1
|
Gautam K, Bhatt M, Dutt S, Sagdeo A, Sinha AK. Impact of carbon nanodot uptake on complex impedance charge transport and energy storage mechanism in aloe vera leaves. Sci Rep 2025; 15:11506. [PMID: 40181073 PMCID: PMC11968915 DOI: 10.1038/s41598-025-96430-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Accepted: 03/28/2025] [Indexed: 04/05/2025] Open
Abstract
Nano phase uptake of nutrients, medicines and pesticides improves the efficiency and energy storage capacity of the plants. In this work, we have studied the complex impedance and charge transport mechanism of the Aloe Vera plant spiked with various doses of well characterized carbon nano dots (CND, crystallite size ~ 2 nm). The complex impedance of the samples was investigated using an equivalent circuit model consisting of parallel combination of resistance and constant phase elements (replacing capacitor because of non-ideal Debye relaxation behaviour) representing grain and grain boundary. Interestingly, for both the grain and grain boundary, the resistances increase, and the capacitance decrease with uptake of carbon nano dots. Specifically, the constant phase element resistance of the grain (grain boundary) increases from 161 (2166) Ω to 240 (3518) Ω on spiking the plant with 10 mg/L solution of while the grain (grain boundary) capacitance decreased from 1.8E-8 (1.9E-9) Farad to 2.0E-10 (4.2E-10) Farad indicating changes electric transport. The Nyquist plot for all the samples showed a small semi-circle in the high frequency region and a large semi-circle in the mid frequency regions, representing the grain and the grain boundary conduction, respectively. Jonscher power law applied to AC conductivity data in the mid frequency range revealed a reduction in hopping frequency and an increase in the frequency exponent with uptake of CND. To our knowledge, this is the first study to explore electrochemical behaviour of Aloe vera with CND enrichment, presenting insights into CND- plant interaction and their potential application.
Collapse
Affiliation(s)
- Kajal Gautam
- Department of Chemistry, School of Advanced Engineering, UPES, Dehradun, India.
| | - Mohit Bhatt
- Department of Physics, School of Advanced Engineering, UPES, Dehradun, India
| | - Shankar Dutt
- Accelerator Physics and Synchrotrons Utilization Division, Raja Ramanna Centre for Advanced Technology, Indore, 452013, India
| | - Archna Sagdeo
- Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai, 400094, India
| | - Anil Kumar Sinha
- Department of Physics, School of Advanced Engineering, UPES, Dehradun, India.
| |
Collapse
|
2
|
Saenchoopa A, Plaeyao K, Talodthaisong C, Thet Tun WS, Nasomjai P, Lapmanee S, Somsakeesit LO, Hutchison JA, Kulchat S. Development of Antibacterial Hydrogels Based on Biopolymer Aloe Vera/Gelatin/Sodium Alginate Composited With SM-AgNPs Loaded Curcumin-Nanoliposomes. Macromol Biosci 2025; 25:e2400504. [PMID: 39748596 DOI: 10.1002/mabi.202400504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 12/02/2024] [Indexed: 01/04/2025]
Abstract
To address the rising prevalence of bacterial infections and the need for innovative therapeutic solutions, this study has developed a novel antibacterial hydrogel composite composed of Aloe vera, gelatin, sodium alginate, and Sterculia monosperma-silver nanoparticles (SM-AgNPs) loaded curcumin-nanoliposomes (NLPs). The aloe vera/gelatin/sodium alginate hydrogels (AGS) are prepared using different weight ratios of Aloe vera, gelatin, and sodium alginate, aiming to optimize mechanical properties and biocompatibility for biomedical applications. The incorporation of SM-AgNPs and curcumin-loaded NLPs enhanced the hydrogels' antibacterial properties. Characterizations of the hydrogels are performed by using Fourier-transform infrared spectroscopy, thermogravimetric analysis, and scanning electron microscopy. Additional examinations, such as water absorption analysis, rheology measurements, thermal stability, and injectability, along with pH and temperature responsiveness, are also conducted. The AGS-3 hydrogel formulation, with a 1:5:3 ratio of Aloe vera to gelatin to sodium alginate, exhibited significant performance in all tests, making it suitable for further experiments. Furthermore, antimicrobial activity assays showed that AGS hydrogels containing SM-AgNPs/NLP composites effectively inhibited the growth of both gram-positive Staphylococcus aureus (S.aureus) and gram-negative Escherichia coli (E.coli) bacteria. These results indicate that the SM-AgNPs/NLP-AGS hydrogel is a promising material for biomedical applications including wound healing, infection prevention, and targeted drug delivery.
Collapse
Affiliation(s)
- Apichart Saenchoopa
- Materials Chemistry Research Center, Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Kittiya Plaeyao
- Materials Chemistry Research Center, Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Chanon Talodthaisong
- Materials Chemistry Research Center, Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Wonn Shweyi Thet Tun
- Department of System Biosciences and Computational Medicine, Faculty of Medicine, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Pitak Nasomjai
- Unit of Excellence in Computational Molecular Science and Catalysis, and Division of Chemistry, School of Science, University of Phayao, Phayao, 56000, Thailand
| | - Sarawut Lapmanee
- Division of Physiology, Chulabhorn International College of Medicine, Thammasat University, Pathumthani, 10120, Thailand
| | - La-Or Somsakeesit
- Department of Chemistry, Faculty of Engineering, Rajamangala University of Technology Isan, Khon Kaen, 40000, Thailand
| | - James A Hutchison
- School of Chemistry, The University of Melbourne, Parkville, Victoria, 3010, Australia
| | - Sirinan Kulchat
- Materials Chemistry Research Center, Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Khon Kaen University, Khon Kaen, 40002, Thailand
| |
Collapse
|
3
|
Tang Q, Chu J, Peng P, Zou Y, Wu Y, Wang Y. Probing the antibacterial mechanism of Aloe vera based on network pharmacology and computational analysis. J Mol Graph Model 2025; 138:109034. [PMID: 40157275 DOI: 10.1016/j.jmgm.2025.109034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Revised: 03/15/2025] [Accepted: 03/23/2025] [Indexed: 04/01/2025]
Abstract
Bacterial resistance has emerged as a major clinical challenge globally. Natural products, such as Aloe vera, offer promising antimicrobial potential due to their diverse active components. However, the explicit molecular mechanisms remain unknown. In this study, we employed a multidisciplinary approach integrating network pharmacology, molecular docking, and molecular dynamics simulation to explore the antibacterial mechanism of Aloe vera. We screened the eight major active components of Aloe vera and their targets using multi-source bioinformatics platforms, identifying 55 targets closely associated with the antibacterial effects of Aloe vera. Protein-protein interaction network analysis, revealed potential crucial targets, including cysteine-aspartic acid protease-3 (CASP3) and matrix metalloproteinase-9 (MMP-9). Gene ontology functional enrichment analysis revealed that these targets play critical roles in several essential biological processes, such as "response to xenobiotic stimulus", "positive regulation of gene expression", and "collagen catabolism". The Kyoto Encyclopedia of Genes and Genomes signal pathway analysis indicated that these targets are primarily involved in pathways associated with cancer, lipid metabolism, atherosclerosis, and the AGE/RAGE signaling pathway in diabetes. This finding suggests that Aloe vera may exert its antibacterial effects by regulating the host's immune response and metabolism. Molecular docking and molecular dynamics simulations demonstrated that active ingredients of Aloe vera, such as quercetin and aloe-emodin, can form stable complexes with CASP3 and MMP-9, exhibiting vigorous binding affinity to the active sites of the target. Further antibacterial activity assays and reverse transcription quantitative polymerase chain reaction (RT-qPCR) analysis demonstrated that aloe-emodin exerts antibacterial effects against gram-positive bacteria and inhibits the expression of the MMP-9 gene. This study provided insight into the antibacterial mechanisms of Aloe vera, highlighting MMP-9 as a key target. These findings lay a foundation for further studies on natural antibacterial agents.
Collapse
Affiliation(s)
- Qian Tang
- School of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing, 400054, China.
| | - Jingle Chu
- School of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing, 400054, China
| | - Peiqi Peng
- School of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing, 400054, China
| | - Yinjie Zou
- School of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing, 400054, China
| | - Yaguang Wu
- Department of Dermatology, The First Affiliated Hospital of Army Medical University, Chongqing, 400038, China.
| | - Yuanqiang Wang
- School of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing, 400054, China.
| |
Collapse
|
4
|
Cordiano R, Caserta S, Minciullo PL, Allegra A, Gangemi S. Anthraquinones and Aloe Vera Extracts as Potential Modulators of Inflammaging Mechanisms: A Translational Approach from Autoimmune to Onco-Hematological Diseases. Molecules 2025; 30:1251. [PMID: 40142026 PMCID: PMC11944353 DOI: 10.3390/molecules30061251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2025] [Revised: 02/25/2025] [Accepted: 03/10/2025] [Indexed: 03/28/2025] Open
Abstract
Inflammaging is a chronic, low-grade inflammatory state that contributes to age-related diseases, including cardiovascular disorders, osteoporosis, neurodegeneration, and cancer. This process involves immunosenescence, oxidative stress, and immune aging, all of which contribute to the breakdown of immune tolerance and the onset of autoimmune disorders. Aloe vera (AV) has recently gained attention for its immunomodulatory, anti-inflammatory, and antioxidant properties. This review explores the effects of AV extracts and anthraquinones (e.g., aloe-emodin, emodin, aloin) on key inflammaging-driven mechanisms in autoimmunity. Our analysis highlights AV's ability to regulate hormone balance, autoantibody production, and cytokine/chemokine signaling (such as interleukin-1β, tumor necrosis factor-α, and interferon-γ). It modulates inflammatory pathways, including mitogen-activated protein kinases (MAPKs) and phosphatidylinositol 3-kinase/protein kinase B (PI3K/AKT), thereby inhibiting nuclear factor kappa-light-chain-enhancer of activated B-cell (NF-κB) activation. Additionally, AV enhances antioxidant defenses and restores immune balance by reducing Th1/Th17 subsets while promoting Th2-mediated regulation. Notably, AV also modulates inflammasome-mediated mechanisms and counteracts immunosenescence, which is driven by autophagy-related processes. These effects position AV as a potential integrative approach to mitigating inflammaging-driven autoimmunity. Furthermore, as inflammaging is increasingly recognized in onco-hematological diseases, AV-based strategies may offer novel therapeutic avenues. Future studies should focus on clinical validation, optimizing formulations, and expanding applications to broader age-related and immune-mediated disorders.
Collapse
Affiliation(s)
- Raffaele Cordiano
- Unit and School of Allergy and Clinical Immunology, Department of Clinical and Experimental Medicine, University of Messina, Via Consolare Valeria, 98125 Messina, Italy; (R.C.); (S.G.)
| | - Santino Caserta
- Division of Hematology, Department of Human Pathology in Adulthood and Childhood “Gaetano Barresi”, University of Messina, Via Consolare Valeria, 98125 Messina, Italy; (S.C.); (A.A.)
| | - Paola Lucia Minciullo
- Unit and School of Allergy and Clinical Immunology, Department of Clinical and Experimental Medicine, University of Messina, Via Consolare Valeria, 98125 Messina, Italy; (R.C.); (S.G.)
| | - Alessandro Allegra
- Division of Hematology, Department of Human Pathology in Adulthood and Childhood “Gaetano Barresi”, University of Messina, Via Consolare Valeria, 98125 Messina, Italy; (S.C.); (A.A.)
| | - Sebastiano Gangemi
- Unit and School of Allergy and Clinical Immunology, Department of Clinical and Experimental Medicine, University of Messina, Via Consolare Valeria, 98125 Messina, Italy; (R.C.); (S.G.)
| |
Collapse
|
5
|
Chen YN, Lu JY, Gao CF, Fang ZR, Zhou Y. Aloin blocks the malignant behavior of lung squamous cell carcinoma cells and M2 macrophage polarization by modulating the NR3C2/MT1M axis. JOURNAL OF INTEGRATIVE MEDICINE 2025; 23:195-208. [PMID: 40102085 DOI: 10.1016/j.joim.2025.02.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Accepted: 11/20/2024] [Indexed: 03/20/2025]
Abstract
OBJECTIVE Aloin, the main active component in Aloe vera (L.) Burm. f., has shown promising anti-tumor effects. This study investigated the impact of aloin in lung squamous cell carcinoma (LUSC) and explored its functional mechanism. METHODS We analyzed the viability, migration, invasion, proliferation, and apoptosis of two LUSC cell lines after treatment with aloin. Target molecules of aloin and downstream target transcripts of nuclear receptor subfamily 3 group C member 2 (NR3C2) were predicted by bioinformatics. The biological functions of NR3C2 and metallothionein 1 M (MT1M) in the malignant properties of LUSC cells were determined. A co-culture system of LUSC cells with monocyte-derived macrophages was constructed. Mouse xenograft tumor models were generated to analyze the functions of aloin and NR3C2 in the tumorigenic activity of LUSC cells and macrophage polarization in vivo. RESULTS Aloin suppressed malignant properties of LUSC cells in vitro. However, these effects were negated by the silencing of NR3C2. NR3C2 was found to activate MT1M transcription by binding to its promoter. Additional upregulation of MT1M suppressed the malignant behavior of LUSC cells augmented by NR3C2 silencing. Analysis of the M1 and M2 markers/cytokines in the macrophages or the culture supernatant revealed that aloin treatment or MT1M overexpression in LUSC cells enhanced M1 polarization while suppressing M2 polarization of macrophages, whereas NR3C2 silencing led to reverse trends. Consistent findings were reproduced in vivo. CONCLUSION This study demonstrated that aloin activates the NR3C2/MT1M axis to suppress the malignant behavior of LUSC cells and M2 macrophage polarization. Please cite this article as: Chen YN, Lu JY, Gao CF, Fang ZR, Zhou Y. Aloin blocks the malignant behavior of lung squamous cell carcinoma cells and M2 macrophage polarization by modulating the NR3C2/MT1M axis. J Integr Med. 2025; 23(2): 195-208.
Collapse
Affiliation(s)
- Ying-Na Chen
- School of Pharmacy, Changzhou University, Changzhou 213164, Jiangsu Province, China.
| | - Jie-Ya Lu
- Department of Nephrology, Yixing Hospital of Traditional Chinese Medicine, Wuxi 214200, Jiangsu Province, China.
| | - Cheng-Feng Gao
- Faculty of Chinese Medicine, Macau University of Science and Technology, Macau 999078, China
| | - Zhi-Ruo Fang
- School of Pharmacy, Changzhou University, Changzhou 213164, Jiangsu Province, China
| | - Yan Zhou
- Department of Digestive Diseases, Changzhou Traditional Chinese Medicine Hospital, Changzhou 213003, Jiangsu Province, China
| |
Collapse
|
6
|
Gome G, Chak B, Tawil S, Rotem I, Ribarski-Chorev I, Giron J, Shoseyov O, Schlesinger S. Cultivation of bovine lipid chunks on Aloe vera scaffolds. NPJ Sci Food 2025; 9:26. [PMID: 40000634 PMCID: PMC11862248 DOI: 10.1038/s41538-025-00391-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Accepted: 02/12/2025] [Indexed: 02/27/2025] Open
Abstract
Aloe vera, renowned for its medicinal and food applications, offers a sustainable, scalable, and cost-effective scaffold material for cultured meat production. Our method repurposes Aloe vera parenchyma into a sustainable and innovative scaffold for CM production. These scaffolds, derived from agricultural byproducts, feature a porous structure that retains liquids and supports bovine mesenchymal stem cell (bMSC) adhesion, proliferation, and extracellular matrix formation. By incorporating oleic acid, the scaffolds enable the accumulation of fat-like tissue, creating "lipid chunks" that can enhance the texture and flavor profile of plant-based meat alternatives. Furthermore, scalability is addressed by culturing the scaffolds in a macrofluidic single-use bioreactor (MSUB), showcasing the potential for large-scale production. This work demonstrates Aloe vera scaffold's versatility as a cost-effective material and highlights its promise for sustainable protein solutions and tissue engineering applications.
