1
|
Birtles D, Lee J. Exploring the influence of anionic lipids in the host cell membrane on viral fusion. Biochem Soc Trans 2024; 52:2593-2602. [PMID: 39700018 PMCID: PMC11668307 DOI: 10.1042/bst20240833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Revised: 11/25/2024] [Accepted: 12/02/2024] [Indexed: 12/21/2024]
Abstract
Membrane fusion is an essential component of the viral lifecycle that allows the delivery of the genetic information of the virus into the host cell. Specialized viral glycoproteins exist on the surface of mature virions where they facilitate fusion through significant conformational changes, ultimately bringing opposing membranes into proximity until they eventually coalesce. This process can be positively influenced by a number of specific cellular factors such as pH, enzymatic cleavage, divalent ions, and the composition of the host cell membrane. In this review, we have summarized how anionic lipids have come to be involved in viral fusion and how the endosomal resident anionic lipid BMP has become increasingly implicated as an important cofactor for those viruses that fuse via the endocytic pathway.
Collapse
Affiliation(s)
- Daniel Birtles
- Department of Chemistry and Biochemistry, University of Maryland, College Park, MD 20742, U.S.A
| | - Jinwoo Lee
- Department of Chemistry and Biochemistry, University of Maryland, College Park, MD 20742, U.S.A
| |
Collapse
|
2
|
Daidoji T, Sadakane H, Garan K, Kawashita N, Arai Y, Watanabe Y, Nakaya T. The host tropism of current zoonotic H7N9 viruses depends mainly on an acid-labile hemagglutinin with a single amino acid mutation in the stalk region. PLoS Pathog 2024; 20:e1012427. [PMID: 39436936 PMCID: PMC11495601 DOI: 10.1371/journal.ppat.1012427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 07/15/2024] [Indexed: 10/25/2024] Open
Abstract
The incidence of human infection by zoonotic avian influenza viruses, especially H5N1 and H7N9 viruses, has increased. Current zoonotic H7N9 avian influenza viruses (identified since 2013) emerged during reassortment of viruses belonging to different subtypes. Despite analyses of their genetic background, we do not know why current H7N9 viruses are zoonotic. Therefore, there is a need to identify the factor(s) responsible for the extended host tropism that enables these viruses to infect humans as well as birds. To identify H7N9-specific amino acids that confer zoonotic properties on H7N9 viruses, we performed multiple alignment of the hemagglutinin (HA) amino acid sequences of A/Shanghai/1/2013 (H7N9) and A/duck/Zhejiang/12/2011(H7N3) (a putative, non- or less zoonotic HA donor to the zoonotic H7N9 virus). We also analyze the function of an H7N9 HA-specific amino acid with respect to HA acid stability, and evaluated the effect of acid stability on viral infectivity and virulence in a mouse model. HA2-116D, preserved in current zoonotic H7N9 viruses, was crucial for loss of HA acid stability. The acid-labile HA protein in H7 viruses played an important role in infection of human airway epithelial cells; HA2-116D contributed to infection and replication of H7 viruses. Finally, HA2-116D served as a H7 virulence factor in mice. These results suggest that acid-labile HA harboring HA2-116D confers zoonotic characteristics on H7N9 virus and that future novel zoonotic avian viruses could emerge from non-zoonotic H7 viruses via acquisition of mutations that remove HA acid stability.
Collapse
Affiliation(s)
- Tomo Daidoji
- Department of Pathobiology, School of Veterinary Medicine, Rakuno Gakuen University, Hokkaido, Japan
- Department of Infectious Diseases, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Hiroki Sadakane
- Department of Infectious Diseases, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Kotaro Garan
- Department of Infectious Diseases, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | | | - Yasuha Arai
- Department of Infectious Diseases, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Yohei Watanabe
- Department of Infectious Diseases, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Takaaki Nakaya
- Department of Infectious Diseases, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| |
Collapse
|
3
|
Kushwaha ND, Mohan J, Kushwaha B, Ghazi T, Nwabuife JC, Koorbanally N, Chuturgoon AA. A comprehensive review on the global efforts on vaccines and repurposed drugs for combating COVID-19. Eur J Med Chem 2023; 260:115719. [PMID: 37597435 DOI: 10.1016/j.ejmech.2023.115719] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 07/31/2023] [Accepted: 08/09/2023] [Indexed: 08/21/2023]
Abstract
The recently discovered coronavirus, known as SARS-CoV-2, is a highly contagious and potentially lethal viral infection that was declared a pandemic by the World Health Organization on March 11, 2020. Since the beginning of the pandemic, an unprecedented number of COVID-19 vaccine candidates have been investigated for their potential to manage the pandemic. Herein, we reviewed vaccine development and the associated research effort, both traditional and forward-looking, to demonstrate the advantages and disadvantages of their technology, in addition to their efficacy limitations against mutant SARS-CoV-2. Moreover, we report repurposed drug discovery, which mainly focuses on virus-based and host-based targets, as well as their inhibitors. SARS-CoV-2 targets include the main protease (Mpro), and RNA-dependent RNA-polymerase (RdRp), which are the most well-studied and conserved across coronaviruses, enabling the development of broad-spectrum inhibitors of these enzymes.
Collapse
Affiliation(s)
- Narva Deshwar Kushwaha
- Discipline of Medical Biochemistry, School of Laboratory Medicine and Medical Science, College of Health Sciences, University of KwaZulu-Natal, Durban, South Africa; Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, MI, 48201, USA.
| | - Jivanka Mohan
- Discipline of Medical Biochemistry, School of Laboratory Medicine and Medical Science, College of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Babita Kushwaha
- Discipline of Medical Biochemistry, School of Laboratory Medicine and Medical Science, College of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Terisha Ghazi
- Discipline of Medical Biochemistry, School of Laboratory Medicine and Medical Science, College of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Joshua C Nwabuife
- Discipline of Pharmaceutical Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban, 4000, South Africa
| | - Neil Koorbanally
- School of Chemistry, College of Agriculture, Engineering and Science, University of KwaZulu-Natal, Durban, 4000, South Africa
| | - Anil A Chuturgoon
- Discipline of Medical Biochemistry, School of Laboratory Medicine and Medical Science, College of Health Sciences, University of KwaZulu-Natal, Durban, South Africa.
| |
Collapse
|
4
|
Le K, Kannappan S, Kim T, Lee JH, Lee HR, Kim KK. Structural understanding of SARS-CoV-2 virus entry to host cells. Front Mol Biosci 2023; 10:1288686. [PMID: 38033388 PMCID: PMC10683510 DOI: 10.3389/fmolb.2023.1288686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 10/16/2023] [Indexed: 12/02/2023] Open
Abstract
Coronavirus disease 2019 (COVID-19), caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), is a major global health concern associated with millions of fatalities worldwide. Mutant variants of the virus have further exacerbated COVID-19 mortality and infection rates, emphasizing the urgent need for effective preventive strategies. Understanding the viral infection mechanism is crucial for developing therapeutics and vaccines. The entry of SARS-CoV-2 into host cells is a key step in the infection pathway and has been targeted for drug development. Despite numerous reviews of COVID-19 and the virus, there is a lack of comprehensive reviews focusing on the structural aspects of viral entry. In this review, we analyze structural changes in Spike proteins during the entry process, dividing the entry process into prebinding, receptor binding, proteolytic cleavage, and membrane fusion steps. By understanding the atomic-scale details of viral entry, we can better target the entry step for intervention strategies. We also examine the impacts of mutations in Spike proteins, including the Omicron variant, on viral entry. Structural information provides insights into the effects of mutations and can guide the development of therapeutics and vaccines. Finally, we discuss available structure-based approaches for the development of therapeutics and vaccines. Overall, this review provides a detailed analysis of the structural aspects of SARS-CoV-2 viral entry, highlighting its significance in the development of therapeutics and vaccines against COVID-19. Therefore, our review emphasizes the importance of structural information in combating SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Kim Le
- Department of Precision Medicine, Sungkyunkwan University School of Medicine, Institute of Antibacterial Resistance Research and Therapeutics, Sungkyunkwan University, Suwon, Republic of Korea
| | - Shrute Kannappan
- Department of Precision Medicine, Sungkyunkwan University School of Medicine, Institute of Antibacterial Resistance Research and Therapeutics, Sungkyunkwan University, Suwon, Republic of Korea
- Research Center for Advanced Materials Technology Core Research Institute, Suwon, Republic of Korea
| | - Truc Kim
- Department of Precision Medicine, Sungkyunkwan University School of Medicine, Institute of Antibacterial Resistance Research and Therapeutics, Sungkyunkwan University, Suwon, Republic of Korea
| | - Jung Heon Lee
- Research Center for Advanced Materials Technology Core Research Institute, Suwon, Republic of Korea
- School of Advanced Materials and Science Engineering, Sungkyunkwan University, Suwon, Republic of Korea
| | - Hye-Ra Lee
- Department of Biotechnology and Bioinformatics, College of Science and Technology, Korea University, Sejong, Republic of Korea
| | - Kyeong Kyu Kim
- Department of Precision Medicine, Sungkyunkwan University School of Medicine, Institute of Antibacterial Resistance Research and Therapeutics, Sungkyunkwan University, Suwon, Republic of Korea
| |
Collapse
|
5
|
Avdonin PP, Rybakova EY, Trufanov SK, Avdonin PV. SARS-CoV-2 Receptors and Their Involvement in Cell Infection. BIOCHEMISTRY (MOSCOW), SUPPLEMENT SERIES A: MEMBRANE AND CELL BIOLOGY 2023; 17:1-11. [PMID: 37008884 PMCID: PMC10050803 DOI: 10.1134/s1990747822060034] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Revised: 07/30/2022] [Accepted: 08/01/2022] [Indexed: 03/30/2023]
Abstract
The new coronavirus infection (COVID-19) pandemic caused by SARS-CoV-2 has many times surpassed the epidemics caused by SARS-CoV and MERS-CoV. The reason for this was the presence of sites in the protein sequence of SARS-CoV-2 that provide interaction with a broader range of receptor proteins on the host cell surface. In this review, we consider both already known receptors common to SARS-CoV and SARS-CoV-2 and new receptors specific to SARS-CoV-2.
Collapse
Affiliation(s)
- P. P. Avdonin
- N.K. Koltsov Institute of Developmental Biology, Russian Academy of Sciences, 119334 Moscow, Russia
| | - E. Yu. Rybakova
- N.K. Koltsov Institute of Developmental Biology, Russian Academy of Sciences, 119334 Moscow, Russia
| | - S. K. Trufanov
- N.K. Koltsov Institute of Developmental Biology, Russian Academy of Sciences, 119334 Moscow, Russia
| | - P. V. Avdonin
- N.K. Koltsov Institute of Developmental Biology, Russian Academy of Sciences, 119334 Moscow, Russia
| |
Collapse
|
6
|
Monteiro A, Chang AJ, Welliver RR, Baron S, Hicar MD. Humoral cross-coronavirus responses against the S2 region in children with Kawasaki disease. Virology 2022; 575:83-90. [PMID: 36088793 PMCID: PMC9437773 DOI: 10.1016/j.virol.2022.08.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 08/17/2022] [Accepted: 08/22/2022] [Indexed: 12/16/2022]
Abstract
Multisystem Inflammatory Syndrome in Children (MIS-C), a post infectious complication of SARS CoV-2 infection, shares enough features with Kawasaki Disease (KD) that some have hypothesized cross-coronavirus (CoV) immunity may explain the shared pathology. Recent studies have shown that humoral cross-reactivity of the CoVs, particularly of OC43, is focused on the S2 region of the Spike protein. Due to efforts utilizing CoV S2 regions to produce a cross-CoV vaccine, we wished to assess SARS-CoV-2 S2 reactivity in children with KD and assess if cardiac involvement in KD correlated with S2 CoV antibody targeting. The presence of cross-reactivity does not distinguish KD from febrile controls and does not correlate with cardiac involvement in KD. These findings support that, in relation to cardiac vascular inflammation, vaccines targeting the S2 region appear to be a safe approach, but there is disparity in the ability of CoV species to raise cross-reactive S2 targeted antibodies.
