1
|
Chikuse E, Jacobs D, Banda A, Toman J, Vallario J, Curtis D, Porterfield JZ. Knowledge, Beliefs, and Treatment Practices for Otitis Media in Malawi: A Community-Based Assessment. Audiol Res 2025; 15:38. [PMID: 40277583 DOI: 10.3390/audiolres15020038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2025] [Revised: 03/31/2025] [Accepted: 04/01/2025] [Indexed: 04/26/2025] Open
Abstract
BACKGROUND Hearing-related disease is a significant cause of disability worldwide. In resource-limited settings, prevention and early detection are critical for preventing severe disease. Understanding what a population knows and believes with regards to hearing health can be critical in identifying knowledge gaps and developing targeted interventions. OBJECTIVE To assess community awareness of hearing health and otitis media (OM) treatment, both modern and traditional, to inform educational programs. METHODS A retrospective review of clinical records from 52 patients (aged 1-79 years) diagnosed with OM during a 3-day hearing health clinic in Kasungu district, Malawi was conducted. Patients diagnosed with OM during the clinic were invited to provide additional details about their hearing health. Surveys contained open-ended questions to assess knowledge and beliefs regarding the cause of their infection and therapies they had previously used for treatment, including home remedies and prescribed medications from allopathic providers or traditional healers. A WHO adapted survey on hearing knowledge was also administered. RESULTS Hearing loss was identified in 60% of participants. Otoscopy revealed either bilateral or unilateral drainage in 69% of participants and perforation in 73%. Confidence in understanding the causes and treatments of OM was voiced by 60% of participants and 54% had used home remedies as treatment. Of the 11 home remedies used, none aligned with modern medical practice, and only two were recommended by local herbalists. CONCLUSIONS Hearing-related disease contributes significantly to global disability, particularly in resource-limited settings. Educational campaigns to improve hearing health knowledge offer low-cost yet impactful solutions and implementation via partnerships with community leaders and traditional healers can be critical to addressing hearing health challenges. The use of nonantibiotic antimicrobials should be explored further, as these are low-cost and readily available. However, therapeutic alliance between patients and healthcare providers remains crucial.
Collapse
Affiliation(s)
- Enittah Chikuse
- ABC Hearing Clinic and Training Centre, African Bible College, Area 47, Lilongwe, Malawi
| | - Derek Jacobs
- Division of Infectious Disease & International Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL 33620, USA
| | - Angella Banda
- ABC Hearing Clinic and Training Centre, African Bible College, Area 47, Lilongwe, Malawi
| | - Julia Toman
- Department of Otolaryngology, Morsani College of Medicine, University of South Florida, Tampa, FL 33620, USA
| | - Jenna Vallario
- ABC Hearing Clinic and Training Centre, African Bible College, Area 47, Lilongwe, Malawi
| | - Danielle Curtis
- Division of Infectious Disease & International Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL 33620, USA
| | - J Zachary Porterfield
- Division of Infectious Disease & International Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL 33620, USA
| |
Collapse
|
2
|
Piragine E, Malanima MA, Ceccanti C, Guidi L, Martelli A, Lucenteforte E, Calderone V. Alliaceae versus Brassicaceae for Dyslipidemia: State of the Art and Future Perspectives. Systematic Review and Meta-Analysis of Clinical Studies. Phytother Res 2024; 38:5765-5781. [PMID: 39343737 PMCID: PMC11634823 DOI: 10.1002/ptr.8350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 08/02/2024] [Accepted: 09/11/2024] [Indexed: 10/01/2024]
Abstract
Dyslipidemia is a risk factor for cardiovascular diseases. Preclinical studies have shown that organosulfur compounds from the Alliaceae and Brassicaceae plants, such as garlic (Allium sativum L.) and broccoli (Brassica oleracea L.), have potential lipid-lowering effects. However, their clinical efficacy is controversial, especially in "drug-free" patients. The aim of this work was to summarize evidence on the lipid-lowering properties of extracts containing organosulfur compounds in patients with dyslipidemia. Studies were searched in four databases (Medline, Scopus, Embase, and CENTRAL), from inception to October 11, 2023.Controlled clinical studies on patients with dyslipidemia receiving Alliaceae or Brassicaceae were included. The outcome was the change in lipid parameters from baseline. Random-effect meta-analysis of the extracted data was performed using R software. The effect size was expressed as mean difference (MD) and 95% confidence interval (CI). The certainty of evidence was assessed with the GRADE approach. Out of 28 studies that were reviewed, 22 were included in the meta-analysis (publication period: 1981-2022). Results showed that Alliaceae extracts significantly reduce total cholesterol [MD: -15.2 mg/dL; 95% CI: -21.3; -9.1] and low-density lipoprotein cholesterol levels [MD: -12.0 mg/dL; 95% CI: -18.1; -5.7], although with low certainty of evidence. Conversely, the lipid-lowering properties of Brassicaceae extracts are still unexplored. Our results support the use of Alliaceae extracts in patients with hypercholesterolemia, but future high-quality studies are needed. Our work suggests further exploration of the efficacy of Brassicaceae extracts, which may have high nutraceutical/phytotherapeutic potential, opening new perspectives in the management of dyslipidemia.
Collapse
Affiliation(s)
- Eugenia Piragine
- Department of PharmacyUniversity of PisaPisaItaly
- Interdepartmental Research Center “Nutraceuticals and Food for Health (NUTRAFOOD)”University of PisaPisaItaly
| | | | - Costanza Ceccanti
- Interdepartmental Research Center “Nutraceuticals and Food for Health (NUTRAFOOD)”University of PisaPisaItaly
- Department of Agriculture, Food and EnvironmentUniversity of PisaPisaItaly
| | - Lucia Guidi
- Interdepartmental Research Center “Nutraceuticals and Food for Health (NUTRAFOOD)”University of PisaPisaItaly
- Department of Agriculture, Food and EnvironmentUniversity of PisaPisaItaly
| | - Alma Martelli
- Department of PharmacyUniversity of PisaPisaItaly
- Interdepartmental Research Center “Nutraceuticals and Food for Health (NUTRAFOOD)”University of PisaPisaItaly
| | - Ersilia Lucenteforte
- Department of Statistics, Computer Science, Applications “G. Parenti” (DiSIA)University of FlorenceFlorenceItaly
| | - Vincenzo Calderone
- Department of PharmacyUniversity of PisaPisaItaly
- Interdepartmental Research Center “Nutraceuticals and Food for Health (NUTRAFOOD)”University of PisaPisaItaly
| |
Collapse
|
3
|
Zhao L, Wang L, Wang N, Gao X, Zhang B, Zhao Y, Wang N. Cooking Alters the Metabolites of Onions and Their Ability to Protect Nerve Cells from Lead Damage. Foods 2024; 13:3707. [PMID: 39594122 PMCID: PMC11593875 DOI: 10.3390/foods13223707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Accepted: 11/18/2024] [Indexed: 11/28/2024] Open
Abstract
Onions (Allium cepa L.) are nutritious vegetables; however, variations in processing methods can influence their chemical composition and functional properties. Raw processing and cooking are the two main food-processing methods for onions, but it is not clear what kind of changes these two methods cause. In the present study, ultrahigh-resolution liquid chromatography-mass spectrometry (UHPLC-MS) was utilized to observe the changes in onion composition during cooking and to investigate the protective effects of raw and cooked onion extracts against lead damage in vitro and at the cellular level. Many compounds were identified, including amino acids, nucleosides, flavonoids, and organosulfur compounds. Cooking causes changes in the content of numerous amino acids (e.g., DL-glutamine) in onions and increases nucleoside content (e.g., 5'-S-methyl-5'-thioadenosine, adenine). Both raw and cooked onion extracts can reduce neuronal cell damage caused by lead exposure, but cooking increased the free radical scavenging (e.g., DPPH, ABTS, hydroxyl radicals) and chelating of lead ions (up to about 25%) of the onion extracts. In conclusion, cooking can cause changes in the chemical composition of onions and increase their antioxidant and lead chelating capacity.
Collapse
Affiliation(s)
- Li Zhao
- Institute of Drug Discovery Technology, Ningbo University, Ningbo 315211, China; (L.Z.); (L.W.); (X.G.)
| | - Liping Wang
- Institute of Drug Discovery Technology, Ningbo University, Ningbo 315211, China; (L.Z.); (L.W.); (X.G.)
| | - Nan Wang
- College of Food Sciences and Engineering, Ningbo University, Ningbo 315211, China;
| | - Xinchang Gao
- Institute of Drug Discovery Technology, Ningbo University, Ningbo 315211, China; (L.Z.); (L.W.); (X.G.)
| | - Bin Zhang
- Health Science Center, Ningbo University, Ningbo 315211, China;
| | - Yufen Zhao
- Institute of Drug Discovery Technology, Ningbo University, Ningbo 315211, China; (L.Z.); (L.W.); (X.G.)
- Qian Xuesen Collaborative Research Center of Astrochemistry and Space Life Sciences, Ningbo University, Ningbo 315211, China
- Key Lab of Bioorganic Phosphorus Chemistry & Chemical Biology, Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Ning Wang
- Institute of Drug Discovery Technology, Ningbo University, Ningbo 315211, China; (L.Z.); (L.W.); (X.G.)
- Qian Xuesen Collaborative Research Center of Astrochemistry and Space Life Sciences, Ningbo University, Ningbo 315211, China
| |
Collapse
|
4
|
Ansari P, Khan JT, Chowdhury S, Reberio AD, Kumar S, Seidel V, Abdel-Wahab YHA, Flatt PR. Plant-Based Diets and Phytochemicals in the Management of Diabetes Mellitus and Prevention of Its Complications: A Review. Nutrients 2024; 16:3709. [PMID: 39519546 PMCID: PMC11547802 DOI: 10.3390/nu16213709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 09/27/2024] [Accepted: 10/28/2024] [Indexed: 11/16/2024] Open
Abstract
Diabetes mellitus (DM) is currently regarded as a global public health crisis for which lifelong treatment with conventional drugs presents limitations in terms of side effects, accessibility, and cost. Type 2 diabetes (T2DM), usually associated with obesity, is characterized by elevated blood glucose levels, hyperlipidemia, chronic inflammation, impaired β-cell function, and insulin resistance. If left untreated or when poorly controlled, DM increases the risk of vascular complications such as hypertension, nephropathy, neuropathy, and retinopathy, which can be severely debilitating or life-threatening. Plant-based foods represent a promising natural approach for the management of T2DM due to the vast array of phytochemicals they contain. Numerous epidemiological studies have highlighted the importance of a diet rich in plant-based foods (vegetables, fruits, spices, and condiments) in the prevention and management of DM. Unlike conventional medications, such natural products are widely accessible, affordable, and generally free from adverse effects. Integrating plant-derived foods into the daily diet not only helps control the hyperglycemia observed in DM but also supports weight management in obese individuals and has broad health benefits. In this review, we provide an overview of the pathogenesis and current therapeutic management of DM, with a particular focus on the promising potential of plant-based foods.
Collapse
Affiliation(s)
- Prawej Ansari
- Comprehensive Diabetes Center, Heersink School of Medicine, University of Alabama, Birmingham (UAB), Birmingham, AL 35233, USA
- School of Pharmacy and Public Health, Department of Pharmacy, Independent University, Bangladesh (IUB), Dhaka 1229, Bangladesh
- Centre for Diabetes Research, School of Biomedical Sciences, Ulster University, Coleraine BT52 1SA, UK; (Y.H.A.A.-W.); (P.R.F.)
| | - Joyeeta T. Khan
- School of Pharmacy and Public Health, Department of Pharmacy, Independent University, Bangladesh (IUB), Dhaka 1229, Bangladesh
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Arkansas for Medical Sciences (UAMS), Little Rock, AR 72205, USA
| | - Suraiya Chowdhury
- School of Pharmacy and Public Health, Department of Pharmacy, Independent University, Bangladesh (IUB), Dhaka 1229, Bangladesh
| | - Alexa D. Reberio
- School of Pharmacy and Public Health, Department of Pharmacy, Independent University, Bangladesh (IUB), Dhaka 1229, Bangladesh
| | - Sandeep Kumar
- Comprehensive Diabetes Center, Heersink School of Medicine, University of Alabama, Birmingham (UAB), Birmingham, AL 35233, USA
| | - Veronique Seidel
- Natural Products Research Laboratory, Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow G4 0RE, UK;
| | - Yasser H. A. Abdel-Wahab
- Centre for Diabetes Research, School of Biomedical Sciences, Ulster University, Coleraine BT52 1SA, UK; (Y.H.A.A.-W.); (P.R.F.)
| | - Peter R. Flatt
- Centre for Diabetes Research, School of Biomedical Sciences, Ulster University, Coleraine BT52 1SA, UK; (Y.H.A.A.-W.); (P.R.F.)
| |
Collapse
|
5
|
Akhlada, Siddiqui N, Anurag, Saifi A, Kesharwani A, Parihar VK, Sharma A. Neuroprotective Action of Selected Natural Drugs Against Neurological Diseases and Mental Disorders: Potential Use Against Radiation Damage. Neurochem Res 2024; 49:2336-2351. [PMID: 38864943 DOI: 10.1007/s11064-024-04184-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 05/20/2024] [Accepted: 05/22/2024] [Indexed: 06/13/2024]
Abstract
Exposure to radiation, ionizing and non-ionizing radiation, is a significant concern in modern society. The brain is the organ that is most sensitive to radiation exposure. This review describes how exposure to radiation can affect neurotransmitters in different brain regions, affecting brain function. This review covers neurodegenerative diseases such as Alzheimer's, Parkinson's, and neuroinflammation due to changes in neurons in the central nervous system, and the effects thereon of medicinal plants such as Allium cepa, Allium sativum, Centella asiatica, Coriandrum sativum, and Crocus sativus plants, used for centuries in traditional medicine. These herbal medicines exert free radical scavenging, and antioxidant as well as anti-inflammatory properties which can be beneficial in managing neurological diseases. The present review compiles the neuroprotective effects of selected natural plants against neurological damage, as well as highlights the different mechanisms of action elicited to induce and produce beneficial effects. The current review describes recent studies on the pharmacological effects of neuroprotective herbs on various neurological and mental illnesses, and shows the way further studies can impact this field, including potential effects on radiation-induced damage.
Collapse
Affiliation(s)
- Akhlada
- Department of Pharmaceutical Technology, Meerut Institute of Engineering and Technology, Meerut, 250005, India
| | - Nazia Siddiqui
- Department of Pharmaceutical Technology, Meerut Institute of Engineering and Technology, Meerut, 250005, India
| | - Anurag
- Department of Pharmaceutical Technology, Meerut Institute of Engineering and Technology, Meerut, 250005, India
| | - Alimuddin Saifi
- Department of Pharmaceutical Technology, Meerut Institute of Engineering and Technology, Meerut, 250005, India
| | - Anuradha Kesharwani
- Department of Pharmacology & Toxicology, National Institute of Pharmaceutical Education and Research, Hajipur, 844102, India
| | - Vipan Kumar Parihar
- Department of Pharmacology & Toxicology, National Institute of Pharmaceutical Education and Research, Hajipur, 844102, India
| | - Alok Sharma
- Department of Pharmaceutical Technology, Meerut Institute of Engineering and Technology, Meerut, 250005, India.
| |
Collapse
|
6
|
Elattar MM, Hammoda HM, Ghareeb DA, Abdulmalek SA, Abdelrahim FA, Seif IAK, Dawood HM, Darwish RS. Insights into bioactive constituents of onion (Allium cepa L.) waste: a comparative metabolomics study enhanced by chemometric tools. BMC Complement Med Ther 2024; 24:271. [PMID: 39010091 PMCID: PMC11250982 DOI: 10.1186/s12906-024-04559-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Accepted: 06/20/2024] [Indexed: 07/17/2024] Open
Abstract
BACKGROUND Onion waste was reported to be a valuable source of bioactive constituents with potential health-promoting benefits. This sparked a surge of interest among scientists for its valorization. This study aims to investigate the chemical profiles of peel and root extracts of four onion cultivars (red, copper-yellow, golden yellow and white onions) and evaluate their erectogenic and anti-inflammatory potentials. METHODS UPLC-QqQ-MS/MS analysis and chemometric tools were utilized to determine the chemical profiles of onion peel and root extracts. The erectogenic potential of the extracts was evaluated using the PDE-5 inhibitory assay, while their anti-inflammatory activity was determined by identifying their downregulating effect on the gene expression of IL-6, IL-1β, IFN-γ, and TNF-α in LPS-stimulated WBCs. RESULTS A total of 103 metabolites of diverse chemical classes were identified, with the most abundant being flavonoids. The organ's influence on the chemical profiles of the samples outweighed the influence of the cultivar, as evidenced by the close clustering of samples from the same organ compared to the distinct separation of root and peel samples from the same cultivar. Furthermore, the tested extracts demonstrated promising PDE-5 and anti-inflammatory potentials and effectively suppressed the upregulation of pro-inflammatory markers in LPS-stimulated WBCs. The anti-inflammatory activities exerted by peel samples surpassed those of root samples, highlighting the importance of selecting the appropriate organ to maximize activity. The main metabolites correlated with PDE-5 inhibition were cyanidin 3-O-(malonyl-acetyl)-glucoside and quercetin dimer hexoside, while those correlated with IL-1β inhibition were γ-glutamyl-methionine sulfoxide, γ-glutamyl glutamine, sativanone, and stearic acid. Taxifolin, 3'-hydroxymelanettin, and oleic acid were highly correlated with IL-6 downregulation, while quercetin 4'-O-glucoside, isorhamnetin 4'-O-glucoside, and p-coumaroyl glycolic acid showed the highest correlation to IFN-γ and TNF-α inhibition. CONCLUSION This study provides a fresh perspective on onion waste as a valuable source of bioactive constituents that could serve as the cornerstone for developing new, effective anti-PDE-5 and anti-inflammatory drug candidates.
