1
|
Sun S, Wang YH, Gao X, Wang HY, Zhang L, Wang N, Li CM, Xiong SQ. Current perspectives and trends in nanoparticle drug delivery systems in breast cancer: bibliometric analysis and review. Front Bioeng Biotechnol 2023; 11:1253048. [PMID: 37771575 PMCID: PMC10523396 DOI: 10.3389/fbioe.2023.1253048] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 08/04/2023] [Indexed: 09/30/2023] Open
Abstract
The treatment of breast cancer (BC) is a serious challenge due to its heterogeneous nature, multidrug resistance (MDR), and limited therapeutic options. Nanoparticle-based drug delivery systems (NDDSs) represent a promising tool for overcoming toxicity and chemotherapy drug resistance in BC treatment. No bibliometric studies have yet been published on the research landscape of NDDS-based treatment of BC. In this review, we extracted data from 1,752 articles on NDDS-based treatment of BC published between 2012 and 2022 from the Web of Science Core Collection (WOSCC) database. VOSviewer, CiteSpace, and some online platforms were used for bibliometric analysis and visualization. Publication trends were initially observed: in terms of geographical distribution, China and the United States had the most papers on this subject. The highest contributing institution was Sichuan University. In terms of authorship and co-cited authorship, the most prolific author was Yu Zhang. Furthermore, Qiang Zhang and co-workers have made tremendous achievements in the field of NDDS-based BC treatment. The article titled "Nanomedicine in cancer therapy: challenges, opportunities, and clinical applications" had the most citations. The Journal of Controlled Release was one of the most active publishers in the field. "Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries" was the most cited reference. We also analysed "hot" and cutting-edge research for NDDSs in BC treatment. There were nine topic clusters: "tumour microenvironment," "nanoparticles (drug delivery)," "breast cancer/triple-negative breast cancer," "combination therapy," "drug release (pathway)," "multidrug resistance," "recent advance," "targeted drug delivery", and "cancer nanomedicine." We also reviewed the core themes of research. In summary, this article reviewed the application of NDDSs in the treatment of BC.
Collapse
Affiliation(s)
- Sheng Sun
- Sichuan Integrative Medicine Hospital, Chengdu, China
- Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Ye-hui Wang
- Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xiang Gao
- Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - He-yong Wang
- Sichuan Integrative Medicine Hospital, Chengdu, China
- Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Lu Zhang
- Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Na Wang
- Sichuan Integrative Medicine Hospital, Chengdu, China
| | - Chun-mei Li
- Sichuan Integrative Medicine Hospital, Chengdu, China
| | - Shao-quan Xiong
- Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
2
|
Baranwal J, Barse B, Di Petrillo A, Gatto G, Pilia L, Kumar A. Nanoparticles in Cancer Diagnosis and Treatment. MATERIALS (BASEL, SWITZERLAND) 2023; 16:5354. [PMID: 37570057 PMCID: PMC10420054 DOI: 10.3390/ma16155354] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 07/10/2023] [Accepted: 07/28/2023] [Indexed: 08/13/2023]
Abstract
The use of tailored medication delivery in cancer treatment has the potential to increase efficacy while decreasing unfavourable side effects. For researchers looking to improve clinical outcomes, chemotherapy for cancer continues to be the most challenging topic. Cancer is one of the worst illnesses despite the limits of current cancer therapies. New anticancer medications are therefore required to treat cancer. Nanotechnology has revolutionized medical research with new and improved materials for biomedical applications, with a particular focus on therapy and diagnostics. In cancer research, the application of metal nanoparticles as substitute chemotherapy drugs is growing. Metals exhibit inherent or surface-induced anticancer properties, making metallic nanoparticles extremely useful. The development of metal nanoparticles is proceeding rapidly and in many directions, offering alternative therapeutic strategies and improving outcomes for many cancer treatments. This review aimed to present the most commonly used nanoparticles for cancer applications.
Collapse
Affiliation(s)
- Jaya Baranwal
- DBT-ICGEB Centre for Advanced Bioenergy Research, International Centre for Genetic Engineering & Biotechnology, Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Brajesh Barse
- US India Business Council|US Chamber of Commerce, DLF Centre, Sansad Marg, New Delhi 110001, India
| | - Amalia Di Petrillo
- Department of Medical Sciences and Public Health, University of Cagliari, Monserrato, 09042 Cagliari, Italy;
| | - Gianluca Gatto
- Department of Electrical and Electronic Engineering, University of Cagliari, Via Marengo 2, 09123 Cagliari, Italy;
| | - Luca Pilia
- Department of Mechanical, Chemical and Material Engineering, University of Cagliari, Via Marengo 2, 09123 Cagliari, Italy
| | - Amit Kumar
- Department of Electrical and Electronic Engineering, University of Cagliari, Via Marengo 2, 09123 Cagliari, Italy;
| |
Collapse
|
3
|
Davodabadi F, Sarhadi M, Arabpour J, Sargazi S, Rahdar A, Díez-Pascual AM. Breast cancer vaccines: New insights into immunomodulatory and nano-therapeutic approaches. J Control Release 2022; 349:844-875. [PMID: 35908621 DOI: 10.1016/j.jconrel.2022.07.036] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 07/23/2022] [Accepted: 07/25/2022] [Indexed: 10/16/2022]
Abstract
Breast cancer (BC) is known to be a highly heterogeneous disease that is clinically subdivided into four primary molecular subtypes, each having distinct morphology and clinical implications. These subtypes are principally defined by hormone receptors and other proteins involved (or not involved) in BC development. BC therapeutic vaccines [including peptide-based vaccines, protein-based vaccines, nucleic acid-based vaccines (DNA/RNA vaccines), bacterial/viral-based vaccines, and different immune cell-based vaccines] have emerged as an appealing class of cancer immunotherapeutics when used alone or combined with other immunotherapies. Employing the immune system to eliminate BC cells is a novel therapeutic modality. The benefit of active immunotherapies is that they develop protection against neoplastic tissue and readjust the immune system to an anti-tumor monitoring state. Such immunovaccines have not yet shown effectiveness for BC treatment in clinical trials. In recent years, nanomedicines have opened new windows to increase the effectiveness of vaccinations to treat BC. In this context, some nanoplatforms have been designed to efficiently deliver molecular, cellular, or subcellular vaccines to BC cells, increasing the efficacy and persistence of anti-tumor immunity while minimizing undesirable side effects. Immunostimulatory nano-adjuvants, liposomal-based vaccines, polymeric vaccines, virus-like particles, lipid/calcium/phosphate nanoparticles, chitosan-derived nanostructures, porous silicon microparticles, and selenium nanoparticles are among the newly designed nanostructures that have been used to facilitate antigen internalization and presentation by antigen-presenting cells, increase antigen stability, enhance vaccine antigenicity and remedial effectivity, promote antigen escape from the endosome, improve cytotoxic T lymphocyte responses, and produce humoral immune responses in BC cells. Here, we summarized the existing subtypes of BC and shed light on immunomodulatory and nano-therapeutic strategies for BC vaccination. Finally, we reviewed ongoing clinical trials on BC vaccination and highlighted near-term opportunities for moving forward.
Collapse
Affiliation(s)
- Fatemeh Davodabadi
- Department of Biology, Faculty of Basic Science, Payame Noor University, Tehran, Iran
| | - Mohammad Sarhadi
- Cellular and Molecular Research Center, Research Institute of Cellular and Molecular Sciences in Infectious Diseases, Zahedan University of Medical Sciences, Zahedan 9816743463, Iran
| | - Javad Arabpour
- Department of Microbiology, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Young Researchers and Elite Club, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Saman Sargazi
- Cellular and Molecular Research Center, Research Institute of Cellular and Molecular Sciences in Infectious Diseases, Zahedan University of Medical Sciences, Zahedan 9816743463, Iran.
| | - Abbas Rahdar
- Department of Physics, University of Zabol, Zabol 98613-35856, Iran.
| | - Ana M Díez-Pascual
- Universidad de Alcalá, Facultad de Ciencias, Departamento de Química Analítica, Química Física e Ingeniería Química, Ctra. Madrid-Barcelona, Km. 33.6, 28805 Alcalá de Henares, Madrid, Spain.
| |
Collapse
|
4
|
Cell-based drug delivery systems and their in vivo fate. Adv Drug Deliv Rev 2022; 187:114394. [PMID: 35718252 DOI: 10.1016/j.addr.2022.114394] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 05/17/2022] [Accepted: 06/07/2022] [Indexed: 11/22/2022]
Abstract
Cell-based drug delivery systems (DDSs) have received attention recently because of their unique biological properties and self-powered functions, such as excellent biocompatibility, low immunogenicity, long circulation time, tissue-homingcharacteristics, and ability to cross biological barriers. A variety of cells, including erythrocytes, stem cells, and lymphocytes, have been explored as functional vectors for the loading and delivery of various therapeutic payloads (e.g., small-molecule and nucleic acid drugs) for subsequent disease treatment. These cell-based DDSs have their own unique in vivo fates, which are attributed to various factors, including their biological properties and functions, the loaded drugs and loading process, physiological and pathological circumstances, and the body's response to these carrier cells, which result in differences in drug delivery efficiency and therapeutic effect. In this review, we summarize the main cell-based DDSs and their biological properties and functions, applications in drug delivery and disease treatment, and in vivo fate and influencing factors. We envision that the unique biological properties, combined with continuing research, will enable development of cell-based DDSs as friendly drug vectors for the safe, effective, and even personalized treatment of diseases.
Collapse
|
5
|
Trends in the Design and Evaluation of Polymeric Nanocarriers: The In Vitro Nano-Bio Interactions. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1357:19-41. [PMID: 35583639 DOI: 10.1007/978-3-030-88071-2_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Different types of natural and synthetic polymeric nanocarriers are being tested for diverse biomedical applications ranging from drug/gene delivery vehicles to imaging probes. The development of such innovative nanoparticulate systems (NPs) should include in the very beginning of their conception a comprehensive evaluation of the nano-bio interactions. Specifically, intrinsic physicochemical properties as size, surface charge and shape may have an impact on cellular uptake, intracellular trafficking, exocytosis and cyto- or genocompatibility. Those properties can be tuned for effectiveness purposes such as targeting intracellular organelles, but at the same time inducing unforeseen adverse nanotoxicological effects. Further, those properties may change due to the adsorption of biological components (e.g. proteins) with a tremendous impact on the cellular response. The evaluation of these NPs is highly challenging and has produced some controversial results. Future research work should focus on the standardization of analytical or computational methodologies, aiming the identification of toxicity trends and the generation of a useful meta-analysis database on polymeric nanocarriers.This chapter covers all the aforementioned aspects, emphasizing the importance of the in vitro cellular studies in the first stages of polymeric nanocarriers development.