Collapse
Affiliation(s)
- Gilad Gome
- Department of Plant Sciences, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel.
| | - Benyamin Chak
- Department of Animal Sciences, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Shadi Tawil
- Department of Animal Sciences, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Itai Rotem
- Department of Animal Sciences, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Ivana Ribarski-Chorev
- Department of Animal Sciences, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Jonathan Giron
- Sammy Ofer School of Communication, Reichman University, Herzliya, Israel
| | - Oded Shoseyov
- Department of Plant Sciences, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Sharon Schlesinger
- Department of Animal Sciences, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel.
| |
Collapse
|
7
|
Liao B, Zhang C, Shen J, Chen D, Wang J, Chen X, Zhou Y, Wei Y, Shi Y, Gou L, Guo Q, Zhou X, Xie H, Zhao L, Liao G, Zhu Z, Cheng L, Zhou X, Li Y, Ren B. Aloin remodels the cell wall of Candida albicans to reduce its hyphal virulence against oral candidiasis. Appl Microbiol Biotechnol 2025; 109:21. [PMID: 39853490 PMCID: PMC11761986 DOI: 10.1007/s00253-025-13411-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Revised: 01/13/2025] [Accepted: 01/14/2025] [Indexed: 01/26/2025]
Abstract
Aloe vera (L.) Burm.f. is a traditional Chinese medicine known for treating various ailments, including fungal infections. Aloin is one of the major components from A. vera, but its antifungal mechanism and therapeutic potential against oral candidiasis are not clear. This study aimed to examine the mechanism of aloin against Candida albicans and its inhibitory activity against oral candidiasis. In this study, we for the first time found that aloin could induce the formation of abnormal hyphae with smaller hyphal diameters and fewer branching points in C. albicans including 11 clinical isolates without growth inhibition. The transcriptome and further cell wall contents analysis indicated that aloin remodeled the cell wall to increase the contents of β-1,3-glucan and furtherly showed an antagonistic effect with micafungin. Aloin also significantly inhibited the cell damage of oral epithelial cells and oral candidiasis in mice infected by C. albicans due to its inhibitory actions on the hyphal development and expressions of virulence factors, including candidalysin (coded by ECE1). Our results suggest that aloin is a promising antifungal agent for controlling candidiasis and targeting hyphal development and pathogenesis represents a practical strategy for developing new antifungal drugs. KEY POINTS: • Aloin remodels the C. albicans cell wall to form avirulent hyphae. • Aloin inhibits C. albicans infections in oral epithelial cells and mouse mucosa without toxicity. • Aloin is a promising antifungal agent with therapeutic potential against C. albicans infections.
Collapse
Affiliation(s)
- Binyou Liao
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, West China School of Stomatology, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Chuanli Zhang
- Department of Hematology, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Jiawei Shen
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, West China School of Stomatology, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Ding Chen
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, West China School of Stomatology, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Jiannan Wang
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, West China School of Stomatology, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Xi Chen
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, West China School of Stomatology, Sichuan University, Chengdu, 610041, Sichuan, China
- Department of Operative Dentistry and Endodontics, West China School of Stomatology, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Yuan Zhou
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, West China School of Stomatology, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Yu Wei
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, West China School of Stomatology, Sichuan University, Chengdu, 610041, Sichuan, China
- Department of Operative Dentistry and Endodontics, West China School of Stomatology, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Yangyang Shi
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, West China School of Stomatology, Sichuan University, Chengdu, 610041, Sichuan, China
- Department of Operative Dentistry and Endodontics, West China School of Stomatology, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Lichen Gou
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, West China School of Stomatology, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Qiang Guo
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, West China School of Stomatology, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Xinxuan Zhou
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, West China School of Stomatology, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Hongyu Xie
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, West China School of Stomatology, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Lin Zhao
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, West China School of Stomatology, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Ga Liao
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, West China School of Stomatology, Sichuan University, Chengdu, 610041, Sichuan, China
- Department of Information Management & Department of Stomatology Informatics, West China School of Stomatology, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Zhuoli Zhu
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, West China School of Stomatology, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Lei Cheng
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, West China School of Stomatology, Sichuan University, Chengdu, 610041, Sichuan, China
- Department of Operative Dentistry and Endodontics, West China School of Stomatology, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Xuedong Zhou
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, West China School of Stomatology, Sichuan University, Chengdu, 610041, Sichuan, China
- Department of Operative Dentistry and Endodontics, West China School of Stomatology, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Yan Li
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, West China School of Stomatology, Sichuan University, Chengdu, 610041, Sichuan, China.
| | - Biao Ren
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, West China School of Stomatology, Sichuan University, Chengdu, 610041, Sichuan, China.
| |
Collapse
|
8
|
Yan R, Wang Y, Li W, Sun J. Promotion of chronic wound healing by plant-derived active ingredients and research progress and potential of plant polysaccharide hydrogels. CHINESE HERBAL MEDICINES 2025; 17:70-83. [PMID: 39949811 PMCID: PMC11814255 DOI: 10.1016/j.chmed.2024.11.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 06/30/2024] [Accepted: 11/19/2024] [Indexed: 02/16/2025] Open
Abstract
Wound healing is a complex biochemical process. The use of herbal medicine in wound healing not only carries forward the wisdom of traditional medicine, with its anti-inflammatory and immune-regulating effects, but also reflects the direction of modern biopharmaceutical technology, such as its potential in developing new biomaterials like hydrogels. This article first outlines the inherent structural properties of healthy skin, along with the physiological characteristics related to chronic wounds in patients with diabetes and burns. Subsequently, the article delves into the latest advancements in clinical and experimental research on the impact of active constituents in herbal medicine on wound tissue regeneration, summarizing existing studies on the mechanisms of various herbal medicines in the healing of diabetic and burn wounds. Finally, the paper thoroughly examines the application and mechanisms of plant polysaccharide hydrogels containing active herbal compounds in chronic wound healing. The primary objective is to provide valuable resources for the clinical application and development of herbal medicine, thereby maximizing its therapeutic potential. It also represents the continuation of traditional medical wisdom, offering new possibilities for advancements in regenerative medicine and wound care.
Collapse
Affiliation(s)
- Ru Yan
- School of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin 150006, China
- Key Laboratory of Basic and Application Research of Beiyao, Ministry of Education, Heilongjiang University of Chinese Medicine, Harbin 150006, China
| | - Yanhong Wang
- School of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin 150006, China
- Key Laboratory of Basic and Application Research of Beiyao, Ministry of Education, Heilongjiang University of Chinese Medicine, Harbin 150006, China
| | - Weinan Li
- School of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin 150006, China
- Key Laboratory of Basic and Application Research of Beiyao, Ministry of Education, Heilongjiang University of Chinese Medicine, Harbin 150006, China
| | - Jialin Sun
- Department of Medicine, Heilongjiang Minzu College, Harbin 150066, China
- Postdoctoral Research Station, Heilongjiang University of Chinese Medicine, Harbin 150006, China
| |
Collapse
|
9
|
Khan W, Shaukat R, Khan A, Khan A, Ahmad B, Saleem S, Farah MA, Amin W, Khan OU. Anti-inflammatory potential of aloe vera meatballs and their impact on rheumatoid arthritis. JOURNAL OF KING SAUD UNIVERSITY - SCIENCE 2024; 36:103573. [DOI: 10.1016/j.jksus.2024.103573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
10
|
Nauroze T, Ali S, Andleeb S, Ara C, Liaqat I, Mushtaq H, Mumtaz S, Kanwal L, Abbas AS, Mumtaz S, Farooq MA, Khan IH. Therapeutic Potential of Aloe vera and Aloe vera-Conjugated Silver Nanoparticles on Mice Exposed to Hexavalent Chromium. Biol Trace Elem Res 2024; 202:5580-5595. [PMID: 38478315 DOI: 10.1007/s12011-024-04105-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Accepted: 02/12/2024] [Indexed: 10/25/2024]
Abstract
Hexavalent chromium (Cr (VI)) is a hazardous heavy metal that induces hepatotoxicity and nephrotoxicity. Thus, this study was planned to explore the ameliorating capacity of Aloe vera leaf gel extract (AV) and their conjugated silver nanoparticles (AVNP) against Cr (VI) induced hepatotoxicity and renal toxicity. The organ indices, level of alanine aminotransferase, aspartate aminotransferase, alkaline phosphatase, malondialdehyde, total protein, and creatinine in blood serum were measured. The histopathological and micrometric analysis of the hepatic and renal tissue sections were studied. The hepatosomatic index was raised significantly (0.098 ± 0.13 g) in Cr treated group. The blood serum level of AST (484 ± 10.7 U/L), ALT (163 ± 5.5 U/L), ALP (336.7 ± 9.5 U/L), MDA (642.3 ± 28.3 U/L), and creatinine (4.0 ± 0.1 mg/dL) were increased significantly, whereas total protein level was declined (2.8 ± 0.3 g/dL) significantly in Cr exposed group. In the histopathological study, necrosis, disturbed hepatic cords, impaired glomeruli, and Bowman's capsule were noted. Micrometric data from the liver and kidney revealed a significant surge in the size of hepatocytes and their nuclei (1188.2 ± 467.7 µ2 and 456.5 ± 205.6 µ2) and CSA of glomeruli and Bowman's capsule (9051.8 ± 249.8 µ2 and 11,835.5 ± 336.7 µ2) in Cr (VI) exposed group, whereas the brush border (10.2 ± 4.0 µ) size declined significantly. The administration of AV and AVNP reduced the oxidative stress induced by Cr (VI).
Collapse
Affiliation(s)
- Tooba Nauroze
- Applied Entomology and Medical Toxicology Laboratory, Department of Zoology, Government College University, Lahore, Pakistan
- Department of Zoology, University of Education, Lahore, Pakistan
| | - Shaukat Ali
- Applied Entomology and Medical Toxicology Laboratory, Department of Zoology, Government College University, Lahore, Pakistan.
| | - Shagufta Andleeb
- Department of Zoology, University of Education, Lahore, Pakistan
| | - Chaman Ara
- Institute of Zoology, University of the Punjab, Lahore, Pakistan
| | - Iqra Liaqat
- Applied Entomology and Medical Toxicology Laboratory, Department of Zoology, Government College University, Lahore, Pakistan
| | - Hina Mushtaq
- Applied Entomology and Medical Toxicology Laboratory, Department of Zoology, Government College University, Lahore, Pakistan
| | - Samaira Mumtaz
- Applied Entomology and Medical Toxicology Laboratory, Department of Zoology, Government College University, Lahore, Pakistan
| | - Lubna Kanwal
- Department of Zoology, University of Okara, Lahore, Pakistan
| | | | - Shumaila Mumtaz
- Applied Entomology and Medical Toxicology Laboratory, Department of Zoology, Government College University, Lahore, Pakistan
- Department of Zoology, University of Poonch, Rawlakot, AzadKashmir, Pakistan
| | - Muhammad Adeel Farooq
- Applied Entomology and Medical Toxicology Laboratory, Department of Zoology, Government College University, Lahore, Pakistan
| | | |
Collapse
|
11
|
Zhao Y, Zhang T, Liang Y, Xie X, Pan H, Cao M, Wang S, Wu D, Wang J, Wang C, Hu W. Combination of aloe emodin, emodin, and rhein from Aloe with EDTA sensitizes the resistant Acinetobacter baumannii to polymyxins. Front Cell Infect Microbiol 2024; 14:1467607. [PMID: 39346899 PMCID: PMC11428196 DOI: 10.3389/fcimb.2024.1467607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Accepted: 08/26/2024] [Indexed: 10/01/2024] Open
Abstract
Background The continuous emergence and spread of polymyxin-resistant Acinetobacter baumannii pose a significant global health challenge, necessitating the development of novel therapeutic strategies. Aloe, with its long-standing history of medicinal use, has recently been the subject of substantial research for its efficacy against pathogenic infections. Methods This study investigates the potential application of anthraquinone components in aloe against polymyxin-resistant A. baumannii by liquid chromatography-mass spectrometry, in vitro activity assessment, and construction of animal infection models. Results The findings demonstrate that aloe emodin, emodin, rhein, and their mixtures in equal mass ratios (EAR) exhibit strain-specific antibacterial activities against polymyxin-resistant A. baumannii. Co-administration of EAR with EDTA synergistically and universally enhanced the antibacterial activity and bactericidal efficacy of polymyxins against polymyxin-resistant A. baumannii, while also reducing the frequency of polymyxin-resistant mutations in polymyxinssensitive A. baumannii. Following toxicity assessment on human hepatic and renal cell lines, the combination therapy was applied to skin wounds in mice infected with polymyxin-resistant A. baumannii. Compared to monotherapy, the combination therapy significantly accelerated wound healing and reduced bacterial burden. Conclusions The combination of EAR and EDTA with polymyxins offers a novel therapeutic approach for managing skin infections caused by polymyxinresistant A. baumannii.
Collapse
Affiliation(s)
- Yue Zhao
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Tingting Zhang
- State Key Laboratory of Microbial Technology, Microbial Technology Institute, Shandong University, Qingdao, China
| | - Yinping Liang
- State Key Laboratory of Microbial Technology, Microbial Technology Institute, Shandong University, Qingdao, China
| | - Xiaoqing Xie
- State Key Laboratory of Microbial Technology, Microbial Technology Institute, Shandong University, Qingdao, China
| | - Hongwei Pan
- Department of Clinical Laboratory, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Meng Cao
- Research and Development Center, Shandong Aobo Biotechnology Co., Ltd, Liaocheng, Shandong, China
| | - Shuhua Wang
- Research and Development Center, Shandong Aobo Biotechnology Co., Ltd, Liaocheng, Shandong, China
| | - Dalei Wu
- State Key Laboratory of Microbial Technology, Microbial Technology Institute, Shandong University, Qingdao, China
| | - Jing Wang
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Chuandong Wang
- State Key Laboratory of Microbial Technology, Microbial Technology Institute, Shandong University, Qingdao, China
| | - Wei Hu
- State Key Laboratory of Microbial Technology, Microbial Technology Institute, Shandong University, Qingdao, China
| |
Collapse
|
12
|
Tiwari S, Ghosh T, Kandpal S, Saxena S, Kumar R, Prakash R, Chaudhary A. Utilizing Natural Materials in Electronic Devices: Inching Toward "Herbal Electronics". ACS APPLIED BIO MATERIALS 2024; 7:5107-5120. [PMID: 38980821 DOI: 10.1021/acsabm.4c00417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/11/2024]
Abstract
Sustainable development is the primary key to address global energy challenges. Though the scientific community is engaged in developing efficient ways to not only maximize energy production from natural resources like sun, wind, water, etc. but also to make all the electronic gadgets power efficient, despite all this, the materials used in most of the electronic devices are largely produced using various materials processing techniques and semiconductors, polymers, dielectrics, etc. which again increases the burden on energy and in turn affects the environment. While addressing these challenges, it is very important to explore the possibility to directly, or with minimum processing, utilize the potential of natural resources in the development of electronic devices. Recent articles are focused on the development of herbal electronic devices that essentially implement natural resources, like plants, leaves, etc., either in their raw or extracted form in the device assembly. This review encompasses the recent research developments around herbal electronic devices. Furthermore, herbal electronics has been discussed for several functional applications including electrochromism, energy storage, memresistor, LED, solar cell, water purification, pressure sensor, etc. Moreover, advantages, disadvantages, and challenges encountered in the realization of "herbal electronics" have been discussed at length.