Collapse
Affiliation(s)
- Mariam M Elattar
- Department of Pharmacognosy, Faculty of Pharmacy, Alexandria University, Alexandria, 21521, Egypt
| | - Hala M Hammoda
- Department of Pharmacognosy, Faculty of Pharmacy, Alexandria University, Alexandria, 21521, Egypt
| | - Doaa A Ghareeb
- Bio-screening and Preclinical Trial Lab, Biochemistry Department, Faculty of Science, Alexandria University, Alexandria, Egypt
- Center of Excellence for Drug Preclinical Studies (CE-DPS), Pharmaceutical and Fermentation Industry Development Center, City of Scientific Research & Technological Applications (SRTA- city), New Borg El Arab, Alexandria, Egypt
- Research Projects Unit, Pharos University, Alexandria, Egypt
| | - Shaymaa A Abdulmalek
- Bio-screening and Preclinical Trial Lab, Biochemistry Department, Faculty of Science, Alexandria University, Alexandria, Egypt
| | - Fatma A Abdelrahim
- Bio-screening and Preclinical Trial Lab, Biochemistry Department, Faculty of Science, Alexandria University, Alexandria, Egypt
| | - Inas A K Seif
- Bio-screening and Preclinical Trial Lab, Biochemistry Department, Faculty of Science, Alexandria University, Alexandria, Egypt
| | - Hend M Dawood
- Department of Pharmacognosy, Faculty of Pharmacy, Alexandria University, Alexandria, 21521, Egypt
| | - Reham S Darwish
- Department of Pharmacognosy, Faculty of Pharmacy, Alexandria University, Alexandria, 21521, Egypt.
| |
Collapse
|
7
|
Annaz H, El Fakhouri K, Ben Bakrim W, Mahdi I, El Bouhssini M, Sobeh M. Bergamotenes: A comprehensive compile of their natural occurrence, biosynthesis, toxicity, therapeutic merits and agricultural applications. Crit Rev Food Sci Nutr 2024; 64:7343-7362. [PMID: 36876517 DOI: 10.1080/10408398.2023.2184766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/07/2023]
Abstract
Sesquiterpenoids constitute the largest subgroup of terpenoids that have numerous applications in pharmaceutical, flavor, and fragrance industries as well as biofuels. Bergamotenes, a type of bicyclic sesquiterpenes, are found in plants, insects, and fungi with α-trans-bergamotene as the most abundant compound. Bergamotenes and their related structures (Bergamotane sesquiterpenoids) have been shown to possess diverse biological activities such as antioxidant, anti-inflammatory, immunosuppressive, cytotoxic, antimicrobial, antidiabetic, and insecticidal effects. However, studies on their biotechnological potential are still limited. This review compiles the characteristics of bergamotenes and their related structures in terms of occurrence, biosynthesis pathways, and biological activities. It further discusses their functionalities and potential applications in pharmaceutical, nutraceuticals, cosmeceuticals, and pest management sectors. This review also opens novel perspectives in identifying and harnessing bergamotenes for pharmaceutical and agricultural purposes.
Collapse
Affiliation(s)
- Hassan Annaz
- AgroBioSciences Program, College for Sustainable Agriculture and Environmental Science, Mohammed VI Polytechnic University, Ben Guerir, Morocco
| | - Karim El Fakhouri
- AgroBioSciences Program, College for Sustainable Agriculture and Environmental Science, Mohammed VI Polytechnic University, Ben Guerir, Morocco
| | - Widad Ben Bakrim
- AgroBioSciences Program, College for Sustainable Agriculture and Environmental Science, Mohammed VI Polytechnic University, Ben Guerir, Morocco
- African Sustainable Agriculture Research Institute (ASARI), College for Sustainable Agriculture and Environmental Science, Mohammed VI Polytechnic University, Laayoune, Morocco
| | - Ismail Mahdi
- AgroBioSciences Program, College for Sustainable Agriculture and Environmental Science, Mohammed VI Polytechnic University, Ben Guerir, Morocco
| | - Mustapha El Bouhssini
- AgroBioSciences Program, College for Sustainable Agriculture and Environmental Science, Mohammed VI Polytechnic University, Ben Guerir, Morocco
| | - Mansour Sobeh
- AgroBioSciences Program, College for Sustainable Agriculture and Environmental Science, Mohammed VI Polytechnic University, Ben Guerir, Morocco
| |
Collapse
|
8
|
de Lima Silva JR, Dos Santos LB, Hassan W, Kamdem JP, Duarte AE, Soufan W, El Sabagh A, Ibrahim M. Exploring the therapeutic potential of the oxygenated monoterpene linalool in alleviating saline stress effects on Allium cepa L. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:47598-47610. [PMID: 38997599 DOI: 10.1007/s11356-024-34285-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Accepted: 07/02/2024] [Indexed: 07/14/2024]
Abstract
Sodium chloride (NaCl) can cause oxidative stress in plants, which represents a potential obstacle to the development of monocultures worldwide. Onion (Allium cepa L.) is a famous vegetable consumed and used in world cuisine. In the present study, we analyzed the influence of soil physicochemical profile and the remedial capacity of linalool on seed emergence, roots, and leaf growth in onions subjected to salt stress, as well as its in vivo and in vitro antioxidant potential, Fe2+chelating activity, and reducing power of Fe3+. The outcome of the soil analysis established the following order of abundance: sulfur (S) > calcium (Ca) > potassium (K) > magnesium (Mg) > sodium (Na). NaCl (150 mM) significantly reduced the emergence speed index (ESI), leaf and root length, while increasing the peroxidation content. The length of leaves and roots significantly increased after treatment with linalool (300 and 500 μg/mL). Our data showed negative correlations between seed emergence and K+ concentration, which was reversed after treatments. Linalool (500 μg/mL) significantly reduced oxidative stress, but increased Fe2+ concentration and did not show potential to reduce Fe3+. The in vivo antioxidant effect of linalool is thought to primarily result from an enzymatic activation process. This mechanism underscores its potential as a therapeutic agent for oxidative stress-related conditions. Further investigation into this process could unveil new avenues for antioxidant therapy.
Collapse
Affiliation(s)
| | - Larisse Bernardino Dos Santos
- Biology and Toxicology Laboratory, Regional University of Cariri (URCA), Crato, CE, Brazil
- Microscopy Laboratory, Regional University of Cariri (URCA), Crato, CE, Brazil
| | - Waseem Hassan
- Institute of Chemical Sciences, University of Peshawar, Peshawar, Khyber Pakhtunkhwa, 25120, Pakistan
| | - Jean Paul Kamdem
- Biology and Toxicology Laboratory, Regional University of Cariri (URCA), Crato, CE, Brazil
- Department of Biochemistry, Microbiology and Immunology (BMI), College of Medicine, University of Saskatchewan, 107 Wiggins Road, Saskatoon, SK, S7N 5E5, Canada
| | - Antonia Eliene Duarte
- Biology and Toxicology Laboratory, Regional University of Cariri (URCA), Crato, CE, Brazil
- Institute of Chemical Sciences, University of Peshawar, Peshawar, Khyber Pakhtunkhwa, 25120, Pakistan
| | - Walid Soufan
- Department of Plant Production, College of Food and Agriculture Sciences, King Saud University, P.O. Box 2460, Riyadh, 11451, Saudi Arabia
| | - Ayman El Sabagh
- Department of Field Crops, Faculty of Agriculture, Siirt University, Siirt, Turkey
- Department of Agronomy, Faculty of Agriculture, Kafrelsheikh University, Kafr El-Shaikh, 33516, Egypt
| | - Mohammad Ibrahim
- Department of Chemistry, Abdul Wali Khan University Mardan (AWKUM) KPK, Mardan, 23200, Pakistan.
| |
Collapse
|
9
|
Arena D, Ben Ammar H, Major N, Kovačević TK, Goreta Ban S, Al Achkar N, Rizzo GF, Branca F. Diversity of the Morphometric and Biochemical Traits of Allium cepa L. Varieties. PLANTS (BASEL, SWITZERLAND) 2024; 13:1727. [PMID: 38999567 PMCID: PMC11243381 DOI: 10.3390/plants13131727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 06/14/2024] [Accepted: 06/20/2024] [Indexed: 07/14/2024]
Abstract
Several Allium cepa L. varieties, representing a versatile set of vegetables widely utilized by consumers, are appreciated for their bioactive properties, including antimicrobial, anticarcinogenic, and antioxidant capacities. The aim of this study is to compare the morphometric characteristics and biochemical profiles of four cultivars of A. cepa, two of them represented by the perennial Sicilian landrace "Cipudda agghiarola" (Allium × proliferum (Moench) Schrader), widely known as the Egyptian walking onion (WO), and by the landrace "Cipudduzza" belonging to the variety known as aggregatum (ON), which were compared with two commercial cultivars of A. cepa var. cepa (onion), Stoccarda (OS) and Rossa Carmen (OR). The experimental trial was conducted in Catania (Sicily), following organic growing practices. The randomized complete block experimental design was adopted with one experimental factor, the genotype (GE) effect. The harvested plants were characterized for their main morphometric parameters, according to the International Plant Genetic Resources (IGPR) descriptors. The biochemical activity was assessed by analyzing the total phenolic content (TPC) and the total flavonoid content (TFC). The antioxidant capacity was determined by 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging, ferric reducing antioxidant power (FRAP), and oxygen radical absorbance capacity (ORAC). The sugar profile (total sugars, sucrose, glucose, fructose, and fructooligosaccharides-FOS) and the volatile compounds by headspace-gas chromatography/mass spectrometry (HS-GC/MS) were also determined. The OR bulb exhibited the highest TPC (16.3 mg GAE/g d.w., p < 0.01) and TFC (8.5 mg QE/g d.w., p < 0.01), with the highest antioxidant capacity measured by the FRAP (27.1 µmol TE/g d.w., p < 0.01) and DPPH assays (46.2 µmol TE/g d.w., p < 0.01). The ON bulb showed the highest ORAC value (209 µmol TE/g d.w., p < 0.01). Generally, the bulbs were richer in sugars (584 mg/g d.w., p < 0.01) than the leaf blade (239 mg/g d.w., p < 0.01), except for OR. Significant interaction between the genotype and plant organ was noted in the volatile compound profiles (p < 0.05) except for total ketones and carboxylic acids, where higher content was observed in the leaf blade compared to the bulb, regardless of the genotype. These findings highlight WO's potential for use in ready-to-eat products, enhancing its market value.
Collapse
Affiliation(s)
- Donata Arena
- Department of Agriculture, Food and Environment (Di3A), University of Catania, Via Valdisavoia 5, 95123 Catania, Italy; (D.A.); (H.B.A.); (N.A.A.); (G.F.R.); (F.B.)
| | - Hajer Ben Ammar
- Department of Agriculture, Food and Environment (Di3A), University of Catania, Via Valdisavoia 5, 95123 Catania, Italy; (D.A.); (H.B.A.); (N.A.A.); (G.F.R.); (F.B.)
| | - Nikola Major
- Institute of Agriculture and Tourism, 52440 Poreč, Croatia; (T.K.K.); (S.G.B.)
| | | | - Smiljana Goreta Ban
- Institute of Agriculture and Tourism, 52440 Poreč, Croatia; (T.K.K.); (S.G.B.)
| | - Nicolas Al Achkar
- Department of Agriculture, Food and Environment (Di3A), University of Catania, Via Valdisavoia 5, 95123 Catania, Italy; (D.A.); (H.B.A.); (N.A.A.); (G.F.R.); (F.B.)
| | - Giulio Flavio Rizzo
- Department of Agriculture, Food and Environment (Di3A), University of Catania, Via Valdisavoia 5, 95123 Catania, Italy; (D.A.); (H.B.A.); (N.A.A.); (G.F.R.); (F.B.)
| | - Ferdinando Branca
- Department of Agriculture, Food and Environment (Di3A), University of Catania, Via Valdisavoia 5, 95123 Catania, Italy; (D.A.); (H.B.A.); (N.A.A.); (G.F.R.); (F.B.)
| |
Collapse
|
10
|
Ahmad N, Lesa KN, Ujiantari NSO, Sudarmanto A, Fakhrudin N, Ikawati Z. Development of White Cabbage, Coffee, and Red Onion Extracts as Natural Phosphodiesterase-4B (PDE4B) Inhibitors for Cognitive Dysfunction: In Vitro and In Silico Studies. Adv Pharmacol Pharm Sci 2024; 2024:1230239. [PMID: 38808119 PMCID: PMC11132833 DOI: 10.1155/2024/1230239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 04/15/2024] [Accepted: 04/25/2024] [Indexed: 05/30/2024] Open
Abstract
Human cognition fundamentally depends on memory. Alzheimer's disease exhibits a strong correlation with a decline in this factor. Phosphodiesterase-4 B (PDE4B) plays a crucial role in neurodegenerative disorders, and its inhibition is one of the promising approaches for memory enhancement. This study aimed to identify secondary metabolites in white cabbage, coffee, and red onion extracts and identify their molecular interaction with PDE4B by in silico and in vitro experiments. Crushed white cabbage and red onion were macerated separately with ethanol to yield respective extracts, and ground coffee was boiled with water to produce aqueous extract. Thin layer chromatography (TLC)-densitometry was used to examine the phytochemicals present in white cabbage, coffee, and red onion extracts. Molecular docking studies were performed to know the interaction of test compounds with PDE4B. TLC-densitometry analysis showed that chlorogenic acid and quercetin were detected as major compounds in coffee and red onion extracts, respectively. In silico studies revealed that alpha-tocopherol (binding free energy (∆Gbind) = -38.00 kcal/mol) has the strongest interaction with PDE4B whereas chlorogenic acid (∆Gbind = -21.50 kcal/mol) and quercetin (∆Gbind = -17.25 kcal/mol) exhibited moderate interaction. In vitro assay showed that the combination extracts (cabbage, coffee, and red onion) had a stronger activity (half-maximal inhibitory concentration (IC50) = 0.12 ± 0.03 µM) than combination standards (sinigrin, chlorogenic acid, and quercetin) (IC50 = 0.17 ± 0.03 µM) and rolipram (IC50 = 0.15 ± 0.008 µM). Thus, the combination extracts are a promising cognitive enhancer by blocking PDE4B activity.
Collapse
Affiliation(s)
- Nazir Ahmad
- Department of Pharmacology and Clinical Pharmacy, Faculty of Pharmacy, Universitas Gadjah Mada, Sekip Utara, Yogyakarta 55281, Indonesia
| | - Kaisun Nesa Lesa
- Department of Food and Nutritional Science, Khulna City Corporation Women's College, Affiliated to Khulna University, Khulna, Bangladesh
- Department of Food and Agricultural Product Technology, Faculty of Agricultural Technology, Universitas Gadjah Mada, Yogyakarta 55281, Indonesia
- Department of Pediatrics, Nihon University Hospital, Tokyo, Japan
- Department of Nutrition and Food Technology, Jessore University of Science and Technology, Jessore, Bangladesh
| | - Navista Sri Octa Ujiantari
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Universitas Gadjah Mada, Sekip Utara, Yogyakarta 55281, Indonesia
| | - Ari Sudarmanto
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Universitas Gadjah Mada, Sekip Utara, Yogyakarta 55281, Indonesia
| | - Nanang Fakhrudin
- Department of Pharmaceutical Biology, Faculty of Pharmacy, Universitas Gadjah Mada, Sekip Utara, Yogyakarta 55281, Indonesia
- Medicinal Plants and Natural Products Research Center, Faculty of Pharmacy, Universitas Gadjah Mada, Sekip Utara, Sleman 55281, Yogyakarta, Indonesia
| | - Zullies Ikawati
- Department of Pharmacology and Clinical Pharmacy, Faculty of Pharmacy, Universitas Gadjah Mada, Sekip Utara, Yogyakarta 55281, Indonesia
| |
Collapse
|
11
|
Vetrova S, Alyokhina K, Engalycheva I, Kozar E, Mukhina K, Sletova M, Krivenkov L, Tikhonova T, Kameneva A, Frolova S, Chizhik V, Martynov V. Identification and Pathogenicity of Fusarium Species Associated with Onion Basal Rot in the Moscow Region of Russian Federation. J Fungi (Basel) 2024; 10:331. [PMID: 38786686 PMCID: PMC11121879 DOI: 10.3390/jof10050331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 04/28/2024] [Accepted: 05/02/2024] [Indexed: 05/25/2024] Open
Abstract
Fusarium basal rot of onions causes large losses during storage of commercial production of onion bulbs, which in turn adversely affects the food market situation in the off-season period. There are no data on the composition of Fusarium spp., which causes onion basal rot in the Russian Federation. Therefore, our research was aimed at Fusarium spp. causing onion basal rot in the Moscow Region of the Russian Federation and studying the pathogenicity of these species for the host plant. We studied 20 isolates of Fusarium spp. collected from affected mature bulbs and seed bulbs. Species identification of the isolates was carried out using analysis of the nucleotide sequences of the three genetic loci ITS, tef1 and rpb2, as well as was based on the macro- and micromorphological characteristics of these isolates. As a result, the species F. annulatum (F. fujikuroi species complex), F. oxysporum (F. oxysporum species complex), F. acuminatum (F. tricinctum species complex) and F. solani (F. solani species complex) were identified to involve in the pathogenesis of Fusarium basal rot. We have shown for the first time that the species F. annulatum and F. acuminatum are highly aggressive and capable of causing onion basal rot. The predominant species were F. annulatum and F. oxysporum. The proportion of these species in the total number of analyzed isolates was 60% and 25%, respectively. The largest proportion (33%) of highly aggressive on mature bulbs isolates was found in the species F. annulatum. The data obtained provide practical insights for developing strategies to manage Fusarium fungi responsible for onion basal rot Moscow Region of the Russian Federation. In addition, data about species composition and aggressive isolates may be used in onion breeding for resistance to Fusarium basal rot.
Collapse
Affiliation(s)
- Svetlana Vetrova
- Federal State Budgetary Scientific Institution Federal Scientific Vegetable Center, 143072 Moscow, Russia; (K.A.); (I.E.); (E.K.); (K.M.); (M.S.); (L.K.); (T.T.); (A.K.); (S.F.); (V.C.)
| | - Ksenia Alyokhina
- Federal State Budgetary Scientific Institution Federal Scientific Vegetable Center, 143072 Moscow, Russia; (K.A.); (I.E.); (E.K.); (K.M.); (M.S.); (L.K.); (T.T.); (A.K.); (S.F.); (V.C.)
| | - Irina Engalycheva
- Federal State Budgetary Scientific Institution Federal Scientific Vegetable Center, 143072 Moscow, Russia; (K.A.); (I.E.); (E.K.); (K.M.); (M.S.); (L.K.); (T.T.); (A.K.); (S.F.); (V.C.)
| | - Elena Kozar
- Federal State Budgetary Scientific Institution Federal Scientific Vegetable Center, 143072 Moscow, Russia; (K.A.); (I.E.); (E.K.); (K.M.); (M.S.); (L.K.); (T.T.); (A.K.); (S.F.); (V.C.)
| | - Kseniya Mukhina
- Federal State Budgetary Scientific Institution Federal Scientific Vegetable Center, 143072 Moscow, Russia; (K.A.); (I.E.); (E.K.); (K.M.); (M.S.); (L.K.); (T.T.); (A.K.); (S.F.); (V.C.)
| | - Maria Sletova
- Federal State Budgetary Scientific Institution Federal Scientific Vegetable Center, 143072 Moscow, Russia; (K.A.); (I.E.); (E.K.); (K.M.); (M.S.); (L.K.); (T.T.); (A.K.); (S.F.); (V.C.)
| | - Leonid Krivenkov
- Federal State Budgetary Scientific Institution Federal Scientific Vegetable Center, 143072 Moscow, Russia; (K.A.); (I.E.); (E.K.); (K.M.); (M.S.); (L.K.); (T.T.); (A.K.); (S.F.); (V.C.)
| | - Tatyana Tikhonova
- Federal State Budgetary Scientific Institution Federal Scientific Vegetable Center, 143072 Moscow, Russia; (K.A.); (I.E.); (E.K.); (K.M.); (M.S.); (L.K.); (T.T.); (A.K.); (S.F.); (V.C.)
| | - Alina Kameneva
- Federal State Budgetary Scientific Institution Federal Scientific Vegetable Center, 143072 Moscow, Russia; (K.A.); (I.E.); (E.K.); (K.M.); (M.S.); (L.K.); (T.T.); (A.K.); (S.F.); (V.C.)
| | - Svetlana Frolova
- Federal State Budgetary Scientific Institution Federal Scientific Vegetable Center, 143072 Moscow, Russia; (K.A.); (I.E.); (E.K.); (K.M.); (M.S.); (L.K.); (T.T.); (A.K.); (S.F.); (V.C.)
| | - Vera Chizhik
- Federal State Budgetary Scientific Institution Federal Scientific Vegetable Center, 143072 Moscow, Russia; (K.A.); (I.E.); (E.K.); (K.M.); (M.S.); (L.K.); (T.T.); (A.K.); (S.F.); (V.C.)
