1
|
Kuntic M, Kuntic I, Cleppien D, Pozzer A, Nußbaum D, Oelze M, Junglas T, Strohm L, Ubbens H, Daub S, Bayo Jimenez MT, Danckwardt S, Berkemeier T, Hahad O, Kohl M, Steven S, Stroh A, Lelieveld J, Münzel T, Daiber A. Differential inflammation, oxidative stress and cardiovascular damage markers of nano- and micro-particle exposure in mice: Implications for human disease burden. Redox Biol 2025; 83:103644. [PMID: 40319735 DOI: 10.1016/j.redox.2025.103644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2025] [Revised: 04/17/2025] [Accepted: 04/17/2025] [Indexed: 05/07/2025] Open
Abstract
Particulate matter (PM) poses a significant risk to human health; however, it remains uncertain which size fraction is especially harmful and what mechanisms are involved. We investigated the varying effects of particle size on specific organ systems using a custom mouse exposure system and synthetic PM (SPM). Whole-body exposure of mice showed that micrometer-sized fine SPM (2-4 μm) accumulated in the lungs, the primary entry organ, while nanometer-sized SPM (<250 nm) did not accumulate, suggesting a transition into circulation. Mice exposed to micro-SPM exhibited inflammation and NADPH oxidase-derived oxidative stress in the lungs. In contrast, nano-SPM-exposed mice did not display oxidative stress in the lungs but rather at the brain, heart, and vascular levels, supporting the hypothesis that they penetrate the lungs and reach the circulation. Sources of reactive oxygen species from micro-SPM in the lung are NOX1 and NOX2, driven by pulmonary inflammation, while oxidative stress from nano-SPM in the heart is mediated by protein kinase C-dependent p47phox phosphorylation, leading to NOX2 activation in infiltrated monocytes. Endothelial dysfunction and increased blood pressure were more pronounced in nano-SPM-exposed mice, also supported by elevated endothelin-1 and reduced endothelial nitric oxide synthase expression, which enhances constriction and diminishes vasodilation. Further, we estimated the cardiovascular disease burden of nano-particles in humans based on global exposure data and hazard ratios from an epidemiological cohort study. These results provide novel insights into the disease burdens of inhaled nano- and micro-particles (corresponding to fine and ultrafine categories), guiding future studies.
Collapse
Affiliation(s)
- Marin Kuntic
- University Medical Center Mainz, Department for Cardiology 1, Molecular Cardiology, Mainz, Germany; German Center for Cardiovascular Research (DZHK), Partner Site Rhine-Main, Mainz, Germany
| | - Ivana Kuntic
- University Medical Center Mainz, Department for Cardiology 1, Molecular Cardiology, Mainz, Germany
| | - Dirk Cleppien
- Leibniz Institute for Resilience Research, Mainz, Germany
| | - Andrea Pozzer
- Max Planck Institute for Chemistry, Atmospheric Chemistry Department, Mainz, Germany
| | - David Nußbaum
- University Medical Center Mainz, Department for Cardiology 1, Molecular Cardiology, Mainz, Germany
| | - Matthias Oelze
- University Medical Center Mainz, Department for Cardiology 1, Molecular Cardiology, Mainz, Germany
| | - Tristan Junglas
- University Medical Center Mainz, Department for Cardiology 1, Molecular Cardiology, Mainz, Germany
| | - Lea Strohm
- University Medical Center Mainz, Department for Cardiology 1, Molecular Cardiology, Mainz, Germany
| | - Henning Ubbens
- University Medical Center Mainz, Department for Cardiology 1, Molecular Cardiology, Mainz, Germany
| | - Steffen Daub
- University Medical Center Mainz, Department for Cardiology 1, Molecular Cardiology, Mainz, Germany
| | | | - Sven Danckwardt
- German Center for Cardiovascular Research (DZHK), Partner Site Rhine-Main, Mainz, Germany; Center for Thrombosis and Hemostasis (CTH), University Medical Center of the Johannes Gutenberg-University, Mainz, Germany; University Medical Center Ulm, Department of Clinical Chemistry, Ulm, Germany
| | - Thomas Berkemeier
- Max Planck Institute for Chemistry, Multiphase Chemistry Department, Mainz, Germany
| | - Omar Hahad
- University Medical Center Mainz, Department for Cardiology 1, Molecular Cardiology, Mainz, Germany; German Center for Cardiovascular Research (DZHK), Partner Site Rhine-Main, Mainz, Germany
| | - Matthias Kohl
- Max Planck Institute for Chemistry, Atmospheric Chemistry Department, Mainz, Germany
| | - Sebastian Steven
- University Medical Center Mainz, Department for Cardiology 1, Molecular Cardiology, Mainz, Germany; Center for Thrombosis and Hemostasis (CTH), University Medical Center of the Johannes Gutenberg-University, Mainz, Germany; Division of Cardiology, Goethe University Frankfurt, University Hospital, Department of Medicine III, Frankfurt a. M., Germany
| | - Albrecht Stroh
- Leibniz Institute for Resilience Research, Mainz, Germany; University Medical Center Mainz, Institute of Pathophysiology, Mainz, Germany; Institute of Physiology I, University Hospital Muenster, Germany
| | - Jos Lelieveld
- Max Planck Institute for Chemistry, Atmospheric Chemistry Department, Mainz, Germany
| | - Thomas Münzel
- University Medical Center Mainz, Department for Cardiology 1, Molecular Cardiology, Mainz, Germany; German Center for Cardiovascular Research (DZHK), Partner Site Rhine-Main, Mainz, Germany
| | - Andreas Daiber
- University Medical Center Mainz, Department for Cardiology 1, Molecular Cardiology, Mainz, Germany; German Center for Cardiovascular Research (DZHK), Partner Site Rhine-Main, Mainz, Germany; Center for Thrombosis and Hemostasis (CTH), University Medical Center of the Johannes Gutenberg-University, Mainz, Germany.
| |
Collapse
|
2
|
Vermoolen R, Franken R, Krone T, Shandilya N, Goede H, Ben Jeddi H, Kuijpers E, Ge C, Fransman W. The Nano Exposure Quantifier: a quantitative model for assessing nanoparticle exposure in the workplace. Ann Work Expo Health 2025; 69:323-336. [PMID: 39887143 PMCID: PMC11911509 DOI: 10.1093/annweh/wxae104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 12/16/2024] [Indexed: 02/01/2025] Open
Abstract
Exposure to manufactured nanomaterials (MNs) is a growing concern for occupational health and safety. Reliable methods for assessing and predicting MN exposure are essential to mitigate associated risks. This study presents the development of the Nano Exposure Quantifier (NEQ), a mechanistic model designed to assess airborne MN exposure in the workplace. By utilizing a dataset of 128 MN measurements from existing exposure studies, the model demonstrates its effectiveness in estimating MN exposure levels for particles smaller than 10 µm. The NEQ provides estimates in terms of particle number concentration accompanied by a 95% confidence interval (CI), enabling a comprehensive assessment of MN exposure. The NEQ includes 2 quantitative models: a simplified tier 1 model and a more comprehensive tier 2 model. Both tier 1 and tier 2 models exhibit robust performance, with correlation coefficients (r) of 0.57 and 0.62, respectively. The models exhibit a moderate level of error, as indicated by residuals' standard deviation of 4.10 for tier 1 and 3.90 for tier 2. The tier 1 model demonstrates a slightly higher overestimation bias (1.15) compared to the tier 2 model (0.54). Overall, the NEQ offers a practical and reliable approach for estimating MN exposure in occupational settings. Future validation studies will investigate the impact of initial calibration efforts, heteroscedasticity, and further refine the model's accuracy.
Collapse
Affiliation(s)
- Ruby Vermoolen
- TNO, Princetonlaan 6, PO Box 80015, Utrecht 3584 CB, The Netherlands
| | - Remy Franken
- TNO, Princetonlaan 6, PO Box 80015, Utrecht 3584 CB, The Netherlands
| | - Tanja Krone
- TNO, Princetonlaan 6, PO Box 80015, Utrecht 3584 CB, The Netherlands
| | - Neeraj Shandilya
- TNO, Princetonlaan 6, PO Box 80015, Utrecht 3584 CB, The Netherlands
| | - Henk Goede
- TNO, Princetonlaan 6, PO Box 80015, Utrecht 3584 CB, The Netherlands
| | - Hasnae Ben Jeddi
- TNO, Princetonlaan 6, PO Box 80015, Utrecht 3584 CB, The Netherlands
| | - Eelco Kuijpers
- TNO, Princetonlaan 6, PO Box 80015, Utrecht 3584 CB, The Netherlands
| | - Calvin Ge
- TNO, Princetonlaan 6, PO Box 80015, Utrecht 3584 CB, The Netherlands
| | - Wouter Fransman
- TNO, Princetonlaan 6, PO Box 80015, Utrecht 3584 CB, The Netherlands
| |
Collapse
|
3
|
Vidal LM, Pimentel E, Escobar-Alarcón L, Cruces MP, Jiménez E, Suárez H, Leyva Y. Toxicity evaluation of novel imidacloprid nanoribbons, using somatic mutation and fitness indexes in Drosophila melanogaster. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2024; 87:398-418. [PMID: 38385605 DOI: 10.1080/15287394.2024.2316649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/23/2024]
Abstract
Nanoribbons of imidacloprid, a systemic and chloronicotinyl insecticide, were successfully synthesized by laser-induced fragmentation/exfoliation of imidacloprid powders suspended in water, with widths ranging from 160 to 470 nm, lengths in the micron scale, and thickness of a few atoms layers. The aim of the present study was to examine the effects of acute and chronic exposure to imidacloprid (IMC) bulk and compare its effects with synthesized imidacloprid nanoribbons (IMCNR) on larval and adult viability, developmental time, olfactory capacity, longevity, productivity, and genotoxicity in Drosophila melanogaster. Larvae or adults were exposed at 0.01, 0.02, or 0.03 ppm to IMC or IMCNR. Results demonstrated that IMCNR produced a significant reduction in viability and olfactory ability. IMC did not significantly alter viability and olfactory ability. Similarly, marked differences on longevity were detected between treatment with IMC and IMCNR where the lifespan of males treated with IMC was significantly higher than control while IMCNR produced a reduction. As for productivity, developmental time, and genotoxicity, no marked differences were found between both forms of IMC.
Collapse
Affiliation(s)
- Luz M Vidal
- Departamento de Biología, Instituto Nacional de Investigaciones Nucleares (ININ), Ocoyoacac, México
| | - Emilio Pimentel
- Departamento de Biología, Instituto Nacional de Investigaciones Nucleares (ININ), Ocoyoacac, México
| | - Luis Escobar-Alarcón
- Departamento de Física, Instituto Nacional de Investigaciones Nucleares (ININ), Ocoyoacac, México
| | - Martha P Cruces
- Departamento de Biología, Instituto Nacional de Investigaciones Nucleares (ININ), Ocoyoacac, México
| | - Elizabeth Jiménez
- Facultad de Ciencias, Universidad Autónoma del Estado de México, Toluca, México
| | - Hugo Suárez
- Departamento de Biología, Instituto Nacional de Investigaciones Nucleares (ININ), Ocoyoacac, México
| | - Yosary Leyva
- Departamento de Biología, Instituto Nacional de Investigaciones Nucleares (ININ), Ocoyoacac, México
| |
Collapse
|
4
|
Krasley A, Li E, Galeana JM, Bulumulla C, Beyene AG, Demirer GS. Carbon Nanomaterial Fluorescent Probes and Their Biological Applications. Chem Rev 2024; 124:3085-3185. [PMID: 38478064 PMCID: PMC10979413 DOI: 10.1021/acs.chemrev.3c00581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 02/01/2024] [Accepted: 02/09/2024] [Indexed: 03/28/2024]
Abstract
Fluorescent carbon nanomaterials have broadly useful chemical and photophysical attributes that are conducive to applications in biology. In this review, we focus on materials whose photophysics allow for the use of these materials in biomedical and environmental applications, with emphasis on imaging, biosensing, and cargo delivery. The review focuses primarily on graphitic carbon nanomaterials including graphene and its derivatives, carbon nanotubes, as well as carbon dots and carbon nanohoops. Recent advances in and future prospects of these fields are discussed at depth, and where appropriate, references to reviews pertaining to older literature are provided.
