25:1883-1890. [PMID: 32712312 DOI: 10.1016/j.drudis.2020.07.011] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 07/02/2020] [Accepted: 07/13/2020] [Indexed: 01/02/2023]
Abstract
Treatment of bacterial infections is currently threatened by the development of antibiotic resistance and a poor pipeline of new antibiotics. Efflux pumps (EPs) are an integral part of the defense machinery of bacteria, preventing the entry of molecules, such as antibiotics, into the intracellular environment and resulting in antibiotic resistance. Therefore, research has focused on the discovery of novel EP inhibitors (EPIs), such as PAβN, D13-9001, and MBX2319. however, there are still no US Food and Drug Administration (FDA)-approved drugs targeting EPs because of the inadequate assimilation of the inhibitors. Here, we discuss the use of computational approaches for molecular mechanistic studies of EPIs to help direct future research.
Collapse
Affiliation(s)
- Ekta Rathi
- Department of Pharmaceutical Chemistry, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, 576104, India
| | - Avinash Kumar
- Department of Pharmaceutical Chemistry, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, 576104, India
| | - Suvarna G Kini
- Department of Pharmaceutical Chemistry, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, 576104, India.
| |
Collapse
|
24
|
Structure-based screening of novel lichen compounds against SARS Coronavirus main protease (Mpro) as potentials inhibitors of COVID-19. Mol Divers 2020; 25:1665-1677. [PMID: 32602074 PMCID: PMC7323881 DOI: 10.1007/s11030-020-10118-x] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Accepted: 06/17/2020] [Indexed: 12/15/2022]
Abstract
The outbreak of SARS-CoV-2 and deaths caused by it all over the world have imposed great concern on the scientific community to develop potential drugs to combat Coronavirus disease-19 (COVID-19). In this regard, lichen metabolites may offer a vast reservoir for the discovery of antiviral drug candidates. Therefore, to find novel compounds against COVID-19, we created a library of 412 lichen compounds and subjected to virtual screening against the SARS-CoV-2 Main protease (Mpro). All the ligands were virtually screened, and 27 compounds were found to have high affinity with Mpro. These compounds were assessed for drug-likeness analysis where two compounds were found to fit well for redocking studies. Molecular docking, drug-likeness, X-Score, and toxicity analysis resulting in two lichen compounds, Calycin and Rhizocarpic acid with Mpro-inhibiting activity. These compounds were finally subjected to molecular dynamics simulation to compare the dynamics behavior and stability of the Mpro after ligand binding. The binding energy was calculated by MM-PBSA method to determine the intermolecular protein-ligand interactions. Our results showed that two compounds; Calycin and Rhizocarpic acid had the binding free energy of - 42.42 kJ mol/1 and - 57.85 kJ mol/1 respectively as compared to reference X77 (- 91.78 kJ mol/1). We concluded that Calycin and Rhizocarpic acid show considerable structural and pharmacological properties and they can be used as hit compounds to develop potential antiviral agents against SARS-CoV-2. These lichen compounds may be a suitable candidate for further experimental analysis.
Collapse
|
25
|
Selvaraj C, Dinesh DC, Panwar U, Abhirami R, Boura E, Singh SK. Structure-based virtual screening and molecular dynamics simulation of SARS-CoV-2 Guanine-N7 methyltransferase (nsp14) for identifying antiviral inhibitors against COVID-19. J Biomol Struct Dyn 2020; 39:4582-4593. [PMID: 32567979 PMCID: PMC7332868 DOI: 10.1080/07391102.2020.1778535] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The recent pandemic caused by Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2) calls the whole world into a medical emergency. For tackling Coronavirus Disease 2019 (COVID-19), researchers from around the world are swiftly working on designing and identifying inhibitors against all possible viral key protein targets. One of the attractive drug targets is guanine-N7 methyltransferase which plays the main role in capping the 5′-ends of viral genomic RNA and sub genomic RNAs, to escape the host’s innate immunity. We performed homology modeling and molecular dynamic (MD) simulation, in order to understand the molecular architecture of Guanosine-P3-Adenosine-5’,5’-Triphosphate (G3A) binding with C-terminal N7-MTase domain of nsp14 from SARS-CoV-2. The residue Asn388 is highly conserved in present both in N7-MTase from SARS-CoV and SARS-CoV-2 and displays a unique function in G3A binding. For an in-depth understanding of these substrate specificities, we tried to screen and identify inhibitors from the Traditional Chinese Medicine (TCM) database. The combination of several computational approaches, including screening, MM/GBSA, MD simulations, and PCA calculations, provides the screened compounds that readily interact with the G3A binding site of homology modeled N7-MTase domain. Compounds from this screening will have strong potency towards inhibiting the substrate-binding and efficiently hinder the viral 5’-end RNA capping mechanism. We strongly believe the final compounds can become COVID-19 therapeutics, with huge international support. Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Chandrabose Selvaraj
- Computer Aided Drug Design and Molecular Modeling Lab, Department of Bioinformatics, Alagappa University, Karaikudi, India
| | - Dhurvas Chandrasekaran Dinesh
- Section of Molecular Biology and Biochemistry, Institute of Organic Chemistry and Biochemistry AS CR, v.v.i, Prague 6, Czech Republic
| | - Umesh Panwar
- Computer Aided Drug Design and Molecular Modeling Lab, Department of Bioinformatics, Alagappa University, Karaikudi, India
| | - Rajaram Abhirami
- Computer Aided Drug Design and Molecular Modeling Lab, Department of Bioinformatics, Alagappa University, Karaikudi, India
| | - Evzen Boura
- Section of Molecular Biology and Biochemistry, Institute of Organic Chemistry and Biochemistry AS CR, v.v.i, Prague 6, Czech Republic
| | - Sanjeev Kumar Singh
- Computer Aided Drug Design and Molecular Modeling Lab, Department of Bioinformatics, Alagappa University, Karaikudi, India
| |
Collapse
|
26
|
Saranya V, Mary PV, Vijayakumar S, Shankar R. The hazardous effects of the environmental toxic gases on amyloid beta-peptide aggregation: A theoretical perspective. Biophys Chem 2020; 263:106394. [PMID: 32480019 DOI: 10.1016/j.bpc.2020.106394] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 05/12/2020] [Accepted: 05/12/2020] [Indexed: 12/13/2022]
Abstract
Alzheimer's disease (AD) is one of the leading causes of dementia in elderly people. It has been well documented that the exposure to environmental toxins such as CO, CO2, SO2 and NO2 that are present in the air is considered as a hallmark for the progression of Alzheimer's disease. However, their actual mechanism by which environmental toxin triggers the aggregation of Aβ42 peptide at the molecular and atomic levels remain unknown. In this study, molecular dynamics simulation was carried out to study the aggregation mechanism of the Aβ42 peptide due to its interaction of toxic gas (CO, CO2, SO2 and NO2). During the 400 ns simulation, all the Aβ42 interacted toxic gas (CO, CO2, SO2, and NO2) complexes have smaller Root Mean Square Deviation values when compared to the Aβ42 peptide, which shows that the interaction of toxic gases (CO, CO2, SO2, and NO2) would increase the Aβ42 peptide structural stability. The radius of gyration analysis also supports that Aβ42 interacted CO2 and SO2 complexes have the minimum value in the range of 0.95 nm and 1.5 nm. It is accounted that the Aβ42 interacted CO2 and SO2 complexes have a greater compact structure in comparison to Aβ42 interacted CO and NO2 complexes. Furthermore, all the Aβ42 interacted toxic gas (CO, CO2, SO2, and NO2) complexes exhibited an enhanced secondary structural probability for coil and turn regions with a reduced α-helix probability, which indicates that the interaction of toxic gases may enhance the toxicity and aggregation of Aβ42.