Collapse
Affiliation(s)
- Ajit Monteiro
- Department of Pediatrics, University at Buffalo, Buffalo, NY, USA
| | - Arthur J Chang
- Department of Pediatrics, University at Buffalo, Buffalo, NY, USA
| | - R Ross Welliver
- Department of Pediatrics, University at Buffalo, Buffalo, NY, USA
| | - Sarah Baron
- Department of Pediatrics, University at Buffalo, Buffalo, NY, USA
| | - Mark D Hicar
- Department of Pediatrics, University at Buffalo, Buffalo, NY, USA.
| |
Collapse
|
7
|
Ebel H, Benecke T, Vollmer B. Stabilisation of Viral Membrane Fusion Proteins in Prefusion Conformation by Structure-Based Design for Structure Determination and Vaccine Development. Viruses 2022; 14:1816. [PMID: 36016438 PMCID: PMC9415420 DOI: 10.3390/v14081816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Revised: 08/08/2022] [Accepted: 08/15/2022] [Indexed: 11/20/2022] Open
Abstract
The membrane surface of enveloped viruses contains dedicated proteins enabling the fusion of the viral with the host cell membrane. Working with these proteins is almost always challenging because they are membrane-embedded and naturally metastable. Fortunately, based on a range of different examples, researchers now have several possibilities to tame membrane fusion proteins, making them amenable for structure determination and immunogen generation. This review describes the structural and functional similarities of the different membrane fusion proteins and ways to exploit these features to stabilise them by targeted mutational approaches. The recent determination of two herpesvirus membrane fusion proteins in prefusion conformation holds the potential to apply similar methods to this group of viral fusogens. In addition to a better understanding of the herpesviral fusion mechanism, the structural insights gained will help to find ways to further stabilise these proteins using the methods described to obtain stable immunogens that will form the basis for the development of the next generation of vaccines and antiviral drugs.
Collapse
Affiliation(s)
- Henriette Ebel
- Centre for Structural Systems Biology (CSSB), 22607 Hamburg, Germany
- Department of Chemistry, University of Hamburg, 20146 Hamburg, Germany
- Leibniz Institute of Virology (LIV), 20251 Hamburg, Germany
| | - Tim Benecke
- Centre for Structural Systems Biology (CSSB), 22607 Hamburg, Germany
- Department of Chemistry, University of Hamburg, 20146 Hamburg, Germany
- Leibniz Institute of Virology (LIV), 20251 Hamburg, Germany
| | - Benjamin Vollmer
- Centre for Structural Systems Biology (CSSB), 22607 Hamburg, Germany
- Department of Chemistry, University of Hamburg, 20146 Hamburg, Germany
- Leibniz Institute of Virology (LIV), 20251 Hamburg, Germany
| |
Collapse
|
8
|
Ambrose JM, Kullappan M, Patil S, Alzahrani KJ, Banjer HJ, Qashqari FSI, Raj AT, Bhandi S, Veeraraghavan VP, Jayaraman S, Sekar D, Agarwal A, Swapnavahini K, Krishna Mohan S. Plant-Derived Antiviral Compounds as Potential Entry Inhibitors against Spike Protein of SARS-CoV-2 Wild-Type and Delta Variant: An Integrative in SilicoApproach. Molecules 2022; 27:1773. [PMID: 35335139 PMCID: PMC8949152 DOI: 10.3390/molecules27061773] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 03/03/2022] [Accepted: 03/05/2022] [Indexed: 12/24/2022] Open
Abstract
The wild-type SARS-CoV-2 has continuously evolved into several variants with increased transmissibility and virulence. The Delta variant which was initially identified in India created a devastating impact throughout the country during the second wave. While the efficacy of the existing vaccines against the latest SARS-CoV-2 variants remains unclear, extensive research is being carried out to develop potential antiviral drugs through approaches like in silico screening and drug-repurposing. This study aimed to conduct the docking-based virtual screening of 50 potential phytochemical compounds against a Spike glycoprotein of the wild-type and the Delta SARS-CoV-2 variant. Subsequently, molecular docking was performed for the five best compounds, such as Lupeol, Betulin, Hypericin, Corilagin, and Geraniin, along with synthetic controls. From the results obtained, it was evident that Lupeol exhibited a remarkable binding affinity towards the wild-type Spike protein (-8.54 kcal/mol), while Betulin showed significant binding interactions with the mutated Spike protein (-8.83 kcal/mol), respectively. The binding energy values of the selected plant compounds were slightly higher than that of the controls. Key hydrogen bonding and hydrophobic interactions of the resulting complexes were visualized, which explained their greater binding affinity against the target proteins-the Delta S protein of SARS-CoV-2, in particular. The lower RMSD, the RMSF values of the complexes and the ligands, Rg, H-bonds, and the binding free energies of the complexes together revealed the stability of the complexes and significant binding affinities of the ligands towards the target proteins. Our study suggests that Lupeol and Betulin could be considered as potential ligands for SARS-CoV-2 spike antagonists. Further experimental validations might provide new insights for the possible antiviral therapeutic interventions of the identified lead compounds and their analogs against COVID-19 infection.
Collapse
Affiliation(s)
- Jenifer Mallavarpu Ambrose
- Department of Research, Panimalar Medical College Hospital & Research Institute, Chennai 600123, India; (J.M.A.); (M.K.)
| | - Malathi Kullappan
- Department of Research, Panimalar Medical College Hospital & Research Institute, Chennai 600123, India; (J.M.A.); (M.K.)
| | - Shankargouda Patil
- Department of Maxillofacial Surgery and Diagnostic Sciences, Division of Oral Pathology, College of Dentistry, Jazan University, Jazan 45412, Saudi Arabia;
| | - Khalid J. Alzahrani
- Department of Clinical Laboratories Sciences, College of Applied Medical Sciences, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia; (K.J.A.); (H.J.B.)
| | - Hamsa Jameel Banjer
- Department of Clinical Laboratories Sciences, College of Applied Medical Sciences, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia; (K.J.A.); (H.J.B.)
| | - Fadi S. I. Qashqari
- Department of Microbiology, College of Medicine, Umm Al-Qura University, Makkah 24381, Saudi Arabia;
| | - A. Thirumal Raj
- Department of Oral Pathology and Microbiology, Sri Venkateswara Dental College and Hospital, Chennai 600130, India;
| | - Shilpa Bhandi
- Department of Restorative Dental Science, Division of Operative Dentistry, College of Dentistry, Jazan University, Jazan 45142, Saudi Arabia;
| | - Vishnu Priya Veeraraghavan
- Centre of Molecular Medicine and Diagnostics (COMManD), Department of Biochemistry, Saveetha Dental College, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha University, Chennai 600077, India;
| | - Selvaraj Jayaraman
- Centre of Molecular Medicine and Diagnostics (COMManD), Department of Biochemistry, Saveetha Dental College, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha University, Chennai 600077, India;
| | - Durairaj Sekar
- Centre for Cellular and Molecular Research, Saveetha Dental College & Hospitals, Saveetha Institute of Medical & Technical Sciences (SIMATS), Saveetha University, Chennai 600077, India;
| | - Alok Agarwal
- Department of Chemistry, Chinmaya Degree College, BHEL Haridwar 249403, India;
| | - Korla Swapnavahini
- Department of Biotechnology, Dr B.R. Ambedkar University, Etcherla, Srikakulam 532410, India;
| | - Surapaneni Krishna Mohan
- Departments of Biochemistry, Molecular Virology, Research, and Clinical Skills & Simulation, Panimalar Medical College Hospital & Research Institute, Chennai 600123, India
| |
Collapse
|
9
|
Behzadipour Y, Hemmati S. Viral Prefusion Targeting Using Entry Inhibitor Peptides: The Case of SARS-CoV-2 and Influenza A virus. Int J Pept Res Ther 2022; 28:42. [PMID: 35002586 PMCID: PMC8722418 DOI: 10.1007/s10989-021-10357-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/22/2021] [Indexed: 12/11/2022]
Abstract
In this study, peptide entry inhibitors against the fusion processes of severe acute respiratory syndrome coronavirus-2 (SCV2) and influenza A virus (IAV) were designed and evaluated. Fusion inhibitor peptides targeting the conformational shift of the viral fusion protein were designed based on the relatively conserved sequence of HR2 from SCV2 spike protein and the conserved fusion peptide from hemagglutinin (HA) of IAV. Helical HR2 peptides bind more efficiently to HR1 trimer, while helical amphipathic anti-IAV peptides have higher cell penetration and endosomal uptake. The initial sequences were mutated by increasing the amphipathicity, using helix favoring residues, and residues likely to form salt- and disulfide-bridges. After docking against their targets, all anti-SCV2 designed peptides bonded with the HR1 3-helical bundle's hydrophobic crevice, while AntiSCV2P1, AntiSCV2P3, AntiSCV2P7, and AntiSCV2P8 expected to form coiled coils with at least one of the HR1 strands. Four of the designed anti-IAV peptides were cell-penetrating (AntiIAVP2, AntiIAVP3, AntiIAVP4, AntiIAVP7). All of them interacted with the fusion peptide of HA and some of the residues in the conserved hydrophobic pocket of HA2 in H1N1, H3N1, and H5N1 subtypes of IAV. AntiIAVP3 and AntiIAVP4 peptides had the best binding to HA2 conserved hydrophobic pocket, while, AntiIAVP2 and AntiIAVP6 showed the best binding to the fusion peptide region. According to analyses for in-vivo administration, AntiSCV2P1, AntiSCV2P7, AntiIAVP2, and AntiIAVP7 were the best candidates. AntiSCV2 and AntiIAV peptides were also conjugated using an in vivo cleavable linker sensitive to TMPRSS2 applicable as a single therapeutic in coinfections or uncertain diagnosis.
Collapse
Affiliation(s)
- Yasaman Behzadipour
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Shiraz University of Medical Sciences, P.O. Box 71345-1583, Shiraz, Iran
| | - Shiva Hemmati
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Shiraz University of Medical Sciences, P.O. Box 71345-1583, Shiraz, Iran.,Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.,Biotechnology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
10
|
Düzgüneş N, Fernandez-Fuentes N, Konopka K. Inhibition of Viral Membrane Fusion by Peptides and Approaches to Peptide Design. Pathogens 2021; 10:1599. [PMID: 34959554 PMCID: PMC8709411 DOI: 10.3390/pathogens10121599] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2021] [Revised: 12/06/2021] [Accepted: 12/06/2021] [Indexed: 12/29/2022] Open
Abstract
Fusion of lipid-enveloped viruses with the cellular plasma membrane or the endosome membrane is mediated by viral envelope proteins that undergo large conformational changes following binding to receptors. The HIV-1 fusion protein gp41 undergoes a transition into a "six-helix bundle" after binding of the surface protein gp120 to the CD4 receptor and a co-receptor. Synthetic peptides that mimic part of this structure interfere with the formation of the helix structure and inhibit membrane fusion. This approach also works with the S spike protein of SARS-CoV-2. Here we review the peptide inhibitors of membrane fusion involved in infection by influenza virus, HIV-1, MERS and SARS coronaviruses, hepatitis viruses, paramyxoviruses, flaviviruses, herpesviruses and filoviruses. We also describe recent computational methods used for the identification of peptide sequences that can interact strongly with protein interfaces, with special emphasis on SARS-CoV-2, using the PePI-Covid19 database.
