1
|
Wang Y, Wang J, Sheng Y, Zhao C, Xu S, Zhou Y. Development and validation of a TRFI-based rapid quantitative test strip featuring a broad quantification range for zearalenone. Food Chem 2025; 480:143927. [PMID: 40138835 DOI: 10.1016/j.foodchem.2025.143927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2024] [Revised: 03/12/2025] [Accepted: 03/16/2025] [Indexed: 03/29/2025]
Abstract
Zearalenone (ZEN) contamination levels in grains and feeds are highly variable, yet existing detection methods face critical trade-offs between detection range and field applicability. Conventional immunochromatographic strips typically achieve only 10-1000 μg/kg linearity, while confirmatory LC-MS/MS requires >3 h/sample. To bridge this gap, we developed a time-resolved fluorescence immunochromatographic (TRFI) test strip for rapid ZEN quantification through three key innovations: optimized 300 nm fluorescent microsphere (FM) with a 2:1 FM:ZEN-mAb ratio to suppress Hook effect, Tween 20-enhanced sample dilution (2 % v/v) reducing matrix interference (CV <4.14 %), and dynamic reaction control enabling 6-min quantification. The TRFI-ZEN strips achieved a broad quantification range (20-2500 μg/kg) and high accuracy (recovery rates 91-102 %) in maize. Accelerated stability tests confirmed <4 % signal variation after 60 days at 37 °C. Field validation across 90 field samples demonstrated 0.9987 Pearson correlation with LC-MS/MS, detecting 94.44 % contamination rate consistent with global surveys. Crucially, the 20 μg/kg LOQ complies with grain safety standard of China (GB 2761-2017; 60 μg/kg) and European Union feed regulations (EU Commission Regulation No 574/2011; 500 μg/kg), while the 2500 μg/kg upper limit covers severe contamination scenarios. This method enables rapid on-site decisions (<15 min/sample) at grain receiving stations when coupled with representative sampling, reducing LC-MS/MS confirmation costs by >80 % through high-confidence pre-screening.
Collapse
Affiliation(s)
- Yongjuan Wang
- Jiangsu Agri-Animal Husbandry Vocational College, Taizhou, Jiangsu 225300, PR China.
| | - Jingneng Wang
- Shanghai Xiongtu Biotechnology Co., Ltd., Shanghai 201613, PR China
| | - Yu Sheng
- Wuxi Center for the Monitoring and Quality Assessment of Agricultural Products, Wuxi, Jiangsu 214002, PR China
| | - Changjing Zhao
- Jiangsu Agri-Animal Husbandry Vocational College, Taizhou, Jiangsu 225300, PR China
| | - Shuying Xu
- Jiangsu Agri-Animal Husbandry Vocational College, Taizhou, Jiangsu 225300, PR China
| | - Yongsong Zhou
- Shanghai Xiongtu Biotechnology Co., Ltd., Shanghai 201613, PR China.
| |
Collapse
|
2
|
Liu X, Bian WM, Feng YQ, Tang JT, Zuo N, Wang JJ, De Felici M, Wang X, Shen W. VigorBaby dietary supplement administration to mice during pregnancy and lactation alleviated ovarian disorders induced by Zearalenone in offsprings. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2025; 298:118264. [PMID: 40334536 DOI: 10.1016/j.ecoenv.2025.118264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 04/30/2025] [Accepted: 05/01/2025] [Indexed: 05/09/2025]
Abstract
Zearalenone (ZEN) is a mycotoxin with estrogenic activity that is widely present in cereals. We exposed pregnant and lactating mice to 40 μg/kg body weight (bw) of ZEN to confirm and extend previous observational reports. The current study demonstrated that ZEN exposure increased reactive oxygen species (ROS), DNA damage, and mitochondrial dysfunction in the ovaries of neonatal offspring, leading to primordial follicle (PF) impairment. Moreover, before puberty, such dysfunction resulted in impairment of oocyte maturation (evaluated as their capacity to resume and complete meiosis) and ability to be fertilized and give rise to blastocysts. Remarkably, we found that these deleterious effects of the mycotoxin were almost completely abolished when dams, after ZEN administration, were fed 200 mg/kg of VigorBaby, a dietary supplement containing various vitamins and antioxidants. Moreover, some ovarian defects caused by ZEN in the F1 offsprings, such as decreased numbers of oocytes and PFs in 3 dpp ovaries and altered folliculogenesis in 21 dpp ovaries, were also observed in the F2 generation. However, this was not the case when dams of the F1 offsprings were fed ZEN supplemented with VigorBaby. These data provide further information regarding the mechanisms of ZEN's effects on the ovary and demonstrate that the use of a commercially dietary supplement was beneficial in preventing detrimental reproductive consequences of this mycotoxin.
Collapse
Affiliation(s)
- Xuan Liu
- College of Animal Science and Technology, Key Laboratory of Animal Reproduction and Biotechnology in Universities of Shandong, Qingdao Agricultural University, Qingdao 266109, China
| | - Wen-Meng Bian
- College of Animal Science and Technology, Key Laboratory of Animal Reproduction and Biotechnology in Universities of Shandong, Qingdao Agricultural University, Qingdao 266109, China
| | - Yan-Qin Feng
- College of Animal Science and Technology, Key Laboratory of Animal Reproduction and Biotechnology in Universities of Shandong, Qingdao Agricultural University, Qingdao 266109, China
| | - Jia-Tian Tang
- College of Life Sciencs, Qingdao Agricultural University, Qingdao 266109, China
| | - Ning Zuo
- College of Animal Science and Technology, Key Laboratory of Animal Reproduction and Biotechnology in Universities of Shandong, Qingdao Agricultural University, Qingdao 266109, China
| | - Jun-Jie Wang
- College of Animal Science and Technology, Key Laboratory of Animal Reproduction and Biotechnology in Universities of Shandong, Qingdao Agricultural University, Qingdao 266109, China
| | - Massimo De Felici
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, Rome 00133, Italy
| | - Xin Wang
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China.
| | - Wei Shen
- College of Animal Science and Technology, Key Laboratory of Animal Reproduction and Biotechnology in Universities of Shandong, Qingdao Agricultural University, Qingdao 266109, China.
| |
Collapse
|
3
|
Rivera-Núñez Z, Kinkade C, Brinker A, Zhang R, Buckley B, Brunner J, Ohman-Strickland P, Qiu X, Qasem RJ, Fallon JK, Smith PC, Miller RK, Salafia CS, O’Connor TG, Aleksunes LM, Barrett ES. Mycoestrogen Exposure during Pregnancy: Impact of the ABCG2 Q141K Variant on Birth and Placental Outcomes. ENVIRONMENTAL HEALTH PERSPECTIVES 2025; 133:57001. [PMID: 40126888 PMCID: PMC12052082 DOI: 10.1289/ehp14478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 03/06/2025] [Accepted: 03/19/2025] [Indexed: 03/26/2025]
Abstract
BACKGROUND Zearalenone (ZEN) is an estrogenic mycotoxin ("mycoestrogen") that contaminates global grain crops leading to detectable concentrations of ZEN and its metabolites, including the synthetic version α -zearalanol (also called zeranol; ZER), in human populations. Despite in vitro and in vivo animal evidence of endocrine disruption by ZEN, there has been limited investigation in humans. OBJECTIVES To examine markers of fetal growth following prenatal exposure to ZEN and evaluate the role of the placental efflux transporter BCRP/ABCG2 in protecting against ZEN's potential fetoplacental toxicity. METHODS Placentas were collected from participants (n = 271 ) in the Understanding Pregnancy Signals and Development cohort (Rochester, New York, USA). Placental ZEN and its metabolites were analyzed from tissue samples using HPLC-MS. Birth weights and placental weights were obtained from medical records and direct measurement, respectively; fetoplacental weight ratio (FPR) was calculated by dividing birth weight by placental weight. Covariate-adjusted generalized linear regression models were used to examine ZEN, ZER, and total mycoestrogens (sum of ZEN, ZER, and their metabolites) in relation to birth length, birth weight, placental weight and FPR. We additionally stratified models by infant sex and ABCG2 C421A (Q141K) genotype. RESULTS Mycoestrogens were detected in 84% of placentas (median ZEN: 0.010 ng / g ) and total mycoestrogens were associated with lower FPR [- 0.20 ; 95% confidence interval (CI): - 0.32 , - 0.08 ], particularly in female infants (- 0.31 ; 95% CI: - 0.52 , - 0.09 ). Associations with birth weight were inverse and overall nonsignificant. Among the 17% of participants with the reduced function 421A ABCG2 variant (AA or AC), total mycoestrogens were associated with lower birth weight (- 113.5 g ; 95% CI: - 226.5 , - 0.50 ), whereas in wild-type individuals, total mycoestrogens were associated with higher placental weight (9.9; 95% CI: 0.57, 19.2) and reduced FPR (- 0.19 ; 95% CI: - 0.33 , - 0.05 ). DISCUSSION Results from this epidemiological study of prenatal mycoestrogen exposure and perinatal health suggest that mycoestrogens may reduce placental efficiency, resulting in lower birth weight, particularly in female and ABCG2 421A infants. https://doi.org/10.1289/EHP14478.
Collapse
Affiliation(s)
- Zorimar Rivera-Núñez
- Department of Biostatistics and Epidemiology, Rutgers School of Public Health, Piscataway, New Jersey, USA
- Environmental and Occupational Health Sciences Institute, Rutgers University, Piscataway, New Jersey, USA
| | - Carolyn Kinkade
- Environmental and Occupational Health Sciences Institute, Rutgers University, Piscataway, New Jersey, USA
| | - Anita Brinker
- Environmental and Occupational Health Sciences Institute, Rutgers University, Piscataway, New Jersey, USA
| | - Ranran Zhang
- Department of Biostatistics and Epidemiology, Rutgers School of Public Health, Piscataway, New Jersey, USA
- Environmental and Occupational Health Sciences Institute, Rutgers University, Piscataway, New Jersey, USA
| | - Brian Buckley
- Environmental and Occupational Health Sciences Institute, Rutgers University, Piscataway, New Jersey, USA
| | - Jessica Brunner
- Department of Obstetrics and Gynecology, University of Rochester Medical Center, Rochester, New York, USA
- Department of Psychiatry, University of Rochester, Rochester, New York, USA
| | - Pamela Ohman-Strickland
- Department of Biostatistics and Epidemiology, Rutgers School of Public Health, Piscataway, New Jersey, USA
| | - Xing Qiu
- Department of Biostatistics and Computational Biology, University of Rochester, Rochester, New York, USA
| | - Rani J. Qasem
- Department of Applied Pharmaceutical Sciences, School of Pharmacy, Isra University, Amman, Jordan
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, North Carolina
| | - John K. Fallon
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, North Carolina
| | - Philip C. Smith
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, North Carolina
| | - Richard K. Miller
- Department of Obstetrics and Gynecology, University of Rochester Medical Center, Rochester, New York, USA
| | | | - Thomas G. O’Connor
- Department of Obstetrics and Gynecology, University of Rochester Medical Center, Rochester, New York, USA
| | - Lauren M. Aleksunes
- Environmental and Occupational Health Sciences Institute, Rutgers University, Piscataway, New Jersey, USA
- Ernest Mario School of Pharmacy, Rutgers University, Piscataway, New Jersey, USA
| | - Emily S. Barrett
- Department of Biostatistics and Epidemiology, Rutgers School of Public Health, Piscataway, New Jersey, USA
- Environmental and Occupational Health Sciences Institute, Rutgers University, Piscataway, New Jersey, USA
- Department of Obstetrics and Gynecology, University of Rochester Medical Center, Rochester, New York, USA
| |
Collapse
|
4
|
Wang J, Zhang Y, Qi C, Xu H, Lu X, Ma X, Zhang W. Detection of zearalenone by electrochemical aptasensor based on enzyme-assisted target recycling and DNAzyme release strategy. Talanta 2025; 286:127533. [PMID: 39765091 DOI: 10.1016/j.talanta.2025.127533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Revised: 12/18/2024] [Accepted: 01/03/2025] [Indexed: 03/03/2025]
Abstract
Zearalenone has a high level of detection and exceedance in cereals and by-products. Herein, an electrochemical aptasensor for ZEN detection was proposed. The selected aptamer, which has a high affinity for ZEN, serves as a molecular recognition element and effectively avoids interference from other toxins. Meanwhile, the strategy of exonuclease III-assisted target recycling and DNAzyme-catalysed substrate cleavage was combined. Aptamers and RNA-cleaving DNAzymes, two types of functional nucleic acids, have demonstrated considerable potential as key components of biosensors for the detection of biological targets. Enzyme-assisted signal amplification technology also helps to detect trace levels of ZEN. Under optimal conditions, the proposed aptasensor exhibited remarkable repeatability (RSD: 2.73 %) and superior detection performance over a wide concentration range (100 fg/mL-50 ng/mL), with a detection limit of 89 fg/mL. In actual analysis of cereal samples, the results are comparable to those of liquid chromatography, greatly extending the selectivity of ZEN detection.
Collapse
Affiliation(s)
- Jiating Wang
- College of Food Science and Technology, Hebei Agricultural University, Baoding, 071001, China
| | - Yunzhe Zhang
- College of Food Science and Technology, Hebei Agricultural University, Baoding, 071001, China.
| | - Congyan Qi
- College of Food Science and Technology, Hebei Agricultural University, Baoding, 071001, China.
| | - Hui Xu
- College of Science and Technology, Hebei Agricultural University, Cangzhou, 061100, China
| | - Xin Lu
- College of Science and Technology, Hebei Agricultural University, Cangzhou, 061100, China
| | - Xiaoyan Ma
- College of Food Science and Technology, Hebei Agricultural University, Baoding, 071001, China
| | - Wei Zhang
- College of Food Science and Technology, Hebei Agricultural University, Baoding, 071001, China; Hebei Provincial Key Laboratory of Analysis and Control for Zoonoses Microbial, Baoding, 071001, China; College of Life Sciences, Hebei Agricultural University, Baoding, 071001, China.
| |
Collapse
|
5
|
Nie X, Chen X, Lu X, Yang S, Wang X, Liu F, Yang J, Guo Y, Shi H, Xu H, Zhang X, Fang M, Tao Y, Liu C. Metagenomics Insights into the Role of Microbial Communities in Mycotoxin Accumulation During Maize Ripening and Storage. Foods 2025; 14:1378. [PMID: 40282779 PMCID: PMC12027128 DOI: 10.3390/foods14081378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2025] [Revised: 04/04/2025] [Accepted: 04/09/2025] [Indexed: 04/29/2025] Open
Abstract
Mycotoxins are among the primary factors compromising food quality and safety. To investigate mycotoxin contamination, microbial diversity, and functional profiles in maize across distinct geographic regions, this study analyzed samples from Xuanwei, Fuyuan, and Zhanyi. Mycotoxin concentrations were quantified through standardized assays, while microbial community structures were characterized using metagenomics sequencing. Metabolic pathways, functional genes, and enzymatic activities were systematically annotated with the KEGG, eggNOG, and CAZy databases. The results demonstrated an absence of detectable aflatoxin (AF) levels. Deoxynivalenol (DON) concentrations varied significantly among experimental cohorts, although all values remained within regulatory thresholds. Zearalenone (ZEN) contamination exceeded permissible limits by 40%. The metagenomic profiling identified 85 phyla, 1219 classes, 277 orders, 590 families, 1171 genera, and 2130 species of microorganisms, including six mycotoxigenic fungal species. The abundance and diversity of microorganisms were similar among different treatment groups. Among 32,333 annotated KEGG pathways, primary metabolic processes predominated (43.99%), while glycoside hydrolases (GH) and glycosyltransferases (GT) constituted 76.67% of the 40,202 carbohydrate-active enzymes. These empirical findings establish a scientific framework for optimizing agronomic practices, harvest scheduling, and post-harvest management in maize cultivation.
Collapse
Affiliation(s)
- Xuheng Nie
- Yunnan Grain and Oil Science Research Institute, Kunming 650033, China; (X.N.); (S.Y.); (X.W.); (J.Y.); (Y.G.); (M.F.); (Y.T.)
| | - Xuefeng Chen
- Yunnan Grain and Oil Science Research Institute, Kunming 650033, China; (X.N.); (S.Y.); (X.W.); (J.Y.); (Y.G.); (M.F.); (Y.T.)
| | - Xianli Lu
- Sinograin Yunnan Depot Co., Ltd., Kunming 650228, China;
| | - Shuiyan Yang
- Yunnan Grain and Oil Science Research Institute, Kunming 650033, China; (X.N.); (S.Y.); (X.W.); (J.Y.); (Y.G.); (M.F.); (Y.T.)
| | - Xin Wang
- Yunnan Grain and Oil Science Research Institute, Kunming 650033, China; (X.N.); (S.Y.); (X.W.); (J.Y.); (Y.G.); (M.F.); (Y.T.)
| | - Fuying Liu
- Yunnan Grain and Oil Science Research Institute, Kunming 650033, China; (X.N.); (S.Y.); (X.W.); (J.Y.); (Y.G.); (M.F.); (Y.T.)
| | - Jin Yang
- Yunnan Grain and Oil Science Research Institute, Kunming 650033, China; (X.N.); (S.Y.); (X.W.); (J.Y.); (Y.G.); (M.F.); (Y.T.)
| | - Ying Guo
- Yunnan Grain and Oil Science Research Institute, Kunming 650033, China; (X.N.); (S.Y.); (X.W.); (J.Y.); (Y.G.); (M.F.); (Y.T.)
| | - Huirong Shi
- Sinograin Qujing Depot Co., Ltd., Qujing 655000, China; (H.S.); (H.X.); (X.Z.)
| | - Hui Xu
- Sinograin Qujing Depot Co., Ltd., Qujing 655000, China; (H.S.); (H.X.); (X.Z.)
| | - Xiang Zhang
- Sinograin Qujing Depot Co., Ltd., Qujing 655000, China; (H.S.); (H.X.); (X.Z.)
| | - Maoliang Fang
- Yunnan Grain and Oil Science Research Institute, Kunming 650033, China; (X.N.); (S.Y.); (X.W.); (J.Y.); (Y.G.); (M.F.); (Y.T.)
| | - Yin Tao
- Yunnan Grain and Oil Science Research Institute, Kunming 650033, China; (X.N.); (S.Y.); (X.W.); (J.Y.); (Y.G.); (M.F.); (Y.T.)
| | - Chao Liu
- Research Center of Fruit Wine, Qujing Normal University, Qujing 655011, China
| |
Collapse
|
6
|
Jing S, Lan X, Liu Y, Sun C, Ye H, Wang J, Wang Y, Guo N. Microbe-Mediated Removal of Zearalenone Using Yeast Strain Rhodotorula dairenensis Isolated from the Gut Microbiome of Zearalenone-Treated Mice. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025; 73:9320-9336. [PMID: 40168597 DOI: 10.1021/acs.jafc.4c11881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/03/2025]
Abstract
Mycotoxins contribute considerably to food losses and pose serious health risks to humans and animals. This study investigated the mechanisms underlying the elimination of mycotoxin zearalenone (ZEN) by a yeast strain, Rhodotorula dairenensis ZDY342B, which was isolated from the feces of ZEN-treated mice. Isotope-labeled 13C18-ZEN was employed for accurately tracking the degradation products of ZEN, and the chemical composition of the yeast cells was characterized before and after ZEN elimination. The results of these analyses confirmed that strain ZDY342B removes ZEN via a combination of degradation and adsorption. Subsequently, the degradation product of ZEN was identified as zearalenol using high-performance liquid chromatography and nuclear magnetic resonance spectroscopy, as opposed to simply inferring the product structure based on the molecular weight of the degradation product. The characterization of the cell structure revealed the role of functional groups such as O-H, N-H, C═O, and C-O in the biosorption of ZEN by yeast ZDY342B. Additionally, an evaluation of the safety of strain ZDY342B revealed it to be a safe and harmless microorganism. Furthermore, the reduced toxicity of the products obtained upon the degradation of ZEN by ZDY342B was ascertained using in vitro and in vivo experiments. In summary, this study demonstrates the effectiveness and safety of ZDY342B, a yeast strain that shows the potential for mitigating ZEN contamination in food and animal feed.