- Federal State Budgetary Scientific Institution All-Russian Research Institute of Agricultural Biotechnology, 127550 Moscow, Russia;
| | - Viktor Martynov
- Federal State Budgetary Scientific Institution All-Russian Research Institute of Agricultural Biotechnology, 127550 Moscow, Russia;
| |
Collapse
|
12
|
Elattar MM, Darwish RS, Hammoda HM, Dawood HM. An ethnopharmacological, phytochemical, and pharmacological overview of onion (Allium cepa L.). JOURNAL OF ETHNOPHARMACOLOGY 2024; 324:117779. [PMID: 38262524 DOI: 10.1016/j.jep.2024.117779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 12/16/2023] [Accepted: 01/15/2024] [Indexed: 01/25/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Onion (Allium cepa L.) is one of the most widely distributed species within the Allium genus of family Amaryllidaceae. Onion has been esteemed for its medicinal properties since antiquity. It has been consumed for centuries in various indigenous cultures for the management of several ailments including microbial infections, respiratory, gastrointestinal, skin and cardio-vascular disorders, diabetes, renal colic, rheumatism, sexual impotence, menstrual pain, and headache. However, so far, there is a scarcity of recent data that compiles the plant chemistry, traditional practices, biological features, and toxicity. AIM OF THE WORK The aim of this review is to provide a comprehensive and analytical overview of ethnopharmacological uses, phytochemistry, pharmacology, industrial applications, quality control, and toxicology of onion, to offer new perspectives and broad scopes for future studies. MATERIALS AND METHODS The information gathered in this review was obtained from various sources including books, scientific databases such as Science Direct, Wiley, PubMed, Google Scholar, and other domestic and foreign literature. RESULTS Onion has a long history of use as a traditional medicine for management of various conditions including infectious, inflammatory, respiratory, cardiovascular diseases, diabetes, and erectile dysfunction. More than 400 compounds have been identified in onion including flavonoids, phenolic acids, amino acids, peptides, saponins and fatty acids. The plant extracts and compounds showed various pharmacological activities such as antimicrobial, antidiabetic, anti-inflammatory, anti-hyperlipidemic, anticancer, aphrodisiac, cardioprotective, and neuroprotective activities. In addition to its predominant medicinal uses, onion has found various applications in the functional food industry. CONCLUSION Extensive literature analysis reveals that onion extracts and bioactive constituents possess diverse pharmacological activities that can be beneficial for treating various diseases. However, the current research primarily revolves around the documentation of ethnic pharmacology and predominantly consists of in vitro studies, with relatively limited in vivo and clinical studies. Consequently, it is imperative for future investigations to prioritize and expand the scope of in vivo and clinical research. Additionally, it is strongly recommended to direct further research efforts towards toxicity studies and quality control of the plant. These studies will help bridge the current knowledge gaps and establish a solid basis for exploring the plant's potential uses in a clinical setting.
Collapse
Affiliation(s)
- Mariam M Elattar
- Department of Pharmacognosy, Faculty of Pharmacy, Alexandria University, Egypt.
| | - Reham S Darwish
- Department of Pharmacognosy, Faculty of Pharmacy, Alexandria University, Egypt
| | - Hala M Hammoda
- Department of Pharmacognosy, Faculty of Pharmacy, Alexandria University, Egypt
| | - Hend M Dawood
- Department of Pharmacognosy, Faculty of Pharmacy, Alexandria University, Egypt
| |
Collapse
|
13
|
Mallamaci R, Conforti F, Statti G, Avato P, Barbarossa A, Meleleo D. Phenolic Compounds from Tropea Red Onion as Dietary Agents for Protection against Heavy Metals Toxicity. Life (Basel) 2024; 14:495. [PMID: 38672765 PMCID: PMC11051521 DOI: 10.3390/life14040495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 04/06/2024] [Accepted: 04/10/2024] [Indexed: 04/28/2024] Open
Abstract
The present study aims to highlight the cell protective effect of Tropea red onion (TRO) hydroalcoholic extract and some of its components against "non-essential" heavy metals. For this purpose, the cytoprotective roles of cyanidin, cyanidin-3-O-glucoside and quercetin against Cd, Hg and Pb and of TRO extract against Hg and Pb have been investigated, and data are reported here. To the best of our knowledge, this is the first detailed evaluation of the protective effect against cell damage induced by "non-essential" heavy metals through the simultaneous administration of cyanidin, cyanidin-3-O-glucoside and quercetin with CdCl2, HgCl2 or PbCl2 and the TRO extract against HgCl2 and PbCl2. Present data are also compared with our previous results from the TRO extract against Cd. The antioxidant capacity of the extract was also determined by the ferric reducing antioxidant power (FRAP) and the bovine brain peroxidation assay. Both of the assays indicated a good antioxidant capacity of the extract. Cell viability and the impact on necrotic cell death were examined by the MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) test and lactate dehydrogenase (LDH) release assay. After 24 h of exposure, Caco-2 cell viability decreased by approximately 50% at 0.25 μM for Cd, Hg and Pb and, after 72 h, the ranking order of "non-essential" heavy metal toxicity on cell viability was PbCl2 > CdCl2 > HgCl2. Cell viability was assessed by treating the cells with the biomolecules at doses of 25, 50 and 100 µg/mL for 24 and 72 h. The same analysis was carried out on Caco-2 cells treated with combinations of TRO extract, cyanidin, cyanidin-3-O-glucoside, or quercetin and "non-essential" heavy metals. Treatments with the bioactive metabolites did not significantly improve cell viability. The identical treatment of Caco-2 cells produced instead LDH release, suggesting a decrease in cell viability. Consistently with the finding that TRO extract showed a good antioxidant activity, we suggest that its higher cytotoxicity, compared to that of the individual assayed phytochemicals, may be derived by the combined antioxidant and chelating properties of all the molecules present in the extract. Therefore, from all the acquired experimental evidence, it appears that the TRO extract may be a better promising protective agent against the toxic effect of Cd, Hg and Pb compared to its bioactive metabolites.
Collapse
Affiliation(s)
- Rosanna Mallamaci
- Department of Biosciences, Biotechnologies and Environment, University of Bari “Aldo Moro”, 70125 Bari, Italy
| | - Filomena Conforti
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria-DFSSN, 87036 Rende, Italy;
| | - Giancarlo Statti
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria-DFSSN, 87036 Rende, Italy;
| | - Pinarosa Avato
- Department of Pharmacy-Drug Sciences, University of Bari “Aldo Moro”, 70125 Bari, Italy; (P.A.); (A.B.)
| | - Alexia Barbarossa
- Department of Pharmacy-Drug Sciences, University of Bari “Aldo Moro”, 70125 Bari, Italy; (P.A.); (A.B.)
| | - Daniela Meleleo
- Department of Science of Agriculture, Food, Natural Resources and Engineering, University of Foggia, 71122 Foggia, Italy;
| |
Collapse
|
14
|
Omoboyede V, Onile OS, Oyeyemi BF, Aruleba RT, Fadahunsi AI, Oke GA, Onile TA, Ibrahim O, Adekiya TA. Unravelling the anti-inflammatory mechanism of Allium cepa: an integration of network pharmacology and molecular docking approaches. Mol Divers 2024; 28:727-747. [PMID: 36867320 DOI: 10.1007/s11030-023-10614-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 01/25/2023] [Indexed: 03/04/2023]
Abstract
Allium cepa, commonly known as onion, is a widely consumed spice that possesses numerous pharmacological properties. A. cepa bioactive components are often explored in the treatment of inflammation-related complications. However, the molecular mechanism via which they exert their anti-inflammatory effects remains unknown. Therefore, this study aimed to elucidate the anti-inflammatory mechanism of A. cepa bioactive components. Consequently, the bioactive compounds of A. cepa were obtained from a database, while the potential targets of the sixty-nine compounds with desirable pharmacokinetic properties were predicted. Subsequently, the targets of inflammation were acquired from the GeneCards database. The protein-protein interaction (PPI) between the sixty-six shared targets of the bioactive compounds and inflammation was retrieved from the String database and visualized using Cytoscape v3.9.1 software. Gene Ontology (GO) analysis of the ten core targets from the PPI network revealed that A. cepa bioactive compounds could be involved in regulating biological processes such as response to oxygen-containing compounds and response to inflammation while Kyoto Encyclopaedia of Genes and Genomes (KEGG) analysis revealed that A. cepa compounds might modulate pathways including AGE-RAGE signaling pathway, interleukin (IL)-17 signalling pathway, and tumor necrosis factor signaling pathway. Molecular docking analysis showed that 1-O-(4-Coumaroyl)-beta-D-glucose, stigmasterol, campesterol, and diosgenin have high binding affinities for core targets including EGFR, ALB, MMP9, CASP3, and CCL5. This study successfully elucidated the potential anti-inflammatory mechanism of A. cepa bioactive compounds, hence, providing new insights into the development of alternative anti-inflammatory drugs.
Collapse
Affiliation(s)
- Victor Omoboyede
- Department of Biochemistry, School of Life Sciences (SLS), Federal University of Technology Akure, P.M.B 704, Akure, Nigeria.
- Computer-Aided Therapeutics Laboratory (CATL), Federal University of Technology Akure, P.M.B 704, Akure, Nigeria.
| | - Olugbenga Samson Onile
- Biotechnology Programme, Department of Biological Sciences, Elizade University, P.M.B, 002 Ilara-Mokin, Ilara-Mokin, 340271, Nigeria.
| | - Bolaji Fatai Oyeyemi
- Molecular Biology Group, Department of Science Laboratory Technology, The Federal Polytechnic, Ado-Ekiti, Ekiti, Nigeria
| | - Raphael Taiwo Aruleba
- Department of Molecular and Cell Biology, Faculty of Science, University of Cape Town, Cape Town, 7701, South Africa
| | - Adeyinka Ignatius Fadahunsi
- Biotechnology Programme, Department of Biological Sciences, Elizade University, P.M.B, 002 Ilara-Mokin, Ilara-Mokin, 340271, Nigeria
| | - Grace Ayomide Oke
- Department of Food Science and Technology, Federal University of Technology Akure, P.M.B 704, Akure, Nigeria
| | - Tolulope Adelonpe Onile
- Microbiology Programme, Department of Biological Sciences, Elizade University, Ilara Mokin, P.M.B, 002, Ilara-Mokin, 340271, Nigeria
| | - Ochapa Ibrahim
- Faculty of Pharmaceutical Sciences, Ahmadu Bello University, Zaria, Kaduna, Nigeria
| | - Tayo Alex Adekiya
- Department of Pharmaceutical Sciences, Howard University, Washington, DC, 20059, USA
| |
Collapse
|
15
|
Sanyal S, Vemula PK, Law S. Investigating the therapeutic potential of Allium cepa extract in combating pesticide exposure induced ocular damage. Exp Eye Res 2024; 240:109816. [PMID: 38309514 DOI: 10.1016/j.exer.2024.109816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 01/14/2024] [Accepted: 01/29/2024] [Indexed: 02/05/2024]
Abstract
The ocular surface is subject to a range of potentially hazardous environmental factors and substances, owing to its anatomical location, sensitivity, and physiological makeup. Xenobiotic stress exerted by chronic pesticide exposure on the cornea is primarily responsible for ocular irritation, excessive tear production (hyper-lacrimation), corneal abrasions and decreased visual acuity. Traditional medicine hails the humble onion (Allium cepa) for its multi-faceted properties including but not limited to anti-microbial, antioxidant, anti-inflammatory and wound healing. However, there is a lacuna regarding its impact on the ocular surface. Thereby, the current study investigated whether topical application of crude extract of Allium cepa aided in mitigating pesticide-induced damage to the ocular surface. The deleterious effects of pesticide exposure and their mitigation through the topical application of herbal extract of Allium cepa were analysed initially through in vitro evaluation on cell lines and then on the ocular surface via various in-vivo and ex-vivo techniques. Pathophysiological alterations to the ocular surface that impacted vision were explored through detailed neurophysiological screening with special emphasis on visual acuity wherein it was observed that the murine group treated with topical application of Allium cepa extract had comparable visual capacity to the non-pesticide exposed group. Additionally, SOD2 was utilized as an oxidative stress marker along with the expression of cellular apoptotic markers such as Bcl-xL to analyse the impact of pesticide exposure and subsequent herbal intervention on oxidative stress-induced corneal damage. The impact on the corneal epithelial progenitor cell population (ABCG2 and TERT positive cells) was also flowcytometrically analysed. Therefore, from our observations, it can be postulated that the topical application of Allium cepa extract might serve as an effective strategy to alleviate pesticide exposure related ocular damage.
Collapse
Affiliation(s)
- Shalini Sanyal
- Calcutta School of Tropical Medicine, Kolkata, India; Institute for Stem Cell Science and Regenerative Medicine (DBT-inStem), Bengaluru, India
| | - Praveen K Vemula
- Institute for Stem Cell Science and Regenerative Medicine (DBT-inStem), Bengaluru, India
| | - Sujata Law
- Calcutta School of Tropical Medicine, Kolkata, India; Brainware University, Kolkata, India.
| |
Collapse
|
16
|
Sansan OC, Ezin V, Ayenan MAT, Chabi IB, Adoukonou-Sagbadja H, Saïdou A, Ahanchede A. Onion ( Allium cepa L.) and Drought: Current Situation and Perspectives. SCIENTIFICA 2024; 2024:6853932. [PMID: 38455126 PMCID: PMC10919983 DOI: 10.1155/2024/6853932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Figures] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 02/13/2024] [Accepted: 02/22/2024] [Indexed: 03/09/2024]
Abstract
Onions (Allium cepa L.) are the second most commonly produced and consumed vegetable worldwide due to their economic, nutritional, and medicinal benefits. However, drought hinders vegetative growth, lowers yields and bulb quality, reduces photosynthetic activity, and alters the onion plant's metabolism. This review provides a summary of global research on the impact of drought on onions. It specifically seeks to shed light on aspects that remain unclear and generate research avenues. Relevant scientific articles were sourced from the AGORA database, Web of Science (WoS), and search engines such as Google Scholar, Scopus, MEDLINE/PubMed, and SCImago to achieve this objective. A total of 117 scientific articles and documents related to onion and drought were critically examined. The review revealed agromorphological, physiological, biochemical, and genomic studies depicting factors that contribute to drought tolerance in onion genotypes. However, there was little research on the physiological, biochemical, and genetic characteristics of drought tolerance in onions, which need to be deepened to establish its adaptation mechanisms. Understanding the mechanisms of onion response to water stress will contribute to fast-tracking the development of drought-tolerant genotypes and optimize onion production. Future research should be more focused on investigating onion drought tolerance mechanisms and structural and functional genomics and identifying genes responsible for onion drought tolerance.
Collapse
Affiliation(s)
- Oladé Charles Sansan
- Department of Crop Production, Faculty of Agricultural Sciences, University of Abomey-Calavi, Cotonou 01 BP 526, Benin
| | - Vincent Ezin
- Department of Crop Production, Faculty of Agricultural Sciences, University of Abomey-Calavi, Cotonou 01 BP 526, Benin
| | - Mathieu Anatole Tele Ayenan
- World Vegetable Center, West and Central Africa Coastal and Humid Regions, IITA-Benin Campus, 08 BP 0932 Tri Postal, Cotonou, Benin
| | - Ifagbémi Bienvenue Chabi
- Laboratory of Human Nutrition and Valorization of Food Bio-ingredients, Faculty of Agricultural Sciences, University of Abomey-Calavi, Cotonou 03 BP 2819, Benin
| | - Hubert Adoukonou-Sagbadja
- Laboratory of Genetic and Biotechnology, Faculty of Sciences and Technology, University of Abomey-Calavi, Cotonou BP 526, Benin
| | - Aliou Saïdou
- Department of Crop Production, Faculty of Agricultural Sciences, University of Abomey-Calavi, Cotonou 01 BP 526, Benin
| | - Adam Ahanchede
- Department of Crop Production, Faculty of Agricultural Sciences, University of Abomey-Calavi, Cotonou 01 BP 526, Benin
| |
Collapse
|
17
|
Ali NB, Abdelhamid Ibrahim SS, Alsherbiny MA, Sheta E, El-Shiekh RA, Ashour RM, El-Gazar AA, Ragab GM, El-Gayed SH, Li CG, Abdel-Sattar E. Gastroprotective potential of red onion (Allium cepa L.) peel in ethanol-induced gastric injury in rats: Involvement of Nrf2/HO-1 and HMGB-1/NF-κB trajectories. JOURNAL OF ETHNOPHARMACOLOGY 2024; 319:117115. [PMID: 37659760 DOI: 10.1016/j.jep.2023.117115] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 08/26/2023] [Accepted: 08/30/2023] [Indexed: 09/04/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The utilization of plants with therapeutic properties in traditional medicine has a longstanding practice. Among them, the well-known Allium cepa L. commonly known as onion has been valued for its anti-inflammatory and antioxidant potential in the treatment of various ailments, including gastric ulcers. AIM OF THE STUDY This study investigated the gastroprotective potential of red onion peel extract and its fractions in a rat model of ethanol-induced gastric ulcer. Moreover, their phytochemical profiles were compared to identify the active metabolites. MATERIALS AND METHODS Mass spectrometry-based metabolomics and chemometrics were performed for phytochemical analysis. Ethanol-induced gastric ulcer model was used to assess the gastroprotective activity. Nine groups of rats were allocated as follows: Group 1 was the normal control; Group 2 rats were used as a positive control/model and received 1 mL of absolute ethanol; and Group 3 rats were treated with famotidine at a dose of 20 mg/kg orally. Group 4 and 5 rats were treated with total acidified ethanolic extract (T1, T2). Group 6 and 7 rats were treated with anthocyanins-rich fractions (P1, P2). Groups 8 and 9 were the flavonoids-rich fraction (S1, S2) treatment. Prior to scarification, the ulcer index in mm was obtained from gastric tissues photographed beside a ruler with further analysis using ImageJ software. RESULTS Seventy key major and discriminatory metabolites were identified including flavonoids, anthocyanins, phenolic acids, and miscellaneous compounds. The examined extract and its fractions significantly reduced the ulcer index and inflammatory cytokines via downregulating HMGB-1/NF-κB. Also, they augmented the expression of Nrf2/HO-1 and reduced NOX1/4 mRNA expression. Moreover, there was a significant reduction in the oxidative stress and apoptotic biomarkers as well as a noticeable enhancement in histopathological changes of the stomach tissues. CONCLUSION Red onion peels have a promising dose dependent gastroprotective potential in alcohol-induced ulcers via modulating Nrf2/HO-1 and HMGB-1/NF-κB trajectories. This highlights the potential of red onion peels in treating gastric ulcers.