Collapse
|
6
|
López CL, Brempelis KJ, Matthaei JF, Montgomery KS, Srinivasan S, Roy D, Huang F, Kreuser SA, Gardell JL, Blumenthal I, Chiefari J, Jensen MC, Crane CA, Stayton PS. Arming Immune Cell Therapeutics with Polymeric Prodrugs. Adv Healthc Mater 2022; 11:e2101944. [PMID: 34889072 PMCID: PMC9847575 DOI: 10.1002/adhm.202101944] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 11/16/2021] [Indexed: 01/21/2023]
Abstract
Engineered immune cells are an exciting therapeutic modality, which survey and attack tumors. Backpacking strategies exploit cell targeting capabilities for delivery of drugs to combat tumors and their immune-suppressive environments. Here, a new platform for arming cell therapeutics through dual receptor and polymeric prodrug engineering is developed. Macrophage and T cell therapeutics are engineered to express a bioorthogonal single chain variable fragment receptor. The receptor binds a fluorescein ligand that directs cell loading with ligand-tagged polymeric prodrugs, termed "drugamers." The fluorescein ligand facilitates stable binding of drugamer to engineered macrophages over 10 days with 80% surface retention. Drugamers also incorporate prodrug monomers of the phosphoinositide-3-kinase inhibitor, PI-103. The extended release of PI-103 from the drugamer sustains antiproliferative activity against a glioblastoma cell line compared to the parent drug. The versatility and modularity of this cell arming system is demonstrated by loading T cells with a second fluorescein-drugamer. This drugamer incorporates a small molecule estrogen analog, CMP8, which stabilizes a degron-tagged transgene to provide temporal regulation of protein activity in engineered T cells. These results demonstrate that this bioorthogonal receptor and drugamer system can be used to arm multiple immune cell classes with both antitumor and transgene-activating small molecule prodrugs.
Collapse
Affiliation(s)
- Ciana L López
- Department of Bioengineering, University of Washington, Seattle WA 98195, USA,Ben Towne Center for Childhood Cancer Research, Seattle Children’s Research Institute, Seattle, WA 98101, USA
| | - Katherine J Brempelis
- Ben Towne Center for Childhood Cancer Research, Seattle Children’s Research Institute, Seattle, WA 98101, USA
| | - James F Matthaei
- Seattle Children’s Therapeutics, Seattle Children’s Research Institute, Seattle, WA 98101, USA
| | - Kate S Montgomery
- Department of Bioengineering, University of Washington, Seattle WA 98195, USA
| | - Selvi Srinivasan
- Department of Bioengineering, University of Washington, Seattle WA 98195, USA
| | - Debashish Roy
- Department of Bioengineering, University of Washington, Seattle WA 98195, USA
| | - Fei Huang
- CSIRO Manufacturing, Bag 10, Bayview Avenue, Clayton, VIC. 3168, Australia
| | - Shannon A Kreuser
- Ben Towne Center for Childhood Cancer Research, Seattle Children’s Research Institute, Seattle, WA 98101, USA
| | - Jennifer L Gardell
- Ben Towne Center for Childhood Cancer Research, Seattle Children’s Research Institute, Seattle, WA 98101, USA
| | - Ian Blumenthal
- Department of Bioengineering, University of Washington, Seattle WA 98195, USA,Seattle Children’s Therapeutics, Seattle Children’s Research Institute, Seattle, WA 98101, USA
| | - John Chiefari
- CSIRO Manufacturing, Bag 10, Bayview Avenue, Clayton, VIC. 3168, Australia
| | - Michael C Jensen
- Department of Bioengineering, University of Washington, Seattle WA 98195, USA,Seattle Children’s Therapeutics, Seattle Children’s Research Institute, Seattle, WA 98101, USA,Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Courtney A Crane
- Ben Towne Center for Childhood Cancer Research, Seattle Children’s Research Institute, Seattle, WA 98101, USA,Department of Neurological Surgery, University of Washington, Seattle WA 98195, USA
| | - Patrick S Stayton
- Department of Bioengineering, University of Washington, Seattle WA 98195, USA
| |
Collapse
|
7
|
Anane-Adjei AB, Fletcher NL, Cavanagh RJ, Houston ZH, Crawford T, Pearce AK, Taresco V, Ritchie AA, Clarke P, Grabowska AM, Gellert PR, Ashford MB, Kellam B, Thurecht KJ, Alexander C. Synthesis, characterisation and evaluation of hyperbranched N-(2-hydroxypropyl) methacrylamides for transport and delivery in pancreatic cell lines in vitro and in vivo. Biomater Sci 2022; 10:2328-2344. [PMID: 35380131 DOI: 10.1039/d1bm01548f] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Hyperbranched polymers have many promising features for drug delivery, owing to their ease of synthesis, multiple functional group content, and potential for high drug loading with retention of solubility. Here we prepared hyperbranched N-(2-hydroxypropyl)methacrylamide (HPMA) polymers with a range of molar masses and particle sizes, and with attached dyes, radiolabel or the anticancer drug gemcitabine. Reversible addition-fragmentation chain transfer (RAFT) polymerisation enabled the synthesis of pHPMA polymers and a gemcitabine-comonomer functionalised pHPMA polymer pro-drug, with diameters of the polymer particles ranging from 7-40 nm. The non-drug loaded polymers were well-tolerated in cancer cell lines and macrophages, and were rapidly internalised in 2D cell culture and transported efficiently to the centre of dense pancreatic cancer 3D spheroids. The gemcitabine-loaded polymer pro-drug was found to be toxic both to 2D cultures of MIA PaCa-2 cells and also in reducing the volume of MIA PaCa-2 spheroids. The non-drug loaded polymers caused no short-term adverse effects in healthy mice following systemic injection, and derivatives of these polymers labelled with 89Zr-were tracked for their distribution in the organs of healthy and MIA PaCa-2 xenograft bearing Balb/c nude mice. Tumour accumulation, although variable across the samples, was highest in individual animals for the pHPMA polymer of ∼20 nm size, and accordingly a gemcitabine pHPMA polymer pro-drug of ∼18 nm diameter was evaluated for efficacy in the tumour-bearing animals. The efficacy of the pHPMA polymer pro-drug was very similar to that of free gemcitabine in terms of tumour growth retardation, and although there was a survival benefit after 70 days for the polymer pro-drug, there was no difference at day 80. These data suggest that while polymer pro-drugs of this type can be effective, better tumour targeting and enhanced in situ release remain as key obstacles to clinical translation even for relatively simple polymers such as pHPMA.
Collapse
Affiliation(s)
- Akosua B Anane-Adjei
- Division of Molecular Therapeutics and Formulation, School of Pharmacy, University of Nottingham, NG7 2RD, UK.
| | - Nicholas L Fletcher
- Centre for Advanced Imaging, University of Queensland, Brisbane, Australia. .,Australian Institute for Bioengineering and Nanotechnology, University of Queensland, Brisbane, Australia
| | - Robert J Cavanagh
- Division of Molecular Therapeutics and Formulation, School of Pharmacy, University of Nottingham, NG7 2RD, UK.
| | - Zachary H Houston
- Centre for Advanced Imaging, University of Queensland, Brisbane, Australia. .,Australian Institute for Bioengineering and Nanotechnology, University of Queensland, Brisbane, Australia
| | - Theodore Crawford
- Centre for Advanced Imaging, University of Queensland, Brisbane, Australia.
| | - Amanda K Pearce
- Division of Molecular Therapeutics and Formulation, School of Pharmacy, University of Nottingham, NG7 2RD, UK.
| | - Vincenzo Taresco
- Division of Molecular Therapeutics and Formulation, School of Pharmacy, University of Nottingham, NG7 2RD, UK.
| | | | - Phillip Clarke
- School of Medicine, University of Nottingham, NG7 2RD, UK
| | | | - Paul R Gellert
- Product Technology & Development, Operations, AstraZeneca, Macclesfield, UK
| | - Marianne B Ashford
- Advanced Drug Delivery, Pharmaceutical Sciences, R&D AstraZeneca, Macclesfield, UK
| | - Barrie Kellam
- Division of Molecular Therapeutics and Formulation, School of Pharmacy, University of Nottingham, NG7 2RD, UK.
| | - Kristofer J Thurecht
- Centre for Advanced Imaging, University of Queensland, Brisbane, Australia. .,Australian Institute for Bioengineering and Nanotechnology, University of Queensland, Brisbane, Australia
| | - Cameron Alexander
- Division of Molecular Therapeutics and Formulation, School of Pharmacy, University of Nottingham, NG7 2RD, UK.
| |
Collapse
|
8
|
Yue Y, Wang S, Shi J, Xie Q, Li N, Guan J, Evivie SE, Liu F, Li B, Huo G. Effects of Lactobacillus acidophilus KLDS1.0901 on Proliferation and Apoptosis of Colon Cancer Cells. Front Microbiol 2022; 12:788040. [PMID: 35250903 PMCID: PMC8895954 DOI: 10.3389/fmicb.2021.788040] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Accepted: 12/22/2021] [Indexed: 12/20/2022] Open
Abstract
Colon cancer is the most common type of malignant tumor. The cytotoxicity effect of lactic acid bacteria may be active by inhibiting cancer cell proliferation, producing anticancer compounds, and inducing apoptosis in cancer cells, but the mechanism is unclear. Our previous study revealed that Lactobacillus acidophilus KLDS1.0901 has good probiotic properties. In this study, We screened out the highest inhibition rate of L. acidophilus KLDS1.0901 and assessed the effects on the proliferation of HT-29, Caco-2, and IEC-6 cells. Then, the apoptosis mechanism of HT-29 cells was studied when treated with L. acidophilus KLDS1.0901. Results showed that L. acidophilus KLDS1.0901 inhibited the proliferation of HT-29 and Caco-2 cells in a dose-dependent manner and reached the maximum under the condition of multiplicity of infection (MOI) = 100 (rate of Lactobacillus to cells) at 48 h. With the increase in time and MOI, reactive oxygen species in HT-29 cells, the apoptosis rates of HT-29 cells were increased, and the amount of blue fluorescence of the cells was also increased after Hoechst 33258 staining. Furthermore, L. acidophilus KLDS1.0901 reduced the mitochondrial membrane potential of HT-29 cells. Notably, 1,133 differentially expressed genes were screened by transcriptomics research, including 531 up-regulated genes and 602 down-regulated genes. These genes were involved in the nuclear factor κB and PI3K-AKT signaling pathways related to the apoptosis of HT-29 cells. These findings suggested that L. acidophilus KLDS1.0901 has the potential to be used in the development of a new type of functional foods for adjuvant treatment of colon cancer.