Collapse
Affiliation(s)
- Siyuan Jing
- College of Food Science and Engineering, Jilin University, Changchun, Jilin 130062, People's Republic of China
| | - Xinyue Lan
- College of Food Science and Engineering, Jilin University, Changchun, Jilin 130062, People's Republic of China
| | - Yue Liu
- College of Food Science and Engineering, Jilin University, Changchun, Jilin 130062, People's Republic of China
| | - Chunyan Sun
- College of Food Science and Engineering, Jilin University, Changchun, Jilin 130062, People's Republic of China
| | - Haiqing Ye
- College of Food Science and Engineering, Jilin University, Changchun, Jilin 130062, People's Republic of China
| | - Jiaxi Wang
- College of Food Science and Engineering, Jilin University, Changchun, Jilin 130062, People's Republic of China
| | - Yan Wang
- College of Food Science and Engineering, Jilin University, Changchun, Jilin 130062, People's Republic of China
| | - Na Guo
- College of Food Science and Engineering, Jilin University, Changchun, Jilin 130062, People's Republic of China
| |
Collapse
|
7
|
Wu F, Wang F, Tang Z, Yang X, Liu Y, Zhao M, Liu S, Han S, Chen B. Zearalenone causes ovarian damage and abnormal estradiol secretion in meat rabbits by inducing oxidative stress and inflammatory responses. Front Vet Sci 2025; 12:1566284. [PMID: 40297828 PMCID: PMC12035730 DOI: 10.3389/fvets.2025.1566284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2025] [Accepted: 03/26/2025] [Indexed: 04/30/2025] Open
Abstract
Zearalenone (ZEA), a prevalent mycotoxin in animal feeds, is known to disrupt normal ovarian development and function due to its estrogenic activity. This study investigates the toxic effects of ZEA on the ovaries of meat rabbits and explores the underlying mechanisms. Ninety healthy 41-day-old Hyla male rabbits were randomly assigned into three groups. The control group received a basal diet, while the experimental groups were fed basal diets supplemented with 300 and 600 μg/kg ZEA, respectively. Each group consisted of 30 replicates, with one rabbit per replicate, and the experimental period lasted 42 days. The results showed that, compared to the control group, the ovarian index was significantly increased in the 600 μg/kg ZEA supplementation group (p < 0.05). In addition, ovarian tissue exhibited pathological changes, including follicular dilatation, thinning of the follicular granulosa, punctate necrosis of granulosa cells, deep stained cytosolic nuclei, and nuclear fragmentation. Compared to the control group, the 600 μg/kg ZEA supplementation group exhibited significantly elevated blood levels of gonadotropin-releasing hormone, luteinizing hormone, estradiol, malondialdehyde (MDA), and interleukin 1β (IL-1β) (p < 0.05). Conversely, total antioxidant power (TAOC) and glutathione peroxidase (GSH-Px) activities were significantly reduced in this group (p < 0.05). The level of MDA in the ovarian tissue of rabbits in the 600 μg/kg ZEA supplementation group was significantly elevated compared to the control group, while the activities of GSH-Px and TAOC were significantly reduced (p < 0.05). Moreover, the expression levels of luteinizing hormone receptor mRNA, heat shock protein 70 mRNA, tumor necrosis factor-α mRNA, and IL-1β mRNA in the ovarian tissue significantly increased, whereas the expression of copper and zinc superoxide dismutase mRNA was significantly decreased compared to the control group (p < 0.05). In conclusion, supplementation with 600 μg/kg ZEA induces oxidative stress and inflammatory responses in the ovaries of meat rabbits by modulating the expression of related genes. These effects disrupt ovarian development, cause pathological changes, and impair the secretion of reproductive hormones. This study is the first to report the toxic effects of ZEA on the ovaries of Hyla rabbits and provides preliminary insights into its underlying mechanisms.
Collapse
Affiliation(s)
- Fengyang Wu
- College of Animal Science and Technology, Hebei Agricultural University, Baoding, China
- College of Food Science and Technology, Hebei Agricultural University, Baoding, China
| | - Fengxia Wang
- College of Animal Science and Technology, Hebei Agricultural University, Baoding, China
| | - Zhaohong Tang
- Hebei Research Institute of Microbiology Co., Ltd., Baoding, China
| | - Xinyu Yang
- College of Animal Science and Technology, Hebei Agricultural University, Baoding, China
| | - Yanhua Liu
- College of Animal Science and Technology, Hebei Agricultural University, Baoding, China
| | - Man Zhao
- College of Animal Science and Technology, Hebei Agricultural University, Baoding, China
| | - Shudong Liu
- College of Animal Science and Technology, Hebei Agricultural University, Baoding, China
| | - Shuaijuan Han
- College of Animal Science and Technology, Hebei Agricultural University, Baoding, China
| | - Baojiang Chen
- College of Animal Science and Technology, Hebei Agricultural University, Baoding, China
| |
Collapse
|
8
|
Chen H, Qiu D, Miao X, Yang W, He Q, Ren H, Zhang L, Ruan H, Zhang J, Zhang N. Zearalenone Depresses Lactation Capacity Through the ROS-Mediated PI3K/AKT Pathway. Animals (Basel) 2025; 15:1050. [PMID: 40218442 PMCID: PMC11987832 DOI: 10.3390/ani15071050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2025] [Revised: 03/18/2025] [Accepted: 04/01/2025] [Indexed: 04/14/2025] Open
Abstract
The effects of zearalenone (ZEA), a fungal toxin in food and feed, remain unclear on the mammary gland and lactation. This study examines ZEA-induced damage in lactating mice and bovine mammary epithelial cells (MAC-T), focusing on the role of the phosphatidylinositol 3-kinase/protein kinase B (PI3K/AKT) pathway in regulating cell proliferation and apoptosis. The results demonstrated that exposure to ZEA at different doses (5 mg/kg, 10 mg/kg, and 20 mg/kg) reduced lactation in female mice and slowed weight gain in their offspring. Hematoxylin and eosin (HE) staining and CSNK immunofluorescence staining of mammary tissue confirmed ZEA-induced mammary gland damage in vivo. Further analysis using PCNA immunohistochemistry and fluorescent TUNEL staining revealed that ZEA promoted apoptosis and decreased the proliferative capacity of mammary tissues. In vitro, 20 μM ZEA decreased MAC-T cell proliferation, increased apoptosis and oxidative stress, inhibited PI3K/AKT signaling, and decreased κ-casein (CSNK) expression. Pretreatment with a reactive oxygen species (ROS) scavenger (NAC) or PI3K/AKT activator (740-Y-P) reversed these effects, with NAC specifically restoring PI3K/AKT activity inhibited by ZEA. Overall, this study concludes that ZEA induces MAC-T cell apoptosis and disrupts proliferation via the ROS-mediated PI3K/AKT pathway, ultimately impairing lactation function. These findings highlight potential targets for managing ZEA contamination in food and its impact on lactation.
Collapse
Affiliation(s)
- Hong Chen
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China; (H.C.); (D.Q.); (X.M.); (W.Y.); (Q.H.); (H.R.); (L.Z.); (H.R.)
| | - Di Qiu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China; (H.C.); (D.Q.); (X.M.); (W.Y.); (Q.H.); (H.R.); (L.Z.); (H.R.)
| | - Xue Miao
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China; (H.C.); (D.Q.); (X.M.); (W.Y.); (Q.H.); (H.R.); (L.Z.); (H.R.)
| | - Wenyue Yang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China; (H.C.); (D.Q.); (X.M.); (W.Y.); (Q.H.); (H.R.); (L.Z.); (H.R.)
| | - Qi He
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China; (H.C.); (D.Q.); (X.M.); (W.Y.); (Q.H.); (H.R.); (L.Z.); (H.R.)
| | - Hao Ren
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China; (H.C.); (D.Q.); (X.M.); (W.Y.); (Q.H.); (H.R.); (L.Z.); (H.R.)
| | - Luyao Zhang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China; (H.C.); (D.Q.); (X.M.); (W.Y.); (Q.H.); (H.R.); (L.Z.); (H.R.)
| | - Hongri Ruan
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China; (H.C.); (D.Q.); (X.M.); (W.Y.); (Q.H.); (H.R.); (L.Z.); (H.R.)
| | - Jiantao Zhang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China; (H.C.); (D.Q.); (X.M.); (W.Y.); (Q.H.); (H.R.); (L.Z.); (H.R.)
- Heilongjiang Provincial Key Laboratory of Pathogenic Mechanism for Animal Disease and Comparative Medicine, Harbin 150030, China
| | - Na Zhang
- Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, Harbin 150030, China
| |
Collapse
|
9
|
Wang M, Pu Z, Zhang J, Wang P, Chen Y, Zhu Y, Ruan H, Ji D, Zou W, Cheng H, Ding Z, Cao Y, Liu Y, Liang D. Melatonin mediates the BMP4/MAPK signaling pathway to alleviate zearalenone-induced abnormal embryonic development in mice. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2025; 294:118068. [PMID: 40120487 DOI: 10.1016/j.ecoenv.2025.118068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 03/07/2025] [Accepted: 03/14/2025] [Indexed: 03/25/2025]
Abstract
Zearalenone (ZEA) is a common mycotoxin found in crops that poses a threat to human health, particularly the female reproductive system. Here, we show that exposing mouse zygotes to ZEA in vitro significantly impairs embryo development, leading to embryo arrest. Remarkably, treatment of ZEA-exposed mouse embryos with melatonin significantly improved the blastocyst rates from approximately 40 % to nearly 80 %. Furthermore, melatonin effectively mitigates the harmful effects of ZEA exposure by reducing reactive oxygen species (ROS) levels, preventing mitochondrial dysfunction, and decreasing cell apoptosis. Following embryo transplantation, the birth rate of offspring increased markedly from 7.2 % to 23.62 %. Further research revealed that the abnormal elevation of bone morphogenetic protein 4 (BMP4) signaling induced by ZEA exposure, coupled with the inhibition of the downstream mitogen-activated protein kinase (MAPK) signaling pathway, contributes to developmental blockade in ZEA-exposed mouse embryos. Melatonin rescued ZEA-induced defects in mouse embryo development by inhibiting BMP4 signaling and regulating the MAPK pathway. Moreover, the Bmp4 inhibitor Noggin or its receptor inhibitor DMH-1 could also effectively ameliorate the ZEA-induced impairment of embryo development. Taken together, these findings underscore the potential of melatonin as a therapeutic intervention for addressing the adverse effects of ZEA exposure on mouse embryos.
Collapse
Affiliation(s)
- Mengyao Wang
- Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, China; NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract (Anhui Medical University), Hefei, Anhui 230032, China; Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, Hefei, Anhui 230032, China
| | - Zhixin Pu
- Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, China; NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract (Anhui Medical University), Hefei, Anhui 230032, China; Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, Hefei, Anhui 230032, China
| | - Jing Zhang
- Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, China; NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract (Anhui Medical University), Hefei, Anhui 230032, China; Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, Hefei, Anhui 230032, China
| | - Peiwen Wang
- Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, China; NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract (Anhui Medical University), Hefei, Anhui 230032, China; Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, Hefei, Anhui 230032, China
| | - Yaxin Chen
- Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, China; NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract (Anhui Medical University), Hefei, Anhui 230032, China; Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, Hefei, Anhui 230032, China
| | - Yating Zhu
- Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, China; NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract (Anhui Medical University), Hefei, Anhui 230032, China; Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, Hefei, Anhui 230032, China
| | - Hongzhen Ruan
- Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, China; NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract (Anhui Medical University), Hefei, Anhui 230032, China; Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, Hefei, Anhui 230032, China
| | - Dongmei Ji
- Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, China; Engineering Research Center of Biopreservation and Artifical Organs, Ministry of Education, Hefei, Anhui 230032, China; Anhui Province Key Laboratory of Reproductive Health and Genetics, Hefei, Anhui 230032, China
| | - Weiwei Zou
- Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, China; Engineering Research Center of Biopreservation and Artifical Organs, Ministry of Education, Hefei, Anhui 230032, China; Anhui Province Key Laboratory of Reproductive Health and Genetics, Hefei, Anhui 230032, China
| | - Huiru Cheng
- Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, China; NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract (Anhui Medical University), Hefei, Anhui 230032, China; Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, Hefei, Anhui 230032, China
| | - Zhiming Ding
- Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, China; NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract (Anhui Medical University), Hefei, Anhui 230032, China; Biopreservation and Artificial Organs, Anhui Provincial Engineering Research Center, Anhui Medical University, Hefei, Anhui 230032, China
| | - Yunxia Cao
- Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, China; NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract (Anhui Medical University), Hefei, Anhui 230032, China; Anhui Provincial Institute of Translational Medicine, Hefei, Anhui 230032, China.
| | - Yajing Liu
- Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, China; NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract (Anhui Medical University), Hefei, Anhui 230032, China; Anhui Provincial Institute of Translational Medicine, Hefei, Anhui 230032, China.
| | - Dan Liang
- Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, China; NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract (Anhui Medical University), Hefei, Anhui 230032, China; Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, Hefei, Anhui 230032, China; Engineering Research Center of Biopreservation and Artifical Organs, Ministry of Education, Hefei, Anhui 230032, China.
| |
Collapse
|
10
|
Liu M, Feng J, Fan Y, Yang X, Chen R, Xu C, Xu H, Cui D, Wang R, Jiao Z, Ma R. Application of atmospheric cold plasma for zearalenone detoxification in cereals: Kinetics, mechanisms, and cytotoxicity analysis. J Adv Res 2025; 70:1-13. [PMID: 38677544 PMCID: PMC11976565 DOI: 10.1016/j.jare.2024.04.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 03/26/2024] [Accepted: 04/24/2024] [Indexed: 04/29/2024] Open
Abstract
INTRODUCTION Zearalenone (ZEN) is one of the most widely contaminated mycotoxins in world, posing a severe threat to human and animal health. Atmospheric cold plasma (ACP) holds great penitential in mycotoxin degradation. OBJECTIVES This study aimed to investigate the degradation efficiency and mechanisms of ACP on ZEN as well as the cytotoxicity of ZEN degradation products by ACP. Additionally, this study also investigated the degradation efficiency of ACP on ZEN in cereals and its effect on cereal quality. METHODS The degradation efficiency and products of ZEN by ACP was analyzed by HPLC and LC-MS/MS. The human normal liver cells and mice were employed to assess the cytotoxicity of ZEN degradation products. The ZEN artificially contaminated cereals were used to evaluate the feasibility of ACP detoxification in cereals. RESULTS The results showed that the degradation rate of ZEN was 96.18 % after 30-W ACP treatment for 180 s. The degradation rate was dependent on the discharge power, and treatment time and distance. Four major ZEN degradation products were produced after ACP treatment due to the oxidative destruction of CC double bond, namely C18H22O7 (m/z = 351.19), C18H22O8 (m/z = 367.14), C18H22O6 (m/z = 335.14), and C17H20O6 (m/z = 321.19). L02 cell viability was increased from 52.4 % to 99.76 % with ACP treatment time ranging from 0 to 180 s. Mice results showed significant recovery of body weight and depth of colonic crypts as well as mitigation of glomerular and liver damage. Additionally, ACP removed up to 50.55 % and 58.07 % of ZEN from wheat and corn. CONCLUSIONS This study demonstrates that ACP could efficiently degrade ZEN in cereals and its cytotoxicity was significantly reduced. Therefore, ACP is a promising effective method for ZEN detoxification in cereals to ensure human and animal health. Future study needs to develop large-scale ACP device with high degradation efficiency.
Collapse
Affiliation(s)
- Mengjie Liu
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China; Henan Key Laboratory of Ion-beam Green Agricultural Bioengineering, Zhengzhou University, Zhengzhou 450052, China; Sanya Institute, Zhengzhou University, Zhengzhou 450001, China
| | - Junxia Feng
- Huadu District People's Hospital of Guangzhou, Guangzhou 510800, China
| | - Yongqin Fan
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China; Henan Key Laboratory of Ion-beam Green Agricultural Bioengineering, Zhengzhou University, Zhengzhou 450052, China; Sanya Institute, Zhengzhou University, Zhengzhou 450001, China
| | - Xudong Yang
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China; Henan Key Laboratory of Ion-beam Green Agricultural Bioengineering, Zhengzhou University, Zhengzhou 450052, China
| | - Ruike Chen
- School of Electrical and Information Engineering, Zhengzhou University, Zhengzhou 450001, China
| | - Cui Xu
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China; Henan Key Laboratory of Ion-beam Green Agricultural Bioengineering, Zhengzhou University, Zhengzhou 450052, China
| | - Hangbo Xu
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China; Henan Key Laboratory of Ion-beam Green Agricultural Bioengineering, Zhengzhou University, Zhengzhou 450052, China; Sanya Institute, Zhengzhou University, Zhengzhou 450001, China
| | - Dongjie Cui
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China; Henan Key Laboratory of Ion-beam Green Agricultural Bioengineering, Zhengzhou University, Zhengzhou 450052, China; Sanya Institute, Zhengzhou University, Zhengzhou 450001, China
| | - Ruixue Wang
- College of Mechanical and Electrical Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Zhen Jiao
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China; Henan Key Laboratory of Ion-beam Green Agricultural Bioengineering, Zhengzhou University, Zhengzhou 450052, China; Sanya Institute, Zhengzhou University, Zhengzhou 450001, China.
| | - Ruonan Ma
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China; Henan Key Laboratory of Ion-beam Green Agricultural Bioengineering, Zhengzhou University, Zhengzhou 450052, China; Sanya Institute, Zhengzhou University, Zhengzhou 450001, China.
| |
Collapse
|
11
|
Duarte S, Duarte I, Duarte M, Paiva A, Cabeças R, Silva LJG, Pereira AMPT, Lino C, Pena A. Biomonitoring Pilot Surveys of Zearalenone in Breastmilk and the Urine of Children in Central Portugal. Toxins (Basel) 2025; 17:162. [PMID: 40278660 PMCID: PMC12031104 DOI: 10.3390/toxins17040162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2025] [Revised: 03/15/2025] [Accepted: 03/19/2025] [Indexed: 04/26/2025] Open
Abstract
Zearalenone (ZEA) is a mycotoxin that acts primarily as an endocrine disruptor. Biomonitoring studies are needed to assess exposure and risk, particularly among vulnerable groups. This study reports two pilot biomonitoring surveys of ZEA in 38 lactating mothers and 42 children (5-12 years old). Both were associated with a questionnaire to collect data on the sociodemographics and eating habits of the participants. About 76% of urine samples were contaminated (188.12 ± 235.99 ng/mL), with the hazard quotient reaching 2.36 in the worst-case scenario for younger children. Of the analyzed breastmilk samples, 55.26% were contaminated (158.26 ± 77.50). A statistically significant association between ZEA contamination of breastmilk and the maternal consumption of wholemeal bread, cereal flakes, sausages, smoked meat and pork was found, suggesting that these foods are determinants of higher exposure. The hazard quotient in the worst-case scenario for breastfed babies under 16 weeks was estimated as 0.61. Results confirm frequent exposure to this endocrine disruptor among these two vulnerable groups in central Portugal, showing the need for further studies.
Collapse
Affiliation(s)
- Sofia Duarte
- Centro de Investigação Vasco da Gama (CIVG)/Departamento de Ciências Veterinárias, Escola Universitária Vasco da Gama (EUVG), Campus Universitário, Av. José R. Sousa Fernandes, 3020–210 Coimbra, Portugal; (A.P.); (R.C.)
