1
|
Nisar N, Fareed A, Naqvi STA, Zeb BS, Amin BAZ, Khurshid G, Zaffar H. Biodegradation Study of Used Engine Oil by Free and Immobilized Cells of the Pseudomonas oleovorans Strain NMA and Their Growth Kinetics. ACS OMEGA 2025; 10:541-549. [PMID: 39829463 PMCID: PMC11740249 DOI: 10.1021/acsomega.4c06964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 12/10/2024] [Accepted: 12/18/2024] [Indexed: 01/22/2025]
Abstract
Used engine oil is considered to be one of the high-risk pollutants, and if introduced untreated in the environment, it threatens the whole ecosystem. Therefore, there is a need to find some rapid and efficient methods for the remediation of used engine oil. The present study aimed to isolate indigenous bacterial strains having the capability to degrade used engine oil. The enrichment technique was employed for the isolation of bacterial strains, which were identified by the 16S rRNA technique. As biosurfactants play a vital role in the degradation process, the activity was determined by standard protocols. The bacterial strain was isolated by the enrichment technique and identified as the Pseudomonas oleovorans strain NMA. The bacterial isolate has the ability to utilize used engine oil as the sole source of energy. The biodegradation experiment revealed that both free and immobilized cells degrade used engine oil, but immobilized cells showed the best biodegradation result, with 98-99% degradation efficiency in 7 days of incubation irrespective of all oil concentrations. For the analysis of degraded products, gas chromatography-mass spectrometry (GC-MS) was performed, which indicates that the treated samples do not carry the major engine components, i.e., methyl hexane, pyrene, and phytane, which confirmed that these were transformed by the bacterial activity. Monod kinetics further confirmed that the isolated bacterium utilizes used engine oil as the sole source of energy. These findings clearly indicate the potential of the bacterium NMA to degrade used engine oil with high kinetics, converting it into nontoxic products, and thus be a potential candidate for remediation at contaminated sites.
Collapse
Affiliation(s)
- Nimra Nisar
- Department
of Environmental Sciences, COMSATS University
Islamabad, Abbottabad Campus, Abbottabad 22060, Pakistan
| | - Anum Fareed
- Department
of Biotechnology, COMSATS University Islamabad,
Abbottabad Campus, Abbottabad 22060, Pakistan
| | - Syed Tatheer Alam Naqvi
- Department
of Biotechnology, COMSATS University Islamabad,
Abbottabad Campus, Abbottabad 22060, Pakistan
| | - Bibi Saima Zeb
- Department
of Environmental Sciences, COMSATS University
Islamabad, Abbottabad Campus, Abbottabad 22060, Pakistan
| | - Bilal Ahmad Zafar Amin
- Energy
Research Center, COMSATS University Islamabad, Lahore Campus, Lahore 54000, Pakistan
| | - Ghazal Khurshid
- Department
of Biotechnology, COMSATS University Islamabad,
Abbottabad Campus, Abbottabad 22060, Pakistan
| | - Habiba Zaffar
- Department
of Environmental Sciences, COMSATS University
Islamabad, Abbottabad Campus, Abbottabad 22060, Pakistan
| |
Collapse
|
2
|
Govindan R, Gnanasekaran C, Govindan R, Muthuchamy M, Quero F, Jothi A, Chelliah CK, Arunachalam A, Viswanathan MR, Natesan M, Kadaikunnan S, Li WJ. Anti-quorum Sensing and Anti-biofilm Effect of Nocardiopsis synnemataformans RMN 4 (MN061002) Compound 2,6-Di-tert-butyl, 1,4-Benzoquinone Against Biofilm-Producing Bacteria. Appl Biochem Biotechnol 2024; 196:3914-3948. [PMID: 37792174 DOI: 10.1007/s12010-023-04738-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/15/2023] [Indexed: 10/05/2023]
Abstract
In this study, the anti-biofilm compound of 2,6-Di-tert-butyl, 1,4-benzoquinone was purified from Nocardiopsis synnemataformans (N. synnemataformans) RMN 4 (MN061002). To confirm the compound, various spectroscopy analyses were done including ultraviolet (UV) spectrometer, Fourier transform infrared spectroscopy (FTIR), analytical high-performance liquid chromatography (HPLC), preparative HPLC, gas chromatography-mass spectroscopy (GC-MS), liquid chromatography-mass spectroscopy (LC-MS), and 2D nuclear magnetic resonance (NMR). Furthermore, the purified compound was shown 94% inhibition against biofilm-producing Proteus mirabilis (P. mirabilis) (MN396686) at 70 µg/mL concentrations. Furthermore, the metabolic activity, exopolysaccharide damage, and hydrophobicity degradation results of identified compound exhibited excellent inhibition at 100 µg/mL concentration. Furthermore, the confocal laser scanning electron microscope (CLSM) and scanning electron microscope (SEM) results were shown with intracellular damages and architectural changes in bacteria. Consecutively, the in vivo toxicity effect of the compound against Artemia franciscana (A. franciscana) was shown to have a low mortality rate at 100 µg/mL. Finally, the molecular docking interaction between the quorum sensing (QS) genes and identified compound clearly suggested that the identified compound 2,6-Di-tert-butyl, 1,4-benzoquinone has anti-quorum sensing and anti-biofilm activities against P. mirabilis (MN396686).
Collapse
Affiliation(s)
- Rajivgandhi Govindan
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, People's Republic of China
- Marine Pharmacology & Toxicology Lab, Department of Marine Science, Bharathidasan University, Tiruchirappalli, 620024, Tamil Nadu, India
- Laboratorio de Nanocelulosa y Biomateriales, Departamento de Ingeniería Química, Facultad de CienciasFísicas y Matemáticas, Universidad de Chile, Biotecnología y MaterialesAvenida Beauchef 851, 8370456, Santiago, Chile
| | - Chackaravarthi Gnanasekaran
- Marine Pharmacology & Toxicology Lab, Department of Marine Science, Bharathidasan University, Tiruchirappalli, 620024, Tamil Nadu, India
| | - Ramachandran Govindan
- Marine Pharmacology & Toxicology Lab, Department of Marine Science, Bharathidasan University, Tiruchirappalli, 620024, Tamil Nadu, India.
| | - Maruthupandy Muthuchamy
- Laboratorio de Nanocelulosa y Biomateriales, Departamento de Ingeniería Química, Facultad de CienciasFísicas y Matemáticas, Universidad de Chile, Biotecnología y MaterialesAvenida Beauchef 851, 8370456, Santiago, Chile
- Lab of Toxicology, Department of Health Sciences, The Graduate School of Dong-A University, 37, Nakdong-Dearo 550 Beon-Gil, Saha-Gu, Busan, 49315, South Korea
| | - Franck Quero
- Laboratorio de Nanocelulosa y Biomateriales, Departamento de Ingeniería Química, Facultad de CienciasFísicas y Matemáticas, Universidad de Chile, Biotecnología y MaterialesAvenida Beauchef 851, 8370456, Santiago, Chile
| | - Arunachalam Jothi
- School of Chemical & Biotechnology, SASTRA Deemed University, Tamil Nadu, Tanjore, India, 401
| | - Chenthis Knaisha Chelliah
- Department of Nanotechnology, Noorul Islam Centre for Higher Education, Tamil Nadu, Kumaracoil, Kanyakumari, 629180, India
| | - Arulraj Arunachalam
- Departamento de Electricidad, Facultad de Ingeniería, Universidad Tecnológica Metropolitana (UTEM), Macul, Santiago, Chile
| | - Mangalaraja Ramalinga Viswanathan
- Faculty of Engineering and Sciences, Universidad Adolfo Ibáñez, Región Metropolitana, Diag. Las Torres 2640, 7941169, Peñalolén, Santiago, Chile
| | - Manoharan Natesan
- Marine Pharmacology & Toxicology Lab, Department of Marine Science, Bharathidasan University, Tiruchirappalli, 620024, Tamil Nadu, India
| | - Shine Kadaikunnan
- Department of Botany and Microbiology, College of Science, King Saud University, P. O. Box 2455, 11451, Riyadh, Saudi Arabia
| | - Wen-Jun Li
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, People's Republic of China.
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, 830011, People's Republic of China.
| |
Collapse
|
3
|
Qi Y, Ji P, Yin K, Zheng Y, Niu J, Jia A, Zhou J, Li J. Phloretin Inhibits Quorum Sensing and Biofilm Formation in Serratia marcescens. Molecules 2023; 28:8067. [PMID: 38138556 PMCID: PMC10746122 DOI: 10.3390/molecules28248067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 11/28/2023] [Accepted: 12/03/2023] [Indexed: 12/24/2023] Open
Abstract
This study investigated the antivirulence capacity and mechanism of apple-skin-derived phloretin against Serratia marcescens NJ01, a vegetable spoilage bacterium. At 0.5 to 2 mg/mL doses, phloretin considerably inhibited the secretion of acyl homoserine lactones (AHLs), indicating that phloretin disrupted quorum sensing (QS) in S. marcescens NJ01. The dysfunction of QS resulted in reduced biofilms and the decreased production of protease, prodigiosin, extracellular polysaccharides (EPSs), and swimming and swarming motilities. Dysfunctional QS also weakened the activity of antioxidant enzymes and improved oxidative injury. The improved oxidative injury changed the composition of the membrane, improved membrane permeability, and eventually increased the susceptibility of biofilm cells to amikacin, netilmicin, and imipenem. The disrupted QS and enhanced oxidative stress also caused disorders of amino acid metabolism, energy metabolism, and nucleic acid metabolism, and ultimately attenuated the ability of S. marcescens NJ01 to induce spoilage. Our results indicated that phloretin can act as a potent drug to defend against spoilage by S. marcescens.
Collapse
Affiliation(s)
- Yueheng Qi
- Henan Provincial People’s Hospital, People’s Hospital of Zhengzhou University, Zhengzhou 477150, China
- Luoyang Key Laboratory of Organic Functional Molecules, College of Food and Drug, Luoyang Normal University, Luoyang 471934, China
| | - Pengcheng Ji
- School of Food and Biological Engineering, Xuzhou University of Technology, Xuzhou 221018, China
| | - Kunyuan Yin
- School of Food and Biological Engineering, Xuzhou University of Technology, Xuzhou 221018, China
| | - Yi Zheng
- School of Food and Biological Engineering, Xuzhou University of Technology, Xuzhou 221018, China
| | - Jiangxiu Niu
- Luoyang Key Laboratory of Organic Functional Molecules, College of Food and Drug, Luoyang Normal University, Luoyang 471934, China
| | - Aiqun Jia
- Henan Provincial People’s Hospital, People’s Hospital of Zhengzhou University, Zhengzhou 477150, China
| | - Jinwei Zhou
- School of Food and Biological Engineering, Xuzhou University of Technology, Xuzhou 221018, China
| | - Jingguo Li
- Henan Provincial People’s Hospital, People’s Hospital of Zhengzhou University, Zhengzhou 477150, China
| |
Collapse
|
4
|
Jimoh AA, Booysen E, van Zyl L, Trindade M. Do biosurfactants as anti-biofilm agents have a future in industrial water systems? Front Bioeng Biotechnol 2023; 11:1244595. [PMID: 37781531 PMCID: PMC10540235 DOI: 10.3389/fbioe.2023.1244595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 09/04/2023] [Indexed: 10/03/2023] Open
Abstract
Biofilms are bacterial communities embedded in exopolymeric substances that form on the surfaces of both man-made and natural structures. Biofilm formation in industrial water systems such as cooling towers results in biofouling and biocorrosion and poses a major health concern as well as an economic burden. Traditionally, biofilms in industrial water systems are treated with alternating doses of oxidizing and non-oxidizing biocides, but as resistance increases, higher biocide concentrations are needed. Using chemically synthesized surfactants in combination with biocides is also not a new idea; however, these surfactants are often not biodegradable and lead to accumulation in natural water reservoirs. Biosurfactants have become an essential bioeconomy product for diverse applications; however, reports of their use in combating biofilm-related problems in water management systems is limited to only a few studies. Biosurfactants are powerful anti-biofilm agents and can act as biocides as well as biodispersants. In laboratory settings, the efficacy of biosurfactants as anti-biofilm agents can range between 26% and 99.8%. For example, long-chain rhamnolipids isolated from Burkholderia thailandensis inhibit biofilm formation between 50% and 90%, while a lipopeptide biosurfactant from Bacillus amyloliquefaciens was able to inhibit biofilms up to 96% and 99%. Additionally, biosurfactants can disperse preformed biofilms up to 95.9%. The efficacy of antibiotics can also be increased by between 25% and 50% when combined with biosurfactants, as seen for the V9T14 biosurfactant co-formulated with ampicillin, cefazolin, and tobramycin. In this review, we discuss how biofilms are formed and if biosurfactants, as anti-biofilm agents, have a future in industrial water systems. We then summarize the reported mode of action for biosurfactant molecules and their functionality as biofilm dispersal agents. Finally, we highlight the application of biosurfactants in industrial water systems as anti-fouling and anti-corrosion agents.