Collapse
Affiliation(s)
- Vasudevan Saranya
- Molecular Simulation Laboratory, Department of Physics, Bharathiar University, Coimbatore 641 046, India
| | - Pitchumani Violet Mary
- Department of Physics, Sri Shakthi Institute of Engineering and Technology, Coimbatore 641 062, India
| | | | - Ramasamy Shankar
- Molecular Simulation Laboratory, Department of Physics, Bharathiar University, Coimbatore 641 046, India.
| |
Collapse
|
27
|
Skariyachan S, Muddebihalkar AG, Badrinath V, Umashankar B, Eram D, Uttarkar A, Niranjan V. Natural epiestriol-16 act as potential lead molecule against prospective molecular targets of multidrug resistant Acinetobacter baumannii-Insight from in silico modelling and in vitro investigations. INFECTION GENETICS AND EVOLUTION 2020; 82:104314. [PMID: 32268193 DOI: 10.1016/j.meegid.2020.104314] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2019] [Revised: 03/05/2020] [Accepted: 04/01/2020] [Indexed: 01/09/2023]
Abstract
The current study aimed to identify putative drug targets of multidrug resistant Acinetobacter baumannii (MDRAb) and study the therapeutic potential of natural epiestriol-16 by computer aided virtual screening and in vitro studies. The clinical isolates (n = 5) showed extreme dug resistance to carbapenems and colistins (p ≤ .05). Computational screening suggested that out of 236 natural molecules selected, 06 leads were qualified for drug likeliness, pharmacokinetic features and one potential molecule namely natural epiestriol-16 (16b-Hydroxy-17a-estradiol) exhibited significant binding potential towards four prioritised drug targets in comparison with the binding of faropenem to their usual target. Natural epiestriol demonstrated profound binding to the outer membrane protein (Omp38), protein RecA (RecA), orotate phosphoribosyltransferase (PyrE) and orotidine 5'-phosphate decarboxylase (PyrF) with binding energy of -6.0, -7.3, -7.3 and -8.0 kcal/mol respectively. MD simulations suggested that 16-epiestriol-receptor complexes demonstrated stability throughout the simulation. The growth curve and time kill assays revealed that MDRAb showed resistance to faropenem and polymyxin-B and the pure epiestriol-16 showed significant inhibitory properties at a concentration of 200 μg/mL (p ≤ .5). Thus, natural epiestriol-16 can be used as potential inhibitor against the prioritised targets of MDRAb and this study provide insight for drug development against carbapenem and colistin resistant A. baumannii.
Collapse
Affiliation(s)
- Sinosh Skariyachan
- Department of Microbiology, St. Pius X College Rajapuram, Kasaragod, Kerala, India; Department of Biotechnology, Dayananda Sagar College of Engineering, Bangalore, Karnataka, India.
| | - Aditi G Muddebihalkar
- Department of Biotechnology, Dayananda Sagar College of Engineering, Bangalore, Karnataka, India
| | - Vaishnavi Badrinath
- Department of Biotechnology, Dayananda Sagar College of Engineering, Bangalore, Karnataka, India
| | - Bindu Umashankar
- Department of Biotechnology, Dayananda Sagar College of Engineering, Bangalore, Karnataka, India
| | - Daniya Eram
- Department of Biotechnology, Dayananda Sagar College of Engineering, Bangalore, Karnataka, India
| | - Akshay Uttarkar
- Department of Biotechnology, RV College of Engineering, Bangalore, Karnataka, India
| | - Vidya Niranjan
- Department of Biotechnology, RV College of Engineering, Bangalore, Karnataka, India
| |
Collapse
|
28
|
Amera GM, Khan RJ, Pathak A, Jha RK, Muthukumaran J, Singh AK. Screening of promising molecules against MurG as drug target in multi-drug-resistant-Acinetobacter baumannii - insights from comparative protein modeling, molecular docking and molecular dynamics simulation. J Biomol Struct Dyn 2019; 38:5230-5252. [DOI: 10.1080/07391102.2019.1700167] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Gizachew Muluneh Amera
- Department of Biotechnology, School of Engineering and Technology, Sharda University, Greater Noida, Uttar Pradesh, India
| | - Rameez Jabeer Khan
- Department of Biotechnology, School of Engineering and Technology, Sharda University, Greater Noida, Uttar Pradesh, India
| | - Amita Pathak
- Department of Chemistry, Indian Institute of Technology Delhi, New Delhi, India
| | - Rajat Kumar Jha
- Department of Biotechnology, School of Engineering and Technology, Sharda University, Greater Noida, Uttar Pradesh, India
| | - Jayaraman Muthukumaran
- Department of Biotechnology, School of Engineering and Technology, Sharda University, Greater Noida, Uttar Pradesh, India
| | - Amit Kumar Singh
- Department of Biotechnology, School of Engineering and Technology, Sharda University, Greater Noida, Uttar Pradesh, India
| |
Collapse
|
29
|
Capoci IRG, Sakita KM, Faria DR, Rodrigues-Vendramini FAV, Arita GS, de Oliveira AG, Felipe MS, Maigret B, Bonfim-Mendonça PDS, Kioshima ES, Svidzinski TIE. Two New 1,3,4-Oxadiazoles With Effective Antifungal Activity Against Candida albicans. Front Microbiol 2019; 10:2130. [PMID: 31572335 PMCID: PMC6751290 DOI: 10.3389/fmicb.2019.02130] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Accepted: 08/29/2019] [Indexed: 12/29/2022] Open
Abstract
Candida infections have become a serious public health problem with high mortality rates, especially in immunocompromised patients, since Candida albicans is the major opportunistic pathogen responsible for systemic or invasive candidiasis. Commercially available antifungal agents are restricted and fungal resistance to such drugs has increased; therefore, the development of a more specific antifungal agent is necessary. Using assays for antifungal activity, here we report that two new compounds of 1,3,4-oxadiazoles class (LMM5 and LMM11), which were discovered by in silico methodologies as possible thioredoxin reductase inhibitors, were effective against C. albicans. Both compounds had in vitro antifungal activity with MIC 32 μg/ml. Cytotoxicity in vitro demonstrated that LMM5 and LMM11 were non-toxic in the cell lines evaluated. The kinetic of the time-kill curve suggested a fungistatic profile and showed an inhibitory effect of LMM5 and LMM11 in 12 h that remained for 24 and 36 h, which is better than fluconazole. In the murine systemic candidiasis model by C. albicans, the two compounds significantly reduced the renal and spleen fungal burden. According to the SEM and TEM images, we hypothesize that the mechanism of action of LMM5 and LMM11 is directly related to the inhibition of the enzyme thioredoxin reductase and internally affect the fungal cell. In view of all in vitro and in vivo results, LMM5 and LMM11 are effective therapeutic candidates for the development of new antifungal drugs addressing the treatment of human infections caused by C. albicans.