Collapse
Affiliation(s)
- Soumya Tiwari
- Department of Physics, Indian Institute of Technology Bhilai, Bhilai, Chhattisgarh 491002, India
| | - Tanushree Ghosh
- Materials and Device Laboratory, Indian Institute of Technology Indore, Simrol, Indore 453552, India
| | - Suchita Kandpal
- Materials and Device Laboratory, Indian Institute of Technology Indore, Simrol, Indore 453552, India
| | - Shailendra Saxena
- Department of Physics and Nanotechnology, College of Engineering and Technology, SRM Institute of Science and Technology, Chennai, 603203 Tamil Nadu, India
| | - Rajesh Kumar
- Materials and Device Laboratory, Indian Institute of Technology Indore, Simrol, Indore 453552, India
- Centre for Advanced Electronics, Indian Institute of Technology Indore, Simrol, Indore 453552, India
| | - Rajiv Prakash
- Department of Materials Science and Metallurgical Engineering, Indian Institute of Technology Bhilai, Bhilai, Chhattisgarh 491002, India
| | - Anjali Chaudhary
- Department of Physics, Indian Institute of Technology Bhilai, Bhilai, Chhattisgarh 491002, India
| |
Collapse
|
13
|
Nurhidayah I, Nurhaeni N, Allenidekania A, Gayatri D, Mediani HS. The Effect of Oral Care Intervention in Mucositis Management Among Pediatric Cancer Patients: An Updated Systematic Review. J Multidiscip Healthc 2024; 17:3497-3515. [PMID: 39050692 PMCID: PMC11268750 DOI: 10.2147/jmdh.s467455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Accepted: 07/03/2024] [Indexed: 07/27/2024] Open
Abstract
Background Chemotherapy-induced mucositis is inflammation that develops in the oral mucosal due to anticancer treatment. Mucositis has negative consequences that may lead to distress in pediatric patients, resulting in escalated expenses, diminished quality of life, hindrance in cancer therapy, and decreased survival rates. However, despite the numerous methods, oral care protocols are suggested for implementation in the pediatric population despite a lack of high-level evidence studies, particularly regarding which appropriate oral care agents should be administered. Purpose This systematic review aimed to identify the effect of oral care intervention in mucositis management among pediatric cancer patients. Methods Studies were published between 2014 and 2023 from five databases: PubMed, Embase, Medline, ScienceDirect, and Scopus. They were identified using a search strategy to identify relevant studies that identify oral care interventions for managing mucositis in children with cancer. This study used the Joanna Briggs Institute (JBI) critical appraisal tools to assess the quality of the studies and followed the recommended reporting items for systematic reviews and meta-analyses (PRISMA) guidelines. Results Eight studies met the inclusion criteria, including seven RCTs and one quasi-experimental study. Oral care interventions involving tooth brushing, mouthwash, and lip care are performed entirely or partially. The frequency of oral care ranges from two to six times daily, and the duration of intervention is from 5 days to six weeks. Oral care interventions using honey, olive oil, Aloe Vera, Andiroba, and salivary enzyme toothpaste are beneficial to lower the severity of mucositis, reduce pain, minimize mucositis duration, and reduce the use of analgesics, but not significantly improve the child's quality of life. However, Caphosol mouthwash did not significantly reduce mucositis. Conclusion Our study highlights that oral care intervention using effective agents integratively, including honey, olive oil, Aloe vera, Andiroba, and salivary enzyme toothpaste, is essential to manage chemotherapy-induced mucositis among children. Systematic Review Registration PROSPERO registration number was CRD42023456278.
Collapse
Affiliation(s)
- Ikeu Nurhidayah
- Pediatric Nursing Department, Faculty of Nursing, Universitas Padjadjaran, Sumedang, West Java, Indonesia
- Postgraduate Program, Faculty of Nursing, Universitas Indonesia, Depok, West Java, Indonesia
| | - Nani Nurhaeni
- Pediatric Nursing Department, Faculty of Nursing, Universitas Indonesia, Depok, West Java, Indonesia
| | | | - Dewi Gayatri
- Basic Science and Fundamental Nursing Department, Faculty of Nursing, Universitas Indonesia, Depok, West Java, Indonesia
| | - Henny Suzana Mediani
- Pediatric Nursing Department, Faculty of Nursing, Universitas Padjadjaran, Sumedang, West Java, Indonesia
| |
Collapse
|
14
|
Moselhy SN, Al-Nashwi AA, Raya-Álvarez E, Abu Zaid FO, Shalaby HST, El-Khadragy MF, Shahein MR, Hafiz AA, Aljehani AA, Agil A, Elmahallawy EK. Physicochemical, microbiological, and sensory properties of healthy juices containing aloe vera gel and probiotics and their antidiabetic effects on albino rats. Front Nutr 2024; 11:1328548. [PMID: 39081678 PMCID: PMC11288179 DOI: 10.3389/fnut.2024.1328548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 06/10/2024] [Indexed: 08/02/2024] Open
Abstract
The consumption of fruit and vegetable juices is widely recognized as a healthy choice across all age groups. Orange, carrot, and aloe vera are renowned for their functional properties and health benefits. In this study, we investigated the potential incorporation of aloe vera gel into blended orange and carrot juices. We also evaluated the resulting mixed probiotic juices (chemical, microbiological, and sensory aspects) during a 14-day storage period at refrigerator temperature. The chemical composition and phytochemical structure of aloe vera gel were examined, followed by an assessment of the biological effects of these healthy juices on diabetic albino rats. The results indicated improvements in total soluble solids, reducing sugars, and total sugars with increasing storage duration. Furthermore, the study demonstrated that incorporating aloe vera into the natural mixed juices enhanced their phytochemical quality. The treatment supplemented with aloe vera gel gave the highest total content of phenolic and flavonoid substances, which were 310 mg of GAE/100 g and 175 mg of quercetin/100 g, respectively. Probiotic strains (Bifidobacterium animalis subsp lactis Bb12, Lactiplantibacillus plantarum 299V, and Lactobacillus acidophilus L10) exhibited good viable cell counts in orange and mixed orange and carrot probiotics juices with viable counts of 7.42-8.07 log CFU/mL. Regarding sensory attributes, the study found that increasing the ratio of orange juice improved the taste while increasing the ratio of carrot juice enhanced the color in juice mixtures. Incorporation of aloe vera into mixed natural juices also enhanced the reduction of blood glucose, triglyceride, cholesterol, LDL, creatinine, ALT, AST, and urea levels while increasing total protein and HDL levels in diabetic rats. Based on these findings, oranges, carrots, and aloe vera offer the potential to produce new, flavorful, nutritious, and appealing juices. Moreover, this study determined that a functional juice with favorable sensory properties can be created by blending 75% orange juice, 20% carrot juice, and 5% aloe vera gel. Additionally, aloe vera demonstrated greater efficacy as an antidiabetic agent in rats. Further research is suggested to explore the potential advantages of aloe vera gel and probiotic juices in mitigating diabetes and other metabolic syndromes.
Collapse
Affiliation(s)
- Sara Naiim Moselhy
- Food Science Department, Faculty of Agriculture, Zagazig University, Zagazig, Egypt
| | | | | | - Fouad Omar Abu Zaid
- Agri- Industrialization Unit, Plant Production Department, Desert Research Center, Cairo, Egypt
| | | | - Manal F. El-Khadragy
- Department of Biology, College of Science, Princess Nourah Bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Magdy Ramadan Shahein
- Department of Food Science and Technology, Faculty of Agriculture, Tanta University, Tanta, Egypt
| | - Amin A. Hafiz
- Department of Clinical Nutrition, Faculty of Applied Medical Sciences, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Abeer A. Aljehani
- Department of Food and Nutrition, Faculty of Human Sciences and Design, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Ahmad Agil
- Department of Pharmacology, Biohealth Institute Granada (IBs Granada) and Neuroscience Institute, School of Medicine, University of Granada, Granada, Spain
| | - Ehab Kotb Elmahallawy
- Departamento de Sanidad Animal, Grupo de Investigación en Sanidad Animal y Zoonosis, Facultad de Veterinaria, Universidad de Córdoba, Córdoba, Spain
- Department of Zoonoses, Faculty of Veterinary Medicine, Sohag University, Sohag, Egypt
| |
Collapse
|
15
|
Cao D, Zhang Z, Jiang X, Wu T, Xiang Y, Ji Z, Guo J, Zhang X, Xu K, Liu Z, Zhang Y. Psoralea corylifolia L. and its active component isobavachalcone demonstrate antibacterial activity against Mycobacterium abscessus. JOURNAL OF ETHNOPHARMACOLOGY 2024; 329:118142. [PMID: 38583730 DOI: 10.1016/j.jep.2024.118142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 03/19/2024] [Accepted: 03/31/2024] [Indexed: 04/09/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Psoralea corylifolia L. (Fabaceae) is a traditional medicinal herb used to treat various diseases, including kidney disease, asthma, psoriasis and vitiligo. AIM OF THE STUDY To explore the antibacterial activity of Psoralea corylifolia L. and its bioactive components against Mycobacterium abscessus (M. abscessus). MATERIALS AND METHODS Ultra high performance liquid chromatography was utilized to analyze the bioactive fractions and compounds present in 30%, 60%, and 90% ethanol extracts of Psoralea corylifolia L.. The antibacterial effects of Psoralea corylifolia L. and potential active ingredients were determined by minimum inhibitory concentration (MIC). The bactericidal activity of the active ingredient isobavachalcone was evaluated and then scanning electron microscopy was used to explore the bactericidal mechanism of isobavachalcone. RESULTS The 90% ethanol extracts of Psoralea corylifolia L. showed significant antibacterial activity against M. abscessus, with an MIC of 156 μg/mL. Isobavachalcone was identified as the bioactive ingredient, and testing of 118 clinical isolates of M. abscessus indicated their MICs ranged from 2 to 16 μg/mL, with an average MIC of 8 μg/mL. Furthermore, the minimum bactericidal concentration/MIC ratio and the time-kill test indicated rapid bactericidal activity of isobavachalcone against M. abscessus. Finally, we found that the bactericidal mechanism of isobavachalcone involved damage to the bacterial cell membrane, causing wrinkled and sunken cell surface and a noticeable reduction in bacterial length. CONCLUSION Psoralea corylifolia L. ethanol extracts as well as its active component isobavachalcone show promising antimicrobial activity against M. abscessus.
Collapse
Affiliation(s)
- Dan Cao
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Zunjing Zhang
- Lishui Traditional Chinese Medicine Hospital affiliated to the Zhejiang Chinese Medical University, Lishui, 323020, Zhejiang, China
| | - Xiuzhi Jiang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Tiantian Wu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yanghui Xiang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Zhongkang Ji
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jing Guo
- Lishui Traditional Chinese Medicine Hospital affiliated to the Zhejiang Chinese Medical University, Lishui, 323020, Zhejiang, China
| | - Xiaoqin Zhang
- Lishui Traditional Chinese Medicine Hospital affiliated to the Zhejiang Chinese Medical University, Lishui, 323020, Zhejiang, China
| | - Kaijin Xu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Zhongda Liu
- Lishui Traditional Chinese Medicine Hospital affiliated to the Zhejiang Chinese Medical University, Lishui, 323020, Zhejiang, China.
| | - Ying Zhang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China; Jinan Microecological Biomedicine Shandong Laboratory, Jinan, 250117, China.
| |
Collapse
|
16
|
Catalano A, Ceramella J, Iacopetta D, Marra M, Conforti F, Lupi FR, Gabriele D, Borges F, Sinicropi MS. Aloe vera-An Extensive Review Focused on Recent Studies. Foods 2024; 13:2155. [PMID: 38998660 PMCID: PMC11241682 DOI: 10.3390/foods13132155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 06/16/2024] [Accepted: 07/05/2024] [Indexed: 07/14/2024] Open
Abstract
Since ancient times, Aloe vera L. (AV) has attracted scientific interest because of its multiple cosmetic and medicinal properties, attributable to compounds present in leaves and other parts of the plant. The collected literature data show that AV and its products have a beneficial influence on human health, both by topical and oral use, as juice or an extract. Several scientific studies demonstrated the numerous biological activities of AV, including, for instance, antiviral, antimicrobial, antitumor, and antifungal. Moreover, its important antidepressant activity in relation to several diseases, including skin disorders (psoriasis, acne, and so on) and prediabetes, is a growing field of research. This comprehensive review intends to present the most significant and recent studies regarding the plethora of AV's biological activities and an in-depth analysis exploring the component/s responsible for them. Moreover, its morphology and chemical composition are described, along with some studies regarding the single components of AV available in commerce. Finally, valorization studies and a discussion about the metabolism and toxicological aspects of this "Wonder Plant" are reported.