Collapse
Affiliation(s)
- Nermeen B Ali
- Department of Pharmacognosy, Faculty of Pharmacy, Cairo University, Cairo, 11562, Egypt
| | | | - Muhammad A Alsherbiny
- Department of Pharmacognosy, Faculty of Pharmacy, Cairo University, Cairo, 11562, Egypt; Innovation Centre, Victor Chang Cardiac Research Institute, Darlinghurst, Sydney, Australia; NICM Health Research Institute, Western Sydney University, Penrith, NSW, 2747, Australia
| | - Eman Sheta
- Department of Pathology, Faculty of Medicine, Alexandria University, Alexandria, Egypt
| | - Riham A El-Shiekh
- Department of Pharmacognosy, Faculty of Pharmacy, Cairo University, Cairo, 11562, Egypt.
| | - Rehab M Ashour
- Department of Pharmacognosy, Faculty of Pharmacy, Cairo University, Cairo, 11562, Egypt
| | - Amira A El-Gazar
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, October 6 University, 12585, Egypt
| | - Ghada M Ragab
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Misr University for Science and Technology, 12585, Egypt
| | - Sabah H El-Gayed
- Department of Pharmacognosy, Faculty of Pharmacy, Cairo University, Cairo, 11562, Egypt; Department of Pharmacognosy, Faculty of Pharmacy, 6th October University, Cairo, Egypt
| | - Chun Guang Li
- NICM Health Research Institute, Western Sydney University, Penrith, NSW, 2747, Australia
| | - Essam Abdel-Sattar
- Department of Pharmacognosy, Faculty of Pharmacy, Cairo University, Cairo, 11562, Egypt.
| |
Collapse
|
18
|
Serrano-Jara D, Rivera-Gomis J, Tornel JA, Jordán MJ, Martínez-Conesa C, Pablo MJC. Oregano Essential Oil and Purple Garlic Powder Effects on Intestinal Health, Microbiota Indicators and Antimicrobial Resistance as Feed Additives in Weaning Piglets. Animals (Basel) 2023; 14:111. [PMID: 38200842 PMCID: PMC10778277 DOI: 10.3390/ani14010111] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 12/20/2023] [Accepted: 12/21/2023] [Indexed: 01/12/2024] Open
Abstract
Finding alternatives to zinc oxide is a pressing issue for the pig production sector. We studied the impact of the bioactive components degradation of oregano essential oil (OEO) and purple garlic powder (PGP) during storage in silos, their effect on the morphometry of the jejunum and ileum and the cecal microbiota as intestinal health indicators in piglets during the post-weaning period. We also monitored antimicrobial resistance in the commensal indicator E. coli. Histological parameters and intestinal microbiota were measured in 140 piglets weaned at 21 days of age. Seven dietary treatments were used: a negative control group (basal diet), a positive control group with ZnO (3000 mg/kg of food), two groups with OEO at 0.4% and 1.2%, respectively, two groups with PGP 0.4% and 2%, respectively, and a group with OEO with 1.2% combined with PGP with 2%. Each group of piglets received the treatment for seven weeks, from weaning, before samples were taken. Antibiotic resistance profiles were measured in 81 E. coli strains. On this occasion, only the control groups, ZnO, OEO 1.2%, PGP 2% and OEO 1.2% + PGP 2% were used, and the samples were obtained from the cecal content. A progressive loss of the bioactive components of OEO and PGP was observed during the 34 days of storage (p < 0.05). PGP 2%, OEO 1.2% and their combination showed results similar to ZnO (p > 0.05), or superior in the study of intestinal morphometry and the values of E. coli and Lactobacillus. All categories showed high levels of resistance. Only the strains isolated from the OEO 1.2% group did not show resistance to colistin and presented the lowest resistance values. In general, high doses of the additives studied showed the best results, obtaining levels like or higher than those offered by ZnO.
Collapse
Affiliation(s)
- Daniel Serrano-Jara
- Department of Comparative Anatomy and Pathology, Veterinary Medicine Faculty, Regional Campus of International Excellence “Campus Mare Nostrum”, University of Murcia, Espinardo, 30100 Murcia, Spain;
| | - Jorge Rivera-Gomis
- Scotland’s Rural College (SRUC), Centre for Epidemiology and Planetary Health, Inverness, Scotland IV2 5NA, UK
| | | | - María José Jordán
- Research Group on Rainfed Agriculture for Rural Development, Department of Rural Development, Oenology and Sustainable Agriculture, Murcia Institute of Agri-Food and Environmental Research (IMIDA), La Alberca de Las Torres, 30150 Murcia, Spain; (M.J.J.); (C.M.-C.)
| | - Cristina Martínez-Conesa
- Research Group on Rainfed Agriculture for Rural Development, Department of Rural Development, Oenology and Sustainable Agriculture, Murcia Institute of Agri-Food and Environmental Research (IMIDA), La Alberca de Las Torres, 30150 Murcia, Spain; (M.J.J.); (C.M.-C.)
| | - María José Cubero Pablo
- Animal Health Department, Veterinary Medicine Faculty, Regional Campus of International Excellence “Campus Mare Nostrum”, University of Murcia, Espinardo, 30100 Murcia, Spain;
| |
Collapse
|
19
|
Lee HS, Kwon YJ, Seo EB, Kim SK, Lee H, Lee JT, Chang PS, Choi YJ, Lee SH, Ye SK. Anti-inflammatory effects of Allium cepa L. peel extracts via inhibition of JAK-STAT pathway in LPS-stimulated RAW264.7 cells. JOURNAL OF ETHNOPHARMACOLOGY 2023; 317:116851. [PMID: 37385574 DOI: 10.1016/j.jep.2023.116851] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 06/17/2023] [Accepted: 06/25/2023] [Indexed: 07/01/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Allium cepa L. (A. cepa) is one of the oldest cultivated plants in the world. A. cepa has been used in traditional folk medicine to treat inflammatory disease in several regions, such as Palestine and Serbia. A. cepa peel has a higher content of flavonoids, such as quercetin, than the edible parts. These flavonoids alleviate inflammatory diseases. However, the anti-inflammatory effects of A. cepa peel extract-obtained using various extraction methods-and their underlying mechanisms require further investigation. AIM OF THE STUDY Although research to find safe anti-inflammatory substances in various natural products has been actively conducted for many years, it is important to continue identifying potential anti-inflammatory effects in natural materials. The purpose of this study was to investigate the ethnopharmacological properties of the A. cepa peel extract, whose efficacy when obtained through different extraction methods and underlying action mechanisms is not well known. The present study specifically aimed to observe the anti-inflammatory effects of the A. cepa peel extracts obtained using various extraction methods and the related detailed mechanisms of A. cepa peel extracts in lipopolysaccharide (LPS)-induced RAW264.7 cells. MATERIALS AND METHODS The total flavonoid content of the A. cepa peel extracts was determined the diethylene glycol colorimetric method and measured using a calibration curve prepared using quercetin as a standard solution. The antioxidant activity was evaluated using the ABTS assay, and cytotoxicity was measured using the MTT assay. NO production was measured using Griess reagent. Protein levels were measured by western blotting, and mRNA expression was measured by RT-qPCR. Secreted cytokines were analyzed using ELISA or cytokine arrays. In the GSE160086 dataset, we calculated Z-scores for individual genes of interest and displayed using a heat map. RESULTS Of the three A. cepa peel extracts obtained using different extraction methods, the A. cepa peel 50% EtOH extract (AP50E) was the most effective at inhibiting LPS-induced nitric oxide (NO) and inducible nitric oxide synthase (iNOS). Furthermore, AP50E significantly reduced the levels of pro-inflammation cytokines interleukin (IL)-1α, IL-1β, IL-6, and IL-27. Additionally, AP50E directly inhibited the Janus kinase-signaling transducer and activator of transcription (JAK-STAT) pathway. CONCLUSIONS These results showed that AP50E exhibited an anti-inflammatory effect in LPS-induced RAW264.7 mouse macrophages by directly inhibiting JAK-STAT signaling. Based on these findings, we propose AP50E as a potential candidate for the development of preventive or therapeutic agents against inflammatory diseases.
Collapse
Affiliation(s)
- Hyun-Seung Lee
- Department of Pharmacology and Biomedical Sciences, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea; Biomedical Science Project (BK21PLUS), Seoul National University College of Medicine, Seoul, 03080, Republic of Korea.
| | - Yong-Jin Kwon
- Department of Pharmacology and Biomedical Sciences, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea; Department of Cosmetic Science, Kyungsung University, Busan, 48434, Republic of Korea.
| | - Eun-Bi Seo
- Department of Pharmacology and Biomedical Sciences, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea; Biomedical Science Project (BK21PLUS), Seoul National University College of Medicine, Seoul, 03080, Republic of Korea.
| | - Seul-Ki Kim
- Department of Pharmacology and Biomedical Sciences, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea.
| | - Haeri Lee
- Department of Pharmacology and Biomedical Sciences, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea; Ischemic/Hypoxic Disease Institute, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea.
| | - Jin-Tae Lee
- Department of Cosmetic Science, Kyungsung University, Busan, 48434, Republic of Korea.
| | - Pahn-Shick Chang
- Department of Agricultural Biotechnology, Seoul National University, Seoul, 08826, Republic of Korea.
| | - Young Jin Choi
- Department of Agricultural Biotechnology, Seoul National University, Seoul, 08826, Republic of Korea.
| | - Sung-Hyen Lee
- Functional Food Division, Department of Agro-Food Resources, National Institute of Agricultural Sciences, Rural Development Administration, Wanju, 55365, Republic of Korea.
| | - Sang-Kyu Ye
- Department of Pharmacology and Biomedical Sciences, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea; Biomedical Science Project (BK21PLUS), Seoul National University College of Medicine, Seoul, 03080, Republic of Korea; Ischemic/Hypoxic Disease Institute, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea; Neuro-Immune Information Storage Network Research Center, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea; Wide River Institute of Immunology, Seoul National University, Hongcheon, 25159, Republic of Korea.
| |
Collapse
|
20
|
Hassan HA, Abdelhafez OH, Shady NH, Yahia R, Mohamed NM, Rateb ME, Akil L, Khadra I, Glaeser SP, Kämpfer P, Abdelmohsen UR, El-Katatny MH. The anti-infective potential of the endophytic fungi associated with Allium cepa supported by metabolomics analysis and docking studies. Nat Prod Res 2023; 37:4063-4068. [PMID: 36657413 DOI: 10.1080/14786419.2023.2167204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 12/22/2022] [Accepted: 01/03/2023] [Indexed: 01/20/2023]
Abstract
Endophytic fungi are known to be a rich source of anti-infective drugs. In our study, Allium cepa was investigated for fungal diversity using different media to give 11 isolates which were identified morphologically. Out of the isolated fungal strains, Penicillium sp. (LCEF10) revealed potential anti-infective activity against the tested microbes (Fusarium solani ATTC 25922, Pseudomonas aeruginosa (ATTC 29231), Staphylococcus aureus ATTC 27853, Candida albicans ATTC 10231), besides, their MICs were measured by well diffusion method, therefore, it was subjected to molecular identification in addition to phylogenetic analysis. Moreover, the ITS sequence of strain LCEF10 showed a consistent assignment with the highest sequence similarity (99.81%) to Penicillium oxalicum NRRL 787. The crude ethyl acetate extract of Penicillium sp. LCEF10 was investigated for metabolomic analysis using LC-HR-ESI-MS. The metabolic profiling revealed the presence of polyketides, macrolides, phenolics and terpenoids. Furthermore, in silico molecular docking study was carried out to predict which compounds most likely responsible for the anti-infective activity.
Collapse
Affiliation(s)
- Hind Ashraf Hassan
- Department of Botany and Microbiology, Faculty of Science, Minia University, Minia, Egypt
| | - Omnia Hesham Abdelhafez
- Department of Pharmacognosy, Faculty of Pharmacy, Deraya University, New Minia City, Minia, Egypt
| | - Nourhan Hisham Shady
- Department of Pharmacognosy, Faculty of Pharmacy, Deraya University, New Minia City, Minia, Egypt
| | - Ramadan Yahia
- Department of Microbiology, Faculty of Pharmacy, Deraya University, New Minia City, Minia, Egypt
| | - Nada M Mohamed
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Modern University for Technology and Information, Cairo, Egypt
| | - Mostafa E Rateb
- School of Computing, Engineering & Physical Sciences, University of the West of Scotland, Paisley, UK
| | - Lina Akil
- Strathclyde Institute of Pharmacy & Biomedical Sciences, University of Strathclyde, Glasgow, UK
| | - Ibrahim Khadra
- Strathclyde Institute of Pharmacy & Biomedical Sciences, University of Strathclyde, Glasgow, UK
| | - Stefanie P Glaeser
- Institute of Applied Microbiology, Justus-Liebig University Gießen, Gießen, Germany
| | - Peter Kämpfer
- Institute of Applied Microbiology, Justus-Liebig University Gießen, Gießen, Germany
| | - Usama Ramadan Abdelmohsen
- Department of Pharmacognosy, Faculty of Pharmacy, Deraya University, New Minia City, Minia, Egypt
- Department of Pharmacognosy, Faculty of Pharmacy, Minia University, Minia, Egypt
| | | |
Collapse
|
21
|
Durmaz L, Kiziltas H, Karagecili H, Alwasel S, Gulcin İ. Potential antioxidant, anticholinergic, antidiabetic and antiglaucoma activities and molecular docking of spiraeoside as a secondary metabolite of onion ( Allium cepa). Saudi Pharm J 2023; 31:101760. [PMID: 37693735 PMCID: PMC10485163 DOI: 10.1016/j.jsps.2023.101760] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 08/20/2023] [Indexed: 09/12/2023] Open
Abstract
Onion contains many dietary and bioactive components including phenolics and flavonoids. Spiraeoside (quercetin-4-O-β-D-glucoside) is one of the most putative flavonoids in onion. Several antioxidant techniques were used in this investigation to assess the antioxidant capabilities of spiraeoside, including 1,1-diphenyl-2-picrylhydrazyl radical (DPPH·) scavenging, N,N-dimethyl-p-phenylenediamine radical (DMPD•+) scavenging, 2,2'-azinobis-(3-ethylbenzothiazoline-6-sulphonate) radical (ABTS•+) scavenging activities, cupric ions (Cu2+) reducing and potassium ferric cyanide reduction abilities. In contrast, the water-soluble α-tocopherol analogue trolox and the conventional antioxidants butylated hydroxytoluene (BHT), butylated hydroxyanisole (BHA), and α-tocopherol were utilized as the standards for evaluation. Spiraeoside scavenged the DPPH radicals an IC50 of 28.51 μg/mL (r2: 0.9705) meanwhile BHA, BHT, trolox, and α-tocopherol displayed IC50 of 10.10 μg/mL (r2: 0.9015), 25.95 μg/mL (r2: 0.9221), 7.059 μg/mL (r2: 0.9614) and 11.31 μg/mL (r2: 0.9642), accordingly. The results exhibited that spiraeoside had effects similar to BHT, but less potent than α-tocopherol, trolox and BHA. Also, inhibitory effects of spiraeoside were evaluated toward some metabolic enzymes including acetylcholinesterase (AChE), butyrylcholinesterase (BChE), carbonic anhydrase II (CA II) and α-glycosidase, which are related to a number of illnesses, such as Alzheimer's disease (AD), diabetes mellitus and glaucoma disorder. Spiraeoside exhibited IC50 values of 4.44 nM (r2: 0.9610), 7.88 nM (r2: 0.9784), 19.42 nM (r2: 0.9673) and 29.17 mM (r2: 0.9209), respectively against these enzymes. Enzyme inhibition abilities were compared to clinical used inhibitors including acetazolamide (for CA II), tacrine (for AChE and BChE) and acarbose (for α-glycosidase). Spiraeoside demonstrated effective antioxidant, anticholinergic, antidiabetic and antiglaucoma activities. With these properties, it has shown that Spiraeoside has the potential to be a medicine for some metabolic diseases.
Collapse
Affiliation(s)
- Lokman Durmaz
- Department of Medical Services and Technology, Cayirli Vocational School, Erzincan Binali Yildirim University, 24500, Cayirli, Erzincan, Turkey
| | - Hatice Kiziltas
- Department of Pharmacy Services, Vocational School of Health Services, Van Yuzuncu Yil University, 65080, Van, Turkey
| | - Hasan Karagecili
- Department of Nursing, Faculty of Health Sciences, Siirt University, 56100, Siirt, Turkey
| | - Saleh Alwasel
- King Saud University, College of Science, Department of Zoology, 11362, Riyadh, Saudi Arabia
| | - İlhami Gulcin
- Department of Chemistry, Faculty of Science, Atatürk University, 25240, Erzurum, Turkey
| |
Collapse
|
22
|
Barbosa ML, de Oliveira LM, Paiva R, Dametto AC, Dias DDS, Ribeiro CA, Wrona M, Nerín C, Barud HDS, Cruz SA. Evaluation the Potential of Onion/Laponite Composites Films for Sustainable Food Packaging with Enhanced UV Protection and Antioxidant Capacity. Molecules 2023; 28:6829. [PMID: 37836672 PMCID: PMC10574679 DOI: 10.3390/molecules28196829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 09/19/2023] [Accepted: 09/21/2023] [Indexed: 10/15/2023] Open
Abstract
Agro-industrial residues have attracted attention for their applications in the field of biodegradable packaging. Recently, our research group has developed onion-based films with promising properties for this type of application due to their non-toxicity, biocompatibility and biodegradability. Therefore, in this study, we investigated the effect of Laponite clay concentration on the physicochemical and antioxidant properties of the onion-based films, which were prepared by a casting method. The XRD and FTIR data confirm the presence of the mineral clay in the onion-based films. These findings are consistent with those obtained from FE-SEM analysis, which revealed the presence of typical Laponite grains. In terms of wettability, the results show that the clay decreases the hydrophilic character of the material but slightly increases the water vapor permeation. Optical characterization revealed that the materials exhibited zero transmittance in the UV region and increased opacity in the visible region for composites containing 5% and 10% Laponite. Furthermore, the antioxidant test demonstrated higher antioxidant potential in the composites compared to the pure films. Consequently, these results suggest that the formation of Laponite and onion composites could be an essential strategy for developing natural polymers in the field of food contact packaging.