Collapse
Affiliation(s)
- Andrew
T. Krasley
- Janelia
Research Campus, Howard Hughes Medical Institute, 19700 Helix Drive, Ashburn, Virginia 20147, United States
| | - Eugene Li
- Division
of Chemistry and Chemical Engineering, California
Institute of Technology, 1200 E. California Boulevard, Pasadena, California 91125, United States
| | - Jesus M. Galeana
- Division
of Chemistry and Chemical Engineering, California
Institute of Technology, 1200 E. California Boulevard, Pasadena, California 91125, United States
| | - Chandima Bulumulla
- Janelia
Research Campus, Howard Hughes Medical Institute, 19700 Helix Drive, Ashburn, Virginia 20147, United States
| | - Abraham G. Beyene
- Janelia
Research Campus, Howard Hughes Medical Institute, 19700 Helix Drive, Ashburn, Virginia 20147, United States
| | - Gozde S. Demirer
- Division
of Chemistry and Chemical Engineering, California
Institute of Technology, 1200 E. California Boulevard, Pasadena, California 91125, United States
| |
Collapse
|
5
|
Silva RMGD, Do Nascimento Pereira I, Camargo Zibordi L, Pereira Rosatto PA, Oliveira Granero F, Malaguti Figueiredo CC, Leopoldo Constantino CJ, da Silva Martin C, Eloizo Job A, Nicolau-Junior N, Pereira Silva L. Cytotoxic, antioxidant, and antiglycation activities, and tyrosinase inhibition using silver nanoparticles synthesized by leaf extract of Solanum aculeatissimum Jacq. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2024; 87:57-76. [PMID: 37929327 DOI: 10.1080/15287394.2023.2275691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/07/2023]
Abstract
The present study aimed to determine the biological properties of an extract of Solanum aculeatissimum aqueous extract (SaCE) alone as well as silver nanoparticles (AgNPs) generated by green synthesis utilizing S. aculeatissimum aqueous extract (SaCE). These synthesized SaCE AgNPs were characterized using UV-VIS spectrophotometry, scanning transmission electron microscopy (TEM), energy dispersive spectroscopy (EDS), zeta potential (ZP), dynamic light scattering (DLS). Determination of total polyphenols, flavonoids, saponins content was conducted. In addition, high performance liquid chromatography-mass spectrometry (HPLC-MS) was employed to identify constituents in this extract. Antioxidant activity was determined by DPPH radical scavenging and ferric ion reducing power (FRAP) methods. Antiglycation activity was demonstrated through relative mobility in electrophoresis (RME) and determination of free amino groups. The inhibitory activity on tyrosinase was also examined. Molecular docking analyses were performed to assess the molecular interactions with DNA and tyrosinase. The antitumor activity SaCE was also measured. Phytochemical analysis of SaCE and AgNPs showed presence polyphenols (1000.41 and 293.37 mg gallic acid equivalent/g), flavonoids (954.87 and 479.87 mg rutin equivalent/g), saponins (37.89 and 23.01% total saponins), in particular steroidal saponins (aculeatiside A and B). Both SaCE and AgNPs exhibited significant antioxidant (respectively, 73.97%, 56.27% in DPPH test, 874.67 and 837.67 μM Trolox Equivalent/g in FRAP test) and antiglycation activities (72.81 and 67.98% free amino groups, results observed in RME). SaCE and AgNPs presented 33.2, 36.1% inhibitory activity on tyrosinase, respectively. In silico assay demonstrated interaction between steroidal saponins, DNA or tyrosinase. SaCE exhibited antitumor action against various human tumor cells. Data demonstrated that extracts SaCE alone and AgNPs synthesized from SaCE presented biological properties of interest for application in new therapeutic formulations in medicine.
Collapse
Affiliation(s)
- Regildo Márcio Gonçalves da Silva
- School of Sciences, Humanities and Languages, Department of Biotechnology, Laboratory of Phytotherapic and Natural Products, São Paulo State University (UNESP), Assis, São Paulo, Brazil
- Institute of Chemistry, São Paulo State University (UNESP), Araraquara, São Paulo, Brazil
| | - Isabelly Do Nascimento Pereira
- School of Sciences, Humanities and Languages, Department of Biotechnology, Laboratory of Phytotherapic and Natural Products, São Paulo State University (UNESP), Assis, São Paulo, Brazil
| | - Laura Camargo Zibordi
- School of Sciences, Humanities and Languages, Department of Biotechnology, Laboratory of Phytotherapic and Natural Products, São Paulo State University (UNESP), Assis, São Paulo, Brazil
| | - Pedro Augusto Pereira Rosatto
- School of Sciences, Humanities and Languages, Department of Biotechnology, Laboratory of Phytotherapic and Natural Products, São Paulo State University (UNESP), Assis, São Paulo, Brazil
| | | | | | - Carlos José Leopoldo Constantino
- School of Science and Technology, Department of Physics, São Paulo State University (UNESP), Presidente Prudente, São Paulo, Brazil
| | - Cibely da Silva Martin
- School of Science and Technology, Department of Physics, São Paulo State University (UNESP), Presidente Prudente, São Paulo, Brazil
| | - Aldo Eloizo Job
- School of Science and Technology, Department of Physics, São Paulo State University (UNESP), Presidente Prudente, São Paulo, Brazil
| | - Nilson Nicolau-Junior
- Laboratory of Molecular Modeling, Institute of Biotechnology, Federal University of Uberlândia, Uberlândia, Minas Gerais, Brazil
| | | |
Collapse
|
6
|
Khanna K, Ohri P, Bhardwaj R. Nanotechnology and CRISPR/Cas9 system for sustainable agriculture. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:118049-118064. [PMID: 36973619 DOI: 10.1007/s11356-023-26482-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Accepted: 03/11/2023] [Indexed: 06/18/2023]
Abstract
The clustered regularly interspaced short palindromic repeats (CRISPR-Cas9), a genome editing tool, has gained a tremendous position due to its therapeutic efficacy, ability to counteract abiotic/biotic stresses in plants, environmental remediation and sustainable agriculture with the aim of food security. This is mainly due to their potential of precised genome modification and numerous genetic engineering protocols with versatility as well as simplicity. This technique is quite useful for crop refinement and overcoming the agricultural losses and regaining the soil fertility hampered by hazardous chemicals. Since CRISPR/Cas9 has been widely accepted in genome editing in plants, however, their revolutionised nature and progress enable genetic engineers to face numerous challenges in plant biotechnology. Therefore, nanoparticles have addressed these challenges and improved cargo delivery and genomic editing processes. Henceforth, this barrier prevents CRISPR-based genetic engineering in plants in order to show efficacy in full potential and eliminate all the barriers. This advancement accelerates the genome editing process and its applications in plant biotechnology enable us to sustain and feed the massive population under varying environments. Genome editing tools using CRISPR/Cas9 and nanotechnology are advantageous that produce transgenic-free plants that overcome global food demands. Here, in this review, we have aimed towards the mechanisms/delivery systems linked with CRISPR/Cas9 system. We have elaborated on the applications of CRISPR/Cas9 and nanotechnology-based systems for sustainable agriculture. Moreover, the challenges and limitations associated with genome editing and delivery systems have also been discussed with a special emphasis on crop improvement.
Collapse
Affiliation(s)
- Kanika Khanna
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar, 143005, Punjab, India.
- Department of Microbiology, DAV University, Sarmastpur, Jalandhar, 144001, Punjab, India.
| | - Puja Ohri
- Department of Zoology, Guru Nanak Dev University, Amritsar, 143005, Punjab, India
| | - Renu Bhardwaj
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar, 143005, Punjab, India.
| |
Collapse
|
7
|
Dos Reis Oliveira C, Pereira JC, Barros Ibiapina A, Roseno Martins IR, de Castro E Sousa JM, Ferreira PMP, Carneiro da Silva FC. Buthionine sulfoximine and chemoresistance in cancer treatments: a systematic review with meta-analysis of preclinical studies. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART B, CRITICAL REVIEWS 2023; 26:417-441. [PMID: 37606035 DOI: 10.1080/10937404.2023.2246876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/23/2023]
Abstract
Buthionine sulfoximine (BSO) is a synthetic amino acid that blocks the biosynthesis of reduced glutathione (GSH), an endogenous antioxidant cellular component present in tumor cells. GSH levels have been associated with tumor cell resistance to chemotherapeutic drugs and platinum compounds. Consequently, by depleting GSH, BSO enhances the cytotoxicity of chemotherapeutic agents in drug-resistant tumors. Therefore, the aim of this study was to conduct a systematic review with meta-analysis of preclinical studies utilizing BSO in cancer treatments. The systematic search was carried out using the following databases: PubMed, Web of Science, Scopus, and EMBASE up until March 20, 2023, in order to collect preclinical studies that evaluated BSO, alone or in association, as a strategy for antineoplastic therapy. One hundred nine investigations were found to assess the cytotoxic potential of BSO alone or in combination with other compounds. Twenty-one of these met the criteria for performing the meta-analysis. The evidence gathered indicated that BSO alone exhibits cytotoxic activity. However, this compound is generally used in combination with other antineoplastic strategies, mainly chemotherapy ones, to improve cytotoxicity to carcinogenic cells and treatment efficacy. Finally, this review provides important considerations regarding BSO use in cancer treatment conditions, which might optimize future studies as a potential adjuvant antineoplastic therapeutic tool.
Collapse
Affiliation(s)
| | - Joedna Cavalcante Pereira
- Postgraduate Program in Pharmaceutical Sciences, Federal University of Piauí, Teresina, Brazil
- Laboratory of Experimental Cancerology (LabCancer), Department of Biophysics and Physiology, Federal University of Piauí, Teresina, Brazil
| | | | | | - João Marcelo de Castro E Sousa
- Postgraduate Program in Pharmaceutical Sciences, Federal University of Piauí, Teresina, Brazil
- Laboratory of Toxicological Genetics (Lapgenic), Department of Biochemistry and Pharmacology, Federal University of Piauí, Teresina, Brazil
| | - Paulo Michel Pinheiro Ferreira
- Laboratory of Experimental Cancerology (LabCancer), Department of Biophysics and Physiology, Federal University of Piauí, Teresina, Brazil
| | - Felipe Cavalcanti Carneiro da Silva
- Postgraduate Program in Pharmaceutical Sciences, Federal University of Piauí, Teresina, Brazil
- Laboratory of Toxicological Genetics (Lapgenic), Department of Biochemistry and Pharmacology, Federal University of Piauí, Teresina, Brazil
| |
Collapse
|
8
|
Cruces MP, Pimentel E, Vidal LM, Jiménez E, Suárez H, Camps E, Campos-González E. Genotoxic action of bifenthrin nanoparticles and its effect on the development, productivity, and behavior of Drosophila melanogaster. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2023; 86:661-677. [PMID: 37477220 DOI: 10.1080/15287394.2023.2234408] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/22/2023]
Abstract
Rapid development of nanotechnology, particularly nanoparticles of pesticides, has facilitated the transformation of traditional agriculture. However, testing their effectiveness is essential for avoiding any environmental or adverse human health risk attributed to nanoparticle-based formulations, especially insecticides. Recently, organic nanoparticles of bifenthrin, a pyrethroid insecticide, were successfully synthesized by laser ablation of solids in liquid technique, with the most probable size of 5 nm. The aim of the present study was to examine the effects of acute exposure to bifenthrin (BIF) or bifenthrin nanoparticles (BIFNP) on larval-adult viability, developmental time, olfactory capacity, longevity, productivity defined as the number of eggs per couple, and genotoxicity in Drosophila melanogaster. Data demonstrated that BIFNP produced a marked delay in developmental time, significant reduction in viability and olfactory ability compared to BIF. No marked differences were detected between BIF and BIFNP on longevity and productivity. Genotoxicity findings indicated that only BIF, at longer exposure duration increased genetic damage.
Collapse
Affiliation(s)
- Martha P Cruces
- Departamento de Biología, Instituto Nacional de Investigaciones Nucleares (ININ), Ocoyoacac, México
| | - Emilio Pimentel
- Departamento de Biología, Instituto Nacional de Investigaciones Nucleares (ININ), Ocoyoacac, México
| | - Luz M Vidal
- Departamento de Biología, Instituto Nacional de Investigaciones Nucleares (ININ), Ocoyoacac, México
| | - Elizabeth Jiménez
- Facultad de Ciencias, Universidad Autónoma Del Estado de México, Toluca, México
| | - Hugo Suárez
- Departamento de Biología, Instituto Nacional de Investigaciones Nucleares (ININ), Ocoyoacac, México
| | - Enrique Camps
- Departamento de Física, Instituto Nacional de Investigaciones Nucleares (ININ), Ocoyoacac, México
| | - Enrique Campos-González
- CONACYT-Departamento de física, Instituto Nacional de Investigaciones Nucleares (ININ), Ocoyoacac, México
| |
Collapse
|
9
|
Bessa MJ, Brandão F, Rosário F, Moreira L, Reis AT, Valdiglesias V, Laffon B, Fraga S, Teixeira JP. Assessing the in vitro toxicity of airborne (nano)particles to the human respiratory system: from basic to advanced models. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART B, CRITICAL REVIEWS 2023; 26:67-96. [PMID: 36692141 DOI: 10.1080/10937404.2023.2166638] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Several studies have been conducted to address the potential adverse health risks attributed to exposure to nanoscale materials. While in vivo studies are fundamental for identifying the relationship between dose and occurrence of adverse effects, in vitro model systems provide important information regarding the mechanism(s) of action at the molecular level. With a special focus on exposure to inhaled (nano)particulate material toxicity assessment, this review provides an overview of the available human respiratory models and exposure systems for in vitro testing, advantages, limitations, and existing investigations using models of different complexity. A brief overview of the human respiratory system, pathway and fate of inhaled (nano)particles is also presented.