Collapse
Affiliation(s)
| | | | | | - Marla Trindade
- Department of Biotechnology, Institute for Microbial Biotechnology and Metagenomics (IMBM), University of the Western Cape, Cape Town, South Africa
| |
Collapse
|
5
|
Fait ME, Grillo PD, Garrote GL, Prieto ED, Vázquez RF, Saparrat MCN, Morcelle SR. Biocidal and antibiofilm activities of arginine-based surfactants against Candida isolates. Amino Acids 2023; 55:1083-1102. [PMID: 37382761 DOI: 10.1007/s00726-023-03296-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 06/19/2023] [Indexed: 06/30/2023]
Abstract
Amino-acid-based surfactants are a group of compounds that resemble natural amphiphiles and thus are expected to have a low impact on the environment, owing to either the mode of surfactant production or its means of disposal. Within this context, arginine-based tensioactives have gained particular interest, since their cationic nature-in combination with their amphiphilic character-enables them to act as broad-spectrum biocides. This capability is based mainly on their interactive affinity for the microbial envelope that alters the latter's structure and ultimately its function. In the work reported here, we investigated the efficiency of Nα-benzoyl arginine decyl- and dodecylamide against Candida spp. to further our understanding of the antifungal mechanism involved. For the assays, both a Candida albicans and a Candida tropicalis clinical isolates along with a C. albicans-collection strain were used as references. As expected, both arginine-based compounds proved to be effective against the strains tested through inhibiting both the planktonic and the sessile growth. Furthermore, atomic force microscopy techniques and lipid monolayer experiments enabled us to gain insight into the effect of the surfactant on the cellular envelope. The results demonstrated that all the yeasts treated exhibited changes in their exomorphologic structure, with respect to alterations in both roughness and stiffness, relative to the nontreated ones. This finding-in addition to the amphiphiles' proven ability to insert themselves within this model fungal membrane-could explain the changes in the yeast-membrane permeability that could be linked to viability loss and mixed-vesicle release.
Collapse
Affiliation(s)
- M Elisa Fait
- Centro de Investigación de Proteínas Vegetales (CIProVe-UNLP-Centro Asociado CICPBA), Departamento de Ciencias Biológicas, Facultad de Ciencias Exactas, Centro Asociado CICPBA, Universidad Nacional de La Plata (UNLP), La Plata, Argentina.
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina.
| | - Patricia D Grillo
- Centro de Investigación de Proteínas Vegetales (CIProVe-UNLP-Centro Asociado CICPBA), Departamento de Ciencias Biológicas, Facultad de Ciencias Exactas, Centro Asociado CICPBA, Universidad Nacional de La Plata (UNLP), La Plata, Argentina
- Agencia Nacional de Promoción Científica y Tecnológica (ANPCyT), Buenos Aires, Argentina
| | - Graciela L Garrote
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
- Centro de Investigación y Desarrollo en Criotecnología de Alimentos (CIDCA, CONICET-UNLP-CICPBA), La Plata, Argentina
| | - Eduardo D Prieto
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
- Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA), CONICET, UNLP, CCT-La Plata, La Plata, Argentina
- Departamento de Ciencias Biológicas, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, La Plata, Argentina
- Instituto Ciencias de la Salud, Universidad Nacional Arturo Jauretche, Buenos Aires, Argentina
| | - Romina F Vázquez
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
- Instituto de Investigaciones Bioquímicas de La Plata (INIBIOLP), CCT-La Plata, CONICET, UNLP, La Plata, Argentina
| | - Mario C N Saparrat
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
- Instituto de Fisiología Vegetal (INFIVE-CONICET-UNLP) and Cátedra de Microbiología Agrícola, Facultad de Ciencias Agrarias y Forestales, UNLP, La Plata, Argentina
| | - Susana R Morcelle
- Centro de Investigación de Proteínas Vegetales (CIProVe-UNLP-Centro Asociado CICPBA), Departamento de Ciencias Biológicas, Facultad de Ciencias Exactas, Centro Asociado CICPBA, Universidad Nacional de La Plata (UNLP), La Plata, Argentina.
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina.
| |
Collapse
|
6
|
Kumari R, Singha LP, Shukla P. Biotechnological potential of microbial bio-surfactants, their significance, and diverse applications. FEMS MICROBES 2023; 4:xtad015. [PMID: 37614639 PMCID: PMC10442721 DOI: 10.1093/femsmc/xtad015] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 07/16/2023] [Accepted: 08/09/2023] [Indexed: 08/25/2023] Open
Abstract
Globally, there is a huge demand for chemically available surfactants in many industries, irrespective of their detrimental impact on the environment. Naturally occurring green sustainable substances have been proven to be the best alternative for reducing reliance on chemical surfactants and promoting long-lasting sustainable development. The most frequently utilized green active biosurfactants, which are made by bacteria, yeast, and fungi, are discussed in this review. These biosurfactants are commonly originated from contaminated sites, the marine ecosystem, and the natural environment, and it holds great potential for environmental sustainability. In this review, we described the importance of biosurfactants for the environment, including their biodegradability, low toxicity, environmental compatibility, and stability at a wide pH range. In this review, we have also described the various techniques that have been utilized to characterize and screen the generation of microbial biosurfactants. Also, we reviewed the potential of biosurfactants and its emerging applications in the foods, cosmetics, pharmaceuticals, and agricultural industries. In addition, we also discussed the ways to overcome problems with expensive costs such as low-cost substrate media formulation, gravitational techniques, and solvent-free foam fractionation for extraction that could be employed during biosurfactant production on a larger scale.
Collapse
Affiliation(s)
- Renuka Kumari
- Enzyme Technology and Protein Bioinformatics Laboratory, School of Biotechnology, Institute of Science, Banaras Hindu University, Varanasi 221005, Uttar Pradesh, India
| | - Lairenjam Paikhomba Singha
- Enzyme Technology and Protein Bioinformatics Laboratory, School of Biotechnology, Institute of Science, Banaras Hindu University, Varanasi 221005, Uttar Pradesh, India
- Department of Microbiology, School of Life Sciences, Central University of Rajasthan, Ajmer-305817, Rajasthan, India
| | - Pratyoosh Shukla
- Enzyme Technology and Protein Bioinformatics Laboratory, School of Biotechnology, Institute of Science, Banaras Hindu University, Varanasi 221005, Uttar Pradesh, India
| |
Collapse
|
7
|
Cong L, Chen C, Mao S, Han Z, Zhu Z, Li Y. Intestinal bacteria-a powerful weapon for fungal infections treatment. Front Cell Infect Microbiol 2023; 13:1187831. [PMID: 37333850 PMCID: PMC10272564 DOI: 10.3389/fcimb.2023.1187831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 05/22/2023] [Indexed: 06/20/2023] Open
Abstract
The morbidity and mortality of invasive fungal infections are rising gradually. In recent years, fungi have quietly evolved stronger defense capabilities and increased resistance to antibiotics, posing huge challenges to maintaining physical health. Therefore, developing new drugs and strategies to combat these invasive fungi is crucial. There are a large number of microorganisms in the intestinal tract of mammals, collectively referred to as intestinal microbiota. At the same time, these native microorganisms co-evolve with their hosts in symbiotic relationship. Recent researches have shown that some probiotics and intestinal symbiotic bacteria can inhibit the invasion and colonization of fungi. In this paper, we review the mechanism of some intestinal bacteria affecting the growth and invasion of fungi by targeting the virulence factors, quorum sensing system, secreting active metabolites or regulating the host anti-fungal immune response, so as to provide new strategies for resisting invasive fungal infection.
Collapse
Affiliation(s)
- Liu Cong
- School of Medical Technology, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Chaoqun Chen
- School of Medical Technology, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Shanshan Mao
- School of Medical Technology, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Zibing Han
- Department of Genetics, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Zuobin Zhu
- Department of Genetics, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Ying Li
- School of Medical Technology, Xuzhou Medical University, Xuzhou, Jiangsu, China
| |
Collapse
|
8
|
Nagtode V, Cardoza C, Yasin HKA, Mali SN, Tambe SM, Roy P, Singh K, Goel A, Amin PD, Thorat BR, Cruz JN, Pratap AP. Green Surfactants (Biosurfactants): A Petroleum-Free Substitute for Sustainability-Comparison, Applications, Market, and Future Prospects. ACS OMEGA 2023; 8:11674-11699. [PMID: 37033812 PMCID: PMC10077441 DOI: 10.1021/acsomega.3c00591] [Citation(s) in RCA: 49] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Accepted: 03/09/2023] [Indexed: 06/19/2023]
Abstract
Surfactants are a group of amphiphilic molecules (i.e., having both hydrophobic and hydrophilic domains) that are a vital part of nearly every contemporary industrial process such as in agriculture, medicine, personal care, food, and petroleum. In general surfactants can be derived from (i) petroleum-based sources or (ii) microbial/plant origins. Petroleum-based surfactants are obvious results from petroleum products, which lead to petroleum pollution and thus pose severe problems to the environment leading to various ecological damages. Thus, newer techniques have been suggested for deriving surfactant molecules and maintaining environmental sustainability. Biosurfactants are surfactants of microbial or plant origins and offer much added advantages such as high biodegradability, lesser toxicity, ease of raw material availability, and easy applicability. Thus, they are also termed "green surfactants". In this regard, this review focused on the advantages of biosurfactants over the synthetic surfactants produced from petroleum-based products along with their potential applications in different industries. We also provided their market aspects and future directions that can be considered with selections of biosurfactants. This would open up new avenues for surfactant research by overcoming the existing bottlenecks in this field.
Collapse
Affiliation(s)
- Vaishnavi
S. Nagtode
- Department
of Oils, Oleochemicals and Surfactants Technology, Institute of Chemical Technology, Mumbai 400019, India
| | - Clive Cardoza
- Department
of Oils, Oleochemicals and Surfactants Technology, Institute of Chemical Technology, Mumbai 400019, India
| | - Haya Khader Ahmad Yasin
- Department
of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, Ajman University, Ajman, United Arab Emirates
- Center
of Medical and Bio-allied Health Sciences Research, Ajman University, P.O. Box 346, Ajman, United Arab Emirates
| | - Suraj N. Mali
- Department
of Pharmaceutical Sciences and Technology, Birla Institute of Technology, Mesra 835215, India
| | - Srushti M. Tambe
- Department
of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, Mumbai 400019, India
| | - Pritish Roy
- Department
of Oils, Oleochemicals and Surfactants Technology, Institute of Chemical Technology, Mumbai 400019, India
| | - Kartikeya Singh
- Department
of Oils, Oleochemicals and Surfactants Technology, Institute of Chemical Technology, Mumbai 400019, India
| | - Antriksh Goel
- Department
of Oils, Oleochemicals and Surfactants Technology, Institute of Chemical Technology, Mumbai 400019, India
| | - Purnima D. Amin
- Department
of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, Mumbai 400019, India
| | - Bapu R. Thorat
- Department
of Chemistry, Government College of Arts
and Science, Aurangabad, Maharashtra 431001, India
| | - Jorddy N. Cruz
- Laboratory
of Modeling and Computational Chemistry, Department of Biological
and Health Sciences, Federal University
of Amapá, Macapá 68902-280, Amapá, Brazil
| | - Amit P. Pratap
- Department
of Oils, Oleochemicals and Surfactants Technology, Institute of Chemical Technology, Mumbai 400019, India
| |
Collapse
|
9
|
Sharma D, Singh D, Sukhbir-Singh GM, Karamchandani BM, Aseri GK, Banat IM, Satpute SK. Biosurfactants: Forthcomings and Regulatory Affairs in Food-Based Industries. Molecules 2023; 28:molecules28062823. [PMID: 36985795 PMCID: PMC10055102 DOI: 10.3390/molecules28062823] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 03/17/2023] [Accepted: 03/19/2023] [Indexed: 03/30/2023] Open
Abstract
The terms discussed in this review-biosurfactants (BSs) and bioemulsifiers (BEs)-describe surface-active molecules of microbial origin which are popular chemical entities for many industries, including food. BSs are generally low-molecular-weight compounds with the ability to reduce surface tension noticeably, whereas BEs are high-molecular-weight molecules with efficient emulsifying abilities. Some other biomolecules, such as lecithin and egg yolk, are useful as natural BEs in food products. The high toxicity and severe ecological impact of many chemical-based surfactants have directed interest towards BSs/BEs. Interest in food surfactant formulations and consumer anticipation of "green label" additives over synthetic or chemical-based surfactants have been steadily increasing. BSs have an undeniable prospective for replacing chemical surfactants with vast significance to food formulations. However, the commercialization of BSs/BEs production has often been limited by several challenges, such as the optimization of fermentation parameters, high downstream costs, and low yields, which had an immense impact on their broader adoptions in different industries, including food. The foremost restriction regarding the access of BSs/BEs is not their lack of cost-effective industrial production methods, but a reluctance regarding their potential safety, as well as the probable microbial hazards that may be associated with them. Most research on BSs/BEs in food production has been restricted to demonstrations and lacks a comprehensive assessment of safety and risk analysis, which has limited their adoption for varied food-related applications. Furthermore, regulatory agencies require extensive exploration and analysis to secure endorsements for the inclusion of BSs/BEs as potential food additives. This review emphasizes the promising properties of BSs/BEs, trailed by an overview of their current use in food formulations, as well as risk and toxicity assessment. Finally, we assess their potential challenges and upcoming future in substituting chemical-based surfactants.