Collapse
Affiliation(s)
- Maciel L. Barbosa
- Department of Chemistry, Federal University of São Carlos (UFSCar), São Carlos 13565-905, Brazil; (M.L.B.); (R.P.)
| | - Leticia M. de Oliveira
- Department of Physics, Federal University of the São Francisco Valley (UNIVASF), Petrolina 56300-000, Brazil;
| | - Robert Paiva
- Department of Chemistry, Federal University of São Carlos (UFSCar), São Carlos 13565-905, Brazil; (M.L.B.); (R.P.)
| | | | - Diogenes dos S. Dias
- BioSmart Nanotechnology Ltda., Araraquara 14808-162, Brazil; (A.C.D.); (D.d.S.D.)
| | - Clovis A. Ribeiro
- Institute of Chemistry, São Paulo State University (UNESP), Araraquara 14800-900, Brazil;
| | - Magdalena Wrona
- Engineering Research Institute of Aragon (I3A), University of Zaragoza, María de Luna 3, 50018 Zaragoza, Spain;
| | - Cristina Nerín
- Engineering Research Institute of Aragon (I3A), University of Zaragoza, María de Luna 3, 50018 Zaragoza, Spain;
| | - Hernane da S. Barud
- Laboratory of Biopolymers and Biomaterials (BIOPOLMAT), University of Araraquara (UNIARA), Araraquara 14801-320, Brazil;
| | - Sandra A. Cruz
- Department of Chemistry, Federal University of São Carlos (UFSCar), São Carlos 13565-905, Brazil; (M.L.B.); (R.P.)
| |
Collapse
|
23
|
Salem MA, Mohamed OG, Mosalam EM, Elberri AI, Abdel-Bar HM, Hassan M, Al-Karmalawy AA, Tripathi A, Ezzat SM, Abo Mansour HE. Investigation of the phytochemical composition, antioxidant, antibacterial, anti-osteoarthritis, and wound healing activities of selected vegetable waste. Sci Rep 2023; 13:13034. [PMID: 37563154 PMCID: PMC10415269 DOI: 10.1038/s41598-023-38591-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 07/11/2023] [Indexed: 08/12/2023] Open
Abstract
Agri-food wastes, produced following industrial food processing, are mostly discarded, leading to environmental hazards and losing the nutritional and medicinal values associated with their bioactive constituents. In this study, we performed a comprehensive analytical and biological evaluation of selected vegetable by-products (potato, onion, and garlic peels). The phytochemical analysis included UHPLC-ESI-qTOF-MS/MS in combination with molecular networking and determination of the total flavonoid and phenolic contents. Further, the antimicrobial, anti-osteoarthritis and wound healing potentials were also evaluated. In total, 47 compounds were identified, belonging to phenolic acids, flavonoids, saponins, and alkaloids as representative chemical classes. Onion peel extract (OPE) showed the higher polyphenolic contents, the promising antioxidant activity, the potential anti-osteoarthritis activity, and promising antimicrobial activity, especially against methicillin-resistant Staphylococcus aureus (MRSA). Furthermore, OPE revealed to have promising in vivo wound healing activity, restoring tissue physiology and integrity, mainly through the activation of AP-1 signaling pathway. Lastly, when OPE was loaded with nanocapsule based hydrogel, the nano-formulation revealed enhanced cellular viability. The affinities of the OPE major metabolites were evaluated against both p65 and ATF-2 targets using two different molecular docking processes revealing quercetin-3,4'-O-diglucoside, alliospiroside C, and alliospiroside D as the most promising entities with superior binding scores. These results demonstrate that vegetable by-products, particularly, those derived from onion peels can be incorporated as natural by-product for future evaluation against wounds and osteoarthritis.
Collapse
Affiliation(s)
- Mohamed A Salem
- Department of Pharmacognosy and Natural Products, Faculty of Pharmacy, Menoufia University, Gamal Abd El Nasr st., Shibīn al-Kawm, 32511, Menoufia, Egypt.
| | - Osama G Mohamed
- Pharmacognosy Department, Faculty of Pharmacy, Cairo University, Kasr el Aini St., Cairo, 11562, Egypt
- Natural Products Discovery Core, Life Sciences Institute, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Esraa M Mosalam
- Biochemistry Department, Faculty of Pharmacy, Menoufia University, Gamal Abd El Nasr st., Shebin El-Koum, 32511, Egypt
| | - Aya Ibrahim Elberri
- Genetic Engineering and Molecular Biology Division, Department of Zoology, Faculty of Science, Menoufia University, Shebin El-Kom, 32511, Menoufia, Egypt
| | - Hend Mohamed Abdel-Bar
- Department of Pharmaceutics, Faculty of Pharmacy, University of Sadat City, Sadat City, Egypt
| | - Mariam Hassan
- Department of Microbiology and Immunology, Faculty of Pharmacy, Cairo University, Kasr el Aini st., Cairo, 11562, Egypt
- Department of Microbiology and Immunology, Faculty of Pharmacy, Galala University, New Galala City, Suez, Egypt
| | - Ahmed A Al-Karmalawy
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Ahram Canadian University, 6th of October City, Giza, 12566, Egypt
| | - Ashootosh Tripathi
- Natural Products Discovery Core, Life Sciences Institute, University of Michigan, Ann Arbor, MI, 48109, USA
- Department of Medicinal Chemistry, College of Pharmacy, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Shahira M Ezzat
- Pharmacognosy Department, Faculty of Pharmacy, Cairo University, Kasr el Aini St., Cairo, 11562, Egypt
- Department of Pharmacognosy, Faculty of Pharmacy, October University for Modern Sciences and Arts (MSA), Giza, 12451, Egypt
| | - Hend E Abo Mansour
- Biochemistry Department, Faculty of Pharmacy, Menoufia University, Gamal Abd El Nasr st., Shebin El-Koum, 32511, Egypt
| |
Collapse
|
24
|
Fan K, Li Y, Fu Q, Wang J, Lin Y, Qiu L, Ran L, Yang J, Yang C. Bio-Assay-Guided Isolation of Fractions and Constituents with Antioxidant and Lipid-lowering Activity from Allium cepa. Antioxidants (Basel) 2023; 12:1448. [PMID: 37507986 PMCID: PMC10376131 DOI: 10.3390/antiox12071448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Revised: 06/29/2023] [Accepted: 07/10/2023] [Indexed: 07/30/2023] Open
Abstract
Active fractions and constituents with antioxidant and lipid-lowering activities were investigated using bio-assay-guided isolation and identification. The data showed that the antioxidant fraction of A. cepa was AC50%, the main constituents of which were quercetin and isoquercitrin, by way of both ultra-high performance liquid chromatography-mass spectrometry (UPLC-MS) and bio-assay-guided purification and elucidation. Similarly, the lipid-lowering active fraction of A. cepa was AC30% with the main constituents of 3,4-dihydroxybenzoic acid and quercetin 3,4'-O-diglucoside. Also, bio-assay-guided isolation led to the isolation and identification of five known compounds with a purity of more than 98%, and quercetin was both the best free radical scavenger and lipid-lowering constituent. Moreover, the mechanism of the lipid-lowering effect of AC30% might be its reduction in mRNA expression levels of sterol regulatory element binding protein 2 (SREBP2) and FAS gene in lipid synthesis. Otherwise, reducing the mRNA expression level of lipid synthesis genes, including SREBP1, SREBP2, fatty acid synthetase (FASN), β-Hydroxy β-methylglutaryl-CoA (HMGCR), stearoyl CoA desaturase 1 (SCD1), and increasing the mRNA expression level of lipid decomposition gene, such as carnitine palmitoyl transferease-1 (CPT1), might be involved in the lipid-lowering activity of quercetin. This study suggested that Allium cepa might be used to prevent and treat oxidative stress and dislipidemia-related disorders, including NAFLD.
Collapse
Affiliation(s)
- Kongming Fan
- School of Pharmacy, Institute of Material Medica, North Sichuan Medical College, Nanchong 637100, China
- Innovative Platform of Basic Medical Sciences, School of Basic Medical Sciences, North Sichuan Medical College, Nanchong 637100, China
| | - Yan Li
- School of Pharmacy, Institute of Material Medica, North Sichuan Medical College, Nanchong 637100, China
| | - Qiaofeng Fu
- School of Pharmacy, Institute of Material Medica, North Sichuan Medical College, Nanchong 637100, China
| | - Jinmin Wang
- School of Pharmacy, Institute of Material Medica, North Sichuan Medical College, Nanchong 637100, China
| | - Yong Lin
- School of Public Health, North Sichuan Medical College, Nanchong 637100, China
| | - Linyu Qiu
- School of Pharmacy, Institute of Material Medica, North Sichuan Medical College, Nanchong 637100, China
| | - Li Ran
- School of Pharmacy, Institute of Material Medica, North Sichuan Medical College, Nanchong 637100, China
| | - Junli Yang
- Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Chunyan Yang
- School of Pharmacy, Institute of Material Medica, North Sichuan Medical College, Nanchong 637100, China
| |
Collapse
|
25
|
Rizq AT, Sirwi A, El-Agamy DS, Abdallah HM, Ibrahim SRM, Mohamed GA. Cepabiflas B and C as Novel Anti-Inflammatory and Anti-Apoptotic Agents against Endotoxin-Induced Acute Kidney and Hepatic Injury in Mice: Impact on Bax/Bcl2 and Nrf2/NF-κB Signalling Pathways. BIOLOGY 2023; 12:938. [PMID: 37508369 PMCID: PMC10376508 DOI: 10.3390/biology12070938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 06/25/2023] [Accepted: 06/27/2023] [Indexed: 07/30/2023]
Abstract
Cepabiflas B and C (CBs) are flavonoid dimers separated from Allium cepa. They demonstrated antioxidant and α-glucosidase and protein tyrosine phosphatase 1B inhibition capacities. However, their anti-inflammatory activities and their effects on endotoxemia are unknown. The current study aimed at exploring the protective activities of CBs on lipopolysaccharide (LPS)-induced kidney and liver damage in mice and investigating the possible molecular mechanisms. Mice were orally treated with a low (40 mg/kg) or high (60 mg/kg) dose of CBs for five days prior to a single intraperitoneal injection of LPS (10 mg/kg). Samples of serum and hepatic and kidney tissues were collected 24 h after the LPS challenge. Changes in serum indices of hepatic and renal injury, pathological changes, molecular biological parameters, and proteins/genes related to inflammation and apoptosis of these organs were estimated. LPS injection resulted in deleterious injury to both organs as indicated by elevation of serum ALT, AST, creatinine, and BUN. The deteriorated histopathology of hepatic and renal tissues confirmed the biochemical indices. CBs treated groups showed a reduction in these parameters and improved histopathological injurious effects of LPS. LPS-induced hepatorenal injury was linked to elevated oxidative stress as indicated by high levels of MDA, 4-HNE, as well as repressed antioxidants (TAC, SOD, and GSH) in hepatic and kidney tissues. This was accompanied with suppressed Nrf2/HO-1 activity. Additionally, there was a remarkable inflammatory response in both organs as NF-κB signalling was activated and high levels of downstream cytokines were produced following the LPS challenge. Apoptotic changes were observed as the level and gene expression of Bax and caspase-3 were elevated along with declined level and gene expression of Bcl2. Interestingly, CBs reversed all these molecular and genetic changes and restricted oxidative inflammatory and apoptotic parameters after LPS-injection. Collectedly, our findings suggested the marked anti-inflammatory and anti-apoptotic activity of CBs which encouraged its use as a new candidate for septic patients.
Collapse
Affiliation(s)
- Akaber T Rizq
- Department of Natural Products and Alternative Medicine, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Alaa Sirwi
- Department of Natural Products and Alternative Medicine, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Dina S El-Agamy
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt
| | - Hossam M Abdallah
- Department of Natural Products and Alternative Medicine, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Sabrin R M Ibrahim
- Department of Chemistry, Preparatory Year Program, Batterjee Medical College, Jeddah 21442, Saudi Arabia
- Department of Pharmacognosy, Faculty of Pharmacy, Assiut University, Assiut 71526, Egypt
| | - Gamal A Mohamed
- Department of Natural Products and Alternative Medicine, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| |
Collapse
|
26
|
M Al-Ansari M, Al-Humaid L, Aldawsari M, Abid IF, Jhanani GK, Shanmuganathan R. Quercetin extraction from small onion skin (Allium cepa L. var. aggregatum Don.) and its antioxidant activity. ENVIRONMENTAL RESEARCH 2023; 224:115497. [PMID: 36805894 DOI: 10.1016/j.envres.2023.115497] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 02/03/2023] [Accepted: 02/12/2023] [Indexed: 06/18/2023]
Abstract
In the present study, the maximum yield of quercetin was optimized for the ethanol extraction of small onions (Allium cepa L. var. aggregatum Don.), and the antioxidant activity was investigated in vitro. The extraction of quercetin from the small onion skin was carried out through ethanol solvent extraction with different ratios of ethanol and water. Ethanol: water ratio produced the highest quercetin from the onion skin. RP-HPLC analysis of the extracted material showed 2, 122 mg/g of quercetin and 0.34 mg/g of isorhamnetin. A total of 301.03 mg GAE/g dry weight and 156 mg/g quercetin equivalents were found in the onion skin extract. DPPH and ABTS free radical scavenging potentials of the tested extract (90:10 v/v) were dose-dependent, with IC50 values of 62.27 μg/mL and 53.65 μg/mL, respectively. Therefore, the present study reports that small onion skin extract rich in quercetin may serve as a promising antioxidant and anticancer agent.
Collapse
Affiliation(s)
- Mysoon M Al-Ansari
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia.
| | - Latifah Al-Humaid
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Majdoleen Aldawsari
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Islem Faraj Abid
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| | - G K Jhanani
- Center for Transdisciplinary Research (CFTR), Department of Pharmacology, Saveetha Dental College, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India
| | - Rajasree Shanmuganathan
- University Centre for Research & Development, Department of Civil Engineering, Chandigarh University, Mohali, India.
| |
Collapse
|
27
|
Litoriya NS, Chauhan NR, Kalasariya RL, Parmar KD, Chawla S, Parmar AV, Raj PV, Shah PG. Dissipation kinetics of co-formulation with two herbicides, clodinafop-propargyl and oxyfluorfen, in/on onion (Allium cepa) samples. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:50225-50233. [PMID: 36790701 DOI: 10.1007/s11356-023-25785-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 02/03/2023] [Indexed: 04/16/2023]
Abstract
Supervised field trail on dissipation of co-formulation with herbicides clodinafop-propargyl and oxyfluorfen in spring onion showed similar pattern of dissipation during two different seasons. Residues of clodinafop-propargyl reached ≤ limit of quantitation (LOQ, 0.05 mg kg-1) on 3rd day after application at both standard and double dose during both the seasons. Oxyfluorfen residues followed first-order kinetics in both the doses during first season with half-life of 0.81 to 3.14 days. The residues of clodinafop-propargyl were detected in soil at both the doses during first season. However, residues were ≤ LOQ (0.05 mg kg-1) during second season. The residues of oxyfluorfen were detected only in double dose during first season in soil. In all other cases and in onion bulb, residues were ≤ LOQ (0.05 mg kg-1) at the time of harvest. As the residues were either ≤ LOQ (0.05 mg kg-1) on 3rd day or have a half-life of 3.14 days, the co-formulation can be used safely, provided a pre harvest interval (PHI) of 3 days is followed. On the basis of maximum residue limits (MRLs) in other commodities and from the data of present study, a default MRL of 0.05 mg kg-1 is proposed for both the pesticides.
Collapse
Affiliation(s)
- Nitesh S Litoriya
- AINP On Pesticide Residues, ICAR Unit-9, Anand Agricultural University, Anand, Gujarat, India
- Main Forage Research Station, Anand Agricultural University, Anand, Gujarat, India
| | - Nirmal R Chauhan
- AINP On Pesticide Residues, ICAR Unit-9, Anand Agricultural University, Anand, Gujarat, India
| | - Ravi L Kalasariya
- AINP On Pesticide Residues, ICAR Unit-9, Anand Agricultural University, Anand, Gujarat, India
| | - Kaushik D Parmar
- AINP On Pesticide Residues, ICAR Unit-9, Anand Agricultural University, Anand, Gujarat, India
| | - Suchi Chawla
- AINP On Pesticide Residues, ICAR Unit-9, Anand Agricultural University, Anand, Gujarat, India.
| | - Ambalal V Parmar
- AINP On Pesticide Residues, ICAR Unit-9, Anand Agricultural University, Anand, Gujarat, India
| | - Pratik V Raj
- AINP On Pesticide Residues, ICAR Unit-9, Anand Agricultural University, Anand, Gujarat, India
| | - Paresh G Shah
- AINP On Pesticide Residues, ICAR Unit-9, Anand Agricultural University, Anand, Gujarat, India
| |
Collapse
|
28
|
Baran MF, Keskin C, Baran A, Hatipoğlu A, Yildiztekin M, Küçükaydin S, Kurt K, Hoşgören H, Sarker MMR, Sufianov A, Beylerli O, Khalilov R, Eftekhari A. Green Synthesis of Silver Nanoparticles from Allium cepa L. Peel Extract, Their Antioxidant, Antipathogenic, and Anticholinesterase Activity. Molecules 2023; 28:molecules28052310. [PMID: 36903556 PMCID: PMC10005533 DOI: 10.3390/molecules28052310] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 02/26/2023] [Accepted: 02/28/2023] [Indexed: 03/06/2023] Open
Abstract
The present work deals with the green synthesis and characterization of silver nanoparticles (AgNPs) using Allium cepa (yellowish peel) and the evaluation of its antimicrobial, antioxidant, and anticholinesterase activities. For the synthesis of AgNPs, peel aqueous extract (200 mL) was treated with a 40 mM AgNO3 solution (200 mL) at room temperature, and a color change was observed. In UV-Visible spectroscopy, an absorption peak formation at ~439 nm was the sign that AgNPs were present in the reaction solution. UV-vis, FE-SEM, TEM, EDX, AFM, XRD, TG/DT analyses, and Zetasizer techniques were used to characterize the biosynthesized nanoparticles. The crystal average size and zeta potential of AC-AgNPs with predominantly spherical shapes were measured as 19.47 ± 1.12 nm and -13.1 mV, respectively. Pathogenic microorganisms Bacillus subtilis, Staphylococcus aureus, Escherichia coli, Pseudomonas aeruginosa, and Candida albicans were used for the Minimum Inhibition Concentration (MIC) test. When compared to tested standard antibiotics, AC-AgNPs demonstrated good growth inhibitory activities on P. aeuruginosa, B. subtilis, and S. aureus strains. In vitro, the antioxidant properties of AC-AgNPs were measured using different spectrophotometric techniques. In the β-Carotene linoleic acid lipid peroxidation assay, AC-AgNPs showed the strongest antioxidant activity with an IC50 value of 116.9 µg/mL, followed by metal-chelating capacity and ABTS cation radical scavenging activity with IC50 values of 120.4 µg/mL and 128.5 µg/mL, respectively. The inhibitory effects of produced AgNPs on the acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) enzymes were determined using spectrophotometric techniques. This study provides an eco-friendly, inexpensive, and easy method for the synthesis of AgNPs that can be used for biomedical activities and also has other possible industrial applications.