Collapse
Affiliation(s)
- Maria João Bessa
- Departamento de Saúde Ambiental, Instituto Nacional de Saúde Doutor Ricardo Jorge, Porto, Portugal
- EPIUnit, Instituto de Saúde Pública, Universidade do Porto, Porto, Portugal
- Laboratório para a Investigação Integrativa e Translacional em Saúde Populacional (ITR), Porto, Portugal
- Instituto de Ciências Biomédicas Abel Salazar (ICBAS), Universidade do Porto, Porto, Portugal
| | - Fátima Brandão
- Departamento de Saúde Ambiental, Instituto Nacional de Saúde Doutor Ricardo Jorge, Porto, Portugal
- EPIUnit, Instituto de Saúde Pública, Universidade do Porto, Porto, Portugal
- Laboratório para a Investigação Integrativa e Translacional em Saúde Populacional (ITR), Porto, Portugal
- Instituto de Ciências Biomédicas Abel Salazar (ICBAS), Universidade do Porto, Porto, Portugal
| | - Fernanda Rosário
- Departamento de Saúde Ambiental, Instituto Nacional de Saúde Doutor Ricardo Jorge, Porto, Portugal
- EPIUnit, Instituto de Saúde Pública, Universidade do Porto, Porto, Portugal
- Laboratório para a Investigação Integrativa e Translacional em Saúde Populacional (ITR), Porto, Portugal
| | - Luciana Moreira
- Departamento de Saúde Ambiental, Instituto Nacional de Saúde Doutor Ricardo Jorge, Porto, Portugal
- EPIUnit, Instituto de Saúde Pública, Universidade do Porto, Porto, Portugal
- Laboratório para a Investigação Integrativa e Translacional em Saúde Populacional (ITR), Porto, Portugal
| | - Ana Teresa Reis
- Departamento de Saúde Ambiental, Instituto Nacional de Saúde Doutor Ricardo Jorge, Porto, Portugal
- EPIUnit, Instituto de Saúde Pública, Universidade do Porto, Porto, Portugal
- Laboratório para a Investigação Integrativa e Translacional em Saúde Populacional (ITR), Porto, Portugal
| | - Vanessa Valdiglesias
- Departamento de Biología, Universidade da Coruña, Grupo NanoToxGen, Centro Interdisciplinar de Química e Bioloxía - CICA, A Coruña, Spain
- Instituto de Investigación Biomédica de A Coruña (INIBIC), A Coruña, Spain
| | - Blanca Laffon
- Instituto de Investigación Biomédica de A Coruña (INIBIC), A Coruña, Spain
- Departamento de Psicología, Universidade da Coruña, Grupo DICOMOSA, Centro Interdisciplinar de Química e Bioloxía - CICA, A Coruña, Spain
| | - Sónia Fraga
- Departamento de Saúde Ambiental, Instituto Nacional de Saúde Doutor Ricardo Jorge, Porto, Portugal
- EPIUnit, Instituto de Saúde Pública, Universidade do Porto, Porto, Portugal
- Laboratório para a Investigação Integrativa e Translacional em Saúde Populacional (ITR), Porto, Portugal
- Department of Biomedicine, Unit of Pharmacology and Therapeutics, Faculty of Medicine, University of Porto, Porto, Portugal
| | - João Paulo Teixeira
- Departamento de Saúde Ambiental, Instituto Nacional de Saúde Doutor Ricardo Jorge, Porto, Portugal
- EPIUnit, Instituto de Saúde Pública, Universidade do Porto, Porto, Portugal
- Laboratório para a Investigação Integrativa e Translacional em Saúde Populacional (ITR), Porto, Portugal
| |
Collapse
|
10
|
Turna Demir F. Protective effects of resveratrol against genotoxicity induced by nano and bulk hydroxyapatite in Drosophila melanogaster. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2022; 85:850-865. [PMID: 35848415 DOI: 10.1080/15287394.2022.2101568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Hydroxyapatite (HAp) is a naturally occurring calcium phosphate mineral predominantly used for its biocompatibility in a number of areas such as bone grafting, prosthesis coating in dentistry, and targeted drug delivery. Since the nano form of HAp (nHAp) has gained popularity attributed to a re-mineralizing effect in dental repair procedures, concerns have been raised over safety and biocompatibility of these nanoparticles (NP). This study, therefore, aimed to (1) investigate mechanisms of potential genotoxicity and enhanced generation of reactive oxygen species (ROS) initiated by bulk and nano forms of HAp and (2) test in vivo whether resveratrol, a type of natural phenol, might mitigate the extent of potential DNA damage. The size of nHAp was determined to be 192.13 ± 9.91 nm after dispersion using transmission electron microscopy (TEM). Drosophila melanogaster was employed as a model organism to determine the genotoxic potential and adverse effects of HAp by use of (comet assay), mutagenic and recombinogenic activity (wing spot test), and ROS-mediated damage. Drosophila wing-spot tests demonstrated that exposure to nontoxic bulk and nHAp concentrations (1, 2.5, 5 or 10 mM) produced no significant recombination effects or mutagenicity. However, bulk and nHAp at certain doses (2.5, 5 or 10 mM) induced genotoxicity in hemocytes and enhanced ROS production. Resveratrol was found to ameliorate the genotoxic effects induced by bulk HAp and nHAp in comet assay. Data demonstrate that treatment with nano and bulk Hap-induced DNA damage and increased ROS generation D. melanogaster which was alleviated by treatment with resveratrol.
Collapse
Affiliation(s)
- Fatma Turna Demir
- Vocational School of Health Services, Department of Medical Services and Techniques, Medical Laboratory Techniques Programme, Antalya Bilim University, Antalya, Turkey
| |
Collapse
|
11
|
Martin S, de Haan L, Miro Estruch I, Eder KM, Marzi A, Schnekenburger J, Blosi M, Costa A, Antonello G, Bergamaschi E, Riganti C, Beal D, Carrière M, Taché O, Hutchison G, Malone E, Young L, Campagnolo L, La Civita F, Pietroiusti A, Devineau S, Baeza A, Boland S, Zong C, Ichihara G, Fadeel B, Bouwmeester H. Pre-validation of a reporter gene assay for oxidative stress for the rapid screening of nanobiomaterials. FRONTIERS IN TOXICOLOGY 2022; 4:974429. [PMID: 36171865 PMCID: PMC9511406 DOI: 10.3389/ftox.2022.974429] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 08/09/2022] [Indexed: 12/04/2022] Open
Abstract
Engineered nanomaterials have been found to induce oxidative stress. Cellular oxidative stress, in turn, can result in the induction of antioxidant and detoxification enzymes which are controlled by the nuclear erythroid 2-related factor 2 (NRF2) transcription factor. Here, we present the results of a pre-validation study which was conducted within the frame of BIORIMA (“biomaterial risk management”) an EU-funded research and innovation project. For this we used an NRF2 specific chemically activated luciferase expression reporter gene assay derived from the human U2OS osteosarcoma cell line to screen for the induction of the NRF2 mediated gene expression following exposure to biomedically relevant nanobiomaterials. Specifically, we investigated Fe3O4-PEG-PLGA nanomaterials while Ag and TiO2 “benchmark” nanomaterials from the Joint Research Center were used as reference materials. The viability of the cells was determined by using the Alamar blue assay. We performed an interlaboratory study involving seven different laboratories to assess the applicability of the NRF2 reporter gene assay for the screening of nanobiomaterials. The latter work was preceded by online tutorials to ensure that the procedures were harmonized across the different participating laboratories. Fe3O4-PEG-PLGA nanomaterials were found to induce very limited NRF2 mediated gene expression, whereas exposure to Ag nanomaterials induced NRF2 mediated gene expression. TiO2 nanomaterials did not induce NRF2 mediated gene expression. The variability in the results obtained by the participating laboratories was small with mean intra-laboratory standard deviation of 0.16 and mean inter laboratory standard deviation of 0.28 across all NRF2 reporter gene assay results. We conclude that the NRF2 reporter gene assay is a suitable assay for the screening of nanobiomaterial-induced oxidative stress responses.
Collapse
Affiliation(s)
- Sebastin Martin
- Division of Molecular Toxicology, Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Laura de Haan
- Division of Toxicology, Wageningen University and Research, Wageningen, Netherlands
| | - Ignacio Miro Estruch
- Division of Toxicology, Wageningen University and Research, Wageningen, Netherlands
| | - Kai Moritz Eder
- Biomedical Technology Center, Westfälische Wilhelms-University, Münster, Germany
| | - Anne Marzi
- Biomedical Technology Center, Westfälische Wilhelms-University, Münster, Germany
| | | | - Magda Blosi
- Institute of Science and Technology for Ceramics (ISTEC), CNR, Faenza, Italy
| | - Anna Costa
- Institute of Science and Technology for Ceramics (ISTEC), CNR, Faenza, Italy
| | | | - Enrico Bergamaschi
- Department of Public Health and Pediatrics, University of Torino, Torino, Italy
| | - Chiara Riganti
- Department of Chemistry, University of Torino, Torino, Italy
| | - David Beal
- Université Grenoble-Alpes, CEA, CNRS, IRIG, SyMMES, Grenoble, France
| | - Marie Carrière
- Université Grenoble-Alpes, CEA, CNRS, IRIG, SyMMES, Grenoble, France
| | - Olivier Taché
- Université Paris-Saclay, CEA, CNRS, NIMBE, Gif-sur-Yvette, France
| | - Gary Hutchison
- School of Applied Sciences, Edinburgh Napier University, Edinburgh, United Kingdom
| | - Eva Malone
- School of Applied Sciences, Edinburgh Napier University, Edinburgh, United Kingdom
| | - Lesley Young
- School of Applied Sciences, Edinburgh Napier University, Edinburgh, United Kingdom
| | - Luisa Campagnolo
- Université Paris Cité, CNRS, Unité de Biologie Fonctionnelle et Adaptative, F-75013 Paris, France
| | - Fabio La Civita
- Université Paris Cité, CNRS, Unité de Biologie Fonctionnelle et Adaptative, F-75013 Paris, France
| | - Antonio Pietroiusti
- Université Paris Cité, CNRS, Unité de Biologie Fonctionnelle et Adaptative, F-75013 Paris, France
| | - Stéphanie Devineau
- Université Paris Cité, Unité de Biologie Fonctionnelle et Adaptative, Paris, France
| | - Armelle Baeza
- Université Paris Cité, Unité de Biologie Fonctionnelle et Adaptative, Paris, France
| | - Sonja Boland
- Université Paris Cité, Unité de Biologie Fonctionnelle et Adaptative, Paris, France
| | - Cai Zong
- Department of Occupational and Environmental Health, Tokyo University of Science, Tokyo, Japan
| | - Gaku Ichihara
- Department of Occupational and Environmental Health, Tokyo University of Science, Tokyo, Japan
| | - Bengt Fadeel
- Division of Molecular Toxicology, Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Hans Bouwmeester
- Division of Toxicology, Wageningen University and Research, Wageningen, Netherlands
- *Correspondence: Hans Bouwmeester,
| |
Collapse
|
12
|
Azqueta A, Stopper H, Zegura B, Dusinska M, Møller P. Do cytotoxicity and cell death cause false positive results in the in vitro comet assay? MUTATION RESEARCH. GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2022; 881:503520. [PMID: 36031332 DOI: 10.1016/j.mrgentox.2022.503520] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 06/10/2022] [Accepted: 06/21/2022] [Indexed: 10/17/2022]
Abstract
The comet assay is used to measure DNA damage induced by chemical and physical agents. High concentrations of test agents may cause cytotoxicity or cell death, which may give rise to false positive results in the comet assay. Systematic studies on genotoxins and cytotoxins (i.e. non-genotoxic poisons) have attempted to establish a threshold of cytotoxicity or cell death by which DNA damage results measured by the comet assay could be regarded as a false positive result. Thresholds of cytotoxicity/cell death range from 20% to 50% in various publications. Curiously, a survey of the latest literature on comet assay results from cell culture studies suggests that one-third of publications did not assess cytotoxicity or cell death. We recommend that it should be mandatory to include results from at least one type of assay on cytotoxicity, cell death or cell proliferation in publications on comet assay results. A combination of cytotoxicity (or cell death) and proliferation (or colony forming efficiency assay) is preferable in actively proliferating cells because it covers more mechanisms of action. Applying a general threshold of cytotoxicity/cell death to all types of agents may not be applicable; however, 25% compared to the concurrent negative control seems to be a good starting value to avoid false positive comet assay results. Further research is needed to establish a threshold value to distinguish between true and potentially false positive genotoxic effects detected by the comet assay.