Collapse
Affiliation(s)
| | - Karina Mayumi Sakita
- Department of Clinical Analysis and Biomedicine, The State University of Maringá, Maringá, Brazil
| | - Daniella Renata Faria
- Department of Clinical Analysis and Biomedicine, The State University of Maringá, Maringá, Brazil
| | | | - Glaucia Sayuri Arita
- Department of Clinical Analysis and Biomedicine, The State University of Maringá, Maringá, Brazil
| | | | - Maria Sueli Felipe
- Department of Cellular Biology, The University of Brasília, Brasília, Brazil
| | | | | | - Erika Seki Kioshima
- Department of Clinical Analysis and Biomedicine, The State University of Maringá, Maringá, Brazil
| | | |
Collapse
|
30
|
Kumar N, Srivastava R, Prakash A, Lynn AM. Structure-based virtual screening, molecular dynamics simulation and MM-PBSA toward identifying the inhibitors for two-component regulatory system protein NarL of Mycobacterium Tuberculosis. J Biomol Struct Dyn 2019; 38:3396-3410. [PMID: 31422761 DOI: 10.1080/07391102.2019.1657499] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The nitrate/nitrite response regulatory protein NarL belongs to the two-component regulatory system of Mycobacterium tuberculosis (MTB), plays a crucial role in anaerobic survival of mycobacteria in host. The absence of this protein in humans, makes it an attractive drug target for MTB treatment. However, the specific drug molecules targeting NarL are yet to be identified. In this study, we identified the promising drug candidates using structure based virtual screening of compounds from chemical libraries (ChEMBL and ZINC), followed by the extensive physicochemical properties analyses and molecular dynamics (MD) simulation. As the initial results, we obtained 4,754 bioactive compounds from ChEMBL having anti-tuberculosis activity which is finally narrowed down to the best 10 hits. A similar approach was applied to search for structurally similar compounds from ZINC data, corresponding to the top hits obtained from ChEMBL. Our collective results show that two compounds, ChEMBL509609 (Gscore - 5.054 kcal/mol, Xscore - 6.47 kcal/mol) and ZINC01843143 (Gscore - 5.114 kcal/mol, Xscore - 6.46 kcal/mol) having the best docking score and ADMET profile. The structural stability and dynamics of lead molecules at active site of NarL were examined using MD simulation and the binding free energies were estimated with MM-PBSA. Essential dynamics and MM-PBSA demonstrated that NarL-ChEMBL509609 complex remains the most stable during simulation of 100 ns with the higher binding free energy which may be a suitable candidate for further experimental analysis. AbbreviationsADMEAbsorption, Distribution, Metabolism, And ExcretionBCGBacillus Calmette-GuerinCNSCentral nervous systemDOTSDirectly observed treatment, short courseEDEssential dynamicsHIVHuman immunodeficiency virusHKHistidine kinaseHOAHuman oral absorptionHTVSHigh throughput virtual screeningIRRIIrritationMDMolecular dynamicsMDRMultidrug resistantMTBMycobacterium tuberculosisMUTMutagenicityMWMolecular weightPHOAPercentage of human oral absorptionREPReproductive developmentRgRadius of gyrationRMSDRoot mean square deviationRMSFRoot mean square fluctuationRO5Lipinski's rule of fiveRRResponse regulatorSPStandard precisionSPGStandard precision glideTBTuberculosisTCSTwo-component regulatory systemTDRTotally drug-resistantTUMOTumorigenicityWHOWorld health organizationXDRExtensively drug-resistantXPExtra precisionCommunicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Niranjan Kumar
- School of Computational & Integrative Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Rakesh Srivastava
- School of Computational & Integrative Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Amresh Prakash
- Amity Institute of Integrative Sciences and Health, Amity University, Haryana, Gurgaon, India
| | - Andrew M Lynn
- School of Computational & Integrative Sciences, Jawaharlal Nehru University, New Delhi, India
| |
Collapse
|
31
|
Ahmad S, Murtaza UA, Raza S, Azam SS. Blocking the catalytic mechanism of MurC ligase enzyme from Acinetobacter baumannii: An in Silico guided study towards the discovery of natural antibiotics. J Mol Liq 2019. [DOI: 10.1016/j.molliq.2019.02.051] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
32
|
Solanki V, Tiwari M, Tiwari V. Prioritization of potential vaccine targets using comparative proteomics and designing of the chimeric multi-epitope vaccine against Pseudomonas aeruginosa. Sci Rep 2019; 9:5240. [PMID: 30918289 PMCID: PMC6437148 DOI: 10.1038/s41598-019-41496-4] [Citation(s) in RCA: 79] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Accepted: 03/11/2019] [Indexed: 11/10/2022] Open
Abstract
Multidrug-resistant Pseudomonas aeruginosa is one of the worldwide health problems involved in elevated mortality and morbidity. Therefore, it is important to find a therapeutic for this pathogen. In the present study, we have designed a chimeric vaccine against P. aeruginosa with the help of comparative proteomics and reverse vaccinology approaches. Using comparative subtractive proteomic analysis of 1,191 proteomes of P. aeruginosa, a total of twenty unique non-redundant proteomes were selected. In these proteomes, fifteen outer membrane proteins (OMPs) of P. aeruginosa were selected based on the basis of hydrophilicity, non-secretory nature, low transmembrane helix (<1), essentiality, virulence, pathway association, antigenic, and protein-protein network analysis. Reverse vaccinology approach was used to identify antigenic and immunogenic MHC class I, MHC class II and B cell epitopes present in the selected OMPs that can enhance T cell and B cell mediated immunogenicity. The selected epitopes were shortlisted based on their allergenicity, toxicity potentials, solubility, and hydrophilicity analysis. Immunogenic peptides were used to design a multi-epitope vaccine construct. Immune-modulating adjuvants and PADRE (Pan HLA-DR epitopes) sequence were added with epitopes sequence to enhance the immunogenicity. All the epitopes, adjuvants and PADRE sequence were joined by linkers. The designed vaccine constructs (VT1, VT2, VT3, and VT4) were analyzed by their physiochemical properties using different tools. Selected chimeric vaccine constructs (VT1, VT3, and VT4) were further shortlisted by their docking score with different HLA alleles. The final selected VT4 construct was docked with TLR4/MD2 complex and confirmed by molecular dynamics simulation studies. The final vaccine VT-4 construct was in-silico cloned in pET28a. Therefore, the designed construct VT4 may be studied to control the interaction of P. aeruginosa with host and infection caused by P. aeruginosa.