Collapse
Affiliation(s)
- Alessia Catalano
- Department of Pharmacy-Drug Sciences, University of Bari "Aldo Moro", Via Orabona 4, 70126 Bari, Italy
| | - Jessica Ceramella
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, Italy
| | - Domenico Iacopetta
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, Italy
| | - Maria Marra
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, Italy
| | - Filomena Conforti
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, Italy
| | - Francesca R Lupi
- Department of Information, Modeling, Electronics and System Engineering, (D.I.M.E.S.), University of Calabria, Via P. Bucci, Cubo 39C, CS, 87036 Rende, Italy
| | - Domenico Gabriele
- Department of Information, Modeling, Electronics and System Engineering, (D.I.M.E.S.), University of Calabria, Via P. Bucci, Cubo 39C, CS, 87036 Rende, Italy
| | - Fernanda Borges
- CIQUP-IMS-Centro de Investigação em Química da Universidade do Porto, Institute of Molecular Sciences, Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, Rua do Campo Alegre s/n, 4169-007 Porto, Portugal
| | - Maria Stefania Sinicropi
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, Italy
| |
Collapse
|
17
|
Khajeeyan R, Salehi A, Movahhedi Dehnavi M, Hamidian M, Hazrati S. Evaluation of the benefits of plant growth-promoting rhizobacteria and mycorrhizal fungi on biochemical and morphophysiological traits of Aloe barbadensis Mill under water deficit stress. Sci Rep 2024; 14:14480. [PMID: 38914637 PMCID: PMC11196654 DOI: 10.1038/s41598-024-64878-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Accepted: 06/13/2024] [Indexed: 06/26/2024] Open
Abstract
Aloe barbadensis is a drought-tolerant perennial medicinal plant with both nutritional and cosmetic uses. Drought is one of the main abiotic stresses limiting plant growth and development. However, the use of drought-resistant plants combined with beneficial soil micro-organisms could improve the effectiveness of biological methods to mitigate drought damage. This research aims to evaluate the effects of Funneliformis mosseae (MF), plant growth-promoting rhizobacteria (PGPR) (including Pseudomonas putida and Pantoea agglomerans), and their co-inoculation on the macronutrient status, antioxidant enzyme activities, and other morphophysiological traits of A. barbadensis under four irrigation regimes [25%, 50%, 75% and 100% of water requirement (WR)]. Three harvests were conducted, revealing that inoculation enhanced the survival rate and shoot fresh weight (SFW) compared to the control plants. However, at 25% WR, the SFW was reduced by 43% more than the control. across all harvests, while the PGPR + MF treatment showed increases of more than 19%, 11%, and 17% compared to the control, MF, and PGPR treatments, respectively. The results also showed that A. barbadensis exhibited innate drought tolerance up to a 50% WR level by enhancing physiological defenses, such as antioxidant enzyme activity. Inoculation increased the macronutrient status of the plant at all levels of irrigation regimes especially under severe drought conditions. The highest levels of nitrogen (N) (16.24 mg g-1 DW) and phosphorus (P) (11.29 mg g-1 DW) were observed in the PGPR + MF treatment at 100% WR. The maximum relative water content under MF inoculation and 75% WR (98.24%) (98.24%) was reached. PGPR + MF treatment alleviated drought-induced osmotic stress, as indicated by reduced antioxidant enzyme activities and electrolyte leakage. However, P. putida and P. agglomerans strains alone or in combination with F. mosseae increased plant yield, macronutrient uptake and antioxidant enzyme activity. This study underscores the potential of these PGPR and MF strains as invaluable biological tools for the cultivation of A. barbadensis in regions with severe drought stress.
Collapse
Affiliation(s)
- Rahil Khajeeyan
- Department of Agronomy and Plant Breeding, Faculty of Agriculture, Yasouj University, Yasouj, Iran
| | - Amin Salehi
- Department of Agronomy and Plant Breeding, Faculty of Agriculture, Yasouj University, Yasouj, Iran.
| | - Mohsen Movahhedi Dehnavi
- Department of Agronomy and Plant Breeding, Faculty of Agriculture, Yasouj University, Yasouj, Iran
| | - Mohammad Hamidian
- Department of Agronomy and Plant Breeding, Faculty of Agriculture, Yasouj University, Yasouj, Iran
| | - Saeid Hazrati
- Department of Agronomy, Faculty of Agriculture, Azarbaijan Shahid Madani University, Tabriz, Iran
| |
Collapse
|
18
|
Ushasree MV, Jia Q, Do SG, Lee EY. New opportunities and perspectives on biosynthesis and bioactivities of secondary metabolites from Aloe vera. Biotechnol Adv 2024; 72:108325. [PMID: 38395206 DOI: 10.1016/j.biotechadv.2024.108325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 01/10/2024] [Accepted: 02/15/2024] [Indexed: 02/25/2024]
Abstract
Historically, the genus Aloe has been an indispensable part of both traditional and modern medicine. Decades of intensive research have unveiled the major bioactive secondary metabolites of this plant. Recent pandemic outbreaks have revitalized curiosity in aloe metabolites, as they have proven pharmacokinetic profiles and repurposable chemical space. However, the structural complexity of these metabolites has hindered scientific advances in the chemical synthesis of these compounds. Multi-omics research interventions have transformed aloe research by providing insights into the biosynthesis of many of these compounds, for example, aloesone, aloenin, noreugenin, aloin, saponins, and carotenoids. Here, we summarize the biological activities of major aloe secondary metabolites with a focus on their mechanism of action. We also highlight the recent advances in decoding the aloe metabolite biosynthetic pathways and enzymatic machinery linked with these pathways. Proof-of-concept studies on in vitro, whole-cell, and microbial synthesis of aloe compounds have also been briefed. Research initiatives on the structural modification of various aloe metabolites to expand their chemical space and activity are detailed. Further, the technological limitations, patent status, and prospects of aloe secondary metabolites in biomedicine have been discussed.
Collapse
Affiliation(s)
- Mrudulakumari Vasudevan Ushasree
- Department of Chemical Engineering (BK21 FOUR Integrated Engineering Program), Kyung Hee University, Yongin-si, Gyeonggi-do 17104, Republic of Korea
| | - Qi Jia
- Unigen, Inc., 2121 South street suite 400 Tacoma, Washington 98405, USA
| | - Seon Gil Do
- Naturetech, Inc., 29-8, Yongjeong-gil, Chopyeong-myeon, Jincheon-gun, Chungcheongbuk-do 27858, Republic of Korea
| | - Eun Yeol Lee
- Department of Chemical Engineering (BK21 FOUR Integrated Engineering Program), Kyung Hee University, Yongin-si, Gyeonggi-do 17104, Republic of Korea.
| |
Collapse
|
19
|
Ge W, Gao Y, He L, Jiang Z, Zeng Y, Yu Y, Xie X, Zhou F. Developing Chinese herbal-based functional biomaterials for tissue engineering. Heliyon 2024; 10:e27451. [PMID: 38496844 PMCID: PMC10944231 DOI: 10.1016/j.heliyon.2024.e27451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 01/10/2024] [Accepted: 02/28/2024] [Indexed: 03/19/2024] Open
Abstract
The role of traditional Chinese medicine (TCM) in treating diseases is receiving increasing attention. Chinese herbal medicine is an important part of TCM with various applications and the active ingredients extracted from Chinese herbal medicines have physiological and pathological effects. Tissue engineering combines cell biology and materials science to construct tissues or organs in vitro or in vivo. TCM has been proposed by the World Health Organization as an effective treatment modality. In recent years, the potential use of TCM in tissue engineering has been demonstrated. In this review, the classification and efficacy of TCM active ingredients and delivery systems are discussed based on the TCM theory. We also summarized the current application status and broad prospects of Chinese herbal active ingredients in different specialized biomaterials in the field of tissue engineering. This review provides novel insights into the integration of TCM and modern Western medicine through the application of Chinese medicine in tissue engineering and regenerative medicine.
Collapse
Affiliation(s)
- Wenhui Ge
- Department of Stomatology, The Second Xiangya Hospital, Central South University, Changsha, PR China
| | - Yijun Gao
- Department of Stomatology, The Second Xiangya Hospital, Central South University, Changsha, PR China
| | - Liming He
- Changsha Stomatological Hospital, Changsha, PR China
| | | | - Yiyu Zeng
- Department of Stomatology, The Second Xiangya Hospital, Central South University, Changsha, PR China
| | - Yi Yu
- Department of Stomatology, The Second Xiangya Hospital, Central South University, Changsha, PR China
| | - Xiaoyan Xie
- Department of Stomatology, The Second Xiangya Hospital, Central South University, Changsha, PR China
| | - Fang Zhou
- Xiangtan Maternal and Child Health Hospital, Xiangtan, PR China
| |
Collapse
|
20
|
Yimam M, Horm T, O'Neal A, Jiao P, Hong M, Jia Q. An Aloe-Based Composition Constituting Polysaccharides and Polyphenols Protected Mice against D-Galactose-Induced Immunosenescence. J Immunol Res 2024; 2024:9307906. [PMID: 38516617 PMCID: PMC10957255 DOI: 10.1155/2024/9307906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 06/09/2023] [Accepted: 03/04/2024] [Indexed: 03/23/2024] Open
Abstract
A decline in immune response, exhibited in the form of immunosenescence and inflammaging, is an age-associated disturbance of the immune system known to predispose the elderly to a greater susceptibility to infection and poor vaccine response. Polysaccharides and polyphenols from botanicals are known for their immune modulation effects. Here we evaluated a standardized mushroom-based composition, UP360, from Aloe barbadensis, Poria cocos, and Rosmarinus officinalis, as a natural nutritional supplement for a balanced immune response in an accelerated aging mouse model. Immunosenescence was induced by continual subcutaneous injection of D-galactose (D-gal) at a dose of 500 mg/kg/day to CD-1 mice. UP360 was administered at oral doses of 200 and 400 mg/kg to the mice starting on the 5th week of D-gal injection. The study lasted for a total of 9 weeks. All mice were given a quadrivalent influenza vaccine at 3 µg/animal via intramuscular injection 14 days before the end of the study. A group of D-gal-treated mice treated at 400 mg/kg/day UP360 was kept without vaccination. Whole blood, serum, spleen homogenate, and thymus tissues were used for analysis. UP360 was found to improve the immune response as evidenced by stimulation of innate and adaptive immune responses, increase antioxidant capacity as reflected by augmented SOD and Nrf2, and preserve vital immune organs, such as the thymus, from aging-associated damage. The findings depicted in this report show the effect of the composition in activating and maintaining homeostasis of the immune system both during active infections and as a preventive measure to help prime the immune system. These data warrant further clinical study to explore the potential application of the mushroom-based composition as an adjunct nutritional supplement for a balanced immune response.
Collapse
Affiliation(s)
- Mesfin Yimam
- Unigen Inc., 2121 South State Street, Suite #400, Tacoma, WA 98405, USA
| | - Teresa Horm
- Unigen Inc., 2121 South State Street, Suite #400, Tacoma, WA 98405, USA
| | - Alexandria O'Neal
- Unigen Inc., 2121 South State Street, Suite #400, Tacoma, WA 98405, USA
| | - Ping Jiao
- Unigen Inc., 2121 South State Street, Suite #400, Tacoma, WA 98405, USA
| | - Mei Hong
- Unigen Inc., 2121 South State Street, Suite #400, Tacoma, WA 98405, USA
| | - Qi Jia
- Unigen Inc., 2121 South State Street, Suite #400, Tacoma, WA 98405, USA
| |
Collapse
|
21
|
Chen C, Chen L, Mao C, Jin L, Wu S, Zheng Y, Cui Z, Li Z, Zhang Y, Zhu S, Jiang H, Liu X. Natural Extracts for Antibacterial Applications. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2306553. [PMID: 37847896 DOI: 10.1002/smll.202306553] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 09/23/2023] [Indexed: 10/19/2023]
Abstract
Bacteria-induced epidemics and infectious diseases are seriously threatening the health of people around the world. In addition, antibiotic therapy has been inducing increasingly more serious bacterial resistance, which makes it urgent to develop new treatment strategies to combat bacteria, including multidrug-resistant bacteria. Natural extracts displaying antibacterial activity and good biocompatibility have attracted much attention due to greater concerns about the safety of synthetic chemicals and emerging drug resistance. These antibacterial components can be isolated and utilized as antimicrobials, as well as transformed, combined, or wrapped with other substances by using modern assistive technologies to fight bacteria synergistically. This review summarizes recent advances in natural extracts from three kinds of sources-plants, animals, and microorganisms-for antibacterial applications. This work discusses the corresponding antibacterial mechanisms and the future development of natural extracts in antibacterial fields.
Collapse
Affiliation(s)
- Cuihong Chen
- Biomedical Materials Engineering Research Center, Hubei Key Laboratory of Polymer Materials, Ministry-of-Education Key Laboratory for the Green Preparation and Application of Functional Materials, School of Materials Science & Engineering, State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei University, Wuhan, 430062, China
- School of Health Science & Biomedical Engineering, Hebei University of Technology, Xiping Avenue 5340#, Tianjin, 300401, China
- School of Materials Science & Engineering, Peking University, Yiheyuan Road 5#, Beijing, 100871, China
| | - Lin Chen
- Biomedical Materials Engineering Research Center, Hubei Key Laboratory of Polymer Materials, Ministry-of-Education Key Laboratory for the Green Preparation and Application of Functional Materials, School of Materials Science & Engineering, State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei University, Wuhan, 430062, China
- School of Health Science & Biomedical Engineering, Hebei University of Technology, Xiping Avenue 5340#, Tianjin, 300401, China
- School of Materials Science & Engineering, Peking University, Yiheyuan Road 5#, Beijing, 100871, China
| | - Congyang Mao
- Biomedical Materials Engineering Research Center, Hubei Key Laboratory of Polymer Materials, Ministry-of-Education Key Laboratory for the Green Preparation and Application of Functional Materials, School of Materials Science & Engineering, State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei University, Wuhan, 430062, China
| | - Liguo Jin
- Biomedical Materials Engineering Research Center, Hubei Key Laboratory of Polymer Materials, Ministry-of-Education Key Laboratory for the Green Preparation and Application of Functional Materials, School of Materials Science & Engineering, State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei University, Wuhan, 430062, China
- School of Materials Science & Engineering, Peking University, Yiheyuan Road 5#, Beijing, 100871, China
- School of Materials Science & Engineering, the Key Laboratory of Advanced Ceramics and Machining Technology by the Ministry of Education of China, Tianjin University, Yaguan Road 135#, Tianjin, 300072, China
| | - Shuilin Wu
- Biomedical Materials Engineering Research Center, Hubei Key Laboratory of Polymer Materials, Ministry-of-Education Key Laboratory for the Green Preparation and Application of Functional Materials, School of Materials Science & Engineering, State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei University, Wuhan, 430062, China
- School of Materials Science & Engineering, Peking University, Yiheyuan Road 5#, Beijing, 100871, China
- School of Materials Science & Engineering, the Key Laboratory of Advanced Ceramics and Machining Technology by the Ministry of Education of China, Tianjin University, Yaguan Road 135#, Tianjin, 300072, China
| | - Yufeng Zheng
- School of Materials Science & Engineering, Peking University, Yiheyuan Road 5#, Beijing, 100871, China
| | - Zhenduo Cui
- School of Materials Science & Engineering, the Key Laboratory of Advanced Ceramics and Machining Technology by the Ministry of Education of China, Tianjin University, Yaguan Road 135#, Tianjin, 300072, China
| | - Zhaoyang Li
- School of Materials Science & Engineering, the Key Laboratory of Advanced Ceramics and Machining Technology by the Ministry of Education of China, Tianjin University, Yaguan Road 135#, Tianjin, 300072, China
| | - Yu Zhang
- Department of Orthopedics, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510080, China
| | - Shengli Zhu
- School of Materials Science & Engineering, the Key Laboratory of Advanced Ceramics and Machining Technology by the Ministry of Education of China, Tianjin University, Yaguan Road 135#, Tianjin, 300072, China
| | - Hui Jiang
- School of Materials Science & Engineering, the Key Laboratory of Advanced Ceramics and Machining Technology by the Ministry of Education of China, Tianjin University, Yaguan Road 135#, Tianjin, 300072, China
| | - Xiangmei Liu
- Biomedical Materials Engineering Research Center, Hubei Key Laboratory of Polymer Materials, Ministry-of-Education Key Laboratory for the Green Preparation and Application of Functional Materials, School of Materials Science & Engineering, State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei University, Wuhan, 430062, China
- School of Health Science & Biomedical Engineering, Hebei University of Technology, Xiping Avenue 5340#, Tianjin, 300401, China
| |
Collapse
|
22
|
Melenshia DS, Amirtham SM, Rebekah G, Vinod E, Kachroo U. Effect of reconstituted, lyophilized cold aqueous extract of Aloe vera on human whole blood clotting time - A pilot study. J Ayurveda Integr Med 2024; 15:100887. [PMID: 38479038 PMCID: PMC10950739 DOI: 10.1016/j.jaim.2024.100887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Revised: 01/01/2024] [Accepted: 01/05/2024] [Indexed: 03/24/2024] Open
Affiliation(s)
| | | | - Grace Rebekah
- Department of Biostatistics, Christian Medical College, Vellore, India
| | - Elizabeth Vinod
- Department of Physiology, Christian Medical College, Vellore, India; Centre for Stem Cell Research, Christian Medical College, Vellore, India
| | - Upasana Kachroo
- Department of Physiology, Christian Medical College, Vellore, India.