Collapse
Affiliation(s)
- Deepansh Sharma
- Department of Life Sciences, J. C Bose University of Science & Technology, YMCA Faridabad-Haryana, Haryana 121006, India
| | - Deepti Singh
- Amity Institute of Microbial Technology, Amity University Rajasthan, Jaipur 303002, India
| | | | | | - Gajender Kumar Aseri
- Amity Institute of Microbial Technology, Amity University Rajasthan, Jaipur 303002, India
| | - Ibrahim M Banat
- School of Biomedical Sciences, Faculty of Life and Health Sciences, University of Ulster, Coleraine BT52 1SA, UK
| | - Surekha K Satpute
- Department of Microbiology, Savitribai Phule Pune University, Pune 411007, India
| |
Collapse
|
10
|
Li Z, Liu P, Chen S, Liu X, Yu Y, Li T, Wan Y, Tang N, Liu Y, Gu Y. Bioinspired marine antifouling coatings: Antifouling mechanisms, design strategies and application feasibility studies. Eur Polym J 2023. [DOI: 10.1016/j.eurpolymj.2023.111997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2023]
|
11
|
Coppola D, Buonocore C, Palisse M, Tedesco P, de Pascale D. Exploring Oceans for Curative Compounds: Potential New Antimicrobial and Anti-Virulence Molecules against Pseudomonas aeruginosa. Mar Drugs 2022; 21:9. [PMID: 36662182 PMCID: PMC9865402 DOI: 10.3390/md21010009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 12/16/2022] [Accepted: 12/20/2022] [Indexed: 12/28/2022] Open
Abstract
Although several antibiotics are already widely used against a large number of pathogens, the discovery of new antimicrobial compounds with new mechanisms of action is critical today in order to overcome the spreading of antimicrobial resistance among pathogen bacteria. In this regard, marine organisms represent a potential source of a wide diversity of unique secondary metabolites produced as an adaptation strategy to survive in competitive and hostile environments. Among the multidrug-resistant Gram-negative bacteria, Pseudomonas aeruginosa is undoubtedly one of the most important species due to its high intrinsic resistance to different classes of antibiotics on the market and its ability to cause serious therapeutic problems. In the present review, we first discuss the general mechanisms involved in the antibiotic resistance of P. aeruginosa. Subsequently, we list the marine molecules identified up until now showing activity against P. aeruginosa, dividing them according to whether they act as antimicrobial or anti-virulence compounds.
Collapse
Affiliation(s)
- Daniela Coppola
- Department of Ecosustainable Marine Biotechnology, Stazione Zoologica Anton Dohrn, Via Ammiraglio Ferdinando Acton 55, 80133 Naples, Italy
| | - Carmine Buonocore
- Department of Ecosustainable Marine Biotechnology, Stazione Zoologica Anton Dohrn, Via Ammiraglio Ferdinando Acton 55, 80133 Naples, Italy
| | - Morgan Palisse
- Département des Sciences de la Vie et de la Terre, Université de Caen Normandie, Boulevard Maréchal Juin CS, CEDEX, 14032 Caen, France
| | - Pietro Tedesco
- Department of Ecosustainable Marine Biotechnology, Stazione Zoologica Anton Dohrn, Via Ammiraglio Ferdinando Acton 55, 80133 Naples, Italy
| | - Donatella de Pascale
- Department of Ecosustainable Marine Biotechnology, Stazione Zoologica Anton Dohrn, Via Ammiraglio Ferdinando Acton 55, 80133 Naples, Italy
| |
Collapse
|
12
|
Mulugeta K, Kamaraj M, Tafesse M, Kebede G, Gemechu G, Chandran M. Biomolecules from Serratia sp. CS1 indigenous to Ethiopian natural alkaline lakes: biosurfactant characteristics and assessment of compatibility in a laundry detergent. ENVIRONMENTAL MONITORING AND ASSESSMENT 2022; 194:873. [PMID: 36227369 DOI: 10.1007/s10661-022-10533-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Accepted: 06/18/2022] [Indexed: 06/16/2023]
Abstract
In this study, the biosurfactants (Bio-SFs) producing bacteria are screened from the selected alkaline lake of Ethiopia, and the potential bacterial strain and their produced Bio-SFs are further characterized. In an initial screening, 25 bacterial isolates were isolated, and among those, the bacterial isolate assigned as CS1 was identified as the most potent producer of Bio-SFs using a subsequent characterization process. The CS1 strain was identified as Serratia sp. via biochemical and molecular methods. An emulsion index (E24) of 69.06 ± 0.11% was obtained for CS1 after 5 days of incubation time at 30 °C. The CS1-extracted Bio-SFs were characterized by Fourier transform infrared (FTIR), and it indicated that the type of biosurfactant produced was a glycolipid. The stability of the crude Bio-SFs was characterized, and the optimal conditions were found to be 80 °C, pH 8, and 3% NaCl, respectively. The extracted Bio-SFs were compatible with tested commercial detergents, and its efficiency increased from 12.2 ± 0.1% to 67.1 ± 0.17% and 70.43 ± 0.11% when combined with commercially available detergent brands in Ethiopia such as Taza and Largo, respectively. This study suggests that the isolated S. marcescens CS1 strain has the potential to produce Bio-SFs that are viable competence to replace the use of synthetic chemicals in the production of commercial detergents.
Collapse
Affiliation(s)
- Kidist Mulugeta
- Bioprocess and Biotechnology Center of Excellence, Addis Ababa Science and Technology University, P.O. Box 16417, Addis Ababa, Ethiopia
- Department of Biotechnology, College of Biological and Chemical Engineering, Addis Ababa Science and Technology University, P.O. Box 16417, Addis Ababa, Ethiopia
| | - Murugesan Kamaraj
- Department of Biotechnology, Faculty of Science and Humanities, SRM Institute of Science and Technology - Ramapuram Campus, Chennai, 600089, Tamil Nadu, India.
| | - Mesfin Tafesse
- Bioprocess and Biotechnology Center of Excellence, Addis Ababa Science and Technology University, P.O. Box 16417, Addis Ababa, Ethiopia
- Department of Biotechnology, College of Biological and Chemical Engineering, Addis Ababa Science and Technology University, P.O. Box 16417, Addis Ababa, Ethiopia
| | - Gessesse Kebede
- Bioprocess and Biotechnology Center of Excellence, Addis Ababa Science and Technology University, P.O. Box 16417, Addis Ababa, Ethiopia
- Department of Biotechnology, College of Biological and Chemical Engineering, Addis Ababa Science and Technology University, P.O. Box 16417, Addis Ababa, Ethiopia
| | - Getachew Gemechu
- Bioprocess and Biotechnology Center of Excellence, Addis Ababa Science and Technology University, P.O. Box 16417, Addis Ababa, Ethiopia
- Department of Biotechnology, College of Biological and Chemical Engineering, Addis Ababa Science and Technology University, P.O. Box 16417, Addis Ababa, Ethiopia
| | - Masi Chandran
- Bioprocess and Biotechnology Center of Excellence, Addis Ababa Science and Technology University, P.O. Box 16417, Addis Ababa, Ethiopia
- Department of Biotechnology, College of Biological and Chemical Engineering, Addis Ababa Science and Technology University, P.O. Box 16417, Addis Ababa, Ethiopia
| |
Collapse
|
13
|
Wypij M, Ostrowski M, Piska K, Wójcik-Pszczoła K, Pękala E, Rai M, Golińska P. Novel Antibacterial, Cytotoxic and Catalytic Activities of Silver Nanoparticles Synthesized from Acidophilic Actinobacterial SL19 with Evidence for Protein as Coating Biomolecule. J Microbiol Biotechnol 2022; 32:1195-1208. [PMID: 36116918 PMCID: PMC9628977 DOI: 10.4014/jmb.2205.05006] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 08/16/2022] [Accepted: 08/18/2022] [Indexed: 12/15/2022]
Abstract
Silver nanoparticles (AgNPs) have potential applications in medicine, photocatalysis, agriculture, and cosmetic fields due to their unique physicochemical properties and strong antimicrobial activity. Here, AgNPs were synthesized using actinobacterial SL19 strain, isolated from acidic forest soil in Poland, and confirmed by UV-vis and FTIR spectroscopy, TEM, and zeta potential analysis. The AgNPs were polydispersed, stable, spherical, and small, with an average size of 23 nm. The FTIR study revealed the presence of bonds characteristic of proteins that cover nanoparticles. These proteins were then studied by using liquid chromatography with tandem mass spectrometry (LC-MS/ MS) and identified with the highest similarity to hypothetical protein and porin with molecular masses equal to 41 and 38 kDa, respectively. Our AgNPs exhibited remarkable antibacterial activity against Escherichia coli and Pseudomonas aeruginosa. The combined, synergistic action of these synthesized AgNPs with commercial antibiotics (ampicillin, kanamycin, streptomycin, and tetracycline) enabled dose reductions in both components and increased their antimicrobial efficacy, especially in the case of streptomycin and tetracycline. Furthermore, the in vitro activity of the AgNPs on human cancer cell lines (MCF-7, A375, A549, and HepG2) showed cancer-specific sensitivity, while the genotoxic activity was evaluated by Ames assay, which revealed a lack of mutagenicity on the part of nanoparticles in Salmonella Typhimurium TA98 strain. We also studied the impact of the AgNPs on the catalytic and photocatalytic degradation of methyl orange (MO). The decomposition of MO was observed by a decrease in intensity of absorbance within time. The results of our study proved the easy, fast, and efficient synthesis of AgNPs using acidophilic actinomycete SL19 strain and demonstrated the remarkable potential of these AgNPs as anticancer and antibacterial agents. However, the properties and activity of such particles can vary by biosynthesized batch.
Collapse
Affiliation(s)
- Magdalena Wypij
- Department of Microbiology, Nicolaus Copernicus University, Torun 87-100, Poland,Corresponding author Phone: +48 (611)31-79 Fax: +48 (611)31-79 E-mail:
| | - Maciej Ostrowski
- Department of Biochemistry, Nicolaus Copernicus University, Torun 87-100, Poland
| | - Kamil Piska
- Department of Pharmaceutical Biochemistry, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688, Kraków, Poland
| | - Katarzyna Wójcik-Pszczoła
- Department of Pharmaceutical Biochemistry, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688, Kraków, Poland
| | - Elżbieta Pękala
- Department of Pharmaceutical Biochemistry, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688, Kraków, Poland
| | - Mahendra Rai
- Department of Microbiology, Nicolaus Copernicus University, Torun 87-100, Poland,Nanobiotechnology Laboratory, Department of Biotechnology, SGB Amravati University, Amravati 444602, India
| | - Patrycja Golińska
- Department of Microbiology, Nicolaus Copernicus University, Torun 87-100, Poland
| |
Collapse
|
14
|
Dos Santos RA, Rodríguez DM, Ferreira INDS, de Almeida SM, Takaki GMDC, de Lima MAB. Novel production of biodispersant by Serratia marcescens UCP 1549 in solid-state fermentation and application for oil spill bioremediation. ENVIRONMENTAL TECHNOLOGY 2022; 43:2956-2967. [PMID: 33775228 DOI: 10.1080/09593330.2021.1910733] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Accepted: 02/17/2021] [Indexed: 06/12/2023]
Abstract
Oil spills in aquatic ecosystems cause irreparable damage to marine life and the coastal populations of affected areas. In recent years, chemical dispersants have been extensively used to remedy these impacted ecosystems, although these agents have been increasingly restricted due to their toxic potential. In this context, biosurfactants are emerging as a promising alternative to chemical dispersants, which have some advantages including low toxicity, high biodegradability and good ecological acceptability. Thus, this study aimed to the production of biosurfactant by the bacteria Serratia marcescens UCP 1549 for application as biodispersant. The experiment was carried out using wheat bran as substrate in solid-state fermentation (SSF) as low-cost technology. Biosurfactant production was verified by the reduction of surface tension (28.4 mN/m) and interfacial tension (4.1 mN/m) with n-hexadecane. Also, promising result of emulsification (94%) with burned motor oil was obtained. Acid precipitation yielded 52.0 g/kg dry substrate of biosurfactant, that was identified as an anionic compound of a lipopeptide nature by the Zeta potential and FTIR spectrum, respectively. The biomolecule showed stability under extreme conditions of temperature, pH and salinity, as well as low toxicity against the microcrustacean Artemia salina. In addition, the biosurfactant demonstrated excellent properties to dispersing burned motor oil in water (ODA = 50.24 cm2) and to washing of marine stones (100% removal of burned motor oil). Therefore, these results confirm SSF as a sustainable technology for the production of biodispersant by S. marcescens UCP 1549, promising in the bioremediation of marine ecosystems impacted by petroderivatives.