- LAQV, REQUIMTE, Laboratório de Bromatologia e Farmacognosia, Faculdade de Farmácia da Universidade de Coimbra, Polo III, Azinhaga de Sta Comba, 3000–548 Coimbra, Portugal; (I.D.); (M.D.); (L.J.G.S.); (A.M.P.T.P.); (C.L.); (A.P.)
| | - Inês Duarte
- LAQV, REQUIMTE, Laboratório de Bromatologia e Farmacognosia, Faculdade de Farmácia da Universidade de Coimbra, Polo III, Azinhaga de Sta Comba, 3000–548 Coimbra, Portugal; (I.D.); (M.D.); (L.J.G.S.); (A.M.P.T.P.); (C.L.); (A.P.)
| | - Myrella Duarte
- LAQV, REQUIMTE, Laboratório de Bromatologia e Farmacognosia, Faculdade de Farmácia da Universidade de Coimbra, Polo III, Azinhaga de Sta Comba, 3000–548 Coimbra, Portugal; (I.D.); (M.D.); (L.J.G.S.); (A.M.P.T.P.); (C.L.); (A.P.)
| | - Ana Paiva
- Centro de Investigação Vasco da Gama (CIVG)/Departamento de Ciências Veterinárias, Escola Universitária Vasco da Gama (EUVG), Campus Universitário, Av. José R. Sousa Fernandes, 3020–210 Coimbra, Portugal; (A.P.); (R.C.)
| | - Ricardo Cabeças
- Centro de Investigação Vasco da Gama (CIVG)/Departamento de Ciências Veterinárias, Escola Universitária Vasco da Gama (EUVG), Campus Universitário, Av. José R. Sousa Fernandes, 3020–210 Coimbra, Portugal; (A.P.); (R.C.)
| | - Liliana J. G. Silva
- LAQV, REQUIMTE, Laboratório de Bromatologia e Farmacognosia, Faculdade de Farmácia da Universidade de Coimbra, Polo III, Azinhaga de Sta Comba, 3000–548 Coimbra, Portugal; (I.D.); (M.D.); (L.J.G.S.); (A.M.P.T.P.); (C.L.); (A.P.)
| | - André M. P. T. Pereira
- LAQV, REQUIMTE, Laboratório de Bromatologia e Farmacognosia, Faculdade de Farmácia da Universidade de Coimbra, Polo III, Azinhaga de Sta Comba, 3000–548 Coimbra, Portugal; (I.D.); (M.D.); (L.J.G.S.); (A.M.P.T.P.); (C.L.); (A.P.)
| | - Celeste Lino
- LAQV, REQUIMTE, Laboratório de Bromatologia e Farmacognosia, Faculdade de Farmácia da Universidade de Coimbra, Polo III, Azinhaga de Sta Comba, 3000–548 Coimbra, Portugal; (I.D.); (M.D.); (L.J.G.S.); (A.M.P.T.P.); (C.L.); (A.P.)
| | - Angelina Pena
- LAQV, REQUIMTE, Laboratório de Bromatologia e Farmacognosia, Faculdade de Farmácia da Universidade de Coimbra, Polo III, Azinhaga de Sta Comba, 3000–548 Coimbra, Portugal; (I.D.); (M.D.); (L.J.G.S.); (A.M.P.T.P.); (C.L.); (A.P.)
| |
Collapse
|
12
|
Li K, Cai H, Luo B, Duan S, Yang J, Zhang N, He Y, Wu A, Liu H. Recent Progress of Mycotoxin in Various Food Products-Human Exposure and Health Risk Assessment. Foods 2025; 14:865. [PMID: 40077568 PMCID: PMC11898784 DOI: 10.3390/foods14050865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2025] [Revised: 03/01/2025] [Accepted: 03/02/2025] [Indexed: 03/14/2025] Open
Abstract
Mycotoxins, as prevalent contaminants in the food chain, exhibit diverse toxicological effects on both animals and humans. Chronic dietary exposure to mycotoxin-contaminated foods may result in the bioaccumulation of these toxins, posing substantial public health risks. This review systematically examines the contamination patterns of mycotoxins across major food categories, including cereals and related products, animal-derived foods, fruits, and medical food materials. Furthermore, we critically evaluated two methodological frameworks for assessing mycotoxin exposure risks: (1) dietary exposure models integrating contamination levels and consumption data and (2) human biomonitoring approaches quantifying mycotoxin biomarkers in biological samples. A key contribution lies in the stratified analysis of exposure disparities among population subgroups (adults, teenagers, children, and infants). Additionally, we summarize current research on the relationship between human mycotoxin biomonitoring and associated health impacts, with a particular emphasis on vulnerable groups such as pregnant women and infants. By elucidating the challenges inherent in existing studies, this synthesis provides a roadmap for advancing risk characterization and evidence-based food safety interventions.
Collapse
Affiliation(s)
- Kailin Li
- Shanghai Municipal Center for Disease Control and Prevention, Shanghai 200336, China; (K.L.); (H.C.); (B.L.); (S.D.); (J.Y.); (N.Z.); (Y.H.)
- SIBS-UGENT-SJTU Joint Laboratory of Mycotoxin Research, CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200331, China
| | - Hua Cai
- Shanghai Municipal Center for Disease Control and Prevention, Shanghai 200336, China; (K.L.); (H.C.); (B.L.); (S.D.); (J.Y.); (N.Z.); (Y.H.)
| | - Baozhang Luo
- Shanghai Municipal Center for Disease Control and Prevention, Shanghai 200336, China; (K.L.); (H.C.); (B.L.); (S.D.); (J.Y.); (N.Z.); (Y.H.)
| | - Shenggang Duan
- Shanghai Municipal Center for Disease Control and Prevention, Shanghai 200336, China; (K.L.); (H.C.); (B.L.); (S.D.); (J.Y.); (N.Z.); (Y.H.)
| | - Jingjin Yang
- Shanghai Municipal Center for Disease Control and Prevention, Shanghai 200336, China; (K.L.); (H.C.); (B.L.); (S.D.); (J.Y.); (N.Z.); (Y.H.)
| | - Nan Zhang
- Shanghai Municipal Center for Disease Control and Prevention, Shanghai 200336, China; (K.L.); (H.C.); (B.L.); (S.D.); (J.Y.); (N.Z.); (Y.H.)
| | - Yi He
- Shanghai Municipal Center for Disease Control and Prevention, Shanghai 200336, China; (K.L.); (H.C.); (B.L.); (S.D.); (J.Y.); (N.Z.); (Y.H.)
| | - Aibo Wu
- SIBS-UGENT-SJTU Joint Laboratory of Mycotoxin Research, CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200331, China
| | - Hong Liu
- Shanghai Municipal Center for Disease Control and Prevention, Shanghai 200336, China; (K.L.); (H.C.); (B.L.); (S.D.); (J.Y.); (N.Z.); (Y.H.)
| |
Collapse
|
13
|
Zeng Y, Hu Y, Chen G, Feng Q, Wang R, Zhang Z, Chen J, Liao J, Lin D, Zhu W. Development of an Anti-Zearalenone Nanobody Phage Display Library and Preparation of Specific Nanobodies. Curr Issues Mol Biol 2025; 47:157. [PMID: 40136411 PMCID: PMC11940844 DOI: 10.3390/cimb47030157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2025] [Revised: 02/25/2025] [Accepted: 02/25/2025] [Indexed: 03/27/2025] Open
Abstract
Zearalenone (ZEN), a toxic estrogenic mycotoxin in cereals, threatens human and animal health through reproductive, immune, and cytotoxic effects, necessitating sensitive detection methods. While nanobodies offer advantages over conventional antibodies for on-site ZEN detection, their application remains unexplored. This study aimed to develop an anti-ZEN nanobody derived from an anti-ZEN phage display nanobody library. An alpaca was immunized with a ZEN-bovine serum albumin (ZEN-BSA) antigen, achieving peak serum antibody titers (1:25,600) following four immunizations. A high-capacity phage display nanobody library (1.0 × 1011 plaque-forming units/mL) was constructed. Following four rounds of biopanning, an enrichment factor of 479 was achieved. Phage ELISA screening identified six phage display nanobodies with specific ZEN-binding activity, and multiple sequence alignment revealed four unique nanobody sequences. The selected phage display nanobody, designated phage-V44, was expressed and purified, and its presence was validated by SDS-PAGE and western blotting, which detected a single approximately 17 kDa band consistent with the expected nanobody size. We established a working curve for an indirect competitive enzyme-linked immunoassay (ELISA) for ZEN, which showed an IC50 value of 7.55 ng/mL. The specificity and affinity of the V44 were also verified. Collectively, the study successfully constructed an anti-ZEN phage display nanobody library, screened four specific ZEN-binding phage display nanobodies, and prepared the anti-ZEN nanobody V44. Thereby establishing a foundation for the nanobody's future integration into rapid on-site detection methods for ZEN in both animal feed and human food products.
Collapse
Affiliation(s)
- Ying Zeng
- School of Public Health, Southern Medical University, Guangzhou 510515, China; (Y.Z.); (Y.H.); (J.L.)
- Department of Scientific Research Management, Guangzhou Center for Disease Control and Prevention (Guangzhou Health Supervision Institute), Guangzhou 510440, China; (G.C.); (Q.F.); (R.W.); (Z.Z.); (J.C.); (D.L.)
| | - Yiying Hu
- School of Public Health, Southern Medical University, Guangzhou 510515, China; (Y.Z.); (Y.H.); (J.L.)
- Department of Scientific Research Management, Guangzhou Center for Disease Control and Prevention (Guangzhou Health Supervision Institute), Guangzhou 510440, China; (G.C.); (Q.F.); (R.W.); (Z.Z.); (J.C.); (D.L.)
| | - Ganying Chen
- Department of Scientific Research Management, Guangzhou Center for Disease Control and Prevention (Guangzhou Health Supervision Institute), Guangzhou 510440, China; (G.C.); (Q.F.); (R.W.); (Z.Z.); (J.C.); (D.L.)
| | - Qingqing Feng
- Department of Scientific Research Management, Guangzhou Center for Disease Control and Prevention (Guangzhou Health Supervision Institute), Guangzhou 510440, China; (G.C.); (Q.F.); (R.W.); (Z.Z.); (J.C.); (D.L.)
| | - Ruiting Wang
- Department of Scientific Research Management, Guangzhou Center for Disease Control and Prevention (Guangzhou Health Supervision Institute), Guangzhou 510440, China; (G.C.); (Q.F.); (R.W.); (Z.Z.); (J.C.); (D.L.)
| | - Zhilin Zhang
- Department of Scientific Research Management, Guangzhou Center for Disease Control and Prevention (Guangzhou Health Supervision Institute), Guangzhou 510440, China; (G.C.); (Q.F.); (R.W.); (Z.Z.); (J.C.); (D.L.)
| | - Jinxian Chen
- Department of Scientific Research Management, Guangzhou Center for Disease Control and Prevention (Guangzhou Health Supervision Institute), Guangzhou 510440, China; (G.C.); (Q.F.); (R.W.); (Z.Z.); (J.C.); (D.L.)
| | - Junbin Liao
- School of Public Health, Southern Medical University, Guangzhou 510515, China; (Y.Z.); (Y.H.); (J.L.)
| | - Danrong Lin
- Department of Scientific Research Management, Guangzhou Center for Disease Control and Prevention (Guangzhou Health Supervision Institute), Guangzhou 510440, China; (G.C.); (Q.F.); (R.W.); (Z.Z.); (J.C.); (D.L.)
| | - Wei Zhu
- School of Public Health, Southern Medical University, Guangzhou 510515, China; (Y.Z.); (Y.H.); (J.L.)
- Department of Scientific Research Management, Guangzhou Center for Disease Control and Prevention (Guangzhou Health Supervision Institute), Guangzhou 510440, China; (G.C.); (Q.F.); (R.W.); (Z.Z.); (J.C.); (D.L.)
| |
Collapse
|
14
|
Chen Y, Liu X, Li J, Liu X. Development of a Sensitive Enzyme Immunoassay Using Phage-Displayed Antigen-Binding Fragments for Zearalenone Detection in Cereal Samples. Foods 2025; 14:746. [PMID: 40077448 PMCID: PMC11898766 DOI: 10.3390/foods14050746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2025] [Revised: 02/19/2025] [Accepted: 02/21/2025] [Indexed: 03/14/2025] Open
Abstract
Zearalenone (ZEN), a non-steroidal estrogenic mycotoxin, contaminates animal feed and grain crops, thereby entering the food chain and posing a significant threat to human health. Consequently, there is an urgent need for a sensitive and rapid method for detecting trace levels of ZEN. In this study, we developed a phage-displayed antigen-binding fragment (Fab-phage) and established a Fab-phage-based enzyme-linked immunosorbent assay (Fab-pELISA) for ZEN detection. Under optimal conditions, this method exhibits a half-maximal inhibitory concentration of 0.36 ng/mL, with a linear range from 0.07 to 3.89 ng/mL and a detection limit of 0.03 ng/mL. The method demonstrates high selectivity towards ZEN and good recovery rates of 97.35-122.66% with relative standard deviations not exceeding 3.5%. Furthermore, the detection results obtained using Fab-pELISA on real cereal samples are consistent with those from high-performance liquid chromatography, meeting practical application requirements. Therefore, the Fab-phage serves as a valuable biochemical reagent, and the established Fab-pELISA represents a promising analytical strategy for detecting ZEN and other trace toxic contaminants in cereals.
Collapse
Affiliation(s)
| | | | | | - Xing Liu
- School of Food Science and Engineering, Hainan University, Haikou 570228, China (X.L.); (J.L.)
| |
Collapse
|
15
|
López-Arellanes ME, López-Pacheco LD, Elizondo-Luevano JH, González-Meza GM. Algae and Cyanobacteria Fatty Acids and Bioactive Metabolites: Natural Antifungal Alternative Against Fusarium sp. Microorganisms 2025; 13:439. [PMID: 40005804 PMCID: PMC11858688 DOI: 10.3390/microorganisms13020439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Revised: 01/08/2025] [Accepted: 01/22/2025] [Indexed: 02/27/2025] Open
Abstract
Fungal diseases caused by Fusarium spp. significantly threaten food security and sustainable agriculture. One of the traditional strategies for eradicating Fusarium spp. incidents is the use of chemical and synthetic fungicides. The excessive use of these products generates environmental damage and has negative effects on crop yield. It puts plants in stressful conditions, kills the natural soil microbiome, and makes phytopathogenic fungi resistant. Finally, it also causes health problems in farmers. This drives the search for and selection of natural alternatives, such as bio-fungicides. Among natural products, algae and cyanobacteria are promising sources of antifungal bio-compounds. These organisms can synthesize different bioactive molecules, such as fatty acids, phenolic acids, and some volatile organic compounds with antifungal activity, which can damage the fungal cell membrane that surrounds the hyphae and spores, either by solubilization or by making them porous and disrupted. Research in this area is still developing, but significant progress has been made in the identification of the compounds with potential for controlling this important pathogen. Therefore, this review focuses on the knowledge about the mechanisms of action of the fatty acids from macroalgae, microalgae, and cyanobacteria as principal biomolecules with antifungal activity, as well as on the benefits and challenges of applying these natural metabolites against Fusarium spp. to achieve sustainable agriculture.
Collapse
Affiliation(s)
- Miguel E. López-Arellanes
- School of Engineering and Sciences, Tecnológico de Monterrey, Monterrey 64700, Nuevo León, Mexico; (M.E.L.-A.); (L.D.L.-P.)
| | - Lizbeth Denisse López-Pacheco
- School of Engineering and Sciences, Tecnológico de Monterrey, Monterrey 64700, Nuevo León, Mexico; (M.E.L.-A.); (L.D.L.-P.)
- Institute of Advanced Materials for Sustainable Manufacturing, Tecnológico de Monterrey, Monterrey 64700, Nuevo León, Mexico
| | - Joel H. Elizondo-Luevano
- Faculty of Agronomy, Universidad Autónoma de Nuevo León, San Nicolás de los Garza 66455, Nuevo León, Mexico;
| | - Georgia María González-Meza
- School of Engineering and Sciences, Tecnológico de Monterrey, Monterrey 64700, Nuevo León, Mexico; (M.E.L.-A.); (L.D.L.-P.)
- Institute of Advanced Materials for Sustainable Manufacturing, Tecnológico de Monterrey, Monterrey 64700, Nuevo León, Mexico
| |
Collapse
|
16
|
Zhang R, Huangfu B, Xu T, Opatola VO, Ban Q, Huang K, He X. Zearalenone enhances TSST-1 production by intestinal Staphylococcus and increases uterine immune stress in rats. Food Chem Toxicol 2025; 196:115140. [PMID: 39586525 DOI: 10.1016/j.fct.2024.115140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2024] [Revised: 11/08/2024] [Accepted: 11/21/2024] [Indexed: 11/27/2024]
Abstract
Zearalenone (ZEA), a mycotoxin prevalent in food crops, poses significant health risks, particularly through its impact on the gut-uterus axis. This study assessed the effects of a 5 mg/kg body weight ZEA dosage in female SD rats, focusing on gut microbiota alterations, inflammatory responses, and uterine changes. Our findings revealed substantial shifts in microbial composition, including significant reductions in beneficial genera such as Akkermansia and Ruminococcaceae and marked increases in pathogenic staphylococci, which correlated with elevated levels of toxic shock syndrome toxin-1 (TSST-1) in serum and uterine tissue. RNA sequencing of uterine samples indicated activation of the extracellular matrix (ECM) pathway, along with significant upregulation of MMP-2 and TIMP-2, enzymes associated with ECM remodelling. Correlation analysis showed a strong link between staphylococcal proliferation and ECM pathway activation, suggesting that ZEA-induced gut dysbiosis contributes to uterine inflammation and structural alterations. These results reveal how ZEA disrupts gut and uterine health, highlighting critical pathways that could serve as targets for future preventive and therapeutic strategies against mycotoxin exposure.
Collapse
Affiliation(s)
- Ruiqi Zhang
- Key Laboratory of Precision Nutrition and Food Quality, Beijing Laboratory for Food Quality and Safety, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, PR China
| | - Bingxin Huangfu
- Key Laboratory of Precision Nutrition and Food Quality, Beijing Laboratory for Food Quality and Safety, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, PR China
| | - Tongxiao Xu
- Key Laboratory of Precision Nutrition and Food Quality, Beijing Laboratory for Food Quality and Safety, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, PR China
| | - Victor Olusola Opatola
- Key Laboratory of Precision Nutrition and Food Quality, Beijing Laboratory for Food Quality and Safety, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, PR China
| | - Qiushi Ban
- Key Laboratory of Precision Nutrition and Food Quality, Beijing Laboratory for Food Quality and Safety, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, PR China
| | - Kunlun Huang
- Key Laboratory of Precision Nutrition and Food Quality, Beijing Laboratory for Food Quality and Safety, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, PR China
| | - Xiaoyun He
- Key Laboratory of Precision Nutrition and Food Quality, Beijing Laboratory for Food Quality and Safety, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, PR China.
| |
Collapse
|
17
|
Lv Q, Xu W, Yang F, Wei W, Chen X, Zhang Z, Liu Y. Reproductive Toxicity of Zearalenone and Its Molecular Mechanisms: A Review. Molecules 2025; 30:505. [PMID: 39942610 PMCID: PMC11821083 DOI: 10.3390/molecules30030505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Revised: 01/17/2025] [Accepted: 01/21/2025] [Indexed: 02/16/2025] Open
Abstract
Zearalenone (ZEA) is one of the common mycotoxins in feeds. ZEA and its metabolites have estrogen-like activity and can competitively bind to estrogen receptors, causing reproductive dysfunction and damage to reproductive organs. The toxicity mechanism of ZEA mainly inhibits the antioxidant pathway and antioxidant enzyme activity, induces cell cycle arrest and DNA damage, and blocks the process of cellular autophagy to produce toxic effects. In animal husbandry practice, when animals ingest ZEA-contaminated feed, it is likely to lead to abortion in females, abnormal sperm viability in males with inflammatory reactions in various organs, and cancerous changes in the reproductive organs of humans when they ingest contaminated animal products. In this paper, we reviewed in detail how ZEA induces oxidative damage by inducing the generation of reactive oxygen species (ROS) and regulating the expression of genes related to oxidative pathways, induces germ cell apoptosis through the mitochondrial and death receptor pathways, and activates the expression of genes related to autophagy in order to induce cellular autophagy. In addition, the molecular detoxification mechanism of ZEA is also explored in this paper, aiming to provide a new direction and theoretical basis for the development of new ZEA detoxification methods to better reduce the global pollution and harm caused by ZEA.
Collapse
Affiliation(s)
- Qiongxia Lv
- College of Animal Science and Technology, Henan University of Science and Technology, No. 263, Kaiyuan Avenue, Luoyang 471023, China; (W.X.); (W.W.)
| | | | | | | | | | | | | |
Collapse
|
18
|
Wang C, Chen C, Wang M, Rahman SU, Wei B, Ding H, Huang W, Wang X. Rutin attenuates zearalenone-induced ferroptosis of endometrial stromal cells in piglets through the p53 signaling pathway. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2025; 290:117546. [PMID: 39700772 DOI: 10.1016/j.ecoenv.2024.117546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 12/10/2024] [Accepted: 12/12/2024] [Indexed: 12/21/2024]
Abstract
Zearalenone (ZEA) is an environmentally widespread mycotoxin capable of posing a serious threat to food safety and public health, and porcine endometrial stromal cells (ESCs) are particularly sensitive to the toxic effects of ZEA. We hypothesized that Rutin, a flavonoid antioxidant, could significantly alleviate ZEA-induced ferroptosis through the p53 signaling pathway. In this study, we used porcine ESCs as a research model. When porcine ESCs were co-cultured with the addition of Rutin and ZEA following p53 gene silencing via siRNA transfection, Rutin significantly mitigated ZEA-induced mitochondrial damage, oxidative stress, and Fe2 + content through the p53 pathway. Additionally Rutin lowered the expression of p53, ALOX12, and ACSL4 while significantly improving cytokinesis, antioxidant enzyme activity, and SLC7A11, GPX4, Nrf2, FTH1, thereby inhibiting cellular ferroptosis. These findings suggested a novel programmed death mechanism for alleviating the cytotoxic effects of ZEA, involving the knockdown of p53.