Collapse
Affiliation(s)
- Yingxue Yue
- Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, Harbin, China
- Food College, Northeast Agricultural University, Harbin, China
| | - Song Wang
- Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, Harbin, China
- Food College, Northeast Agricultural University, Harbin, China
| | - Jialu Shi
- Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, Harbin, China
- Food College, Northeast Agricultural University, Harbin, China
| | - Qinggang Xie
- Heilongjiang Feihe Dairy Co., Ltd., Qiqihaer, China
| | - Na Li
- Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, Harbin, China
- Food College, Northeast Agricultural University, Harbin, China
| | - Jiaqi Guan
- Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, Harbin, China
- Food College, Northeast Agricultural University, Harbin, China
| | - Smith Etareri Evivie
- Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, Harbin, China
- Department of Animal Science, Faculty of Agriculture, University of Benin, Benin City, Nigeria
- Department of Food Science and Human Nutrition, Faculty of Agriculture, University of Benin, Benin City, Nigeria
| | - Fei Liu
- Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, Harbin, China
- Food College, Northeast Agricultural University, Harbin, China
| | - Bailiang Li
- Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, Harbin, China
- Food College, Northeast Agricultural University, Harbin, China
| | - Guicheng Huo
- Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, Harbin, China
- Food College, Northeast Agricultural University, Harbin, China
| |
Collapse
|
9
|
Filippov SK, Khusnutdinov RR, Inham W, Liu C, Nikitin DO, Semina II, Garvey CJ, Nasibullin SF, Khutoryanskiy VV, Zhang H, Moustafine RI. Hybrid Nanoparticles for Haloperidol Encapsulation: Quid Est Optimum? Polymers (Basel) 2021; 13:4189. [PMID: 34883693 PMCID: PMC8659838 DOI: 10.3390/polym13234189] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 11/23/2021] [Accepted: 11/26/2021] [Indexed: 12/12/2022] Open
Abstract
The choice of drug delivery carrier is of paramount importance for the fate of a drug in a human body. In this study, we have prepared the hybrid nanoparticles composed of FDA-approved Eudragit L100-55 copolymer and polymeric surfactant Brij98 to load haloperidol-an antipsychotic hydrophobic drug used to treat schizophrenia and many other disorders. This platform shows good drug-loading efficiency and stability in comparison to the widely applied platforms of mesoporous silica (MSN) and a metal-organic framework (MOF). ZIF8, a biocompatible MOF, failed to encapsulate haloperidol, whereas MSN only showed limited encapsulation ability. Isothermal titration calorimetry showed that haloperidol has low binding with the surface of ZIF8 and MSN in comparison to Eudragit L100-55/Brij98, thus elucidating the striking difference in haloperidol loading. With further optimization, the haloperidol loading efficiency could reach up to 40% in the hybrid Eudragit L100-55/Brij98 nanoparticles with high stability over several months. Differential scanning calorimetry studies indicate that the encapsulated haloperidol stays in an amorphous state inside the Eudragit L100-55/Brij98 nanoparticles. Using a catalepsy and open field animal tests, we proved the prolongation of haloperidol release in vivo, resulting in later onset of action compared to the free drug.
Collapse
Affiliation(s)
- Sergey K. Filippov
- Pharmaceutical Sciences Laboratory and Turku Bioscience Center, Åbo Akademi University, 20520 Turku, Finland; (W.I.); (C.L.); (H.Z.)
- Turku Bioscience Center, University of Turku, 20520 Turku, Finland
- School of Pharmacy, University of Reading, Whiteknights, Reading RG6 6AD, UK;
| | - Ramil R. Khusnutdinov
- Institute of Pharmacy, Kazan State Medical University, 16 Fatykh Amirkhan, 420126 Kazan, Russia; (R.R.K.); (S.F.N.)
| | - Wali Inham
- Pharmaceutical Sciences Laboratory and Turku Bioscience Center, Åbo Akademi University, 20520 Turku, Finland; (W.I.); (C.L.); (H.Z.)
- Turku Bioscience Center, University of Turku, 20520 Turku, Finland
| | - Chang Liu
- Pharmaceutical Sciences Laboratory and Turku Bioscience Center, Åbo Akademi University, 20520 Turku, Finland; (W.I.); (C.L.); (H.Z.)
- Turku Bioscience Center, University of Turku, 20520 Turku, Finland
| | - Dmitry O. Nikitin
- Department of Pharmacology, Kazan State Medical University, 49 Butlerov str., 420012 Kazan, Russia; (D.O.N.); (I.I.S.)
| | - Irina I. Semina
- Department of Pharmacology, Kazan State Medical University, 49 Butlerov str., 420012 Kazan, Russia; (D.O.N.); (I.I.S.)
| | - Christopher J. Garvey
- Heinz Maier-Leibnitz Zentrum (MLZ), Technische Universität München, Lichtenbergstraße 1, 85748 Garching, Germany;
| | - Shamil F. Nasibullin
- Institute of Pharmacy, Kazan State Medical University, 16 Fatykh Amirkhan, 420126 Kazan, Russia; (R.R.K.); (S.F.N.)
| | | | - Hongbo Zhang
- Pharmaceutical Sciences Laboratory and Turku Bioscience Center, Åbo Akademi University, 20520 Turku, Finland; (W.I.); (C.L.); (H.Z.)
- Turku Bioscience Center, University of Turku, 20520 Turku, Finland
| | - Rouslan I. Moustafine
- Institute of Pharmacy, Kazan State Medical University, 16 Fatykh Amirkhan, 420126 Kazan, Russia; (R.R.K.); (S.F.N.)
| |
Collapse
|
10
|
Recent advances in polymeric core-shell nanocarriers for targeted delivery of chemotherapeutic drugs. Int J Pharm 2021; 608:121094. [PMID: 34534631 DOI: 10.1016/j.ijpharm.2021.121094] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 08/30/2021] [Accepted: 09/11/2021] [Indexed: 01/04/2023]
Abstract
The treatment effect of chemotherapeutics is often impeded by nonspecific biodistribution and limited biocompatibility. Polymeric core-shell nanocarriers (PCS NCs) composed of a polymer core and at least one shell have been widely applied for cancer therapy and have shown great potential in selectively delivering chemotherapeutic drugs to tumor sites. These PCS NCs can effectively ameliorate the delivery efficiency and therapeutic index of anticarcinogens by prolonging drug residence in the bloodstream, enhancing tumor tissue drug penetration, facilitating cellular drug uptake, controlling the spatiotemporal release of payloads, or codelivering two or more bioactive agents. This review summarizes recently published literature on using PCS NCs to transport chemotherapeutic drugs with poor aqueous solubility and discusses their design principles, structural features, functional properties, and potential limitations.
Collapse
|
11
|
Giraldo E, Nebot VJ, Đorđević S, Requejo-Aguilar R, Alastrue-Agudo A, Zagorodko O, Armiñan A, Martinez-Rojas B, Vicent MJ, Moreno-Manzano V. A rationally designed self-immolative linker enhances the synergism between a polymer-rock inhibitor conjugate and neural progenitor cells in the treatment of spinal cord injury. Biomaterials 2021; 276:121052. [PMID: 34388362 DOI: 10.1016/j.biomaterials.2021.121052] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 07/04/2021] [Accepted: 07/24/2021] [Indexed: 10/24/2022]
Abstract
Rho/ROCK signaling induced after spinal cord injury (SCI) contributes to secondary damage by promoting apoptosis, inflammation, and axon growth inhibition. The specific Rho-kinase inhibitor fasudil can contribute to functional regeneration after SCI, although inherent low stability has hampered its use. To improve the therapeutic potential of fasudil, we now describe a family of rationally-designed bioresponsive polymer-fasudil conjugates based on an understanding of the conditions after SCI, such as low pH, enhanced expression of specific proteases, and a reductive environment. Fasudil conjugated to poly-l-glutamate via a self-immolative redox-sensitive linker (PGA-SS-F) displays optimal release kinetics and, consequently, treatment with PGA-SS-F significantly induces neurite elongation and axon growth in dorsal root ganglia explants, spinal cord organotypic cultures, and neural precursor cells (NPCs). The intrathecal administration of PGA-SS-F after SCI in a rat model prevents early apoptosis and induces the expression of axonal growth- and neuroplasticity-associated markers to a higher extent than the free form of fasudil. Moreover, a combination treatment comprising the acute transplantation of NPCs pre-treated with PGA-SS-F leads to enhanced cell engraftment and reduced cyst formation after SCI. In chronic SCI, combinatory treatment increases the preservation of neuronal fibers. Overall, this synergistic combinatorial strategy may represent a potentially efficient clinical approach to SCI treatment.