Collapse
Affiliation(s)
- Amaya Azqueta
- Department of Pharmacology and Toxicology, University of Navarra, C/Irunlarrea 1, 31009 Pamplona, Spain and IdiSNA, Navarra Institute for Health Research, Pamplona, Spain.
| | - Helga Stopper
- Institute of Pharmacology and Toxicology, University of Würzburg, Versbacher Str. 9, 97078 Würzburg, Germany
| | - Bojana Zegura
- Department of Genetic Toxicology and Cancer Biology, National Institute of Biology, Večna pot 111, 1000 Ljubljana, Slovenia
| | - Maria Dusinska
- Health Effects Laboratory, Department of Environmental Chemistry, NILU-Norwegian Institute for Air Research, Instituttveien 18, 2002 Kjeller, Norway
| | - Peter Møller
- Department of Public Health, Section of Environmental Health, University of Copenhagen, Øster Farimagsgade 5A, DK-1014 Copenhagen, Denmark
| |
Collapse
|
13
|
Alves Feitosa K, de Oliveira Correia R, Maragno Fattori AC, Albuquerque YR, Brassolatti P, Flores Luna G, de Almeida Rodolpho JM, T Nogueira C, Cancino Bernardi J, Speglich C, de Freitas Anibal F. Toxicological effects of the mixed iron oxide nanoparticle (Fe 3O 4 NP) on murine fibroblasts LA-9. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2022; 85:649-670. [PMID: 35469539 DOI: 10.1080/15287394.2022.2068711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The increase in large-scale production of magnetic nanoparticles (NP) associated with the incomplete comprehensive knowledge regarding the potential risks of their use on environmental and human health makes it necessary to study the biological effects of these particles on organisms at the cellular level. The aim of this study to examine the cellular effects on fibroblast lineage LA-9 after exposure to mixed iron oxide NP (Fe3O4 NP). The following analyses were performed: field emission gun-scanning electron microscopy (SEM-FEG), dynamic light scattering (DLS), zeta potential, ultraviolet/visible region spectroscopy (UV/VIS), and attenuated total reactance-Fourier transform infrared (ATR-FTIR) spectroscopy analyses for characterization of the NP. The assays included cell viability, morphology, clonogenic potential, oxidative stress as measurement of reactive oxygen species (ROS) and nitric oxide (NO) levels, cytokines quantification interleukin 6 (IL-6) and tumor necrosis factor (TNF), NP uptake, and cell death. The size of Fe3O4 NP was 26.3 nm when evaluated in water through DLS. Fe3O4 NP did not reduce fibroblast cell viability until the highest concentration tested (250 µg/ml), which showed a decrease in clonogenic potential as well as small morphological changes after exposure for 48 and 72 hr. The NP concentration of 250 µg/ml induced enhanced ROS and NO production after 24 hr treatment. The uptake assay exhibited time-dependent Fe3O4 NP internalization at all concentrations tested with no significant cell death. Hence, exposure of fibroblasts to Fe3O4 NP-induced oxidative stress but not reduced cell viability or death. However, the decrease in the clonogenic potential at the highest concentration demonstrates cytotoxic effects attributed to Fe3O4 NP which occurred on the 7th day after exposure.
Collapse
Affiliation(s)
- Karina Alves Feitosa
- Department of Morphology and Pathology, Inflammation and Infectious Diseases Laboratory, Federal University of São Carlos, São Carlos, Brazil
| | - Ricardo de Oliveira Correia
- Department of Morphology and Pathology, Inflammation and Infectious Diseases Laboratory, Federal University of São Carlos, São Carlos, Brazil
| | - Ana Carolina Maragno Fattori
- Department of Morphology and Pathology, Inflammation and Infectious Diseases Laboratory, Federal University of São Carlos, São Carlos, Brazil
| | - Yulli Roxenne Albuquerque
- Department of Morphology and Pathology, Inflammation and Infectious Diseases Laboratory, Federal University of São Carlos, São Carlos, Brazil
| | - Patricia Brassolatti
- Department of Morphology and Pathology, Inflammation and Infectious Diseases Laboratory, Federal University of São Carlos, São Carlos, Brazil
| | - Genoveva Flores Luna
- Department of Morphology and Pathology, Inflammation and Infectious Diseases Laboratory, Federal University of São Carlos, São Carlos, Brazil
| | - Joice Margareth de Almeida Rodolpho
- Department of Morphology and Pathology, Inflammation and Infectious Diseases Laboratory, Federal University of São Carlos, São Carlos, Brazil
| | | | - Juliana Cancino Bernardi
- Nanomedicine and Nanotoxicology Group, Physics Institute of São Carlos, University of São Paulo, São Carlos, Brazil
| | - Carlos Speglich
- Leopoldo Américo Miguez de Mello Research Center CENPES/Petrobras, Rio de Janeiro, Brazil
| | - Fernanda de Freitas Anibal
- Department of Morphology and Pathology, Inflammation and Infectious Diseases Laboratory, Federal University of São Carlos, São Carlos, Brazil
| |
Collapse
|
14
|
Silva MLND, Nogueira DJ, Vicentini DS, Puerari RC, Alves PRL, Fuzinatto CF, Matias WG. Rapid Communication: oxidative stress induced by mixed exposure to glyphosate and silver nanoparticles. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2022; 85:586-590. [PMID: 35317707 DOI: 10.1080/15287394.2022.2054888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The aim of this study was to examine oxidative stress induced by the binary mixture of silver nanoparticles (AgNP) and glyphosate (Gly) in Daphnia magna by measurement of reactive oxygen species (ROS) production, glutathione (GSH) levels, enzyme activities of catalase (CAT) and superoxide dismutase (SOD) as well as malondialdehyde (MDA) content. Acute exposure of Daphnia magna to binary mixture of AgNP and Gly resulted in significant biochemical responses indicative of oxidative damage. This response seemed to be related to imbalance in enzymatic/non-enzymatic antioxidant enzymes associated with intracellular overproduction of ROS and significant increase in MDA levels, indicating that the integrity and function of the cell membrane was damaged. These changes adversely affected the fitness and survival of Daphnia magna and negatively influenced offspring growth and reproduction.
Collapse
Affiliation(s)
- Marlon Luiz Neves da Silva
- Laboratory of Environmental Toxicology, Department of Sanitary and Environmental Engineering, Federal University of Santa Catarina, Florianópolis, Brazil
- Federal University of Fronteira Sul, Chapecó, Brazil
| | - Diego José Nogueira
- Laboratory of Environmental Toxicology, Department of Sanitary and Environmental Engineering, Federal University of Santa Catarina, Florianópolis, Brazil
| | - Denice Schulz Vicentini
- Laboratory of Environmental Toxicology, Department of Sanitary and Environmental Engineering, Federal University of Santa Catarina, Florianópolis, Brazil
| | - Rodrigo Costa Puerari
- Laboratory of Environmental Toxicology, Department of Sanitary and Environmental Engineering, Federal University of Santa Catarina, Florianópolis, Brazil
| | | | | | - William Gerson Matias
- Laboratory of Environmental Toxicology, Department of Sanitary and Environmental Engineering, Federal University of Santa Catarina, Florianópolis, Brazil
| |
Collapse
|
15
|
Krewski D, Saunders-Hastings P, Larkin P, Westphal M, Tyshenko MG, Leiss W, Dusseault M, Jerrett M, Coyle D. Principles of risk decision-making. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART B, CRITICAL REVIEWS 2022; 25:250-278. [PMID: 35980104 DOI: 10.1080/10937404.2022.2107591] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Risk management decisions in public health require consideration of a number of complex, often conflicting factors. The aim of this review was to propose a set of 10 fundamental principles to guide risk decision-making. Although each of these principles is sound in its own right, the guidance provided by different principles might lead the decision-maker in different directions. For example, where the precautionary principle advocates for preemptive risk management action under situations of scientific uncertainty and potentially catastrophic consequences, the principle of risk-based decision-making encourages decision-makers to focus on established and modifiable risks, where a return on the investment in risk management is all but guaranteed in the near term. To evaluate the applicability of the 10 principles in practice, one needs to consider 10 diverse risk issues of broad concern and explore which of these principles are most appropriate in different contexts. The 10 principles presented here afford substantive insight into the process of risk management decision-making, although decision-makers will ultimately need to exercise judgment in reaching appropriate risk decisions, accounting for all of the scientific and extra-scientific factors relevant to the risk decision at hand.
Collapse
Affiliation(s)
- Daniel Krewski
- McLaughlin Centre for Population Health Risk Assessment, Faculty of Medicine, University of Ottawa, ON, Canada
| | - Patrick Saunders-Hastings
- McLaughlin Centre for Population Health Risk Assessment, Faculty of Medicine, University of Ottawa, ON, Canada
| | - Patricia Larkin
- McLaughlin Centre for Population Health Risk Assessment, Faculty of Medicine, University of Ottawa, ON, Canada
| | - Margit Westphal
- McLaughlin Centre for Population Health Risk Assessment, Faculty of Medicine, University of Ottawa, ON, Canada
| | | | - William Leiss
- McLaughlin Centre for Population Health Risk Assessment, Faculty of Medicine, University of Ottawa, ON, Canada
| | - Maurice Dusseault
- Department of Earth and Environmental Sciences, University of Waterloo, Waterloo, ON, Canada
| | - Michael Jerrett
- Department of Environmental Health Sciences, Fielding School of Public Health, UCLA, Los Angeles, CA, USA
| | - Doug Coyle
- School of Epidemiology and Public Health, University of Ottawa, ON, Canada
| |
Collapse
|
16
|
Elberskirch L, Sofranko A, Liebing J, Riefler N, Binder K, Bonatto Minella C, Razum M, Mädler L, Unfried K, Schins RPF, Kraegeloh A, van Thriel C. How Structured Metadata Acquisition Contributes to the Reproducibility of Nanosafety Studies: Evaluation by a Round-Robin Test. NANOMATERIALS 2022; 12:nano12071053. [PMID: 35407172 PMCID: PMC9000531 DOI: 10.3390/nano12071053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 03/14/2022] [Accepted: 03/16/2022] [Indexed: 11/19/2022]
Abstract
It has been widely recognized that nanosafety studies are limited in reproducibility, caused by missing or inadequate information and data gaps. Reliable and comprehensive studies should be performed supported by standards or guidelines, which need to be harmonized and usable for the multidisciplinary field of nanosafety research. The previously described minimal information table (MIT), based on existing standards or guidelines, represents one approach towards harmonization. Here, we demonstrate the applicability and advantages of the MIT by a round-robin test. Its modular structure enables describing individual studies comprehensively by a combination of various relevant aspects. Three laboratories conducted a WST-1 cell viability assay using A549 cells to analyze the effects of the reference nanomaterials NM101 and NM110 according to predefined (S)OPs. The MIT contains relevant and defined descriptive information and quality criteria and thus supported the implementation of the round-robin test from planning, investigation to analysis and data interpretation. As a result, we could identify sources of variability and justify deviating results attributed to differences in specific procedures. Consequently, the use of the MIT contributes to the acquisition of reliable and comprehensive datasets and therefore improves the significance and reusability of nanosafety studies.
Collapse
Affiliation(s)
- Linda Elberskirch
- INM—Leibniz Institute for New Materials, Campus D2 2, 66123 Saarbrücken, Germany;
| | - Adriana Sofranko
- IUF—Leibniz Research Institute for Environmental Medicine, Auf’m Hennekamp 50, 40225 Düsseldorf, Germany; (A.S.); (K.U.); (R.P.F.S.)
| | - Julia Liebing
- IfADo—Leibniz Research Centre for Working Environment and Human Factors, Ardeystraße 67, 44139 Dortmund, Germany;
| | - Norbert Riefler
- IWT—Leibniz-Institut für Werkstofforientierte Technologien, Badgasteiner Str. 3, 28359 Bremen, Germany; (N.R.); (L.M.)
| | - Kunigunde Binder
- FIZ Karlsruhe—Leibniz Institute for Information Infrastructure, Hermann-von-Helmholtz-Platz 1, 76133 Eggenstein-Leopoldshafen, Germany; (K.B.); (C.B.M.); (M.R.)
| | - Christian Bonatto Minella
- FIZ Karlsruhe—Leibniz Institute for Information Infrastructure, Hermann-von-Helmholtz-Platz 1, 76133 Eggenstein-Leopoldshafen, Germany; (K.B.); (C.B.M.); (M.R.)
| | - Matthias Razum
- FIZ Karlsruhe—Leibniz Institute for Information Infrastructure, Hermann-von-Helmholtz-Platz 1, 76133 Eggenstein-Leopoldshafen, Germany; (K.B.); (C.B.M.); (M.R.)
| | - Lutz Mädler
- IWT—Leibniz-Institut für Werkstofforientierte Technologien, Badgasteiner Str. 3, 28359 Bremen, Germany; (N.R.); (L.M.)
| | - Klaus Unfried
- IUF—Leibniz Research Institute for Environmental Medicine, Auf’m Hennekamp 50, 40225 Düsseldorf, Germany; (A.S.); (K.U.); (R.P.F.S.)
| | - Roel P. F. Schins
- IUF—Leibniz Research Institute for Environmental Medicine, Auf’m Hennekamp 50, 40225 Düsseldorf, Germany; (A.S.); (K.U.); (R.P.F.S.)
| | - Annette Kraegeloh
- INM—Leibniz Institute for New Materials, Campus D2 2, 66123 Saarbrücken, Germany;
- Correspondence: (A.K.); (C.v.T.)
| | - Christoph van Thriel
- IfADo—Leibniz Research Centre for Working Environment and Human Factors, Ardeystraße 67, 44139 Dortmund, Germany;
- Correspondence: (A.K.); (C.v.T.)