Collapse
Affiliation(s)
- Chenlong Wang
- College of Veterinary Medicine, Anhui Agricultural University, Hefei 230036, China
| | - Chuangjiang Chen
- College of Veterinary Medicine, Anhui Agricultural University, Hefei 230036, China
| | - MengYa Wang
- College of Veterinary Medicine, Anhui Agricultural University, Hefei 230036, China
| | - Sajid Ur Rahman
- College of Veterinary Medicine, Anhui Agricultural University, Hefei 230036, China
| | - Bin Wei
- Huangyuan County Animal Husbandry and Veterinary Station, Xining, Qinghai 812100, China
| | - Hongyan Ding
- Anhui Province Key Laboratory of Livestock and Poultry Product Safety Engineering, Institute of Animal Science and Veterinary Medicine, Anhui Academy of Agricultural Sciences, Hefei 230031, China
| | - Wanyue Huang
- College of Veterinary Medicine, Anhui Agricultural University, Hefei 230036, China
| | - Xichun Wang
- College of Veterinary Medicine, Anhui Agricultural University, Hefei 230036, China; Anhui Province Engineering Laboratory for Animal Food Quality and Bio-safety, Hefei 230036, China.
| |
Collapse
|
19
|
Galletta M, Combès A, Mondello L, Tranchida PQ, Pichon V. Preparation and characterization of aptamer-based sorbent for the selective extraction of zearalenone and its derivatives from human urine. Anal Bioanal Chem 2025; 417:265-273. [PMID: 39532728 DOI: 10.1007/s00216-024-05640-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 10/25/2024] [Accepted: 10/29/2024] [Indexed: 11/16/2024]
Abstract
The aim of this work is the development of a biomimetic strategy involving a molecular recognition mechanism using aptamers immobilized on a solid support for the analysis of the mycotoxin zearalenone (ZEA) and two of its derivatives in human urine: alpha-zearelenol (α-ZEL) and beta-zearelenol (β-ZEL). Three oligonucleotide sequences reported in the literature as being specific to ZEA were thus covalently grafted onto activated sepharose, and a thorough study of the percolation and washing conditions was performed to promote the selective retention of the three targeted compounds. With the optimized extraction procedure, a strong and selective retention was obtained for ZEA and to a lesser extent α-ZEL and β-ZEL, with extraction recoveries of 88±9%, 77±15%, and 45±12% respectively, in standard solutions. Application of this procedure to spiked human urine strongly highlighted the efficiency of the clean-up effect resulting from the use of this selective sorbent. Limits of quantification of the whole analytical procedure including extraction on oligosorbent and LC-MS analysis were 0.18 and 0.24 ng mL-1, for ZEA and α-ZEL, respectively, thus demonstrating clearly the potential of the developed method for monitoring human dietary exposure to these compounds.
Collapse
Affiliation(s)
- Micaella Galletta
- Messina Institute of Technology C/o Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, Former Veterinary School, University of Messina, Viale G. Palatucci Snc, 98168, Messina, Italy
- Department of Analytical, Bioanalytical Sciences, and Miniaturization (LSABM), UMR 8231 Chemistry, Biology and Innovation (CBI), ESPCI Paris, PSL University, Paris, France
| | - Audrey Combès
- Department of Analytical, Bioanalytical Sciences, and Miniaturization (LSABM), UMR 8231 Chemistry, Biology and Innovation (CBI), ESPCI Paris, PSL University, Paris, France
| | - Luigi Mondello
- Messina Institute of Technology C/o Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, Former Veterinary School, University of Messina, Viale G. Palatucci Snc, 98168, Messina, Italy
- Chromaleont S.R.L., c/o Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, Former Veterinary School, University of Messina, Viale G. Palatucci Snc, 98168, Messina, Italy
| | - Peter Q Tranchida
- Messina Institute of Technology C/o Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, Former Veterinary School, University of Messina, Viale G. Palatucci Snc, 98168, Messina, Italy
| | - Valérie Pichon
- Department of Analytical, Bioanalytical Sciences, and Miniaturization (LSABM), UMR 8231 Chemistry, Biology and Innovation (CBI), ESPCI Paris, PSL University, Paris, France.
- Sorbonne Université, 4 Place Jussieu, 75005, Paris, France.
| |
Collapse
|
20
|
Lu Z, Zhang R, Wu P, Zhao D, Chen J, Pan X, Wang J, Zhang H, Qi X, Weng Q, Ye S, Zhou B. Occurrence and Exposure Assessment of Zearalenone in the Zhejiang Province, China. Toxins (Basel) 2024; 17:9. [PMID: 39852962 PMCID: PMC11769038 DOI: 10.3390/toxins17010009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Revised: 12/20/2024] [Accepted: 12/26/2024] [Indexed: 01/26/2025] Open
Abstract
This study aims to examine the hazards of zearalenone (ZEN) to humans and assess the risk of dietary exposure to ZEN, particularly in relation to precocious puberty in children from the Zhejiang Province. The test results from five types of food from the Zhejiang Province show that corn oil has the highest detection rate of 87.82%. The levels of ZEN do not exceed the existing safety standards in any sample investigated in this study. According to the data from the Food Consumption Survey of Zhejiang Province residents, rice is the primary source of ZEN exposure, accounting for 55.85% of total exposure among all age groups. Based on the 50th exposure percentile, it would take 6.25 years of rice consumption to reach 1 year of safe ZEN exposure. Overall, the majority of the residents in the Zhejiang Province have a low risk of exposure to ZEN. In an extreme case (based on the 95th exposure percentile), the total ZEN exposure from the studied foods with respect to children aged ≤6 years and 7-12 years is 0.38 μg/kg b.w. and 0.26 μg/kg b.w., respectively-both exceeding the safety limit of 0.25 μg/kg b.w. set by the European Food Safety Authority, indicating a potential risk of exposure. Precocious puberty assessments show that ZEN exposure levels in children in the Zhejiang Province are significantly lower than those associated with precocious puberty; thus, precocious puberty is unlikely to occur in this area. Given ZEN's estrogenic effect, it is necessary to monitor the level of ZEN in different food items, revise the relevant standards as needed, and focus on exposure to ZEN in younger age groups.
Collapse
Affiliation(s)
- Zijie Lu
- School of Public Health, Hangzhou Medical College, Hangzhou 310013, China; (Z.L.); (Q.W.)
- Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou 310051, China; (R.Z.); (P.W.); (D.Z.); (J.C.); (X.P.); (J.W.); (H.Z.); (X.Q.); (S.Y.)
| | - Ronghua Zhang
- Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou 310051, China; (R.Z.); (P.W.); (D.Z.); (J.C.); (X.P.); (J.W.); (H.Z.); (X.Q.); (S.Y.)
| | - Pinggu Wu
- Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou 310051, China; (R.Z.); (P.W.); (D.Z.); (J.C.); (X.P.); (J.W.); (H.Z.); (X.Q.); (S.Y.)
| | - Dong Zhao
- Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou 310051, China; (R.Z.); (P.W.); (D.Z.); (J.C.); (X.P.); (J.W.); (H.Z.); (X.Q.); (S.Y.)
| | - Jiang Chen
- Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou 310051, China; (R.Z.); (P.W.); (D.Z.); (J.C.); (X.P.); (J.W.); (H.Z.); (X.Q.); (S.Y.)
| | - Xiaodong Pan
- Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou 310051, China; (R.Z.); (P.W.); (D.Z.); (J.C.); (X.P.); (J.W.); (H.Z.); (X.Q.); (S.Y.)
| | - Jikai Wang
- Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou 310051, China; (R.Z.); (P.W.); (D.Z.); (J.C.); (X.P.); (J.W.); (H.Z.); (X.Q.); (S.Y.)
| | - Hexiang Zhang
- Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou 310051, China; (R.Z.); (P.W.); (D.Z.); (J.C.); (X.P.); (J.W.); (H.Z.); (X.Q.); (S.Y.)
| | - Xiaojuan Qi
- Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou 310051, China; (R.Z.); (P.W.); (D.Z.); (J.C.); (X.P.); (J.W.); (H.Z.); (X.Q.); (S.Y.)
| | - Qin Weng
- School of Public Health, Hangzhou Medical College, Hangzhou 310013, China; (Z.L.); (Q.W.)
- Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou 310051, China; (R.Z.); (P.W.); (D.Z.); (J.C.); (X.P.); (J.W.); (H.Z.); (X.Q.); (S.Y.)
| | - Shufeng Ye
- Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou 310051, China; (R.Z.); (P.W.); (D.Z.); (J.C.); (X.P.); (J.W.); (H.Z.); (X.Q.); (S.Y.)
- School of Public Health, Ningbo University, Ningbo 315211, China
| | - Biao Zhou
- Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou 310051, China; (R.Z.); (P.W.); (D.Z.); (J.C.); (X.P.); (J.W.); (H.Z.); (X.Q.); (S.Y.)
| |
Collapse
|
21
|
Wang Z, An W, Wang J, Tao H, Wang X, Han B, Wang J. Machine Learning for Predicting Zearalenone Contamination Levels in Pet Food. Toxins (Basel) 2024; 16:553. [PMID: 39728811 PMCID: PMC11679108 DOI: 10.3390/toxins16120553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 12/02/2024] [Accepted: 12/17/2024] [Indexed: 12/28/2024] Open
Abstract
Zearalenone (ZEN) has been detected in both pet food ingredients and final products, causing acute toxicity and chronic health problems in pets. Therefore, the early detection of mycotoxin contamination in pet food is crucial for ensuring the safety and well-being of animals. This study aims to develop a rapid and cost-effective method using an electronic nose (E-nose) and machine learning algorithms to predict whether ZEN levels in pet food exceed the regulatory limits (250 µg/kg), as set by Chinese pet food legislation. A total of 142 pet food samples from various brands, collected between 2021 and 2023, were analyzed for ZEN contamination via liquid chromatography-tandem mass spectrometry. Additionally, the "AIR PEN 3" E-nose, equipped with 10 metal oxide sensors, was employed to identify volatile compounds in the pet food samples, categorized into 10 different groups. Machine learning algorithms, including liner regression, k-nearest neighbors, support vector machines, random forests, XGBoost, and multi-layer perceptron (MLP), were used to classify the samples based on their volatile profiles. The MLP algorithm showed the highest discrimination accuracy at 86.6% in differentiating between pet food samples above and below the ZEN threshold. Other algorithms showed moderate accuracy, ranging from 77.1% to 84.8%. The ensemble model, which combined the predictions from all classifiers, further improved the classification performance, achieving the highest accuracy at 90.1%. These results suggest that the combination of E-nose technology and machine learning provides a rapid, cost-effective approach for screening ZEN contamination in pet food at the market entry stage.
Collapse
Affiliation(s)
- Zhenlong Wang
- Key Laboratory of Feed Biotechnology, Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agricultural Sciences, No. 12 Zhongguancun South Street, Beijing 100081, China; (Z.W.)
- Laboratory of Pet Nutrition and Food, Institute of Feed Research, Chinese Academy of Agricultural Sciences, No. 12 Zhongguancun South Street, Beijing 100081, China
| | - Wei An
- Key Laboratory of Feed Biotechnology, Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agricultural Sciences, No. 12 Zhongguancun South Street, Beijing 100081, China; (Z.W.)
- Laboratory of Pet Nutrition and Food, Institute of Feed Research, Chinese Academy of Agricultural Sciences, No. 12 Zhongguancun South Street, Beijing 100081, China
| | - Jiaxue Wang
- Key Laboratory of Feed Biotechnology, Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agricultural Sciences, No. 12 Zhongguancun South Street, Beijing 100081, China; (Z.W.)
- Laboratory of Pet Nutrition and Food, Institute of Feed Research, Chinese Academy of Agricultural Sciences, No. 12 Zhongguancun South Street, Beijing 100081, China
| | - Hui Tao
- Key Laboratory of Feed Biotechnology, Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agricultural Sciences, No. 12 Zhongguancun South Street, Beijing 100081, China; (Z.W.)
- Laboratory of Pet Nutrition and Food, Institute of Feed Research, Chinese Academy of Agricultural Sciences, No. 12 Zhongguancun South Street, Beijing 100081, China
| | - Xiumin Wang
- Key Laboratory of Feed Biotechnology, Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agricultural Sciences, No. 12 Zhongguancun South Street, Beijing 100081, China; (Z.W.)
- Laboratory of Pet Nutrition and Food, Institute of Feed Research, Chinese Academy of Agricultural Sciences, No. 12 Zhongguancun South Street, Beijing 100081, China
| | - Bing Han
- Key Laboratory of Feed Biotechnology, Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agricultural Sciences, No. 12 Zhongguancun South Street, Beijing 100081, China; (Z.W.)
- Laboratory of Pet Nutrition and Food, Institute of Feed Research, Chinese Academy of Agricultural Sciences, No. 12 Zhongguancun South Street, Beijing 100081, China
| | - Jinquan Wang
- Key Laboratory of Feed Biotechnology, Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agricultural Sciences, No. 12 Zhongguancun South Street, Beijing 100081, China; (Z.W.)
- Laboratory of Pet Nutrition and Food, Institute of Feed Research, Chinese Academy of Agricultural Sciences, No. 12 Zhongguancun South Street, Beijing 100081, China
| |
Collapse
|
22
|
Wang C, Wang M, Yang Y, Chen C, Rahman SU, Yang Z, Ding H, Huang W, Wang X. Rutin Attenuates the Oxidative Damage Induced by Zearalenone in Piglet Endometrial Stromal Cells via the p53 Signaling Pathway. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:28138-28147. [PMID: 39642313 DOI: 10.1021/acs.jafc.4c09143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/08/2024]
Abstract
Zearalenone (ZEA) induces oxidative damage in porcine endometrial stromal cells (ESCs), which is a critical factor affecting the growth and reproduction of female pigs. We hypothesize that rutin, a flavonoid antioxidant, can alleviate ZEA-induced cellular damage through the p53 signaling pathway. In this experiment, porcine ESCs were used as a research model. After transfection with siRNA to silence the p53 gene, rutin and ZEA were added to the cocultured porcine ESCs. Rutin notably reduced the ZEA-induced apoptosis rate, ROS, MDA, and 4-HNE levels via the p53 pathway; lowered the expression of LC3, Beclin-1, p62, Bax, and CHOP; and significantly improved cell viability, GSH-Px, T-SOD enzyme activity, and Bcl-2 expression. It also inhibited both apoptosis and autophagy. These findings suggested a novel antioxidant mechanism by which rutin mitigated the toxic effects of ZEA, highlighting the role of the p53 gene knockdown in this process.
Collapse
Affiliation(s)
- Chenlong Wang
- College of Veterinary Medicine, Anhui Agricultural University, Hefei 230061, China
| | - Mengya Wang
- College of Veterinary Medicine, Anhui Agricultural University, Hefei 230061, China
| | - Yueru Yang
- College of Veterinary Medicine, Anhui Agricultural University, Hefei 230061, China
| | - Chuangjiang Chen
- College of Veterinary Medicine, Anhui Agricultural University, Hefei 230061, China
| | - Sajid Ur Rahman
- College of Veterinary Medicine, Anhui Agricultural University, Hefei 230061, China
| | - Zhiping Yang
- Huangyuan County Animal Husbandry and Veterinary Station, Xining City, Qinghai Province 812100, China
| | - Hongyan Ding
- Anhui Province Key Laboratory of Livestock and Poultry Product Safety Engineering, Institute of Animal Science and Veterinary Medicine, Anhui Academy of Agricultural Sciences, Hefei 230031, China
| | - Wanyue Huang
- College of Veterinary Medicine, Anhui Agricultural University, Hefei 230061, China
| | - Xichun Wang
- College of Veterinary Medicine, Anhui Agricultural University, Hefei 230061, China
- Anhui Province Engineering Laboratory for Animal Food Quality and Bio-safety, Hefei 230036, China
| |
Collapse
|
23
|
Zafar MH, Li C, Lu Z, Lu Y, Zhang Z, Qi R, Nazir U, Yang K, Wang M. Duodenum and Caecum Microbial Shift Modulates Immune and Antioxidant Response Through Energy Homeostasis in Hu Sheep Fed Vegetable Waste and Rice Straw Silage. Antioxidants (Basel) 2024; 13:1546. [PMID: 39765874 PMCID: PMC11727283 DOI: 10.3390/antiox13121546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 12/05/2024] [Accepted: 12/12/2024] [Indexed: 01/15/2025] Open
Abstract
The gradual decline in feed resources for livestock needs alternate ways to ensure non-stop feed supply throughout the year. The objective of this study was to evaluate the impact of vegetable waste and rice straw silage (VTRS) on immune response, antioxidant status, and microbial changes in duodenum and caecum in Hu sheep. Eight healthy male Hu sheep were randomly distributed into control (fed farm roughage) and VTRS (fed vegetable waste silage) groups for 35 days. Results had shown that silage had less mycotoxin content (p < 0.05). The VTRS increased butyrate content in duodenal digesta, while acetate, butyrate, total volatile fatty acids (TVFA), and valerate were enhanced in caecal digesta (p < 0.05). The VTRS also increased amylase activity in duodenum and ileum tissues, along with GLUT2 and SGLT1 expressions. In serum, Interleukin-10 (IL-10) concentration and total antioxidant capacity (T-AOC) were increased while malondialdehyde (MDA) was decreased. An increase in T-AOC and GSH-Px activity was also observed, along with increased IL-6, immunoglobulin A (IgA), and catalase in duodenum tissue (p < 0.05). Prevotella was increased in the duodenum and caecum, with Prevotellacae UCG-001 and Christensenellacae R-7 group representing the VTRS group in the duodenum (p < 0.05). KEGG pathway prediction also indicated the enrichment of energy metabolism-related pathways. Significant microbes had shown a significant correlation with immune parameters. It can be concluded that vegetable waste silage has the ability to improve antioxidant status, enhance energy metabolism, and balance intestinal microbiota in Hu sheep.
Collapse
Affiliation(s)
- Muhammad Hammad Zafar
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; (M.H.Z.)
| | - Chuang Li
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; (M.H.Z.)
- College of Animal Science, Xinjiang Agricultural University, Urumqi 830091, China
| | - Zhiqi Lu
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; (M.H.Z.)
| | - Yue Lu
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; (M.H.Z.)
| | - Zhenbin Zhang
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; (M.H.Z.)
| | - Ruxin Qi
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; (M.H.Z.)
| | - Usman Nazir
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; (M.H.Z.)
| | - Kailun Yang
- College of Animal Science, Xinjiang Agricultural University, Urumqi 830091, China
| | - Mengzhi Wang
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; (M.H.Z.)
- State Key Laboratory for Sheep Genetic Improvement and Healthy Production, Xinjiang Academy of Agricultural and Reclamation Science, Shihezi 832000, China
| |
Collapse
|
24
|
Marashi S, Mostarshedi P, Ghorbanikalateh S, Ghorbanikalateh S, Zoshki A, Taghavi H, Karimi E, Oskoueian E, Jahromi MF, Shokryazdan P. Dietary administration of Bacillus subtilis improves the health parameters and regulates the gene expression in mice receiving zearalenone-contaminated diet. Braz J Microbiol 2024; 55:3751-3758. [PMID: 39190258 PMCID: PMC11711959 DOI: 10.1007/s42770-024-01501-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Accepted: 08/20/2024] [Indexed: 08/28/2024] Open
Abstract
The biodegradation of mycotoxins has become a specific, efficient, and environmentally protective way to reduce the adverse effects of mycotoxins in both foods and feeds. In the current study, the effectiveness of dietary administration of Bacillus subtilis on health parameters and regulated gene expression in mice receiving zearalenone zearalenone-contaminated diet was explored. In this trial, a total of twenty-four white balb/c mice were randomly assigned to three treatments. Dietary treatments were as follows: T1: The control (fed non-zearalenone-contaminated diet), T2: fed zearalenone-contaminated diet, T3: fed zearalenone-contaminated diet + Bacillus subtilis ARKA-S-3 (1 × 109 cfu/kg) for 28 days. The results showed, B. subtilis notably degraded zearalenone in cultured media during 18 h incubation (p < 0.05). It significantly improved average daily weight gain and feed intake. Dietary B. subtilis notably reduced the adverse effects of zearalenone on serum antioxidant indices (GSH-Px, SOD, ) and saved mice from oxidative stress. Also, treatments with B. subtilis improved morphometric characteristics of the ileum ((Villus Height (µm), Villus Width (µm), and Crypt Depth (µm)) in the mice received zearalenone-contaminated diet (p < 0.05). The molecular analysis illustrated that B. subtilis has also improved the mRNA expression levels and antioxidant-related gene expression of SOD and CAT in the jejunum tissue. Moreover, it alleviated the IL-2 and IFN-γ gene profiling in the jejunum tissue. These findings illustrate that dietary administration of B. subtilis by having a degraded effect on zearalenone, possesses a protective effect on the health parameters and gene expression regulation in mice receiving a zearalenone-contaminated diet.