Collapse
Affiliation(s)
- Mehmet Fırat Baran
- Department of Food Processing, Vocational School of Technical Sciences, Batman University, Batman 72100, Turkey
| | - Cumali Keskin
- Department of Biology, Mardin Artuklu University Graduate Education Institute, Mardin 47200, Turkey
- Correspondence: (C.K.); (A.E.)
| | - Ayşe Baran
- Department of Biology, Mardin Artuklu University Graduate Education Institute, Mardin 47200, Turkey
| | - Abdulkerim Hatipoğlu
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Mardin Artuklu University, Mardin 47200, Turkey
| | - Mahmut Yildiztekin
- Department of Herbal and Animal Production, Köyceğiz Vocational School, Mugla Sitki Kocman University, Mugla 48000, Turkey
| | - Selçuk Küçükaydin
- Department of Medical Services and Techniques, Köyceğiz Vocational School of Health Services, Mugla Sitki Kocman University, Mugla 48000, Turkey
| | - Kadri Kurt
- Alternative Energy Resources Technology Program, Department of Electricity and Energy, Beşiri Organized Industrial Zone Vocational School, Batman 72100, Turkey
| | - Hülya Hoşgören
- Department of Biology, Dicle University Faculty of Sciences, Diyarbakır 21280, Turkey
| | - Md. Moklesur Rahman Sarker
- Department of Pharmacy, State University of Bangladesh, 77 Satmasjid Road, Dhanmondi, Dhaka 1205, Bangladesh
| | - Albert Sufianov
- Educational and Scientific Institute of Neurosurgery, Peoples’ Friendship University of Russia (RUDN University), 6 Miklukho-Maklaya St., 117198 Moscow, Russia
- Department of Neurosurgery, Sechenov First Moscow State Medical University (Sechenov University), 119992 Moscow, Russia
| | - Ozal Beylerli
- Central Research Laboratory, Bashkir State Medical University, 450008 Ufa, Russia
| | - Rovshan Khalilov
- Department of Biophysics and Biochemistry, Baku State University, AZ1148 Baku, Azerbaijan
| | - Aziz Eftekhari
- Department of Biochemistry, Faculty of Science, Ege University, Izmir 35040, Turkey
- Correspondence: (C.K.); (A.E.)
| |
Collapse
|
29
|
Younes NA, Anik TR, Rahman MM, Wardany AA, Dawood MFA, Tran LSP, Abdel Latef AAH, Mostofa MG. Effects of microbial biostimulants ( Trichoderma album and Bacillus megaterium) on growth, quality attributes, and yield of onion under field conditions. Heliyon 2023; 9:e14203. [PMID: 36925528 PMCID: PMC10010997 DOI: 10.1016/j.heliyon.2023.e14203] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 02/21/2023] [Accepted: 02/23/2023] [Indexed: 03/05/2023] Open
Abstract
Microbial biostimulants (MBs) promote plant growth and stress tolerance in a sustainable manner. However, precise field trials of MBs are required in natural setting with a range of crop varieties to harness the benefits of biostimulants on crop yield improvement. This study investigated the effects of two MBs, Trichoderma album and Bacillus megaterium, on an onion cultivar's growth, nutritional qualities, antioxidant properties, and yield potentials under field conditions for two successive years. Before transplantation, onion bulbs were gelatin-coated with 2.0 and 4.0 g L-1 of each of the MB. Results revealed that MBs-pretreated onion plants exhibited better growth indices, photosynthetic pigment contents, and yield-attributing features like bulb weight than control plants. Nutraceutical analysis demonstrated that T. album-pretreated (by 2.0 g L-1) onion cultivar enhanced the level of K+ (by 105.79%), Ca2+ (by 37.77%), proline (by 34.21%), and total free amino acids (by 144.58%) in bulb tissues over the control plants. Intriguingly, the pretreatment with both T. album and B. megaterium (by 2.0 g L-1) increased the levels of total soluble carbohydrates (by 19.10 and 84.02%), as well as antioxidant properties, including increased activities of superoxide dismutase (by 58.52 and 31.34%), catalase (by 164.71 and 232%), ascorbate peroxidase (by 175.35 and 212.69%), and glutathione-S-transferase (by 31.99 and 9.34%) and improved the contents of ascorbic acid (by 19.1 and 44.05%), glutathione (by 6.22 and 33.82%), and total flavonoids (by 171.98 and 56.24%, respectively) in the bulb tissues than control plants. Although both MBs promoted the growth and nutraceutical qualities of onion bulbs, T. album pretreatment showed better effects than that of B. megaterium in the field settings. Based on the morphophysiological attributes and biochemical properties, a low dose (2.0 g L-1) was more effective than a high dose (4.0 g L-1) of T. album in promoting onion growth. Overall, the current research findings imply that T. album might be a potential MB in improving growth and quality attributes, and hence the productivity of onion cultivars under field circumstances.
Collapse
Affiliation(s)
- Nabil A Younes
- Horticulture Department, Faculty of Agriculture, Al-Azhar University, Assiut Branch, Assiut 71524, Egypt
| | - Touhidur Rahman Anik
- Institute of Genomics for Crop Abiotic Stress Tolerance, Department of Plant and Soil Science, Texas Tech University, Lubbock, TX 79409, USA
| | - Md Mezanur Rahman
- Institute of Genomics for Crop Abiotic Stress Tolerance, Department of Plant and Soil Science, Texas Tech University, Lubbock, TX 79409, USA
| | - Ahmed A Wardany
- Botany and Microbiology Department, Faculty of Science, Al-Azhar University, Assiut 71524, Egypt
| | - Mona F A Dawood
- Botany and Microbiology Department, Faculty of Science, Assiut University, Assiut 71516, Egypt
| | - Lam-Son Phan Tran
- Institute of Genomics for Crop Abiotic Stress Tolerance, Department of Plant and Soil Science, Texas Tech University, Lubbock, TX 79409, USA
| | - A A H Abdel Latef
- Botany and Microbiology Department, Faculty of Science, South Valley University, 83523 Qena, Egypt
| | - Mohammad Golam Mostofa
- Department of Energy Plant Research Laboratory, Michigan State University, East Lansing, 48824, Michigan, USA
| |
Collapse
|
30
|
Olędzka AJ, Czerwińska ME. Role of Plant-Derived Compounds in the Molecular Pathways Related to Inflammation. Int J Mol Sci 2023; 24:ijms24054666. [PMID: 36902097 PMCID: PMC10003729 DOI: 10.3390/ijms24054666] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 02/21/2023] [Accepted: 02/23/2023] [Indexed: 03/04/2023] Open
Abstract
Inflammation is the primary response to infection and injury. Its beneficial effect is an immediate resolution of the pathophysiological event. However, sustained production of inflammatory mediators such as reactive oxygen species and cytokines may cause alterations in DNA integrity and lead to malignant cell transformation and cancer. More attention has recently been paid to pyroptosis, which is an inflammatory necrosis that activates inflammasomes and the secretion of cytokines. Taking into consideration that phenolic compounds are widely available in diet and medicinal plants, their role in the prevention and support of the treatment of chronic diseases is apparent. Recently, much attention has been paid to explaining the significance of isolated compounds in the molecular pathways related to inflammation. Therefore, this review aimed to screen reports concerning the molecular mode of action assigned to phenolic compounds. The most representative compounds from the classes of flavonoids, tannins, phenolic acids, and phenolic glycosides were selected for this review. Our attention was focused mainly on nuclear factor-κB (NF-κB), nuclear factor erythroid 2-related factor 2 (Nrf2), and mitogen-activated protein kinase (MAPK) signaling pathways. Literature searching was performed using Scopus, PubMed, and Medline databases. In conclusion, based on the available literature, phenolic compounds regulate NF-κB, Nrf2, and MAPK signaling, which supports their potential role in chronic inflammatory disorders, including osteoarthritis, neurodegenerative diseases, cardiovascular, and pulmonary disorders.
Collapse
Affiliation(s)
- Agata J. Olędzka
- Department of Biochemistry and Pharmacogenomics, Faculty of Pharmacy, Medical University of Warsaw, 1 Banacha Str., 02-097 Warsaw, Poland
- Centre for Preclinical Research, Medical University of Warsaw, 1B Banacha Str., 02-097 Warsaw, Poland
| | - Monika E. Czerwińska
- Department of Biochemistry and Pharmacogenomics, Faculty of Pharmacy, Medical University of Warsaw, 1 Banacha Str., 02-097 Warsaw, Poland
- Centre for Preclinical Research, Medical University of Warsaw, 1B Banacha Str., 02-097 Warsaw, Poland
- Correspondence: ; Tel.: +48-22-116-61-85
| |
Collapse
|
31
|
Mandal D, Sarkar T, Chakraborty R. Critical Review on Nutritional, Bioactive, and Medicinal Potential of Spices and Herbs and Their Application in Food Fortification and Nanotechnology. Appl Biochem Biotechnol 2023; 195:1319-1513. [PMID: 36219334 PMCID: PMC9551254 DOI: 10.1007/s12010-022-04132-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/28/2022] [Indexed: 01/24/2023]
Abstract
Medicinal or herbal spices are grown in tropical moist evergreen forestland, surrounding most of the tropical and subtropical regions of Eastern Himalayas in India (Sikkim, Darjeeling regions), Bhutan, Nepal, Pakistan, Iran, Afghanistan, a few Central Asian countries, Middle East, USA, Europe, South East Asia, Japan, Malaysia, and Indonesia. According to the cultivation region surrounded, economic value, and vogue, these spices can be classified into major, minor, and colored tropical spices. In total, 24 tropical spices and herbs (cardamom, black jeera, fennel, poppy, coriander, fenugreek, bay leaves, clove, chili, cassia bark, black pepper, nutmeg, black mustard, turmeric, saffron, star anise, onion, dill, asafoetida, celery, allspice, kokum, greater galangal, and sweet flag) are described in this review. These spices show many pharmacological activities like anti-inflammatory, antimicrobial, anti-diabetic, anti-obesity, cardiovascular, gastrointestinal, central nervous system, and antioxidant activities. Numerous bioactive compounds are present in these selected spices, such as 1,8-cineole, monoterpene hydrocarbons, γ-terpinene, cuminaldehyde, trans-anethole, fenchone, estragole, benzylisoquinoline alkaloids, eugenol, cinnamaldehyde, piperine, linalool, malabaricone C, safrole, myristicin, elemicin, sinigrin, curcumin, bidemethoxycurcumin, dimethoxycurcumin, crocin, picrocrocin, quercetin, quercetin 4'-O-β-glucoside, apiol, carvone, limonene, α-phellandrene, galactomannan, rosmarinic acid, limonene, capsaicinoids, eugenol, garcinol, and α-asarone. Other than that, various spices are used to synthesize different types of metal-based and polymer-based nanoparticles like zinc oxide, gold, silver, selenium, silica, and chitosan nanoparticles which provide beneficial health effects such as antioxidant, anti-carcinogenic, anti-diabetic, enzyme retardation effect, and antimicrobial activity. The nanoparticles can also be used in environmental pollution management like dye decolorization and in chemical industries to enhance the rate of reaction by the use of catalytic activity of the nanoparticles. The nutritional value, phytochemical properties, health advantages, and both traditional and modern applications of these spices, along with their functions in food fortification, have been thoroughly discussed in this review.
Collapse
Affiliation(s)
- Debopriya Mandal
- Department of Food Technology and Biochemical Engineering, Jadavpur University, Kolkata, 700032, India
| | - Tanmay Sarkar
- Department of Food Processing Technology, Malda Polytechnic, West Bengal State Council of Technical Education, Govt. of West Bengal, Malda, 732102, India.
| | - Runu Chakraborty
- Department of Food Technology and Biochemical Engineering, Jadavpur University, Kolkata, 700032, India.
| |
Collapse
|
32
|
Đorđevski N, Uba AI, Zengin G, Božunović J, Gašić U, Ristanović E, Ćirić A, Nikolić B, Stojković D. Chemical and Biological Investigations of Allium scorodoprasum L. Flower Extracts. Pharmaceuticals (Basel) 2022; 16:ph16010021. [PMID: 36678518 PMCID: PMC9865742 DOI: 10.3390/ph16010021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 12/20/2022] [Accepted: 12/20/2022] [Indexed: 12/28/2022] Open
Abstract
This study was designed to investigate the impact of different extraction solvent systems on the chemical composition and biological activities of Allium scorodoprasum L. (Amaryllidaceae)-the medicinal plant that was traditionally used as a remedy in the medieval period in the Balkans. Targeted chemical analysis of nine different extracts was performed by UHPLC(-)HESI-QqQ-MS/MS. Antimicrobial and antibiofilm activities of the extracts were investigated on sixteen clinical isolates of bacteria, yeasts and dermatomycetes, all isolated from infected human skin and corneal formations. Cytotoxicity and wound-healing properties were tested on human immortalized keratinocytes (HaCaT cell line). Antioxidant activity was assessed by six different assays, while beneficial potential against certain neurodegenerative diseases and type 2 diabetes was determined in selected enzyme inhibition assays coupled with molecular modeling. The results showed that the obtained extracts were rich in phenolic compounds, especially flavonoid glycosides such as rutin and kaempferol 3-O-glucoside. All of the extracts showed antimicrobial, wound-healing, antioxidant and anti-enzymatic properties. This study is the first of its kind, linking the medieval medicinal use of wild-growing flowers of A. scorodoprasum with contemporary in vitro scientific approaches.
Collapse
Affiliation(s)
- Nikoleta Đorđevski
- Laboratory of Immunology, Institute of Microbiology, Medical Military Academy, Crnotravska 17, 11000 Belgrade, Serbia
| | - Abdullahi Ibrahim Uba
- Department of Molecular Biology and Genetics, Faculty of Engineering and Natural Sciences, Kadir Has University, 34083 Istanbul, Turkey
| | - Gokhan Zengin
- Physiology and Biochemistry Research Laboratory, Department of Biology, Science Faculty, Selcuk University, 42130 Konya, Turkey
| | - Jelena Božunović
- Department of Plant Physiology, Institute for Biological Research “Siniša Stanković”—National Institute of Republic of Serbia, University of Belgrade, Bulevar Despota Stefana 142, 11000 Belgrade, Serbia
| | - Uroš Gašić
- Department of Plant Physiology, Institute for Biological Research “Siniša Stanković”—National Institute of Republic of Serbia, University of Belgrade, Bulevar Despota Stefana 142, 11000 Belgrade, Serbia
| | - Elizabeta Ristanović
- Laboratory of Immunology, Institute of Microbiology, Medical Military Academy, Crnotravska 17, 11000 Belgrade, Serbia
| | - Ana Ćirić
- Department of Plant Physiology, Institute for Biological Research “Siniša Stanković”—National Institute of Republic of Serbia, University of Belgrade, Bulevar Despota Stefana 142, 11000 Belgrade, Serbia
| | - Biljana Nikolić
- University of Belgrade, Faculty of Biology, Studentski trg 16, 11000 Belgrade, Serbia
| | - Dejan Stojković
- Department of Plant Physiology, Institute for Biological Research “Siniša Stanković”—National Institute of Republic of Serbia, University of Belgrade, Bulevar Despota Stefana 142, 11000 Belgrade, Serbia
- Correspondence: ; Tel.: +381-112-078-419
| |
Collapse
|
33
|
Ullah H, Minno AD, Santarcangelo C, Tantipongpiradet A, Dacrema M, Matteo RD, El-Seedi HR, Khalifa SAM, Baldi A, Rossi A, Daglia M. In Vitro Bioaccessibility and Anti-Inflammatory Activity of a Chemically Characterized Allium cepa L. Extract Rich in Quercetin Derivatives Optimized by the Design of Experiments. Molecules 2022; 27:9065. [PMID: 36558199 PMCID: PMC9781893 DOI: 10.3390/molecules27249065] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Revised: 11/26/2022] [Accepted: 12/06/2022] [Indexed: 12/23/2022] Open
Abstract
Allium cepa L. is a highly consumed garden crop rich in biologically active phenolic and organosulfur compounds. This study aimed to assess the in vitro bioaccessibility and anti-inflammatory effect of a chemically characterized A. cepa extract rich in quercetin and its derivatives. Different varieties of A. cepa were studied; based on the highest total phenolic content, the "Golden" variety was selected. Its extracts, obtained from the tunicate bulb, tunic, and bulb, were subjected to determination of quercetin and its derivatives with LC-MS analysis and based on the highest total quercetin content, the tunic extract was utilized for further experiments. The extraction method was optimized through a design of experiment (DoE) method via full factorial design, which showed that 40% ethanol and 1 g tunic/20 mL solvent are the best extraction conditions. HPLC analysis of the optimized tunic extract identified 14 flavonols, including 10 quercetin derivatives. As far as in vitro bioaccessibility was concerned, the increases in some quercetin derivatives following the gastro-duodenal digestion process support the bioaccessibility of these bioactive compounds. Moreover, the extract significantly inhibited the production of PGE2 in stimulated J774 cell lines, while no effects of the tunic extract were observed against the release of IL-1β, TNF-α, and nitrites. The study provided insights into the optimized extraction conditions to obtain an A. cepa tunic extract rich in bioavailable quercetin derivatives with significant anti-inflammatory effects against PGE2.