| |
Collapse
|
17
|
Furtado RA, Ozelin SD, Ferreira NH, Miura BA, Almeida Junior S, Magalhães GM, Nassar EJ, Miranda MA, Bastos JK, Tavares DC. Antitumor activity of solamargine in mouse melanoma model: relevance to clinical safety. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2022; 85:131-142. [PMID: 34612163 DOI: 10.1080/15287394.2021.1984348] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Melanoma is the most aggressive type of skin cancer, and thus it is important to develop new drugs for its treatment. The present study aimed to examine the antitumor effects of solamargine a major alkaloid heteroside present in Solanum lycocarpum fruit. In addition solamargine was incorporated into nanoparticles (NP) of yttrium vanadate functionalized with 3-chloropropyltrimethoxysilane (YVO4:Eu3+:CPTES:SM) to determine antitumor activity. The anti-melanoma assessment was performed using a syngeneic mouse melanoma model B16F10 cell line. In addition, systemic toxicity, nephrotoxic, and genotoxic parameters were assessed. Solamargine, at doses of 5 or 10 mg/kg/day administered subcutaneously to male C57BL/6 mice for 5 days, decreased tumor size and frequency of mitoses in tumor tissue, indicative of a decrease in cell proliferation. Treatments with YVO4:Eu3+:CPTES:SM significantly reduced the number of mitoses in tumor tissue, associated with no change in tumor size. There were no apparent signs of systemic toxicity, nephrotoxicity, and genotoxicity initiated by treatments either with solamargine alone or plant alkaloid incorporated into NP. The animals treated with YVO4:Eu3+:CPTES:SM exhibited significant increase in spleen weight accompanied by no apparent histological changes in all tissues examined. In addition, animals treated with solamargine (10 mg/kg/day) and YVO4:Eu3+:CPTES:SM demonstrated significant reduction in hepatic DNA damage which was induced by tumor growth. Therefore, data suggest that solamargine may be considered a promising candidate in cancer therapy with no apparent toxic effects.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Mariza Abreu Miranda
- School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Sao Paulo, SP, Brazil
| | - Jairo Kenupp Bastos
- School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Sao Paulo, SP, Brazil
| | | |
Collapse
|
18
|
Demir E, Demir FT, Marcos R. Drosophila as a Suitable In Vivo Model in the Safety Assessment of Nanomaterials. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1357:275-301. [DOI: 10.1007/978-3-030-88071-2_12] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
19
|
Nanomaterial-Induced Extra-Pulmonary Health Effects – the Importance of Next Generation Physiologically Relevant In Vitro Test Systems for the Future of Nanotoxicology. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1357:259-273. [DOI: 10.1007/978-3-030-88071-2_11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
20
|
Londhe S, Patra CR. Biomedical applications of europium hydroxide nanorods. Nanomedicine (Lond) 2021; 17:5-8. [PMID: 34873917 DOI: 10.2217/nnm-2021-0351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Affiliation(s)
- Swapnali Londhe
- Department of Applied Biology, CSIR-Indian Institute of Chemical Technology, Uppal Road, Tarnaka, Hyderabad, 500007, Telangana, India.,Academy of Scientific & Innovative Research (AcSIR), Ghaziabad, 201002, UP, India
| | - Chitta Ranjan Patra
- Department of Applied Biology, CSIR-Indian Institute of Chemical Technology, Uppal Road, Tarnaka, Hyderabad, 500007, Telangana, India.,Academy of Scientific & Innovative Research (AcSIR), Ghaziabad, 201002, UP, India
| |
Collapse
|
21
|
Demir E. Mechanisms and biological impacts of graphene and multi-walled carbon nanotubes on Drosophila melanogaster: Oxidative stress, genotoxic damage, phenotypic variations, locomotor behavior, parasitoid resistance, and cellular immune response. J Appl Toxicol 2021; 42:450-474. [PMID: 34486762 DOI: 10.1002/jat.4232] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Revised: 08/18/2021] [Accepted: 08/18/2021] [Indexed: 12/12/2022]
Abstract
The use of graphene and multi-walled carbon nanotubes (MWCNTs) has now become rather common in medical applications as well as several other areas thanks to their useful physicochemical properties. While in vitro testing offers some potential, in vivo research into toxic effects of graphene and MWCNTs could yield much more reliable data. Drosophila melanogaster has recently gained significant popularity as a dynamic eukaryotic model in examining toxicity, genotoxicity, and biological effects of exposure to nanomaterials, including oxidative stress, cellular immune response against two strains (NSRef and G486) of parasitoid wasp (Leptopilina boulardi), phenotypic variations, and locomotor behavior risks. D. melanogaster was used as a model organism in our study to identify the potential risks of exposure to graphene (thickness: 2-18 nm) and MWCNTs in different properties (as pure [OD: 10-20 nm short], modified by amide [NH2 ] [OD: 7-13 nm length: 55 μm], and modified by carboxyl [COOH] [OD: 30-50 nm and length: 0.5-2 μm]) at concentrations ranging from 0.1 to 250 μg/ml. Significant effects were observed at two high doses (100 and 250 μg/ml) of graphene or MWCNTs. This is the first study to report findings of cellular immune response against hematopoiesis and parasitoids, nanogenotoxicity, phenotypic variations, and locomotor behavior in D. melanogaster.
Collapse
Affiliation(s)
- Eşref Demir
- Vocational School of Health Services, Department of Medical Services and Techniques, Medical Laboratory Techniques Programme, Antalya Bilim University, Antalya, Turkey
| |
Collapse
|
22
|
Yang N, Yang J, Liu Y, Fan H, Ji L, Wu T, Jia D, Ye Q, Wu G. Impaired learning and memory in mice induced by nano neodymium oxide and possible mechanisms. ENVIRONMENTAL TOXICOLOGY 2021; 36:1514-1520. [PMID: 33938091 DOI: 10.1002/tox.23148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2019] [Revised: 03/19/2021] [Accepted: 04/02/2021] [Indexed: 06/12/2023]
Abstract
A growing number of individuals are now exposed to neodymium (Nd) owing to its extensive applications. However, the biological effects of Nd on humans, especially on learning and memory, remain elusive. To investigate whether Nd exposure affects learning and memory, in this study female ICR mice were exposed to nano Nd2 O3 via intranasal instillation at doses of 50, 100, and 150 mg/kg body weight, daily for 45 days. According to Morris water maze data, learning and memory parameters were significantly reduced in the 150 mg/kg nano-Nd2 O3 group than the sham control. Furthermore, inductively coupled plasma-mass spectroscopy analysis revealed that Nd levels were significantly higher in the hippo campus of the 100 and 150 mg/kg exposed group than the sham control; however, no significant differences were observed in the hippocampal histopathology between these groups. Furthermore, reactive oxygen species were elevated in hippocampal tissues of experimental groups than the sham control, 447.3 in high dose group and 360.0 in control group; however, malondialdehyde levels were significantly increased and superoxide dismutase activities were decreased only in mice exposed to 100 and 150 mg/kg Nd2 O3 . High-performance liquid chromatography data demonstrated that levels of glutamic acid, glycine, and gamma-aminobutyric acid were higher in the hippocampus of mice exposed to 150 mg/kg Nd2 O3 than the sham control. Our findings indicated that the neuronal injury was induced by disruption of the oxidation-antioxidation homeostasis and altered amino acid neurotransmitter levels in the hippocampus, which could result in the poor cognitive performance demonstrated by exposed mice.
Collapse
Affiliation(s)
- Ning Yang
- Department of Preclinical Medicine and Forensic, Baotou Medical College, Inner Mongolia University of Science and Technology, Baotou, China
- Department of Nephrology, The First Affiliated Hospital of Baotou Medical College, Baotou, China
| | - Jing Yang
- Department of Preclinical Medicine and Forensic, Baotou Medical College, Inner Mongolia University of Science and Technology, Baotou, China
| | - Yang Liu
- Department of Preclinical Medicine and Forensic, Baotou Medical College, Inner Mongolia University of Science and Technology, Baotou, China
| | - Hongxing Fan
- Department of Preclinical Medicine and Forensic, Baotou Medical College, Inner Mongolia University of Science and Technology, Baotou, China
| | - Le Ji
- Department of Preclinical Medicine and Forensic, Baotou Medical College, Inner Mongolia University of Science and Technology, Baotou, China
| | - Tao Wu
- Department of Preclinical Medicine and Forensic, Baotou Medical College, Inner Mongolia University of Science and Technology, Baotou, China
- Department of Nephrology, The First Affiliated Hospital of Baotou Medical College, Baotou, China
| | - Dantong Jia
- Department of Preclinical Medicine and Forensic, Baotou Medical College, Inner Mongolia University of Science and Technology, Baotou, China
| | - Qianru Ye
- Department of Preclinical Medicine and Forensic, Baotou Medical College, Inner Mongolia University of Science and Technology, Baotou, China
| | - Gang Wu
- Department of Preclinical Medicine and Forensic, Baotou Medical College, Inner Mongolia University of Science and Technology, Baotou, China
| |
Collapse
|
23
|
Møller P, Wils RS, Di Ianni E, Gutierrez CAT, Roursgaard M, Jacobsen NR. Genotoxicity of multi-walled carbon nanotube reference materials in mammalian cells and animals. MUTATION RESEARCH. REVIEWS IN MUTATION RESEARCH 2021; 788:108393. [PMID: 34893158 DOI: 10.1016/j.mrrev.2021.108393] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 08/19/2021] [Accepted: 08/19/2021] [Indexed: 02/07/2023]
Abstract
Carbon nanotubes (CNTs) were the first nanomaterials to be evaluated by the International Agency for Research on Cancer (IARC). The categorization as possibly carcinogenic agent to humans was only applicable to multi-walled carbon nanotubes called MWCNT-7. Other types of CNTs were not classifiable because of missing data and it was not possible to pinpoint unique CNT characteristics that cause cancer. Importantly, the European Commission's Joint Research Centre (JRC) has established a repository of industrially manufactured nanomaterials that encompasses at least four well-characterized MWCNTs called NM-400 to NM-403 (original JRC code). This review summarizes the genotoxic effects of these JRC materials and MWCNT-7. The review consists of 36 publications with results on cell culture experiments (22 publications), animal models (9 publications) or both (5 publications). As compared to the publications in the IARC monograph on CNTs, the current database represents a significant increase as there is only an overlap of 8 publications. However, the results come mainly from cell cultures and/or measurements of DNA strand breaks by the comet assay and the micronucleus assay (82 out of 97 outcomes). A meta-analysis of cell culture studies on DNA strand breaks showed a genotoxic response by MWCNT-7, less consistent effect by NM-400 and NM-402, and least consistent effect by NM-401 and NM-403. Results from other in vitro tests indicate strongest evidence of genotoxicity for MWCNT-7. There are too few observations from animal models and humans to make general conclusions about genotoxicity.
Collapse
Affiliation(s)
- Peter Møller
- Department of Public Health, Section of Environmental Health, University of Copenhagen, Øster Farimagsgade 5A, DK-1014, Copenhagen K, Denmark.
| | - Regitze Sølling Wils
- Department of Public Health, Section of Environmental Health, University of Copenhagen, Øster Farimagsgade 5A, DK-1014, Copenhagen K, Denmark; The National Research Centre for the Working Environment, Lersø Parkalle 105, DK-2100, Copenhagen Ø, Denmark
| | - Emilio Di Ianni
- The National Research Centre for the Working Environment, Lersø Parkalle 105, DK-2100, Copenhagen Ø, Denmark
| | - Claudia Andrea Torero Gutierrez
- Department of Public Health, Section of Environmental Health, University of Copenhagen, Øster Farimagsgade 5A, DK-1014, Copenhagen K, Denmark; The National Research Centre for the Working Environment, Lersø Parkalle 105, DK-2100, Copenhagen Ø, Denmark
| | - Martin Roursgaard
- Department of Public Health, Section of Environmental Health, University of Copenhagen, Øster Farimagsgade 5A, DK-1014, Copenhagen K, Denmark
| | - Nicklas Raun Jacobsen
- The National Research Centre for the Working Environment, Lersø Parkalle 105, DK-2100, Copenhagen Ø, Denmark
| |
Collapse
|
24
|
Jeliazkova N, Apostolova MD, Andreoli C, Barone F, Barrick A, Battistelli C, Bossa C, Botea-Petcu A, Châtel A, De Angelis I, Dusinska M, El Yamani N, Gheorghe D, Giusti A, Gómez-Fernández P, Grafström R, Gromelski M, Jacobsen NR, Jeliazkov V, Jensen KA, Kochev N, Kohonen P, Manier N, Mariussen E, Mech A, Navas JM, Paskaleva V, Precupas A, Puzyn T, Rasmussen K, Ritchie P, Llopis IR, Rundén-Pran E, Sandu R, Shandilya N, Tanasescu S, Haase A, Nymark P. Towards FAIR nanosafety data. NATURE NANOTECHNOLOGY 2021; 16:644-654. [PMID: 34017099 DOI: 10.1038/s41565-021-00911-6] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Accepted: 03/28/2021] [Indexed: 06/12/2023]
Abstract
Nanotechnology is a key enabling technology with billions of euros in global investment from public funding, which include large collaborative projects that have investigated environmental and health safety aspects of nanomaterials, but the reuse of accumulated data is clearly lagging behind. Here we summarize challenges and provide recommendations for the efficient reuse of nanosafety data, in line with the recently established FAIR (findable, accessible, interoperable and reusable) guiding principles. We describe the FAIR-aligned Nanosafety Data Interface, with an aggregated findability, accessibility and interoperability across physicochemical, bio-nano interaction, human toxicity, omics, ecotoxicological and exposure data. Overall, we illustrate a much-needed path towards standards for the optimized use of existing data, which avoids duplication of efforts, and provides a multitude of options to promote safe and sustainable nanotechnology.