Collapse
Affiliation(s)
- E Giraldo
- Neuronal and Tissue Regeneration Lab. Prince Felipe Research Institute, Valencia, Spain; Department of Biotechnology. Universitat Politècnica de València, Valencia, Spain
| | - V J Nebot
- Polymer Therapeutics Lab. Prince Felipe Research Institute, Valencia, Spain; PTS S.L., Valencia, Spain
| | - S Đorđević
- Polymer Therapeutics Lab. Prince Felipe Research Institute, Valencia, Spain
| | - R Requejo-Aguilar
- Neuronal and Tissue Regeneration Lab. Prince Felipe Research Institute, Valencia, Spain; Dept. Biochemistry and Molecular Biology, University of Cordoba, Cordoba, Spain. Maimonides Biomedical Research Institute of Córdoba (IMIBIC), Cordoba, Spain
| | - A Alastrue-Agudo
- Neuronal and Tissue Regeneration Lab. Prince Felipe Research Institute, Valencia, Spain
| | - O Zagorodko
- Polymer Therapeutics Lab. Prince Felipe Research Institute, Valencia, Spain
| | - A Armiñan
- Polymer Therapeutics Lab. Prince Felipe Research Institute, Valencia, Spain
| | - B Martinez-Rojas
- Neuronal and Tissue Regeneration Lab. Prince Felipe Research Institute, Valencia, Spain
| | - M J Vicent
- Polymer Therapeutics Lab. Prince Felipe Research Institute, Valencia, Spain.
| | - V Moreno-Manzano
- Neuronal and Tissue Regeneration Lab. Prince Felipe Research Institute, Valencia, Spain.
| |
Collapse
|
12
|
Pippa N, Gazouli M, Pispas S. Recent Advances and Future Perspectives in Polymer-Based Nanovaccines. Vaccines (Basel) 2021; 9:558. [PMID: 34073648 PMCID: PMC8226647 DOI: 10.3390/vaccines9060558] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 05/24/2021] [Accepted: 05/24/2021] [Indexed: 01/15/2023] Open
Abstract
Vaccination is the most valuable and cost-effective health measure to prevent and control the spread of infectious diseases. A significant number of infectious diseases and chronic disorders are still not preventable by existing vaccination schemes; therefore, new-generation vaccines are needed. Novel technologies such as nanoparticulate systems and adjuvants can enable safe and effective vaccines for difficult target populations such as newborns, elderly, and the immune-compromised. More recently, polymer-based particles have found application as vaccine platforms and vaccine adjuvants due to their ability to prevent antigen degradation and clearance, coupled with enhanced uptake by professional antigen-presenting cells (APCs). Polymeric nanoparticles have been applied in vaccine delivery, showing significant adjuvant effects as they can easily be taken up by APCs. In other words, polymer-based systems offer a lot of advantages, including versatility and flexibility in the design process, the ability to incorporate a range of immunomodulators/antigens, mimicking infection in different ways, and acting as a depot, thereby persisting long enough to generate adaptive immune responses. The aim of this review is to summarize the properties, the characteristics, the added value, and the limitations of the polymer-based nanovaccines, as well as the process of their development by the pharmaceutical industry.
Collapse
Affiliation(s)
- Natassa Pippa
- Theoretical and Physical Chemistry Institute, National Hellenic Research Foundation, 48 Vassileos Constantinou Avenue, 11635 Athens, Greece;
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Panepistimioupolis Zografou, National and Kapodistrian University of Athens, 15771 Athens, Greece
| | - Maria Gazouli
- Department of Basic Medical Science, Laboratory of Biology, School of Medicine National, Kapodistrian University of Athens, 11527 Athens, Greece;
- Department of Radiology, University General Hospital “Attikon”, School of Medicine, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Stergios Pispas
- Theoretical and Physical Chemistry Institute, National Hellenic Research Foundation, 48 Vassileos Constantinou Avenue, 11635 Athens, Greece;
| |
Collapse
|
13
|
Substantial cell apoptosis provoked by naked PAMAM dendrimers in HER2-positive human breast cancer via JNK and ERK1/ERK2 signalling pathways. Comput Struct Biotechnol J 2021; 19:2881-2890. [PMID: 34093999 PMCID: PMC8144105 DOI: 10.1016/j.csbj.2021.05.011] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 05/05/2021] [Accepted: 05/05/2021] [Indexed: 12/21/2022] Open
Abstract
HER2-positive breast cancer is one of its most challenging subtypes, forming around 15-25% of the total cases. It is characterized by aggressive behavior and treatment resistance. On the other hand, poly (amidoamine) (PAMAM) dendrimers are widely used in drug delivery systems and gene transfection as carriers. PAMAMs can modulate gene expression and interfere with transactivation of the human epidermal growth factor receptor family members (HER1-4). Nevertheless, the outcome of PAMAMs on HER2-positive breast cancer remains unknown. Thus, in this study, we investigated the anti-cancer effects of different generations of PAMAM dendrimers (G4 and G6) and the outcome of their surface chemistries (cationic, neutral, and anionic) on HER2-positive breast cancer cell lines, SKBR3 and ZR75. Our data showed that PAMAM dendrimers, mainly cationic types, significantly reduce cell viability in a dose-dependent manner. More significantly, PAMAMs induce substantial cell apoptosis, accompanied by the up-regulation of apoptotic markers (Bax, Caspases-3, 8 and 9) in addition to down-regulation of Bcl-2. Moreover, our data pointed out that cationic PAMAMs inhibit colony formation compared to controls and other types of PAMAMs. The molecular pathway analysis of PAMAM exposed cells revealed that PAMAMs enhance JNK1/2/3 expression while blocking ERK1/2, in addition to EGFR1 (HER1) and HER2 activities, which could be the major molecular pathway behind these events. These observed effects were comparable to lapatinib treatment, a clinically used inhibitor of HER1 and 2 receptors phosphorylation. Our findings implicate that PAMAMs may possess important therapeutic effects against HER2-positive breast cancer via JNK1/2/3, ERK1/2, and HER1/2 signalling pathways.
Collapse
Key Words
- 7-AAD, 7-amino-actinomycin D
- Apoptosis
- Bax, Bcl-2 Associated X
- Bcl-2, B cell lymphoma-2
- Breast cancer
- Chemoprevention
- EGFR, Epidermal growth factor receptor
- ERK, Extracellular-signal-regulated kinase
- ErbB2, erythroblastic oncogene B
- FBS, Fetal bovine serum
- FITC, Fluorescein isothiocyanate
- GAPDH, Glyceraldehyde 3-phosphate dehydrogenase
- HER2-positive
- JNK, c-Jun N-terminal kinase
- PAMAMs
- PAMAMs, poly(amidoamine) dendrimers
- PE, Phycoerythrin
- PVDF, Polyvinylidene difluoride
Collapse
|
14
|
Tejedor S, Dolz‐Pérez I, Decker CG, Hernándiz A, Diez JL, Álvarez R, Castellano D, García NA, Ontoria‐Oviedo I, Nebot VJ, González‐King H, Igual B, Sepúlveda P, Vicent MJ. Polymer Conjugation of Docosahexaenoic Acid Potentiates Cardioprotective Therapy in Preclinical Models of Myocardial Ischemia/Reperfusion Injury. Adv Healthc Mater 2021; 10:e2002121. [PMID: 33720548 DOI: 10.1002/adhm.202002121] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 02/16/2021] [Indexed: 01/16/2023]
Abstract
While coronary angioplasty represents an effective treatment option following acute myocardial infarction, the reperfusion of the occluded coronary artery can prompt ischemia-reperfusion (I/R) injury that significantly impacts patient outcomes. As ω-3 polyunsaturated fatty acids (PUFAs) have proven, yet limited cardioprotective abilities, an optimized polymer-conjugation approach is reported that improves PUFAs bioavailability to enhance cardioprotection and recovery in animal models of I/R-induced injury. Poly-l-glutamic acid (PGA) conjugation improves the solubility and stability of di-docosahexaenoic acid (diDHA) under physiological conditions and protects rat neonatal ventricular myocytes from I/R injury by reducing apoptosis, attenuating autophagy, inhibiting reactive oxygen species generation, and restoring mitochondrial membrane potential. Enhanced protective abilities are associated with optimized diDHA loading and evidence is provided for the inherent cardioprotective potential of PGA itself. Pretreatment with PGA-diDHA before reperfusion in a small animal I/R model provides for cardioprotection and limits area at risk (AAR). Furthermore, the preliminary findings suggest that PGA-diDHA administration in a swine I/R model may provide cardioprotection, limit edema and decrease AAR. Overall, the evaluation of PGA-diDHA in relevant preclinical models provides evidence for the potential of polymer-conjugated PUFAs in the mitigation of I/R injury associated with coronary angioplasty.
Collapse
Affiliation(s)
- Sandra Tejedor
- Regenerative Medicine and Heart Transplantation Unit Instituto de Investigación Sanitaria La Fe Avda. Fernando Abril Martorell 106 Valencia 46026 Spain
| | - Irene Dolz‐Pérez
- Polymer Therapeutics Laboratory Centro de Investigación Príncipe Felipe Av. Eduardo Primo Yúfera 3 Valencia E‐46012 Spain
| | - Caitlin G. Decker
- Polymer Therapeutics Laboratory Centro de Investigación Príncipe Felipe Av. Eduardo Primo Yúfera 3 Valencia E‐46012 Spain
| | - Amparo Hernándiz
- Regenerative Medicine and Heart Transplantation Unit Instituto de Investigación Sanitaria La Fe Avda. Fernando Abril Martorell 106 Valencia 46026 Spain
| | - Jose L. Diez
- Regenerative Medicine and Heart Transplantation Unit Instituto de Investigación Sanitaria La Fe Avda. Fernando Abril Martorell 106 Valencia 46026 Spain
| | - Raquel Álvarez
- Regenerative Medicine and Heart Transplantation Unit Instituto de Investigación Sanitaria La Fe Avda. Fernando Abril Martorell 106 Valencia 46026 Spain
| | - Delia Castellano
- Regenerative Medicine and Heart Transplantation Unit Instituto de Investigación Sanitaria La Fe Avda. Fernando Abril Martorell 106 Valencia 46026 Spain
| | - Nahuel A. García
- Regenerative Medicine and Heart Transplantation Unit Instituto de Investigación Sanitaria La Fe Avda. Fernando Abril Martorell 106 Valencia 46026 Spain
| | - Imelda Ontoria‐Oviedo
- Regenerative Medicine and Heart Transplantation Unit Instituto de Investigación Sanitaria La Fe Avda. Fernando Abril Martorell 106 Valencia 46026 Spain
| | - Vicent J. Nebot
- Polypeptide Therapeutic Solutions S.L. Av. Benjamin Franklin 19, Paterna Valencia 46980 Spain
| | - Hernán González‐King
- Regenerative Medicine and Heart Transplantation Unit Instituto de Investigación Sanitaria La Fe Avda. Fernando Abril Martorell 106 Valencia 46026 Spain
| | - Begoña Igual
- Regenerative Medicine and Heart Transplantation Unit Instituto de Investigación Sanitaria La Fe Avda. Fernando Abril Martorell 106 Valencia 46026 Spain
| | - Pilar Sepúlveda
- Regenerative Medicine and Heart Transplantation Unit Instituto de Investigación Sanitaria La Fe Avda. Fernando Abril Martorell 106 Valencia 46026 Spain
| | - María J. Vicent
- Polymer Therapeutics Laboratory Centro de Investigación Príncipe Felipe Av. Eduardo Primo Yúfera 3 Valencia E‐46012 Spain
| |
Collapse
|
15
|
Ashford MB, England RM, Akhtar N. Highway to Success—Developing Advanced Polymer Therapeutics. ADVANCED THERAPEUTICS 2021; 4. [DOI: 10.1002/adtp.202000285] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Indexed: 01/06/2025]
Abstract
AbstractPolymer therapeutics are advancing as an important class of drugs. Polymers have already demonstrated their value in extending the half‐life of proteins. They show great potential as delivery systems for improving the therapeutic index of drugs, via biophysical targeting and more recently with more precision targeting. They are also important for intracellular delivery of nucleic acid based drugs. The same frameworks that have been successfully applied to improve the small molecule drug development can be adopted. This approach together with improved pathophysiological disease knowledge and critical developability considerations, imperative given the size and complexity of polymer therapeutics, provides a structured framework that should improve their clinical translation and exploit their functionality and potential. Progress in understanding the right target, gaining the right tissue and cell exposure, ensuring the right safety, selecting the right patient population is discussed. The right commercial considerations are outlined and the need for a multi‐disciplinary approach is emphasized. Crucial developability factors together with scientific and technical advancements to enable pharmaceutical development of a quality robust product are addressed. It is argued that by applying this structured approach to their design and development, polymer therapeutics will continue to grow and develop as important next generation medicines.