| |
Collapse
|
23
|
Liao Y, Zhang Z, Ouyang L, Mi B, Liu G. Engineered Extracellular Vesicles in Wound Healing: Design, Paradigms, and Clinical Application. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2307058. [PMID: 37806763 DOI: 10.1002/smll.202307058] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 09/20/2023] [Indexed: 10/10/2023]
Abstract
The severe quality of life and economic burden imposed by non-healing skin wounds, infection risks, and treatment costs are affecting millions of patients worldwide. To mitigate these challenges, scientists are relentlessly seeking effective treatment measures. In recent years, extracellular vesicles (EVs) have emerged as a promising cell-free therapy strategy, attracting extensive attention from researchers. EVs mediate intercellular communication, possessing excellent biocompatibility and stability. These features make EVs a potential tool for treating a plethora of diseases, including those related to wound repair. However, there is a growing focus on the engineering of EVs to overcome inherent limitations such as low production, relatively fixed content, and targeting capabilities of natural EVs. This engineering could improve both the effectiveness and specificity of EVs in wound repair treatments. In light of this, the present review will introduce the latest progress in the design methods and experimental paradigms of engineered EVs applied in wound repair. Furthermore, it will comprehensively analyze the current clinical research status and prospects of engineered EVs within this field.
Collapse
Affiliation(s)
- Yuheng Liao
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022, China
| | - Zhenhe Zhang
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022, China
| | - Lizhi Ouyang
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022, China
| | - Bobin Mi
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022, China
| | - Guohui Liu
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022, China
| |
Collapse
|
24
|
Yu M, Kong XY, Chen TT, Zou ZM. In vivo metabolism combined network pharmacology to identify anti-constipation constituents in Aloe barbadensis Mill. JOURNAL OF ETHNOPHARMACOLOGY 2024; 319:117200. [PMID: 37726070 DOI: 10.1016/j.jep.2023.117200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 09/03/2023] [Accepted: 09/16/2023] [Indexed: 09/21/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Aloe barbadensis Mill. (Aloe vera), is a homology of medicine and food plant, widely applied in functional food, cosmetics, and medicine. Aloe vera whole leaf extract, one of the most popular traditional Chinese medicines (TCMs), is mainly used in China to treat functional constipation. AIM OF THE STUDY To elucidate the active constituents of Aloe vera for treating functional constipation. MATERIALS AND METHODS Prototype constituents and metabolites in rat plasma and excreta after oral administration of Aloe vera whole leaf extract were identified by UPLC-Q-TOF/MS, and the pharmacokinetics (PK) properties of its key anti-constipation constituents speculated by network pharmacology were investigated via the established UFLC-MS/MS method. RESULTS A total of 13 prototype constituents and 56 metabolites were identified in rat plasma, urine, and feces after oral administration of Aloe vera. Among them, aloesin, aloenin, aloin B, aloin A, and aloe-emodin were intimately connected to the core targets of constipation in network pharmacology analysis, and recognized as major anti-constipation constituents in Aloe vera. The validated quantitative method of the six active constituents in rat plasma exhibited good linearity, and lower limits of quantification (0.64-1.95 ng/mL). Aloin A, aloin B, aloeresin D and aloe-emodin exhibited better absorption and slower elimination rate, whereas the others, including aloesin and aloenin showed fast absorption and elimination in rat plasma after oral administration of Aloe vera. Aloin A and its isomer aloin B present similar Tmax and t1/2 but different AUC and Cmax values, indicating different relative bioavailability. The results suggested that aloin A, aloin B and aloe-emodin may be key constituents of Aloe vera for the treatment of constipation, and the other constituents including aloeresin D also contribute to its anti-constipation. CONCLUSIONS This study will benefit understanding the contributions of those constituents for the anti-constipation effect of Aloe vera and also provide valuable information for its application in functional food development and clinics.
Collapse
Affiliation(s)
- Meng Yu
- The Institute of Medicinal Plant Development, State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100193, China.
| | - Xin-Yu Kong
- Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, China.
| | - Tong-Tong Chen
- Tianjin Institute for Drug Control, Tianjin, 300070, China.
| | - Zhong-Mei Zou
- The Institute of Medicinal Plant Development, State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100193, China.
| |
Collapse
|
25
|
Xiao S, Lao Y, Liu H, Li D, Wei Q, Li Z, Lu S. Highly stretchable anti-freeze hydrogel based on aloe polysaccharides with high ionic conductivity for multifunctional wearable sensors. Int J Biol Macromol 2024; 254:127931. [PMID: 37944728 DOI: 10.1016/j.ijbiomac.2023.127931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 11/01/2023] [Accepted: 11/05/2023] [Indexed: 11/12/2023]
Abstract
Conductive hydrogels have limitations such as non-degradability, loss of electrical conductivity at sub-zero temperatures, and single functionality, which limit their applicability as materials for wearable sensors. To overcome these limitations, this study proposes a bio-based hydrogel using aloe polysaccharides as the matrix and degradable polyvinyl alcohol as a reinforcing material. The hydrogel was crosslinked with borax in a glycerol-water binary solvent system, producing good toughness and compressive strength. Furthermore, the hydrogel was developed as a sensor that could detect both small and large deformations with a low detection limit of 1 % and high stretchability of up to 300 %. Moreover, the sensor exhibited excellent frost resistance at temperatures above -50 °C, and the gauge factor of the hydrogel was 2.86 at 20 °C and 2.12 at -20 °C. The Aloe-polysaccharide-based conductive hydrogels also functioned effectively as a wearable sensor; it detected a wide range of humidities (0-98 % relative humidity) and exhibited fast response and recovery times (1.1 and 0.9 s) while detecting normal human breathing. The polysaccharide hydrogel was also temperature sensitive (1.737 % °C-1) and allowed for information sensing during handwriting.
Collapse
Affiliation(s)
- Suijun Xiao
- Key Laboratory of New Processing Technology for Nonferrous Metal & Materials, Ministry of Education, Guangxi Key Laboratory of Optical and Electronic Materials and Devices, Guilin University of Technology, Guilin 541004, China
| | - Yufei Lao
- Key Laboratory of New Processing Technology for Nonferrous Metal & Materials, Ministry of Education, Guangxi Key Laboratory of Optical and Electronic Materials and Devices, Guilin University of Technology, Guilin 541004, China
| | - Hongbo Liu
- Key Laboratory of New Processing Technology for Nonferrous Metal & Materials, Ministry of Education, Guangxi Key Laboratory of Optical and Electronic Materials and Devices, Guilin University of Technology, Guilin 541004, China
| | - Dacheng Li
- Key Laboratory of New Processing Technology for Nonferrous Metal & Materials, Ministry of Education, Guangxi Key Laboratory of Optical and Electronic Materials and Devices, Guilin University of Technology, Guilin 541004, China
| | - Qiaoyan Wei
- Key Laboratory of New Processing Technology for Nonferrous Metal & Materials, Ministry of Education, Guangxi Key Laboratory of Optical and Electronic Materials and Devices, Guilin University of Technology, Guilin 541004, China
| | - Ziwei Li
- Key Laboratory of New Processing Technology for Nonferrous Metal & Materials, Ministry of Education, Guangxi Key Laboratory of Optical and Electronic Materials and Devices, Guilin University of Technology, Guilin 541004, China
| | - Shaorong Lu
- Key Laboratory of New Processing Technology for Nonferrous Metal & Materials, Ministry of Education, Guangxi Key Laboratory of Optical and Electronic Materials and Devices, Guilin University of Technology, Guilin 541004, China.
| |
Collapse
|
26
|
Shahrajabian MH, Sun W. The Power of the Underutilized and Neglected Medicinal Plants and Herbs of the Middle East. Rev Recent Clin Trials 2024; 19:159-175. [PMID: 38409705 DOI: 10.2174/0115748871276544240212105612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 01/19/2024] [Accepted: 01/29/2024] [Indexed: 02/28/2024]
Abstract
The Middle east and North Africa harbour many native species with pharmaceutical and nutraceutical potential. Since the beginning of history, food and herbal medicinal plants have been an essential part of human lives and the traditional Middle Eastern healthcare system. The notable medicinal plants that have been mentioned in the Bible, which are common in West Asia and some regions of North Africa, are Aloe vera, anise, balm, cassia, cinnamon, cumin, flax, and fig. Chemical components of Aloe vera are aloin, sinapinic acid, catechin, chromone, myricetin, quercitrin and syringic acid. Anethole, safrole, and estragole are the main chemical components of anise. The chemical components of cassia are coumarin, emodin, cinnamyl alcohol, and cinnamaldehyde. The major chemical ingredients of cumin are terpinene, cuminaldehyde, sabinene, thujene, and thymoquinone. The goal of this article is to review the considerable health benefits and pharmaceutical benefits of medicinal herbs and plants that have been neglected and underutilized in the Middle East and North Africa, as well as to promote their utilization. On the basis of the results, the experimented neglected medicinal plant can offer various advantages when used together with conventional medicinal treatments for various health conditions, such as palliative care in managing the side effects of conventional treatments, access to a wider range of treatments, increased patient satisfaction, and improved emotional and mental well-being. Moreover, consuming medicinal plants may help to manage and prevent diabetes, cancer, and heart disease with notable anti-tumor, and anti-inflammatory properties.
Collapse
Affiliation(s)
| | - Wenli Sun
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| |
Collapse
|
27
|
Pérez-Leal M, Lanciano F, Flacco N, Estornut C, Carceller MC. Antioxidant treatments in patients with oral submucous fibrosis: A systematic review. J Oral Pathol Med 2024; 53:31-41. [PMID: 38155549 DOI: 10.1111/jop.13503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 11/07/2023] [Accepted: 12/04/2023] [Indexed: 12/30/2023]
Abstract
INTRODUCTION Oral submucous fibrosis (OSMF) is a well-known precancerous oral lesion, characterized by scarring, tissue fibrosis, and premalignant lesions. The goal of clinical treatment is to reduce inflammation and improve patients' quality of life by enhancing mouth opening among others. Antioxidant treatment has shown promising results in inducing regression of lesions and preventing OSMF in high-risk individuals. This study investigates the effectiveness of various antioxidant agents against OSMF. MATERIALS AND METHODS The study followed PRISMA guidelines and searched three scientific databases: PubMed, Web of Science, and Scopus, using specific algorithms related to "antioxidant treatment," "burning sensation," and "mouth opening." The quality assessment of controlled clinical studies adhered to Cochrane guidelines. RESULTS The analysis included 19 clinical trials comparing different treatments, including various antioxidants. Aloe vera, curcumin, and lycopene, among others, showed positive outcomes in treating OSMF by improving burning sensation, mouth opening, tongue protrusion, and cheek flexibility. CONCLUSION Antioxidant therapies are found to be effective in treating OSMF, even when compared to conventional treatments such as corticosteroids. The study highlights the need for further research and standardization of clinical protocols.
Collapse
Affiliation(s)
- Martín Pérez-Leal
- Universidad Europea de Valencia, Faculty of Health Sciences, Department of Dentistry, Valencia, España, Spain
| | - Federico Lanciano
- Universidad Europea de Valencia, Faculty of Health Sciences, Department of Dentistry, Valencia, España, Spain
| | - Nicla Flacco
- Universidad Europea de Valencia, Faculty of Health Sciences, Department of Dentistry, Valencia, España, Spain
| | - Cristina Estornut
- Universidad Europea de Valencia, Faculty of Health Sciences, Department of Dentistry, Valencia, España, Spain
| | - María Carmen Carceller
- Universidad Europea de Valencia, Faculty of Health Sciences, Department of Dentistry, Valencia, España, Spain
- Department of Pharmacy, Pharmaceutical Technology and Parasitology, Faculty of Pharmacy and Food Sciences, University of Valencia, Av. Vicent Andrés Estellés s/n, Valencia, Spain
- Interuniversity Research Institute for Molecular Recognition and Technological Development (IDM), University of Valencia, Polytechnic University of Valencia, Av. Vicent A. Estellés s/n, Valencia, Spain
| |
Collapse
|
28
|
Zhao L, Zheng L. A Review on Bioactive Anthraquinone and Derivatives as the Regulators for ROS. Molecules 2023; 28:8139. [PMID: 38138627 PMCID: PMC10745977 DOI: 10.3390/molecules28248139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 12/09/2023] [Accepted: 12/11/2023] [Indexed: 12/24/2023] Open
Abstract
Anthraquinones are bioactive natural products, which are often found in medicinal herbs. These compounds exert antioxidant-related pharmacological actions including neuroprotective effects, anti-inflammation, anticancer, hepatoprotective effects and anti-aging, etc. Considering the benefits from their pharmacological use, recently, there was an upsurge in the development and utilization of anthraquinones as reactive oxygen species (ROS) regulators. In this review, a deep discussion was carried out on their antioxidant activities and the structure-activity relationships. The antioxidant mechanisms and the chemistry behind the antioxidant activities of both natural and synthesized compounds were furtherly explored and demonstrated. Due to the specific chemical activity of ROS, antioxidants are essential for human health. Therefore, the development of reagents that regulate the imbalance between ROS formation and elimination should be more extensive and rational, and the exploration of antioxidant mechanisms of anthraquinones may provide new therapeutic tools and ideas for various diseases mediated by ROS.