Collapse
Affiliation(s)
- Renata Andreia Dos Santos
- Post-graduation Program in Development of Environmental Processes, Catholic University of Pernambuco Recife, Brazil
- Nucleus of Research in Environmental Sciences and Biotechnology, Catholic University of Pernambuco, Recife, Brazil
| | - Dayana Montero Rodríguez
- Nucleus of Research in Environmental Sciences and Biotechnology, Catholic University of Pernambuco, Recife, Brazil
- National Post-Doctorate Program (PNPD-CAPES), Post-Graduation Program in Development of Environmental Processes, Catholic University of Pernambuco, Recife, Brazil
| | - Isabela Natália da Silva Ferreira
- Nucleus of Research in Environmental Sciences and Biotechnology, Catholic University of Pernambuco, Recife, Brazil
- Doctorate Northeast Network for Biotechnology, Federal Rural University of Pernambuco, Recife, Brazil
| | - Sérgio Mendonça de Almeida
- Nucleus of Research in Environmental Sciences and Biotechnology, Catholic University of Pernambuco, Recife, Brazil
- Department of Biology, Catholic University of Pernambuco, Recife, Brazil
| | - Galba Maria de Campos Takaki
- Nucleus of Research in Environmental Sciences and Biotechnology, Catholic University of Pernambuco, Recife, Brazil
| | - Marcos Antônio Barbosa de Lima
- Nucleus of Research in Environmental Sciences and Biotechnology, Catholic University of Pernambuco, Recife, Brazil
- Laboratory of Agricultural and Environmental Microbiology, Department of Biology, Federal Rural University of Pernambuco, Recife, Brazil
| |
Collapse
|
15
|
Parvin A, Adhikary R, Guha S, Mitra PK, Mandal V. Antibiofilm and antimicrobial activity of biosurfactants from two
Lactiplantibacillus pentosus
strains against food and topical pathogens. J FOOD PROCESS PRES 2022. [DOI: 10.1111/jfpp.16927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Affiliation(s)
- Afsana Parvin
- Department of Botany University of Gour Banga Malda India
| | | | - Shrabasti Guha
- Department of Botany University of Gour Banga Malda India
| | | | | |
Collapse
|
16
|
A comprehensive review on natural occurrence, synthesis and biological activities of glycolipids. Carbohydr Res 2022; 516:108556. [DOI: 10.1016/j.carres.2022.108556] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 03/30/2022] [Accepted: 04/05/2022] [Indexed: 01/10/2023]
|
17
|
Deng Y, Liu Y, Li J, Wang X, He S, Yan X, Shi Y, Zhang W, Ding L. Marine natural products and their synthetic analogs as promising antibiofilm agents for antibiotics discovery and development. Eur J Med Chem 2022; 239:114513. [DOI: 10.1016/j.ejmech.2022.114513] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 05/31/2022] [Accepted: 06/01/2022] [Indexed: 12/25/2022]
|
18
|
Gao Y, Meng Q, Zhou X, Luo X, Su Z, Chen Z, Huang R, Liu Y, Zhang X. How do environmentally friendly antifouling alkaloids affect marine fouling microbial communities? THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 820:152910. [PMID: 34999079 DOI: 10.1016/j.scitotenv.2021.152910] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 12/28/2021] [Accepted: 12/31/2021] [Indexed: 06/14/2023]
Abstract
Most previous studies on antifouling (AF) agents have focused on the influence of biofilm formation constituted by single or multiple cultured microbial species, and very few studies have analyzed the relationship between environmentally friendly AF compounds and marine fouling microbial communities (MFMCs). This is the first investigation of the impact of three environmentally friendly alkaloids (5-chlorosclerotiamide, circumdatin F and notoamide C) produced by the deep-sea-derived fungus Aspergillus westerdijkiae on MFMCs using high-throughput Illumina sequencing in a field test. The results of this study showed that the three alkaloids could significantly decrease the coverage of marine microflora (p < 0.05) and affect the composition and diversity of MFMCs on polyvinyl chloride (PVC) plates. Furthermore, 5-chlorosclerotiamide and notoamide C could completely inhibit many macrofouler-inductive-bacteria, such as Pseudoalteromonas and Pseudomonas, and promote the anti-macrofouler-bacteria, such as Winogradskyella, from 0.21% to more than 10% of the MFMCs on PVC plates. These results suggested that 5-chlorosclerotiamide and notoamide C could influence the compositions of MFMCs and make it unfavorable for the settlement of macrofoulers, by reducing the abundance of macrofouler-inductive-bacteria and promoting the percentage of anti-macrofouler-bacteria on PVC plates. The present study provides a new way to evaluate the effect of environmentally friendly AF compounds and obtain a better understanding of the antifouling process.
Collapse
Affiliation(s)
- Yumiao Gao
- University Joint Laboratory of Guangdong Province, Hong Kong and Macao Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China; School of Biological Sciences, University of Edinburgh, Edinburgh EH93FL, United Kingdom
| | - Qingyue Meng
- University Joint Laboratory of Guangdong Province, Hong Kong and Macao Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Xuefeng Zhou
- Key Laboratory of Tropical Marine Bio-resources and Ecology, South China sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou 510301, China
| | - Xiaowei Luo
- Institute of Marine Drugs, Guangxi University of Chinese Medicine, Nanning 530200, China
| | - Ziheng Su
- University Joint Laboratory of Guangdong Province, Hong Kong and Macao Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Zihui Chen
- University Joint Laboratory of Guangdong Province, Hong Kong and Macao Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Riming Huang
- College of Food Science, South China Agricultural University, 483 Wushan Road, Guangzhou 510642, China
| | - Yonghong Liu
- Key Laboratory of Tropical Marine Bio-resources and Ecology, South China sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou 510301, China.
| | - Xiaoyong Zhang
- University Joint Laboratory of Guangdong Province, Hong Kong and Macao Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China.
| |
Collapse
|
19
|
Ravinder P, Manasa M, Roopa D, Bukhari NA, Hatamleh AA, Khan MY, M. S. R, Hameeda B, El Enshasy HA, Hanapi SZ, Sayyed RZ. Biosurfactant producing multifarious Streptomyces puniceus RHPR9 of Coscinium fenestratum rhizosphere promotes plant growth in chilli. PLoS One 2022; 17:e0264975. [PMID: 35290374 PMCID: PMC8923452 DOI: 10.1371/journal.pone.0264975] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Accepted: 02/19/2022] [Indexed: 12/29/2022] Open
Abstract
The present study involves isolation of Streptomyces spp. from rhizosphere of Coscinium fenestratum Gaertn, an endangered medicinal plant from Western Ghats of Karnataka, India. Four potential isolates were identified by 16S rRNA sequencing as Streptomyces sp. RHPR3, Streptomyces puniceus RHPR9, Streptomyces sp. RHPR14 and Streptomyces mediolani RHPR25. An enrichment culture method was used for the isolation of Streptomyces spp. for biosurfactant activity. Among four potential Streptomyces spp., S. puniceus RHPR9 showed highest Emulsification index (EI) (78±0.2%) and Emulsification assay (EA) (223±0.2 EU mL-1). Thin layer chromatography, Fourier transform infrared spectroscopy (FTIR) and mass spectrometric analysis revealed that as glycolipid. Further confirmed by presence of fatty acids like hexanoic acid methyl ester, decanoic acid by Gas chromatography mass spectroscopy (GC-MS) analysis. S. puniceus RHPR9 showed a significant IAA production (41μg mL-1), solubilized P (749.1 μg mL-1), growth promotion of chilli (Capsicum annuum L.) was evaluated using paper towel method and greenhouse conditions. S. puniceus RHPR9 showed a significant increase in seed vigor index (2047) and increase in plant biomass (65%) when compared to uninoculated control. To our knowledge, this is the first report on epiphytic S. puniceus RHPR9 isolated from an endangered medicinal plant C. fenestratum Gaertn, for biosurfactant production and plant growth promotion activities.
Collapse
Affiliation(s)
- Polapally Ravinder
- Department of Microbiology, University College of Science, Osmania University Hyderabad, Hyderabad, India
| | - M. Manasa
- Department of Microbiology, University College of Science, Osmania University Hyderabad, Hyderabad, India
| | - D. Roopa
- Department of Wildlife and Management, Kuvempu University Shankaraghatta, Karnataka, India
| | - Najat A. Bukhari
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Ashraf Atef Hatamleh
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | | | - Reddy M. S.
- Asian PGPR Society for Sustainable Agriculture, Auburn University, Auburn, Alabama, United States of America
| | - Bee Hameeda
- Department of Microbiology, University College of Science, Osmania University Hyderabad, Hyderabad, India
- * E-mail: ,
| | - Hesham Ali El Enshasy
- Institute of Bioproduct Development (IBD), Universiti Teknologi Malaysia (UTM), Skudai, Johor, Malaysia
- School of Chemical and Energy Engineering, Faculty of Engineering, Universiti Teknologi Malaysia (UTM), Skudai, Johor, Malaysia
- City of Scientific Research and Technology Applications (SRTA), New Burg Al Arab, Alexandria, Egypt
| | - Siti Zulaiha Hanapi
- Institute of Bioproduct Development (IBD), Universiti Teknologi Malaysia (UTM), Skudai, Johor, Malaysia
| | - R. Z. Sayyed
- Department of Microbiology, PSGVP Mandal’s, S I Patil Arts, G B Patel Science & STKVS Commerce College, Shahada, India
| |
Collapse
|
20
|
Bacterial biofilms and their resistance mechanisms: a brief look at treatment with natural agents. Folia Microbiol (Praha) 2022; 67:535-554. [DOI: 10.1007/s12223-022-00955-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Accepted: 01/29/2022] [Indexed: 12/14/2022]
|
21
|
Wang KL, Dou ZR, Gong GF, Li HF, Jiang B, Xu Y. Anti-Larval and Anti-Algal Natural Products from Marine Microorganisms as Sources of Anti-Biofilm Agents. Mar Drugs 2022; 20:90. [PMID: 35200620 PMCID: PMC8876061 DOI: 10.3390/md20020090] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 01/13/2022] [Accepted: 01/14/2022] [Indexed: 12/19/2022] Open
Abstract
Bacteria growing inside biofilms are more resistant to hostile environments, conventional antibiotics, and mechanical stresses than their planktonic counterparts. It is estimated that more than 80% of microbial infections in human patients are biofilm-based, and biofouling induced by the biofilms of some bacteria causes serious ecological and economic problems throughout the world. Therefore, exploring highly effective anti-biofilm compounds has become an urgent demand for the medical and marine industries. Marine microorganisms, a well-documented and prolific source of natural products, provide an array of structurally distinct secondary metabolites with diverse biological activities. However, up to date, only a handful of anti-biofilm natural products derived from marine microorganisms have been reported. Meanwhile, it is worth noting that some promising antifouling (AF) compounds from marine microbes, particularly those that inhibit settlement of fouling invertebrate larvae and algal spores, can be considered as potential anti-biofilm agents owing to the well-known knowledge of the correlations between biofilm formation and the biofouling process of fouling organisms. In this review, a total of 112 anti-biofilm, anti-larval, and anti-algal natural products from marine microbes and 26 of their synthetic analogues are highlighted from 2000 to 2021. These compounds are introduced based on their microbial origins, and then categorized into the following different structural groups: fatty acids, butenolides, terpenoids, steroids, phenols, phenyl ethers, polyketides, alkaloids, flavonoids, amines, nucleosides, and peptides. The preliminary structure-activity relationships (SAR) of some important compounds are also briefly discussed. Finally, current challenges and future research perspectives are proposed based on opinions from many previous reviews.
Collapse
Affiliation(s)
- Kai-Ling Wang
- Yunnan Key Laboratory of Screening and Research on Anti-Pathogenic Plant Resources from West Yunnan (Cultivation), Institute of Materia Medica, College of Pharmacy, Dali University, Dali 671000, China; (K.-L.W.); (Z.-R.D.); (G.-F.G.); (H.-F.L.); (B.J.)
- Shenzhen Key Laboratory of Marine Bioresource & Eco-Environmental Science, Shenzhen Engineering Laboratory for Marine Algal Biotechnology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China
| | - Zheng-Rong Dou
- Yunnan Key Laboratory of Screening and Research on Anti-Pathogenic Plant Resources from West Yunnan (Cultivation), Institute of Materia Medica, College of Pharmacy, Dali University, Dali 671000, China; (K.-L.W.); (Z.-R.D.); (G.-F.G.); (H.-F.L.); (B.J.)
| | - Gao-Fen Gong
- Yunnan Key Laboratory of Screening and Research on Anti-Pathogenic Plant Resources from West Yunnan (Cultivation), Institute of Materia Medica, College of Pharmacy, Dali University, Dali 671000, China; (K.-L.W.); (Z.-R.D.); (G.-F.G.); (H.-F.L.); (B.J.)
| | - Hai-Feng Li
- Yunnan Key Laboratory of Screening and Research on Anti-Pathogenic Plant Resources from West Yunnan (Cultivation), Institute of Materia Medica, College of Pharmacy, Dali University, Dali 671000, China; (K.-L.W.); (Z.-R.D.); (G.-F.G.); (H.-F.L.); (B.J.)
| | - Bei Jiang
- Yunnan Key Laboratory of Screening and Research on Anti-Pathogenic Plant Resources from West Yunnan (Cultivation), Institute of Materia Medica, College of Pharmacy, Dali University, Dali 671000, China; (K.-L.W.); (Z.-R.D.); (G.-F.G.); (H.-F.L.); (B.J.)
| | - Ying Xu
- Shenzhen Key Laboratory of Marine Bioresource & Eco-Environmental Science, Shenzhen Engineering Laboratory for Marine Algal Biotechnology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China
| |
Collapse
|
22
|
Roldán-Carrillo T, Castorena-Cortés G, Álvarez-Ramírez F, Vázquez-Moreno F, Olguín-Lora P. Lipopeptide production by Serratia marcescens SmSA using a Taguchi design and its application in enhanced heavy oil recovery. Prep Biochem Biotechnol 2021; 52:872-884. [PMID: 34865598 DOI: 10.1080/10826068.2021.2004546] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Biosurfactant production at reactor level by Serratia marcescens SmSA was optimized and evaluated to enhance the heavy oil recovery on carbonate rocks. Temperature, agitation, and carbon/nitrogen (C/N) ratio were evaluated to optimize biosurfactant production by using a Taguchi (L9) design. The best conditions (C/N ratio: 6, 25 °C, and agitation: 100 rpm) were used to scale up the biosurfactant production with a 3-L bioreactor. The best aeration for biosurfactant production was 0.66 volume of air per volume of liquid per minute (vvm), producing the lowest surface tension (26 mN/m) in 14 h, with a biosurfactant yield of 14.26 g/L as a crude product and 2.85 g/L as a purified product, and a critical micelle concentration of 280 mg/L. The biosurfactant was characterized as a lipopeptide, and it was stable under extreme conditions: pH (2-12), salinity up to 200 g/L, and temperature up to 150 °C confirmed by thermogravimetric analysis. Enhanced oil recovery test was carried out with a carbonate core and heavy oil under reservoir conditions, obtaining an additional recovery of 8%, due to reduced interfacial tension and modified wettability of the rock. These findings highlight the potential application of S. marcescens SmSA biosurfactant in enhanced oil recovery.
Collapse
Affiliation(s)
| | | | | | | | - P Olguín-Lora
- Instituto Mexicano del Petróleo, Ciudad de México, México
| |
Collapse
|
23
|
Wang D, Kyere E, Ahmed Sadiq F. New Trends in Photodynamic Inactivation (PDI) Combating Biofilms in the Food Industry-A Review. Foods 2021; 10:2587. [PMID: 34828868 PMCID: PMC8621587 DOI: 10.3390/foods10112587] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Revised: 10/19/2021] [Accepted: 10/22/2021] [Indexed: 12/26/2022] Open
Abstract
Biofilms cause problems in the food industry due to their persistence and incompetent hygiene processing technologies. Interest in photodynamic inactivation (PDI) for combating biofilms has increased in recent years. This technique can induce microbial cell death, reduce cell attachment, ruin biofilm biomolecules and eradicate structured biofilms without inducing microbial resistance. This review addresses microbial challenges posed by biofilms in food environments and highlights the advantages of PDI in preventing and eradicating microbial biofilm communities. Current findings of the antibiofilm efficiencies of this technique are summarized. Additionally, emphasis is given to its potential mechanisms and factors capable of influencing biofilm communities, as well as promising hurdle strategies.