Collapse
Affiliation(s)
- Marianne B. Ashford
- Advanced Drug Delivery Pharmaceutical Sciences, R&D, AstraZeneca Macclesfield SK10 2NA UK
| | - Richard M. England
- Advanced Drug Delivery Pharmaceutical Sciences, R&D, AstraZeneca Macclesfield SK10 2NA UK
| | - Nadim Akhtar
- New Modalities & Parenteral Development Pharmaceutical Technology & Development, Operations, AstraZeneca Macclesfield SK10 2NA UK
| |
Collapse
|
16
|
van Asbeck AH, Dieker J, Boswinkel M, van der Vlag J, Brock R. Kidney-targeted therapies: A quantitative perspective. J Control Release 2020; 328:762-775. [DOI: 10.1016/j.jconrel.2020.09.022] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 09/08/2020] [Accepted: 09/09/2020] [Indexed: 01/23/2023]
|
17
|
Thakor P, Bhavana V, Sharma R, Srivastava S, Singh SB, Mehra NK. Polymer–drug conjugates: recent advances and future perspectives. Drug Discov Today 2020; 25:1718-1726. [DOI: 10.1016/j.drudis.2020.06.028] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2020] [Revised: 05/27/2020] [Accepted: 06/29/2020] [Indexed: 10/23/2022]
|
18
|
England RM, Moss JI, Gunnarsson A, Parker JS, Ashford MB. Synthesis and Characterization of Dendrimer-Based Polysarcosine Star Polymers: Well-Defined, Versatile Platforms Designed for Drug-Delivery Applications. Biomacromolecules 2020; 21:3332-3341. [PMID: 32672451 DOI: 10.1021/acs.biomac.0c00768] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
This paper describes the synthesis of star polymers designed for future drug-delivery applications. A generation-5 lysine dendrimer was used as a macroinitiator for the ring-opening polymerization of the sarcosine N-carboxyanhydride monomer to produce 32-arm star polymers with narrow molar mass distributions and desirable hydrodynamic size control. Fluorescent dye-labeled polymers were dosed in mice to measure plasma pharmacokinetics. Long circulation times were observed, representing ideal properties for biophysical targeting of tumors. In vivo efficacy of one of these star polymers conjugated to the therapeutic molecule SN-38 was evaluated in mice bearing SW620 xenografted tumors to demonstrate high antitumor activity and low body weight loss compared to the SN-38 prodrug irinotecan and this shows the potential of these delivery systems. As a further build, we demonstrated that these star polymers can be easily chain-end-functionalized with useful chemical moieties, giving opportunities for future receptor-targeting strategies. Finally, we describe the synthetic advantages of these star polymers that make them attractive from a pharmaceutical manufacturing perspective and report characterization of the polymers with a variety of techniques.
Collapse
Affiliation(s)
- Richard M England
- Advanced Drug Delivery, Pharmaceutical Sciences, R&D, AstraZeneca, Macclesfield SK10 2NA, U.K.,Early Chemical Development, Pharmaceutical Sciences, R&D, AstraZeneca, Macclesfield SK10 4TF, U.K
| | - Jennifer I Moss
- Early TDE, Oncology R&D, AstraZeneca, Cambridge CB4 0WG, U.K
| | - Anders Gunnarsson
- Discovery Sciences, Pharmaceutical Sciences, R&D, AstraZeneca, Gothenburg 431 50, Sweden
| | - Jeremy S Parker
- Early Chemical Development, Pharmaceutical Sciences, R&D, AstraZeneca, Macclesfield SK10 4TF, U.K
| | - Marianne B Ashford
- Advanced Drug Delivery, Pharmaceutical Sciences, R&D, AstraZeneca, Macclesfield SK10 2NA, U.K
| |
Collapse
|
19
|
Rajora AK, Ravishankar D, Zhang H, Rosenholm JM. Recent Advances and Impact of Chemotherapeutic and Antiangiogenic Nanoformulations for Combination Cancer Therapy. Pharmaceutics 2020; 12:pharmaceutics12060592. [PMID: 32630584 PMCID: PMC7356724 DOI: 10.3390/pharmaceutics12060592] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 06/17/2020] [Accepted: 06/18/2020] [Indexed: 12/16/2022] Open
Abstract
Traditional chemotherapy, along with antiangiogenesis drugs (combination cancer therapy), has shown reduced tumor recurrence and improved antitumor effects, as tumor growth and metastasis are often dependent on tumor vascularization. However, the effect of combination chemotherapy, including synergism and additive and even antagonism effects, depends on drug combinations in an optimized ratio. Hence, nanoformulations are ideal, demonstrating a great potential for the combination therapy of chemo-antiangiogenesis for cancer. The rationale for designing various nanocarriers for combination therapy is derived from organic (polymer, lipid), inorganic, or hybrid materials. In particular, hybrid nanocarriers that consist of more than one material construct provide flexibility for different modes of entrapment within the same carrier—e.g., physical adsorption, encapsulation, and chemical conjugation strategies. These multifunctional nanocarriers can thus be used to co-deliver chemo- and antiangiogenesis drugs with tunable drug release at target sites. Hence, this review attempts to survey the most recent advances in nanoformulations and their impact on cancer treatment in a combined regimen—i.e., conventional cytotoxic and antiangiogenesis agents. The mechanisms and site-specific co-delivery strategies are also discussed herein, along with future prospects.
Collapse
Affiliation(s)
- Amit Kumar Rajora
- Pharmaceutical Sciences Laboratory, Faculty of Science and Engineering, Åbo Akademi University, 20520 Turku, Finland;
- Correspondence: (A.K.R.); (J.M.R.)
| | - Divyashree Ravishankar
- Bioscience Department, Sygnature Discovery, Bio City, Pennyfoot St, Nottingham NG1 1GR, UK;
| | - Hongbo Zhang
- Pharmaceutical Sciences Laboratory, Faculty of Science and Engineering, Åbo Akademi University, 20520 Turku, Finland;
- Turku Bioscience Center, University of Turku and Åbo Akademi University, 20520 Turku, Finland
| | - Jessica M. Rosenholm
- Pharmaceutical Sciences Laboratory, Faculty of Science and Engineering, Åbo Akademi University, 20520 Turku, Finland;
- Correspondence: (A.K.R.); (J.M.R.)
| |
Collapse
|
20
|
Vasey CE, Pearce AK, Sodano F, Cavanagh R, Abelha T, Cuzzucoli Crucitti V, Anane-Adjei AB, Ashford M, Gellert P, Taresco V, Alexander C. Amphiphilic tri- and tetra-block co-polymers combining versatile functionality with facile assembly into cytocompatible nanoparticles. Biomater Sci 2020; 7:3832-3845. [PMID: 31286122 DOI: 10.1039/c9bm00667b] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
In order for synthetic polymers to find widespread practical application as biomaterials, their syntheses must be easy to perform, utilising freely available building blocks, and should generate products which have no adverse effects on cells or tissue. In addition, it is highly desirable that the synthesis platform for the biomaterials can be adapted to generate polymers with a range of physical properties and macromolecular architectures, and with multiple functional handles to allow derivatisation with 'actives' for sensing or therapy. Here we describe the syntheses of amphiphilic tri- and tetra-block copolymers, using diazabicyclo[5.4.0]undec-5-ene (DBU) as a metal-free catalyst for ring-opening polymerisations of the widely-utilised monomer lactide combined with a functionalised protected cyclic carbonate. These syntheses employed PEGylated macroinitiators with varying chain lengths and architectures, as well as a labile-ester methacrylate initiator, and produced block copolymers with good control over monomer incorporation, molar masses, side-chain and terminal functionality and physico-chemical properties. Regardless of the nature of the initiators, the fidelity of the hydroxyl end group was maintained as confirmed by a second ROP chain extension step, and polymers with acryloyl/methacryloyl termini were able to undergo a second tandem reaction step, in particular thiol-ene click and RAFT polymerisations for the production of hyperbranched materials. Furthermore, the polymer side-chain functionalities could be easily deprotected to yield an active amine which could be subsequently coupled to a drug molecule in good yields. The resultant amphiphilic copolymers formed a range of unimolecular or kinetically-trapped micellar-like nanoparticles in aqueous environments, and the non-cationic polymers were all well-tolerated by MCF-7 breast cancer cells. The rapid and facile route to such highly adaptable polymers, as demonstrated here, offers promise for a range of bio materials applications.
Collapse
Affiliation(s)
- Catherine E Vasey
- School of Pharmacy, University Park University of Nottingham, NG7 2RD, UK.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Liu H, Bolleddula J, Nichols A, Tang L, Zhao Z, Prakash C. Metabolism of bioconjugate therapeutics: why, when, and how? Drug Metab Rev 2020; 52:66-124. [PMID: 32045530 DOI: 10.1080/03602532.2020.1716784] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Bioconjugation of therapeutic agents has been used as a selective drug delivery platform for many therapeutic areas. Bioconjugates are prepared by the covalent linkage of active compounds (small or large molecule) to a carrier molecule (lipids, proteins, peptides, carbohydrates, and polymers) through a chemical linker. The linkage of the active component to a carrier molecule enhances the therapeutic window through a targeted delivery and by reducing toxicity. Bioconjugates also possess improved pharmacokinetic properties such as a long half-life, increased stability, and cleavage by intracellular enzymes/environment. However, premature cleavage of the bioconjugates and the resulting metabolites/catabolites may produce undesirable toxic effects and, hence, it is critical to understand cleavage mechanisms, metabolism of bioconjugates, and translatability to human in the discovery stages. This article provides a comprehensive overview of linker cleavage pathways and catabolism/metabolism of antibody-drug conjugates, glycoconjugates, polymer-drug conjugates, lipid-drug conjugates, folate-targeted small molecule-drug conjugates, and drug-drug conjugates.