Collapse
Affiliation(s)
| | - Pegah Mostarshedi
- Department of Biology, Mashhad Branch, Islamic Azad University, Mashhad, Iran
| | | | | | - Atiyeh Zoshki
- Department of Biology, Mashhad Branch, Islamic Azad University, Mashhad, Iran
| | - Hila Taghavi
- Department of Biology, Babol Branch, Islamic Azad University, Babol, Iran
| | - Ehsan Karimi
- Department of Biology, Mashhad Branch, Islamic Azad University, Mashhad, Iran.
| | - Ehsan Oskoueian
- Department of Biology, Mashhad Branch, Islamic Azad University, Mashhad, Iran.
- Industrial and Mineral Research Center, Arka Industrial Cluster, Mashhad, Iran.
| | - Mohammad Faseleh Jahromi
- Department of Biology, Mashhad Branch, Islamic Azad University, Mashhad, Iran
- Industrial and Mineral Research Center, Arka Industrial Cluster, Mashhad, Iran
| | - Parisa Shokryazdan
- Department of Biology, Mashhad Branch, Islamic Azad University, Mashhad, Iran
- Industrial and Mineral Research Center, Arka Industrial Cluster, Mashhad, Iran
| |
Collapse
|
25
|
Asaduzzaman M, Pavlov I, St-Jean G, Zhu Y, Castex M, Chorfi Y, Del Castillo JRE, Zhou T, Alassane-Kpembi I. Phosphorylation of Zearalenone Retains Its Toxicity. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:26491-26503. [PMID: 39549027 DOI: 10.1021/acs.jafc.4c06889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2024]
Abstract
Microbial biotransformation of Zearalenone (ZEN) is a promising deactivation approach. The residual toxicity and stability of Zearalenone-14-phosphate (ZEN-14-P) and Zearalenone-16-phosphate (ZEN-16-P), two novel microbial phosphorylation products of ZEN, remain unknown. We investigated the cytotoxicity, oxidative stress, proinflammatory, and estrogenic activity of phosphorylated ZENs using porcine intestinal cells, uterine explants, and human endometrial cells and traced their metabolic fate by liquid chromatography-tandem mass spectrometry (LC-MS)/MS analysis. The phosphorylated ZENs significantly decreased the viability of the IPEC-J2 and Ishikawa cells. Similar to ZEN, phosphorylation products induced significant oxidative stress, activated the expression of proinflammatory cytokines, and demonstrated estrogenic activity through upregulation of estrogen-responsive genes, activation of alkaline phosphatase, and proliferation of endometrial glands. LC-MS/MS analysis pointed out that although phosphorylated ZENs are partially hydrolyzed to ZEN, their respective metabolic pathways differ. We conclude that phosphorylation might not be sufficient to detoxify ZEN, leaving its cytotoxic, proinflammatory, and estrogenic properties intact.
Collapse
Affiliation(s)
- Muhammad Asaduzzaman
- Département de Biomédecine vétérinaire, Faculté de Médecine vétérinaire, Université de Montréal, Saint-Hyacinthe, Québec J2S 2M2, Canada
| | - Ivan Pavlov
- Département de Biomédecine vétérinaire, Faculté de Médecine vétérinaire, Université de Montréal, Saint-Hyacinthe, Québec J2S 2M2, Canada
| | - Guillaume St-Jean
- Département de Pathologie et Microbiologie, Faculté de Médecine vétérinaire, Université de Montréal, Saint-Hyacinthe, Québec J2S 2M2, Canada
| | - Yan Zhu
- Guelph Research and Development Centre, Agriculture and Agri-Food Canada, Guelph, ON N1G 5C9, Canada
| | - Mathieu Castex
- Lallemand SAS, 19 rue des Briquetiers, BP 59, 31702 Blagnac Cedex, France
| | - Younes Chorfi
- Département de Biomédecine vétérinaire, Faculté de Médecine vétérinaire, Université de Montréal, Saint-Hyacinthe, Québec J2S 2M2, Canada
| | - Jérôme R E Del Castillo
- Département de Biomédecine vétérinaire, Faculté de Médecine vétérinaire, Université de Montréal, Saint-Hyacinthe, Québec J2S 2M2, Canada
| | - Ting Zhou
- Guelph Research and Development Centre, Agriculture and Agri-Food Canada, Guelph, ON N1G 5C9, Canada
| | - Imourana Alassane-Kpembi
- Département de Biomédecine vétérinaire, Faculté de Médecine vétérinaire, Université de Montréal, Saint-Hyacinthe, Québec J2S 2M2, Canada
| |
Collapse
|
26
|
Kinkade CW, Rivera-Núñez Z, Brinker A, Buckley B, Waysack O, Kautz A, Meng Y, Ohman Strickland P, Block R, Groth SW, O'Connor TG, Aleksunes LM, Barrett ES. Urinary mycoestrogens and gestational weight gain in the UPSIDE pregnancy cohort. Environ Health 2024; 23:103. [PMID: 39567992 PMCID: PMC11580541 DOI: 10.1186/s12940-024-01141-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Accepted: 11/06/2024] [Indexed: 11/22/2024]
Abstract
BACKGROUND Zearalenone (ZEN), a secondary metabolite of Fusarium fungi, is one of the most common mycotoxins in global food supplies such as cereal grains and processed food. ZEN and its metabolites are commonly referred to as mycoestrogens, due to their ability to directly bind nuclear estrogen receptors α (ER-α) and β (ER-β). Zeranol, a synthetic mycoestrogen, is administered to U.S. cattle as a growth promoter. Despite widespread human exposure and ample evidence of adverse reproductive impacts in vitro and in vivo, there has been little epidemiological research on the health impacts of ZEN exposure during pregnancy. The objective of our study was to examine associations between ZEN and gestational weight gain (GWG). METHODS Urine samples were collected in each trimester from pregnant participants in the UPSIDE cohort (n = 286, Rochester, NY, USA). High performance liquid chromatography and high-resolution tandem mass spectrometry were used to quantify concentrations of ZEN as well as ∑mycoestrogens (composite sum of ZEN metabolites; ng/ml). Maternal weights at clinical visits were abstracted from medical records. We fitted longitudinal models of specific-gravity adjusted, log-transformed ZEN and ∑mycoestrogens in relation to total GWG (kilograms) and GWG rate (kilograms/week). We additionally examined risk of excessive GWG (in relation to Institute of Medicine guidelines) and considered effect modification by fetal sex. RESULTS ZEN and ∑mycoestrogens were detected in > 93% and > 95% of samples, respectively. Mycoestrogen concentrations were positively associated with total GWG (ZEN β:0.50 kg; 95%CI: 0.13, 0.87) and GWG rate (ZEN β:0.20 kg/week; 95%CI: 0.01, 0.03). Associations tended to be stronger among participants carrying male (versus female) fetuses and results were robust to adjustment for diet. CONCLUSIONS Mycoestrogen exposure during pregnancy may contribute to greater GWG. Future research is needed to understand potential influences on downstream maternal and offspring health.
Collapse
Affiliation(s)
- Carolyn W Kinkade
- Environmental and Occupational Health Sciences Institute, Rutgers University, 170 Frelinghuysen Road Piscataway, 08854, Piscataway, NJ, USA
| | - Zorimar Rivera-Núñez
- Environmental and Occupational Health Sciences Institute, Rutgers University, 170 Frelinghuysen Road Piscataway, 08854, Piscataway, NJ, USA
- Department of Biostatistics and Epidemiology, Rutgers University School of Public Health, Piscataway, NJ, USA
| | - Anita Brinker
- Environmental and Occupational Health Sciences Institute, Rutgers University, 170 Frelinghuysen Road Piscataway, 08854, Piscataway, NJ, USA
| | - Brian Buckley
- Environmental and Occupational Health Sciences Institute, Rutgers University, 170 Frelinghuysen Road Piscataway, 08854, Piscataway, NJ, USA
| | - Olivia Waysack
- Department of Public Health Sciences, University of Rochester Medical Center, Rochester, NY, USA
| | - Amber Kautz
- Department of Public Health Sciences, University of Rochester Medical Center, Rochester, NY, USA
| | - Ying Meng
- School of Nursing, University of Rochester, Rochester, NY, USA
| | - Pamela Ohman Strickland
- Department of Biostatistics and Epidemiology, Rutgers University School of Public Health, Piscataway, NJ, USA
| | - Robert Block
- Department of Public Health Sciences, University of Rochester Medical Center, Rochester, NY, USA
- Department of Cardiology, University of Rochester Medical Center, Rochester, NY, USA
- Center for Community Health and Prevention, University of Rochester Medical Center, Rochester, NY, USA
| | - Susan W Groth
- School of Nursing, University of Rochester, Rochester, NY, USA
| | - Thomas G O'Connor
- Department of Obstetrics and Gynecology, University of Rochester Medical Center, Rochester, NY, USA
- Departments of Psychiatry and Neuroscience, University of Rochester, Rochester, NY, USA
- The Wynne Family Center, University of Rochester Medical Center, Rochester, NY, USA
| | - Lauren M Aleksunes
- Environmental and Occupational Health Sciences Institute, Rutgers University, 170 Frelinghuysen Road Piscataway, 08854, Piscataway, NJ, USA
- Ernest Mario School of Pharmacy, Rutgers University, Piscataway, NJ, USA
| | - Emily S Barrett
- Environmental and Occupational Health Sciences Institute, Rutgers University, 170 Frelinghuysen Road Piscataway, 08854, Piscataway, NJ, USA.
- Department of Biostatistics and Epidemiology, Rutgers University School of Public Health, Piscataway, NJ, USA.
- Department of Public Health Sciences, University of Rochester Medical Center, Rochester, NY, USA.
- Department of Obstetrics and Gynecology, University of Rochester Medical Center, Rochester, NY, USA.
| |
Collapse
|
27
|
Bao L, Huang Y, Gu F, Liu W, Guo Y, Chen H, Wang K, Wu Z, Li J. Zearalenone induces liver injury in mice through ferroptosis pathway. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 952:175875. [PMID: 39216757 DOI: 10.1016/j.scitotenv.2024.175875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 08/21/2024] [Accepted: 08/28/2024] [Indexed: 09/04/2024]
Abstract
Throughout the world, some foods and feeds commonly consumed by humans and animals are inadvertently contaminated with mycotoxins. Zearalenone (ZEA) is a typical environmental/food contaminant that can cause varying degrees of damage to the body, such as reproductive toxicity, hepatotoxicity, immunotoxicity, etc. It poses a serious threat to the living environment and human and animal health. Increasing evidence shows that mycotoxin-induced organ damage may be closely related to ferroptosis. However, the mechanism of ZEA-induced liver injury is still not fully understood. Therefore, this study aimed to explore whether ZEA can trigger ferroptosis in the liver and cause liver injury. This study was conducted by establishing in vivo and in vitro ZEA exposure models. The results showed that ZEA exposure led to typical liver injury indicators. ZEA inhibited the Nrf2/keap1 antioxidant signaling pathway, aggravated the oxidative stress response, and inhibited the body's antioxidant function. Additionally, it was found that ZEA can aggravate lipid peroxidation by blocking the system Xc-/GSH/GPX4 axis, upregulating the protein expression of ACSL4, and affecting the import, storage, and export of iron ions, thereby inducing iron ion metabolism disorders. A combination of multiple factors induces ferroptosis in mouse liver and AML12 cells. Pretreatment with deferoxamine, an inhibitor of ferroptosis, can alleviate ferroptosis damage induced by ZEA, indicating the crucial role of ferroptosis in cell damage caused by ZEA. This study deeply explores the hepatic ferroptosis pathway induced by ZEA, provides a new theoretical basis for ZEA-induced hepatotoxicity, and offers new insights for exploring potential treatment strategies.
Collapse
Affiliation(s)
- Lige Bao
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China; Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, Northeast Agricultural University, Harbin 150030, PR China
| | - Yongze Huang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China; Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, Northeast Agricultural University, Harbin 150030, PR China
| | - Fuhua Gu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China; Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, Northeast Agricultural University, Harbin 150030, PR China
| | - Weiqi Liu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China; Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, Northeast Agricultural University, Harbin 150030, PR China
| | - Yuquan Guo
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China; Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, Northeast Agricultural University, Harbin 150030, PR China
| | - Hao Chen
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China; Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, Northeast Agricultural University, Harbin 150030, PR China
| | - Kun Wang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China; Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, Northeast Agricultural University, Harbin 150030, PR China
| | - Zhiyong Wu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China; Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, Northeast Agricultural University, Harbin 150030, PR China.
| | - Jichang Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China; Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, Northeast Agricultural University, Harbin 150030, PR China.
| |
Collapse
|
28
|
Xing X, Chen X, You X, Huang J, Xue D. Zearalenone degrading enzyme evolution to increase the hydrolysis efficiency under acidic conditions by the rational design. Food Chem 2024; 456:140088. [PMID: 38878543 DOI: 10.1016/j.foodchem.2024.140088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2024] [Revised: 06/09/2024] [Accepted: 06/11/2024] [Indexed: 07/24/2024]
Abstract
Based on rational design, zearalenone degrading enzyme was evolved to improve the hydrolysis efficiency under acidic conditions. At pH 4.2 and 37 °C, the activity of the zearalenone degrading enzyme evolved with 8 mutation sites increased from 7.69 U/mg to 38.67 U/mg. Km of the evolved zearalenone degrading enzyme decreased from 283.61 μM to 75.33 μM. The evolved zearalenone degrading enzyme was found to effectively degrade zearalenone in pig stomach chyme. Molecular docking revealed an increase in the number of hydrogen bonds and π-sigma interactions between the evolved zearalenone degrading enzyme and zearalenone. The evolved zearalenone degrading enzyme was valuable for hydrolyzing zearalenone under acidic conditions.
Collapse
Affiliation(s)
- Xingyue Xing
- National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei University of Technology, Wuhan 430068, PR China
| | - Xiaowei Chen
- National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei University of Technology, Wuhan 430068, PR China
| | - Xihuo You
- School of Bioengineering and Health, Wuhan Textile University, State Key Laboratory of New Textile Materials and Advanced Processing Technologies, Wuhan Textile University, Wuhan 430200, PR China; Agrichina Huawei Biopharmaceutical (Hubei) Co., Ltd, Qichun 435300, PR China
| | - Jie Huang
- National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei University of Technology, Wuhan 430068, PR China
| | - Dongsheng Xue
- National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei University of Technology, Wuhan 430068, PR China.
| |
Collapse
|
29
|
Kinkade CW, Brinker A, Buckley B, Waysack O, Fernandez ID, Kautz A, Meng Y, Shi H, Brunner J, Ohman-Strickland P, Groth SW, O'Connor TG, Aleksunes LM, Barrett ES, Rivera-Núñez Z. Sociodemographic and dietary predictors of maternal and placental mycoestrogen concentrations in a US pregnancy cohort. JOURNAL OF EXPOSURE SCIENCE & ENVIRONMENTAL EPIDEMIOLOGY 2024:10.1038/s41370-024-00722-6. [PMID: 39363096 PMCID: PMC11968447 DOI: 10.1038/s41370-024-00722-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 09/20/2024] [Accepted: 09/23/2024] [Indexed: 10/05/2024]
Abstract
BACKGROUND Zearalenone (ZEN) is a mycotoxin contaminating grains and processed foods. ZEN alters nuclear estrogen receptor α/β signaling earning its designation as a mycoestrogen. Experimental evidence demonstrates that mycoestrogen exposure during pregnancy is associated with altered maternal sex steroid hormones, changes in placental size, and decreases in fetal weight and length. While mycoestrogens have been detected in human biospecimens worldwide, exposure assessment of ZEN in US populations, particularly during pregnancy, is lacking. OBJECTIVE To characterize urinary and placental concentrations of ZEN and its metabolites in healthy US pregnant people and examine demographic, perinatal, and dietary predictors of exposure. METHODS Urine samples were collected in each trimester from pregnant participants in the UPSIDE study and placenta samples were collected at delivery (Rochester, NY, n = 317). We used high performance liquid chromatography and high-resolution tandem mass spectrometry to measure total urinary (ng/ml) and placental mycoestrogens (ng/g). Using linear regression and linear mixed effect models, we examined associations between mycoestrogen concentrations and demographic, perinatal, and dietary factors (Healthy Eating Index [HEI], ultra-processed food [UPF] consumption). RESULTS Mycoestrogens were detected in 97% of urines (median 0.323 ng/ml) and 84% of placentas (median 0.012 ng/g). Stability of urinary mycoestrogens across pregnancy was low (ICC: 0.16-0.22) and did not correlate with placental levels. In adjusted models, parity (multiparous) and pre-pregnancy BMI (higher) predicted higher urinary concentrations. Birth season (fall) corresponded with higher placental mycoestrogens. Dietary analyses indicated that higher HEI (healthier diets) predicted lower exposure (e.g., Σmycoestrogens %∆ -2.03; 95%CI -3.23, -0.81) and higher percent calories from UPF predicted higher exposure (e.g., Σmycoestrogens %∆ 1.26; 95%CI 0.29, 2.24). IMPACT The mycotoxin, zearalenone (ZEN), has been linked to adverse health and reproductive impacts in animal models and livestock. Despite evidence of widespread human exposure, relatively little is known about predictors of exposure. In a pregnant population, we observed that maternal ZEN concentrations varied by maternal pre-pregnancy BMI and parity. Consumption of ultra-processed foods, added sugars, and refined grains were linked to higher ZEN concentrations while healthier diets were associated with lower levels. Our research suggests disparities in exposure that are likely due to diet. Further research is needed to understand the impacts of ZEN on maternal and offspring health.
Collapse
Affiliation(s)
- Carolyn W Kinkade
- Environmental and Occupational Health Sciences Institute, Rutgers University, Piscataway, NJ, USA.
| | - Anita Brinker
- Environmental and Occupational Health Sciences Institute, Rutgers University, Piscataway, NJ, USA
| | - Brian Buckley
- Environmental and Occupational Health Sciences Institute, Rutgers University, Piscataway, NJ, USA
| | - Olivia Waysack
- Department of Public Health Sciences, University of Rochester Medical Center, Rochester, NY, USA
| | - I Diana Fernandez
- Department of Public Health Sciences, University of Rochester Medical Center, Rochester, NY, USA
| | - Amber Kautz
- Department of Public Health Sciences, University of Rochester Medical Center, Rochester, NY, USA
| | - Ying Meng
- School of Nursing, University of Rochester, Rochester, NY, USA
| | - Huishan Shi
- Department of Obstetrics and Gynecology, University of Rochester Medical Center, Rochester, NY, USA
| | - Jessica Brunner
- Department of Obstetrics and Gynecology, University of Rochester Medical Center, Rochester, NY, USA
| | - Pamela Ohman-Strickland
- Department of Biostatistics and Epidemiology, Rutgers School of Public Health, Piscataway, NJ, USA
| | - Susan W Groth
- School of Nursing, University of Rochester, Rochester, NY, USA
| | - Thomas G O'Connor
- Department of Obstetrics and Gynecology, University of Rochester Medical Center, Rochester, NY, USA
- Department of Psychiatry, University of Rochester, Rochester, NY, USA
| | - Lauren M Aleksunes
- Environmental and Occupational Health Sciences Institute, Rutgers University, Piscataway, NJ, USA
- Ernest Mario School of Pharmacy, Rutgers University, Piscataway, NJ, USA
| | - Emily S Barrett
- Environmental and Occupational Health Sciences Institute, Rutgers University, Piscataway, NJ, USA
- Department of Obstetrics and Gynecology, University of Rochester Medical Center, Rochester, NY, USA
- Department of Biostatistics and Epidemiology, Rutgers School of Public Health, Piscataway, NJ, USA
| | - Zorimar Rivera-Núñez
- Environmental and Occupational Health Sciences Institute, Rutgers University, Piscataway, NJ, USA
- Department of Biostatistics and Epidemiology, Rutgers School of Public Health, Piscataway, NJ, USA
| |
Collapse
|
30
|
Jiang X, Tehreem S, Rahim K, Wang M, Wu P, Zhang G. Enhancing the thermal stability and activity of zearalenone lactone hydrolase to promote zearalenone degradation via semi-rational design. Enzyme Microb Technol 2024; 180:110499. [PMID: 39191068 DOI: 10.1016/j.enzmictec.2024.110499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 08/06/2024] [Accepted: 08/18/2024] [Indexed: 08/29/2024]
Abstract
Zearalenone (ZEN) is a fungal toxin produced by Fusarium exospore, which poses a significant threat to both animal and human health due to its reproductive toxicity. Removing ZEN through ZEN lactonase is currently the most effective method reported, however, all published ZEN lactonases suffer from the poor thermal stability, losing almost all activity after 10 min of treatment at 55℃. In this study, we heterologously expressed ZHD11A from Phialophora macrospora and engineered it via semi-rational design. A mutant I160Y-G242S that can retain about 40 % residual activity at 55℃ for 10 min was obtained, which is the most heat-tolerant ZEN hydrolase reported to date. Moreover, the specific activity of the I160Y-G242S was also elevated 2-fold compared to ZHD11A from 220 U/mg to 450 U/mg, which is one of the most active ZEN lactonses reported. Dynamics analysis revealed that the decreased flexibility of the main-chain carbons contributes to increased thermal stability and the improved substrate binding affinity and catalytic turnover contribute to enhanced activity of variant I160Y-G242S. In all, the mutant I160Y-G242S is an excellent candidate for the industrial application of ZEN degradation.