Collapse
Affiliation(s)
| | - Margarita D Apostolova
- Medical and Biological Research Laboratory, Roumen Tsanev Institute of Molecular Biology, Bulgarian Academy of Sciences, Sofia, Bulgaria
| | | | | | - Andrew Barrick
- Mer Molécules Santé, Université Catholique de l'Ouest, Angers, France
| | | | | | - Alina Botea-Petcu
- Institute of Physical Chemistry 'Ilie Murgulescu' of the Romanian Academy, Bucharest, Romania
| | - Amélie Châtel
- Mer Molécules Santé, Université Catholique de l'Ouest, Angers, France
| | | | - Maria Dusinska
- Department of Environmental Chemistry, Health Effects Laboratory, Norwegian Institute for Air Research, Kjeller, Norway
| | - Naouale El Yamani
- Department of Environmental Chemistry, Health Effects Laboratory, Norwegian Institute for Air Research, Kjeller, Norway
| | - Daniela Gheorghe
- Institute of Physical Chemistry 'Ilie Murgulescu' of the Romanian Academy, Bucharest, Romania
| | - Anna Giusti
- Department of Chemical and Product Safety, German Federal Institute for Risk Assessment, Berlin, Germany
| | | | - Roland Grafström
- Department of Toxicology, Misvik Biology, Turku, Finland
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Maciej Gromelski
- Group of Environmental Chemometrics, Faculty of Chemistry, University of Gdansk, Gdańsk, Poland
- QSAR Lab Ltd, Gdańsk, Poland
| | | | | | | | - Nikolay Kochev
- Ideaconsult Ltd, Sofia, Bulgaria
- Faculty of Chemistry, Department of Analytical Chemistry and Computer Chemistry, University of Plovdiv, Plovdiv, Bulgaria
| | - Pekka Kohonen
- Department of Toxicology, Misvik Biology, Turku, Finland
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Nicolas Manier
- Expertise and Assays in Ecotoxicology Unit, French National Institute for Industrial Environment and Risks, Verneuil-en-Halatte, France
| | - Espen Mariussen
- Department of Environmental Chemistry, Health Effects Laboratory, Norwegian Institute for Air Research, Kjeller, Norway
| | - Agnieszka Mech
- Joint Research Centre, European Commission, Ispra, Italy
| | - José María Navas
- Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Madrid, Spain
| | - Vesselina Paskaleva
- Ideaconsult Ltd, Sofia, Bulgaria
- Faculty of Chemistry, Department of Analytical Chemistry and Computer Chemistry, University of Plovdiv, Plovdiv, Bulgaria
| | - Aurica Precupas
- Institute of Physical Chemistry 'Ilie Murgulescu' of the Romanian Academy, Bucharest, Romania
| | - Tomasz Puzyn
- Group of Environmental Chemometrics, Faculty of Chemistry, University of Gdansk, Gdańsk, Poland
- QSAR Lab Ltd, Gdańsk, Poland
| | | | | | | | - Elise Rundén-Pran
- Department of Environmental Chemistry, Health Effects Laboratory, Norwegian Institute for Air Research, Kjeller, Norway
| | - Romica Sandu
- Institute of Physical Chemistry 'Ilie Murgulescu' of the Romanian Academy, Bucharest, Romania
| | - Neeraj Shandilya
- Netherlands Organisation for Applied Scientific Research (TNO), Utrecht, Netherlands
| | - Speranta Tanasescu
- Institute of Physical Chemistry 'Ilie Murgulescu' of the Romanian Academy, Bucharest, Romania
| | - Andrea Haase
- Department of Chemical and Product Safety, German Federal Institute for Risk Assessment, Berlin, Germany
| | - Penny Nymark
- Department of Toxicology, Misvik Biology, Turku, Finland.
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden.
| |
Collapse
|
25
|
Demirer GS, Silva TN, Jackson CT, Thomas JB, W Ehrhardt D, Rhee SY, Mortimer JC, Landry MP. Nanotechnology to advance CRISPR-Cas genetic engineering of plants. NATURE NANOTECHNOLOGY 2021; 16:243-250. [PMID: 33712738 PMCID: PMC10461802 DOI: 10.1038/s41565-021-00854-y] [Citation(s) in RCA: 96] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Accepted: 01/14/2021] [Indexed: 05/05/2023]
Abstract
CRISPR-Cas genetic engineering of plants holds tremendous potential for providing food security, battling biotic and abiotic crop stresses caused by climate change, and for environmental remediation and sustainability. Since the discovery of CRISPR-Cas technology, its usefulness has been demonstrated widely, including for genome editing in plants. Despite the revolutionary nature of genome-editing tools and the notable progress that these tools have enabled in plant genetic engineering, there remain many challenges for CRISPR applications in plant biotechnology. Nanomaterials could address some of the most critical challenges of CRISPR genome editing in plants through improvements in cargo delivery, species independence, germline transformation and gene editing efficiency. This Perspective identifies major barriers preventing CRISPR-mediated plant genetic engineering from reaching its full potential, and discusses ways that nanoparticle technologies can lower or eliminate these barriers. We also describe advances that are needed in nanotechnology to facilitate and accelerate plant genome editing. Timely advancement of the application of CRISPR technologies in plant engineering is crucial for our ability to feed and sustain the growing human population under a changing global climate.
Collapse
Affiliation(s)
- Gozde S Demirer
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, CA, USA.
- Department of Plant Biology and Genome Center, University of California, Davis, CA, USA.
| | - Tallyta N Silva
- Joint BioEnergy Institute, Feedstocks Division, Emeryville, CA, USA
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Christopher T Jackson
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, CA, USA
| | - Jason B Thomas
- Department of Plant Biology, Carnegie Institution for Science, Stanford, CA, USA
| | - David W Ehrhardt
- Department of Plant Biology, Carnegie Institution for Science, Stanford, CA, USA
| | - Seung Y Rhee
- Department of Plant Biology, Carnegie Institution for Science, Stanford, CA, USA.
| | - Jenny C Mortimer
- Joint BioEnergy Institute, Feedstocks Division, Emeryville, CA, USA.
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA.
- School of Agriculture, Food and Wine, Waite Research Institute, University of Adelaide, Adelaide, South Australia, Australia.
| | - Markita P Landry
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, CA, USA.
- Innovative Genomics Institute (IGI), Berkeley, CA, USA.
- California Institute for Quantitative Biosciences, QB3, University of California, Berkeley, CA, USA.
- Chan Zuckerberg Biohub, San Francisco, CA, USA.
| |
Collapse
|
26
|
Daiber A, Kuntic M, Hahad O, Delogu LG, Rohrbach S, Di Lisa F, Schulz R, Münzel T. Effects of air pollution particles (ultrafine and fine particulate matter) on mitochondrial function and oxidative stress - Implications for cardiovascular and neurodegenerative diseases. Arch Biochem Biophys 2020; 696:108662. [PMID: 33159890 DOI: 10.1016/j.abb.2020.108662] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 10/28/2020] [Accepted: 10/29/2020] [Indexed: 02/06/2023]
Abstract
Environmental pollution is a major cause of global mortality and burden of disease. All chemical pollution forms together may be responsible for up to 12 million annual excess deaths as estimated by the Lancet Commission on pollution and health as well as the World Health Organization. Ambient air pollution by particulate matter (PM) and ozone was found to be associated with an all-cause mortality rate of up to 9 million in the year 2015, with the majority being of cerebro- and cardiovascular nature (e.g. stroke and ischemic heart disease). Recent evidence suggests that exposure to airborne particles and gases contributes to and accelerates neurodegenerative diseases. Especially, airborne toxic particles contribute to these adverse health effects. Whereas it is well established that air pollution in the form of PM may lead to dysregulation of neurohormonal stress pathways and may trigger inflammation as well as oxidative stress, leading to secondary damage of cardiovascular structures, the mechanistic impact of PM-induced mitochondrial damage and dysfunction is not well established. With the present review we will discuss similarities between mitochondrial damage and dysfunction observed in the development and progression of cardiovascular disease and neurodegeneration as well as those adverse mitochondrial pathomechanisms induced by airborne PM.
Collapse
Affiliation(s)
- Andreas Daiber
- Department of Cardiology, University Medical Center Mainz, Johannes Gutenberg University, Germany; German Center for Cardiovascular Research (DZHK), Partner Site Rhine-Main, Mainz, Germany.
| | - Marin Kuntic
- Department of Cardiology, University Medical Center Mainz, Johannes Gutenberg University, Germany
| | - Omar Hahad
- Department of Cardiology, University Medical Center Mainz, Johannes Gutenberg University, Germany; German Center for Cardiovascular Research (DZHK), Partner Site Rhine-Main, Mainz, Germany
| | - Lucia G Delogu
- Department of Biomedical Sciences, University of Padova, 35131, Padova, Italy
| | - Susanne Rohrbach
- Institute of Physiology, Justus-Liebig University, Giessen, Germany
| | - Fabio Di Lisa
- Department of Biomedical Sciences, University of Padova, 35131, Padova, Italy
| | - Rainer Schulz
- Institute of Physiology, Justus-Liebig University, Giessen, Germany
| | - Thomas Münzel
- Department of Cardiology, University Medical Center Mainz, Johannes Gutenberg University, Germany; German Center for Cardiovascular Research (DZHK), Partner Site Rhine-Main, Mainz, Germany.
| |
Collapse
|
27
|
Demir E. A review on nanotoxicity and nanogenotoxicity of different shapes of nanomaterials. J Appl Toxicol 2020; 41:118-147. [PMID: 33111384 DOI: 10.1002/jat.4061] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2020] [Revised: 08/15/2020] [Accepted: 08/18/2020] [Indexed: 12/16/2022]
Abstract
Nanomaterials (NMs) generally display fascinating physical and chemical properties that are not always present in bulk materials; therefore, any modification to their size, shape, or coating tends to cause significant changes in their chemical/physical and biological characteristics. The dramatic increase in efforts to use NMs renders the risk assessment of their toxicity highly crucial due to the possible health perils of this relatively uncharted territory. The different sizes and shapes of the nanoparticles are known to have an impact on organisms and an important place in clinical applications. The shape of nanoparticles, namely, whether they are rods, wires, or spheres, is a particularly critical parameter to affect cell uptake and site-specific drug delivery, representing a significant factor in determining the potency and magnitude of the effect. This review, therefore, intends to offer a picture of research into the toxicity of different shapes (nanorods, nanowires, and nanospheres) of NMs to in vitro and in vivo models, presenting an in-depth analysis of health risks associated with exposure to such nanostructures and benefits achieved by using certain model organisms in genotoxicity testing. Nanotoxicity experiments use various models and tests, such as cell cultures, cores, shells, and coating materials. This review article also attempts to raise awareness about practical applications of NMs in different shapes in biology, to evaluate their potential genotoxicity, and to suggest approaches to explain underlying mechanisms of their toxicity and genotoxicity depending on nanoparticle shape.
Collapse
Affiliation(s)
- Eşref Demir
- Vocational School of Health Services, Department of Medical Services and Techniques, Medical Laboratory Techniques Programme, Antalya Bilim University, Dosemealti, Antalya, Turkey
| |
Collapse
|
28
|
Susceptibility Factors in Chronic Lung Inflammatory Responses to Engineered Nanomaterials. Int J Mol Sci 2020; 21:ijms21197310. [PMID: 33022979 PMCID: PMC7582686 DOI: 10.3390/ijms21197310] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 09/15/2020] [Accepted: 09/29/2020] [Indexed: 12/26/2022] Open
Abstract
Engineered nanomaterials (ENMs) are products of the emerging nanotechnology industry and many different types of ENMs have been shown to cause chronic inflammation in the lungs of rodents after inhalation exposure, suggesting a risk to human health. Due to the increasing demand and use of ENMs in a variety of products, a careful evaluation of the risks to human health is urgently needed. An assessment of the immunotoxicity of ENMs should consider susceptibility factors including sex, pre-existing diseases, deficiency of specific genes encoding proteins involved in the innate or adaptive immune response, and co-exposures to other chemicals. This review will address evidence from experimental animal models that highlights some important issues of susceptibility to chronic lung inflammation and systemic immune dysfunction after pulmonary exposure to ENMs.
Collapse
|
29
|
Evaluation of the NLRP3 Inflammasome Activating Effects of a Large Panel of TiO 2 Nanomaterials in Macrophages. NANOMATERIALS 2020; 10:nano10091876. [PMID: 32961672 PMCID: PMC7558067 DOI: 10.3390/nano10091876] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 09/10/2020] [Accepted: 09/15/2020] [Indexed: 12/12/2022]
Abstract
TiO2 nanomaterials are among the most commonly produced and used engineered nanomaterials (NMs) in the world. There is controversy regarding their ability to induce inflammation-mediated lung injuries following inhalation exposure. Activation of the NACHT, LRR and PYD domains-containing protein 3 (NALP3) inflammasome and subsequent release of the cytokine interleukin (IL)-1β in pulmonary macrophages has been postulated as an essential pathway for the inflammatory and associated tissue-remodeling effects of toxic particles. Our study aim was to determine and rank the IL-1β activating properties of TiO2 NMs by comparing a large panel of different samples against each other as well as against fine TiO2, synthetic amorphous silica and crystalline silica (DQ12 quartz). Effects were evaluated in primary bone marrow derived macrophages (BMDMs) from NALP3-deficient and proficient mice as well as in the rat alveolar macrophage cell line NR8383. Our results show that specific TiO2 NMs can activate the inflammasome in macrophages albeit with a markedly lower potency than amorphous SiO2 and quartz. The heterogeneity in IL-1β release observed in our study among 19 different TiO2 NMs underscores the relevance of case-by-case evaluation of nanomaterials of similar chemical composition. Our findings also further promote the NR8383 cell line as a promising in vitro tool for the assessment of the inflammatory and inflammasome activating properties of NMs.