Collapse
Affiliation(s)
- Hanlan Liu
- KSQ Therapeutics Inc., Cambridge, MA, USA
| | | | | | | | | | | |
Collapse
|
22
|
Melnyk T, Đorđević S, Conejos-Sánchez I, Vicent MJ. Therapeutic potential of polypeptide-based conjugates: Rational design and analytical tools that can boost clinical translation. Adv Drug Deliv Rev 2020; 160:136-169. [PMID: 33091502 DOI: 10.1016/j.addr.2020.10.007] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Revised: 10/09/2020] [Accepted: 10/14/2020] [Indexed: 12/14/2022]
Abstract
The clinical success of polypeptides as polymeric drugs, covered by the umbrella term "polymer therapeutics," combined with related scientific and technological breakthroughs, explain their exponential growth in the development of polypeptide-drug conjugates as therapeutic agents. A deeper understanding of the biology at relevant pathological sites and the critical biological barriers faced, combined with advances regarding controlled polymerization techniques, material bioresponsiveness, analytical methods, and scale up-manufacture processes, have fostered the development of these nature-mimicking entities. Now, engineered polypeptides have the potential to combat current challenges in the advanced drug delivery field. In this review, we will discuss examples of polypeptide-drug conjugates as single or combination therapies in both preclinical and clinical studies as therapeutics and molecular imaging tools. Importantly, we will critically discuss relevant examples to highlight those parameters relevant to their rational design, such as linking chemistry, the analytical strategies employed, and their physicochemical and biological characterization, that will foster their rapid clinical translation.
Collapse
Affiliation(s)
- Tetiana Melnyk
- Centro de Investigación Príncipe Felipe, Polymer Therapeutics Lab, Av. Eduardo Primo Yúfera 3, E-46012 Valencia, Spain.
| | - Snežana Đorđević
- Centro de Investigación Príncipe Felipe, Polymer Therapeutics Lab, Av. Eduardo Primo Yúfera 3, E-46012 Valencia, Spain.
| | - Inmaculada Conejos-Sánchez
- Centro de Investigación Príncipe Felipe, Polymer Therapeutics Lab, Av. Eduardo Primo Yúfera 3, E-46012 Valencia, Spain.
| | - María J Vicent
- Centro de Investigación Príncipe Felipe, Polymer Therapeutics Lab, Av. Eduardo Primo Yúfera 3, E-46012 Valencia, Spain.
| |
Collapse
|
23
|
Liu Y, Khan AR, Du X, Zhai Y, Tan H, Zhai G. Progress in the polymer-paclitaxel conjugate. J Drug Deliv Sci Technol 2019. [DOI: 10.1016/j.jddst.2019.101237] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
24
|
Marques MR, Choo Q, Ashtikar M, Rocha TC, Bremer-Hoffmann S, Wacker MG. Nanomedicines - Tiny particles and big challenges. Adv Drug Deliv Rev 2019; 151-152:23-43. [PMID: 31226397 DOI: 10.1016/j.addr.2019.06.003] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Revised: 06/10/2019] [Accepted: 06/14/2019] [Indexed: 02/08/2023]
Abstract
After decades of research, nanotechnology has been used in a broad array of biomedical products including medical devices, drug products, drug substances, and pharmaceutical-grade excipients. But like many great achievements in science, there is a fine balance between the risks and opportunities of this new technology. Some materials and surface structures in the nanosize range can exert unexpected toxicities and merit a more detailed safety assessment. Regulatory agencies such as the United States Food and Drug Administration or the European Medicines Agency have started dealing with the potential risks posed by nanomaterials. Considering that a thorough characterization is one of the key aspects of controlling such risks this review presents the regulatory background of nanosafety assessment and provides some practical advice on how to characterize nanomaterials and drug formulations. Further, the challenges of how to maintain and monitor pharmaceutical quality through a highly complex production processes will be discussed.
Collapse
|
25
|
Arroyo‐Crespo JJ, Armiñán A, Charbonnier D, Deladriere C, Palomino‐Schätzlein M, Lamas‐Domingo R, Forteza J, Pineda‐Lucena A, Vicent MJ. Characterization of triple-negative breast cancer preclinical models provides functional evidence of metastatic progression. Int J Cancer 2019; 145:2267-2281. [PMID: 30860605 PMCID: PMC6767480 DOI: 10.1002/ijc.32270] [Citation(s) in RCA: 71] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Revised: 01/25/2019] [Accepted: 02/28/2019] [Indexed: 12/13/2022]
Abstract
Triple-negative breast cancer (TNBC), an aggressive, metastatic and recurrent breast cancer (BC) subtype, currently suffers from a lack of adequately described spontaneously metastatic preclinical models that faithfully reproduce the clinical scenario. We describe two preclinical spontaneously metastatic TNBC orthotopic murine models for the development of advanced therapeutics: an immunodeficient human MDA-MB-231-Luc model and an immunocompetent mouse 4T1 model. Furthermore, we provide a broad range of multifactorial analysis for both models that could provide relevant information for the development of new therapies and diagnostic tools. Our comparisons uncovered differential growth rates, stromal arrangements and metabolic profiles in primary tumors, and the presence of cancer-associated adipocyte infiltration in the MDA-MB-231-Luc model. Histopathological studies highlighted the more rapid metastatic spread to the lungs in the 4T1 model following a lymphatic route, while we observed both homogeneous (MDA-MB-231-Luc) and heterogeneous (4T1) metastatic spread to axillary lymph nodes. We encountered unique metabolomic signatures in each model, including crucial amino acids and cell membrane components. Hematological analysis demonstrated severe leukemoid and lymphoid reactions in the 4T1 model with the partial reestablishment of immune responses in the immunocompromised MDA-MB-231-Luc model. Additionally, we discovered β-immunoglobulinemia and increased basal levels of G-CSF correlating with a metastatic switch, with G-CSF also promoting extramedullary hematopoiesis (both models) and causing hepatosplenomegaly (4T1 model). Overall, we believe that the characterization of these preclinical models will foster the development of advanced therapeutic strategies for TNBC treatment, especially for the treatment of patients presenting both, primary tumors and metastatic spread.
Collapse
Affiliation(s)
- Juan J. Arroyo‐Crespo
- Polymer Therapeutics LaboratoryCentro de Investigación Príncipe FelipeAv. Eduardo Primo Yúfera 3Valencia, 46012Spain
| | - Ana Armiñán
- Polymer Therapeutics LaboratoryCentro de Investigación Príncipe FelipeAv. Eduardo Primo Yúfera 3Valencia, 46012Spain
| | - David Charbonnier
- Polymer Therapeutics LaboratoryCentro de Investigación Príncipe FelipeAv. Eduardo Primo Yúfera 3Valencia, 46012Spain
- Screening Platform, Centro de Investigación Príncipe FelipeAv. Eduardo Primo Yúfera 3Valencia, 46012Spain
| | - Coralie Deladriere
- Polymer Therapeutics LaboratoryCentro de Investigación Príncipe FelipeAv. Eduardo Primo Yúfera 3Valencia, 46012Spain
| | - Martina Palomino‐Schätzlein
- Joint Research Unit in Clinical MetabolomicsCentro de Investigación Príncipe FelipeAv. Eduardo Primo Yúfera 3Valencia, 46012Spain
| | - Rubén Lamas‐Domingo
- Joint Research Unit in Clinical MetabolomicsCentro de Investigación Príncipe FelipeAv. Eduardo Primo Yúfera 3Valencia, 46012Spain
| | - Jerónimo Forteza
- Unidad Mixta Centro de Investigación Príncipe Felipe‐Instituto Valenciano de PatologíaCentro de Investigación Príncipe FelipeAv. Eduardo Primo Yúfera 3Valencia, 46012Spain
| | - Antonio Pineda‐Lucena
- Joint Research Unit in Clinical MetabolomicsCentro de Investigación Príncipe FelipeAv. Eduardo Primo Yúfera 3Valencia, 46012Spain
- Drug Discovery UnitInstituto de Investigación Sanitaria La FeAvda. Fernando Abril Martorell, 106, 46026ValenciaSpain
| | - María J. Vicent
- Polymer Therapeutics LaboratoryCentro de Investigación Príncipe FelipeAv. Eduardo Primo Yúfera 3Valencia, 46012Spain
- Screening Platform, Centro de Investigación Príncipe FelipeAv. Eduardo Primo Yúfera 3Valencia, 46012Spain
| |
Collapse
|
26
|
Sapra R, Verma RP, Maurya GP, Dhawan S, Babu J, Haridas V. Designer Peptide and Protein Dendrimers: A Cross-Sectional Analysis. Chem Rev 2019; 119:11391-11441. [PMID: 31556597 DOI: 10.1021/acs.chemrev.9b00153] [Citation(s) in RCA: 72] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Dendrimers have attracted immense interest in science and technology due to their unique chemical structure that offers a myriad of opportunities for researchers. Dendritic design allows us to present peptides in a branched three-dimensional fashion that eventually leads to a globular shape, thus mimicking globular proteins. Peptide dendrimers, unlike other classes of dendrimers, have immense applications in biomedical research due to their biological origin. The diversity of potential building blocks and innumerable possibilities for design, along with the fact that the area is relatively underexplored, make peptide dendrimers sought-after candidates for various applications. This review summarizes the stepwise evolution of peptidic dendrimers along with their multifaceted applications in various fields. Further, the introduction of biomacromolecules such as proteins to a dendritic scaffold, resulting in complex macromolecules with discrete molecular weights, is an altogether new addition to the area of organic chemistry. The synthesis of highly complex and fully folded biomacromolecules on a dendritic scaffold requires expertise in synthetic organic chemistry and biology. Presently, there are only a handful of examples of protein dendrimers; we believe that these limited examples will fuel further research in this area.