Collapse
Affiliation(s)
- Hammad Ullah
- Department of Pharmacy, University of Napoli Federico II, Via D. Montesano 49, 80131 Naples, Italy
| | - Alessandro Di Minno
- Department of Pharmacy, University of Napoli Federico II, Via D. Montesano 49, 80131 Naples, Italy
- CEINGE-Biotecnologie Avanzate, Via Gaetano Salvatore 486, 80145 Naples, Italy
| | - Cristina Santarcangelo
- Department of Pharmacy, University of Napoli Federico II, Via D. Montesano 49, 80131 Naples, Italy
| | | | - Marco Dacrema
- Department of Pharmacy, University of Napoli Federico II, Via D. Montesano 49, 80131 Naples, Italy
| | - Rita di Matteo
- Department of Pharmacy, University of Napoli Federico II, Via D. Montesano 49, 80131 Naples, Italy
| | - Hesham R. El-Seedi
- Pharmacognosy Group, Department of Pharmaceutical Biosciences, Uppsala University, Biomedical Centre, Box 591, SE 751 24 Uppsala, Sweden
- International Research Center for Food Nutrition and Safety, Jiangsu University, Zhenjiang 212013, China
| | - Shaden A. M. Khalifa
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, SE 106 91 Stockholm, Sweden
| | - Alessandra Baldi
- Department of Pharmacy, University of Napoli Federico II, Via D. Montesano 49, 80131 Naples, Italy
| | - Antonietta Rossi
- Department of Pharmacy, University of Napoli Federico II, Via D. Montesano 49, 80131 Naples, Italy
| | - Maria Daglia
- Department of Pharmacy, University of Napoli Federico II, Via D. Montesano 49, 80131 Naples, Italy
- International Research Center for Food Nutrition and Safety, Jiangsu University, Zhenjiang 212013, China
| |
Collapse
|
34
|
Zhang L, García-Pérez P, Arikan B, Elbasan F, Nur Alp F, Balci M, Zengin G, Yildiztugay E, Lucini L. The exogenous application of wood vinegar induces a tissue- and dose-dependent elicitation of phenolics and functional traits in onion (Allium cepa L.). Food Chem 2022. [DOI: 10.1016/j.foodchem.2022.134926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
35
|
Elegbeleye JA, Krishnamoorthy S, Bamidele OP, Adeyanju AA, Adebowale OJ, Agbemavor WSK. Health-promoting foods and food crops of West-Africa origin: The bioactive compounds and immunomodulating potential. J Food Biochem 2022; 46:e14331. [PMID: 36448596 DOI: 10.1111/jfbc.14331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 05/24/2022] [Accepted: 06/20/2022] [Indexed: 12/05/2022]
Abstract
The rural communities of the sub-Sahara regions in Africa are rich in diverse indigenous culinary knowledge and foods, food crops, and condiments such as roots/tubers, cereal, legumes/pulses, locust beans, and green leafy vegetables. These food crops are rich in micronutrients and phytochemicals, which have the potentials to address hidden hunger as well as promote health when consumed. Some examples of these are fermented foods such as ogi and plants such as Vernonia amygdalina (bitter leaf), Zingiber officinales (garlic), Hibiscus sabdariffa (Roselle), and condiments. Food crops from West Africa contain numerous bioactive substances such as saponins, alkaloids, tannins, phenolics, flavonoids, and monoterpenoid chemicals among others. These bioresources have proven biological and pharmacological activities due to diverse mechanisms of action such as immunomodulatory, anti-inflammatory, antipyretic, and antioxidant activities which made them suitable as candidates for nutraceuticals and pharma foods. This review seeks to explore the different processes such as fermentation applied during food preparation and food crops of West-African origin with health-promoting benefits. The different bioactive compounds present in such food or food crops are discussed extensively as well as the diverse application, especially regarding respiratory diseases. PRACTICAL APPLICATIONS: The plants and herbs summarized here are more easily accessible and affordable by therapists and others having a passion for promising medicinal properties of African-origin plants.The mechanisms and unique metabolic potentials of African food crops discussed in this article will promote their applicability as a template molecule for novel drug discoveries in treatment strategies for emerging diseases. This compilation of antiviral plants will help clinicians and researchers bring new preventive strategies in combating COVID-19 like viral diseases, ultimately saving millions of affected people.
Collapse
Affiliation(s)
| | - Srinivasan Krishnamoorthy
- Department of Technology Dissemination, National Institute of Food Technology, Entrepreneurship and Management, Thanjavur (NIFTEM-T), Thanjavur, Tamil Nadu, India
| | | | - Adeyemi A Adeyanju
- Department of Food Science and Microbiology, Landmark University, Omu-Aran, Nigeria
| | | | - Wisdom Selorm Kofi Agbemavor
- Radiation Technology Centre, Biotechnology and Nuclear Agriculture Research Institute, Ghana Atomic Energy Commission, Legon Accra, Ghana
| |
Collapse
|
36
|
Laskowska AK, Wilczak A, Skowrońska W, Michel P, Melzig MF, Czerwińska ME. Fruits of Hippophaë rhamnoides in human leukocytes and Caco-2 cell monolayer models—A question about their preventive role in lipopolysaccharide leakage and cytokine secretion in endotoxemia. Front Pharmacol 2022; 13:981874. [PMID: 36249809 PMCID: PMC9561609 DOI: 10.3389/fphar.2022.981874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 08/10/2022] [Indexed: 11/13/2022] Open
Abstract
Preparations from Hippophaë rhamnoides L. (sea buckthorn) have been traditionally used in the treatment of skin and digestive disorders, such as gastritis, gastric and duodenal ulcers, uterine erosions, as well as oral, rectal, and vaginal mucositis, in particular in the Himalayan and Eurasian regions. An influence of an aqueous extract from the fruits of H. rhamnoides (HR) on leakage of lipopolysaccharide (LPS) from Escherichia coli through gut epithelium developed from the human colorectal adenocarcinoma (Caco-2) monolayer in vitro and glucose transporter 2 (GLUT2) translocation were the principal objectives of the study. Additionally, the effect of HR on the production of pro- and anti-inflammatory cytokines (interleukins: IL-8, IL-1β, IL-10, IL-6; tumor necrosis factor: TNF-α) by the Caco-2 cell line, human neutrophils (PMN), and peripheral blood mononuclear cells (PBMC) was evaluated. The concentration of LPS on the apical and basolateral sides of the Caco-2 monolayer was evaluated with a Limulus Amebocyte Lysate (LAL) assay. GLUT2 translocation was evaluated using an immunostaining assay, whereas secretion of cytokines by cell cultures was established with an enzyme-linked immunosorbent (ELISA) assay. HR (500 μg/ml) significantly inhibited LPS leakage through epithelial monolayer in vitro in comparison with non-treated control. The treatment of Caco-2 cells with HR (50–100 μg/ml) showed GLUT2 expression similar to the non-treated control. HR decreased the secretion of most pro-inflammatory cytokines in all tested models. HR might prevent low-grade chronic inflammation caused by metabolic endotoxemia through the prevention of the absorption of LPS and decrease of chemotactic factors released by immune and epithelial cells, which support its use in metabolic disorders in traditional medicine.
Collapse
Affiliation(s)
- Anna K. Laskowska
- Department of Pharmaceutical Microbiology, Faculty of Pharmacy, Medical University of Warsaw, Warsaw, Poland
- Centre for Preclinical Research, Medical University of Warsaw, Warsaw, Poland
| | - Aleksandra Wilczak
- Student Scientific Association, Department of Pharmacognosy and Molecular Basis of Phytotherapy, Faculty of Pharmacy, Medical University of Warsaw, Warsaw, Poland
| | - Weronika Skowrońska
- Department of Pharmacognosy and Molecular Basis of Phytotherapy, Faculty of Pharmacy, Medical University of Warsaw, Warsaw, Poland
| | - Piotr Michel
- Department of Pharmacognosy, Faculty of Pharmacy, Medical University of Lodz, Lodz, Poland
| | | | - Monika E. Czerwińska
- Centre for Preclinical Research, Medical University of Warsaw, Warsaw, Poland
- Department of Biochemistry and Pharmacogenomics, Faculty of Pharmacy, Medical University of Warsaw, Warsaw, Poland
- *Correspondence: Monika E. Czerwińska,
| |
Collapse
|
37
|
Comparative Studies on a Standardized Subfraction of Red Onion Peel Ethanolic Extract (Plant Substance), Quercetin (Pure Compound), and Their Cell Mechanism and Metabolism on MDA-MB-231. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:9284063. [PMID: 36118099 PMCID: PMC9473877 DOI: 10.1155/2022/9284063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 07/28/2022] [Accepted: 08/12/2022] [Indexed: 11/17/2022]
Abstract
This study indicates the presence of quercetin in subfraction F1 and the standardized value of F1 derived from research using ultra-performance liquid chromatography (UPLC) and AlCl3 colorimetric assays, which further proved that both F1 and quercetin are potential growth inhibitors in MDA-MB-231 cells by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. In the process, staining of F1-treated cells with annexin/propidium iodide (PI) reduced cell proliferation and induced only S and G2 phases of cell cycle arrest in the treated cells by flow cytometry. Quercetin reduced cell proliferation by inducing apoptosis and S phase arrest. The 5′-bromo-2′-deoxyuridine (BrdU) incorporation of DNA synthesis in MDA-MB-231 cells was also inhibited after F1 and quercetin treatments. F1 and quercetin induced CYP1A1 and CYP1B1 gene expression, but only F1 induced CYP2S1 gene expression in the treated cells. Both F1 and quercetin inhibited the proliferation of MDA-MB-231 cells in different ways, but F1 is likely a better potential anticancer agent derived from the green approach towards breast cancer treatment.
Collapse
|
38
|
Cascajosa-Lira A, Andreo-Martínez P, Prieto AI, Baños A, Guillamón E, Jos A, Cameán AM. In Vitro Toxicity Studies of Bioactive Organosulfur Compounds from Allium spp. with Potential Application in the Agri-Food Industry: A Review. Foods 2022; 11:2620. [PMID: 36076806 PMCID: PMC9455835 DOI: 10.3390/foods11172620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 08/05/2022] [Accepted: 08/25/2022] [Indexed: 11/25/2022] Open
Abstract
Organosulfur compounds (OSCs) are secondary metabolites produced by different Allium species which present important biological activities such as antimicrobial, antioxidant, anti-inflammatory antidiabetic, anticarcinogenic, antispasmodic, etc. In recent years, their use has been promoted in the agri-food industry as a substitute for synthetic preservatives, increasing potential accumulative exposure to consumers. Before their application in the food industry, it is necessary to pass a safety assessment as specified by the European Food Safety Authority (EFSA). This work reviews the scientific literature on OSCs regarding their in vitro toxicity evaluation following PRISMA guidelines for systematic reviews. Four electronic research databases were searched (Web of Science, Scopus, Science Database and PubMed) and a total of 43 works were selected according to predeterminate inclusion and exclusion criteria. Different data items and the risk of bias for each study were included. Currently, there are very few in vitro studies focused on investigating the potential toxicity of OSCs. Most research studies aimed to evaluate the cytotoxicity of OSCs to elucidate their antiproliferative effects focusing on their therapeutic aspects using cancer cell lines as the main experimental model. The results showed that diallyl disulfide (DADS) is the compound most studied, followed by diallyl trisulfide (DATS), diallyl sulfide (DAS), Allicin and Ajoene. Only 4 studies have been performed specifically to explore the safety of OSCs for agri-food applications, and genotoxicity studies are limited. More toxicity studies of OSCs are necessary to ensure consumers safety and should mainly be focused on the evaluation of genotoxicity and long-term toxicity effects.
Collapse
Affiliation(s)
- Antonio Cascajosa-Lira
- Área de Toxicología, Facultad de Farmacia, Universidad de Sevilla, Profesor García González n 2, 41012 Seville, Spain
| | - Pedro Andreo-Martínez
- Department of Agricultural Chemistry, Faculty of Chemistry, Campus of Espinardo, University of Murcia, 30100 Murcia, Spain
| | - Ana Isabel Prieto
- Área de Toxicología, Facultad de Farmacia, Universidad de Sevilla, Profesor García González n 2, 41012 Seville, Spain
| | - Alberto Baños
- DMC Research Center, Camino de Jayena, 82, 18620 Alhendín, Spain
| | | | - Angeles Jos
- Área de Toxicología, Facultad de Farmacia, Universidad de Sevilla, Profesor García González n 2, 41012 Seville, Spain
| | - Ana M. Cameán
- Área de Toxicología, Facultad de Farmacia, Universidad de Sevilla, Profesor García González n 2, 41012 Seville, Spain
| |
Collapse
|
39
|
Melnyk N, Vlasova I, Skowrońska W, Bazylko A, Piwowarski JP, Granica S. Current Knowledge on Interactions of Plant Materials Traditionally Used in Skin Diseases in Poland and Ukraine with Human Skin Microbiota. Int J Mol Sci 2022; 23:ijms23179644. [PMID: 36077043 PMCID: PMC9455764 DOI: 10.3390/ijms23179644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 08/19/2022] [Accepted: 08/21/2022] [Indexed: 11/16/2022] Open
Abstract
Skin disorders of different etiology, such as dermatitis, atopic dermatitis, eczema, psoriasis, wounds, burns, and others, are widely spread in the population. In severe cases, they require the topical application of drugs, such as antibiotics, steroids, and calcineurin inhibitors. With milder symptoms, which do not require acute pharmacological interventions, medications, dietary supplements, and cosmetic products of plant material origin are gaining greater popularity among professionals and patients. They are applied in various pharmaceutical forms, such as raw infusions, tinctures, creams, and ointments. Although plant-based formulations have been used by humankind since ancient times, it is often unclear what the mechanisms of the observed beneficial effects are. Recent advances in the contribution of the skin microbiota in maintaining skin homeostasis can shed new light on understanding the activity of topically applied plant-based products. Although the influence of various plants on skin-related ailments are well documented in vivo and in vitro, little is known about the interaction with the network of the skin microbial ecosystem. The review aims to summarize the hitherto scientific data on plant-based topical preparations used in Poland and Ukraine and indicate future directions of the studies respecting recent developments in understanding the etiology of skin diseases. The current knowledge on investigations of interactions of plant materials/extracts with skin microbiome was reviewed for the first time.
Collapse
Affiliation(s)
- Natalia Melnyk
- Microbiota Lab, Department of Pharmacognosy and Molecular Basis of Phytotherapy, Medical University of Warsaw, Banacha 1, 02-097 Warsaw, Poland
| | - Inna Vlasova
- Microbiota Lab, Department of Pharmacognosy and Molecular Basis of Phytotherapy, Medical University of Warsaw, Banacha 1, 02-097 Warsaw, Poland
- Department of Pharmacognosy, National University of Pharmacy, 53 Pushkinska Str., 61002 Kharkiv, Ukraine
| | - Weronika Skowrońska
- Department of Pharmacognosy and Molecular Basis of Phytotherapy, Medical University of Warsaw, Banacha 1, 02-097 Warsaw, Poland
| | - Agnieszka Bazylko
- Department of Pharmacognosy and Molecular Basis of Phytotherapy, Medical University of Warsaw, Banacha 1, 02-097 Warsaw, Poland
| | - Jakub P. Piwowarski
- Microbiota Lab, Department of Pharmacognosy and Molecular Basis of Phytotherapy, Medical University of Warsaw, Banacha 1, 02-097 Warsaw, Poland
| | - Sebastian Granica
- Microbiota Lab, Department of Pharmacognosy and Molecular Basis of Phytotherapy, Medical University of Warsaw, Banacha 1, 02-097 Warsaw, Poland
- Correspondence: ; Tel.: +48-225-720-9053
| |
Collapse
|
40
|
Yıkmış S, Erdal B, Bozgeyik E, Levent O, Yinanç A. Evaluation of purple onion waste from the perspective of sustainability in gastronomy: Ultrasound-treated vinegar. Int J Gastron Food Sci 2022. [DOI: 10.1016/j.ijgfs.2022.100574] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
41
|
The Phytochemistry and Pharmacology of Tulbaghia, Allium, Crinum and Cyrtanthus: ‘Talented’ Taxa from the Amaryllidaceae. Molecules 2022; 27:molecules27144475. [PMID: 35889346 PMCID: PMC9316996 DOI: 10.3390/molecules27144475] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 06/24/2022] [Accepted: 06/28/2022] [Indexed: 11/17/2022] Open
Abstract
Amaryllidaceae is a significant source of bioactive phytochemicals with a strong propensity to develop new drugs. The genera Allium, Tulbaghia, Cyrtanthus and Crinum biosynthesize novel alkaloids and other phytochemicals with traditional and pharmacological uses. Amaryllidaceae biomolecules exhibit multiple pharmacological activities such as antioxidant, antimicrobial, and immunomodulatory effects. Traditionally, natural products from Amaryllidaceae are utilized to treat non-communicable and infectious human diseases. Galanthamine, a drug from this family, is clinically relevant in treating the neurocognitive disorder, Alzheimer’s disease, which underscores the importance of the Amaryllidaceae alkaloids. Although Amaryllidaceae provide a plethora of biologically active compounds, there is tardiness in their development into clinically pliable medicines. Other genera, including Cyrtanthus and Tulbaghia, have received little attention as potential sources of promising drug candidates. Given the reciprocal relationship of the increasing burden of human diseases and limited availability of medicinal therapies, more rapid drug discovery and development are desirable. To expedite clinically relevant drug development, we present here evidence on bioactive compounds from the genera Allium, Tulgbaghia, Cyrtanthus and Crinum and describe their traditional and pharmacological applications.
Collapse
|
42
|
LOW PREVALENCE OF COVID-19 IN LAOS AND CAMBODIA: DOES DIET PLAY A ROLE? ACTA MEDICA LEOPOLIENSIA 2022. [DOI: 10.25040/aml2022.1-2.161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The study aims to review the involvement of different dietary habits in Laotian, Cambodian, and Vietnamese populations in reducing COVID19 impact.
Materials and Methods. The methods of collection, systematization, analysis and generalization of information data have been used. The analysis of literature in scientific databases and analytical platforms by the listed keywords has been performed; all relevant references in the found sources have also been reviewed.