Collapse
Affiliation(s)
- Xue Jiang
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Sana Tehreem
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, Hubei 430062, China
| | - Kashif Rahim
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Meixing Wang
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China; State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, Hubei 430062, China
| | - Pan Wu
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, Hubei 430062, China
| | - Guimin Zhang
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China.
| |
Collapse
|
31
|
Zhang A, Wang X, Fan M, Guan Y, Jiang Y, Jin S, Liu L, Huangfu H, Song C. Lycopene alleviates zearalenone-induced oxidative stress, apoptosis, and NLRP3 inflammasome activation in mice kidneys. Toxicon 2024; 249:108078. [PMID: 39181415 DOI: 10.1016/j.toxicon.2024.108078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 08/19/2024] [Accepted: 08/21/2024] [Indexed: 08/27/2024]
Abstract
The aim of this study was to investigate the protective effects of lycopene on renal damage caused by zearalenone (ZEN). Male Kunming mice were treated daily for 4 weeks by intragastric administration with 40 mg/kg ZEN in the presence or absence of lycopene (2.5 or 5 mg/kg). The results showed that lycopene markedly alleviated the damage of renal structure and function in mice induced by ZEN, as indicated by the reduced degree of pathological damage and the decreased levels of urea nitrogen and creatinine. Meanwhile, results of dihydroethidine (DHE) staining and biochemical markers revealed that ZEN exposure notably increased the levels of reactive oxygen species (ROS) and malondialdehyde (MDA), decreased the level of GSH, and reduced the activities of catalase (CAT) and superoxide dismutase (SOD). Administration of lycopene alleviated the increased oxidative stress induced by ZEN. Moreover, ZEN ingestion notably resulted in apoptosis, increased the protein levels of BCL2 associated X protein (Bax) and cleaved caspase-3, and decreased the protein levels of apoptosis regulator Bcl-2 (Bcl-2), which were reversed by lycopene intervention. Results of immunofluorescence demonstrated that lycopene reversed ZEN-induced the upregulation of NOD-like receptor pyrin domain-containing protein 3 (NLRP3), Caspase-1, and interleukin-1 beta (IL-1β) in mice kidneys. Lycopene supplementation could alleviate ZEN-induced renal toxicity by inhibiting oxidative stress, apoptosis, and NLRP3 inflammasome activation.
Collapse
Affiliation(s)
- Aiguo Zhang
- College of Veterinary Medicine, Henan University of Animal Husbandry and Economy, No.6 Longzihu North road, Zhengzhou, Henan, 450046, China
| | - Xuefei Wang
- College of Veterinary Medicine, Henan University of Animal Husbandry and Economy, No.6 Longzihu North road, Zhengzhou, Henan, 450046, China
| | - Mingming Fan
- College of Veterinary Medicine, Henan University of Animal Husbandry and Economy, No.6 Longzihu North road, Zhengzhou, Henan, 450046, China
| | - Yibo Guan
- College of Veterinary Medicine, Henan University of Animal Husbandry and Economy, No.6 Longzihu North road, Zhengzhou, Henan, 450046, China
| | - Yuchen Jiang
- College of Veterinary Medicine, Henan University of Animal Husbandry and Economy, No.6 Longzihu North road, Zhengzhou, Henan, 450046, China
| | - Shuangxing Jin
- College of Veterinary Medicine, Henan University of Animal Husbandry and Economy, No.6 Longzihu North road, Zhengzhou, Henan, 450046, China
| | - Lingling Liu
- College of Veterinary Medicine, Henan University of Animal Husbandry and Economy, No.6 Longzihu North road, Zhengzhou, Henan, 450046, China
| | - Heping Huangfu
- College of Veterinary Medicine, Henan University of Animal Husbandry and Economy, No.6 Longzihu North road, Zhengzhou, Henan, 450046, China
| | - Chao Song
- College of Veterinary Medicine, Henan University of Animal Husbandry and Economy, No.6 Longzihu North road, Zhengzhou, Henan, 450046, China.
| |
Collapse
|
32
|
Nowak M, Bernat P, Różalska S. Mutual interaction of the entomopathogenic and endophytic fungus Metarhizium anisopliae with zearalenone as a native component of crude Fusarium extract. Sci Rep 2024; 14:22493. [PMID: 39341845 PMCID: PMC11438985 DOI: 10.1038/s41598-024-73022-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Accepted: 09/12/2024] [Indexed: 10/01/2024] Open
Abstract
The present study revealed the consequences of the interaction of a widely used bioinsecticide and endophyte Metarhizium anisopliae with the hazardous mycotoxin zearalenone (ZEN) as a pure substance and with ZEN as a native component of a crude Fusarium extract. In the environment, microorganisms encounter a mixture of metabolites secreted by other organisms living in the same area, not single substances. The obtained results suggest that M. anisopliae, exposed to a variety of active substances produced by Fusarium graminearum, is able to eliminate ZEN. Within 14 days, M. anisopliae biotransformed 90.8% and 85.8% of ZEN as a pure substance and ZEN as a native component of the F. graminearum extract from Rice Medium (E-Fg-RM), respectively, through reduction predominantly to α-epimers of zearalenols and zearalanols, considered more estrogenic than ZEN, which can raise concerns. Compared to pure ZEN, E-Fg-RM significantly affected the production of Metarhizium secondary metabolites by increasing the destruxins amount by approximately 20-25% and reducing the swainsonine content by 96.2%. All these findings provide a possible picture of the interaction of M. anisopliae with ZEN in the wild, mainly as a result of the use of crude extract from Fusarium, which contained a mixture of different metabolites.
Collapse
Affiliation(s)
- Monika Nowak
- Department of Industrial Microbiology and Biotechnology, Faculty of Biology and Environmental Protection, University of Lodz, Banacha Street 12/16, 90-237, Lodz, Poland
| | - Przemysław Bernat
- Department of Industrial Microbiology and Biotechnology, Faculty of Biology and Environmental Protection, University of Lodz, Banacha Street 12/16, 90-237, Lodz, Poland
| | - Sylwia Różalska
- Department of Industrial Microbiology and Biotechnology, Faculty of Biology and Environmental Protection, University of Lodz, Banacha Street 12/16, 90-237, Lodz, Poland.
| |
Collapse
|
33
|
Khan R. Mycotoxins in food: Occurrence, health implications, and control strategies-A comprehensive review. Toxicon 2024; 248:108038. [PMID: 39047955 DOI: 10.1016/j.toxicon.2024.108038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 06/14/2024] [Accepted: 07/18/2024] [Indexed: 07/27/2024]
Abstract
Mycotoxins are secondary metabolites produced by various filamentous fungi, including Aspergillus, Fusarium, Penicillium, Alternaria, Claviceps, Mucor, Trichoderma, Trichothecium, Myrothecium, Pyrenophora, and Stachybotrys. They can contaminate various plants or animal foods, resulting in a significant loss of nutritional and commercial value. Several factors contribute to mycotoxin production, such as humidity, temperature, oxygen levels, fungal species, and substrate. When contaminated food is consumed by animals and humans, mycotoxins are rapidly absorbed, affecting the liver, and causing metabolic disorders. The detrimental effects on humans and animals include reduced food intake and milk production, reduced fertility, increased risk of abortion, impaired immune response, and increased occurrence of diseases. Therefore, it is imperative to implement strategies for mycotoxin control, broadly classified as preventing fungal contamination and detoxifying their toxic compounds. This review aims to discuss various aspects of mycotoxins, including their occurrence, and risk potential. Additionally, it provides an overview of mycotoxin detoxification strategies, including the use of mycotoxin absorbents, as potential techniques to eliminate or mitigate the harmful effects of mycotoxins and masked mycotoxins on human and animal health while preserving the nutritional and commercial value of affected food products.
Collapse
Affiliation(s)
- Rahim Khan
- Department of Food Science, Faculty of Food Science and Technology, Universiti Putra Malaysia, Serdang, Selangor, 43300, Malaysia.
| |
Collapse
|
34
|
Yu M, Oskarsson A, Alexander J, Lundqvist J. Estrogenic, androgenic, and genotoxic activities of zearalenone and deoxynivalenol in in vitro bioassays including exogenous metabolic activation. Mycotoxin Res 2024; 40:331-346. [PMID: 38587710 PMCID: PMC11258189 DOI: 10.1007/s12550-024-00529-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 02/27/2024] [Accepted: 03/05/2024] [Indexed: 04/09/2024]
Abstract
Zearalenone (ZEN) and deoxynivalenol (DON) and their derivatives are well-known mycotoxins, which can occur not only in crops but also in water bodies, including drinking water sources. In vitro bioassays can be used to detect biological effects of hazardous compounds in water. To this, when studying biological effects and toxicity in vitro, metabolism is important to consider. In this study, ZEN, α-zearalenol (α-ZEL), DON, 3-acetyl DON, and 15-acetyl DON were evaluated in vitro for hormone receptor-mediated effects (estrogen receptor [ER] and androgen receptor [AR]) and genotoxicity (micronucleus assay) in the presence of an exogenous metabolic activation system (MAS). The ER bioassay proved to be a highly sensitive method to detect low concentrations of the ZEN compounds (EC10 values of 31.4 pM for ZEN, 3.59 pM for α-ZEL) in aqueous solutions. In the presence of the MAS, reduced estrogenic effects were observed for both ZEN compounds (EC10 values of 6.47 × 103 pM for ZEN, 1.55 × 102 pM for α-ZEL). Of the DON compounds, only 3-acetyl DON was estrogenic (EC10 of 0.31 µM), and the effect was removed in the presence of the MAS. Anti-androgenic effects of the ZEN compounds and androgenic effects of the DON compounds were detected in the micromolar range. No induction of genotoxicity was detected for ZEN or DON in the presence of the MAS. Our study highlighted that inclusion of exogenous MAS is a useful tool to detect biological effects of metabolites in in vitro bioassays.
Collapse
Affiliation(s)
- Maria Yu
- Department of Biomedical Sciences and Veterinary Public Health, Swedish University of Agricultural Sciences, Box 7028, SE-750 07, Uppsala, Sweden.
| | - Agneta Oskarsson
- Department of Biomedical Sciences and Veterinary Public Health, Swedish University of Agricultural Sciences, Box 7028, SE-750 07, Uppsala, Sweden
| | - Jan Alexander
- Norwegian Scientific Committee for Food and Environment, Norwegian Institute of Public Health, P.O. Box 222 Skøyen, NO-0213, Oslo, Norway
| | - Johan Lundqvist
- Department of Biomedical Sciences and Veterinary Public Health, Swedish University of Agricultural Sciences, Box 7028, SE-750 07, Uppsala, Sweden
| |
Collapse
|
35
|
Zhou Y, Wei Y, Zhang J, Shi X, Ma L, Yuan R. Highly Specific Aptamer-Antibody Birecognized Sandwich Module for Ultrasensitive Detection of a Low Molecular Weight Compound. Anal Chem 2024; 96:11326-11333. [PMID: 38953527 DOI: 10.1021/acs.analchem.4c01268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/04/2024]
Abstract
Herein, the aptamer-antibody sandwich module was first introduced to accurately recognize a low molecular weight compound (mycotoxin). Impressively, compared with the large steric hindrance of a traditional dual-antibody module, the aptamer-antibody sandwich with low Gibbs free energy and a low dissociation constant has high recognition efficiency; thus, it could reduce false positives and false negatives caused by a dual-antibody module. As a proof of concept, a sensitive electrochemiluminescence (ECL) biosensor was constructed for detecting mycotoxin zearalenone (ZEN) based on an aptamer-antibody sandwich as a biological recognition element and porous ZnO nanosheets (Zn NSs) supported Cu nanoclusters (Cu NCs) as the signal transduction element, in which the antibody was modified on the vertex of a tetrahedral DNA nanostructure (TDN) with a rigid structure to increase the kinetics of target recognition for promoting the detection sensitivity. Moreover, the Cu NCs/Zn NSs exhibited an excellent ECL response that was attributed to the aggregation-induced ECL enhancement through electrostatic interactions. The sensing platform achieved trace detection of ZEN with a low detection limit of 0.31 fg/mL, far beyond that of the enzyme-linked immunosorbent assay (ELISA, the current rapid detection method) and high-performance liquid chromatography (HPLC, the national standard detection method). The strategy has great application potential in food analysis, environmental monitoring, and clinical diagnosis.
Collapse
Affiliation(s)
- Ying Zhou
- College of Food Science, Southwest University, Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, Chongqing 400715, P. R. China
| | - Yuying Wei
- Guangxi Zhuang Autonomous Region Grain and Oil Quality Inspection Center, Nanning 530031, P. R. China
| | - Jia Zhang
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Southwest University). Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, P. R. China
| | - Xiaoyu Shi
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Southwest University). Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, P. R. China
| | - Liang Ma
- College of Food Science, Southwest University, Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, Chongqing 400715, P. R. China
| | - Ruo Yuan
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Southwest University). Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, P. R. China
| |
Collapse
|
36
|
Zhou C, He N, Lin X, Liu H, Lu Z, Zhang G. Site-directed display of zearalenone lactonase on spilt-intein functionalized nanocarrier for green and efficient detoxification of zearalenone. Food Chem 2024; 446:138804. [PMID: 38402766 DOI: 10.1016/j.foodchem.2024.138804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 02/09/2024] [Accepted: 02/18/2024] [Indexed: 02/27/2024]
Abstract
In this study, we prepared a functional organic-inorganic hybrid nanoflower (InHNF) via split intein moiety in a biomineralization process without using organic solvents. InHNF could specifically bind the target enzymes from crude cell lysates within seconds and site-directedly display them on the surface by forming a peptide bond with enzyme's terminal amino acid residue. This unique feature enabled InHNF to increase the specific activity of zearalenone detoxifying enzyme ZHD518 by 40 ∼ 60% at all tested temperatures and prevented enzyme denaturation even under extreme pH conditions (pH 3-11). Furthermore, it exhibited excellent operational stability, with a residual activity of over 70% after eight reaction cycles. Strikingly, InHNF-ZHD518 achieved above 50% ZEN degradation despite the near inactivation of free ZHD518 in beer sample. Overall, InHNF nanocarriers can achieve environmentally friendly, purification-free, and site-directed immobilization of food enzymes and enhance their catalytic properties, making them suitable for a wide range of industrial applications.
Collapse
Affiliation(s)
- Chen Zhou
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan 430062, China; Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, Hubei, China
| | - Nisha He
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan 430062, China
| | - Xiaofan Lin
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan 430062, China
| | - Hailin Liu
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan 430062, China
| | - Zhenghui Lu
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan 430062, China.
| | - Guimin Zhang
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China.
| |
Collapse
|
37
|
Hudu AR, Addy F, Mahunu GK, Abubakari A, Opoku N. Zearalenone contamination in maize, its associated producing fungi, control strategies, and legislation in Sub-Saharan Africa. Food Sci Nutr 2024; 12:4489-4512. [PMID: 39055180 PMCID: PMC11266927 DOI: 10.1002/fsn3.4125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 02/26/2024] [Accepted: 03/13/2024] [Indexed: 07/27/2024] Open
Abstract
The fungal genus Fusarium contains many important plant pathogens as well as endophytes of wild and crop plants. Globally, Fusarium toxins in food crops are considered one of the greatest food safety concerns. Their occurrence has become more pronounced in Africa in recent times. Among the major Fusarium mycotoxins with food and feed safety concerns, zearalenone is frequently detected in finished feeds and cereals in Africa. However, the impact of indigenous agricultural practices (pre- and postharvest factors) and food processing techniques on the prevalence rate of Fusarium species and zearalenone occurrence in food and feed have not been collated and documented systematically. This review studies and analyzes recent reports on zearalenone contamination in maize and other cereal products from Africa, including its fungi producers, agronomic and climate variables impacting their occurrences, preventive measures, removal/decontamination methods, and legislations regulating their limits. Reports from relevant studies demonstrated a high prevalence of F. verticillioides and F. graminearum as Africa's main producers of zearalenone. Elevated CO2 concentration and high precipitation may carry along an increased risk of zearalenone contamination in maize. African indigenous processing methods may contribute to reduced ZEA levels in agricultural products and foods. Most African countries do not know their zearalenone status in the food supply chain and they have limited regulations that control its occurrence.
Collapse
Affiliation(s)
- Abdul Rashid Hudu
- Department of Agricultural Biotechnology, Faculty of Agriculture, Food and Consumer SciencesUniversity for Development StudiesNyankpalaGhana
| | - Francis Addy
- Department of Biotechnology and Molecular Biology, Faculty of BiosciencesUniversity for Development StudiesNyankpalaGhana
| | - Gustav Komla Mahunu
- Department of Food Science and Technology, Faculty of Agriculture, Food, and Consumer SciencesUniversity for Development StudiesNyankpalaGhana
| | - Abdul‐Halim Abubakari
- Department of Horticulture, Faculty of Agriculture, Food, and Consumer SciencesUniversity for Development StudiesNyankpalaGhana
| | - Nelson Opoku
- Department of Biotechnology and Molecular Biology, Faculty of BiosciencesUniversity for Development StudiesNyankpalaGhana
| |
Collapse
|
38
|
Pang C, Yuan B, Ren K, Xu H, Nie K, Yu C, Liu Z, Zhang Y, Ozkan SA, Yang Q. Activates B lymphocytes and enhanced immune response: A promising adjuvant based on PLGA nanoparticle to improve the sensitivity of ZEN monoclonal antibody. Talanta 2024; 274:126005. [PMID: 38599116 DOI: 10.1016/j.talanta.2024.126005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 03/13/2024] [Accepted: 03/26/2024] [Indexed: 04/12/2024]
Abstract
In preparing monoclonal antibodies by hybridoma cell technology, the quality of B lymphocytes used for cell fusion directly affects the sensitivity of monoclonal antibodies. To obtain B-lymphocytes producing high-quality specific antibodies for cell fusion during the immunization phase of the antigen, we prepared a TH2-Cell stimulatory delivery system as a novel adjuvant. Astragalus polysaccharide has a good ability to enhance antigenic immune response, and it was encapsulated in biocompatible materials PLGA as an immunostimulatory factor to form the delivery system (APS-PLGA). The preparation conditions of APSP were optimized using RSM to attain the highest utilization of APS. Immunization against ZEN-BSA antigen using APSP as an adjuvant to obtain B lymphocytes producing ZEN-specific antibodies for cell fusion. As results present, APSP could induce a stronger TH2 immune response through differentiating CD4 T cells and promoting IL-4 and IL-6 cytokines. Moreover, it could slow down the release efficiency of ZEN-BSA and enhance the targeting of ZEN-BSA to lymph nodes in vivo experiments. Ultimately, the sensitivity of mouse serum ZEN-specific antibodies was enhanced upon completion of immunization, indicating a significant upregulation of high-quality B lymphocyte expression. In the preparation of monoclonal antibodies, the proportion of positive wells for the first screening was 60%, and the inhibition rates of the antibodies were all similar (>50%). Then we obtained the ZEN monoclonal antibody with IC50 of 0.049 ng/mL, which was more sensitive than most antibodies prepared under conventional adjuvants. Finally, a TRFIAS strip assay was preliminarily established with a LOD value of 0.246 ng/mL.