Collapse
|
30
|
Bushell M, Beauchemin S, Kunc F, Gardner D, Ovens J, Toll F, Kennedy D, Nguyen K, Vladisavljevic D, Rasmussen PE, Johnston LJ. Characterization of Commercial Metal Oxide Nanomaterials: Crystalline Phase, Particle Size and Specific Surface Area. NANOMATERIALS (BASEL, SWITZERLAND) 2020; 10:E1812. [PMID: 32932807 PMCID: PMC7558088 DOI: 10.3390/nano10091812] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 09/02/2020] [Accepted: 09/07/2020] [Indexed: 12/12/2022]
Abstract
Physical chemical characterization of nanomaterials is critical to assessing quality control during production, evaluating the impact of material properties on human health and the environment, and developing regulatory frameworks for their use. We have investigated a set of 29 nanomaterials from four metal oxide families (aluminum, copper, titanium and zinc) with a focus on the measurands that are important for the basic characterization of dry nanomaterials and the determination of the dose metrics for nanotoxicology. These include crystalline phase and crystallite size, measured by powder X-ray diffraction, particle shape and size distributions from transmission electron microscopy, and specific surface area, measured by gas adsorption. The results are compared to the nominal data provided by the manufacturer, where available. While the crystalline phase data are generally reliable, data on minor components that may impact toxicity is often lacking. The crystal and particle size data highlight the issues in obtaining size measurements of materials with broad size distributions and significant levels of aggregation, and indicate that reliance on nominal values provided by the manufacturer is frequently inadequate for toxicological studies aimed at identifying differences between nanoforms. The data will be used for the development of models and strategies for grouping and read-across to support regulatory human health and environmental assessments of metal oxide nanomaterials.
Collapse
Affiliation(s)
- Michael Bushell
- Metrology Research Centre, National Research Council Canada, Ottawa, ON K1A 0R6, Canada; (M.B.); (F.K.); (D.K.)
| | - Suzanne Beauchemin
- Health Canada, Environmental Health Research Science Bureau, 251 Sir Frederick Banting Driveway, Ottawa, ON K1A 0K9, Canada;
| | - Filip Kunc
- Metrology Research Centre, National Research Council Canada, Ottawa, ON K1A 0R6, Canada; (M.B.); (F.K.); (D.K.)
| | - David Gardner
- X-ray Core Facility, University of Ottawa, STEM Complex, 150 Louis Pasteur, Ottawa, ON K1N 6N5, Canada; (D.G.); (J.O.)
| | - Jeffrey Ovens
- X-ray Core Facility, University of Ottawa, STEM Complex, 150 Louis Pasteur, Ottawa, ON K1N 6N5, Canada; (D.G.); (J.O.)
| | - Floyd Toll
- Energy Mining & Environment Research Centre, National Research Council Canada, Ottawa, ON K1A 0R6, Canada;
| | - David Kennedy
- Metrology Research Centre, National Research Council Canada, Ottawa, ON K1A 0R6, Canada; (M.B.); (F.K.); (D.K.)
| | - Kathy Nguyen
- Health Canada, New Substances Assessment Control Bureau, 269 Laurier Avenue West, Ottawa, ON K1A 0K9, Canada; (K.N.); (D.V.)
| | - Djordje Vladisavljevic
- Health Canada, New Substances Assessment Control Bureau, 269 Laurier Avenue West, Ottawa, ON K1A 0K9, Canada; (K.N.); (D.V.)
| | - Pat E. Rasmussen
- Health Canada, Environmental Health Research Science Bureau, 251 Sir Frederick Banting Driveway, Ottawa, ON K1A 0K9, Canada;
| | - Linda J. Johnston
- Metrology Research Centre, National Research Council Canada, Ottawa, ON K1A 0R6, Canada; (M.B.); (F.K.); (D.K.)
| |
Collapse
|
31
|
Demir E. An in vivo study of nanorod, nanosphere, and nanowire forms of titanium dioxide using Drosophila melanogaster: toxicity, cellular uptake, oxidative stress, and DNA damage. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2020; 83:456-469. [PMID: 32515692 DOI: 10.1080/15287394.2020.1777236] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
The biological impact of nanomaterials (NMs) is determined by several factors such as size and shape, which need to be taken into consideration in any type of analysis. While investigators often prefer to conduct in vitro studies for detection of any possible adverse effects of NMs, in vivo approaches yield more relevant data for risk assessment. For this reason, Drosophila melanogaster was selected as a suitable in vivo model to characterize the potential risks associated with exposure nanorods (NRs), nanospheres (NSs), nanowires (NWs) forms of titanium dioxide (TiO2), and their microparticulated (or bulk) form, as TiO2. Third instar larvae (72 hr old larvae) were fed with TiO2 (NRs, NSs, or NWs) and TiO2 at concentrations ranging from 0.01 to 10 mM. Viability (toxicity), internalization (cellular uptake), intracellular reactive oxygen species (ROS) production, and genotoxicity (Comet assay) were the end-points evaluated in hemocyte D. melanogaster larvae. Significant intracellular oxidative stress and genotoxicity were noted at the highest exposure concentration (10 mM) of TiO2 (NRs, NSs, or NWs), as determined by the Comet assay and ROS analysis, respectively. A concentration-effect relationship was observed in hemocytes exposed to the NMs. Data demonstrated that selected forms of TiO2.-induced genotoxicity in D. melanogaster larvae hemocytes indicating this organism is susceptible for use as a model to examine in vivo NMs-mediated effects.
Collapse
Affiliation(s)
- Eşref Demir
- Vocational School, Department of Medical Services and Techniques, Medical Laboratory Techniques Programme, Antalya Bilim University , Antalya, Turkey
| |
Collapse
|
32
|
Mia MB, Saxena RK. Poly dispersed acid-functionalized single walled carbon nanotubes target activated T and B cells to suppress acute and chronic GVHD in mouse model. Immunol Lett 2020; 224:30-37. [PMID: 32504776 DOI: 10.1016/j.imlet.2020.05.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 05/05/2020] [Accepted: 05/12/2020] [Indexed: 12/27/2022]
Abstract
Graft versus host disease (GVHD) results from hyper-activation of transplanted lymphocytes against the host antigens. Bone marrow transplantation in humans as well as some cases of blood transfusion and organ transplantation are associated with a strong GVH reaction resulting in GVHD that in many cases may be fatal. We had previously shown that poly-dispersed acid-functionalized single-walled carbon nanotubes (AF-SWCNTs) specifically target activated T and B lymphocytes and kill them. In the present study, efficacy of AF-SWCNTs to suppress the GVH reaction was tested in the mouse model. Acute GVHD was induced in mice by administering intravenously 30 or 60 million spleen cells from a parental strain (C57bl/6 mouse, MHC haplotype H-2b) to host (C57bl/6 x Balb/c) F1 mice (MHC haplotype H-2b/d)and waiting for 8-10 days. Chronic GVHD was similarly induced by administration of 30 million parent spleen cells to F1 mice and waiting for a period of 60 days. Our results demonstrate a marked decline in splenomegaly and recovery of spleen T (both CD4 and CD8) and B cells in GVHD mice treated with AF-SWCNTs. AF-SWCNTs treatment also limited T and B cell proliferation by restricting S-phage of cell cycle. Generation of anti-host cytotoxic T cells (CTLs) was also markedly suppressed by AF-SWCNT treatment of acute GVHD mice, and a significant reduction in the generation of anti-host antibodies could also be demonstrated. Taken together, our results suggest that the AF-SWCNTs can be considered as a potential therapeutic agent for treating GVHD.
Collapse
Affiliation(s)
- Md Babu Mia
- Faculty of Life Sciences and Biotechnology, South Asian University, Akbar Bhawan, Chanakyapuri, New Delhi, 110021, India
| | - Rajiv K Saxena
- Faculty of Life Sciences and Biotechnology, South Asian University, Akbar Bhawan, Chanakyapuri, New Delhi, 110021, India.
| |
Collapse
|
33
|
Abstract
New and emerging nanotechnologies are increasingly using nanomaterials that undergo significant chemical reactions upon exposure to environmental conditions. The rapid advent of lithium ion batteries for energy storage in mobile electronics and electric vehicles is leading to rapid increases in the manufacture of complex transition metal oxides that incorporate elements such as Co and Ni that have the potential for significant adverse biological impact. This Perspective summarizes some of the important technological drivers behind complex oxide materials and highlights some of the chemical transformations that need to be understood in order to assess the overall environmental impact associated with energy storage technologies.
Collapse
Affiliation(s)
- Robert J Hamers
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Avenue, Madison, Wisconsin 53706, United States
| |
Collapse
|
34
|
Kermanizadeh A, Powell LG, Stone V. A review of hepatic nanotoxicology - summation of recent findings and considerations for the next generation of study designs. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART B, CRITICAL REVIEWS 2020; 23:137-176. [PMID: 32321383 DOI: 10.1080/10937404.2020.1751756] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The liver is one of the most important multi-functional organs in the human body. Amongst various crucial functions, it is the main detoxification center and predominantly implicated in the clearance of xenobiotics potentially including particulates that reach this organ. It is now well established that a significant quantity of injected, ingested or inhaled nanomaterials (NMs) translocate from primary exposure sites and accumulate in liver. This review aimed to summarize and discuss the progress made in the field of hepatic nanotoxicology, and crucially highlight knowledge gaps that still exist.Key considerations include In vivo studies clearly demonstrate that low-solubility NMs predominantly accumulate in the liver macrophages the Kupffer cells (KC), rather than hepatocytes.KCs lining the liver sinusoids are the first cell type that comes in contact with NMs in vivo. Further, these macrophages govern overall inflammatory responses in a healthy liver. Therefore, interaction with of NM with KCs in vitro appears to be very important.Many acute in vivo studies demonstrated signs of toxicity induced by a variety of NMs. However, acute studies may not be that meaningful due to liver's unique and unparalleled ability to regenerate. In almost all investigations where a recovery period was included, the healthy liver was able to recover from NM challenge. This organ's ability to regenerate cannot be reproduced in vitro. However, recommendations and evidence is offered for the design of more physiologically relevant in vitro models.Models of hepatic disease enhance the NM-induced hepatotoxicity.The review offers a number of important suggestions for the future of hepatic nanotoxicology study design. This is of great significance as its findings are highly relevant due to the development of more advanced in vitro, and in silico models aiming to improve physiologically relevant toxicological testing strategies and bridging the gap between in vitro and in vivo experimentation.
Collapse
Affiliation(s)
- Ali Kermanizadeh
- School of Engineering and Physical Sciences, Heriot Watt University, Edinburgh, UK
- School of Medical Sciences, Bangor University, Bangor, UK
| | - Leagh G Powell
- School of Engineering and Physical Sciences, Heriot Watt University, Edinburgh, UK
| | - Vicki Stone
- School of Engineering and Physical Sciences, Heriot Watt University, Edinburgh, UK
| |
Collapse
|
35
|
Kämpfer AAM, Busch M, Schins RPF. Advanced In Vitro Testing Strategies and Models of the Intestine for Nanosafety Research. Chem Res Toxicol 2020; 33:1163-1178. [PMID: 32383381 DOI: 10.1021/acs.chemrestox.0c00079] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
There is growing concern about the potential adverse effects of oral exposure to engineered nanomaterials (ENM). Recent years have witnessed major developments in and advancement of intestinal in vitro models for nanosafety evaluation. The present paper reviews the key factors that should be considered for inclusion in nonanimal alternative testing approaches to reliably reflect the in vivo dynamics of the physicochemical properties of ENM as well the intestinal physiology and morphology. Currently available models range from simple cell line-based monocultures to advanced 3D systems and organoids. In addition, in vitro approaches exist to replicate the mucous barrier, digestive processes, luminal flow, peristalsis, and interactions of ENM with the intestinal microbiota. However, while the inclusion of a multitude of individual factors/components of particle (pre)treatment, exposure approach, and cell model approximates in vivo-like conditions, such increasing complexity inevitably affects the system's robustness and reproducibility. The selection of the individual modules to build the in vitro testing strategy should be driven and justified by the specific purpose of the study and, not least, the intended or actual application of the investigated ENM. Studies that address health hazards of ingested ENM likely require different approaches than research efforts to unravel the fundamental interactions or toxicity mechanisms of ENM in the intestine. Advanced reliable and robust in vitro models of the intestine, especially when combined in an integrated testing approach, offer great potential to further improve the field of nanosafety research.