Collapse
Affiliation(s)
- Dan Wang
- School of Food and Advanced Technology, Massey University, Palmerston North 4410, New Zealand;
| | - Emmanuel Kyere
- School of Food and Advanced Technology, Massey University, Palmerston North 4410, New Zealand;
| | - Faizan Ahmed Sadiq
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China;
| |
Collapse
|
24
|
Song ZM, Zhang JL, Zhou K, Yue LM, Zhang Y, Wang CY, Wang KL, Xu Y. Anthraquinones as Potential Antibiofilm Agents Against Methicillin-Resistant Staphylococcus aureus. Front Microbiol 2021; 12:709826. [PMID: 34539607 PMCID: PMC8446625 DOI: 10.3389/fmicb.2021.709826] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Accepted: 08/04/2021] [Indexed: 12/01/2022] Open
Abstract
Biofilms formed by methicillin-resistant Staphylococcus aureus (MRSA) are one of the contributing factors to recurrent nosocomial infection in humans. There is currently no specific treatment targeting on biofilms in clinical trials approved by FDA, and antibiotics remain the primary therapeutic strategy. In this study, two anthraquinone compounds isolated from a rare actinobacterial strain Kitasatospora albolonga R62, 3,8-dihydroxy-l-methylanthraquinon-2-carboxylic acid (1) and 3,6,8-trihydroxy-1-methylanthraquinone-2-carboxylic acid (2), together with their 10 commercial analogs 3-12 were evaluated for antibacterial and antibiofilm activities against MRSA, which led to the discovery of two potential antibiofilm anthraquinone compounds anthraquinone-2-carboxlic acid (6) and rhein (12). The structure-activity relationship analysis of these anthraquinones indicated that the hydroxyl group at the C-2 position of the anthraquinone skeleton played an important role in inhibiting biofilm formation at high concentrations, while the carboxyl group at the same C-2 position had a great influence on the antibacterial activity and biofilm eradication activity. The results of crystal violet and methyl thiazolyl tetrazolium staining assays, as well as scanning electron microscope and confocal scanning laser microscopy imaging of compounds 6 and 12 treatment groups showed that both compounds could disrupt preformed MRSA biofilms possibly by killing or dispersing biofilm cells. RNA-Seq was subsequently used for the preliminary elucidation of the mechanism of biofilm eradication, and the results showed upregulation of phosphate transport-related genes in the overlapping differentially expressed genes of both compound treatment groups. Herein, we propose that anthraquinone compounds 6 and 12 could be considered promising candidates for the development of antibiofilm agents.
Collapse
Affiliation(s)
- Zhi-Man Song
- Shenzhen Key Laboratory of Marine Bioresource and Eco-Environmental Science, Shenzhen Engineering Laboratory for Marine Algal Biotechnology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China
- Department of Chemistry, The University of Hong Kong, Pokfulam, Hong Kong, China
- College of Pharmacy, Institute of Materia Medica, Dali University, Dali, China
| | - Jun-Liang Zhang
- Shenzhen Key Laboratory of Marine Bioresource and Eco-Environmental Science, Shenzhen Engineering Laboratory for Marine Algal Biotechnology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China
| | - Kun Zhou
- Shenzhen Key Laboratory of Marine Bioresource and Eco-Environmental Science, Shenzhen Engineering Laboratory for Marine Algal Biotechnology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China
| | - Lu-Ming Yue
- Shenzhen Key Laboratory of Marine Bioresource and Eco-Environmental Science, Shenzhen Engineering Laboratory for Marine Algal Biotechnology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China
| | - Yu Zhang
- Shenzhen Key Laboratory of Marine Bioresource and Eco-Environmental Science, Shenzhen Engineering Laboratory for Marine Algal Biotechnology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China
| | - Chang-Yun Wang
- Key Laboratory of Marine Drugs, The Ministry of Education of China, School of Medicine and Pharmacy, Ocean University of China, Qingdao, China
- Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
- Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao, China
| | - Kai-Ling Wang
- College of Pharmacy, Institute of Materia Medica, Dali University, Dali, China
| | - Ying Xu
- Shenzhen Key Laboratory of Marine Bioresource and Eco-Environmental Science, Shenzhen Engineering Laboratory for Marine Algal Biotechnology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China
| |
Collapse
|
25
|
Srinivasan R, Santhakumari S, Poonguzhali P, Geetha M, Dyavaiah M, Xiangmin L. Bacterial Biofilm Inhibition: A Focused Review on Recent Therapeutic Strategies for Combating the Biofilm Mediated Infections. Front Microbiol 2021; 12:676458. [PMID: 34054785 PMCID: PMC8149761 DOI: 10.3389/fmicb.2021.676458] [Citation(s) in RCA: 151] [Impact Index Per Article: 37.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Accepted: 04/14/2021] [Indexed: 12/31/2022] Open
Abstract
Biofilm formation is a major concern in various sectors and cause severe problems to public health, medicine, and industry. Bacterial biofilm formation is a major persistent threat, as it increases morbidity and mortality, thereby imposing heavy economic pressure on the healthcare sector. Bacterial biofilms also strengthen biofouling, affecting shipping functions, and the offshore industries in their natural environment. Besides, they accomplish harsh roles in the corrosion of pipelines in industries. At biofilm state, bacterial pathogens are significantly resistant to external attack like antibiotics, chemicals, disinfectants, etc. Within a cell, they are insensitive to drugs and host immune responses. The development of intact biofilms is very critical for the spreading and persistence of bacterial infections in the host. Further, bacteria form biofilms on every probable substratum, and their infections have been found in plants, livestock, and humans. The advent of novel strategies for treating and preventing biofilm formation has gained a great deal of attention. To prevent the development of resistant mutants, a feasible technique that may target adhesive properties without affecting the bacterial vitality is needed. This stimulated research is a rapidly growing field for applicable control measures to prevent biofilm formation. Therefore, this review discusses the current understanding of antibiotic resistance mechanisms in bacterial biofilm and intensely emphasized the novel therapeutic strategies for combating biofilm mediated infections. The forthcoming experimental studies will focus on these recent therapeutic strategies that may lead to the development of effective biofilm inhibitors than conventional treatments.
Collapse
Affiliation(s)
- Ramanathan Srinivasan
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, School of Life Sciences, Fujian Agriculture and Forestry University, Fujian, China.,Key Laboratory of Crop Ecology and Molecular Physiology (Fujian Agriculture and Forestry University), Fujian Province University, Fujian, China
| | - Sivasubramanian Santhakumari
- Department of Biochemistry and Molecular Biology, School of Life Sciences, Pondicherry University, Puducherry, India
| | | | - Mani Geetha
- PG Research and Department of Microbiology, St. Joseph's College of Arts and Science (Autonomous), Tamil Nadu, India
| | - Madhu Dyavaiah
- Department of Biochemistry and Molecular Biology, School of Life Sciences, Pondicherry University, Puducherry, India
| | - Lin Xiangmin
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, School of Life Sciences, Fujian Agriculture and Forestry University, Fujian, China.,Key Laboratory of Crop Ecology and Molecular Physiology (Fujian Agriculture and Forestry University), Fujian Province University, Fujian, China.,Key Laboratory of Marine Biotechnology of Fujian Province, Institute of Oceanology, Fujian Agriculture and Forestry University, Fujian, China
| |
Collapse
|
26
|
Zhang S, Liang X, Gadd GM, Zhao Q. Marine Microbial-Derived Antibiotics and Biosurfactants as Potential New Agents against Catheter-Associated Urinary Tract Infections. Mar Drugs 2021; 19:255. [PMID: 33946845 PMCID: PMC8145997 DOI: 10.3390/md19050255] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 04/27/2021] [Accepted: 04/27/2021] [Indexed: 11/26/2022] Open
Abstract
Catheter-associated urinary tract infections (CAUTIs) are among the leading nosocomial infections in the world and have led to the extensive study of various strategies to prevent infection. However, despite an abundance of anti-infection materials having been studied over the last forty-five years, only a few types have come into clinical use, providing an insignificant reduction in CAUTIs. In recent decades, marine resources have emerged as an unexplored area of opportunity offering huge potential in discovering novel bioactive materials to combat human diseases. Some of these materials, such as antimicrobial compounds and biosurfactants synthesized by marine microorganisms, exhibit potent antimicrobial, antiadhesive and antibiofilm activity against a broad spectrum of uropathogens (including multidrug-resistant pathogens) that could be potentially used in urinary catheters to eradicate CAUTIs. This paper summarizes information on the most relevant materials that have been obtained from marine-derived microorganisms over the last decade and discusses their potential as new agents against CAUTIs, providing a prospective proposal for researchers.
Collapse
Affiliation(s)
- Shuai Zhang
- School of Mechanical and Aerospace Engineering, Queen’s University Belfast, Belfast BT9 5AH, UK;
| | - Xinjin Liang
- The Bryden Center, School of Chemical and Chemistry Engineering, Queen’s University Belfast, Belfast BT7 1NN, UK;
- School of Life Sciences, University of Dundee, Dundee DD1 5EH, UK;
| | | | - Qi Zhao
- School of Science and Engineering, University of Dundee, Dundee DD1 4HN, UK
| |
Collapse
|
27
|
Tawre MS, Kamble EE, Kumkar SN, Mulani MS, Pardesi KR. Antibiofilm and antipersister activity of acetic acid against extensively drug resistant Pseudomonas aeruginosa PAW1. PLoS One 2021; 16:e0246020. [PMID: 33529248 PMCID: PMC7853517 DOI: 10.1371/journal.pone.0246020] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Accepted: 01/12/2021] [Indexed: 11/24/2022] Open
Abstract
Pseudomonas aeruginosa is an ESKAPE pathogen associated with difficult-to-treat burn wound and surgical-site infections. This study aimed to characterise an extensively drug resistant (XDR) P. aeruginosa isolate (designated PAW1) and to investigate the antibiofilm and antipersister effect of acetic acid on PAW1. PAW1 was identified using biotypic (VITEK) and genotypic (16S rDNA) analysis. Minimum inhibitory concentration (MIC) and disc susceptibility testing showed high level resistance against all antibiotics from classes including beta lactams, cephems, carbapenems and fluoroquinolones. It was therefore identified as extensively drug resistant (XDR), showing resistance to all antibiotics except for, aminoglycoside (gentamicin and netilmicin) and lipopeptides (polymyxin B). Time kill assays showed antibiotic tolerant, persister cell formation in presence of 100X MICs of gentamicin and polymyxin B. Other virulence traits such as ability to produce lipase, protease, haemolysin, and siderophores and to form biofilms were additional factors which may contribute to its pathogenicity. PAW1 showed promising susceptibility against acetic acid with MIC and minimum biofilm inhibitory concentration of 0.156% (v/v). Percent viability of PAW1 was dependent on dose and treatment time of acetic acid. 0.625% acetic acid treatment of 5 minutes was effective in killing >90% planktonic cells showing lesser toxicity to L929 cells (IC50 = 0.625%). Biofilm disruption caused due to acetic acid was also dose dependent, showing 40.57% disruption after treatment with 0.625% acetic acid for 5 minutes. FESEM imaging and live dead staining of planktonic and biofilm forms of PAW1 confirmed that acetic acid treatment caused 19.04% of cell shrinkage and disruption of extracellular matrix resulting in killing of cells. Antipersister activity of acetic acid was demonstrated by showing complete killing of PAW1 at 4X MIC. Overall, this study characterised an XDR isolate P. aeruginosa showing resistance and tolerance to various antibiotics. Antipersister and antibiofilm effect of acetic acid demonstrates the importance of forgotten topical agents as an effective strategy to treat XDR pathogens.
Collapse
Affiliation(s)
- Madhumita S. Tawre
- Department of Microbiology, Savitribai Phule Pune University, Pune, Maharashtra, India
| | - Ekta E. Kamble
- Department of Microbiology, Savitribai Phule Pune University, Pune, Maharashtra, India
| | - Shital N. Kumkar
- Department of Microbiology, Savitribai Phule Pune University, Pune, Maharashtra, India
| | - Mansura S. Mulani
- Department of Microbiology, Savitribai Phule Pune University, Pune, Maharashtra, India
| | - Karishma R. Pardesi
- Department of Microbiology, Savitribai Phule Pune University, Pune, Maharashtra, India
- * E-mail:
| |
Collapse
|
28
|
Nalini S, Inbakandan D, Stalin Dhas T, Sathiyamurthi S. Optimization of biosurfactant production by marine Streptomyces youssoufiensis SNSAA03: A comparative study of RSM and ANN approach. RESULTS IN CHEMISTRY 2021. [DOI: 10.1016/j.rechem.2021.100223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
|
29
|
Nayak NS, Purohit MS, Tipre DR, Dave SR. Biosurfactant production and engine oil degradation by marine halotolerant Bacillus licheniformis LRK1. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2020. [DOI: 10.1016/j.bcab.2020.101808] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
30
|
Eid AM, Fouda A, Niedbała G, Hassan SED, Salem SS, Abdo AM, F. Hetta H, Shaheen TI. Endophytic Streptomyces laurentii Mediated Green Synthesis of Ag-NPs with Antibacterial and Anticancer Properties for Developing Functional Textile Fabric Properties. Antibiotics (Basel) 2020; 9:E641. [PMID: 32987922 PMCID: PMC7599702 DOI: 10.3390/antibiotics9100641] [Citation(s) in RCA: 81] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 09/19/2020] [Accepted: 09/22/2020] [Indexed: 12/21/2022] Open
Abstract
Improvement of the medical textile industry has received more attention recently, especially with widespread of microbial and viral infections. Medical textiles with new properties, such as bacterial pathogens self-cleaning, have been explored with nanotechnology. In this study, an endophytic actinomycetes strain of Streptomyces laurentii R-1 was isolated from the roots of the medicinal plant Achillea fragrantissima. This is used as a catalyst for the mediated biosynthesis of silver nanoparticles (Ag-NPs) for applications in the textile industry. The biosynthesized Ag-NPs were characterized using UV-vis spectroscopy, Fourier transform infrared (FT-IR), transmission electron microscopy (TEM), and X-ray Diffraction (XRD), which confirmed the successful formation of crystalline, spherical metal nanoparticles. The biosynthesized Ag-NPs exhibited broad-spectrum antibacterial activity. Our data elucidated that the biosynthesized Ag-NPs had a highly cytotoxic effect against the cancerous caco-2 cell line. The selected safe dose of Ag-NPs for loading on cotton fabrics was 100 ppm, regarding their antibacterial activity and safe cytotoxic efficacy. Interestingly, scanning electron microscope connected with energy dispersive X-ray spectroscopy (SEM-EDX) of loaded cotton fabrics demonstrated the smooth distribution of Ag-NPs on treated fabrics. The obtained results highlighted the broad-spectrum activity of nano-finished fabrics against pathogenic bacteria, even after 5 and 10 washing cycles. This study contributes a suitable guide for the performance of green synthesized NPs for utilization in different biotechnological sectors.