Collapse
Affiliation(s)
- Lihua Zhao
- Tianjin Renai College, Tianjin 301636, China;
| | - Lin Zheng
- College of Pharmaceutical Engineering of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| |
Collapse
|
29
|
Yang B, Yu N. Traditional Chinese medicine alleviating neuropathic pain targeting purinergic receptor P2 in purinergic signaling: A review. Brain Res Bull 2023; 204:110800. [PMID: 37913850 DOI: 10.1016/j.brainresbull.2023.110800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 10/25/2023] [Accepted: 10/27/2023] [Indexed: 11/03/2023]
Abstract
Past studies have suggested that Chinese herbal may alleviate neuropathic pain, and the mechanism might target the inhibition of purinergic receptor P2. This review discusses whether traditional Chinese medicine target P2 receptors in neuropathic pain and its mechanism in order to provide references for future clinical drug development. The related literatures were searched from Pubmed, Embase, Sinomed, and CNKI databases before June 2023. The search terms included"neuropathic pain", "purinergic receptor P2", "P2", "traditional Chinese medicine", "Chinese herbal medicine", and "herb". We described the traditional Chinese medicine alleviating neuropathic pain via purinergic receptor P2 signaling pathway including P2X2/3 R, P2X3R, P2X4R, P2X7R, P2Y1R. Inhibition of activating glial cells, changing synaptic transmission, increasing painful postsynaptic potential, and activating inflammatory signaling pathways maybe the mechanism. Purine receptor P2 can mediate the occurrence of neuropathic pain. And many of traditional Chinese medicines can target P2 receptors to relieve neuropathic pain, which provides reasonable evidences for the future development of drugs. Also, the safety and efficacy and mechanism need more in-depth experimental research.
Collapse
Affiliation(s)
- Bo Yang
- Department of Center for Psychosomatic Medicine,Sichuan Provincial Center for Mental Health,Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu 611135, China
| | - Nengwei Yu
- Department of Neurology, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu 610072, China.
| |
Collapse
|
30
|
Chelu M, Musuc AM, Popa M, Calderon Moreno J. Aloe vera-Based Hydrogels for Wound Healing: Properties and Therapeutic Effects. Gels 2023; 9:539. [PMID: 37504418 PMCID: PMC10379830 DOI: 10.3390/gels9070539] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 06/26/2023] [Accepted: 06/30/2023] [Indexed: 07/29/2023] Open
Abstract
Aloe vera-based hydrogels have emerged as promising platforms for the delivery of therapeutic agents in wound dressings due to their biocompatibility and unique wound-healing properties. The present study provides a comprehensive overview of recent advances in the application of Aloe vera-based hydrogels for wound healing. The synthesis methods, structural characteristics, and properties of Aloe vera-based hydrogels are discussed. Mechanisms of therapeutic agents released from Aloe vera-based hydrogels, including diffusion, swelling, and degradation, are also analyzed. In addition, the therapeutic effects of Aloe vera-based hydrogels on wound healing, as well as the reduction of inflammation, antimicrobial activity, and tissue regeneration, are highlighted. The incorporation of various therapeutic agents, such as antimicrobial and anti-inflammatory ones, into Aloe vera-based hydrogels is reviewed in detail. Furthermore, challenges and future prospects of Aloe vera-based hydrogels for wound dressing applications are considered. This review provides valuable information on the current status of Aloe vera-based hydrogels for the delivery of therapeutic agents in wound dressings and highlights their potential to improve wound healing outcomes.
Collapse
Affiliation(s)
| | - Adina Magdalena Musuc
- “Ilie Murgulescu” Institute of Physical Chemistry, 202 Splaiul Independentei, 060021 Bucharest, Romania; (M.C.); (M.P.)
| | | | - Jose Calderon Moreno
- “Ilie Murgulescu” Institute of Physical Chemistry, 202 Splaiul Independentei, 060021 Bucharest, Romania; (M.C.); (M.P.)
| |
Collapse
|
31
|
Namazi SS, Mahmoud AH, Dal-Fabbro R, Han Y, Xu J, Sasaki H, Fenno JC, Bottino MC. Multifunctional and biodegradable methacrylated gelatin/Aloe vera nanofibers for endodontic disinfection and immunomodulation. BIOMATERIALS ADVANCES 2023; 150:213427. [PMID: 37075551 PMCID: PMC11027083 DOI: 10.1016/j.bioadv.2023.213427] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 03/21/2023] [Accepted: 04/08/2023] [Indexed: 04/21/2023]
Abstract
Currently employed approaches and materials used for vital pulp therapies (VPTs) and regenerative endodontic procedures (REPs) lack the efficacy to predictably achieve successful outcomes due to their inability to achieve adequate disinfection and/or lack of desired immune modulatory effects. Natural polymers and medicinal herbs are biocompatible, biodegradable, and present several therapeutic benefits and immune-modulatory properties; thus, standing out as a clinically viable approach capable of establishing a conducive environment devoid of bacteria and inflammation to support continued root development, dentinal bridge formation, and dental pulp tissue regeneration. However, the low stability and poor mechanical properties of the natural compounds have limited their application as potential biomaterials for endodontic procedures. In this study, Aloe vera (AV), as a natural antimicrobial and anti-inflammatory agent, was incorporated into photocrosslinkable Gelatin methacrylate (GelMA) nanofibers with the purpose of developing a highly biocompatible biomaterial capable of eradicating endodontic infection and modulating inflammation. Stable GelMA/AV nanofibers with optimal properties were obtained at the ratio of (70:30) by electrospinning. In addition to the pronounced antibacterial effect against Enterococcus faecalis, the GelMA/AV (70:30) nanofibers also exhibited a sustained antibacterial activity over 14 days and significant biofilm reduction with minimal cytotoxicity, as well as anti-inflammatory properties and immunomodulatory effects favoring healing. Our results indicate that the novel GelMA/AV (70:30) nanofibers hold great potential as a biomaterial strategy for endodontic infection eradication and enhanced healing.
Collapse
Affiliation(s)
- Sharon S Namazi
- Department of Cariology, Restorative Sciences, and Endodontics, School of Dentistry, University of Michigan, Ann Arbor, MI, USA
| | - Abdel H Mahmoud
- Department of Cariology, Restorative Sciences, and Endodontics, School of Dentistry, University of Michigan, Ann Arbor, MI, USA
| | - Renan Dal-Fabbro
- Department of Cariology, Restorative Sciences, and Endodontics, School of Dentistry, University of Michigan, Ann Arbor, MI, USA
| | - Yuanyuan Han
- Department of Cariology, Restorative Sciences, and Endodontics, School of Dentistry, University of Michigan, Ann Arbor, MI, USA
| | - Jinping Xu
- Department of Cariology, Restorative Sciences, and Endodontics, School of Dentistry, University of Michigan, Ann Arbor, MI, USA
| | - Hajime Sasaki
- Department of Cariology, Restorative Sciences, and Endodontics, School of Dentistry, University of Michigan, Ann Arbor, MI, USA
| | - J Christopher Fenno
- Department of Biologic and Materials Sciences & Prosthodontics, University of Michigan School of Dentistry, Ann Arbor, MI, USA
| | - Marco C Bottino
- Department of Cariology, Restorative Sciences, and Endodontics, School of Dentistry, University of Michigan, Ann Arbor, MI, USA; Department of Biomedical Engineering, College of Engineering, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
32
|
Xuan X, Zhang J, Fan J, Zhang S. Research progress of Traditional Chinese Medicine (TCM) in targeting inflammation and lipid metabolism disorder for arteriosclerosis intervention: A review. Medicine (Baltimore) 2023; 102:e33748. [PMID: 37144986 PMCID: PMC10158879 DOI: 10.1097/md.0000000000033748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 04/21/2023] [Indexed: 05/06/2023] Open
Abstract
Atherosclerosis (AS) is a chronic disease caused by inflammation and lipid deposition. Immune cells are extensively activated in the lesions, producing excessive pro-inflammatory cytokines, which accompany the entire pathological process of AS. In addition, the accumulation of lipid-mediated lipoproteins under the arterial intima is a crucial event in the development of AS, leading to vascular inflammation. Improving lipid metabolism disorders and inhibiting inflammatory reactions are the primary treatment methods currently used in medical practice to delay AS progression. With the development of traditional Chinese medicine (TCM), more mechanisms of action of the monomer of TCM, Chinese patent medicine, and compound prescription have been studied and explored. Research has shown that some Chinese medicines can participate in treating AS by targeting and improving lipid metabolism disorders and inhibiting inflammatory reactions. This review explores the research on Chinese herbal monomers, compound Chinese medicines, and formulae that improve lipid metabolism disorders and inhibit inflammatory reactions to provide new supplements for treating AS.
Collapse
Affiliation(s)
- Xiaoyu Xuan
- First School of Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Jingyi Zhang
- First School of Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Jilin Fan
- First School of Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Shiliang Zhang
- Department of Cardiology, The Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| |
Collapse
|
33
|
Zhang R, Huang C, Wu F, Fang K, Jiang S, Zhao Y, Chen G, Dong R. Review on melanosis coli and anthraquinone-containing traditional Chinese herbs that cause melanosis coli. Front Pharmacol 2023; 14:1160480. [PMID: 37214441 PMCID: PMC10193150 DOI: 10.3389/fphar.2023.1160480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 04/18/2023] [Indexed: 05/24/2023] Open
Abstract
Backgrounds: The incidence of melanosis coli (MC) has gradually increased annually, attracting significant attention and efforts into this field. A potential risk for MC is the long-term use of anthraquinone laxatives in patients with constipation. Most traditional cathartic drugs are made from herbs containing anthraquinone compounds. This review aims to provide guidance for the application of traditional Chinese herbs containing anthraquinones for physicians and researchers. Materials and methods: We reviewed risk factors and pathogenesis of MC, and natural anthraquinones isolated from TCM herbs. We searched Pubmed and CNKI databases for literature related to MC with keywords such as"traditional Chinese medicine", "Chinese herbs", "anthraquinones", and "melanosis coli". The literature is current to January 2023 when the searches were last completed. After the literature retrieval, the TCM herbs containing anthraquinones (including component identification and anthraquinone content determination) applied in clinical were selected. According to the collected evidence, we provide a list of herbs containing anthraquinones that could cause MC. Results: We identified 20 herbs belonging to 7 families represented by Polygonaceae, Fabaceae, Rhamnaceae, and Rubiaceae, which may play a role in the pathogenesis of MC. Among these, the herbs most commonly used include Dahuang (Rhei Radix et Rhizome), Heshouwu (Radix Polygoni Multiflori), Huzhang (Rhizoma Polygoni Cuspidati), Juemingzi (Semen Cassiae), Luhui (Aloe) and Qiancao (Rubiae Radix et Rhizoma). Conclusion: Due to a lack of awareness of the chemical composition of TCM herbs, many patients with constipation and even some TCM physicians take cathartic herbal remedies containing abundant anthraquinones to relieve defecation disturbances, resulting in long-term dependence on these herbs, which is potentially associated with most cases of MC. When such treatments are prescribed, TCM physicians should avoid long-term use in large doses to reduce their harm on colonic health. Individuals who take healthcare products containing these herbs should also be under the supervision of a doctor.
Collapse
Affiliation(s)
- Ruiyuan Zhang
- Department of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Cai Huang
- Grade 2019 of Integrated Traditional Chinese and Western Clinical Medicine, Second Clinical School, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Fan Wu
- Department of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Ke Fang
- Department of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Shujun Jiang
- Department of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Yan Zhao
- Department of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Guang Chen
- Department of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Ruolan Dong
- Department of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| |
Collapse
|
34
|
Liu C, Wang Y, Wang P, Gong Y, Yi B, Ruan J, Wang X. In situ electrospun aloe-nanofiber membrane for chronic wound healing. SMART MATERIALS IN MEDICINE 2023; 4:514-521. [PMID: 37038409 PMCID: PMC10072951 DOI: 10.1016/j.smaim.2023.03.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 03/15/2023] [Accepted: 03/26/2023] [Indexed: 06/19/2023]
Abstract
Alleviating excessive inflammation while accelerating chronic wound healing to prevent wound infection has remained challenging, especially during the coronavirus disease 2019 (COVID-19) pandemic caused by SARS-CoV-2 when patients experienced difficulties with receive appropriate healthcare. We addressed this issue by developing handheld electrospun aloe-nanofiber membranes (ANFMs) with convenient, environmentally friendly properties and a therapeutic capacity for wound closure. Our results showed that ANFMs fabricated with high molecular weight polyvinyl alcohol (PVA) to form fibers during electrospinning had uniform fibrous architecture and a porous structure. Given the value of aloe gel in accelerating wound healing, liquid extracts from ANFMs significantly downregulated the expression of the pro-inflammatory genes, interleukin-6 (IL-6) and inducible nitric oxide synthase (iNOS), and markedly suppress the generation of reactive oxygen species (ROS) induced by lipopolysaccharide in RAW264.7 macrophages. These results indicated the excellent antioxidant and anti-inflammatory effects of ANFMs. After implantation into a mouse diabetic wound model for 12 days in situ, ANFMs notably expedited chronic wound healing via promoting angiogenesis and enhancing cell viability. Our ANFMs generated by handheld electrospinning in situ healed chronic wounds offer a convenient and promising alternative for patients to heal their own wounds under variable conditions.
Collapse
Affiliation(s)
- Chang Liu
- Department of Plastic and Reconstructive Surgery, Shanghai Key Laboratory of Tissue Engineering, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
- Department of Ophthalmology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
| | - Yun Wang
- Department of Plastic and Reconstructive Surgery, Shanghai Key Laboratory of Tissue Engineering, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
| | - Pei Wang
- Department of Plastic and Reconstructive Surgery, Shanghai Key Laboratory of Tissue Engineering, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
| | - Yan Gong
- Department of Plastic and Reconstructive Surgery, Shanghai Key Laboratory of Tissue Engineering, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
| | - Bingcheng Yi
- School of Rehabilitation Sciences and Engineering, University of Health and Rehabilitation Sciences, Qingdao, 266071, China
| | - Jing Ruan
- Department of Ophthalmology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
| | - Xiansong Wang
- Department of Plastic and Reconstructive Surgery, Shanghai Key Laboratory of Tissue Engineering, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
| |
Collapse
|
35
|
Altinkaynak C, Haciosmanoglu E, Ekremoglu M, Hacioglu M, Özdemir N. Anti-microbial, anti-oxidant and wound healing capabilities of Aloe vera-incorporated hybrid nanoflowers. J Biosci Bioeng 2023; 135:321-330. [PMID: 36806412 DOI: 10.1016/j.jbiosc.2023.01.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Revised: 01/10/2023] [Accepted: 01/11/2023] [Indexed: 02/20/2023]
Abstract
The active ingredients of Aloe vera have attracted attention for their potential use in nanotechnology-based medical applications and biomaterial production. It has many therapeutic applications in modern world. This study used Aloe vera extract in different concentrations to synthesize Aloe vera-incorporated hybrid nanoflowers (AV-Nfs). The most uniform morphology in the nanoflowers obtained was at a concentration of 2 mL. The AV-Nfs were well characterized by scanning electron microscopy, X-ray spectroscopy, Fourier transform infrared spectroscopy, and X-ray diffraction (XRD). The highest peroxidase-mimicking activity of the components was 1.488 EU/mg at 60°C and pH 6. The DPPH assay determined the antioxidant activity of the components and the MTT assay tested on CCD-1072Sk fibroblast cell line determined the effect of AV-Nfs on cell proliferation. Separate treatment of AV-Nfs with Cu3(PO4)2·3H2O significantly increased cell proliferation according to free Aloe vera and CuSO4. In vitro wound healing results showed that AV-Nfs could significantly close wounds compared to free Aloe vera. In this study, AV-Nfs showed antimicrobial activity against Staphylococcus epidermidis, Enterococcus faecalis, Escherichia coli and Klebsiella pneumoniae at minimum inhibitory concentration of 625 μg/mL, suggesting that AV-Nfs may be used in wound healing applications with enhanced biological properties. AV-Nfs showed no activity against the yeast Candida albicans.