Collapse
Affiliation(s)
- Nejat Düzgüneş
- Department of Biomedical Sciences, Arthur A. Dugoni School of Dentistry, University of the Pacific, San Francisco, CA 94103, USA;
| | - Narcis Fernandez-Fuentes
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Aberystwyth SY23 3EE, UK;
| | - Krystyna Konopka
- Department of Biomedical Sciences, Arthur A. Dugoni School of Dentistry, University of the Pacific, San Francisco, CA 94103, USA;
| |
Collapse
|
11
|
Martínez-Flores D, Zepeda-Cervantes J, Cruz-Reséndiz A, Aguirre-Sampieri S, Sampieri A, Vaca L. SARS-CoV-2 Vaccines Based on the Spike Glycoprotein and Implications of New Viral Variants. Front Immunol 2021; 12:701501. [PMID: 34322129 PMCID: PMC8311925 DOI: 10.3389/fimmu.2021.701501] [Citation(s) in RCA: 143] [Impact Index Per Article: 35.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Accepted: 06/28/2021] [Indexed: 12/12/2022] Open
Abstract
Coronavirus 19 Disease (COVID-19) originating in the province of Wuhan, China in 2019, is caused by the severe acute respiratory syndrome coronavirus type 2 (SARS-CoV-2), whose infection in humans causes mild or severe clinical manifestations that mainly affect the respiratory system. So far, the COVID-19 has caused more than 2 million deaths worldwide. SARS-CoV-2 contains the Spike (S) glycoprotein on its surface, which is the main target for current vaccine development because antibodies directed against this protein can neutralize the infection. Companies and academic institutions have developed vaccines based on the S glycoprotein, as well as its antigenic domains and epitopes, which have been proven effective in generating neutralizing antibodies. However, the emergence of new SARS-CoV-2 variants could affect the effectiveness of vaccines. Here, we review the different types of vaccines designed and developed against SARS-CoV-2, placing emphasis on whether they are based on the complete S glycoprotein, its antigenic domains such as the receptor-binding domain (RBD) or short epitopes within the S glycoprotein. We also review and discuss the possible effectiveness of these vaccines against emerging SARS-CoV-2 variants.
Collapse
Affiliation(s)
- Daniel Martínez-Flores
- Departamento de Biología Celular y del Desarrollo, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Jesús Zepeda-Cervantes
- Departamento de Biología Celular y del Desarrollo, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico City, Mexico
- Departamento de Microbiología e Inmunología, Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Adolfo Cruz-Reséndiz
- Departamento de Biología Celular y del Desarrollo, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Sergio Aguirre-Sampieri
- Laboratorio de Fisicoquímica e Ingeniería de Proteínas, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Alicia Sampieri
- Departamento de Biología Celular y del Desarrollo, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Luis Vaca
- Departamento de Biología Celular y del Desarrollo, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico City, Mexico
| |
Collapse
|
12
|
Narkhede YB, Gonzalez KJ, Strauch EM. Targeting Viral Surface Proteins through Structure-Based Design. Viruses 2021; 13:v13071320. [PMID: 34372526 PMCID: PMC8310314 DOI: 10.3390/v13071320] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2021] [Revised: 06/30/2021] [Accepted: 07/01/2021] [Indexed: 12/28/2022] Open
Abstract
The emergence of novel viral infections of zoonotic origin and mutations of existing human pathogenic viruses represent a serious concern for public health. It warrants the establishment of better interventions and protective therapies to combat the virus and prevent its spread. Surface glycoproteins catalyzing the fusion of viral particles and host cells have proven to be an excellent target for antivirals as well as vaccines. This review focuses on recent advances for computational structure-based design of antivirals and vaccines targeting viral fusion machinery to control seasonal and emerging respiratory viruses.
Collapse
Affiliation(s)
- Yogesh B Narkhede
- Department of Pharmaceutical and Biomedical Sciences, University of Georgia, Athens, GA 30602, USA;
| | - Karen J Gonzalez
- Institute of Bioinformatics, University of Georgia, Athens, GA 30602, USA;
| | - Eva-Maria Strauch
- Department of Pharmaceutical and Biomedical Sciences, University of Georgia, Athens, GA 30602, USA;
- Institute of Bioinformatics, University of Georgia, Athens, GA 30602, USA;
- Correspondence:
| |
Collapse
|
13
|
Mariano G, Farthing RJ, Lale-Farjat SLM, Bergeron JRC. Structural Characterization of SARS-CoV-2: Where We Are, and Where We Need to Be. Front Mol Biosci 2020; 7:605236. [PMID: 33392262 PMCID: PMC7773825 DOI: 10.3389/fmolb.2020.605236] [Citation(s) in RCA: 141] [Impact Index Per Article: 28.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Accepted: 10/22/2020] [Indexed: 01/18/2023] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has rapidly spread in humans in almost every country, causing the disease COVID-19. Since the start of the COVID-19 pandemic, research efforts have been strongly directed towards obtaining a full understanding of the biology of the viral infection, in order to develop a vaccine and therapeutic approaches. In particular, structural studies have allowed to comprehend the molecular basis underlying the role of many of the SARS-CoV-2 proteins, and to make rapid progress towards treatment and preventive therapeutics. Despite the great advances that have been provided by these studies, many knowledge gaps on the biology and molecular basis of SARS-CoV-2 infection still remain. Filling these gaps will be the key to tackle this pandemic, through development of effective treatments and specific vaccination strategies.
Collapse
Affiliation(s)
- Giuseppina Mariano
- Microbes in Health and Disease Theme, Newcastle University Biosciences Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Rebecca J. Farthing
- Randall Centre for Cell and Molecular Biophysics, King’s College London, London, United Kingdom
| | | | - Julien R. C. Bergeron
- Randall Centre for Cell and Molecular Biophysics, King’s College London, London, United Kingdom
| |
Collapse
|
14
|
Caillat C, Guilligay D, Sulbaran G, Weissenhorn W. Neutralizing Antibodies Targeting HIV-1 gp41. Viruses 2020; 12:E1210. [PMID: 33114242 PMCID: PMC7690876 DOI: 10.3390/v12111210] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 10/20/2020] [Accepted: 10/20/2020] [Indexed: 12/21/2022] Open
Abstract
HIV-1 vaccine research has obtained an enormous boost since the discovery of many broadly neutralizing antibodies (bnAbs) targeting all accessible sites on the HIV-1 envelope glycoprotein (Env). This in turn facilitated high-resolution structures of the Env glycoprotein in complex with bnAbs. Here we focus on gp41, its highly conserved heptad repeat region 1 (HR1), the fusion peptide (FP) and the membrane-proximal external region (MPER). Notably, the broadest neutralizing antibodies target MPER. Both gp41 HR1 and MPER are only fully accessible once receptor-induced conformational changes have taken place, although some studies suggest access to MPER in the close to native Env conformation. We summarize the data on the structure and function of neutralizing antibodies targeting gp41 HR1, FP and MPER and we review their access to Env and their complex formation with gp41 HR1, MPER peptides and FP within native Env. We further discuss MPER bnAb binding to lipids and the role of somatic mutations in recognizing a bipartite epitope composed of the conserved MPER sequence and membrane components. The problematic of gp41 HR1 access and MPER bnAb auto- and polyreactivity is developed in the light of inducing such antibodies by vaccination.
Collapse
Affiliation(s)
- Christophe Caillat
- Institut de Biologie Structurale (IBS), University Grenoble Alpes, Commissariat à L'énergie Atomique et Aux Énergies Alternatives (CEA), Centre National de la Recherche Scientifique (CNRS), 38000 Grenoble, France
| | - Delphine Guilligay
- Institut de Biologie Structurale (IBS), University Grenoble Alpes, Commissariat à L'énergie Atomique et Aux Énergies Alternatives (CEA), Centre National de la Recherche Scientifique (CNRS), 38000 Grenoble, France
| | - Guidenn Sulbaran
- Institut de Biologie Structurale (IBS), University Grenoble Alpes, Commissariat à L'énergie Atomique et Aux Énergies Alternatives (CEA), Centre National de la Recherche Scientifique (CNRS), 38000 Grenoble, France
| | - Winfried Weissenhorn
- Institut de Biologie Structurale (IBS), University Grenoble Alpes, Commissariat à L'énergie Atomique et Aux Énergies Alternatives (CEA), Centre National de la Recherche Scientifique (CNRS), 38000 Grenoble, France
| |
Collapse
|
15
|
Affiliation(s)
- Jyoti Verma
- School of Computational and Integrative Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Naidu Subbarao
- School of Computational and Integrative Sciences, Jawaharlal Nehru University, New Delhi, India
| | | |
Collapse
|
16
|
Warner N, Locarnini S, Xu H. The role of hepatitis B surface antibodies in HBV infection, disease and clearance. Future Virol 2020. [DOI: 10.2217/fvl-2019-0147] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The clinical sequelae associated with chronic HBV infection is generally regarded as a consequence of an inadequate and inappropriate immune response to active viral replication, predominantly at the T-cell level. However, recent studies on hepatitis B surface antigen (HBsAg)-specific B cells and hepatitis B surface antibody (anti-HB) responses have identified their previously unrecognized role in the pathogenesis of chronic hepatitis B (CHB). These studies have also uncovered novel therapeutic approaches to more effectively target HBsAg loss and seroconversion, an important end point and regarded as a functional cure. Anti-HBs IgG has also been shown to have multiple direct acting antiviral roles with the Fab component directly blocking viral entry, and release while the Fc component has been linked to antibody dependent cellular cytotoxicity. Likewise, the HBsAg-specific B-cell dysfunctionality can be reversed providing new therapeutic opportunities to achieve functional cure in CHB.