Collapse
Affiliation(s)
- Ahmed M. Eid
- Department of Botany and Microbiology, Faculty of Science, Al-Azhar University, Nasr City, Cairo 11884, Egypt; (A.M.E.); (S.E.-D.H.); (S.S.S.); (A.M.A.)
| | - Amr Fouda
- Department of Botany and Microbiology, Faculty of Science, Al-Azhar University, Nasr City, Cairo 11884, Egypt; (A.M.E.); (S.E.-D.H.); (S.S.S.); (A.M.A.)
| | - Gniewko Niedbała
- Department of Biosystems Engineering, Faculty of Environmental Engineering and Mechanical Engineering, Poznań University of Life Sciences, Wojska Polskiego 50, 60-627 Poznań, Poland;
| | - Saad El-Din Hassan
- Department of Botany and Microbiology, Faculty of Science, Al-Azhar University, Nasr City, Cairo 11884, Egypt; (A.M.E.); (S.E.-D.H.); (S.S.S.); (A.M.A.)
| | - Salem S. Salem
- Department of Botany and Microbiology, Faculty of Science, Al-Azhar University, Nasr City, Cairo 11884, Egypt; (A.M.E.); (S.E.-D.H.); (S.S.S.); (A.M.A.)
| | - Abdullah M. Abdo
- Department of Botany and Microbiology, Faculty of Science, Al-Azhar University, Nasr City, Cairo 11884, Egypt; (A.M.E.); (S.E.-D.H.); (S.S.S.); (A.M.A.)
| | - Helal F. Hetta
- Department of Medical Microbiology and Immunology, Faculty of Medicine, Assiut University, Assiut 71515, Egypt; or
- Department of Internal Medicine, University of Cincinnati College of Medicine, Cincinnati, OH 45267-0595, USA
| | - Tharwat I. Shaheen
- National Research Centre, El-Behouth St., Dokki, P.O. Giza 12622, Egypt;
| |
Collapse
|
31
|
Eslami P, Hajfarajollah H, Bazsefidpar S. Recent advancements in the production of rhamnolipid biosurfactants by Pseudomonas aeruginosa. RSC Adv 2020; 10:34014-34032. [PMID: 35519061 PMCID: PMC9056861 DOI: 10.1039/d0ra04953k] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Accepted: 08/24/2020] [Indexed: 01/10/2023] Open
Abstract
Rhamnolipid (RL) biosurfactant which is produced by Pseudomonas species is one of the most effective surface-active agents investigated in the literature. Over the years, many efforts have been made and an array of techniques has been developed for the isolation of RL produced strains as well as RL homolog characterization. Reports show that RL productivity by the best-known producer, Pseudomonas aeruginosa, is very diverse, from less than 1 gr/l to more than 200 g L-1. There are some major parameters that can affect RL productivity. These are culture conditions, medium composition, the mode of operation (batch, fed-batch and continuous), bioengineering/gene manipulation and finally extraction methods. The present paper seeks to provide a comprehensive overview on the production of rhamnolipid biosurfactant by different species of Pseudomonas bacteria. In addition, we have extensively reviewed their potential for possible future applications.
Collapse
Affiliation(s)
- Parisa Eslami
- Amirkabir University of Technology, Chemical Engineering Department Iran
| | - Hamidreza Hajfarajollah
- Amirkabir University of Technology, Chemical Engineering Department Iran
- Chemistry and Chemical Engineering Research Center of Iran, Chemical Engineering Department Iran +98 2122734406
| | | |
Collapse
|
32
|
Sen S, Borah SN, Bora A, Deka S. Rhamnolipid exhibits anti-biofilm activity against the dermatophytic fungi Trichophyton rubrum and Trichophyton mentagrophytes. ACTA ACUST UNITED AC 2020; 27:e00516. [PMID: 32884912 PMCID: PMC7451867 DOI: 10.1016/j.btre.2020.e00516] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 08/04/2020] [Accepted: 08/06/2020] [Indexed: 10/25/2022]
Abstract
Dermatophytes are responsible for a majority of fungal infections in humans and other vertebrates, causing dermatophytosis. Treatment failures are often associated with biofilm formation, making dermatophytes resistant to antifungals. In this study, effects of a rhamnolipid (RL-SS14) produced by Pseudomonas aeruginosa SS14 on planktonic cells of Trichophyton rubrum and Trichophyton mentagrophytes, their biofilm formation, and disruption of mature biofilms were assessed. The composition of RL-SS14 was analysed using FTIR, HPLC-ESI-MS, and GC-MS. Minimum inhibitory concentrations against the planktonic forms of T. rubrum and T. mentagrophytes were 0.5 mg/mL and 0.125 mg/mL, respectively. Crystal-violet (biofilm biomass) and safranin (extracellular matrix) staining revealed that RL-SS14 significantly inhibited biofilm formation and also reduced preformed biofilms in a dose-dependent manner. Microscopic visualization of treated biofilms via SEM, AFM, and CLSM revealed marked morphological damage, cell death, and reduced extracellular matrix. The results indicate the potential of RL-SS14 as an anti-biofilm agent against dermatophytes.
Collapse
Affiliation(s)
- Suparna Sen
- Environmental Biotechnology Laboratory, Resource Management and Environment Section, Life Sciences Division, Institute of Advanced Study in Science and Technology, Vigyan Path, Paschim Boragaon, Garchuk, Guwahati, 781035, Assam, India
| | - Siddhartha Narayan Borah
- Environmental Biotechnology Laboratory, Resource Management and Environment Section, Life Sciences Division, Institute of Advanced Study in Science and Technology, Vigyan Path, Paschim Boragaon, Garchuk, Guwahati, 781035, Assam, India.,Centre for the Environment, Indian Institute of Technology Guwahati, North Guwahati, Guwahati, 781039, Assam, India
| | - Arijit Bora
- Department of Bioengineering and Technology, Institute of Science and Technology, Gauhati University, Gopinath Bordoloi Nagar, Guwahati, 781014, Assam, India
| | - Suresh Deka
- Environmental Biotechnology Laboratory, Resource Management and Environment Section, Life Sciences Division, Institute of Advanced Study in Science and Technology, Vigyan Path, Paschim Boragaon, Garchuk, Guwahati, 781035, Assam, India
| |
Collapse
|
33
|
Alemán-Vega M, Sánchez-Lozano I, Hernández-Guerrero CJ, Hellio C, Quintana ET. Exploring Antifouling Activity of Biosurfactants Producing Marine Bacteria Isolated from Gulf of California. Int J Mol Sci 2020; 21:E6068. [PMID: 32842499 PMCID: PMC7504147 DOI: 10.3390/ijms21176068] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 08/18/2020] [Accepted: 08/21/2020] [Indexed: 12/20/2022] Open
Abstract
Biofouling causes major problems and economic losses to marine and shipping industries. In the search for new antifouling agents, marine bacteria with biosurfactants production capability can be an excellent option, due to the amphipathic surface-active characteristic that confers antimicrobial and antibiofilm activities. The aim of this study was to evaluate the antifouling activity of biosurfactants producing marine bacteria from the Gulf of California. The cell free culture supernatant (CFCS) of Bacillus niabensis (S-69), Ralstonia sp. (S-74) (isolated from marine sediment) and of B. niabensis (My-30) (bacteria associated to the sponge Mycale ramulosa) were screened for production of biosurfactants (using hemolysis and drop collapse test, oil displacement and emulsifying activity). The toxicity and antifouling activity were evaluated against biofoulers (bacteria forming biofilm and macrofoulers) both in laboratory and field assays. The results indicate that all bacteria were biosurfactant producers, but the higher capability was shown by B. niabensis (My-30) with high emulsifying properties (E24) of 71%. The CFCS showed moderate toxicity but were considered non-toxic against Artemia franciscana at low concentrations. In the antifouling assay, the CFCS of both strains of B. niabensis showed the best results for the reduction of the biofilm formation (up 50%) against all Gram-positive bacteria and most Gram-negative bacteria with low concentrations. In the field assay, the CFCS of B. niabensis (My-30) led to the reduction of 30% of biofouling compared to the control. The results indicate that the biosurfactant produced by B. niabensis (My-30) has promising antifouling activity.
Collapse
Affiliation(s)
- Monserrat Alemán-Vega
- Instituto Politécnico Nacional, Centro Interdisciplinario de Ciencias Marinas, Av. Instituto Politécnico Nacional S/N. Col. Playa Palo de Santa Rita, 23096 La Paz, Baja California Sur, Mexico; (M.A.-V.); (I.S.-L.)
| | - Ilse Sánchez-Lozano
- Instituto Politécnico Nacional, Centro Interdisciplinario de Ciencias Marinas, Av. Instituto Politécnico Nacional S/N. Col. Playa Palo de Santa Rita, 23096 La Paz, Baja California Sur, Mexico; (M.A.-V.); (I.S.-L.)
| | - Claudia J. Hernández-Guerrero
- Instituto Politécnico Nacional, Centro Interdisciplinario de Ciencias Marinas, Av. Instituto Politécnico Nacional S/N. Col. Playa Palo de Santa Rita, 23096 La Paz, Baja California Sur, Mexico; (M.A.-V.); (I.S.-L.)
| | - Claire Hellio
- Univ Brest, CNRS, IRD, Ifremer, LEMAR, Institut Universitaire Européen de la Mer, F-29280 Plouzané, France
| | - Erika T. Quintana
- Instituto Politécnico Nacional, Escuela Nacional de Ciencias Biológicas, Prolongación de Carpio y Plan de Ayala s/n, Col. Santo Tomás, Alcaldía Miguel Hidalgo, C.P. 11340 Ciudad de Mexico, Mexico;
| |
Collapse
|
34
|
Khan F, Oloketuyi SF, Kim YM. Diversity of Bacteria and Bacterial Products as Antibiofilm and Antiquorum Sensing Drugs Against Pathogenic Bacteria. Curr Drug Targets 2020; 20:1156-1179. [PMID: 31020938 DOI: 10.2174/1389450120666190423161249] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 02/25/2019] [Accepted: 04/12/2019] [Indexed: 12/14/2022]
Abstract
The increase in antibiotic resistance of pathogenic bacteria has led to the development of new therapeutic approaches to inhibit biofilm formation as well as interfere quorum sensing (QS) signaling systems. The QS system is a phenomenon in which pathogenic bacteria produce signaling molecules that are involved in cell to cell communication, production of virulence factors, biofilm maturation, and several other functions. In the natural environment, several non-pathogenic bacteria are present as mixed population along with pathogenic bacteria and they control the behavior of microbial community by producing secondary metabolites. Similarly, non-pathogenic bacteria also take advantages of the QS signaling molecule as a sole carbon source for their growth through catabolism with enzymes. Several enzymes are produced by bacteria which disrupt the biofilm architecture by degrading the composition of extracellular polymeric substances (EPS) such as exopolysaccharide, extracellular- DNA and protein. Thus, the interference of QS system by bacterial metabolic products and enzymatic catalysis, modification of the QS signaling molecules as well as enzymatic disruption of biofilm architecture have been considered as the alternative therapeutic approaches. This review article elaborates on the diversity of different bacterial species with respect to their metabolic products as well as enzymes and their molecular modes of action. The bacterial enzymes and metabolic products will open new and promising perspectives for the development of strategies against the pathogenic bacterial infections.
Collapse
Affiliation(s)
- Fazlurrahman Khan
- Marine-Integrated Bionics Research Center, Pukyong National University, Busan 48513, South Korea
| | | | - Young-Mog Kim
- Marine-Integrated Bionics Research Center, Pukyong National University, Busan 48513, South Korea.,Department of Food Science and Technology, Pukyong National University, Busan 48513, South Korea
| |
Collapse
|
35
|
Interactions between invasive fungi and symbiotic bacteria. World J Microbiol Biotechnol 2020; 36:137. [PMID: 32794072 DOI: 10.1007/s11274-020-02913-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Accepted: 08/08/2020] [Indexed: 12/17/2022]
Abstract
Infection rates and mortality associated with the invasive fungi Candida, Aspergillus, and Cryptococcus are increasing rapidly in prevalence. Meanwhile, screening pressure brought about by traditional antifungal drugs has induced an increase in drug resistance of invasive fungi, which creates a great challenge for the preservation of physical health. Development of new drugs and novel strategies are therefore important to meet these growing challenges. Recent studies have confirmed that the dynamic balance of microorganisms in the body is correlated with the occurrence of infectious diseases. This discovery of interactions between bacteria and fungi provides innovative insight for the treatment of invasive fungal infections. However, different invasive fungi and symbiotic bacteria interact with each other through various ways and targets, leading to different effects on their growth, morphology, and virulence. And the mechanism and implication of these interactions remains largely unknown. The present review aims to summarize the research progress into the interaction between invasive fungi and symbiotic bacteria with a focus on the anti-fungal mechanisms of symbiotic bacteria, providing a new strategy against drug-resistant fungal infections.