Collapse
Affiliation(s)
- Cevahir Altinkaynak
- Department of Plant and Animal Production, Avanos Vocational School, Nevsehir Haci Bektas Veli University, 50500 Nevsehir, Turkey.
| | - Ebru Haciosmanoglu
- Department of Biophysics, Faculty of Medicine, Bezmialem Vakif University, 34093 Istanbul, Turkey
| | - Murat Ekremoglu
- Department of Medical Biochemistry, Faculty of Medicine, Istinye University, 34010 Istanbul, Turkey
| | - Mayram Hacioglu
- Department of Pharmaceutical Microbiology, Faculty of Pharmacy, Istanbul University, 34116 Istanbul, Turkey
| | - Nalan Özdemir
- Department of Chemistry, Faculty of Science, Erciyes University, 38039 Kayseri, Turkey
| |
Collapse
|
36
|
Skowrońska W, Bazylko A. The Potential of Medicinal Plants and Natural Products in the Treatment of Burns and Sunburn-A Review. Pharmaceutics 2023; 15:pharmaceutics15020633. [PMID: 36839954 PMCID: PMC9958865 DOI: 10.3390/pharmaceutics15020633] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 02/04/2023] [Accepted: 02/10/2023] [Indexed: 02/15/2023] Open
Abstract
Treating burns remains a challenge for modern medicine, especially in developing countries that cannot afford expensive, advanced therapies. This review article summarises clinical and animal model studies of botanical preparations and their mixtures in treating burn wounds and sunburn. Articles available in electronic databases such as PubMed, Scopus, Web of Science, Science Direct and Google Scholar, published in English in 2010-2022, were considered. In the described clinical trials, it was shown that some herbal preparations have better effectiveness in treating burn wounds, including shortening the healing time and reducing inflammation, than the conventional treatment used hitherto. These herbal preparations contained extracts from Albizia julibrissin, Alkanna tinctoria, Aloe vera, Arnebia euchroma, Betula pendula and Betula pubescens, Centella asiatica, Hippophaë rhamnoides, Juglans regia, Lawsonia inermis, and mixtures of Matricaria chamomilla and Rosa canina. Research on animal models shows that many extracts may potentially benefit the treatment of burn wounds and sunburn. Due to the diverse mechanism of action, antibacterial activity, the safety of use and cost-effectiveness, herbal preparations can compete with conventional treatment. The growing interest in alternative medicine and herbal medicine encourages further research. Not only single preparations but also their mixtures should be taken into account because the research conducted so far often suggests a synergistic effect of the ingredients.
Collapse
|
37
|
Khan A, Andleeb A, Azam M, Tehseen S, Mehmood A, Yar M. Aloe vera and ofloxacin incorporated chitosan hydrogels show antibacterial activity, stimulate angiogenesis and accelerate wound healing in full thickness rat model. J Biomed Mater Res B Appl Biomater 2023; 111:331-342. [PMID: 36053925 DOI: 10.1002/jbm.b.35153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Revised: 07/18/2022] [Accepted: 08/17/2022] [Indexed: 12/15/2022]
Abstract
Burns are potentially fatal and physically debilitating injuries, causing psychological and physical scars and result in chronic disabilities. A well vascularized wound bed is required to achieve complete and scar free wound closure. For many centuries, a variety of herbal plants have been used for wound healing, among these aloe vera (AV) has been found to be very effective in wound healing. Secondly, the main reason for delayed wound healing is bacterial infections. Ofloxacin (OX) has been reported as an active antibacterial drug for topical infections and it is effective against both positive and negative bacterial strains. In current research three different concentrations of OX (0.5, 2.5, and 5 mg) were loaded into chitosan (CS)/AV based hydrogels prepared by freeze gelation. The surface morphology of prepared CS/AV based OX loaded hydrogels were evaluated by scanning electron microscopy (SEM). In drug release analysis, 0.5 mg OX loaded hydrogel showed a sustained drug release behavior over 3 days period. An effective dose dependent antibacterial activity was exhibited by OX loaded hydrogels. Alamar Blue cells viability assay revealed that 0.5 mg OX hydrogel (CA 0.5 OX) showed comparatively better 3 T3 fibroblast cells proliferation as compared to CA 2.5 OX (2.5 mg OX) and CA 5 OX hydrogel (5 mg OX). Moreover, all OX loaded hydrogels showed good angiogenic activity in CAM bioassay while higher angiogenic potential was observed from CA 0.5 OX containing comparatively lower concentration of OX. These OX incorporated CS/AV based hydrogels are promising wound dressings for future clinical use.
Collapse
Affiliation(s)
- Ahmad Khan
- Interdisciplinary Research Center in Biomedical Materials, COMSATS University Islamabad, Lahore Campus, Lahore, Pakistan
| | - Anisa Andleeb
- Interdisciplinary Research Center in Biomedical Materials, COMSATS University Islamabad, Lahore Campus, Lahore, Pakistan
| | - Maryam Azam
- Interdisciplinary Research Center in Biomedical Materials, COMSATS University Islamabad, Lahore Campus, Lahore, Pakistan
| | - Saimoon Tehseen
- Interdisciplinary Research Center in Biomedical Materials, COMSATS University Islamabad, Lahore Campus, Lahore, Pakistan
| | - Azra Mehmood
- National Center of Excellence in Molecular Biology (CEMB), University of the Punjab, Lahore, Pakistan
| | - Muhammad Yar
- Interdisciplinary Research Center in Biomedical Materials, COMSATS University Islamabad, Lahore Campus, Lahore, Pakistan
| |
Collapse
|
38
|
Donate R, Monzón M, Alemán‐Domínguez ME, Rodríguez‐Esparragón F. Effects of ceramic additives and bioactive coatings on the degradation of polylactic acid-based bone scaffolds under hydrolytic conditions. J Biomed Mater Res B Appl Biomater 2023; 111:429-441. [PMID: 36069281 PMCID: PMC10086817 DOI: 10.1002/jbm.b.35162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 08/16/2022] [Accepted: 08/25/2022] [Indexed: 12/15/2022]
Abstract
Polylactic acid (PLA) has been extensively used for the manufacturing of scaffolds in bone tissue engineering applications. Due to the low hydrophilicity and the acidic degradation process of this biomaterial, different strategies have been proposed to increase the biofunctionality of the support structure. The use of ceramic particles is a generally preferred option to increase the osteoconductivity of the base material, while acting as buffers to maintain the pH level of the surroundings tissues. Surface modification is another approach to overcome the limitations of PLA for tissue engineering applications. In this work, the degradation profile of 3D-printed PLA scaffolds containing beta-tricalcium phosphate (β-TCP) and calcium carbonate (CaCO3 ) particles has been studied under hydrolytic conditions. Composite samples treated with plasma and coated with Aloe vera extracts were also studied to evaluate the effect of this surface modification method. The characterization of the 3D structures included its morphological, calorimetric and mechanical evaluation. According to the results obtained, the proposed composite scaffolds allowed an adequate maintenance of the pH level of the surrounding medium, with no effects observed on the morphology and mechanical properties of these structures. Hence, these samples showed potential to be further investigated as candidates for bone tissue regeneration.
Collapse
Affiliation(s)
- Ricardo Donate
- Departamento de Ingeniería Mecánica, Grupo de Investigación en Fabricación Integrada y AvanzadaUniversidad de Las Palmas de Gran CanariaLas PalmasSpain
| | - Mario Monzón
- Departamento de Ingeniería Mecánica, Grupo de Investigación en Fabricación Integrada y AvanzadaUniversidad de Las Palmas de Gran CanariaLas PalmasSpain
| | - María Elena Alemán‐Domínguez
- Departamento de Ingeniería Mecánica, Grupo de Investigación en Fabricación Integrada y AvanzadaUniversidad de Las Palmas de Gran CanariaLas PalmasSpain
| | | |
Collapse
|
39
|
Mitra SS, Ghorai M, Nandy S, Mukherjee N, Kumar M, Radha, Ghosh A, Jha NK, Proćków J, Dey A. Barbaloin: an amazing chemical from the 'wonder plant' with multidimensional pharmacological attributes. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2022; 395:1525-1536. [PMID: 36173445 PMCID: PMC9520999 DOI: 10.1007/s00210-022-02294-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Accepted: 09/09/2022] [Indexed: 11/26/2022]
Abstract
Aloe vera (L.) Burm.f. is nicknamed the 'Miracle plant' or sometimes as the 'Wonder plant'. It is a plant that has been used since ancient times for the innumerable health benefits associated with it. It is one of the important plants that has its use in conventional medicinal treatments. It is a perennial succulent, drought-tolerant member of the family Asphodelaceae. There are scores of properties associated with the plant that help in curing various forms of human ailments. Extracts and gels obtained from plants have been shown to be wonderful healers of different conditions, mainly various skin problems. Also, this plant is popular in the cosmetics industry. The underlying properties of the plant are now mainly associated with the natural phytochemicals present in the plant. Diverse groups of phytoingredients are found in the plant, including various phenolics, amino acids, sugars, vitamins, and different other organic compounds, too. One of the primary ingredients found in the plant is the aloin molecule. It is an anthraquinone derivative and exists as an isomer of Aloin A and Aloin B. Barbaloin belonging to the first group is a glucoside of the aloe-emodin anthrone molecule. Various types of pharmacological properties exhibited by the plant can be attributed to this chemical. Few significant ones are antioxidant, anti-inflammatory, anti-diabetic, anti-cancer, anti-microbial, and anti-viral, along with their different immunity-boosting actions. Recently, molecular coupling studies have also found the role of these molecules as a potential cure against the ongoing COVID-19 disease. This study comprehensively focuses on the numerous pharmacological actions of the primary compound barbaloin obtained from the Aloe vera plant along with the mechanism of action and the potent application of these natural molecules under various conditions.
Collapse
Affiliation(s)
- Shreya Sikdar Mitra
- Department of Life Sciences, Presidency University, 86/1 College Street, Kolkata, 700073, West Bengal, India
| | - Mimosa Ghorai
- Department of Life Sciences, Presidency University, 86/1 College Street, Kolkata, 700073, West Bengal, India
| | - Samapika Nandy
- Department of Life Sciences, Presidency University, 86/1 College Street, Kolkata, 700073, West Bengal, India
| | - Nobendu Mukherjee
- Department of Health Sciences, Novel Global Community Educational Foundation, Hebersham, Australia
| | - Manoj Kumar
- Chemical and Biochemical Processing Division, ICAR-Central Institute for Research On Cotton Technology, Mumbai, 400019, Maharashtra, India
| | - Radha
- School of Biological and Environmental Sciences, Shoolini University of Biotechnology and Management Sciences, Solan, 173229, Himachal Pradesh, India
| | - Arabinda Ghosh
- Department of Botany, Gauhati University, 781014, Guwahati, Assam, India
| | - Niraj Kumar Jha
- Department of Biotechnology, School of Engineering & Technology, Sharda University, Greater Noida, Uttar Pradesh, 201310, India
- Department of Biotechnology Engineering and Food Technology, Chandigarh University, Mohali, 140413, Punjab, India
- Department of Biotechnology, School of Applied & Life Sciences, Uttaranchal University, Dehradun, 248007, Uttarakhand, India
| | - Jarosław Proćków
- Department of Plant Biology, Institute of Environmental Biology, Wrocław University of Environmental and Life Sciences, Kożuchowska 5b, 51-631, Wrocław, Poland.
| | - Abhijit Dey
- Department of Life Sciences, Presidency University, 86/1 College Street, Kolkata, 700073, West Bengal, India.
| |
Collapse
|
40
|
Aloe Vera-Fermented Beverage Ameliorates Obesity and Gut Dysbiosis in High-Fat-Diet Mice. Foods 2022; 11:foods11223728. [PMID: 36429320 PMCID: PMC9689851 DOI: 10.3390/foods11223728] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 11/15/2022] [Accepted: 11/16/2022] [Indexed: 11/22/2022] Open
Abstract
Aloe vera has been proven to have various medicinal properties, including anti-inflammatory and anti-obesity functions. However, the effects of Aloe vera-fermented beverages (AFB) on obesity and its complications are still not clear. In this study, HepG2 cells in high-fat environment and high-fat diet (HFD) mice were used to investigate the potential obesity-preventing function of AFB. We found that AFB intervention decreased the amount of lipid droplets of HepG2 cells, suppressed the body weight gain and adipose accumulation, and reduced the serum contents of total cholesterol (TC), alanine aminotransferase (ALT), and interleukin 10 (IL-10) of HFD-mice. In addition, it also changed the composition of the gut microbiota. The ratio of Firmicutes/Bacteroidetes was decreased, while the relative abundance of Muribaculaceae, Alistipes and Rikenellaceae_RC9_gut_group was increased after the administration of AFB compared with HFD-mice. These results demonstrated that AFB can prevent diet-induced obesity (DIO) and provides a new option to modulate obesity-related gut dysbiosis.
Collapse
|
41
|
Sahoo A, Jena AK, Panda M. Experimental and clinical trial investigations of phyto-extracts, phyto-chemicals and phyto-formulations against oral lichen planus: A systematic review. JOURNAL OF ETHNOPHARMACOLOGY 2022; 298:115591. [PMID: 35963418 DOI: 10.1016/j.jep.2022.115591] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 07/25/2022] [Accepted: 07/28/2022] [Indexed: 06/15/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Bio-assay guided phytoextracts and derived phytoconstituents reported having multipotent biological activities and nearly 60-80% of the global population still using natural regimens as an alternative therapeutic source. This study focused on the ethnopharmacological and experimental evidence of natural remedies that are effective in treating oral lichen planus (OLP), a chronic T-cell mediated autoimmune disease that is associated with oral cancer transmission. AIM OF THE REVIEW A number of studies have shown that antioxidants and antiinflammatory phytoextracts and phyto-constituents are effective against OLP. In this systematic review, we summarize the details of experimentally assessed ancient Traditional Chinese Medicine (TCM), Indian Ayurveda or Ayurvedic Medicine, and Japanese Kampo Medicine (JKM) regimens (crude extracts, individual phytochemicals, and phyto-formulations) that reduce oral lesion, severity index and pain associated with OLP based on studies conducted in vivo, in vitro, and in randomized controlled trials (RCTs). MATERIALS AND METHODS Experimental, clinical and RCT investigation reports were gathered and presented according to PRISMA-2020 format. Briefly, the information was obtained from PubMed, ScienceDirect, Wiley journal library, Scopus, Google Scholar with ClinicalTrials.gov (a clinical trial registry database operated by the National Library of Medicine in the United States). Further, individual phytochemical structures were verified from PubChem and ChemSpider databases and visualized by ChemDraw 18.0 software. RESULTS We summarized 11 crude phytoextracts, 7 individual phytochemicals, 9 crude formulations, 8 specific TCM and JKM herbal cocktails, and 6 RCTs/patents corroborated by multiple in vitro, in vivo and enzyme assay methods. Briefly, plants and their family name, used plant parts, reported phytochemicals and their chemical structure, treatment doses, and duration of each experiment were presented more concisely and scientifically. CONCLUSION Documentation of evidence-based natural ethnomedicines or remedies could be useful for promoting them as potential, cost-effective and less toxic alternatives or as complementary to commonly prescribed steroids towards the control of OLP.