Collapse
Affiliation(s)
- Vandana Solanki
- Department of Biochemistry, Central University of Rajasthan, Ajmer, 305817, India
| | - Monalisa Tiwari
- Department of Biochemistry, Central University of Rajasthan, Ajmer, 305817, India
| | - Vishvanath Tiwari
- Department of Biochemistry, Central University of Rajasthan, Ajmer, 305817, India.
| |
Collapse
|
33
|
Selvakumar R, Anantha Krishnan D, Ramakrishnan C, Velmurugan D, Gunasekaran K. Identification of novel NAD(P)H dehydrogenase [quinone] 1 antagonist using computational approaches. J Biomol Struct Dyn 2019; 38:682-696. [DOI: 10.1080/07391102.2019.1585291] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Rajendran Selvakumar
- CAS in Crystallography and Biophysics, University of Madras, Chennai, Tamil Nadu, India
| | | | - Chandrasekaran Ramakrishnan
- Department of Biotechnology, Bhupat Jyoti Mehta School of Biosciences, Indian Institute of Technology (IIT) Madras, Chennai, Tamil Nadu, India
| | - Devadasan Velmurugan
- CAS in Crystallography and Biophysics, University of Madras, Chennai, Tamil Nadu, India
| | - Krishnasamy Gunasekaran
- CAS in Crystallography and Biophysics, University of Madras, Chennai, Tamil Nadu, India
- Bioinformatics Infrastructure Facility, University of Madras, Chennai, Tamil Nadu, India
| |
Collapse
|
34
|
High-Throughput Virtual Screening, Molecular Dynamics Simulation, and Enzyme Kinetics Identified ZINC84525623 as a Potential Inhibitor of NDM-1. Int J Mol Sci 2019; 20:ijms20040819. [PMID: 30769822 PMCID: PMC6412273 DOI: 10.3390/ijms20040819] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Accepted: 02/10/2019] [Indexed: 01/04/2023] Open
Abstract
The bacteria expressing New Delhi Metallo-β-lactamase-1 (NDM-1) can hydrolyze all β-lactam antibiotics including carbapenems, causing multi-drug resistance. The worldwide emergence and dissemination of gene blaNDM-1 (produces NDM-1) in hospital and community settings, rising problems for public health. Indeed, there is an urgent need for NDM-1 inhibitors to manage antibiotic resistance. Here, we have identified novel non-β-lactam ring-containing inhibitors of NDM-1 by applying a high-throughput virtual screening of lead-like subset of ZINC database. The screened compounds were followed for the molecular docking, the molecular dynamics simulation, and then enzyme kinetics assessment. The adopted screening procedure funnels out five novel inhibitors of NDM-1 including ZINC10936382, ZINC30479078, ZINC41493045, ZINC7424911, and ZINC84525623. The molecular mechanics-generalized born surface area and molecular dynamics (MD) simulation showed that ZINC84525623 formed the most stable complex with NDM-1. Furthermore, analyses of the binding pose after MD simulation revealed that ZINC84525623 formed two hydrogen bonds (electrostatic and hydrophobic interaction) with key amino acid residues of the NDM-1 active site. The docking binding free energy and docking binding constant for the ZINC84525623 and NDM-1 interaction were estimated to be −11.234 kcal/mol, and 1.74 × 108 M−1 respectively. Steady-state enzyme kinetics in the presence of ZINC84525623 show the decreased catalytic efficiency (i.e., kcat/Km) of NDM-1 on various antibiotics. The findings of this study would be helpful in identifying novel inhibitors against other β-lactamases from a pool of large databases. Furthermore, the identified inhibitor (ZINC84525623) could be developed as efficient drug candidates.
Collapse
|
35
|
Ertan-Bolelli T, Bolelli K. Discovery of New DNA Topoisomerase II Inhibitors using Structure Based Virtual Screening Method. JOURNAL OF THE TURKISH CHEMICAL SOCIETY, SECTION A: CHEMISTRY 2019. [DOI: 10.18596/jotcsa.466457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
|
36
|
Tiwari V. Molecular insight into the therapeutic potential of phytoconstituents targeting protein conformation and their expression. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2019; 52:225-237. [PMID: 30599902 PMCID: PMC7126799 DOI: 10.1016/j.phymed.2018.09.214] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Revised: 09/03/2018] [Accepted: 09/25/2018] [Indexed: 06/09/2023]
Abstract
BACKGROUND Native protein conformation is essential for the functional activity of the proteins and enzymes. Defects in conformation or alterations in expression of the proteins have been reported in various diseases. PURPOSE The aim of this study is to review the molecular insight into the therapeutic potential of phytoconstituents targeting protein conformations or expressions. METHODS Published literatures were searched in PubMed, Scopus, Web of Science; Article published till Dec 2017 were extracted. The literature was assessed from the Central University of Rajasthan, India. Present study evaluate article based on the role of active plant constituents on the conformation and expression of the different proteins. RESULTS Plant components play their role either at the molecular level or cellular level and exhibit antibacterial, antiviral, anti-neurodegenerative and other activities. Plant active compounds isolated from different plants may either stabilize or destabilize the conformation of proteins or alter expression level of the protein involved in these diseases, therefore, can play a significant role in preventing diseases caused by the alteration in these proteins. CONCLUSION In the present article, we have reviewed the molecular mechanism of plant active compounds, their target proteins, methods of extraction and identification, and their biological significances. Therefore, a proper understanding of the effect of these herbal molecules on the concerned proteins may help to develop new herbal-based therapeutics for various diseases.
Collapse
Affiliation(s)
- Vishvanath Tiwari
- Department of Biochemistry, Central University of Rajasthan, Bandarsindri, Ajmer 305817, India.