Collapse
|
36
|
Panjiar N, Mattam AJ, Jose S, Gandham S, Velankar HR. Valorization of xylose-rich hydrolysate from rice straw, an agroresidue, through biosurfactant production by the soil bacterium Serratia nematodiphila. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 729:138933. [PMID: 32371209 DOI: 10.1016/j.scitotenv.2020.138933] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 04/20/2020] [Accepted: 04/21/2020] [Indexed: 05/26/2023]
Abstract
Biosurfactants, amphiphilic compounds that reduce interfacial tension in oil-aqueous mixtures, are used in the petroleum, pharmaceutical, food, and agriculture industries. Fermentative production of biosurfactants requires expensive sugar or lipid substrates. Lignocellulosic biomass is a relatively cheap and abundant agricultural residue that can be used as an alternative substrate. Currently, several million tonnes of rice and wheat straw are generated globally as agricultural residues, most of which is disposed by open-field burning thereby leading to severe environmental pollution. This study aimed to produce biosurfactants in xylose-rich hydrolysates generated from rice straw. The hydrolysate is also a byproduct of 2G biofuel processes that often goes underutilized. A soil bacterium capable of growing and producing biosurfactants in rice straw hydrolysates, which typically contain growth-inhibitory compounds such as furfural and hydroxymethyl furfural, was isolated. Interestingly, the organism, identified as Serratia nematodiphila, exhibited higher glycolipid formation (4.5 ± 0.6 gL-1) in xylose-rich hydrolysate than in glucose-rich enzymatic hydrolysate (3.1 ± 0.2 gL-1) despite the higher bacterial cell density observed with the latter. The biosurfactants were thermostable and possessed promising emulsifying property and anti-microbial activity against bacteria and yeast. Further optimization of C:N resulted in a 2.8-fold increase in glycolipid production from xylose-rich hydrolysates. This study demonstrates the production of glycolipid biosurfactants from lignocellulosic biomass, a low-cost substrate and offers a plausible strategy for the management of these residues. Further, it also provides insights into the generation of additional high-value compounds in a bioethanol biorefinery to improve its commercial feasibility.
Collapse
Affiliation(s)
- Neha Panjiar
- Hindustan Petroleum Green R&D Centre, KIADB Industrial Area, Tarabanahalli, Devanagonthi, Hoskote, Bengaluru 560067, India
| | - Anu Jose Mattam
- Hindustan Petroleum Green R&D Centre, KIADB Industrial Area, Tarabanahalli, Devanagonthi, Hoskote, Bengaluru 560067, India
| | - Steffi Jose
- Hindustan Petroleum Green R&D Centre, KIADB Industrial Area, Tarabanahalli, Devanagonthi, Hoskote, Bengaluru 560067, India
| | - Sriganesh Gandham
- Hindustan Petroleum Green R&D Centre, KIADB Industrial Area, Tarabanahalli, Devanagonthi, Hoskote, Bengaluru 560067, India
| | - Harshad Ravindra Velankar
- Hindustan Petroleum Green R&D Centre, KIADB Industrial Area, Tarabanahalli, Devanagonthi, Hoskote, Bengaluru 560067, India.
| |
Collapse
|
37
|
Pinto RM, Lopes-de-Campos D, Martins MCL, Van Dijck P, Nunes C, Reis S. Impact of nanosystems in Staphylococcus aureus biofilms treatment. FEMS Microbiol Rev 2020; 43:622-641. [PMID: 31420962 PMCID: PMC8038934 DOI: 10.1093/femsre/fuz021] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Accepted: 08/15/2019] [Indexed: 12/17/2022] Open
Abstract
Staphylococcus aureus (S. aureus) is considered by the World Health Organization as a high priority pathogen for which new therapies are needed. This is particularly important for biofilm implant-associated infections once the only available treatment option implies a surgical procedure combined with antibiotic therapy. Consequently, these infections represent an economic burden for Healthcare Systems. A new strategy has emerged to tackle this problem: for small bugs, small particles. Here, we describe how nanotechnology-based systems have been studied to treat S. aureus biofilms. Their features, drawbacks and potentialities to impact the treatment of these infections are highlighted. Furthermore, we also outline biofilm models and assays required for preclinical validation of those nanosystems to smooth the process of clinical translation.
Collapse
Affiliation(s)
- Rita M Pinto
- LAQV, REQUIMTE, Departamento de Ciências Químicas, Faculdade de Farmácia, Universidade do Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal.,Laboratory of Molecular Cell Biology, Institute of Botany and Microbiology, KU Leuven, B-3001 Leuven, Belgium.,VIB-KU Leuven, Center for Microbiology, B-3001 Leuven, Belgium.,i3S, Instituto de Investigação e Inovação em Saúde, Universidade do Porto; INEB, Instituto de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135 Porto, Portugal
| | - Daniela Lopes-de-Campos
- LAQV, REQUIMTE, Departamento de Ciências Químicas, Faculdade de Farmácia, Universidade do Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal
| | - M Cristina L Martins
- i3S, Instituto de Investigação e Inovação em Saúde, Universidade do Porto; INEB, Instituto de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135 Porto, Portugal.,ICBAS, Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal
| | - Patrick Van Dijck
- Laboratory of Molecular Cell Biology, Institute of Botany and Microbiology, KU Leuven, B-3001 Leuven, Belgium.,VIB-KU Leuven, Center for Microbiology, B-3001 Leuven, Belgium
| | - Cláudia Nunes
- LAQV, REQUIMTE, Departamento de Ciências Químicas, Faculdade de Farmácia, Universidade do Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal
| | - Salette Reis
- LAQV, REQUIMTE, Departamento de Ciências Químicas, Faculdade de Farmácia, Universidade do Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal
| |
Collapse
|
38
|
Anestopoulos I, Kiousi DE, Klavaris A, Maijo M, Serpico A, Suarez A, Sanchez G, Salek K, Chasapi SA, Zompra AA, Galanis A, Spyroulias GA, Gombau L, Euston SR, Pappa A, Panayiotidis MI. Marine-Derived Surface Active Agents: Health-Promoting Properties and Blue Biotechnology-Based Applications. Biomolecules 2020; 10:E885. [PMID: 32526944 PMCID: PMC7355491 DOI: 10.3390/biom10060885] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 05/21/2020] [Accepted: 06/05/2020] [Indexed: 12/19/2022] Open
Abstract
Surface active agents are characterized for their capacity to adsorb to fluid and solid-water interfaces. They can be classified as surfactants and emulsifiers based on their molecular weight (MW) and properties. Over the years, the chemical surfactant industry has been rapidly increasing to meet consumer demands. Consequently, such a boost has led to the search for more sustainable and biodegradable alternatives, as chemical surfactants are non-biodegradable, thus causing an adverse effect on the environment. To these ends, many microbial and/or marine-derived molecules have been shown to possess various biological properties that could allow manufacturers to make additional health-promoting claims for their products. Our aim, in this review article, is to provide up to date information of critical health-promoting properties of these molecules and their use in blue-based biotechnology (i.e., biotechnology using aquatic organisms) with a focus on food, cosmetic and pharmaceutical/biomedical applications.
Collapse
Affiliation(s)
- Ioannis Anestopoulos
- Department of Molecular Biology & Genetics, Democritus University of Thrace, 68100 Alexandroupolis, Greece; (I.A.); (D.-E.K.); (A.K.); (A.G.)
| | - Despina-Evgenia Kiousi
- Department of Molecular Biology & Genetics, Democritus University of Thrace, 68100 Alexandroupolis, Greece; (I.A.); (D.-E.K.); (A.K.); (A.G.)
| | - Ariel Klavaris
- Department of Molecular Biology & Genetics, Democritus University of Thrace, 68100 Alexandroupolis, Greece; (I.A.); (D.-E.K.); (A.K.); (A.G.)
| | - Monica Maijo
- Division of Health & Biomedicine, LEITAT Technological Centre, 08005 Barcelona, Spain; (M.M.); (A.S.); (A.S.); (G.S.); (L.G.)
| | - Annabel Serpico
- Division of Health & Biomedicine, LEITAT Technological Centre, 08005 Barcelona, Spain; (M.M.); (A.S.); (A.S.); (G.S.); (L.G.)
| | - Alba Suarez
- Division of Health & Biomedicine, LEITAT Technological Centre, 08005 Barcelona, Spain; (M.M.); (A.S.); (A.S.); (G.S.); (L.G.)
| | - Guiomar Sanchez
- Division of Health & Biomedicine, LEITAT Technological Centre, 08005 Barcelona, Spain; (M.M.); (A.S.); (A.S.); (G.S.); (L.G.)
| | - Karina Salek
- Institute of Mechanical, Process & Energy Engineering, Heriot Watt University, Edinburgh EH14 4AS, UK; (K.S.); (S.R.E.)
| | - Stylliani A. Chasapi
- Department of Pharmacy, University of Patras, 26504 Patra, Greece; (S.A.C.); (A.A.Z.); (G.A.S.)
| | - Aikaterini A. Zompra
- Department of Pharmacy, University of Patras, 26504 Patra, Greece; (S.A.C.); (A.A.Z.); (G.A.S.)
| | - Alex Galanis
- Department of Molecular Biology & Genetics, Democritus University of Thrace, 68100 Alexandroupolis, Greece; (I.A.); (D.-E.K.); (A.K.); (A.G.)
| | - Georgios A. Spyroulias
- Department of Pharmacy, University of Patras, 26504 Patra, Greece; (S.A.C.); (A.A.Z.); (G.A.S.)
| | - Lourdes Gombau
- Division of Health & Biomedicine, LEITAT Technological Centre, 08005 Barcelona, Spain; (M.M.); (A.S.); (A.S.); (G.S.); (L.G.)
| | - Stephen R. Euston
- Institute of Mechanical, Process & Energy Engineering, Heriot Watt University, Edinburgh EH14 4AS, UK; (K.S.); (S.R.E.)
| | - Aglaia Pappa
- Department of Molecular Biology & Genetics, Democritus University of Thrace, 68100 Alexandroupolis, Greece; (I.A.); (D.-E.K.); (A.K.); (A.G.)
| | - Mihalis I. Panayiotidis
- Department of Applied Sciences, Northumbria University, Newcastle Upon Tyne NE1 8ST, UK
- Department of Electron Microscopy & Molecular Pathology, The Cyprus Institute of Neurology & Genetics, 2371 Nicosia, Cyprus
- The Cyprus School of Molecular Medicine, PO Box 23462, 1683 Nicosia, Cyprus
| |
Collapse
|
39
|
Kamyab E, Goebeler N, Kellermann MY, Rohde S, Reverter M, Striebel M, Schupp PJ. Anti-Fouling Effects of Saponin-Containing Crude Extracts from Tropical Indo-Pacific Sea Cucumbers. Mar Drugs 2020; 18:E181. [PMID: 32244281 PMCID: PMC7231054 DOI: 10.3390/md18040181] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 03/27/2020] [Accepted: 03/28/2020] [Indexed: 12/21/2022] Open
Abstract
Sea cucumbers are bottom dwelling invertebrates, which are mostly found on subtropical and tropical sea grass beds, sandy reef flats, or reef slopes. Although constantly exposed to fouling communities in these habitats, many species are surprisingly free of invertebrate epibionts and microfouling algae such as diatoms. In our study, we investigated the anti-fouling (AF) activities of different crude extracts of tropical Indo-Pacific sea cucumber species against the fouling diatom Cylindrotheca closterium. Nine sea cucumber species from three genera (i.e., Holothuria, Bohadschia, Actinopyga) were selected and extracted to assess their AF activities. To verify whether the sea cucumber characteristic triterpene glycosides were responsible for the observed potent AF activities, we tested purified fractions enriched in saponins isolated from Bohadschia argus, representing one of the most active anti-fouling extracts. Saponins were quantified by vanillin-sulfuric acid colorimetric assays and identified by LC-MS and LC-MS/MS analyses. We were able to demonstrate that AF activities in sea cucumber extracts were species-specific, and growth inhibition as well as attachment of the diatom to surfaces is dependent on the saponin concentration (i.e., Actinopyga contained the highest quantities), as well as on the molecular composition and structure of the present saponins (i.e., Bivittoside D derivative was the most bioactive compound). In conclusion, the here performed AF assay represents a promising and fast method for selecting the most promising bioactive organism as well as for identifying novel compounds with potent AF activities for the discovery of potentially novel pharmacologically active natural products.
Collapse
Affiliation(s)
- Elham Kamyab
- Institute for Chemistry and Biology of the Marine Environment (ICBM), Carl-von-Ossietzky University Oldenburg, Schleusenstrasse 1, 26382 Wilhelmshaven, Germany; (N.G.); (M.Y.K.); (S.R.); (M.R.); (M.S.)
| | - Norman Goebeler
- Institute for Chemistry and Biology of the Marine Environment (ICBM), Carl-von-Ossietzky University Oldenburg, Schleusenstrasse 1, 26382 Wilhelmshaven, Germany; (N.G.); (M.Y.K.); (S.R.); (M.R.); (M.S.)