Collapse
Affiliation(s)
- Nadia Warner
- Molecular Research & Development, Victorian Infectious Diseases Reference Laboratory, Doherty Institute, Melbourne, Victoria, Australia
| | - Stephen Locarnini
- Molecular Research & Development, Victorian Infectious Diseases Reference Laboratory, Doherty Institute, Melbourne, Victoria, Australia
| | - Hui Xu
- Molecular Research & Development, Victorian Infectious Diseases Reference Laboratory, Doherty Institute, Melbourne, Victoria, Australia
| |
Collapse
|
17
|
Pinto D, Fenwick C, Caillat C, Silacci C, Guseva S, Dehez F, Chipot C, Barbieri S, Minola A, Jarrossay D, Tomaras GD, Shen X, Riva A, Tarkowski M, Schwartz O, Bruel T, Dufloo J, Seaman MS, Montefiori DC, Lanzavecchia A, Corti D, Pantaleo G, Weissenhorn W. Structural Basis for Broad HIV-1 Neutralization by the MPER-Specific Human Broadly Neutralizing Antibody LN01. Cell Host Microbe 2019; 26:623-637.e8. [PMID: 31653484 PMCID: PMC6854463 DOI: 10.1016/j.chom.2019.09.016] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 08/29/2019] [Accepted: 09/27/2019] [Indexed: 11/24/2022]
Abstract
Potent and broadly neutralizing antibodies (bnAbs) are the hallmark of HIV-1 protection by vaccination. The membrane-proximal external region (MPER) of the HIV-1 gp41 fusion protein is targeted by the most broadly reactive HIV-1 neutralizing antibodies. Here, we examine the structural and molecular mechansims of neutralization by anti-MPER bnAb, LN01, which was isolated from lymph-node-derived germinal center B cells of an elite controller and exhibits broad neutralization breadth. LN01 engages both MPER and the transmembrane (TM) region, which together form a continuous helix in complex with LN01. The tilted TM orientation allows LN01 to interact simultaneously with the peptidic component of the MPER epitope and membrane via two specific lipid binding sites of the antibody paratope. Although LN01 carries a high load of somatic mutations, most key residues interacting with the MPER epitope and lipids are germline encoded, lending support for the LN01 epitope as a candidate for lineage-based vaccine development. bNAb LN01 neutralizes 92% of a 118-strain virus panel LN01 targets the HIV-1 gp41 MPER, the TM region, and lipids LN01-complexed MPER forms a continuous helix with TM Most LN01 paratope residues interacting with MPER-TM and lipids are germline encoded
Collapse
Affiliation(s)
- Dora Pinto
- Institute for Research in Biomedicine, Bellinzona 6500, Ticino, Switzerland
| | - Craig Fenwick
- Swiss Vaccine Research Institute, Lausanne University Hospital, University of Lausanne, 1011 Lausanne, Switzerland
| | - Christophe Caillat
- Institut de Biologie Structurale (IBS), University Grenoble Alpes, CEA, CNRS, 38000 Grenoble, France
| | - Chiara Silacci
- Institute for Research in Biomedicine, Bellinzona 6500, Ticino, Switzerland
| | - Serafima Guseva
- Institut de Biologie Structurale (IBS), University Grenoble Alpes, CEA, CNRS, 38000 Grenoble, France
| | - François Dehez
- LPCT, UMR 7019 Université de Lorraine CNRS, 54500 Vandœuvre-lès-Nancy, France; Laboratoire International Associé CNRS and University of Illinois at Urbana-Champaign, LPCT, UMR 7019 Universiteé de Lorraine CNRS, Vandœuvre-lès-Nancy 54500, France
| | - Christophe Chipot
- LPCT, UMR 7019 Université de Lorraine CNRS, 54500 Vandœuvre-lès-Nancy, France; Laboratoire International Associé CNRS and University of Illinois at Urbana-Champaign, LPCT, UMR 7019 Universiteé de Lorraine CNRS, Vandœuvre-lès-Nancy 54500, France; Department of Physics, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Sonia Barbieri
- Institute for Research in Biomedicine, Bellinzona 6500, Ticino, Switzerland
| | - Andrea Minola
- Humabs Biomed SA, Vir Biotechnology, 6500 Bellinzona, Ticino, Switzerland
| | - David Jarrossay
- Institute for Research in Biomedicine, Bellinzona 6500, Ticino, Switzerland
| | - Georgia D Tomaras
- Duke Human Vaccine Institute, Durham, NC 27710, USA; Paris Diderot University, Sorbonne Paris Cité, Paris 75013, France
| | | | - Agostino Riva
- Department of Biomedical and Clinical Sciences, Luigi Sacco University Hospital, Università di Milano, 20157 Milan, Italy; III Division of Infectious Diseases, ASST Fatebenefratelli-Sacco, 20157 Milan, Italy
| | - Maciej Tarkowski
- Department of Biomedical and Clinical Sciences, Luigi Sacco University Hospital, Università di Milano, 20157 Milan, Italy
| | - Olivier Schwartz
- Institut Pasteur, Virus & Immunity Unit, CNRS UMR 3569, Paris 75015, France; Vaccine Research Institute, 94000 Créteil, France
| | - Timothée Bruel
- Institut Pasteur, Virus & Immunity Unit, CNRS UMR 3569, Paris 75015, France; Vaccine Research Institute, 94000 Créteil, France
| | - Jérémy Dufloo
- Institut Pasteur, Virus & Immunity Unit, CNRS UMR 3569, Paris 75015, France; Vaccine Research Institute, 94000 Créteil, France; Paris Diderot University, Sorbonne Paris Cité, Paris 75013, France
| | - Michael S Seaman
- Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - David C Montefiori
- Department of Surgery, Duke University Medical Center, Durham, NC 27710, USA
| | | | - Davide Corti
- Humabs Biomed SA, Vir Biotechnology, 6500 Bellinzona, Ticino, Switzerland.
| | - Giuseppe Pantaleo
- Swiss Vaccine Research Institute, Lausanne University Hospital, University of Lausanne, 1011 Lausanne, Switzerland; Service of Immunology and Allergy, Lausanne University Hospital, University of Lausanne, 1011 Lausanne, Switzerland.
| | - Winfried Weissenhorn
- Institut de Biologie Structurale (IBS), University Grenoble Alpes, CEA, CNRS, 38000 Grenoble, France.
| |
Collapse
|
18
|
Abstract
This chapter reviews our current knowledge about the spatiotemporal assembly of filoviral particles. We will follow particles from nucleocapsid entry into the cytoplasm until the nucleocapsids are enveloped at the plasma membrane. We will also highlight the currently open scientific questions surrounding filovirus assembly.
Collapse
|
19
|
Structural and Functional Features of the Reovirus σ1 Tail. J Virol 2018; 92:JVI.00336-18. [PMID: 29695426 DOI: 10.1128/jvi.00336-18] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Accepted: 04/12/2018] [Indexed: 12/11/2022] Open
Abstract
Mammalian orthoreovirus attachment to target cells is mediated by the outer capsid protein σ1, which projects from the virion surface. The σ1 protein is a homotrimer consisting of a filamentous tail, which is partly inserted into the virion; a body domain constructed from β-spiral repeats; and a globular head with receptor-binding properties. The σ1 tail is predicted to form an α-helical coiled coil. Although σ1 undergoes a conformational change during cell entry, the nature of this change and its contributions to viral replication are unknown. Electron micrographs of σ1 molecules released from virions identified three regions of flexibility, including one at the midpoint of the molecule, that may be involved in its structural rearrangement. To enable a detailed understanding of essential σ1 tail organization and properties, we determined high-resolution structures of the reovirus type 1 Lang (T1L) and type 3 Dearing (T3D) σ1 tail domains. Both molecules feature extended α-helical coiled coils, with T1L σ1 harboring central chloride ions. Each molecule displays a discontinuity (stutter) within the coiled coil and an unexpectedly seamless transition to the body domain. The transition region features conserved interdomain interactions and appears rigid rather than highly flexible. Functional analyses of reoviruses containing engineered σ1 mutations suggest that conserved residues predicted to stabilize the coiled-coil-to-body junction are essential for σ1 folding and encapsidation, whereas central chloride ion coordination and the stutter are dispensable for efficient replication. Together, these findings enable modeling of full-length reovirus σ1 and provide insight into the stabilization of a multidomain virus attachment protein.IMPORTANCE While it is established that different conformational states of attachment proteins of enveloped viruses mediate receptor binding and membrane fusion, less is understood about how such proteins mediate attachment and entry of nonenveloped viruses. The filamentous reovirus attachment protein σ1 binds cellular receptors; contains regions of predicted flexibility, including one at the fiber midpoint; and undergoes a conformational change during cell entry. Neither the nature of the structural change nor its contribution to viral infection is understood. We determined crystal structures of large σ1 fragments for two different reovirus serotypes. We observed an unexpectedly tight transition between two domains spanning the fiber midpoint, which allows for little flexibility. Studies of reoviruses with engineered changes near the σ1 midpoint suggest that the stabilization of this region is critical for function. Together with a previously determined structure, we now have a complete model of the full-length, elongated reovirus σ1 attachment protein.
Collapse
|
20
|
Temperature-dependent folding allows stable dimerization of secretory and virus-associated E proteins of Dengue and Zika viruses in mammalian cells. Sci Rep 2017; 7:966. [PMID: 28424472 PMCID: PMC5430527 DOI: 10.1038/s41598-017-01097-5] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2017] [Accepted: 03/24/2017] [Indexed: 12/02/2022] Open
Abstract
Dengue and Zika are two of the most important human viral pathogens worldwide. In both cases, the envelope glycoprotein E is the main target of the antibody response. Recently, new complex quaternary epitopes were identified which are the consequence of the arrangement of the antiparallel E dimers on the viral surface. Such epitopes can be exploited to develop more efficient cross-neutralizing vaccines. Here we describe a successful covalent stabilization of E dimers from Dengue and Zika viruses in mammalian cells. Folding and dimerization of secretory E was found to be strongly dependent on temperature but independent of PrM co-expression. In addition, we found that, due to the close relationship between flaviviruses, Dengue and Zika viruses E proteins can form heterodimers and assemble into mosaic viral particles. Finally, we present new virus-free analytical platforms to study and screen antibody responses against Dengue and Zika, which allow for differentiation of epitopes restricted to specific domains, dimers and higher order arrangements of E.
Collapse
|
21
|
Host-adaptive mechanism of H5N1 avian influenza virus hemagglutininn. Uirusu 2017; 65:187-198. [PMID: 27760917 DOI: 10.2222/jsv.65.187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
The H5N1 subtype is a highly pathogenic avian influenza virus currently circulating in birds in parts of Asia and northeast Africa, which has caused fatal human infections since 1997. Continuous circulation of the virus in endemic areas has allowed genetically diverse viruses to emerge, increasing the risk of H5N1 human infection. Although human infections with H5N1 have to date been limited, experimental evidence of the aerosol transmission of mutated viruses in a mammalian infection model has revealed the pandemic potential of H5N1 virus. One of the most important viral factors for host-adaptation of influenza virus is hemagglutinin (HA), which is the principal antigen on the viral surface and is responsible for viral binding to host receptors as well as endosomal membrane fusion. Our recent reports suggest that a fine balance of the HA properties, including receptor binding specificity and pH stability, is crucial for replication in human respiratory epithelia. This review provides an overview of current knowledge on the host-adaptive mechanism of H5N1 virus HA.
Collapse
|
22
|
Structure and interaction with lipid membrane models of Semliki Forest virus fusion peptide. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2016; 1858:2671-2680. [PMID: 27425030 PMCID: PMC7172313 DOI: 10.1016/j.bbamem.2016.07.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/22/2016] [Revised: 06/21/2016] [Accepted: 07/12/2016] [Indexed: 11/24/2022]
Abstract
Semliki Forest virus (SFV) is a well-characterized alphavirus that infects cells via endocytosis and an acid-triggered fusion step using class II fusion proteins. Membrane fusion is mediated by the viral spike protein, a heterotrimer of two transmembrane subunits, E1 and E2, and a peripheral protein, E3. Sequence analysis of the E1 ectodomain of a number of alphaviruses demonstrated the presence of a highly conserved hydrophobic domain on the E1 ectodomain. This sequence was proposed to be the fusion peptide of SFV and is believed to be the domain of E1 that interacts with the target membrane and triggers fusion. Here, we investigate the structure and the interaction with lipid membrane models of 76YQCKVYTGVYPFMWGGAYCFC96 sequence from SFV, named SFV21, using optical method (ellipsometry) and vibrational spectroscopiy approaches (Polarization Modulation infra-Red Reflection Absorption Spectroscopy, PMIRRAS, and polarized ATR-FTIR). We demonstrate a structural flexibility of SFV21 sequence whether the lateral pressure and the lipid environment. In a lipid environment that mimics eukaryotic cell membranes, a conformational transition from an α-helix to a β-sheet is induced in the presence of lipid by increasing the peptide to lipid ratio, which leads to important perturbations in the membrane organisation. SFV21 fusion peptide displays structural flexibility between α-helix and β-sheets. A conformational transition from an α-helix to a β-sheet is induced by the increase of the peptide to lipid ratio. SFV21 fusion peptide leads to important perturbations in the membrane organisation.