Collapse
Affiliation(s)
- Chengchen Pang
- School of Agricultural Engineering and Food Science, Shandong University of Technology, No. 266 Xincun West Road, Zibo, 255049, People's Republic of China; Shandong Provincial Engineering Research Center of Vegetable Safety and Quality Traceability, No. 266 Xincun West Road, Zibo, 255049, People's Republic of China; Zibo City Key Laboratory of Agricultural Product Safety Traceability, No. 266 Xincun West Road, Zibo, 255049, People's Republic of China
| | - Bei Yuan
- School of Agricultural Engineering and Food Science, Shandong University of Technology, No. 266 Xincun West Road, Zibo, 255049, People's Republic of China; Shandong Provincial Engineering Research Center of Vegetable Safety and Quality Traceability, No. 266 Xincun West Road, Zibo, 255049, People's Republic of China; Zibo City Key Laboratory of Agricultural Product Safety Traceability, No. 266 Xincun West Road, Zibo, 255049, People's Republic of China
| | - Keyun Ren
- School of Agricultural Engineering and Food Science, Shandong University of Technology, No. 266 Xincun West Road, Zibo, 255049, People's Republic of China; Shandong Provincial Engineering Research Center of Vegetable Safety and Quality Traceability, No. 266 Xincun West Road, Zibo, 255049, People's Republic of China; Zibo City Key Laboratory of Agricultural Product Safety Traceability, No. 266 Xincun West Road, Zibo, 255049, People's Republic of China
| | - Haitao Xu
- School of Agricultural Engineering and Food Science, Shandong University of Technology, No. 266 Xincun West Road, Zibo, 255049, People's Republic of China; Shandong Provincial Engineering Research Center of Vegetable Safety and Quality Traceability, No. 266 Xincun West Road, Zibo, 255049, People's Republic of China; Zibo City Key Laboratory of Agricultural Product Safety Traceability, No. 266 Xincun West Road, Zibo, 255049, People's Republic of China
| | - Kunying Nie
- School of Agricultural Engineering and Food Science, Shandong University of Technology, No. 266 Xincun West Road, Zibo, 255049, People's Republic of China; Shandong Provincial Engineering Research Center of Vegetable Safety and Quality Traceability, No. 266 Xincun West Road, Zibo, 255049, People's Republic of China; Zibo City Key Laboratory of Agricultural Product Safety Traceability, No. 266 Xincun West Road, Zibo, 255049, People's Republic of China
| | - Chunlei Yu
- School of Agricultural Engineering and Food Science, Shandong University of Technology, No. 266 Xincun West Road, Zibo, 255049, People's Republic of China; Shandong Provincial Engineering Research Center of Vegetable Safety and Quality Traceability, No. 266 Xincun West Road, Zibo, 255049, People's Republic of China; Zibo City Key Laboratory of Agricultural Product Safety Traceability, No. 266 Xincun West Road, Zibo, 255049, People's Republic of China
| | - Zhanli Liu
- School of Agricultural Engineering and Food Science, Shandong University of Technology, No. 266 Xincun West Road, Zibo, 255049, People's Republic of China; Shandong Provincial Engineering Research Center of Vegetable Safety and Quality Traceability, No. 266 Xincun West Road, Zibo, 255049, People's Republic of China; Zibo City Key Laboratory of Agricultural Product Safety Traceability, No. 266 Xincun West Road, Zibo, 255049, People's Republic of China
| | - Yanyan Zhang
- School of Agricultural Engineering and Food Science, Shandong University of Technology, No. 266 Xincun West Road, Zibo, 255049, People's Republic of China; Shandong Provincial Engineering Research Center of Vegetable Safety and Quality Traceability, No. 266 Xincun West Road, Zibo, 255049, People's Republic of China; Zibo City Key Laboratory of Agricultural Product Safety Traceability, No. 266 Xincun West Road, Zibo, 255049, People's Republic of China
| | - Sibel A Ozkan
- Department of Analytical Chemistry, Faculty of Pharmacy, Ankara University, 06560, Ankara, Turkiye
| | - Qingqing Yang
- School of Agricultural Engineering and Food Science, Shandong University of Technology, No. 266 Xincun West Road, Zibo, 255049, People's Republic of China; Shandong Provincial Engineering Research Center of Vegetable Safety and Quality Traceability, No. 266 Xincun West Road, Zibo, 255049, People's Republic of China; Zibo City Key Laboratory of Agricultural Product Safety Traceability, No. 266 Xincun West Road, Zibo, 255049, People's Republic of China.
| |
Collapse
|
39
|
Kinkade CW, Aleksunes LM, Brinker A, Buckley B, Brunner J, Wang C, Miller RK, O'Connor TG, Rivera-Núñez Z, Barrett ES. Associations between mycoestrogen exposure and sex steroid hormone concentrations in maternal serum and cord blood in the UPSIDE pregnancy cohort. Int J Hyg Environ Health 2024; 260:114405. [PMID: 38878407 PMCID: PMC11441442 DOI: 10.1016/j.ijheh.2024.114405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 05/20/2024] [Accepted: 05/29/2024] [Indexed: 06/28/2024]
Abstract
Zearalenone (ZEN) is a fungal-derived toxin found in global food supplies including cereal grains and processed foods, impacting populations worldwide through diet. Because the chemical structure of ZEN and metabolites closely resembles 17β-estradiol (E2), they interact with estrogen receptors α/β earning their designation as 'mycoestrogens'. In animal models, gestational exposure to mycoestrogens disrupts estrogen activity and impairs fetal growth. Here, our objective was to evaluate relationships between mycoestrogen exposure and sex steroid hormone concentrations in maternal circulation and cord blood for the first time in humans. In each trimester, pregnant participants in the UPSIDE study (n = 297) provided urine for mycoestrogen analysis and serum for hormone analysis. At birth, placental mycoestrogens and cord steroids were measured. We fitted longitudinal models examining log-transformed mycoestrogen concentrations in relation to log-transformed hormones, adjusting for covariates. Secondarily, multivariable linear models examined associations at each time point (1st, 2nd, 3rd trimesters, delivery). We additionally considered effect modification by fetal sex. ZEN and its metabolite, α-zearalenol (α-ZOL), were detected in >93% and >75% of urine samples; >80% of placentas had detectable mycoestrogens. Longitudinal models from the full cohort exhibited few significant associations. In sex-stratified analyses, in pregnancies with male fetuses, estrone (E1) and free testosterone (fT) were inversely associated with ZEN (E1 %Δ: -6.68 95%CI: -12.34, -0.65; fT %Δ: -3.22 95%CI: -5.68, -0.70); while α-ZOL was positively associated with E2 (%Δ: 5.61 95%CI: -1.54, 9.85) in pregnancies with female fetuses. In analysis with cord hormones, urinary mycoestrogens were inversely associated with androstenedione (%Δ: 9.15 95%CI: 14.64, -3.30) in both sexes, and placental mycoestrogens were positively associated with cord fT (%Δ: 37.13, 95%CI: 4.86, 79.34) amongst male offspring. Findings support the hypothesis that mycoestrogens act as endocrine disruptors in humans, as in animal models and livestock. Additional work is needed to understand impacts on maternal and child health.
Collapse
Affiliation(s)
- Carolyn W Kinkade
- Environmental and Occupational Health Sciences Institute, Rutgers University, Piscataway, NJ, USA.
| | - Lauren M Aleksunes
- Environmental and Occupational Health Sciences Institute, Rutgers University, Piscataway, NJ, USA; Ernest Mario School of Pharmacy, Rutgers University, Piscataway, NJ, USA
| | - Anita Brinker
- Environmental and Occupational Health Sciences Institute, Rutgers University, Piscataway, NJ, USA
| | - Brian Buckley
- Environmental and Occupational Health Sciences Institute, Rutgers University, Piscataway, NJ, USA
| | - Jessica Brunner
- Department of Obstetrics and Gynecology, University of Rochester Medical Center, Rochester, NY, USA
| | - Christina Wang
- Clinical and Translational Science Institute, The Lundquist Institute at Harbor - UCLA Medical Center, Torrance, CA, USA
| | - Richard K Miller
- Department of Obstetrics and Gynecology, University of Rochester Medical Center, Rochester, NY, USA; Department of Environmental Medicine, Pediatrics and Pathology, University of Rochester, New York, NY, 14642, USA
| | - Thomas G O'Connor
- Department of Obstetrics and Gynecology, University of Rochester Medical Center, Rochester, NY, USA; Department of Psychiatry, University of Rochester, NY, USA; Wynne Center for Family Research, University of Rochester, USA
| | - Zorimar Rivera-Núñez
- Environmental and Occupational Health Sciences Institute, Rutgers University, Piscataway, NJ, USA; Department of Biostatistics and Epidemiology, Rutgers School of Public Health, Piscataway, NJ, USA
| | - Emily S Barrett
- Environmental and Occupational Health Sciences Institute, Rutgers University, Piscataway, NJ, USA; Department of Obstetrics and Gynecology, University of Rochester Medical Center, Rochester, NY, USA; Department of Biostatistics and Epidemiology, Rutgers School of Public Health, Piscataway, NJ, USA
| |
Collapse
|
40
|
Rangel-Muñoz EJ, Valdivia-Flores AG, Cruz-Vázquez C, de-Luna-López MC, Hernández-Valdivia E, Vitela-Mendoza I, Medina-Esparza L, Quezada-Tristán T. Increased Dissemination of Aflatoxin- and Zearalenone-Producing Aspergillus spp. and Fusarium spp. during Wet Season via Houseflies on Dairy Farms in Aguascalientes, Mexico. Toxins (Basel) 2024; 16:302. [PMID: 39057942 PMCID: PMC11281273 DOI: 10.3390/toxins16070302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 06/26/2024] [Accepted: 06/27/2024] [Indexed: 07/28/2024] Open
Abstract
Crops contamination with aflatoxins (AFs) and zearalenone (ZEA) threaten human and animal health; these mycotoxins are produced by several species of Aspergillus and Fusarium. The objective was to evaluate under field conditions the influence of the wet season on the dissemination of AF- and ZEA-producing fungi via houseflies collected from dairy farms. Ten dairy farms distributed in the semi-arid Central Mexican Plateau were selected. Flies were collected in wet and dry seasons at seven points on each farm using entomological traps. Fungi were isolated from fly carcasses via direct seeding with serial dilutions and wet chamber methods. The production of AFs and ZEA from pure isolates was quantified using indirect competitive ELISA. A total of 693 Aspergillus spp. and 1274 Fusarium spp. isolates were obtained, of which 58.6% produced AFs and 50.0% produced ZEA (491 ± 122; 2521 ± 1295 µg/kg). Houseflies and both fungal genera were invariably present, but compared to the dry season, there was a higher abundance of flies as well as AF- and ZEA-producing fungi in the wet season (p < 0.001; 45.3/231 flies/trap; 8.6/29.6% contaminated flies). These results suggest that rainy-weather conditions on dairy farms increase the spread of AF- and ZEA-producing Aspergillus spp. and Fusarium spp. through houseflies and the incorporation of their mycotoxins into the food chain.
Collapse
Affiliation(s)
- Erika Janet Rangel-Muñoz
- Departamento de Ciencias Veterinarias, Centro de Ciencias Agropecuarias, Universidad Autónoma de Aguascalientes, Aguascalientes 20131, Mexico; (E.J.R.-M.); (M.C.d.-L.-L.); (E.H.-V.); (T.Q.-T.)
| | - Arturo Gerardo Valdivia-Flores
- Departamento de Ciencias Veterinarias, Centro de Ciencias Agropecuarias, Universidad Autónoma de Aguascalientes, Aguascalientes 20131, Mexico; (E.J.R.-M.); (M.C.d.-L.-L.); (E.H.-V.); (T.Q.-T.)
| | - Carlos Cruz-Vázquez
- División de Estudios de Posgrado e Investigación, Tecnológico Nacional de México, Instituto Tecnológico El Llano Aguascalientes, km 18 carretera Aguascalientes—San Luis Potosí, El Llano, Aguascalientes 20330, Mexico; (C.C.-V.); (I.V.-M.)
| | - María Carolina de-Luna-López
- Departamento de Ciencias Veterinarias, Centro de Ciencias Agropecuarias, Universidad Autónoma de Aguascalientes, Aguascalientes 20131, Mexico; (E.J.R.-M.); (M.C.d.-L.-L.); (E.H.-V.); (T.Q.-T.)
| | - Emmanuel Hernández-Valdivia
- Departamento de Ciencias Veterinarias, Centro de Ciencias Agropecuarias, Universidad Autónoma de Aguascalientes, Aguascalientes 20131, Mexico; (E.J.R.-M.); (M.C.d.-L.-L.); (E.H.-V.); (T.Q.-T.)
| | - Irene Vitela-Mendoza
- División de Estudios de Posgrado e Investigación, Tecnológico Nacional de México, Instituto Tecnológico El Llano Aguascalientes, km 18 carretera Aguascalientes—San Luis Potosí, El Llano, Aguascalientes 20330, Mexico; (C.C.-V.); (I.V.-M.)
| | - Leticia Medina-Esparza
- División de Estudios de Posgrado e Investigación, Tecnológico Nacional de México, Instituto Tecnológico El Llano Aguascalientes, km 18 carretera Aguascalientes—San Luis Potosí, El Llano, Aguascalientes 20330, Mexico; (C.C.-V.); (I.V.-M.)
| | - Teódulo Quezada-Tristán
- Departamento de Ciencias Veterinarias, Centro de Ciencias Agropecuarias, Universidad Autónoma de Aguascalientes, Aguascalientes 20131, Mexico; (E.J.R.-M.); (M.C.d.-L.-L.); (E.H.-V.); (T.Q.-T.)
| |
Collapse
|
41
|
Hu H, Yu Q, Zheng Y, Cui H, Huang X, Zhang K. Forsythoside A protects against Zearalenone-induced cell damage in chicken embryonic fibroblasts via mitigation of endoplasmic reticulum stress. Vet Res Commun 2024; 48:1659-1670. [PMID: 38467911 DOI: 10.1007/s11259-024-10350-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 03/05/2024] [Indexed: 03/13/2024]
Abstract
Zearalenone (ZEA) is a non-steroidal estrogenic mycotoxin that exerts its toxic effects through various damage mechanisms such as oxidative stress, endoplasmic reticulum stress (ERS), mitochondrial damage, cell cycle arrest, and apoptosis. At present, there are few studies on drugs that can rescue ZEA-induced chicken embryonic fibroblasts damage. Forsythoside A (FA) is one of effective ingredients of traditional Chinese medicine that plays a role in various biological functions, but its antitoxin research has not been investigated so far. In this study, in vitro experiments were carried out. Chicken embryo fibroblast (DF-1) cells was used as the research object to select the appropriate treatment concentration of ZEA and examined reactive oxygen species (ROS), mitochondrial membrane potential, ERS and apoptosis to investigate the effects and mechanisms of FA in alleviating ZEA-induced cytotoxicity in DF-1 cells. Our results showed that ZEA induced ERS and activated the unfolded protein response (UPR) leading to apoptosis, an apoptotic pathway characterized by overproduction of Lactate dehydrogenase (LDH), Caspase-3, and ROS and loss of mitochondrial membrane potential. We also demonstrated that FA help to prevent ERS and attenuated ZEA-induced apoptosis in DF-1 cells by reducing the level of ROS, downregulating GRP78, PERK, ATF4, ATF6, JNK, IRE1, ASK1, CHOP, BAX expression, and up-regulating Bcl-2 expression. Our results provide a basis for an in-depth study of the mechanism of toxic effects of ZEA on chicken cells and the means of detoxification, which has implications for the treatment of relevant avian diseases.
Collapse
Affiliation(s)
- Hui Hu
- University Key Laboratory for Integrated Chinese Traditional and Western Veterinary Medicine and Animal Healthcare in Fujian Province, College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
- Fujian Key Laboratory of Traditional Chinese Veterinary Medicine and Animal Health, College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Qiang Yu
- University Key Laboratory for Integrated Chinese Traditional and Western Veterinary Medicine and Animal Healthcare in Fujian Province, College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
- Fujian Key Laboratory of Traditional Chinese Veterinary Medicine and Animal Health, College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Yu Zheng
- University Key Laboratory for Integrated Chinese Traditional and Western Veterinary Medicine and Animal Healthcare in Fujian Province, College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
- Fujian Key Laboratory of Traditional Chinese Veterinary Medicine and Animal Health, College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Hongjie Cui
- University Key Laboratory for Integrated Chinese Traditional and Western Veterinary Medicine and Animal Healthcare in Fujian Province, College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
- Fujian Key Laboratory of Traditional Chinese Veterinary Medicine and Animal Health, College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Xiaohong Huang
- University Key Laboratory for Integrated Chinese Traditional and Western Veterinary Medicine and Animal Healthcare in Fujian Province, College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
- Fujian Key Laboratory of Traditional Chinese Veterinary Medicine and Animal Health, College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Kaizhao Zhang
- University Key Laboratory for Integrated Chinese Traditional and Western Veterinary Medicine and Animal Healthcare in Fujian Province, College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.
- Fujian Key Laboratory of Traditional Chinese Veterinary Medicine and Animal Health, College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.
| |
Collapse
|
42
|
Wang Y, Su B, Yan X, Geng C, Lian T, Li X, Xu Y, Li Y. Studies of Mycotoxins in Medicinal Plants Conducted Worldwide over the Last Decade: A Systematic Review, Meta-Analysis, and Exposure Risk Assessment. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 128:155367. [PMID: 38493720 DOI: 10.1016/j.phymed.2024.155367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Accepted: 01/15/2024] [Indexed: 03/19/2024]
Abstract
BACKGROUND Mycotoxins have been reported to be present in medicinal plants. With the growing usage of medicinal plants, contamination of mycotoxins has emerged as one of the biggest threats to global food hygiene and ecological environment, posing a severe threat to human health. PURPOSE This study aimed to determine the mycotoxin prevalence and levels in medicinal plants and conduct a risk assessment by conducting a systematic review and meta-analysis. METHODS A thorough search on Web of Science and PubMed was conducted for the last decade, resulting in 54 studies (meeting the inclusion criteria) with 2829 data items that were included in the meta-analysis. RESULTS The combined prevalence of mycotoxins in medicinal plants was 1.7% (95% confidence interval, CI = 1.1% - 2.4%), with a mean mycotoxin concentration in medicinal plants of 3.551 µg/kg (95% CI = 3.461 - 3.641 µg/kg). Risk assessment results indicated that aflatoxins and ochratoxin A found in several medicinal plants posed a health risk to humans; additionally, emerging enniatins exhibited possible health risks. CONCLUSION Therefore, the study underlines the need for establishing stringent control measures to reduce the severity of mycotoxin contamination in medicinal plants.
Collapse
Affiliation(s)
- Yue Wang
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Buda Su
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Xingxu Yan
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Chenlei Geng
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Tingting Lian
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Xiaomeng Li
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Yanyan Xu
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China.
| | - Yubo Li
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China.
| |
Collapse
|
43
|
De Troyer L, De Zutter N, De Saeger S, Dumoulin F, Croubels S, De Baere S, De Gelder L, Audenaert K. Actinobacteria as Promising Biocontrol Agents for In Vitro and In Planta Degradation and Detoxification of Zearalenone. Toxins (Basel) 2024; 16:253. [PMID: 38922147 PMCID: PMC11209476 DOI: 10.3390/toxins16060253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 05/13/2024] [Accepted: 05/27/2024] [Indexed: 06/27/2024] Open
Abstract
Zearalenone (ZEN) is a prevalent mycotoxin found in grains and grain-derived products, inducing adverse health effects in both animals and humans. The in-field application of microorganisms to degrade and detoxify ZEN is a promising strategy to enhance the safety of food and feed. In this study, we investigated the potential of three actinobacterial strains to degrade and detoxify ZEN in vitro and in planta on wheat ears. The residual ZEN concentration and toxicity in the samples were analysed with UHPLC-MS/MS and a bioluminescence BLYES assay, respectively. Streptomyces rimosus subsp. rimosus LMG19352 could completely degrade and detoxify 5 mg/L ZEN in LB broth within 24 h, along with significant reductions in ZEN concentration both in a minimal medium (MM) and on wheat ears. Additionally, it was the only strain that showed a significant colonisation of these ears. Rhodococcus sp. R25614 exhibited partial but significant degradation in LB broth and MM, whereas Streptomyces sp. LMG16995 degraded and detoxified ZEN in LB broth after 72 h by 39% and 33%, respectively. Although all three actinobacterial strains demonstrated the metabolic capability to degrade and detoxify ZEN in vitro, only S. rimosus subsp. rimosus LMG19352 showed promising potential to mitigate ZEN in planta. This distinction underscores the importance of incorporating in planta screening assays for assessing the potential of mycotoxin-biotransforming microorganisms as biocontrol agents.