| |
Collapse
|
37
|
Wang J, Zhao C, Tu J, Yang H, Zhang X, Lv W, Zhai H. Design of novel quinoline-aminopiperidine derivatives as Mycobacterium tuberculosis (MTB) GyrB inhibitors: an in silico study. J Biomol Struct Dyn 2018; 37:2913-2925. [DOI: 10.1080/07391102.2018.1498806] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Affiliation(s)
- Juan Wang
- College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, PR China
| | - Chenxi Zhao
- College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, PR China
| | - Jing Tu
- College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, PR China
| | - Hong Yang
- College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, PR China
| | - Xiaoyun Zhang
- College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, PR China
| | - Wenjuan Lv
- College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, PR China
| | - Honglin Zhai
- College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, PR China
| |
Collapse
|
38
|
Tiwari V, Rajeswari MR, Tiwari M. Proteomic analysis of iron-regulated membrane proteins identify FhuE receptor as a target to inhibit siderophore-mediated iron acquisition in Acinetobacter baumannii. Int J Biol Macromol 2018; 125:1156-1167. [PMID: 30579900 DOI: 10.1016/j.ijbiomac.2018.12.173] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Revised: 11/02/2018] [Accepted: 12/19/2018] [Indexed: 11/27/2022]
Abstract
Survival of the Acinetobacter baumannii inside host requires different micronutrients such as iron, but their bioavailability is limited because of nutritional immunity created by host. A. baumannii has to develop mechanisms to acquire nutrient iron during infection. The present study is an attempt to identify membrane proteins involved in iron sequestration mechanism of A. baumannii using two-dimensional electrophoresis and LC-MS/MS analysis. The identified iron-regulated membrane protein (IRMP) of A. baumannii was used for its interaction studies with different siderophores, and designing of the inhibitor against A. baumannii targeting this IRMP. Membrane proteomic results identified over-expression of four membrane proteins (Fhu-E receptor, ferric-acinetobactin receptor, ferrienterochelin receptor, and ferric siderophore receptor) under iron-limited condition. A. baumannii produces siderophores that have good interaction with the FhuE receptor. Result also showed that FhuE receptor has interaction with siderophores produced by other bacteria. Interaction of FhuE receptor and siderophores helps in iron sequestration and survival of Acinetobacter under nutritional immunity imposed by the host. Hence it becomes essential to find a potential inhibitor for the FhuE receptor that can inhibit the survival of A. baumannii in the host. In-silico screening, and molecular mechanics studies identified ZINC03794794 and ZINC01530652 as a likely lead to design inhibitor against the FhuE receptor of A. baumannii. The designed inhibitor is experimentally validated for its antibacterial activity on the A. baumannii. Therefore, designed inhibitor interferes with the iron acquisition mechanism of Acinetobacter hence may prove useful for preventing infection caused by A. baumannii by limiting nutrient availability.
Collapse
Affiliation(s)
- Vishvanath Tiwari
- Department of Biochemistry, Central University of Rajasthan, Bandarsindri, Ajmer 305817, India.
| | - Moganty R Rajeswari
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi, India
| | - Monalisa Tiwari
- Department of Biochemistry, Central University of Rajasthan, Bandarsindri, Ajmer 305817, India
| |
Collapse
|
39
|
Shriram V, Khare T, Bhagwat R, Shukla R, Kumar V. Inhibiting Bacterial Drug Efflux Pumps via Phyto-Therapeutics to Combat Threatening Antimicrobial Resistance. Front Microbiol 2018; 9:2990. [PMID: 30619113 PMCID: PMC6295477 DOI: 10.3389/fmicb.2018.02990] [Citation(s) in RCA: 97] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Accepted: 11/19/2018] [Indexed: 12/04/2022] Open
Abstract
Antibiotics, once considered the lifeline for treating bacterial infections, are under threat due to the emergence of threatening antimicrobial resistance (AMR). These drug-resistant microbes (or superbugs) are non-responsive to most of the commonly used antibiotics leaving us with few treatment options and escalating mortality-rates and treatment costs. The problem is further aggravated by the drying-pipeline of new and potent antibiotics effective particularly against the drug-resistant strains. Multidrug efflux pumps (EPs) are established as principal determinants of AMR, extruding multiple antibiotics out of the cell, mostly in non-specific manner and have therefore emerged as potent drug-targets for combating AMR. Plants being the reservoir of bioactive compounds can serve as a source of potent EP inhibitors (EPIs). The phyto-therapeutics with noteworthy drug-resistance-reversal or re-sensitizing activities may prove significant for reviving the otherwise fading antibiotics arsenal and making this combination-therapy effective. Contemporary attempts to potentiate the antibiotics with plant extracts and pure phytomolecules have gained momentum though with relatively less success against Gram-negative bacteria. Plant-based EPIs hold promise as potent drug-leads to combat the EPI-mediated AMR. This review presents an account of major bacterial multidrug EPs, their roles in imparting AMR, effective strategies for inhibiting drug EPs with phytomolecules, and current account of research on developing novel and potent plant-based EPIs for reversing their AMR characteristics. Recent developments including emergence of in silico tools, major success stories, challenges and future prospects are also discussed.
Collapse
Affiliation(s)
- Varsha Shriram
- Department of Botany, Prof. Ramkrishna More College, Savitribai Phule Pune University, Pune, India
| | - Tushar Khare
- Department of Biotechnology, Modern College of Arts, Science and Commerce (Savitribai Phule Pune University), Pune, India
| | - Rohit Bhagwat
- Department of Environmental Science, Savitribai Phule Pune University, Pune, India
| | - Ravi Shukla
- Centre for Advanced Materials and Industrial Chemistry, School of Science, RMIT University, Melbourne, VIC, Australia
| | - Vinay Kumar
- Department of Biotechnology, Modern College of Arts, Science and Commerce (Savitribai Phule Pune University), Pune, India.,Department of Environmental Science, Savitribai Phule Pune University, Pune, India
| |
Collapse
|
40
|
Ali A, Gupta D, Srivastava G, Sharma A, Khan AU. Molecular and computational approaches to understand resistance of New Delhi metallo β-lactamase variants (NDM-1, NDM-4, NDM-5, NDM-6, NDM-7)-producing strains against carbapenems. J Biomol Struct Dyn 2018; 37:2061-2071. [PMID: 29749296 DOI: 10.1080/07391102.2018.1475261] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The discovery of NDM-1 and its variants has caused the emergence of antibiotic resistance in the community and hospital setting, causing major concern for health care across the globe. New Delhi Metallo-β-lactamase is known to hydrolyse almost all β-lactam antibiotics. Studies have shown the hydrolytic activates of NDM-1 and some of its variants, however a comparative study of these NDM variants has not been explored in detail. Hence, we proposed to check their catalytic activity by performing a comparative study between NDM-1 and its variants. The study was initiated to clone NDM variants (NDM-1, NDM-4, NDM-5, NDM-6 and NDM-7) followed by overexpression of the recombinant proteins to check their hydrolytic properties against β-lactam antibiotics. The minimum inhibitory concentration of carbapenems antibiotics for blaNDM-5 clone was found four fold increased, whereas no change was observed in the clones having other variants. The hydrolytic activity of carbapenem with NDM-5 variant was found to be augmented as per the kinetics parameter where Km was decreased and kcat, kcat/Km values increased as compared to the NDM-1. Molecular docking studies were employed to identify the variations in the binding ability among all NDM variants with imipenem or meropenem. Simulation studies at 100 ns showed a good stability of NDM-5 with imipenem and meropenem as compared to NDM-1. CD spectroscopy data revealed significant changes in the secondary structure of NDM variants. We conclude that NDM-5 showed higher hydrolytic activity as compared to other variants. This study provides a comparative analysis of the severity of NDM producing strains.