Collapse
|
23
|
Slon Campos JL, Poggianella M, Marchese S, Bestagno M, Burrone OR. Secretion of dengue virus envelope protein ectodomain from mammalian cells is dependent on domain II serotype and affects the immune response upon DNA vaccination. J Gen Virol 2015; 96:3265-3279. [PMID: 26358704 DOI: 10.1099/jgv.0.000278] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Dengue virus (DENV) is currently among the most important human pathogens and affects millions of people throughout the tropical and subtropical regions of the world. Although it has been a World Health Organization priority for several years, there is still no efficient vaccine available to prevent infection. The envelope glycoprotein (E), exposed on the surface on infective viral particles, is the main target of neutralizing antibodies. For this reason it has been used as the antigen of choice for vaccine development efforts. Here we show a detailed analysis of factors involved in the expression, secretion and folding of E ectodomain from all four DENV serotypes in mammalian cells, and how this affects their ability to induce neutralizing antibody responses in DNA-vaccinated mice. Proper folding of E domain II (DII) is essential for efficient E ectodomain secretion, with DIII playing a significant role in stabilizing soluble dimers. We also show that the level of protein secreted from transfected cells determines the strength and efficiency of antibody responses in the context of DNA vaccination and should be considered a pivotal feature for the development of E-based DNA vaccines against DENV.
Collapse
Affiliation(s)
- J L Slon Campos
- International Centre for Genetic Engineering and Biotechnology, Trieste, Italy
| | - M Poggianella
- International Centre for Genetic Engineering and Biotechnology, Trieste, Italy
| | - S Marchese
- International Centre for Genetic Engineering and Biotechnology, Trieste, Italy
| | - M Bestagno
- International Centre for Genetic Engineering and Biotechnology, Trieste, Italy
| | - O R Burrone
- International Centre for Genetic Engineering and Biotechnology, Trieste, Italy
| |
Collapse
|
24
|
Daidoji T, Watanabe Y, Ibrahim MS, Yasugi M, Maruyama H, Masuda T, Arai F, Ohba T, Honda A, Ikuta K, Nakaya T. Avian Influenza Virus Infection of Immortalized Human Respiratory Epithelial Cells Depends upon a Delicate Balance between Hemagglutinin Acid Stability and Endosomal pH. J Biol Chem 2015; 290:10627-42. [PMID: 25673693 DOI: 10.1074/jbc.m114.611327] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2014] [Indexed: 12/13/2022] Open
Abstract
The highly pathogenic avian influenza (AI) virus, H5N1, is a serious threat to public health worldwide. Both the currently circulating H5N1 and previously circulating AI viruses recognize avian-type receptors; however, only the H5N1 is highly infectious and virulent in humans. The mechanism(s) underlying this difference in infectivity remains unclear. The aim of this study was to clarify the mechanisms responsible for the difference in infectivity between the current and previously circulating strains. Primary human small airway epithelial cells (SAECs) were transformed with the SV40 large T-antigen to establish a series of clones (SAEC-Ts). These clones were then used to test the infectivity of AI strains. Human SAEC-Ts could be broadly categorized into two different types based on their susceptibility (high or low) to the viruses. SAEC-T clones were poorly susceptible to previously circulating AI but were completely susceptible to the currently circulating H5N1. The hemagglutinin (HA) of the current H5N1 virus showed greater membrane fusion activity at higher pH levels than that of previous AI viruses, resulting in broader cell tropism. Moreover, the endosomal pH was lower in high susceptibility SAEC-T clones than that in low susceptibility SAEC-T clones. Taken together, the results of this study suggest that the infectivity of AI viruses, including H5N1, depends upon a delicate balance between the acid sensitivity of the viral HA and the pH within the endosomes of the target cell. Thus, one of the mechanisms underlying H5N1 pathogenesis in humans relies on its ability to fuse efficiently with the endosomes in human airway epithelial cells.
Collapse
Affiliation(s)
- Tomo Daidoji
- From the Department of Infectious Diseases, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan
| | - Yohei Watanabe
- the Department of Virology, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka 565-0871, Japan
| | - Madiha S Ibrahim
- the Department of Virology, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka 565-0871, Japan, the Department of Microbiology, Faculty of Veterinary Medicine, Damanhour University, Damanhour 22111, Egypt
| | - Mayo Yasugi
- the Department of Virology, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka 565-0871, Japan, the Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Izumisano, Osaka, 598-8531, Japan
| | - Hisataka Maruyama
- the Department of Micro-Nano Systems Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan, and
| | - Taisuke Masuda
- the Department of Micro-Nano Systems Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan, and
| | - Fumihito Arai
- the Department of Micro-Nano Systems Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan, and
| | - Tomoyuki Ohba
- the Department of Frontier Bioscience, Hosei University, Koganei, Tokyo 184-8584, Japan
| | - Ayae Honda
- the Department of Frontier Bioscience, Hosei University, Koganei, Tokyo 184-8584, Japan
| | - Kazuyoshi Ikuta
- the Department of Virology, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka 565-0871, Japan
| | - Takaaki Nakaya
- From the Department of Infectious Diseases, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan,
| |
Collapse
|
25
|
Structural differences observed in arboviruses of the alphavirus and flavivirus genera. Adv Virol 2014; 2014:259382. [PMID: 25309597 PMCID: PMC4182009 DOI: 10.1155/2014/259382] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2014] [Revised: 07/28/2014] [Accepted: 08/18/2014] [Indexed: 12/22/2022] Open
Abstract
Arthropod borne viruses have developed a complex life cycle adapted to alternate between insect and vertebrate hosts. These arthropod-borne viruses belong mainly to the families Togaviridae, Flaviviridae, and Bunyaviridae. This group of viruses contains many pathogens that cause febrile, hemorrhagic, and encephalitic disease or arthritic symptoms which can be persistent. It has been appreciated for many years that these viruses were evolutionarily adapted to function in the highly divergent cellular environments of both insect and mammalian phyla. These viruses are hybrid in nature, containing viral-encoded RNA and proteins which are glycosylated by the host and encapsulate viral nucleocapsids in the context of a host-derived membrane. From a structural perspective, these virus particles are macromolecular machines adapted in design to assemble into a packaging and delivery system for the virus genome and, only when associated with the conditions appropriate for a productive infection, to disassemble and deliver the RNA cargo. It was initially assumed that the structures of the virus from both hosts were equivalent. New evidence that alphaviruses and flaviviruses can exist in more than one conformation postenvelopment will be discussed in this review. The data are limited but should refocus the field of structural biology on the metastable nature of these viruses.
Collapse
|
26
|
Wang J, Li Y, Modis Y. Structural models of the membrane anchors of envelope glycoproteins E1 and E2 from pestiviruses. Virology 2014; 454-455:93-101. [PMID: 24725935 PMCID: PMC3986810 DOI: 10.1016/j.virol.2014.02.015] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2014] [Revised: 02/02/2014] [Accepted: 02/11/2014] [Indexed: 12/18/2022]
Abstract
The membrane anchors of viral envelope proteins play essential roles in cell entry. Recent crystal structures of the ectodomain of envelope protein E2 from a pestivirus suggest that E2 belongs to a novel structural class of membrane fusion machinery. Based on geometric constraints from the E2 structures, we generated atomic models of the E1 and E2 membrane anchors using computational approaches. The E1 anchor contains two amphipathic perimembrane helices and one transmembrane helix; the E2 anchor contains a short helical hairpin stabilized in the membrane by an arginine residue, similar to flaviviruses. A pair of histidine residues in the E2 ectodomain may participate in pH sensing. The proposed atomic models point to Cys987 in E2 as the site of disulfide bond linkage with E1 to form E1-E2 heterodimers. The membrane anchor models provide structural constraints for the disulfide bonding pattern and overall backbone conformation of the E1 ectodomain.
Collapse
Affiliation(s)
- Jimin Wang
- Department of Molecular Biophysics and Biochemistry, Yale University, 266 Whitney Avenue, New Haven, CT 06520, USA.
| | - Yue Li
- Department of Molecular Biophysics and Biochemistry, Yale University, 266 Whitney Avenue, New Haven, CT 06520, USA
| | - Yorgo Modis
- Department of Molecular Biophysics and Biochemistry, Yale University, 266 Whitney Avenue, New Haven, CT 06520, USA.
| |
Collapse
|
27
|
A novel membrane fusion protein family in Flaviviridae? Trends Microbiol 2014; 22:176-82. [PMID: 24569295 PMCID: PMC3985287 DOI: 10.1016/j.tim.2014.01.008] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2013] [Revised: 01/23/2014] [Accepted: 01/27/2014] [Indexed: 11/24/2022]
Abstract
Enveloped viruses must fuse their lipid membrane to a cellular membrane to deliver their genome into the cytoplasm for replication. Viral envelope proteins catalyze this critical membrane fusion event. They fall into three distinct structural classes. In 2013, envelope proteins from a pestivirus and hepatitis C virus were found to have two distinct novel folds. This was unexpected because these viruses are in the same family as flaviviruses, which have class II fusion proteins. We propose that the membrane fusion machinery of the closely related pestiviruses and hepatitis C virus defines a new structural class. This and other recently identified structural relationships between viral fusion proteins shift the paradigm for how these proteins evolved.
Collapse
|
28
|
Relating structure to evolution in class II viral membrane fusion proteins. Curr Opin Virol 2014; 5:34-41. [PMID: 24525225 PMCID: PMC4028412 DOI: 10.1016/j.coviro.2014.01.009] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2013] [Accepted: 01/17/2014] [Indexed: 12/25/2022]
Abstract
Until 2013, class II proteins had only been found in flaviviruses and alphaviruses. A class II fusion protein was recently discovered in the unrelated phlebovirus genus. Within the same family as alphaviruses, rubella virus has a divergent class II fold. Pestiviruses, although they are Flaviviridae, have fusion proteins from a novel class. Viral class II proteins may originate from cellular class II fusion protein ancestors.
Enveloped viruses must fuse their lipid membrane to a cellular membrane to deliver the viral genome into the cytoplasm for replication. Viral envelope proteins catalyze this critical membrane fusion event. They fall into at least three distinct structural classes. Class II fusion proteins have a conserved three-domain architecture and are found in many important viral pathogens. Until 2013, class II proteins had only been found in flaviviruses and alphaviruses. However, in 2013 a class II fusion protein was discovered in the unrelated phlebovirus genus, and two unexpectedly divergent envelope proteins were identified in families that also contain prototypical class II proteins. The structural relationships of newly identified class II proteins, reviewed herein, shift the paradigm for how these proteins evolved.
Collapse
|
29
|
Agopian A, Castano S. Structure and orientation study of Ebola fusion peptide inserted in lipid membrane models. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2014; 1838:117-26. [DOI: 10.1016/j.bbamem.2013.09.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2013] [Revised: 09/04/2013] [Accepted: 09/09/2013] [Indexed: 11/16/2022]
|
30
|
Abstract
Shape changes and topological remodeling of membranes are essential for the identity of organelles and membrane trafficking. Although all cellular membranes have common features, membranes of different organelles create unique environments that support specialized biological functions. The endoplasmic reticulum (ER) is a prime example of this specialization, as its lipid bilayer forms an interconnected system of cisternae, vesicles, and tubules, providing a highly compartmentalized structure for a multitude of biochemical processes. A variety of peripheral and integral membrane proteins that facilitate membrane curvature generation, fission, and/or fusion have been identified over the past two decades. Among these, the dynamin-related proteins (DRPs) have emerged as key players. Here, we review recent advances in our functional and molecular understanding of fusion DRPs, exemplified by atlastin, an ER-resident DRP that controls ER structure, function, and signaling.