Collapse
Affiliation(s)
- Rachit Sapra
- Department of Chemistry , Indian Institute of Technology Delhi , Hauz Khas , New Delhi 110016 , India
| | - Ram P Verma
- Department of Chemistry , Indian Institute of Technology Delhi , Hauz Khas , New Delhi 110016 , India
| | - Govind P Maurya
- Department of Chemistry , Indian Institute of Technology Delhi , Hauz Khas , New Delhi 110016 , India
| | - Sameer Dhawan
- Department of Chemistry , Indian Institute of Technology Delhi , Hauz Khas , New Delhi 110016 , India
| | - Jisha Babu
- Department of Chemistry , Indian Institute of Technology Delhi , Hauz Khas , New Delhi 110016 , India
| | - V Haridas
- Department of Chemistry , Indian Institute of Technology Delhi , Hauz Khas , New Delhi 110016 , India
| |
Collapse
|
27
|
Fruehauf KR, Kim TI, Nelson EL, Patterson JP, Wang SW, Shea KJ. Metabolite Responsive Nanoparticle-Protein Complex. Biomacromolecules 2019; 20:2703-2712. [PMID: 31117354 PMCID: PMC7819679 DOI: 10.1021/acs.biomac.9b00470] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Stimuli-responsive polymers are an efficient means of targeted therapy. Compared to conventional agents, they increase bioavailability and efficacy. In particular, polymer hydrogel nanoparticles (NPs) can be designed to respond when exposed to a specific environmental stimulus such as pH or temperature. However, targeting a specific metabolite as the trigger for stimuli response could further elevate selectivity and create a new class of bioresponsive materials. In this work we describe an N-isopropylacrylamide (NIPAm) NP that responds to a specific metabolite, characteristic of a hypoxic environment found in cancerous tumors. NIPAm NPs were synthesized by copolymerization with an oxamate derivative, a known inhibitor of lactate dehydrogenase (LDH). The oxamate-functionalized NPs (OxNP) efficiently sequestered LDH to produce an OxNP-protein complex. When exposed to elevated concentrations of lactic acid, a substrate of LDH and a metabolite characteristic of hypoxic tumor microenvironments, OxNP-LDH complexes swelled (65%). The OxNP-LDH complexes were not responsive to structurally related small molecules. This work demonstrates a proof of concept for tuning NP responsiveness by conjugation with a key protein to target a specific metabolite of disease.
Collapse
Affiliation(s)
- Krista R. Fruehauf
- Department of Chemistry, University of California, Irvine (UCI), Irvine, California 92697-2025, United States
| | - Tae Il Kim
- Department of Chemical and Biomolecular Engineering, University of California, Irvine (UCI), Irvine, California 92697-2580, United States
| | - Edward L. Nelson
- Department of Medicine, Chao Family Comprehensive Cancer Center, and Institute for Immunology, University of California, Irvine (UCI), Orange, California 92868, United States
| | - Joseph P. Patterson
- Department of Chemistry, University of California, Irvine (UCI), Irvine, California 92697-2025, United States
| | - Szu-Wen Wang
- Department of Chemical and Biomolecular Engineering, University of California, Irvine (UCI), Irvine, California 92697-2580, United States
| | - Kenneth J. Shea
- Department of Chemistry, University of California, Irvine (UCI), Irvine, California 92697-2025, United States
| |
Collapse
|
28
|
Ray P, Ferraro M, Haag R, Quadir M. Dendritic Polyglycerol-Derived Nano-Architectures as Delivery Platforms of Gemcitabine for Pancreatic Cancer. Macromol Biosci 2019; 19:e1900073. [PMID: 31183964 DOI: 10.1002/mabi.201900073] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Revised: 05/07/2019] [Indexed: 12/14/2022]
Abstract
Dendritic polyglycerol-co-polycaprolactone (PG-co-PCL)-derived block copolymers are synthesized and explored as nanoscale drug delivery platforms for a chemotherapeutic agent, gemcitabine (GEM), which is the cornerstone of therapy for pancreatic ductal adenocarcinoma (PDAC). Current treatment strategies with GEM result in suboptimal therapeutic outcome owing to microenvironmental resistance and rapid metabolic degradation of GEM. To address these challenges, physicochemical and cell-biological properties of both covalently conjugated and non-covalently stabilized variants of GEM-containing PG-co-PCL architectures have been evaluated. Self-assembly behavior, drug loading and release capacity, cytotoxicity, and cellular uptake properties of these constructs in monolayer and in spheroid cultures of PDAC cells are investigated. To realize the covalently conjugated carrier systems, GEM, in conjunction with a tertiary amine, is attached to the polycarbonate block grafted from the PG-co-PCL core. It is observed that pH-dependent ionization properties of these amine side-chains direct the formation of self-assembly of block copolymers in the form of nanoparticles. For non-covalent encapsulation, a facile "solvent-shifting" technique is adopted. Fabrication techniques are found to control colloidal and cellular properties of GEM-loaded nanoconstructs. The feasibility and potential of these newly developed architectures for designing carrier systems for GEM to achieve augmented prognosis for pancreatic cancer are reported.
Collapse
Affiliation(s)
- Priyanka Ray
- Department of Coatings and Polymeric Materials, 1735 Research Park Drive, Fargo, ND, 58108-6050, USA
| | - Magda Ferraro
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Takustr. 3, 14195, Berlin, Germany
| | - Rainer Haag
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Takustr. 3, 14195, Berlin, Germany
| | - Mohiuddin Quadir
- Department of Coatings and Polymeric Materials, 1735 Research Park Drive, Fargo, ND, 58108-6050, USA
| |
Collapse
|
29
|
Yasunaga M. Antibody therapeutics and immunoregulation in cancer and autoimmune disease. Semin Cancer Biol 2019; 64:1-12. [PMID: 31181267 DOI: 10.1016/j.semcancer.2019.06.001] [Citation(s) in RCA: 101] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Accepted: 06/03/2019] [Indexed: 02/04/2023]
Abstract
Cancer and autoimmune disease are closely related, and many therapeutic antibodies are widely used in clinics for the treatment of both diseases. Among them, the anti-CD20 antibody has proven to be effective against both lymphoid malignancy and autoimmune disease. Moreover, immune checkpoint blockade using the anti-PD1/PD-L1/CTLA4 antibody has improved the prognosis of patients with refractory solid tumors. At the same time, however, over-enhancement of immunoreaction can induce autoimmune reaction. Although anti-TNF antibody therapies represent a breakthrough in the treatment of autoimmune diseases, optimal management is required to control the serious associated issues, including development and progression of cancer, and it is becoming more and more important to control the immunoreaction. In addition, next-generation antibody therapeutics such as antibody-drug conjugates and bispecific antibodies, are anticipated to treat uncontrolled cancer and autoimmune disease. IL-7R signaling plays an important role in the development and progression of both lymphoid malignancy and autoimmune disease. In addition, abnormal homing activity and steroid resistance caused by IL-7R signaling may worsen prognosis. Therefore, anti-IL-7R targeting antibody therapies that enable suppression of such pathophysiological status have the potential to be beneficial for the treatment of both diseases. In this review, we discuss current antibody therapeutics in cancer and autoimmune disease, and describe a new therapeutic strategy for immunoregulation including IL-7R targeting antibodies.
Collapse
Affiliation(s)
- Masahiro Yasunaga
- Division of Developmental Therapeutics, EPOC, National Cancer Center, 6-5-1 Kashiwanoha, Kashiwa-shi, Chiba, 277-8577, Japan.
| |
Collapse
|
30
|
Andersen VL, Vinther M, Kumar R, Ries A, Wengel J, Nielsen JS, Kjems J. A self-assembled, modular nucleic acid-based nanoscaffold for multivalent theranostic medicine. Am J Cancer Res 2019; 9:2662-2677. [PMID: 31131060 PMCID: PMC6525989 DOI: 10.7150/thno.32060] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Accepted: 02/21/2019] [Indexed: 12/20/2022] Open
Abstract
Rationale: Within the field of personalized medicine there is an increasing focus on designing flexible, multifunctional drug delivery systems that combine high efficacy with minimal side effects, by tailoring treatment to the individual. Methods: We synthesized a chemically stabilized ~4 nm nucleic acid nanoscaffold, and characterized its assembly, stability and functional properties in vitro and in vivo. We tested its flexibility towards multifunctionalization by conjugating various biomolecules to the four modules of the system. The pharmacokinetics, targeting capability and bioimaging properties of the structure were investigated in mice. The role of avidity in targeted liver cell internalization was investigated by flow cytometry, confocal microscopy and in vivo by fluorescent scanning of the blood and organs of the animals. Results: We have developed a nanoscaffold that rapidly and with high efficiency can self-assemble four chemically conjugated functionalities into a stable, in vivo-applicable system with complete control of stoichiometry and site specificity. The circulation time of the nanoscaffold could be tuned by functionalization with various numbers of polyethylene glycol polymers or with albumin-binding fatty acids. Highly effective hepatocyte-specific internalization was achieved with increasing valencies of tri-antennary galactosamine (triGalNAc) in vitro and in vivo. Conclusion: With its facile functionalization, stoichiometric control, small size and high serum- and thermostability, the nanoscaffold presented here constitutes a novel and flexible platform technology for theranostics.
Collapse
|
31
|
Ekladious I, Colson YL, Grinstaff MW. Polymer-drug conjugate therapeutics: advances, insights and prospects. Nat Rev Drug Discov 2019; 18:273-294. [PMID: 30542076 PMCID: PMC12032968 DOI: 10.1038/s41573-018-0005-0] [Citation(s) in RCA: 534] [Impact Index Per Article: 89.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Polymer-drug conjugates have long been a mainstay of the drug delivery field, with several conjugates successfully translated into clinical practice. The conjugation of therapeutic agents to polymeric carriers, such as polyethylene glycol, offers several advantages, including improved drug solubilization, prolonged circulation, reduced immunogenicity, controlled release and enhanced safety. In this Review, we discuss the rational design, physicochemical characteristics and recent advances in the development of different classes of polymer-drug conjugates, including polymer-protein and polymer-small-molecule drug conjugates, dendrimers, polymer nanoparticles and multifunctional systems. Current obstacles hampering the clinical translation of polymer-drug conjugate therapeutics and future prospects are also presented.