Collapse
Affiliation(s)
- Abid Ali
- a Medical Microbiology and Molecular Biology Lab., Interdisciplinary Biotechnology Unit , Aligarh Muslim University , Aligarh , Uttar Pradhesh 202002 , India
| | - Divya Gupta
- a Medical Microbiology and Molecular Biology Lab., Interdisciplinary Biotechnology Unit , Aligarh Muslim University , Aligarh , Uttar Pradhesh 202002 , India.,b Department of Life sciences , Uttarakhand Technical University , Dehradun , Uttarakhand 248007 , India
| | - Gaurava Srivastava
- c Biotechnology Division, CSIR-CIMAP , Lucknow , Uttar Pradhesh 226015 , India
| | - Ashok Sharma
- c Biotechnology Division, CSIR-CIMAP , Lucknow , Uttar Pradhesh 226015 , India
| | - Asad U Khan
- a Medical Microbiology and Molecular Biology Lab., Interdisciplinary Biotechnology Unit , Aligarh Muslim University , Aligarh , Uttar Pradhesh 202002 , India
| |
Collapse
|
41
|
Ahmad S, Shaker B, Ahmad F, Raza S, Azam SS. Moleculer dynamics simulaiton revealed reciever domain of Acinetobacter baumannii BfmR enzyme as the hot spot for future antibiotics designing. J Biomol Struct Dyn 2018; 37:2897-2912. [PMID: 30043709 DOI: 10.1080/07391102.2018.1498805] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Sajjad Ahmad
- Computational Biology Lab, National Center for Bioinformatics, Quaid-i-Azam University, Islamabad, Pakistan
| | - Bilal Shaker
- Computational Biology Lab, National Center for Bioinformatics, Quaid-i-Azam University, Islamabad, Pakistan
| | - Faisal Ahmad
- Computational Biology Lab, National Center for Bioinformatics, Quaid-i-Azam University, Islamabad, Pakistan
| | - Saad Raza
- Computational Biology Lab, National Center for Bioinformatics, Quaid-i-Azam University, Islamabad, Pakistan
| | - Syed Sikander Azam
- Computational Biology Lab, National Center for Bioinformatics, Quaid-i-Azam University, Islamabad, Pakistan
| |
Collapse
|
42
|
Biswas D, Tiwari M, Tiwari V. Comparative mechanism based study on disinfectants against multidrug-resistant Acinetobacter baumannii. J Cell Biochem 2018; 119:10314-10326. [PMID: 30145822 DOI: 10.1002/jcb.27373] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Accepted: 06/28/2018] [Indexed: 12/19/2022]
Abstract
Acinetobacter baumannii has emerged as a hospital-acquired pathogen and has spread in the hospital settings, leading to enhanced nosocomial outbreaks associated with high death rates. Therefore, the aim of the current study is to determine the effective concentration of disinfectants like sodium hypochlorite, hydrogen peroxide, and chlorine dioxide, against multidrug-resistant (MDR) strains of A. baumannii. In this study, we have investigated the effect of disinfectants on different MDR strains i.e. RS307, RS6694, RS7434, RS10953, RS122, and sensitive strain ATCC-19606 of A. baumannii, via differential growth curves analysis, disc diffusion assay, estimation of reactive oxygen species (ROS), lipid peroxidation, and protein carbonylation. All the results collectively showed that 1% sodium hypochlorite (P value < 0.0027), 2.5% hydrogen peroxide (P value = 0.0032), and 10 mM (P value = 0.017) chlorine dioxide significantly inhibit the growth of MDR strains of A. baumannii. A significant increase in the ROS generations, altered lipid peroxidation, and a decrease in protein carbonylation was also observed after treatment with disinfectants, which confirmed its ROS-dependent damage mechanism. These disinfectants also enhance the membrane leakage of reducing sugar, protein, and DNA. The current study highlights and recommends the use of 2.5% hydrogen peroxide to control the MDR strains of A. baumannii in the hospital setup. Therefore, the present results will help in selecting concentrations of different disinfectants for regular use in hospital setups to eradicate the multidrug-resistant A. baumannii from the hospital setup.
Collapse
Affiliation(s)
- Deepika Biswas
- Department of Biochemistry, Central University of Rajasthan, Bandarsindri, Ajmer, India
| | - Monalisa Tiwari
- Department of Biochemistry, Central University of Rajasthan, Bandarsindri, Ajmer, India
| | - Vishvanath Tiwari
- Department of Biochemistry, Central University of Rajasthan, Bandarsindri, Ajmer, India
| |
Collapse
|
43
|
Solanki V, Tiwari V. Subtractive proteomics to identify novel drug targets and reverse vaccinology for the development of chimeric vaccine against Acinetobacter baumannii. Sci Rep 2018; 8:9044. [PMID: 29899345 PMCID: PMC5997985 DOI: 10.1038/s41598-018-26689-7] [Citation(s) in RCA: 178] [Impact Index Per Article: 25.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Accepted: 05/17/2018] [Indexed: 11/24/2022] Open
Abstract
The emergence of drug-resistant Acinetobacter baumannii is the global health problem associated with high mortality and morbidity. Therefore it is high time to find a suitable therapeutics for this pathogen. In the present study, subtractive proteomics along with reverse vaccinology approaches were used to predict suitable therapeutics against A. baumannii. Using subtractive proteomics, we have identified promiscuous antigenic membrane proteins that contain the virulence factors, resistance factors and essentiality factor for this pathogenic bacteria. Selected promiscuous targeted membrane proteins were used for the design of chimeric-subunit vaccine with the help of reverse vaccinology. Available best tools and servers were used for the identification of MHC class I, II and B cell epitopes. All selected epitopes were further shortlisted computationally to know their immunogenicity, antigenicity, allergenicity, conservancy and toxicity potentials. Immunogenic predicted promiscuous peptides used for the development of chimeric subunit vaccine with immune-modulating adjuvants, linkers, and PADRE (Pan HLA-DR epitopes) amino acid sequence. Designed vaccine construct V4 also interact with the MHC, and TLR4/MD2 complex as confirm by docking and molecular dynamics simulation studies. Therefore designed vaccine construct V4 can be developed to control the host-pathogen interaction or infection caused by A. baumannii.
Collapse
Affiliation(s)
- Vandana Solanki
- Department of Biochemistry, Central University of Rajasthan, Bandarsindri, Ajmer, 305817, India
| | - Vishvanath Tiwari
- Department of Biochemistry, Central University of Rajasthan, Bandarsindri, Ajmer, 305817, India.
| |
Collapse
|
44
|
Tiwari V, Mishra N, Gadani K, Solanki PS, Shah NA, Tiwari M. Mechanism of Anti-bacterial Activity of Zinc Oxide Nanoparticle Against Carbapenem-Resistant Acinetobacter baumannii. Front Microbiol 2018; 9:1218. [PMID: 29928271 PMCID: PMC5997932 DOI: 10.3389/fmicb.2018.01218] [Citation(s) in RCA: 213] [Impact Index Per Article: 30.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2018] [Accepted: 05/18/2018] [Indexed: 11/13/2022] Open
Abstract
Acinetobacter baumannii is a multi-drug resistant opportunistic pathogen, which causes respiratory and urinary tract infections. Its prevalence increases gradually in the clinical setup. Carbapenems (beta-lactam) are most effective antibiotics till now against A. baumannii, but the development of resistance against it may lead to high mortality. Therefore, it is of utmost importance to develop an alternative drug against A. baumannii. In the present study, we have synthesized ZnO nanoparticle (ZnO-NP) and characterized by X-ray diffraction, Fourier transform infrared (FTIR) spectroscopy and UV-Visible spectroscopy. Prepared ZnO-NPs have the size of 30 nm and have different characteristics of ZnO-NPs. Growth kinetics and disk diffusion assay showed that ZnO-NP demonstrated good antibacterial activity against carbapenem resistant A. baumannii. We have also investigated the mechanism of action of ZnO-NPs on the carbapenem resistant strain of A. baumannii. The proposed mechanism of action of ZnO involves the production of reactive oxygen species, which elevates membrane lipid peroxidation that causes membrane leakage of reducing sugars, DNA, proteins, and reduces cell viability. These results demonstrate that ZnO-NP could be developed as alternative therapeutics against A. baumannii.