Collapse
Affiliation(s)
- James A McNew
- Department of Biochemistry and Cell Biology, Rice University, Houston, Texas 77005;
| | | | | | | | | |
Collapse
|
31
|
Characterization of the Bas-Congo virus glycoprotein and its function in pseudotyped viruses. J Virol 2013; 87:9558-68. [PMID: 23785218 DOI: 10.1128/jvi.01183-13] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Bas-Congo virus (BASV) is a novel rhabdovirus recently identified from a patient with acute hemorrhagic fever in the Bas-Congo province of the Democratic Republic of Congo (DRC). Here we show that the BASV glycoprotein (BASV-G) can be successfully used to pseudotype glycoprotein-deficient vesicular stomatitis virus (VSV), allowing studies of BASV-G-driven membrane fusion and viral entry into target cells without replication-competent virus. BASV-G displayed broad tissue and species tropism in vitro, and BASV-G-mediated membrane fusion was pH dependent. The conformational changes induced in BASV-G by acidification were fully reversible and did not lead to inactivation of the viral fusion protein. Our data combined with comparative sequence similarity analyses suggest that BASV-G shares structural and functional features with other rhabdovirus glycoproteins and falls into the group of class III viral fusion proteins. However, activation of BASV-G-driven fusion required a lower pH and higher temperatures than did VSV-G-mediated fusion. Moreover, in contrast to VSV-G, mature BASV-G in VSV pseudotypes consists of a mixture of high-mannose and complex glycans that enables it to bind to certain C-type lectins, thereby enhancing its attachment to target cells. Taken together, the results presented in this study will facilitate future investigations of BASV-G-mediated cell entry and its inhibition in the absence of an infectious cell culture assay for BASV and at lower biosafety levels. Moreover, serology testing based on BASV-G pseudotype neutralization can be used to uncover the prevalence and importance of BASV as a potential novel human pathogen in the DRC and throughout Central Africa.
Collapse
|
32
|
Abstract
St. Louis encephalitis virus (SLEV) is a mosquito-borne flavivirus responsible for several human encephalitis outbreaks over the last 80 years. Mature flavivirus virions are coated with dimeric envelope (E) proteins that mediate attachment and fusion with host cells. E is a class II fusion protein, the hallmark of which is a distinct dimer-to-trimer rearrangement that occurs upon endosomal acidification and insertion of hydrophobic fusion peptides into the endosomal membrane. Herein, we report the crystal structure of SLEV E in the posfusion trimer conformation. The structure revealed specific features that differentiate SLEV E from trimers of related flavi- and alphaviruses. SLEV E fusion loops have distinct intermediate spacing such that they are positioned further apart than previously observed in flaviviruses but closer together than Semliki Forest virus, an alphavirus. Domains II and III (DII and DIII) of SLEV E also adopt different angles relative to DI, which suggests that the DI-DII joint may accommodate spheroidal motions. However, trimer interfaces are well conserved among flaviviruses, so it is likely the differences observed represent structural features specific to SLEV function. Analysis of surface potentials revealed a basic platform underneath flavivirus fusion loops that may interact with the anionic lipid head groups found in membranes. Taken together, these results highlight variations in E structure and assembly that may direct virus-specific interactions with host determinants to influence pathogenesis.
Collapse
|
33
|
The membrane-active regions of the dengue virus proteins C and E. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2011; 1808:2390-402. [DOI: 10.1016/j.bbamem.2011.06.019] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2011] [Revised: 06/23/2011] [Accepted: 06/28/2011] [Indexed: 12/24/2022]
|
34
|
Sabin C, Corti D, Buzon V, Seaman MS, Lutje Hulsik D, Hinz A, Vanzetta F, Agatic G, Silacci C, Mainetti L, Scarlatti G, Sallusto F, Weiss R, Lanzavecchia A, Weissenhorn W. Crystal structure and size-dependent neutralization properties of HK20, a human monoclonal antibody binding to the highly conserved heptad repeat 1 of gp41. PLoS Pathog 2010; 6:e1001195. [PMID: 21124990 PMCID: PMC2987821 DOI: 10.1371/journal.ppat.1001195] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2010] [Accepted: 10/14/2010] [Indexed: 11/19/2022] Open
Abstract
The human monoclonal antibody (mAb) HK20 neutralizes a broad spectrum of primary HIV-1 isolates by targeting the highly conserved heptad repeat 1 (HR1) of gp41, which is transiently exposed during HIV-1 entry. Here we present the crystal structure of the HK20 Fab in complex with a gp41 mimetic 5-Helix at 2.3 Å resolution. HK20 employs its heavy chain CDR H2 and H3 loops to bind into a conserved hydrophobic HR1 pocket that is occupied by HR2 residues in the gp41 post fusion conformation. Compared to the previously described HR1-specific mAb D5, HK20 approaches its epitope with a different angle which might favor epitope access and thus contribute to its higher neutralization breadth and potency. Comparison of the neutralization activities of HK20 IgG, Fab and scFv employing both single cycle and multiple cycle neutralization assays revealed much higher potencies for the smaller Fab and scFv over IgG, implying that the target site is difficult to access for complete antibodies. Nevertheless, two thirds of sera from HIV-1 infected individuals contain significant titers of HK20-inhibiting antibodies. The breadth of neutralization of primary isolates across all clades, the higher potencies for C-clade viruses and the targeting of a distinct site as compared to the fusion inhibitor T-20 demonstrate the potential of HK20 scFv as a therapeutic tool.
Collapse
Affiliation(s)
- Charles Sabin
- Unit of Virus Host Cell Interactions (UVHCI) UMI 3265, Université Joseph Fourier-EMBL-CNRS, Grenoble, France
| | - Davide Corti
- Institute for Research in Biomedicine, Bellinzona, Switzerland
| | - Victor Buzon
- Unit of Virus Host Cell Interactions (UVHCI) UMI 3265, Université Joseph Fourier-EMBL-CNRS, Grenoble, France
| | - Mike S. Seaman
- Division of Viral Pathogenesis, Beth Israel Deaconess Medical Center, Boston, Massachusetts, United States of America
| | - David Lutje Hulsik
- Unit of Virus Host Cell Interactions (UVHCI) UMI 3265, Université Joseph Fourier-EMBL-CNRS, Grenoble, France
| | - Andreas Hinz
- Unit of Virus Host Cell Interactions (UVHCI) UMI 3265, Université Joseph Fourier-EMBL-CNRS, Grenoble, France
| | | | | | - Chiara Silacci
- Institute for Research in Biomedicine, Bellinzona, Switzerland
| | - Lara Mainetti
- Viral Evolution and Transmission Unit, Division of Immunology, Transplant and Infectious Diseases, San Raffaele Scientific Institute, Milan, Italy
| | - Gabriella Scarlatti
- Viral Evolution and Transmission Unit, Division of Immunology, Transplant and Infectious Diseases, San Raffaele Scientific Institute, Milan, Italy
| | | | - Robin Weiss
- Division of Infection and Immunity, University College London, London, United Kingdom
| | - Antonio Lanzavecchia
- Institute for Research in Biomedicine, Bellinzona, Switzerland
- Institute of Microbiology, Swiss Federal Institute of Technology, Zurich, Switzerland
| | - Winfried Weissenhorn
- Unit of Virus Host Cell Interactions (UVHCI) UMI 3265, Université Joseph Fourier-EMBL-CNRS, Grenoble, France
| |
Collapse
|
35
|
McGillick BE, Balius TE, Mukherjee S, Rizzo RC. Origins of resistance to the HIVgp41 viral entry inhibitor T20. Biochemistry 2010; 49:3575-92. [PMID: 20230061 DOI: 10.1021/bi901915g] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Peptide T20, which targets the HIV protein gp41, represents the first approved member of the class of HIV drugs known as membrane fusion inhibitors. However, mechanisms which lead to resistance through clinical use of T20 are not well-understood because the structure of the bound complex remains undetermined. In this report, an atomic-level model of a T20-gp41 complex embedded in an explicit DOPC membrane was constructed, and molecular dynamics simulations, followed by binding energy analysis (MM-GBSA method), were performed to delineate structural and energetic features that contribute to drug resistance. Per-residue binding footprints for T20 with wild-type gp41 reveal strong intermolecular van der Waals, Coulombic, and H-bond interactions in striking agreement with clinically observed resistance patterns. In addition, seven deleterious gp41 point mutations (L33Q, L33S, G36V, I37K, V38E, Q40H, and Q40K) were simulated, and all correctly exhibited decreases in the level of binding, including the fact that L33Q and Q40K are most detrimental. Six of the seven simulations yield good quantitative agreement (r(2) = 0.72; N = 6) with available experimental fold resistance data. Results from energy decomposition, heat map analysis, and differential (mutant minus wild-type) footprinting indicate the following. (1) Mutations disrupt intermolecular H-bonding and reduce the level of favorable contact with gp41 at M19. (2) Charged mutations (I37K, Q40K, and V38E) lead to significant Coulombic changes that weaken favorable van der Waals interactions. (3) Q40K is more detrimental than I37K because of interaction differences with a polar/charged patch on T20 in the initial (wild-type) state. (4) Resistance for L33S versus L33Q likely involves side chain packing differences in the final (mutated) state. A valuable finding of the work involves identification of favorable interactions among the C-terminal end of T20 (WNWF motif), residues on gp41 (including the fusion peptide), and headgroups in the adjacent membrane. The results suggest a complete T20 binding site would contribute to a stable complex, which could help to explain why prior studies, which employed truncated gp41 constructs, reported that C-terminal T20 residues may not interact with gp41. A hypothesis resulting from this study is that peptides could be designed to increase the level of favorable contact with both the membrane and gp41 which would lead to enhanced activity.
Collapse
Affiliation(s)
- Brian E McGillick
- Department of Biomedical Engineering, Stony Brook University, Stony Brook, New York 11794, USA
| | | | | | | |
Collapse
|
36
|
Galdiero S, Falanga A, Vitiello M, Raiola L, Russo L, Pedone C, Isernia C, Galdiero M. The presence of a single N-terminal histidine residue enhances the fusogenic properties of a Membranotropic peptide derived from herpes simplex virus type 1 glycoprotein H. J Biol Chem 2010; 285:17123-36. [PMID: 20348105 DOI: 10.1074/jbc.m110.114819] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Herpes simplex virus type 1 (HSV-1)-induced membrane fusion remains one of the most elusive mechanisms to be deciphered in viral entry. The structure resolution of glycoprotein gB has revealed the presence of fusogenic domains in this protein and pointed out the key role of gB in the entry mechanism of HSV-1. A second putative fusogenic glycoprotein is represented by the heterodimer comprising the membrane-anchored glycoprotein H (gH) and the small secreted glycoprotein L, which remains on the viral envelope in virtue of its non-covalent interaction with gH. Different domains scattered on the ectodomain of HSV-1 gH have been demonstrated to display membranotropic characteristics. The segment from amino acid 626 to 644 represents the most fusogenic region identified by studies with synthetic peptides and model membranes. Herein we have identified the minimal fusogenic sequence present on gH. An enlongation at the N terminus of a single histidine (His) has proved to profoundly increase the fusogenic activity of the original sequence. Nuclear magnetic resonance (NMR) studies have shown that the addition of the N-terminal His contributes to the formation and stabilization of an alpha-helical domain with high fusion propensity.