Results and Discussion. Coronavirus disease (COVID-19) outbreak is an ongoing pandemic caused by a highly pathogenic human coronavirus known as SARS-CoV2. Current epidemiology reported that more than 500 million cases of COVID-19 occurred in more than 180 countries worldwide. When the upper respiratory tract gets infected by low pathogenetic HCoVs, it typically triggers a mild respiratory disease. In contrast, when the lower airways get infected by highly pathogenic HCoVs, such as SARS-CoV2, acute respiratory distress syndrome (ARDS) may occur and even fatal pneumonia. Such a situation causes the need for an urgent search of effective treatment measures. A very low incidence of SARS-CoV-2 in Laos and Cambodia, as well as low mortality rate due to COVID-19 in Vietnam and Laos, are extremely interesting, especially because of their early exposure to the virus, continuing ties to China, relative poverty, and high population density. The use of several spices and aromatic herbs as natural treatments for several illnesses, including viral infections, has been reported since a long time ago. The research reviewed three integral elements of Laotian, Cambodian, and Vietnamese diets, such as special culinary spices and herbs, coconut oil, and palm oil-rich for saturated fatty acids as well as fermented shrimp paste. Environmental and population genetic causes may be forwarded but moreover local dietary habits may have even a role in this evidence. Therefore, all these items highlight the possibility of a significant contribution of local cuisine and diet into the impact on appropriate anti-inflammatory and immune-resistant mechanisms of the human population.
Conclusions. The review on Vietnam, Cambodia, and Laos inhabitants' diet helped to suggest the dietary factors having the contributing potential of reducing the severity of SARS-CoV-2 symptoms.
Collapse
|
43
|
Eldeek HE, Farrag HMM, Tolba MEM, El-Deek HE, Ali MO, Ibraheim ZZ, Bayoumi SA, Hassanin ESA, Alkhalil SS, Huseein EAEHM. Amoebicidal effect of Allium cepa against Allovahlkampfia spelaea: A keratitis model. Saudi Pharm J 2022; 30:1120-1136. [PMID: 36164578 PMCID: PMC9508644 DOI: 10.1016/j.jsps.2022.06.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 06/10/2022] [Indexed: 11/27/2022] Open
Abstract
Allovahlkampfia spelaea (A. spelaea) is a free-living amoeba, proved to cause Acanthamoeba-like keratitis with quite difficult treatment. This study aimed to evaluate the amoebicidal effect of Allium cepa (A. cepa) on A. spelaea trophozoites and cysts both in vitro and in vivo using Chinchilla rabbits as an experimental model of this type of keratitis. Chemical constituents of the aqueous extract of A. cepa were identified using Liquid Chromatography-mass Spectrometry (LC-MS). In vitro, A. cepa showed a significant inhibitory effect on trophozoites and cysts compared to the reference drug, chlorhexidine (CHX) as well as the non-treated control (P < 0.05) with statistically different effectiveness in terms of treatment durations and concentrations. No cytotoxic effect of A. cepa on corneal cell line was found even at high concentrations (32 mg/ml) using agar diffusion method. The in vivo results confirmed the efficacy of A. cepa where the extract enhanced keratitis healing with complete resolution of corneal ulcers in 80% of the infected animals by day 14 (post infection)pi compared to 70% recovery with CHX after 20 treatment days. The therapeutic effect was also approved at histological, immune-histochemical, and parasitological levels. Our findings support the potential use of A. cepa as an effective agent against A. spelaea keratitis.
Collapse
|
44
|
Ethnobotanical survey of medicinal plants of bejaia localities from algeria to prevent and treat coronavirus (COVID-19) infection shortened title: phytomedicine to manage COVID-19 pandemic. ADVANCES IN TRADITIONAL MEDICINE 2022. [PMCID: PMC9148845 DOI: 10.1007/s13596-022-00649-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
The propagation of the COVID-19 pandemic in Algeria has pushed the population searching alternative therapies as preventives and treatment selections. The use of medicinal plants is a promising alternative solution to strengthen immunity and chase COVID-19. The aim of this study was to carry out an ethnobotanical survey in the Bejaia department (Algeria) to identify the plants used during the current pandemic. The study was conducted from February to May 2021. The interviews were conducted with 400 informants in order to assemble socio-demographic and floristic features of the respondents and used plants. The data analysis was performed by means of Relative Frequency of Citation (RFC), Family Importance Value (FIV), and Plant Part Value (PPV). 23 medicinal plants belonging to 12 families were adopted by the population of the Bejaia localities to prevent and treat COVID-19 infection. Aloysia citriodora Palau (RFC = 0.248), Mentha spicata L. (RFC = 0.145), Citrus limon (L.) Osbeck (RFC = 0.135), Thymus vulgaris L. (RFC = 0.118), Zingiber officinalis Roscoe (RFC = 0.09), Artemisia herba-alba Asso (RFC = 0.065), and Eucalyptus globules labill (RFC = 0.063) were the most cited species. The leaves of these plants which are used (65%) in the form of infusion (43.6%) are administered orally (95.03%) to treat and relieve certain symptoms of COVID-19. The current survey is the only one in the Bejaia department regarding the exploitation of medicinal herbs in the COVID-19 pandemic. These plants can be used as a platform to manage COVID-19.
Collapse
|
45
|
The Activity of Plant-Derived Ren’s Oligopeptides-1 against the Pseudorabies Virus. Animals (Basel) 2022; 12:ani12111341. [PMID: 35681806 PMCID: PMC9179334 DOI: 10.3390/ani12111341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 05/21/2022] [Accepted: 05/22/2022] [Indexed: 11/17/2022] Open
Abstract
Newly synthesized Ren’s oligopeptides-1 was found to have an antiviral effect in clinical trials, and the purpose of this study was to further demonstrate the antiviral activity of Ren’s oligopeptides-1 against the PRV 152-GFP strain. We used the real-time cell analysis system (RTCA) to detect the cytotoxicity of different concentrations of Ren’s oligopeptides-1. We then applied high content screening (HCS) to detect the antiviral activity of Ren’s oligopeptides-1 against PRV. Meanwhile, the fluorescence signal of the virus was collected in real time and the expression levels of the related genes in the PK15 cells infected with PRV were detected using real-time PCR. At the mRNA level, we discovered that, at a concentration of 6 mg/mL, Ren’s oligopeptides-1 reduced the expression of pseudorabies virus (PRV) genes such as IE180, UL18, UL54, and UL21 at a concentration of 6 mg/mL. We then determined that Ren’s oligopeptides-1 has an EC50 value of 6 mg/mL, and at this level, no cytotoxicity was observed.
Collapse
|
46
|
Planting Date and Different N-Fertilization Rates Differently Modulate Agronomic and Economic Traits of a Sicilian Onion Landrace and of a Commercial Variety. HORTICULTURAE 2022. [DOI: 10.3390/horticulturae8050454] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The onion is one of the most widespread bulb vegetables worldwide. Onion cultivation is common in Sicily, as is the use of local genotypes. Cultivation practices are of particular interest in optimizing yield, quality, and profits. The aim of this study was to assess the agronomic response of a Sicilian landrace (Bianca Calda di Comiso, coded L1) and a commercial variety (Bianca di Maggio, coded V1) to different planting dates and N fertilization rates. An economic appraisal was also performed. The two genotypes were assessed using an experimental split-split-plot design with four levels of nitrogen rates (0, 80, 160, and 220 kg N ha−1) and two different planting dates (8 October 2005 to 9 October 2006 for the early planting date, and 27 December 2005 to 30 December 2006 for the traditional planting date). The marketable yield and production parameters were significantly influenced by the nitrogen dose: higher doses led to a higher total yield, with yield peaks above 60 t ha−1 and the marketable yield ranging from 23% to 54%. Simultaneously, decreases in the firmness (from 7% to 19%) and scale content (from 1% to 3%) were also reported. The L1 landrace showed a higher production than the V1 variety. The crop year did not significantly affect the results, and the traditional planting date appeared to be the most suitable choice in obtaining the best agronomic response. Economic analysis showed that the L1 landrace, with high-N application treatments, produced greater net benefits and marginal rates of return. Thus, the L1 landrace exposed to the highest dosages of nitrogen (160 or 220 kg ha−1) and transplanted during the traditional planting period is the best choice from agronomic and economic points of view.
Collapse
|
47
|
Tabussam N, Rana RM, Wattoo FM, Khan AI, Amir RM, Javed T, Ahmar S, Dessoky ES, Abdelsalam NR. Single nucleotide polymorphism based assessment of genetic diversity in local and exotic onion genotypes. Mol Biol Rep 2022; 49:5511-5520. [PMID: 35484441 DOI: 10.1007/s11033-022-07431-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 03/25/2022] [Indexed: 12/22/2022]
Abstract
BACKGROUND Onion is an economically important vegetable cultivated worldwide on a large scale. Liberal exchange of germplasm and frequent selection caused narrow genetic diversity in most crops, including onion. Thus, it is essential to estimate and understand genetic diversity before launching of any breeding program. The current study was conducted to explore genetic diversity among 39 short-day onion genotypes (indigenous and exotic). METHODS AND RESULTS All the genotypes were evaluated for various phenotypic traits by using single nucleotide polymorphism (SNP) genotyping based on KASPar assays. Principal component analysis (PCA) was performed to determine the variability among genotypes. The four principal components with eigenvalue greater than 1 accounted for 67.5656% variability for quantitative traits, whereas first five principal components with eigenvalue greater than 0.7 accounted for 86.24% variation among the genotypes for qualitative traits. The principal component analysis identified diverse traits including bulb weight, bulb diameter, plant height, number of survived plants and vitamin C. These traits were further analyzed through ANOVA (Analysis of Variance) following augmented block design to describe genotypic variability for selected traits. Onion genotypes showed significant variation for bulb weight, bulb diameter and Vitamin C. Genotypic clustering based on PCA showed that 15 indigenous genotypes were clustered with exotic genotypes (14) while remaining indigenous genotypes (10) were distant. A total of 30 SNPs were used for assessment of genetic diversity out of these, 24 SNPs were detected with polymorphic loci (0.8%, heterozygosity), while only six markers were with monomorphic sites (0.2% heterozygosity). Subsequently, population structure analysis revealed three different populations indicating significant variability. CONCLUSION Conclusively, a significant similarity between exotic and a group of indigenous genotypes indicates direct adoption of exotic genotypes or their sister lines. A further broadening of the genetic base is required and could be done by crossing distant genotypes.
Collapse
Affiliation(s)
- Najma Tabussam
- Department of Plant Breeding and Genetics, PMAS-Arid Agriculture University Rawalpindi, Rawalpindi, Pakistan
| | - Rashid Mehmood Rana
- Department of Plant Breeding and Genetics, PMAS-Arid Agriculture University Rawalpindi, Rawalpindi, Pakistan.
| | - Fahad Masoud Wattoo
- Department of Plant Breeding and Genetics, PMAS-Arid Agriculture University Rawalpindi, Rawalpindi, Pakistan
| | - Azeem Iqbal Khan
- Department of Plant Breeding and Genetics, University of Agriculture Faisalabad, Faisalabad, Pakistan
| | - Rai Muhammad Amir
- Institute of Food &, Nutritional Sciences PMAS-Arid Agriculture University, Rawalpindi, Pakistan
| | - Talha Javed
- College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Sunny Ahmar
- Department of Plant Breeding and Genetics, PMAS-Arid Agriculture University Rawalpindi, Rawalpindi, Pakistan
| | - Eldessoky S Dessoky
- Department of Biology, College of Science, Taif University, P.O. Box 11099, Taif, 21944, Saudi Arabia
| | - Nader R Abdelsalam
- Agricultural Botany Department, Faculty of Agriculture (Saba Basha), Alexandria University, Alexandria, 21531, Egypt
| |
Collapse
|
48
|
Phenolic profile and investigation of biological activities of Allium scorodoprasum L. subsp. rotundum. FOOD BIOSCI 2022. [DOI: 10.1016/j.fbio.2022.101548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
49
|
Bibi N, Shah MH, Khan N, Al-Hashimi A, Elshikh MS, Iqbal A, Ahmad S, Abbasi AM. Variations in Total Phenolic, Total Flavonoid Contents, and Free Radicals' Scavenging Potential of Onion Varieties Planted under Diverse Environmental Conditions. PLANTS (BASEL, SWITZERLAND) 2022; 11:plants11070950. [PMID: 35406930 PMCID: PMC9002954 DOI: 10.3390/plants11070950] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 03/24/2022] [Accepted: 03/25/2022] [Indexed: 05/03/2023]
Abstract
Genetic diversity and Agro-climatic conditions contribute significantly to the agronomic and morphological features of the food plant species, and their nutraceutical potential. The present study was intended to evaluate the impact of growing conditions on total phenolic and total flavonoid contents, and in vitro antioxidant potential in the bulbs and leaves of onion varieties planted under diverse environmental conditions. Standard analytical methods were used to quantify total phenolic content (TPC), total flavonoid content (TFC), and free radicals’ scavenging/antioxidant capacity. The impact of climatic and soil conditions was assessed using statistical tools. In general, onion varieties cultivated at three different locations viz. Kalar Kahar, Lahore and Swabi exhibited significant variations in TPC and TFC, and antioxidant activities. The bulbs and leaves of Mustang (V1) variety planted at Lahore and Swabi had significantly (p < 0.05), high levels of TPC (659.5 ± 6.59, and 631.1 ± 8.58 mg GAE/100 g, respectively). However, leaves of Red Orb (V2) and bulbs of Mustang (V1), and Golden Orb (V6), harvested from Kalar Kahar depicted the highest concentration of TFC (432.5 ± 10.3, 303.0 ± 6.67, and 303.0 ± 2.52 mg QE/100 g DW, respectively). Likewise, bulbs of V1 planted at Kalar Kahar, Lahore and Swabi exhibited maximum inhibition of DPPH, ABTS, and H2O2 radicals (79.01 ± 1.49, 65.38 ± 0.99, and 59.76 ± 0.90%, respectively). Golden Orb (V6) harvested from Lahore had the highest scavenging of OH radical (67.40 ± 0.09%). Likewise, bulbs of V1 variety planted at KalarKahar and Swabi had significant capacity to scavenge ferric ions (415.1 ± 10.6 mg GAE/100 g DW), and molybdate ions (213.7 ± 0.00 mg AAE/100 g DW). Conversely, leaves of Amazon (V8), planted at Lahore and Swabi depicted significant levels of DPPH, ABTS, H2O2 radical scavenging (90.69 ± 0.26, 63.55 ± 1.06, 51.86 ± 0.43%, respectively), and reduction of ferric ions (184.2 ± 6.75 mg GAE/100 g DW). V6 leaves harvested from Lahore and that of Super Sarhad (V3) from Swabi showed the highest inhibition of OH radical (61.21 ± 0.79%), and molybdate ions (623.6 ± 0.12 mg AAE/100 g DW), respectively. Pearson correlation and principal component analysis revealed strong relationships of climatic conditions, soil properties and elevation with TPC, TFC and free radicals’ scavenging potential in the bulbs and leaves of onion varieties. The variations in the total phenolic and flavonoid contents, and antioxidant potential of different varieties, and their associations with climatic and soil factors revealed the complexity of the growing conditions and genetic makeup that imposed significant impacts on the synthesis of secondary metabolites and nutraceutical potential of food and medicinal plant species.
Collapse
Affiliation(s)
- Nusrat Bibi
- Department of Environmental Sciences, COMSATS University Islamabad, Abbottabad 22060, Pakistan; (N.B.); (A.I.)
| | - Munir H. Shah
- Department of Chemistry, Quaid-I-Azam University, Islamabad 45320, Pakistan;
| | - Nadeem Khan
- Department of Breeding and Genomics, Magnus Kahl Seeds (Pty), 6A Dairy Drive Coburg North, Coburg, VIC 3058, Australia;
| | - Abdulrahman Al-Hashimi
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia; (A.A.-H.); (M.S.E.)
| | - Mohamed Soliman Elshikh
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia; (A.A.-H.); (M.S.E.)
| | - Akhtar Iqbal
- Department of Environmental Sciences, COMSATS University Islamabad, Abbottabad 22060, Pakistan; (N.B.); (A.I.)
| | - Shakeel Ahmad
- School of Environment, Tsinghua University, Beijing 100048, China;
| | - Arshad Mehmood Abbasi
- Department of Environmental Sciences, COMSATS University Islamabad, Abbottabad 22060, Pakistan; (N.B.); (A.I.)
- Correspondence: or
| |
Collapse
|
50
|
Yan JK, Zhu J, Liu Y, Chen X, Wang W, Zhang H, Li L. Recent advances in research on Allium plants: functional ingredients, physiological activities, and applications in agricultural and food sciences. Crit Rev Food Sci Nutr 2022; 63:8107-8135. [PMID: 35343832 DOI: 10.1080/10408398.2022.2056132] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Fruits and vegetables (FVs) have long been a major source of nutrients and dietary phytochemicals with outstanding physiological properties that are essential for protecting humans from chronic diseases. Moreover, the growing demand of consumers for nutritious and healthy foods is greatly promoting the increased intake of FVs. Allium (Alliaceae) is a perennial bulb plant genus of the Liliaceae family. They are customarily utilized as vegetable, medicinal, and ornamental plants and have an important role in agriculture, aquaculture, and the pharmaceutical industry. Allium plants produce abundant secondary metabolites, such as organosulfur compounds, flavonoids, phenols, saponins, alkaloids, and polysaccharides. Accordingly, Allium plants possess a variety of nutritional, biological, and health-promoting properties, including antimicrobial, antioxidant, antitumor, immunoregulatory, antidiabetic, and anti-inflammatory effects. This review aims to highlight the advances in the research on the bioactive components, physiological activities and clinical trials, toxicological assessment for safety, and applications of different Allium plants. It also aims to cover the direction of future research on the Allium genus. This review is expected to provide theoretical reference for the comprehensive development and utilization of Allium plants in the fields of functional foods, medicine, and cosmetics.
Collapse
Affiliation(s)
- Jing-Kun Yan
- Key Laboratory of Healthy Food Development and Nutrition Regulation of China National Light Industry, School of Chemical Engineering and Energy Technology, Dongguan University of Technology, Dongguan, China
| | - Jie Zhu
- Key Laboratory of Healthy Food Development and Nutrition Regulation of China National Light Industry, School of Chemical Engineering and Energy Technology, Dongguan University of Technology, Dongguan, China
| | - Yujia Liu
- Key Laboratory of Healthy Food Development and Nutrition Regulation of China National Light Industry, School of Chemical Engineering and Energy Technology, Dongguan University of Technology, Dongguan, China
| | - Xu Chen
- Key Laboratory of Healthy Food Development and Nutrition Regulation of China National Light Industry, School of Chemical Engineering and Energy Technology, Dongguan University of Technology, Dongguan, China
| | - Wenhan Wang
- Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, National Engineering Research Center of Edible Fungi, Key Laboratory of Edible Fungi Resources and Utilization (South), Ministry of Agriculture, Shanghai, China
| | - Henan Zhang
- Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, National Engineering Research Center of Edible Fungi, Key Laboratory of Edible Fungi Resources and Utilization (South), Ministry of Agriculture, Shanghai, China
| | - Lin Li
- Key Laboratory of Healthy Food Development and Nutrition Regulation of China National Light Industry, School of Chemical Engineering and Energy Technology, Dongguan University of Technology, Dongguan, China
| |
Collapse
|