Collapse
Affiliation(s)
- Vishvanath Tiwari
- Department of Biochemistry, Central University of Rajasthan, Ajmer, India
| | - Neha Mishra
- Department of Biochemistry, Central University of Rajasthan, Ajmer, India
| | - Keval Gadani
- Department of Physics, Saurashtra University, Rajkot, India
| | - P. S. Solanki
- Department of Physics, Saurashtra University, Rajkot, India
| | - N. A. Shah
- Department of Physics, Saurashtra University, Rajkot, India
| | - Monalisa Tiwari
- Department of Biochemistry, Central University of Rajasthan, Ajmer, India
| |
Collapse
|
45
|
Saxena S, Durgam L, Guruprasad L. Multiple e-pharmacophore modelling pooled with high-throughput virtual screening, docking and molecular dynamics simulations to discover potential inhibitors of Plasmodium falciparum lactate dehydrogenase (PfLDH). J Biomol Struct Dyn 2018; 37:1783-1799. [DOI: 10.1080/07391102.2018.1471417] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Affiliation(s)
- Shalini Saxena
- School of Chemistry, University of Hyderabad , Hyderabad, India
| | - Laxman Durgam
- School of Chemistry, University of Hyderabad , Hyderabad, India
| | | |
Collapse
|
46
|
Gupta MK, Vadde R, Donde R, Gouda G, Kumar J, Nayak S, Jena M, Behera L. Insights into the structure–function relationship of brown plant hopper resistance protein, Bph14 of rice plant: a computational structural biology approach. J Biomol Struct Dyn 2018; 37:1649-1665. [PMID: 29633905 DOI: 10.1080/07391102.2018.1462737] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Affiliation(s)
- Manoj Kumar Gupta
- Department of Biotechnology & Bioinformatics, Yogi Vemana University , Kadapa, India
| | - Ramakrishna Vadde
- Department of Biotechnology & Bioinformatics, Yogi Vemana University , Kadapa, India
| | - Ravindra Donde
- ICAR-National Rice Research Institute (Formerly CRRI) , Cuttack, India
| | - Gayatri Gouda
- ICAR-National Rice Research Institute (Formerly CRRI) , Cuttack, India
| | - Jitendra Kumar
- ICAR-National Rice Research Institute (Formerly CRRI) , Cuttack, India
| | - Subhashree Nayak
- ICAR-National Rice Research Institute (Formerly CRRI) , Cuttack, India
| | - Mayabini Jena
- ICAR-National Rice Research Institute (Formerly CRRI) , Cuttack, India
| | - Lambodar Behera
- ICAR-National Rice Research Institute (Formerly CRRI) , Cuttack, India
| |
Collapse
|
47
|
Ahmad S, Raza S, Abro A, Liedl KR, Azam SS. Toward novel inhibitors against KdsB: a highly specific and selective broad-spectrum bacterial enzyme. J Biomol Struct Dyn 2018; 37:1326-1345. [PMID: 29606084 DOI: 10.1080/07391102.2018.1459318] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Affiliation(s)
- Sajjad Ahmad
- Computational Biology Lab, National Center for Bioinformatics, Quaid-i-Azam University, Islamabad 45320, Pakistan
| | - Saad Raza
- Computational Biology Lab, National Center for Bioinformatics, Quaid-i-Azam University, Islamabad 45320, Pakistan
| | - Asma Abro
- Computational Biology Lab, National Center for Bioinformatics, Quaid-i-Azam University, Islamabad 45320, Pakistan
- Faculty of Life Sciences and Informatics, Department of Biotechnology, Balochistan University of Information Technology, Engineering and Management Sciences, Quetta, Pakistan
| | - Klaus R. Liedl
- Institute for General, Inorganic and Theoretical Chemistry and Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Innrain 80/82, Innsbruck 6020, Austria
| | - Syed Sikander Azam
- Computational Biology Lab, National Center for Bioinformatics, Quaid-i-Azam University, Islamabad 45320, Pakistan
| |
Collapse
|
48
|
Tran TB, Wang J, Doi Y, Velkov T, Bergen PJ, Li J. Novel Polymyxin Combination With Antineoplastic Mitotane Improved the Bacterial Killing Against Polymyxin-Resistant Multidrug-Resistant Gram-Negative Pathogens. Front Microbiol 2018; 9:721. [PMID: 29706941 PMCID: PMC5906568 DOI: 10.3389/fmicb.2018.00721] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Accepted: 03/27/2018] [Indexed: 11/13/2022] Open
Abstract
Due to limited new antibiotics, polymyxins are increasingly used to treat multidrug-resistant (MDR) Gram-negative bacteria, in particular carbapenem-resistant Acinetobacter baumannii, Pseudomonas aeruginosa, and Klebsiella pneumoniae. Unfortunately, polymyxin monotherapy has led to the emergence of resistance. Polymyxin combination therapy has been demonstrated to improve bacterial killing and prevent the emergence of resistance. From a preliminary screening of an FDA drug library, we identified antineoplastic mitotane as a potential candidate for combination therapy with polymyxin B against polymyxin-resistant Gram-negative bacteria. Here, we demonstrated that the combination of polymyxin B with mitotane enhances the in vitro antimicrobial activity of polymyxin B against 10 strains of A. baumannii, P. aeruginosa, and K. pneumoniae, including polymyxin-resistant MDR clinical isolates. Time-kill studies showed that the combination of polymyxin B (2 mg/L) and mitotane (4 mg/L) provided superior bacterial killing against all strains during the first 6 h of treatment, compared to monotherapies, and prevented regrowth and emergence of polymyxin resistance in the polymyxin-susceptible isolates. Electron microscopy imaging revealed that the combination potentially affected cell division in A. baumannii. The enhanced antimicrobial activity of the combination was confirmed in a mouse burn infection model against a polymyxin-resistant A. baumannii isolate. As mitotane is hydrophobic, it was very likely that the synergistic killing of the combination resulted from that polymyxin B permeabilized the outer membrane of the Gram-negative bacteria and allowed mitotane to enter bacterial cells and exert its antimicrobial effect. These results have important implications for repositioning non-antibiotic drugs for antimicrobial purposes, which may expedite the discovery of novel therapies to combat the rapid emergence of antibiotic resistance.