Collapse
Affiliation(s)
- Larissa De Troyer
- Laboratory of Applied Mycology and Phenomics, Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, 9000 Ghent, Belgium
| | - Noémie De Zutter
- Laboratory of Applied Mycology and Phenomics, Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, 9000 Ghent, Belgium
| | - Sarah De Saeger
- Centre of Excellence in Mycotoxicology and Public Health, Department of Bio-Analysis, Faculty of Pharmaceutical Sciences, Ghent University, 9000 Ghent, Belgium
| | - Frédéric Dumoulin
- Centre of Excellence in Mycotoxicology and Public Health, Department of Bio-Analysis, Faculty of Pharmaceutical Sciences, Ghent University, 9000 Ghent, Belgium
| | - Siska Croubels
- Laboratory of Pharmacology and Toxicology, Department of Pathobiology, Pharmacology and Zoological Medicine, Faculty of Veterinary Medicine, Ghent University, 9820 Merelbeke, Belgium
| | - Siegrid De Baere
- Laboratory of Pharmacology and Toxicology, Department of Pathobiology, Pharmacology and Zoological Medicine, Faculty of Veterinary Medicine, Ghent University, 9820 Merelbeke, Belgium
| | - Leen De Gelder
- Laboratory of Environmental Biotechnology, Department of Applied Biosciences, Faculty of Bioscience Engineering, Ghent University, 9000 Ghent, Belgium
| | - Kris Audenaert
- Laboratory of Applied Mycology and Phenomics, Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, 9000 Ghent, Belgium
| |
Collapse
|
44
|
Cervini C, Naz N, Verheecke-Vaessen C, Medina A. Impact of predicted climate change environmental conditions on the growth of Fusarium asiaticum strains and mycotoxins production on a wheat-based matrix. Int J Food Microbiol 2024; 416:110658. [PMID: 38484608 DOI: 10.1016/j.ijfoodmicro.2024.110658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 02/12/2024] [Accepted: 03/01/2024] [Indexed: 04/19/2024]
Abstract
Fusarium asiaticum is a predominant fungal pathogen causing Fusarium Head Blight (FHB) in wheat and barley in China and is associated with approximately £201 million in annual losses due to grains contaminated with mycotoxins. F. asiaticum produces deoxynivalenol and zearalenone whose maximum limits in cereals and cereals-derived products have been established in different countries including the EU. Few studies are available on the ecophysiological behaviour of this fungal pathogen, but nothing is known about the impact of projected climate change scenarios on its growth and mycotoxin production. Therefore, this study aimed to examine the interacting effect of i) current and increased temperature (25 vs 30 °C), ii) drought stress variation (0.98 vs 0.95 water activity; aw) and iii) existing and predicted CO2 concentrations (400 vs 1000 ppm) on fungal growth and mycotoxin production (type B trichothecenes and zearalenone) by three F. asiaticum strains (CH024b, 82, 0982) on a wheat-based matrix after 10 days of incubation. The results showed that, when exposed to increased CO2 concentration (1000 ppm) there was a significant reduction of fungal growth compared to current concentration (400 ppm) both at 25 and 30 °C, especially at 0.95 aw. The multi-mycotoxin analysis performed by LC-MS/MS qTRAP showed a significant increase of deoxynivalenol and 15-acetyldeoxynivalenol production when the CH024b strain was exposed to elevated CO2 compared to current CO2 levels. Zearalenone production by the strain 0982 was significantly stimulated by mild water stress (0.95 aw) and increased CO2 concentration (1000 ppm) regardless of the temperature. Such results highlight that intraspecies variability exist among F. asiaticum strains with some mycotoxins likely to exceed current EU legislative limits under prospected climate change conditions.
Collapse
Affiliation(s)
- Carla Cervini
- Applied Mycology Group, Environment and AgriFood Theme, Cranfield University, Cranfield, UK.
| | - Naoreen Naz
- Applied Mycology Group, Environment and AgriFood Theme, Cranfield University, Cranfield, UK
| | | | - Angel Medina
- Applied Mycology Group, Environment and AgriFood Theme, Cranfield University, Cranfield, UK
| |
Collapse
|
45
|
Salim SA, Baharudin NH, Ibrahim NS, Abd Ghani Z, Ismail MN. Determination of aflatoxins in rice from Penang, Malaysia by dispersive liquid-liquid micro-extraction and LC-MS/MS. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 2024; 41:563-574. [PMID: 38527182 DOI: 10.1080/19440049.2024.2329614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 03/05/2024] [Indexed: 03/27/2024]
Abstract
Rice is one of the crops cultivated in Malaysia, and it is the main diet for most of the population. In this study, dispersive liquid-liquid micro-extraction (DLLME) and liquid chromatography-tandem mass spectrometry (LC-MS/MS) were used to develop, optimise and validate a reliable, easy-to-use and quick approach to detect aflatoxin B1 (AFB1), aflatoxin B2 (AFB2), aflatoxin G1 (AFG1) and aflatoxin G2 (AFG2). The extraction recoveries in DLLME were enhanced by the addition of 5% salt, utilising chloroform as the extraction solvent and acetonitrile as the dispersive solvent. The DLLME parameters - the extraction solvent volume, salt concentration and dispersive solvent volume were optimised with Box-Behnken design (BBD) and response surface methodology (RSM). Under optimised experimental conditions, excellent linearity was obtained with a limit of detection (LOD) ranging from 0.125 to 0.25 ng g-1, a limit of quantitation (LOQ) ranging from 0.25 to 0.3 ng g-1 and a correlation value (R2) of 0.990. The matrix effects were between -11.1% and 19.9%, and recoveries ranged from 87.4% to 117.3%. The optimised and validated method was used effectively to assess aflatoxins contamination in 20 commercial rice samples collected from local supermarkets in Penang, Malaysia. AFB1 was detected at 0.41-0.43 ng g-1 in two rice samples, below the regulatory limit.
Collapse
Affiliation(s)
- Sofiyatul Akmal Salim
- Analytical Biochemistry Research Centre, Universiti Sains Malaysia, Penang, Malaysia
| | | | - Nur Shahila Ibrahim
- Analytical Biochemistry Research Centre, Universiti Sains Malaysia, Penang, Malaysia
| | - Zalilawati Abd Ghani
- Analytical Biochemistry Research Centre, Universiti Sains Malaysia, Penang, Malaysia
| | - Mohd Nazri Ismail
- Analytical Biochemistry Research Centre, Universiti Sains Malaysia, Penang, Malaysia
| |
Collapse
|
46
|
Kaci H, Dombi Á, Gömbös P, Szabó A, Bakos É, Özvegy-Laczka C, Poór M. Interaction of mycotoxins zearalenone, α-zearalenol, and β-zearalenol with cytochrome P450 (CYP1A2, 2C9, 2C19, 2D6, and 3A4) enzymes and organic anion transporting polypeptides (OATP1A2, OATP1B1, OATP1B3, and OATP2B1). Toxicol In Vitro 2024; 96:105789. [PMID: 38341109 DOI: 10.1016/j.tiv.2024.105789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 02/05/2024] [Accepted: 02/07/2024] [Indexed: 02/12/2024]
Abstract
Zearalenone (ZEN) is a mycoestrogen produced by Fusarium fungi. ZEN is a frequent contaminant in cereal-based products, representing significant health threat. The major reduced metabolites of ZEN are α-zearalenol (α-ZEL) and β-zearalenol (β-ZEL). Since the toxicokinetic interactions of ZEN/ZELs with cytochrome P450 enzymes (CYPs) and organic anion transporting polypeptides (OATPs) have been barely characterized, we examined these interactions applying in vitro models. ZEN and ZELs were relatively strong inhibitors of CYP3A4 and moderate inhibitors of CYP1A2 and CYP2C9. Both CYP1A2 and CYP3A4 decreased ZEN and β-ZEL concentrations in depletion assays, while only CYP1A2 reduced α-ZEL levels. OATPs tested were strongly or moderately inhibited by ZEN and ZELs; however, these mycotoxins did not show higher cytotoxicity in OATP-overexpressing cells. Our results help the deeper understanding of the toxicokinetic/pharmacokinetic interactions of ZEN, α-ZEL, and β-ZEL.
Collapse
Affiliation(s)
- Hana Kaci
- Drug Resistance Research Group, Institute of Enzymology, Research Centre for Natural Sciences, HUN-REN, Magyar tudósok krt. 2, Budapest H-1117, Hungary; Doctoral School of Biology, Institute of Biology, Eötvös Loránd University, Pázmány P. stny. 1/C, Budapest H-1117, Hungary
| | - Ágnes Dombi
- Department of Pharmacology, Faculty of Pharmacy, University of Pécs, Rókus u. 2, Pécs H-7624, Hungary
| | - Patrik Gömbös
- Institute of Physiology and Nutrition, Department of Physiology and Animal Health, Agribiotechnology and Precision Breeding for Food Security National Laboratory, Hungarian University of Agriculture and Life Sciences, Gödöllő H-2103, Hungary
| | - András Szabó
- Institute of Physiology and Nutrition, Department of Physiology and Animal Health, Agribiotechnology and Precision Breeding for Food Security National Laboratory, Hungarian University of Agriculture and Life Sciences, Gödöllő H-2103, Hungary; HUN-REN-MATE Mycotoxins in the Food Chain Research Group, Hungarian University of Agriculture and Life Sciences, Guba Sándor Str. 40, Kaposvár 7400, Hungary
| | - Éva Bakos
- Drug Resistance Research Group, Institute of Enzymology, Research Centre for Natural Sciences, HUN-REN, Magyar tudósok krt. 2, Budapest H-1117, Hungary
| | - Csilla Özvegy-Laczka
- Drug Resistance Research Group, Institute of Enzymology, Research Centre for Natural Sciences, HUN-REN, Magyar tudósok krt. 2, Budapest H-1117, Hungary
| | - Miklós Poór
- Department of Laboratory Medicine, Medical School, University of Pécs, Ifjúság útja 13, Pécs H-7624, Hungary; Molecular Medicine Research Group, János Szentágothai Research Centre, University of Pécs, Ifjúság útja 20, Pécs H-7624, Hungary.
| |
Collapse
|
47
|
Cao L, Fan L, Zhao C, Yin S, Hu H. Role of ferroptosis in food-borne mycotoxin-induced toxicities. Apoptosis 2024; 29:267-276. [PMID: 38001339 DOI: 10.1007/s10495-023-01907-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/16/2023] [Indexed: 11/26/2023]
Abstract
Contamination by toxic substances is a major global food safety issue, which poses a serious threat to human health. Mycotoxins are major class of food contaminants, mainly including aflatoxins (AFs), zearalenone (ZON), deoxynivalenol (DON), ochratoxin A (OTA), fumonisins (FBs) and patulin (PAT). Ferroptosis is a newly identified iron-dependent form of programmed or regulated cell death, which has been found to be involved in diverse pathological conditions. Recently, a growing body of evidence has shown that ferroptosis is implicated in the toxicities induced by certain types of food-borne mycotoxins, which provides novel mechanistic insights into mycotoxin-induced toxicities and paves the way for developing ferroptosis-based strategy to combat against toxicities of mycotoxins. In this review article, we summarize the key findings on the involvement of ferroptosis in mycotoxin-induced toxicities and propose issues that need to be addressed in future studies for better utilization of ferroptosis-based approach to manage the toxic effects of mycotoxin contamination.
Collapse
Affiliation(s)
- Lixing Cao
- College of Food Science and Nutritional Engineering, Beijing Key Laboratory for Food Non-thermal Processing, China Agricultural University, No. 17 Qinghua East Road, Haidian District, Beijing, 100083, China
| | - Lihong Fan
- College of Veterinary Medicine, China Agricultural University, No. 2 Yunamingyuan West Road, Haidian District, Beijing, 100193, China
| | - Chong Zhao
- College of Food Science and Nutritional Engineering, Beijing Key Laboratory for Food Non-thermal Processing, China Agricultural University, No. 17 Qinghua East Road, Haidian District, Beijing, 100083, China.
| | - Shutao Yin
- College of Food Science and Nutritional Engineering, Beijing Key Laboratory for Food Non-thermal Processing, China Agricultural University, No. 17 Qinghua East Road, Haidian District, Beijing, 100083, China
| | - Hongbo Hu
- College of Food Science and Nutritional Engineering, Beijing Key Laboratory for Food Non-thermal Processing, China Agricultural University, No. 17 Qinghua East Road, Haidian District, Beijing, 100083, China.
| |
Collapse
|
48
|
Li X, Wang Z, Yang B. Identification of the hub genes linked to zearalenone-induced hepatotoxicity in broiler chickens. ENVIRONMENTAL RESEARCH 2024; 246:118094. [PMID: 38176630 DOI: 10.1016/j.envres.2023.118094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 12/14/2023] [Accepted: 12/31/2023] [Indexed: 01/06/2024]
Abstract
Zearalenone (ZEN) is a mycotoxin found in food and feed that impairs the function of multiple organs, especially the liver. However, the specific mechanisms through which ZEN induces liver damage in broiler chickens are not well understood. Therefore, this study aimed to identify the key genes linked to the hepatotoxicity induced by ZEN exposure in broiler chickens. Gene expression data from ZEN-treated and control chicken embryo primary hepatocytes (CEPHs) were used to implement differential expression analysis. Totally, 436 differentially expressed genes (DEGs) were detected, in which 223 and 213 genes were up- and down-regulated in ZEN-treated CEPHs, respectively. Gene ontology analysis suggested that these DEGs were involved in various biological processes, including chromosome segregation, mitotic cytokinesis, mitotic cell cycle, cell division, and mitotic spindle organization. Pathway analysis showed that the DEGs were associated with p53, FoxO, ubiquitin-mediated proteolysis, cell cycle, and mismatch repair signaling pathways. Furthermore, the hub genes, including BRCA1, CDC45, CDCA3, CDKN3, CENPE, CENPF, CENPI, CENPM, CENPU, and CEP55, potentially contributed to ZEN-induced hepatotoxicity. In conclusion, our study provides the valuable insight into the mechanism underlying ZEN-induced hepatotoxicity in broiler chickens.
Collapse
Affiliation(s)
- Xiaofeng Li
- College of Animal Science, Anhui Science and Technology University, Fengyang, 233100, China
| | - Zhongyuan Wang
- College of Animal Science, Anhui Science and Technology University, Fengyang, 233100, China
| | - Bing Yang
- College of Animal Science, Anhui Science and Technology University, Fengyang, 233100, China.
| |
Collapse
|
49
|
Del Fabbro L, Sari MHM, Ferreira LM, Furian AF. Natural compounds mitigate mycotoxins-induced neurotoxicity by modulating oxidative tonus: in vitro and in vivo insights - a review. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 2024; 41:438-459. [PMID: 38408272 DOI: 10.1080/19440049.2024.2316750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 02/05/2024] [Indexed: 02/28/2024]
Abstract
This review explores the repercussions of mycotoxin contamination in food and feed, emphasising potential threats to agriculture, animal husbandry and public health. The primary objective is to make a comprehensive assessment of the neurotoxic consequences of mycotoxin exposure, an aspect less explored in current literature. Emphasis is placed on prominent mycotoxins, including aflatoxins, fumonisins, zearalenone (ZEA) and ochratoxins, known for inducing acute and chronic diseases such as liver damage, genetic mutation and cancer. To elucidate the effects, animal studies were conducted, revealing an association between mycotoxin exposure and neurological damage. This encompasses impairments in learning and memory, motor alterations, anxiety and depression. The underlying mechanisms involve oxidative stress, disrupting the balance between reactive oxygen species (ROS) and antioxidant capacity. This oxidative stress is linked to neuronal damage, brain inflammation, neurochemical imbalance, and subsequent behavioural changes. The review underscores the need for preventive measures against mycotoxin exposure. While complete avoidance is ideal, exploration into the potential use of antioxidants as a viable solution is discussed, given the widespread contamination of many food products. Specifically, the protective role of natural compounds, such as polyphenols, is highlighted, showcasing their efficacy in mitigating mycotoxicosis in the central nervous system (CNS), as evidenced by findings in various animal models. In summary, countering mycotoxin-induced neurotoxicity requires a multifaceted approach. The identified natural compounds show promise, but their practical use hinges on factors like bioavailability, toxicity and understanding their mechanisms of action. Extensive research is crucial, considering the diverse responses to different mycotoxins and neurological conditions. Successful implementation relies on factors such as the specific mycotoxin(s) involved and achievable effective concentrations. Further research and clinical trials are imperative to establish the safety and efficacy of these compounds in practical applications.
Collapse
Affiliation(s)
- Lucian Del Fabbro
- Programa de Pós-Graduação em Ciência e Tecnologia dos Alimentos, Universidade Federal de Santa Maria, Santa Maria, Brasil
| | | | - Luana Mota Ferreira
- Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Federal do Paraná, Curitiba, Brasil
| | - Ana Flavia Furian
- Programa de Pós-Graduação em Ciência e Tecnologia dos Alimentos e Programa de Pós-Graduação em Farmacologia, Universidade Federal de Santa Maria, Santa Maria, Brasil
| |
Collapse
|
50
|
Lakatos I, Babarczi B, Molnár Z, Tóth A, Skoda G, Horváth GF, Horváth A, Tóth D, Sükösd F, Szemethy L, Szőke Z. First Results on the Presence of Mycotoxins in the Liver of Pregnant Fallow Deer ( Dama dama) Hinds and Fetuses. Animals (Basel) 2024; 14:1039. [PMID: 38612278 PMCID: PMC11011066 DOI: 10.3390/ani14071039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 03/17/2024] [Accepted: 03/21/2024] [Indexed: 04/14/2024] Open
Abstract
Reproductive abnormalities have been observed in fallow deer populations in Hungary. We supposed mycotoxin contamination to be one of the possible causes because multi-mycotoxin contamination is known to be dangerous even at low toxin levels, especially for young animals. We investigated the spatial pattern of mycotoxin occurrences and the relationship between maternal and fetal mycotoxin levels. A total of 72 fallow deer embryos and their mothers were sampled in seven forested regions in Hungary in the 2020/2021 hunting season. We analyzed Aflatoxin (AF), Zearalenone (ZEA), Fumonizin B1 (FB1), DON, and T2-toxin concentrations in maternal and fetal livers by ELISA. AF was present in 70% and 82%, ZEA in 41% and 96%, DON in 90% and 98%, T2-toxin in 96% and 85%, and FB1 in 84% and 3% of hind and fetus livers, respectively. All mycotoxins passed into the fetus, but only Fumonizin B1 rarely passed. The individual variability of mycotoxin levels was extremely high, but the spatial differences were moderate. We could not prove a relation between the maternal and fetal mycotoxin concentrations, but we found an accumulation of ZEA and DON in the fetuses. These results reflect the possible threats of mycotoxins to the population dynamics and reproduction of wild fallow deer.
Collapse
Affiliation(s)
- István Lakatos
- Department of Regional Game Management, Ministry of Agriculture, 1052 Budapest, Hungary;
- Agribiotechnology and Precision Breeding for Food Security National Laboratory, Institute of Genetics and Biotechnology, Department of Animal Biotechnology, Hungarian University of Agriculture and Life Sciences, 2100 Gödöllő, Hungary; (B.B.); (Z.M.); (A.T.); (G.S.); (Z.S.)
| | - Bianka Babarczi
- Agribiotechnology and Precision Breeding for Food Security National Laboratory, Institute of Genetics and Biotechnology, Department of Animal Biotechnology, Hungarian University of Agriculture and Life Sciences, 2100 Gödöllő, Hungary; (B.B.); (Z.M.); (A.T.); (G.S.); (Z.S.)
| | - Zsófia Molnár
- Agribiotechnology and Precision Breeding for Food Security National Laboratory, Institute of Genetics and Biotechnology, Department of Animal Biotechnology, Hungarian University of Agriculture and Life Sciences, 2100 Gödöllő, Hungary; (B.B.); (Z.M.); (A.T.); (G.S.); (Z.S.)
| | - Arnold Tóth
- Agribiotechnology and Precision Breeding for Food Security National Laboratory, Institute of Genetics and Biotechnology, Department of Animal Biotechnology, Hungarian University of Agriculture and Life Sciences, 2100 Gödöllő, Hungary; (B.B.); (Z.M.); (A.T.); (G.S.); (Z.S.)
| | - Gabriella Skoda
- Agribiotechnology and Precision Breeding for Food Security National Laboratory, Institute of Genetics and Biotechnology, Department of Animal Biotechnology, Hungarian University of Agriculture and Life Sciences, 2100 Gödöllő, Hungary; (B.B.); (Z.M.); (A.T.); (G.S.); (Z.S.)
| | - Győző F. Horváth
- Institute of Biology, University of Pécs, 7624 Pécs, Hungary; (G.F.H.); (A.H.); (D.T.)
| | - Adrienn Horváth
- Institute of Biology, University of Pécs, 7624 Pécs, Hungary; (G.F.H.); (A.H.); (D.T.)
| | - Dániel Tóth
- Institute of Biology, University of Pécs, 7624 Pécs, Hungary; (G.F.H.); (A.H.); (D.T.)
| | - Farkas Sükösd
- Institute of Pathology, University of Szeged, 6720 Szeged, Hungary;
| | - László Szemethy
- Institute of Biology, University of Pécs, 7624 Pécs, Hungary; (G.F.H.); (A.H.); (D.T.)
| | - Zsuzsanna Szőke
- Agribiotechnology and Precision Breeding for Food Security National Laboratory, Institute of Genetics and Biotechnology, Department of Animal Biotechnology, Hungarian University of Agriculture and Life Sciences, 2100 Gödöllő, Hungary; (B.B.); (Z.M.); (A.T.); (G.S.); (Z.S.)
| |
Collapse
|