Collapse
Affiliation(s)
- Stefania Galdiero
- Department of Experimental Medicine, II University of Naples, Via De Crecchio 7, Napoli 80138, Italy.
| | | | | | | | | | | | | | | |
Collapse
|
37
|
Sun X, Roth SL, Bialecki MA, Whittaker GR. Internalization and fusion mechanism of vesicular stomatitis virus and related rhabdoviruses. Future Virol 2010; 5:85-96. [PMID: 23516023 DOI: 10.2217/fvl.09.72] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Members of the Rhabdoviridae infect a wide variety of animals and plants, and are the causative agents of many important diseases. Rhabdoviruses enter host cells following internalization into endosomes, with the glycoprotein (G protein) mediating both receptor binding to host cells and fusion with the cellular membrane. The recently solved crystal structure of vesicular stomatitis virus G has allowed considerable insight into the mechanism of rhabdovirus entry, in particular the low pH-dependent conformational changes that lead to fusion activation. Rhabdovirus entry shows several distinct features compared with other enveloped viruses; first, the entry process appears to consist of two distinct fusion events, initial fusion into vesicles within endosomes followed by back-fusion into the cytosol; second, the conformational changes in the G protein that lead to fusion activation are reversible; and third, the G protein is structurally distinct from other viral fusion proteins and is not proteolytically cleaved. The internalization and fusion mechanisms of rhabdoviruses are discussed in this article, with a focus on viral systems where the G protein has been studied extensively: vesicular stomatitis virus and rabies virus, as well as viral hemorrhagic septicemia virus.
Collapse
Affiliation(s)
- Xiangjie Sun
- Department of Microbiology & Immunology, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853, USA, Tel.: +1 607 253 4020
| | | | | | | |
Collapse
|
38
|
Corver J, Broer R, van Kasteren P, Spaan W. Mutagenesis of the transmembrane domain of the SARS coronavirus spike glycoprotein: refinement of the requirements for SARS coronavirus cell entry. Virol J 2009; 6:230. [PMID: 20034394 PMCID: PMC2805634 DOI: 10.1186/1743-422x-6-230] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2009] [Accepted: 12/24/2009] [Indexed: 01/22/2023] Open
Abstract
Background The spike protein (S) of SARS Coronavirus (SARS-CoV) mediates entry of the virus into target cells, including receptor binding and membrane fusion. Close to or in the viral membrane, the S protein contains three distinct motifs: a juxtamembrane aromatic part, a central highly hydrophobic stretch and a cysteine rich motif. Here, we investigate the role of aromatic and hydrophobic parts of S in the entry of SARS CoV and in cell-cell fusion. This was investigated using the previously described SARS pseudotyped particles system (SARSpp) and by fluorescence-based cell-cell fusion assays. Results Mutagenesis showed that the aromatic domain was crucial for SARSpp entry into cells, with a likely role in pore enlargement. Introduction of lysine residues in the hydrophobic stretch of S also resulted in a block of entry, suggesting the borders of the actual transmembrane domain. Surprisingly, replacement of a glycine residue, situated close to the aromatic domain, with a lysine residue was tolerated, whereas the introduction of a lysine adjacent to the glycine, was not. In a model, we propose that during fusion, the lateral flexibility of the transmembrane domain plays a critical role, as do the tryptophans and the cysteines. Conclusions The aromatic domain plays a crucial role in the entry of SARS CoV into target cells. The positioning of the aromatic domain and the hydrophobic domain relative to each other is another essential characteristic of this membrane fusion process.
Collapse
Affiliation(s)
- Jeroen Corver
- Department of Medical Microbiology, Center of Infectious Diseases, Leiden University Medical Center, 2300 RC Leiden, the Netherlands.
| | | | | | | |
Collapse
|
39
|
Madu IG, Belouzard S, Whittaker GR. SARS-coronavirus spike S2 domain flanked by cysteine residues C822 and C833 is important for activation of membrane fusion. Virology 2009; 393:265-71. [PMID: 19717178 PMCID: PMC3594805 DOI: 10.1016/j.virol.2009.07.038] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2009] [Revised: 05/27/2009] [Accepted: 07/30/2009] [Indexed: 01/04/2023]
Abstract
The S2 domain of the coronavirus spike (S) protein is known to be responsible for mediating membrane fusion. In addition to a well-recognized cleavage site at the S1–S2 boundary, a second proteolytic cleavage site has been identified in the severe acute respiratory syndrome coronavirus (SARS-CoV) S2 domain (R797). C-terminal to this S2 cleavage site is a conserved region flanked by cysteine residues C822 and C833. Here, we investigated the importance of this well conserved region for SARS-CoV S-mediated fusion activation. We show that the residues between C822–C833 are well conserved across all coronaviruses. Mutagenic analysis of SARS-CoV S, combined with cell–cell fusion and pseudotyped virion infectivity assays, showed a critical role for the core-conserved residues C822, D830, L831, and C833. Based on available predictive models, we propose that the conserved domain flanked by cysteines 822 and 833 forms a loop structure that interacts with components of the SARS-CoV S trimer to control the activation of membrane fusion.
Collapse
Affiliation(s)
- Ikenna G Madu
- C4127 Veterinary Medical Center, Department of Microbiology and Immunology, Cornell University, Ithaca NY 14853, USA
| | | | | |
Collapse
|
40
|
Pérez-Berná AJ, Pabst G, Laggner P, Villalaín J. Biophysical characterization of the fusogenic region of HCV envelope glycoprotein E1. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2009; 1788:2183-93. [PMID: 19698697 DOI: 10.1016/j.bbamem.2009.08.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2009] [Revised: 07/27/2009] [Accepted: 08/04/2009] [Indexed: 01/08/2023]
Abstract
We have studied the binding and interaction of the peptide E1(FP) with various model membranes. E1(FP) is derived from the amino acid segment 274-291 of the hepatitis C virus envelope glycoprotein E1, which was previously proposed to host the peptide responsible for fusion to target membranes. In the present study we addressed the changes which take place upon E1(FP) binding in both the peptide and the phospholipid bilayer, respectively, through a series of complementary experiments. We show that peptide E1(FP) binds to and interacts with phospholipid model membranes, modulates the polymorphic phase behavior of membrane phospholipids, is localized in a shallow position in the membrane and interacts preferentially with cholesterol. The capability of modifying the biophysical properties of model membranes supports its role in HCV-mediated membrane fusion and suggests that the mechanism of membrane fusion elicited by class I and II fusion proteins might be similar.
Collapse
Affiliation(s)
- Ana J Pérez-Berná
- Instituto de Biología Molecular y Celular, Universidad Miguel Hernández, E-03202 Alicante, Spain
| | | | | | | |
Collapse
|
41
|
Pérez-Berná AJ, Pabst G, Laggner P, Villalaín J. Screening a peptide library by DSC and SAXD: comparison with the biological function of the parent proteins. PLoS One 2009; 4:e4356. [PMID: 19194494 PMCID: PMC2632743 DOI: 10.1371/journal.pone.0004356] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2008] [Accepted: 12/09/2008] [Indexed: 01/04/2023] Open
Abstract
We have recently identified the membranotropic regions of the hepatitis C virus proteins E1, E2, core and p7 proteins by observing the effect of protein-derived peptide libraries on model membrane integrity. We have studied in this work the ability of selected sequences of these proteins to modulate the Lβ-Lα and Lα-HII phospholipid phase transitions as well as check the viability of using both DSC and SAXD to screen a protein-derived peptide library. We demonstrate that it is feasible to screen a library of peptides corresponding to one or several proteins by both SAXD and DSC. This methodological combination should allow the identification of essential regions of membrane-interacting proteins which might be implicated in the molecular mechanism of membrane fusion and/or budding.
Collapse
Affiliation(s)
- Ana J. Pérez-Berná
- Instituto de Biología Molecular y Celular, Universidad “Miguel Hernández”, Alicante, Spain
| | - George Pabst
- Institute of Biophysics and Nanosystems Research, Austrian Academy of Sciences, Graz, Austria
| | - Peter Laggner
- Institute of Biophysics and Nanosystems Research, Austrian Academy of Sciences, Graz, Austria
| | - José Villalaín
- Instituto de Biología Molecular y Celular, Universidad “Miguel Hernández”, Alicante, Spain
- * E-mail:
| |
Collapse
|
42
|
The pre-transmembrane region of the HCV E1 envelope glycoprotein. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2008; 1778:2069-80. [DOI: 10.1016/j.bbamem.2008.03.018] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2008] [Revised: 03/22/2008] [Accepted: 03/24/2008] [Indexed: 12/13/2022]
|
43
|
Galdiero S, Falanga A, Vitiello M, D’Isanto M, Cantisani M, Kampanaraki A, Benedetti E, Browne H, Galdiero M. Peptides containing membrane-interacting motifs inhibit herpes simplex virus type 1 infectivity. Peptides 2008; 29:1461-71. [PMID: 18572274 PMCID: PMC7172891 DOI: 10.1016/j.peptides.2008.04.022] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2008] [Revised: 04/24/2008] [Accepted: 04/30/2008] [Indexed: 11/17/2022]
Abstract
Herpes simplex virus (HSV) membrane fusion represents an attractive target for anti-HSV therapy. To investigate the structural basis of HSV membrane fusion and identify new targets for inhibition, we have investigated the different membranotropic domains of HSV-1 gH envelope glycoprotein. We observed that fusion peptides when added exogenously are able to inhibit viral fusion likely by intercalating with viral fusion peptides upon adopting functional structure in membranes. Interestingly, peptides analogous to the predicted HSV-1 gH loop region inhibited viral plaque formation more significantly. Their inhibitory effect appears to be a consequence of their ability to partition into membranes and aggregate within them. Circular dichroism spectra showed that peptides self-associate in aqueous and lipidic solutions, therefore the inhibition of viral entry may occur via peptides association with their counterpart on wild-type gH. The antiviral activity of HSV-1 peptides tested provides an attractive basis for the development of new fusion peptide inhibitors corresponding to regions outside the fusion protein heptad repeat regions.