- Tvärminne Zoological Station, University of Helsinki, J.A. Palmènin tie 260, 10900 Hanko, Finland
| | - Matthias Y. Kellermann
- Institute for Chemistry and Biology of the Marine Environment (ICBM), Carl-von-Ossietzky University Oldenburg, Schleusenstrasse 1, 26382 Wilhelmshaven, Germany; (N.G.); (M.Y.K.); (S.R.); (M.R.); (M.S.)
| | - Sven Rohde
- Institute for Chemistry and Biology of the Marine Environment (ICBM), Carl-von-Ossietzky University Oldenburg, Schleusenstrasse 1, 26382 Wilhelmshaven, Germany; (N.G.); (M.Y.K.); (S.R.); (M.R.); (M.S.)
| | - Miriam Reverter
- Institute for Chemistry and Biology of the Marine Environment (ICBM), Carl-von-Ossietzky University Oldenburg, Schleusenstrasse 1, 26382 Wilhelmshaven, Germany; (N.G.); (M.Y.K.); (S.R.); (M.R.); (M.S.)
| | - Maren Striebel
- Institute for Chemistry and Biology of the Marine Environment (ICBM), Carl-von-Ossietzky University Oldenburg, Schleusenstrasse 1, 26382 Wilhelmshaven, Germany; (N.G.); (M.Y.K.); (S.R.); (M.R.); (M.S.)
| | - Peter J. Schupp
- Institute for Chemistry and Biology of the Marine Environment (ICBM), Carl-von-Ossietzky University Oldenburg, Schleusenstrasse 1, 26382 Wilhelmshaven, Germany; (N.G.); (M.Y.K.); (S.R.); (M.R.); (M.S.)
- Helmholtz Institute for Functional Marine Biodiversity at the University of Oldenburg (HIFMB), Ammerländer Heerstrasse 231, D-26129 Oldenburg, Germany
| |
Collapse
|
40
|
Javee A, Karuppan R, Subramani N. Bioactive glycolipid biosurfactant from seaweed Sargassum myriocystum associated bacteria Streptomyces sp. SNJASM6. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2020. [DOI: 10.1016/j.bcab.2020.101505] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
41
|
Rice based distillers dried grains with solubles as a low cost substrate for the production of a novel rhamnolipid biosurfactant having anti-biofilm activity against Candida tropicalis. Colloids Surf B Biointerfaces 2019; 182:110358. [DOI: 10.1016/j.colsurfb.2019.110358] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Revised: 07/08/2019] [Accepted: 07/09/2019] [Indexed: 12/14/2022]
|
42
|
Sharahi JY, Azimi T, Shariati A, Safari H, Tehrani MK, Hashemi A. Advanced strategies for combating bacterial biofilms. J Cell Physiol 2019; 234:14689-14708. [PMID: 30693517 DOI: 10.1002/jcp.28225] [Citation(s) in RCA: 80] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Accepted: 01/16/2019] [Indexed: 01/24/2023]
Abstract
Biofilms are communities of microorganisms that are formed on and attached to living or nonliving surfaces and are surrounded by an extracellular polymeric material. Biofilm formation enjoys several advantages over the pathogens in the colonization process of medical devices and patients' organs. Unlike planktonic cells, biofilms have high intrinsic resistance to antibiotics and sanitizers, and overcoming them is a significant problematic challenge in the medical and food industries. There are no approved treatments to specifically target biofilms. Thus, it is required to study and present innovative and effective methods to combat a bacterial biofilm. In this review, several strategies have been discussed for combating bacterial biofilms to improve healthcare, food safety, and industrial process.
Collapse
Affiliation(s)
- Javad Yasbolaghi Sharahi
- Department of Microbiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Taher Azimi
- Department of Pathobiology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Aref Shariati
- Department of Microbiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Hossein Safari
- Health Promotion Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Melika Khanzadeh Tehrani
- Department of Pathobiology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Ali Hashemi
- Department of Microbiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
43
|
Marine Biosurfactants: Biosynthesis, Structural Diversity and Biotechnological Applications. Mar Drugs 2019; 17:md17070408. [PMID: 31323998 PMCID: PMC6669457 DOI: 10.3390/md17070408] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Revised: 07/04/2019] [Accepted: 07/07/2019] [Indexed: 11/16/2022] Open
Abstract
Biosurfactants are amphiphilic secondary metabolites produced by microorganisms. Marine bacteria have recently emerged as a rich source for these natural products which exhibit surface-active properties, making them useful for diverse applications such as detergents, wetting and foaming agents, solubilisers, emulsifiers and dispersants. Although precise structural data are often lacking, the already available information deduced from biochemical analyses and genome sequences of marine microbes indicates a high structural diversity including a broad spectrum of fatty acid derivatives, lipoamino acids, lipopeptides and glycolipids. This review aims to summarise biosyntheses and structures with an emphasis on low molecular weight biosurfactants produced by marine microorganisms and describes various biotechnological applications with special emphasis on their role in the bioremediation of oil-contaminated environments. Furthermore, novel exploitation strategies are suggested in an attempt to extend the existing biosurfactant portfolio.
Collapse
|
44
|
Hassan SELD, Salem SS, Fouda A, Awad MA, El-Gamal MS, Abdo AM. New approach for antimicrobial activity and bio-control of various pathogens by biosynthesized copper nanoparticles using endophytic actinomycetes. JOURNAL OF RADIATION RESEARCH AND APPLIED SCIENCES 2019. [DOI: 10.1016/j.jrras.2018.05.003] [Citation(s) in RCA: 109] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Affiliation(s)
- Saad EL-Din Hassan
- Department of Botany and Microbiology, Faculty of Science, Al-Azhar University, Nasr City, Cairo, Egypt
| | - Salem S. Salem
- Department of Botany and Microbiology, Faculty of Science, Al-Azhar University, Nasr City, Cairo, Egypt
| | - Amr Fouda
- Department of Botany and Microbiology, Faculty of Science, Al-Azhar University, Nasr City, Cairo, Egypt
| | - Mohamed A. Awad
- Department of Zoology and Entomology, Faculty of Science, Al-Azhar University, Nasr City, Cairo, Egypt
| | - Mamdouh S. El-Gamal
- Department of Botany and Microbiology, Faculty of Science, Al-Azhar University, Nasr City, Cairo, Egypt
| | - Abdullah M. Abdo
- Department of Botany and Microbiology, Faculty of Science, Al-Azhar University, Nasr City, Cairo, Egypt
| |
Collapse
|
45
|
Senthil Balan S, Ganesh Kumar C, Jayalakshmi S. Physicochemical, structural and biological evaluation of Cybersan (trigalactomargarate), a new glycolipid biosurfactant produced by a marine yeast, Cyberlindnera saturnus strain SBPN-27. Process Biochem 2019. [DOI: 10.1016/j.procbio.2019.02.005] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
46
|
Satpute SK, Mone NS, Das P, Banat IM, Banpurkar AG. Inhibition of pathogenic bacterial biofilms on PDMS based implants by L. acidophilus derived biosurfactant. BMC Microbiol 2019; 19:39. [PMID: 30760203 PMCID: PMC6374892 DOI: 10.1186/s12866-019-1412-z] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Accepted: 02/07/2019] [Indexed: 12/19/2022] Open
Abstract
Background Lactobacillus spp. predominantly shows its presence as a normal mucosal flora of the mouth and intestine. Therefore, the objective of our research is to investigate the in-vitro conditions for the prospective of medically valuable biosurfactants (BSs) derived from Lactobacillus spp. Biosurfactant (BS) obtained from Lactobacillus spp. exhibit antibiofilm and antiadhesive activity against broad range of microbes. In the present study we investigated the production, purification and properties of key components of the cell-associated-biosurfactant (CABS) from Lactobacillus acidophilus NCIM 2903. Results Extracted, purified, freeze-dried CABS shows reduction in surface tension (SFT) of phosphate buffer saline (PBS @pH 7.0) from 71 to 26 mN/m and had a critical micelle concentration (CMC) of 23.6 mg/mL. The CABS showed reduction in interfacial tension (IFT) against various hydrocarbons and had effective spreading capability as reflected through the decrease in contact angle (CA) on different surfaces (polydimethylsiloxane - PDMS, Teflon tape, glass surface, polystyrene film and OHP sheet). The anionic nature of CABS displayed stability at different pH and temperatures and formed stable emulsions. Thin layer chromatography (TLC) and Fourier transform infrared spectroscopy (FTIR) revealed CABS as glycolipoprotein type. The Sodium Dodecyl Sulphate Polyacrylamide Gel Electrophoresis (SDS-PAGE) showed presence of multiple bands in a molecular range of 14.4 to 60 kDa, with prominent bands of 45 kDa. The CABS has significant antiadhesion and antibiofilm activity against tested bacterial strains. Conclusion The current challenging situation is to develop methods or search for the molecules that will prevent the formations of biofilm on medical bioimplants of PDMS based materials. These findings are supportive for the use of Lactobacilli derived BS as potential antiadhesive agent on various surfaces of biomedical devices.
Collapse
Affiliation(s)
- Surekha K Satpute
- Department of Microbiology, Savitribai Phule Pune University, Pune, Maharashtra, 411007, India.
| | - Nishigandha S Mone
- Department of Microbiology, Savitribai Phule Pune University, Pune, Maharashtra, 411007, India
| | - Parijat Das
- Department of Microbiology, Savitribai Phule Pune University, Pune, Maharashtra, 411007, India.,Present Address: Protein Crystallography lab (603), Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai, Maharashtra, 400076, India
| | - Ibrahim M Banat
- School of Biomedical Sciences, University of Ulster, Coleraine, BT52 1SA, N., Ireland, UK
| | - Arun G Banpurkar
- Department of Physics, Savitribai Phule Pune University, Pune, Maharashtra, 411007, India.
| |
Collapse
|
47
|
Butenolide, a Marine-Derived Broad-Spectrum Antibiofilm Agent Against Both Gram-Positive and Gram-Negative Pathogenic Bacteria. MARINE BIOTECHNOLOGY 2019; 21:88-98. [PMID: 30612218 PMCID: PMC6394721 DOI: 10.1007/s10126-018-9861-1] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Accepted: 11/07/2018] [Indexed: 02/06/2023]
Abstract
Bacterial biofilm can cause nosocomial recurrent infections and implanted device secondary infections in patients and strongly promotes development of pathogenic drug resistance in clinical treatments. Butenolide is an effective anti-macrofouling compound derived from a marine Streptomyces sp., but its antibiofilm efficacy remains largely unexplored. In the present study, the antibiofilm activities of butenolide were examined using biofilms formed by both Gram-positive and Gram-negative pathogenic model species. Four Escherichia coli strains, Pseudomonas aeruginosa, and methicillin-resistant Staphylococcus aureus (MRSA) were used as targets in antibiofilm assays that examined the effects of butenolide, including the following: (i) on bacterial growth; (ii) in inhibiting biofilm formation and eradicating mature biofilm; (iii) on biofilm structures. In addition, the synergistic effect between butenolide with tetracycline was also examined. Butenolide not only effectively inhibited the biofilm formation but also eradicated pre-formed biofilms of tested bacteria. Fractional inhibitory concentration index (FICI) indicated that butenolide was a potential tetracycline enhancer against E. coli, P. aeruginosa, and MRSA. These results indicated that butenolide may hold a great potential as an effective antibiofilm agent to control and prevent biofilm-associated infections in future clinical treatments.
Collapse
|
48
|
Balan SS, Mani P, Kumar CG, Jayalakshmi S. Structural characterization and biological evaluation of Staphylosan (dimannooleate), a new glycolipid surfactant produced by a marine Staphylococcus saprophyticus SBPS-15. Enzyme Microb Technol 2019; 120:1-7. [DOI: 10.1016/j.enzmictec.2018.09.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2018] [Revised: 09/15/2018] [Accepted: 09/20/2018] [Indexed: 12/24/2022]
|
49
|
Clements T, Ndlovu T, Khan S, Khan W. Biosurfactants produced by Serratia species: Classification, biosynthesis, production and application. Appl Microbiol Biotechnol 2018; 103:589-602. [DOI: 10.1007/s00253-018-9520-5] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Revised: 11/08/2018] [Accepted: 11/12/2018] [Indexed: 10/27/2022]
|
50
|
Biological control of the soft rot bacterium Pectobacterium carotovorum by Bacillus amyloliquefaciens strain Ar10 producing glycolipid-like compounds. Microbiol Res 2018; 217:23-33. [PMID: 30384906 DOI: 10.1016/j.micres.2018.08.013] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Revised: 08/17/2018] [Accepted: 08/28/2018] [Indexed: 11/21/2022]
Abstract
Four hundred and fifty bacteria were evaluated for antagonistic activity against bacterial soft rot of potato caused by Pectobacterium carotovorum sp strain II16. A strain Ar10 exhibiting potent antagonist activity has been identified as Bacillus amyloliquefaciens on the basis of biochemical and molecular characterization. Cell free supernatant showed a broad spectrum of antibacterial activity against human and phytopathogenic bacteria in the range of 10-60 AU/mL. Incubation of P. carotovorum cells with increasing concentrations of the antibacterial compound showed a killing rate of 94.8 and 96% at MIC and 2xMIC respectively. In addition, the antibacterial agent did not exert haemolytic activity at the active concentration and has been preliminary characterized by TLC and GC-MS as a glycolipid compound. Treatment of potato tubers with strain Ar10 for 72 h significantly reduced the severity of disease symptoms (100 and 85.05% reduction of necrosis deep / area and weight loss respectively). The same levels in disease symptoms severity was also recorded following treatment of potato tubers with cell free supernatant for 1 h. Data suggest that protection against potato soft rot disease may be related to glycolipid production by strain Ar10. The present study affords new alternatives for anti-Pectobacterium carotovorum bioactive compounds against the soft rot disease of potato.
Collapse
|