Collapse
Affiliation(s)
- Alaka Sahoo
- Department of Skin & VD, Institute of Medical Sciences and SUM Hospital, Siksha 'O' Anusandhan Deemed to be University, Bhubaneswar, 751003, Odisha, India.
| | - Ajaya K Jena
- Department of Skin & VD, Institute of Medical Sciences and SUM Hospital, Siksha 'O' Anusandhan Deemed to be University, Bhubaneswar, 751003, Odisha, India
| | - Maitreyee Panda
- Department of Skin & VD, Institute of Medical Sciences and SUM Hospital, Siksha 'O' Anusandhan Deemed to be University, Bhubaneswar, 751003, Odisha, India.
| |
Collapse
|
42
|
Guo S, Wang P, Song P, Li N. Electrospinning of botanicals for skin wound healing. Front Bioeng Biotechnol 2022; 10:1006129. [PMID: 36199360 PMCID: PMC9527302 DOI: 10.3389/fbioe.2022.1006129] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 08/22/2022] [Indexed: 11/13/2022] Open
Abstract
Being the first barrier between the human body and external environments, our skin is highly vulnerable to injuries. As one of the conventional therapies, botanicals prepared in different topical formulations have been applied as medical care for centuries. With the current increase of clinical requirements, applications of botanicals are heading towards nanotechnologies, typically fused with electrospinning that forms nanofibrous membranes suitable for skin wound healing. In this review, we first introduced the main process of wound healing, and then presented botanicals integrated into electrospun matrices as either loaded drugs, or carriers, or membrane coatings. In addition, by addressing functional features of individual botanicals in the healing of injured skin, we further discussed the bioactivity of botanical electrospun membranes in relevant to the medical issues solved in the process of wound healing. As achieved by pioneer studies, due to infrequent adverse effects and the diversity in resources of natural plants, the development of electrospun products based on botanicals is gaining greater attention. However, investigations in this field have mainly focused on different methodologies used in the preparation of nanofibrous membranes containing botanicals, their translation into clinical practices remains unaddressed. Accordingly, we propose that potential clinical applications of botanical electrospun membranes require not only the further expansion and understanding of botanicals, but also an establishment of standard criteria for the evaluation of wound healing and evolutions of technologies to support the large-scale manufacturing industry.
Collapse
Affiliation(s)
- Shijie Guo
- Department of Biomedical Engineering and Technology, Institute of Basic Theory for Chinese Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| | - Pengyu Wang
- Department of Dermatology, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Ping Song
- Department of Dermatology, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- *Correspondence: Ning Li, ; Ping Song,
| | - Ning Li
- Department of Biomedical Engineering and Technology, Institute of Basic Theory for Chinese Medicine, China Academy of Chinese Medical Sciences, Beijing, China
- *Correspondence: Ning Li, ; Ping Song,
| |
Collapse
|
43
|
Isolation of Aloe saponaria-Derived Extracellular Vesicles and Investigation of Their Potential for Chronic Wound Healing. Pharmaceutics 2022; 14:pharmaceutics14091905. [PMID: 36145653 PMCID: PMC9504946 DOI: 10.3390/pharmaceutics14091905] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 08/30/2022] [Accepted: 09/05/2022] [Indexed: 11/17/2022] Open
Abstract
A chronic wound is caused by a failure to progress through the normal phases of wound repair in an orderly and timely manner. To induce skin regeneration while inhibiting chronic inflammation, numerous natural products, and in particular, plant-derived biomaterials, have been developed. Aloe saponaria, is known to contain flavonoid and phenolic acid compounds with anti-oxidative and anti-inflammatory properties. Here, we isolated extracellular vesicles (EVs) from Aloe saponaria by polyethylene glycol (PEG)-based precipitation and investigated their potential as a therapeutic for chronic wound healing. The Aloe saponaria-derived EVs (AS-EVs) showed no significant cytotoxicity on several cell types, despite a high level of intracellular uptake. When lipopolysaccharide (LPS)-stimulated RAW264.7 macrophages were treated with AS-EVs, significant reductions in the expression of pro-inflammatory genes, such as interleukin-6 and interleukin-1β, were observed. Proliferation and migration of human dermal fibroblasts, as determined by the water-soluble tetrazolium salt-8 and transwell migration assay, respectively, were shown to be promoted by treatment with AS-EVs. It was also demonstrated that AS-EVs enhanced tube formation in human umbilical vein endothelial cells, indicating a stimulatory activity on angiogenesis; one of the crucial steps for effective wound healing. Collectively, our results suggest the potential of AS-EVs as a natural therapeutic for chronic wound healing.
Collapse
|
44
|
Yang Y, Wu JJ, Xia J, Wan Y, Xu JF, Zhang L, Liu D, Chen L, Tang F, Ao H, Peng C. Can aloin develop to medicines or healthcare products? Biomed Pharmacother 2022; 153:113421. [DOI: 10.1016/j.biopha.2022.113421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 07/13/2022] [Accepted: 07/13/2022] [Indexed: 11/02/2022] Open
|
45
|
Kong XY, Chen TT, Zhang HW, Jia HM, Yu M, Zou ZM. Characterization of the metabolism of aloin A/B and aloesin in rats by using ultra-high performance liquid chromatography coupled with quadrupole time-of-flight mass spectrometry. Biomed Chromatogr 2022; 36:e5483. [PMID: 35975594 DOI: 10.1002/bmc.5483] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 08/14/2022] [Accepted: 08/15/2022] [Indexed: 11/07/2022]
Abstract
Aloin A/B and aloesin are the major bioactive constituents in the Aloe vera, with diverse pharmacological activities, including anti-bacterial, anti-tumour, anti-inflammatory and intestinal regulation. However, the in vivo metabolism of aloin A/B and aloesin are still unclear. In this study, the metabolic processes of aloin A/B and aloesin in rats were investigated using the ultra-high performance liquid chromatography coupled with quadrupole time-of-flight mass spectrometry (UPLC-Q-TOF/MS) and MetaboLynxTM software with Mass defect filter (MDF) technique. Based on the proposed method, the prototype component of three compounds were all detected in the rat plasma, urine and feces. Meanwhile, 25 aloin A/B metabolites (6 phase I, 3 phase II, 16 phase I combined with phase II) and 3 aloesin metabolites (2 phase I and 1 phase II) were detected in rats after oral administration of aloin A, aloin B and aloesin, and the main biotransformation reactions were hydroxylation, oxidation, methylation, acetylation, and glucuronidation. In addition, Aloin A and aloin B can be transformed into each other in vivo and the metabolic profiles of aloin A and aloin B were identical. These results provide essential data for further pharmaceutical researches and clinical application of aloin A/B and aloesin.
Collapse
Affiliation(s)
- Xin-Yu Kong
- The Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
- Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | | | - Hong-Wu Zhang
- The Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Hong-Mei Jia
- The Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Meng Yu
- The Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Zhong-Mei Zou
- The Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| |
Collapse
|
46
|
Massoud D, Fouda MMA, Sarhan M, Salama SG, Khalifa HS. Topical application of Aloe gel and/or olive oil combination promotes the wound healing properties of streptozotocin-induced diabetic rats. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:59727-59735. [PMID: 35394628 DOI: 10.1007/s11356-022-20100-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 04/01/2022] [Indexed: 06/14/2023]
Abstract
Diabetic wounds are characterized by a delayed closure rate due to the excess inflammation and the inhibition of angiogenesis. Natural products derived from Aloe vera have shown great promise due to their healing magnificent properties. Olive oil is another natural product with anti-microbial and anti-inflammatory properties that may contribute to the healing process. In the present investigation, we tried to evaluate the efficacy of topical application of Aloe gel and/or olive oil in the enhancement of diabetic wounds using histological and immunohistochemical analysis. Excisional wounds were created on the back skin of streptozotocin-induced diabetic rats. Topical treatments of Aloe gel and/or olive oil were applied separately and in a combination (AVO) daily for experimental groups. Macroscopic and microscopic observations of the excision wounds were monitored at time intervals (3, 6, 9, 14 days) post-wounding. Macroscopic observations of the AVO group exhibited almost complete healing at day 14, while other groups were still in progress. Similarly, immunohistochemical analysis of the AVO group showed a mild expression pattern of NF-κB.. While, the cell proliferation (Ki-67), and angiogenesis (CD34) markers were upregulated. Conclusively, the obtained results showed that the AVO combination effectively improved the healing process in diabetic excisional wounds with significant differences in the healing kinetics compared to wounds that received Aloe gel or olive oil separately.
Collapse
Affiliation(s)
- Diaa Massoud
- Department of Biology, College of Science, Jouf University, P.O. Box 2014, Sakaka, Al-Jouf, Saudi Arabia.
- Department of Zoology, Faculty of Science, Fayoum University, Fayoum, Egypt.
| | - Maged M A Fouda
- Department of Biology, College of Science, Jouf University, P.O. Box 2014, Sakaka, Al-Jouf, Saudi Arabia
- Department of Zoology, Faculty of Science, Al-Azhar University, Assiut, Egypt
| | - Moustafa Sarhan
- Department of Zoology, Faculty of Science, Al-Azhar University, Assiut, Egypt
| | - Shaimaa Gamal Salama
- Department of Botany and Microbiology, Faculty of Science, Damanhour University, Damanhour, Egypt
| | - Heba Saied Khalifa
- Department of Zoology, Faculty of Science, Damanhour University, Damanhour, Egypt
| |
Collapse
|
47
|
Preclinical Studies to Evaluate the Gut Stimulatory Activity of Aloe Musabbar. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:4163008. [PMID: 35795288 PMCID: PMC9251092 DOI: 10.1155/2022/4163008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Accepted: 06/09/2022] [Indexed: 11/20/2022]
Abstract
Background Constipation is a common functional gastrointestinal disorder. Medicines derived from nature are routinely used to treat it. The present study evaluates the gut stimulatory activity of Aloe musabbar (processed powder of Aloe vera) using in vitro and in vivo models for gut stimulatory activity. Materials and Methods In vitro tests were conducted on isolated rat colon, guinea pig ileum, and rabbit jejunum, while in vivo study was performed using mice intestinal transit time. Aloe musabbar (A. musabbar) was tested at doses 0.2–200 mg/mL (in-vitro study) and 86.6 mg/kg (in vivo study). In vitro studies were done in the presence and absence of atropine sulphate (1 ng/ml). The results were statistically analyzed, and p < 0.05 was considered to indicate the significance. Results A. musabbar exhibited dose-dependent increase in the smooth muscle contraction of isolated gut tissues. Presence of atropine minimized the contractile responses and shifted the dose-response curves towards the right-hand side. The intestinal transit time in mice was observed to be increased significantly (p < 0.01) in A. musabbar-treated animals, when compared with normal animals. Conclusion A mild smooth muscle contraction induced by A. musabbar suggests that it can stimulate intestinal bowel movement without causing spasms. The diminished responses in the presence of atropine indicated that the gut stimulatory activity could be mediated partially through parasympathetic innervations. More studies are needed to determine the precise mechanism of action including the specific active ingredient responsible for the gut stimulatory activity.
Collapse
|
48
|
Atiba A, Abdo W, Ali EK, Abd-Elsalam M, Amer M, Abdel Monsef A, Taha R, Antar S, Mahmoud A. Topical and oral applications of Aloe vera improve healing of deep second-degree burns in rats via modulation of growth factors. Biomarkers 2022; 27:608-617. [PMID: 35734963 DOI: 10.1080/1354750x.2022.2085800] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Introduction: Burn injuries are underappreciated injuries that cause significant morbidity and mortality. Burn injuries, especially severe burns, trigger immunological and inflammatory responses, metabolic abnormalities, and distributive shock, all of which can be extended to multiple organ failures. Aloe vera (A. vera) has been exploited for its medicinal properties for centuries. The goal of the present study is to examine the therapeutic effect of topical and oral administration of A. vera against deep second-degree burn in rats. Materials and methods: skin burn was created on the back of rats, and wound healing was assessed within the three examined groups; control, topical A. vera and oral A. vera throughout 30 days. Wound tissues were examined histologically, immunohistochemically for the expression of transforming growth factor beta-1 (TGF-β1), peroxiredoxin (Prdx6), and mRNA abundance of vascular endothelial growth factor (VEGF) and basic fibroblast growth factor (bFGF) was assessed. Results: Our finding showed acceleration of wound contraction with both topical and oral A. vera administration. Maturation of granulation tissues was seen in both A. vera-supplemented groups. The topical application of A. vera revealed marked remodelling of the granulation tissues and higher expression levels of TGF-β1, VEGF, bFGF, and Prdx6 in comparison with control and oral A. vera groups (P < 0.001). Conclusion: Both oral and topical applications of A. vera have beneficial effects in deep second-degree burn wound healing by boosting the growth factors and antioxidant status of skin tissue. The topical treatment was more efficient in accelerating wound healing and hence could be used efficiently to treat second-degree burns.
Collapse
Affiliation(s)
- Ayman Atiba
- Department of Surgery, Anesthesiology and Radiology, Faculty of Veterinary Medicine, Kafrelsheikh University, Kafrelsheikh 33516, Egypt; (A.A.)
| | - Walied Abdo
- Department of Pathology, Faculty of Veterinary Medicine, Kafrelsheikh University, Kafrelsheikh 33516, Egypt; (W.A.)
| | - Ehab K Ali
- Departments of Anatomy and Embryology, Faculty of Medicine, Al-Azhar University, New Damietta, Egypt; (E.K.A.)
| | - Marwa Abd-Elsalam
- Department of Histology, Faculty of Medicine, Kafrelsheikh University, Kafr Elsheikh 33516, Egypt; (M.M.A.)
| | - Mohamed Amer
- Department of Histology, Faculty of Medicine, Al-Azhar University, New Damietta, Egypt; (M.E.A.)
| | - Ahmed Abdel Monsef
- Department of Physiology, Faculty of Medicine, Al-Azhar University, New Damietta, Egypt; (A.S.A.)
| | - Reda Taha
- Departments of Anatomy and Embryology, Faculty of Medicine, Al-Azhar, University, New Damietta, Egypt; (R.S.T.)
| | - Samar Antar
- Department of Pharmacology and Biochemistry, Faculty of Pharmacy, Horus University, New Damietta, 34518, Egypt; (S.A.A.)
| | - Ayman Mahmoud
- Physiology Division, Zoology Department, Faculty of Science, Beni-Suef University, Egypt; (A.M.M.).,Department of Life Sciences, Faculty of Science and Engineering, Manchester Metropolitan University, Manchester M1 5GD, UK; (A.M.M.)
| |
Collapse
|
49
|
Aloe vera-induced apoptotic cell death through ROS generation, cell cycle arrest, and DNA damage in human breast cancer cells. Biologia (Bratisl) 2022. [DOI: 10.1007/s11756-022-01124-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
50
|
Yao S, Luo Y, Wang Y. Engineered Microneedles Arrays for Wound Healing. ENGINEERED REGENERATION 2022. [DOI: 10.1016/j.engreg.2022.05.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
|