Collapse
Affiliation(s)
- Iriny Ekladious
- Departments of Biomedical Engineering, Chemistry, and Medicine, Boston University, Boston, MA, USA
| | - Yolonda L Colson
- Department of Surgery, Brigham and Women's Hospital, Boston, MA, USA.
| | - Mark W Grinstaff
- Departments of Biomedical Engineering, Chemistry, and Medicine, Boston University, Boston, MA, USA.
| |
Collapse
|
32
|
Fishman JM, Zwick DB, Kruger AG, Kiessling LL. Chemoselective, Postpolymerization Modification of Bioactive, Degradable Polymers. Biomacromolecules 2019; 20:1018-1027. [PMID: 30608163 PMCID: PMC6690479 DOI: 10.1021/acs.biomac.8b01631] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Degradable polymers promote sustainability, mitigate environmental impact, and facilitate biological applications. Tailoring degradable polymers is challenging because installing functional group-rich side chains is difficult when the backbone itself is susceptible to degradation. A convenient means of side chain installation is through postpolymerization modification (PPM). In functionalizing polyoxazinones, a class of degradable polymers generated by the ring-opening metathesis polymerization (ROMP), we predictably found PPM challenging. Even the versatile azide-alkyne cycloaddition click reaction was ineffective. To solve this problem, we screened PPM reactions whose efficiencies could be assessed using photochemistry (excimer formation). The mildest, pH-neutral process was functionalization of a ketone-containing polymer to yield either oxime (acid labile)- or alkyoxylamine (stable)-substituted polymers. Using this approach, we equipped polymers with fluorophores, reporter groups, and bioactive epitopes. These modifications imbued the polymers with distinctive spectral properties and biological activities. Thus, polyoxazinones are now tunable through a modular method to diversify these macromolecules' function.
Collapse
Affiliation(s)
- Joshua M. Fishman
- Department of Chemistry, University of Wisconsin
– Madison, Madison, WI 53706
| | - Daniel B. Zwick
- Department of Biochemisry, University of
Wisconsin – Madison, Madison, WI 53706
| | - Austin G. Kruger
- Department of Chemistry, University of Wisconsin
– Madison, Madison, WI 53706
| | - Laura L. Kiessling
- Department of Chemistry, University of Wisconsin
– Madison, Madison, WI 53706
- Department of Biochemisry, University of
Wisconsin – Madison, Madison, WI 53706
- Department of Chemistry, Massachusetts Institute
of Techology, Cambridge, MA 02139
| |
Collapse
|
33
|
Abstract
Currently, with the rapid development of nanotechnology, novel drug delivery systems (DDSs) have made rapid progress, in which nanocarriers play an important role in the tumour treatment. In view of the conventional chemotherapeutic drugs with many restrictions such as nonspecific systemic toxicity, short half-life and low concentration in the tumour sites, stimuli-responsive DDSs can deliver anti-tumour drugs targeting to the specific sites of tumours. Owing to precise stimuli response, stimuli-responsive DDSs can control drug release, so as to improve the curative effects, reduce the damage of normal tissues and organs, and decrease the side effects of traditional anticancer drugs. At present, according to the physicochemical properties and structures of nanomaterials, they can be divided into three categories: (1) endogenous stimuli-responsive materials, including pH, enzyme and redox responsive materials; (2) exogenous stimuli-responsive materials, such as temperature, light, ultrasound and magnetic field responsive materials; (3) multi-stimuli responsive materials. This review mainly focuses on the researches and developments of these novel stimuli-responsive DDSs based on above-mentioned nanomaterials and their clinical applications.
Collapse
Affiliation(s)
- Li Li
- a Department of Oncology Minimally Invasive , Hospital of PLA, Clinical College of Anhui Medical University , Beijing , PR China.,b Institute of Military Cognitive and Brain Sciences , Beijing , PR China
| | - Wu-Wei Yang
- a Department of Oncology Minimally Invasive , Hospital of PLA, Clinical College of Anhui Medical University , Beijing , PR China
| | - Dong-Gang Xu
- b Institute of Military Cognitive and Brain Sciences , Beijing , PR China
| |
Collapse
|
34
|
Maso K, Grigoletto A, Vicent MJ, Pasut G. Molecular platforms for targeted drug delivery. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2019; 346:1-50. [DOI: 10.1016/bs.ircmb.2019.03.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
35
|
Montis C, Till U, Vicendo P, Roux C, Mingotaud AF, Violleau F, Demazeau M, Berti D, Lonetti B. Extended photo-induced endosome-like structures in giant vesicles promoted by block-copolymer nanocarriers. NANOSCALE 2018; 10:15442-15446. [PMID: 30091780 DOI: 10.1039/c8nr04355h] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Upon irradiation, the photosensitizer pheophorbide-a causes dramatic morphological transitions in giant unilamellar lipid vesicles. This endocytosis-like process occurs only when the photoactive species are encapsulated in a copolymer nanocarrier and strictly depends on the chemical nature of the copolymer. Altogether, these results open up new perspectives in the field of photo-chemical internalization mediated by nanoassemblies.
Collapse
Affiliation(s)
- C Montis
- Department of Chemistry "Ugo Schiff", University of Florence and CSGI, Via della Lastruccia 3, 50019 Sesto Fiorentino Firenze, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Rodriguez‐Otormin F, Duro‐Castano A, Conejos‐Sánchez I, Vicent MJ. Envisioning the future of polymer therapeutics for brain disorders. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2018; 11:e1532. [DOI: 10.1002/wnan.1532] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Revised: 04/24/2018] [Accepted: 05/09/2018] [Indexed: 01/09/2023]
Affiliation(s)
| | - Aroa Duro‐Castano
- Polymer Therapeutics Laboratory Centro de Investigación Príncipe Felipe Valencia Spain
| | | | - María J. Vicent
- Polymer Therapeutics Laboratory Centro de Investigación Príncipe Felipe Valencia Spain
| |
Collapse
|
37
|
Abstract
By the end of 2017 more than 200,000 scientific research articles had been published about nanomedicine. Out of this vast number only a few of the reported nanoconstructs reached clinical trials for various applications, including the diagnosis and treatment of several cancers, and the treatment of infections and other non-cancerous diseases. 30 years after the pioneering work in this field of research, the low product yield at the end of research pipeline leads to a question that is asked by many: 'had nanomedicine been lost in translation?' In this review, we will discuss the landscape of nanomedicine regarding cancer treatment and miscellaneous applications as well as some obstacles toward full utilization of this powerful therapeutic tool and suggest a few solutions to improve the current translational value of nanomedicine research.
Collapse
|
38
|
Atkinson SP, Andreu Z, Vicent MJ. Polymer Therapeutics: Biomarkers and New Approaches for Personalized Cancer Treatment. J Pers Med 2018; 8:E6. [PMID: 29360800 PMCID: PMC5872080 DOI: 10.3390/jpm8010006] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Revised: 01/11/2018] [Accepted: 01/15/2018] [Indexed: 02/06/2023] Open
Abstract
Polymer therapeutics (PTs) provides a potentially exciting approach for the treatment of many diseases by enhancing aqueous solubility and altering drug pharmacokinetics at both the whole organism and subcellular level leading to improved therapeutic outcomes. However, the failure of many polymer-drug conjugates in clinical trials suggests that we may need to stratify patients in order to match each patient to the right PT. In this concise review, we hope to assess potential PT-specific biomarkers for cancer treatment, with a focus on new studies, detection methods, new models and the opportunities this knowledge will bring for the development of novel PT-based anti-cancer strategies. We discuss the various "hurdles" that a given PT faces on its passage from the syringe to the tumor (and beyond), including the passage through the bloodstream, tumor targeting, tumor uptake and the intracellular release of the active agent. However, we also discuss other relevant concepts and new considerations in the field, which we hope will provide new insight into the possible applications of PT-related biomarkers.
Collapse
Affiliation(s)
- Stuart P Atkinson
- Polymer Therapeutics Laboratory, Centro de Investigación Príncipe Felipe, Av. Eduardo Primo Yúfera 3, 46012 Valencia, Spain.
| | - Zoraida Andreu
- Polymer Therapeutics Laboratory, Centro de Investigación Príncipe Felipe, Av. Eduardo Primo Yúfera 3, 46012 Valencia, Spain.
| | - María J Vicent
- Polymer Therapeutics Laboratory, Centro de Investigación Príncipe Felipe, Av. Eduardo Primo Yúfera 3, 46012 Valencia, Spain.
| |
Collapse
|
39
|
Genta I, Chiesa E, Colzani B, Modena T, Conti B, Dorati R. GE11 Peptide as an Active Targeting Agent in Antitumor Therapy: A Minireview. Pharmaceutics 2017; 10:E2. [PMID: 29271876 PMCID: PMC5874815 DOI: 10.3390/pharmaceutics10010002] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2017] [Revised: 12/06/2017] [Accepted: 12/11/2017] [Indexed: 01/06/2023] Open
Abstract
A lot of solid tumors are characterized by uncontrolled signal transduction triggered by receptors related to cellular growth. The targeting of these cell receptors with antitumor drugs is essential to improve chemotherapy efficacy. This can be achieved by conjugation of an active targeting agent to the polymer portion of a colloidal drug delivery system loaded with an antitumor drug. The goal of this minireview is to report and discuss some recent results in epidermal growth factor receptor targeting by the GE11 peptide combined with colloidal drug delivery systems as smart carriers for antitumor drugs. The minireview chapters will focus on explaining and discussing: (i) Epidermal growth factor receptor (EGFR) structures and functions; (ii) GE11 structure and biologic activity; (iii) examples of GE11 conjugation and GE11-conjugated drug delivery systems. The rationale is to contribute in gathering information on the topic of active targeting to tumors. A case study is introduced, involving research on tumor cell targeting by the GE11 peptide combined with polymer nanoparticles.
Collapse
Affiliation(s)
- Ida Genta
- Department of Drug Sciences, University of Pavia, Viale Taramelli 12, 27100 Pavia, Italy.
| | - Enrica Chiesa
- Department of Drug Sciences, University of Pavia, Viale Taramelli 12, 27100 Pavia, Italy.
| | - Barbara Colzani
- Department of Drug Sciences, University of Pavia, Viale Taramelli 12, 27100 Pavia, Italy.
| | - Tiziana Modena
- Department of Drug Sciences, University of Pavia, Viale Taramelli 12, 27100 Pavia, Italy.
| | - Bice Conti
- Department of Drug Sciences, University of Pavia, Viale Taramelli 12, 27100 Pavia, Italy.
| | - Rossella Dorati
- Department of Drug Sciences, University of Pavia, Viale Taramelli 12, 27100 Pavia, Italy.
| |
Collapse
|