Collapse
Affiliation(s)
- Thien B. Tran
- Monash Biomedicine Discovery Institute, Department of Microbiology, School of Biomedical Sciences, Faculty of Medicine, Nursing and Health Sciences, Monash University, Melbourne, VIC, Australia
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Melbourne, VIC, Australia
| | - Jiping Wang
- Monash Biomedicine Discovery Institute, Department of Microbiology, School of Biomedical Sciences, Faculty of Medicine, Nursing and Health Sciences, Monash University, Melbourne, VIC, Australia
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Melbourne, VIC, Australia
| | - Yohei Doi
- Division of Infectious Diseases, Department of Medicine, University of Pittsburgh Medical Center, Pittsburgh, PA, United States
| | - Tony Velkov
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Melbourne, VIC, Australia
- Department of Pharmacology and Therapeutics, School of Biomedical Sciences, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Melbourne, VIC, Australia
| | - Phillip J. Bergen
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Melbourne, VIC, Australia
- Centre for Medicine Use and Safety, Monash Institute of Pharmaceutical Sciences, Monash University, Melbourne, VIC, Australia
| | - Jian Li
- Monash Biomedicine Discovery Institute, Department of Microbiology, School of Biomedical Sciences, Faculty of Medicine, Nursing and Health Sciences, Monash University, Melbourne, VIC, Australia
| |
Collapse
|
49
|
Kaur G, Pandey B, Kumar A, Garewal N, Grover A, Kaur J. Drug targeted virtual screening and molecular dynamics of LipU protein of Mycobacterium tuberculosis and Mycobacterium leprae. J Biomol Struct Dyn 2018; 37:1254-1269. [PMID: 29557724 DOI: 10.1080/07391102.2018.1454852] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
The lipolytic protein LipU was conserved in mycobacterium sp. including M. tuberculosis (MTB LipU) and M. leprae (MLP LipU). The MTB LipU was identified in extracellular fraction and was reported to be essential for the survival of mycobacterium. Therefore to address the problem of drug resistance in pathogen, LipU was selected as a drug target and the viability of finding out some FDA approved drugs as LipU inhibitors in both the cases was explored. Three-dimensional (3D) model structures of MTB LipU and MLP LipU were generated and stabilized through molecular dynamics (MD). FDA approved drugs were screened against these proteins. The result showed that the top-scoring compounds for MTB LipU were Diosmin, Acarbose and Ouabain with the Glide XP score of -12.8, -11.9 and -11.7 kcal/mol, respectively, whereas for MLP LipU protein, Digoxin (-9.2 kcal/mol), Indinavir (-8.2 kcal/mol) and Travoprost (-8.2 kcal/mol) showed highest affinity. These drugs remained bound in the active site pocket of MTB LipU and MLP LipU structure and interaction grew stronger after dynamics. RMSD, RMSF and Rg were found to be persistent throughout the simulation period. Hydrogen bonds along with large number of hydrophobic interactions stabilized the complex structures. Binding free energies obtained through Prime/MM-GBSA were found in the significant range from -63.85 kcal/mol to -34.57 kcal/mol for MTB LipU and -71.33 kcal/mol to -23.91 kcal/mol for MLP LipU. The report suggested high probability of these drugs to demolish the LipU activity and could be probable drug candidates to combat TB and leprosy disease.
Collapse
Affiliation(s)
- Gurkamaljit Kaur
- a Department of Biotechnology, BMS Block-1, South Campus , Panjab University , Chandigarh , India
| | - Bharati Pandey
- a Department of Biotechnology, BMS Block-1, South Campus , Panjab University , Chandigarh , India
| | - Arbind Kumar
- a Department of Biotechnology, BMS Block-1, South Campus , Panjab University , Chandigarh , India
| | - Naina Garewal
- a Department of Biotechnology, BMS Block-1, South Campus , Panjab University , Chandigarh , India
| | - Abhinav Grover
- b School of Biotechnology , Jawaharlal Nehru University , New Delhi , India
| | - Jagdeep Kaur
- a Department of Biotechnology, BMS Block-1, South Campus , Panjab University , Chandigarh , India
| |
Collapse
|
50
|
Skariyachan S, Manjunath M, Bachappanavar N. Screening of potential lead molecules against prioritised targets of multi-drug-resistant-Acinetobacter baumannii - insights from molecular docking, molecular dynamic simulations and in vitro assays. J Biomol Struct Dyn 2018. [PMID: 29529934 DOI: 10.1080/07391102.2018.1451387] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Acinetobacter baumannii, an opportunistic pathogen, has become multi-drug resistant (MDR) to major classes of antibacterial and poses grave threat to public health. The current study focused to screen novel phytotherapeutics against prioritised targets of Acinetobacter baumannii by computational investigation. Fourteen potential drug targets were screened based on their functional role in various biosynthetic pathways and the 3D structures of 9 targets were retrieved from Protein Data Bank and others were computationally predicted. By extensive literature survey, 104 molecules from 48 herbal sources were screened and subjected to virtual screening. Ten clinical isolates of A. baumannii were tested for antibiotic susceptibility towards clinafloxacin, imipenem and polymyxin-E. Computational screening suggested that Ajmalicine ((19α)-16, 17-didehydro-19-methyloxayohimban-16-carboxylic acid methyl ester from Rauwolfia serpentina), Strictamin (Akuammilan-17-oic acid methyl ester from Alstonia scholaris) and Limonin (7, 16-dioxo-7, 16-dideoxylimondiol from Citrus sps) exhibited promising binding towards multiple drug targets of A. baumannii in comparison with the binding between standard drugs and their targets. Limonin displayed promising binding potential (binding energy -9.8 kcal/mol) towards diaminopimelate epimerase (DapF) and UDP-N-acetylglucosamine 1-carboxyvinyltransferase (MurA). Ajmalicine and Strictamin demonstrated good binding potential (-9.5, -8.5 kcal/mol, respectively) towards MurA and shikimate dehydrogenase (-7.8 kcal/mol). Molecular dynamic simulations further validated the docking results. In vitro assay suggested that the tested isolates exhibited resistance to clinafloxacin, imipenem and polymyxin-E and the herbal preparations (crude extract) demonstrated a significant antibacterial potential (p ≤ .05). The study suggests that the aforementioned lead candidates and targets can be used for structure-based drug screening towards MDR A. baumannii.
Collapse
Affiliation(s)
- Sinosh Skariyachan
- a Department of Biotechnology Engineering , Dayananda Sagar Institutions , Bengaluru 560 078 , Karnataka , India.,b Visvesvaraya Technological University , Belagavi , India
| | - Meghna Manjunath
- a Department of Biotechnology Engineering , Dayananda Sagar Institutions , Bengaluru 560 078 , Karnataka , India.,b Visvesvaraya Technological University , Belagavi , India
| | - Nikhil Bachappanavar
- a Department of Biotechnology Engineering , Dayananda Sagar Institutions , Bengaluru 560 078 , Karnataka , India.,b Visvesvaraya Technological University , Belagavi , India
| |
Collapse
|