Collapse
Affiliation(s)
- Stefania Galdiero
- Department of Biological Sciences, Division of Biostructures, University of Naples “Federico II”, Via Mezzocannone 16, 80134 Naples, Italy
- Centro Interuniversitario di Ricerca sui Peptidi Bioattivi, University of Naples “Federico II”, Via Mezzocannone 16, 80134 Naples, Italy
- Istituto di Biostrutture e Bioimmagini, CNR, Via Mezzocannone 16, 80134 Naples, Italy
| | - Annarita Falanga
- Department of Experimental Medicine, II University of Naples, Via De Crecchio 7, 80138 Naples, Italy
| | - Mariateresa Vitiello
- Department of Experimental Medicine, II University of Naples, Via De Crecchio 7, 80138 Naples, Italy
| | - Marina D’Isanto
- Department of Experimental Medicine, II University of Naples, Via De Crecchio 7, 80138 Naples, Italy
| | - Marco Cantisani
- Department of Biological Sciences, Division of Biostructures, University of Naples “Federico II”, Via Mezzocannone 16, 80134 Naples, Italy
- Istituto di Biostrutture e Bioimmagini, CNR, Via Mezzocannone 16, 80134 Naples, Italy
| | - Aikaterini Kampanaraki
- Department of Experimental Medicine, II University of Naples, Via De Crecchio 7, 80138 Naples, Italy
| | - Ettore Benedetti
- Department of Biological Sciences, Division of Biostructures, University of Naples “Federico II”, Via Mezzocannone 16, 80134 Naples, Italy
- Centro Interuniversitario di Ricerca sui Peptidi Bioattivi, University of Naples “Federico II”, Via Mezzocannone 16, 80134 Naples, Italy
- Istituto di Biostrutture e Bioimmagini, CNR, Via Mezzocannone 16, 80134 Naples, Italy
| | - Helena Browne
- Division of Virology, Department of Pathology, University of Cambridge, Cambridge, UK
| | - Massimiliano Galdiero
- Department of Experimental Medicine, II University of Naples, Via De Crecchio 7, 80138 Naples, Italy
- Corresponding author. Tel.: +39 081 5667646; fax: +39 081 5667578.
| |
Collapse
|
44
|
Guillén J, Pérez-Berná AJ, Moreno MR, Villalaín J. A second SARS-CoV S2 glycoprotein internal membrane-active peptide. Biophysical characterization and membrane interaction. Biochemistry 2008; 47:8214-24. [PMID: 18616295 DOI: 10.1021/bi800814q] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The severe acute respiratory syndrome coronavirus (SARS-CoV) envelope spike (S) glycoprotein, a class I viral fusion protein, is responsible for the fusion between the membranes of the virus and the target cell. The S2 domain of protein S has been suggested to have two fusion peptides, one located at its N-terminus, downstream of the furin cleavage, and another, more internal, located immediately upstream of the HR1. Therefore, we have carried out a study of the binding and interaction with model membranes of a peptide corresponding to segment 873-888 of the SARS-CoV S glycoprotein, peptide SARS IFP, as well as the structural changes taking place in both the phospholipid and the peptide induced by the binding of the peptide to the membrane. We demonstrate that SARS IFP peptide binds to and interacts with phospholipid model membranes and shows a higher affinity for negatively charged phospholipids than for zwitterionic ones. SARS IFP peptide specifically decreases the mobility of the phospholipid acyl chains of negatively charged phospholipids and adopts different conformations in the membrane depending upon their composition. These data support its role in SARS-mediated membrane fusion and suggest that the regions where this peptide resides might assist the fusion peptide and/or the pretransmembrane segment of the SARS-CoV spike glycoprotein in the fusion process.
Collapse
Affiliation(s)
- Jaime Guillén
- Instituto de Biología Molecular y Celular, Campus de Elche, Universidad Miguel Hernández, E-03202 Elche-Alicante, Spain
| | | | | | | |
Collapse
|
45
|
Novel screening systems for HIV-1 fusion mediated by two extra-virion heptad repeats of gp41. Antiviral Res 2008; 80:71-6. [PMID: 18584890 PMCID: PMC7114109 DOI: 10.1016/j.antiviral.2008.05.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2007] [Revised: 03/19/2008] [Accepted: 05/05/2008] [Indexed: 11/20/2022]
Abstract
Entry of human immunodeficiency virus type 1 (HIV-1) into target cells is mediated by its envelope protein gp41 through membrane fusion. Interaction of two extra-virion heptad repeats (HRs) in the gp41 plays a pivotal role in the fusion, and its inhibitor, enfuvirtide (T-20), blocks HIV-1 entry. To identify agents that block HIV-1 fusion, two screening methods based on detection and quantification by the enzyme-linked immunosorbent assay (ELISA) principle have been established. One method uses an alkaline phosphatase (ALP)-conjugated antibody (Ab-ELISA) and the other uses an ALP-fused HR (F-ELISA) to detect and quantify the interaction of the two HRs. The F-ELISA was more simple and rapid, since no ALP-conjugated antibody reaction was required. Both ELISAs detected all the fusion inhibitors tested except for T-20. Interaction of the two HRs was observed in both ELISAs, even in the presence of 10% dimethyl sulfoxide. Ab-ELISA performed best in a pH ranging from 6 to 8, while F-ELISA performed best at a pH ranging from 7 to 8. These results indicate that both established ELISAs are suitable for the identification of HIV-1 fusion inhibitors.
Collapse
|
46
|
Perera R, Khaliq M, Kuhn RJ. Closing the door on flaviviruses: entry as a target for antiviral drug design. Antiviral Res 2008; 80:11-22. [PMID: 18585795 DOI: 10.1016/j.antiviral.2008.05.004] [Citation(s) in RCA: 92] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2008] [Revised: 05/09/2008] [Accepted: 05/14/2008] [Indexed: 01/14/2023]
Abstract
With the emergence and rapid spread of West Nile virus in the United States since 1999, and the 50-100 million infections per year caused by dengue virus globally, the threat of flaviviruses as re-emerging human pathogens has become a reality. To support the efforts that are currently being pursued to develop effective vaccines against these viruses, researchers are also actively pursuing the development of small molecule compounds that target various aspects of the virus life cycle. Recent advances in the structural characterization of the flaviviruses have provided a strong foundation towards these efforts. These studies have provided the pseudo-atomic structures of virions from several members of the genus as well as atomic resolution structures of several viral proteins. Most importantly, these studies have highlighted specific structural rearrangements that occur within the virion that are necessary for the virus to complete its life cycle. These rearrangements occur when the virus must transition from immature, to mature, to fusion-active states and rely heavily on the conformational flexibility of the envelope (E) protein that forms the outer glycoprotein shell of the virus. Analysis of these conformational changes can suggest promising targets for structure-based antiviral design. For instance, by targeting the flexibility of the E protein, it might be possible to inhibit required rearrangements of this protein and trap the virus in a specific state. This would interfere with a productive flaviviral infection. This review presents a structural perspective of the flavivirus life cycle and focuses on the role of the E protein as an opportune target for structure-based antiviral drug design.
Collapse
Affiliation(s)
- Rushika Perera
- Markey Center for Structural Biology and Department of Biological Sciences, Purdue University, West Lafayette, IN 47907, USA
| | | | | |
Collapse
|
47
|
Interaction of the most membranotropic region of the HCV E2 envelope glycoprotein with membranes. Biophysical characterization. Biophys J 2008; 94:4737-50. [PMID: 18339752 DOI: 10.1529/biophysj.107.126896] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
The previously identified membrane-active regions of the hepatitis C virus (HCV) E1 and E2 envelope glycoproteins led us to identify different segments that might be implicated in viral membrane fusion, membrane interaction, and/or protein-protein binding. HCV E2 glycoprotein contains one of the most membranotropic segments, segment 603-634, which has been implicated in CD81 binding, E1/E2 and E2/E2 dimerization, and membrane interaction. Through a series of complementary experiments, we have carried out a study of the binding and interaction with the lipid bilayer of a peptide corresponding to segment 603-634, peptide E2(FP), as well as the structural changes induced by membrane binding that take place in both the peptide and the phospholipid molecules. Here, we demonstrate that peptide E2(FP) binds to and interacts with phospholipid model membranes, modulates the polymorphic phase behavior of membrane phospholipids, is localized in a shallow position in the membrane, and is probably oligomerized in the presence of membranes. These data support the role of E2(FP) in HCV-mediated membrane fusion, and sustain the notion that this segment of the E2 envelope glycoprotein, together with other segments of E2 and E1 glycoproteins, provides the driving force for the merging of the viral and target cell membranes.
Collapse
|
48
|
Receptor determinants of zoonotic transmission of New World hemorrhagic fever arenaviruses. Proc Natl Acad Sci U S A 2008; 105:2664-9. [PMID: 18268337 DOI: 10.1073/pnas.0709254105] [Citation(s) in RCA: 102] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Transferrin receptor 1 (TfR1) is a cellular receptor for the New World hemorrhagic fever arenaviruses Machupo (MACV), Junín (JUNV), and Guanarito (GTOV). Each of these viruses is specifically adapted to a distinct rodent host species, but all cause human disease. Here we compare the ability of these viruses to use various mammalian transferrin receptor 1 (TfR1) orthologs, including those of the South American rodents that serve as reservoirs for MACV, JUNV, and GTOV (Calomys callosus, Calomys musculinus, and Zygodontomys brevicauda, respectively). Retroviruses pseudotyped with MACV and JUNV but not GTOV glycoproteins (GPs) efficiently used C. callosus TfR1, whereas only JUNV GP could use C. musculinus TfR1. All three viruses efficiently used Z. brevicauda TfR1. TfR1 orthologs from related rodents, including house mouse (Mus musculus) and rat (Rattus norvegicus), did not support entry of these viruses. In contrast, these viruses efficiently used human and domestic cat TfR1 orthologs. We further show that a local region of the human TfR1 apical domain, including tyrosine 211, determined the efficiency with which MACV, JUNV, and GTOV used various TfR1 orthologs. Our data show that these New World arenaviruses are specifically adapted to the TfR1 orthologs of their respective rodent hosts and identify key commonalities between these orthologs and human TfR1 necessary for efficient transmission of these viruses to humans.
Collapse
|
49
|
Abstract
Many viral fusion proteins only become activated under mildly acidic condition (pH 4.5–6.5) close to the pKa of histidine side-chain protonation. Analysis of the sequences and structures of influenza HA (haemagglutinin) and flaviviral envelope glycoproteins has led to the identification of a number of histidine residues that are not only fully conserved themselves but have local environments that are also highly conserved [Kampmann, Mueller, Mark, Young and Kobe (2006) Structure 14, 1481–1487]. Here, we summarize studies aimed at determining the role, if any, that protonation of these potential switch histidine residues plays in the low-pH-dependent conformational changes associated with fusion activation of a flaviviral envelope protein. Specifically, we report on MD (Molecular Dynamics) simulations of the DEN2 (dengue virus type 2) envelope protein ectodomain sE (soluble E) performed under varied pH conditions designed to test the histidine switch hypothesis of Kampmann et al. (2006).
Collapse
|
50
|
Aromatic amino acids in the juxtamembrane domain of severe acute respiratory syndrome coronavirus spike glycoprotein are important for receptor-dependent virus entry and cell-cell fusion. J Virol 2008; 82:2883-94. [PMID: 18199653 DOI: 10.1128/jvi.01805-07] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The severe acute respiratory syndrome coronavirus (SARS-CoV) spike glycoprotein (S) is a class I viral fusion protein that binds to its receptor glycoprotein, human angiotensin converting enzyme 2 (hACE2), and mediates virus entry and cell-cell fusion. The juxtamembrane domain (JMD) of S is an aromatic amino acid-rich region proximal to the transmembrane domain that is highly conserved in all coronaviruses. Alanine substitutions for one or two of the six aromatic residues in the JMD did not alter the surface expression of the SARS-CoV S proteins with a deletion of the C-terminal 19 amino acids (S Delta19) or reduce binding to soluble human ACE2 (hACE2). However, hACE2-dependent entry of trypsin-treated retrovirus pseudotyped viruses expressing JMD mutant S Delta19 proteins was greatly reduced. Single alanine substitutions for aromatic residues reduced entry to 10 to 60% of the wild-type level. The greatest reduction was caused by residues nearest the transmembrane domain. Four double alanine substitutions reduced entry to 5 to 10% of the wild-type level. Rapid hACE2-dependent S-mediated cell-cell fusion was reduced to 60 to 70% of the wild-type level for all single alanine substitutions and the Y1188A/Y1191A protein. S Delta19 proteins with other double alanine substitutions reduced cell-cell fusion further, from 40% to less than 20% of wild-type levels. The aromatic amino acids in the JMD of the SARS-CoV S glycoprotein play critical roles in receptor-dependent virus-cell and cell-cell fusion. Because the JMD is so highly conserved in all coronavirus S proteins, it is a potential target for development of drugs that may inhibit virus entry and/or cell-cell fusion mediated by S proteins of all coronaviruses.
Collapse
|