Collapse
Affiliation(s)
- Angela A M Kämpfer
- Leibniz Research Institute for Environmental Medicine, IUF, 40225 Düsseldorf, Germany
| | - Mathias Busch
- Leibniz Research Institute for Environmental Medicine, IUF, 40225 Düsseldorf, Germany
| | - Roel P F Schins
- Leibniz Research Institute for Environmental Medicine, IUF, 40225 Düsseldorf, Germany
| |
Collapse
|
36
|
Köerich JS, Nogueira DJ, Vaz VP, Simioni C, Silva MLND, Ouriques LC, Vicentini DS, Matias WG. Toxicity of binary mixtures of Al 2O 3 and ZnO nanoparticles toward fibroblast and bronchial epithelium cells. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2020; 83:363-377. [PMID: 32414304 DOI: 10.1080/15287394.2020.1761496] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The objective of this study was to examine the cytotoxic effects of binary mixtures of Al2O3 and ZnO NPs using mouse fibroblast cells (L929) and human bronchial epithelial cells (BEAS-2B) as biological test systems. The synergistic, additive, or antagonistic behavior of the binary mixture was also investigated. In toxicity experiments, cellular morphology, mitochondrial function (MTT assay), apoptosis, nuclear size and shape, clonogenic assays, and damage based upon oxidative stress parameters were assessed under control and NPs exposure conditions. Although Abbott modeling results provided no clear evidence of the binary mixture of Al2O3 and ZnO NPs exhibiting synergistic toxicity, some specific assays such as apoptosis, nuclear size and shape, clonogenic assay, activities of antioxidant enzymatic enzymes catalase, superoxide dismutase, and levels of glutathione resulted in enhanced toxicity for the mixtures with 1 and 1.75 toxic units (TU) toward both cell types. Data demonstrated that co-presence of Al2O3 and ZnO NPs in the same environment might lead to more realistic environmental conditions. Our findings indicate cytotoxicity of binary mixtures of Al2O3 and ZnO NPs produced greater effects compared to toxicity of either individual compound.
Collapse
Affiliation(s)
- Jéssica Schveitzer Köerich
- Department of Sanitary and Environmental Engineering, Federal University of Santa Catarina , Florianópolis, Brazil
| | - Diego José Nogueira
- Department of Sanitary and Environmental Engineering, Federal University of Santa Catarina , Florianópolis, Brazil
| | - Vitor Pereira Vaz
- Department of Sanitary and Environmental Engineering, Federal University of Santa Catarina , Florianópolis, Brazil
| | - Carmen Simioni
- Department of Sanitary and Environmental Engineering, Federal University of Santa Catarina , Florianópolis, Brazil
| | - Marlon Luiz Neves Da Silva
- Department of Sanitary and Environmental Engineering, Federal University of Santa Catarina , Florianópolis, Brazil
| | - Luciane Cristina Ouriques
- Department Of Cell Biology, Embryology and Genetics, Federal University of Santa Catarina , Florianópolis, Brazil
| | - Denice Schulz Vicentini
- Department of Sanitary and Environmental Engineering, Federal University of Santa Catarina , Florianópolis, Brazil
| | - William Gerson Matias
- Department of Sanitary and Environmental Engineering, Federal University of Santa Catarina , Florianópolis, Brazil
| |
Collapse
|
37
|
Kobos L, Alqahtani S, Xia L, Coltellino V, Kishman R, McIlrath D, Perez-Torres C, Shannahan J. Comparison of silver nanoparticle-induced inflammatory responses between healthy and metabolic syndrome mouse models. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2020; 83:249-268. [PMID: 32281499 PMCID: PMC7493428 DOI: 10.1080/15287394.2020.1748779] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Silver nanoparticles (AgNPs) are utilized in surgical implants and medical textiles, thus providing access to the circulation. While research has been conducted primarily in healthy models, AgNP-induced toxicity evaluations in disease conditions are critical, as many individuals have preexisting conditions. Specifically, over 20% of United States adults suffer from metabolic syndrome (MetS). It was hypothesized that MetS may increase susceptibility to AgNP-mediated toxicity due to induction of differential inflammation and altered biodistribution. Mice were injected with 2 mg/kg AgNPs, and organs assessed for inflammatory gene expression (TNF-α, CXCL1, CXCL2, CCL2, TGF-β, HO-1, IL-4, IL-13), and Ag content. AgNPs were determined to induce differential inflammation in healthy and MetS mice. While AgNP exposure increased TNF-α, CXCL1, TGF-β, HO-1, and IL-4 expression within healthy mouse spleens, MetS-treated animals demonstrated decreased CXCL1, IL-4, and IL-13 expression. Healthy and MetS mice livers exhibited similar inflammatory responses to one another. AgNPs localized primarily to the liver and spleen, although Ag was present in all examined organs. In organs of minor AgNP deposition, such as kidney, gene expression was variable. Induction of inflammatory genes did not correspond with biodistribution, suggesting disease-related variations in AgNP-mediated adverse responses. These findings indicate that disease may influence inflammation and biodistribution, impacting AgNP clinical applications.
Collapse
Affiliation(s)
- Lisa Kobos
- School of Health Sciences, College of Human and Health Sciences, Purdue University, West Lafayette, IN, 47907, USA
| | - Saeed Alqahtani
- School of Health Sciences, College of Human and Health Sciences, Purdue University, West Lafayette, IN, 47907, USA
- National Center for Pharmaceuticals, Life Science and Environment Research Institute, King Abdulaziz City for Science and Technology (KACST), P.O. Box 6086, Riyadh 11461, Saudi Arabia
| | - Li Xia
- School of Health Sciences, College of Human and Health Sciences, Purdue University, West Lafayette, IN, 47907, USA
| | - Vincent Coltellino
- School of Health Sciences, College of Human and Health Sciences, Purdue University, West Lafayette, IN, 47907, USA
| | - Riley Kishman
- School of Health Sciences, College of Human and Health Sciences, Purdue University, West Lafayette, IN, 47907, USA
| | - Daniel McIlrath
- School of Health Sciences, College of Human and Health Sciences, Purdue University, West Lafayette, IN, 47907, USA
| | - Carlos Perez-Torres
- School of Health Sciences, College of Human and Health Sciences, Purdue University, West Lafayette, IN, 47907, USA
| | - Jonathan Shannahan
- School of Health Sciences, College of Human and Health Sciences, Purdue University, West Lafayette, IN, 47907, USA
- Address correspondence to: Dr. Jonathan Shannahan, School of Health Sciences, College of Human and Health Sciences, Purdue University, 550 Stadium Mall Dr., West Lafayette, IN, 47907, USA.
| |
Collapse
|
38
|
Poli D, Mattei G, Ucciferri N, Ahluwalia A. An Integrated In Vitro-In Silico Approach for Silver Nanoparticle Dosimetry in Cell Cultures. Ann Biomed Eng 2020; 48:1271-1280. [PMID: 31933000 PMCID: PMC7089903 DOI: 10.1007/s10439-020-02449-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Accepted: 01/05/2020] [Indexed: 12/30/2022]
Abstract
Potential human and environmental hazards resulting from the exposure of living organisms to silver nanoparticles (Ag NPs) have been the subject of intensive discussion in the last decade. Despite the growing use of Ag NPs in biomedical applications, a quantification of the toxic effects as a function of the total silver mass reaching cells (namely, target cell dose) is still needed. To provide a more accurate dose-response analysis, we propose a novel integrated approach combining well-established computational and experimental methodologies. We first used a particokinetic model (ISD3) for providing experimental validation of computed Ag NP sedimentation in static-cuvette experiments. After validation, ISD3 was employed to predict the total mass of silver reaching human endothelial cells and hepatocytes cultured in 96 well plates. Cell viability measured after 24 h of culture was then related to this target cell dose. Our results show that the dose perceived by the cell monolayer after 24 h of exposure is around 85% lower than the administered nominal media concentration. Therefore, accurate dosimetry considering particle characteristics and experimental conditions (e.g., time, size and shape of wells) should be employed for better interpreting effects induced by the amount of silver reaching cells.
Collapse
Affiliation(s)
- Daniele Poli
- Research Center E. Piaggio, University of Pisa, Pisa, Italy
| | - Giorgio Mattei
- Department of Information Engineering, University of Pisa, Pisa, Italy
| | | | - Arti Ahluwalia
- Research Center E. Piaggio, University of Pisa, Pisa, Italy.
- Department of Information Engineering, University of Pisa, Pisa, Italy.
| |
Collapse
|
39
|
Wang G, Zhai Y, Zhang S, Diomede L, Bigini P, Romeo M, Cambier S, Contal S, Nguyen NHA, Rosická P, Ševců A, Nickel C, Vijver MG, Peijnenburg WJGM. An across-species comparison of the sensitivity of different organisms to Pb-based perovskites used in solar cells. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 708:135134. [PMID: 31796277 DOI: 10.1016/j.scitotenv.2019.135134] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Revised: 08/22/2019] [Accepted: 10/21/2019] [Indexed: 05/24/2023]
Abstract
Organic-inorganic perovskite solar cells (PSCs) are promising candidates as photovoltaic cells. Recently, they have attracted significant attention due to certified power conversion efficiencies exceeding 23%, low-cost engineering, and superior electrical/optical characteristics. These PSCs extensively utilize a perovskite-structured composite with a hybrid of Pb-based nanomaterials. Operation of them may cause the release of Pb-based nanoparticles. However, limited information is available regarding the potential toxicity of Pb-based PSCs on various organisms. This study conducted a battery of in vitro and in vivo toxicity bioassays for three quintessential Pb-based PSCs (CH3NH3PbI3, NHCHNH3PbBr3, and CH3NH3PbBr3) using progressively more complex forms of life. For all species tested, the three different perovskites had comparable toxicities. The viability of Caco-2/TC7 cells was lower than that of A549 cells in response to Pb-based PSC exposure. Concentration-dependent toxicity was observed for the bioluminescent bacterium Vibrio fischeri, for soil bacterial communities, and for the nematode Caenorhabditis elegans. Neither of the tested Pb-based PSCs particles had apparent toxicity to Pseudomonas putida. Among all tested organisms, V. fischeri showed the highest sensitivity with EC50 values (30 min of exposure) ranging from 1.45 to 2.91 mg L-1. Therefore, this study recommends that V. fischeri should be preferably utilized to assess. PSC toxicity due to its increased sensitivity, low costs, and relatively high throughput in a 96-well format, compared with the other tested organisms. These results highlight that the developed assay can easily predict the toxic potency of PSCs. Consequently, this approach has the potential to promote the implementation of the 3Rs (Replacement, Reduction, and Refinement) principle in toxicology and decrease the dependence on animal testing when determining the safety of novel PSCs.
Collapse
Affiliation(s)
- Guiyin Wang
- College of Environmental Science, Sichuan Agricultural University, Chengdu 611130, China; Institute of Environmental Sciences (CML), Leiden University, P.O. Box 9518, 2300 RA, Leiden, the Netherlands
| | - Yujia Zhai
- Institute of Environmental Sciences (CML), Leiden University, P.O. Box 9518, 2300 RA, Leiden, the Netherlands; Oasen Water Company, P.O. Box 122, 2800AC, Gouda, The Netherlands.
| | - Shirong Zhang
- College of Environmental Science, Sichuan Agricultural University, Chengdu 611130, China.
| | - Luisa Diomede
- Department of Molecular Biochemistry and Pharmacology, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, 20156 Milan, Italy
| | - Paolo Bigini
- Department of Molecular Biochemistry and Pharmacology, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, 20156 Milan, Italy
| | - Margherita Romeo
- Department of Molecular Biochemistry and Pharmacology, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, 20156 Milan, Italy
| | - Sebastien Cambier
- Environmental Research and Innovation (ERIN) Department, Luxembourg Institute of Science and Technology, 4422 Belvaux, Luxembourg
| | - Servane Contal
- Environmental Research and Innovation (ERIN) Department, Luxembourg Institute of Science and Technology, 4422 Belvaux, Luxembourg
| | - Nhung H A Nguyen
- Institute for Nanomaterials, Advanced Technologies and Innovation, Technical University of Liberec (TUL), Studentská 2, 46117 Liberec, Czech Republic
| | - Petra Rosická
- Institute for Nanomaterials, Advanced Technologies and Innovation, Technical University of Liberec (TUL), Studentská 2, 46117 Liberec, Czech Republic
| | - Alena Ševců
- Institute for Nanomaterials, Advanced Technologies and Innovation, Technical University of Liberec (TUL), Studentská 2, 46117 Liberec, Czech Republic
| | - Carmen Nickel
- Air Quality & Sustainable Nanotechnology, Institute of Energy and Environmental Technology (IUTA) e.V, 47229 Duisburg, Germany
| | - Martina G Vijver
- Institute of Environmental Sciences (CML), Leiden University, P.O. Box 9518, 2300 RA, Leiden, the Netherlands
| | - Willie J G M Peijnenburg
- Institute of Environmental Sciences (CML), Leiden University, P.O. Box 9518, 2300 RA, Leiden, the Netherlands; National Institute of Public Health and the Environment (RIVM), P.O. Box 1, Bilthoven, the Netherlands
| |
Collapse
|
40
|
Heller DA, Jena PV, Pasquali M, Kostarelos K, Delogu LG, Meidl RE, Rotkin SV, Scheinberg DA, Schwartz RE, Terrones M, Wang Y, Bianco A, Boghossian AA, Cambré S, Cognet L, Corrie SR, Demokritou P, Giordani S, Hertel T, Ignatova T, Islam MF, Iverson NM, Jagota A, Janas D, Kono J, Kruss S, Landry MP, Li Y, Martel R, Maruyama S, Naumov AV, Prato M, Quinn SJ, Roxbury D, Strano MS, Tour JM, Weisman RB, Wenseleers W, Yudasaka M. Banning carbon nanotubes would be scientifically unjustified and damaging to innovation. NATURE NANOTECHNOLOGY 2020; 15:164-166. [PMID: 32157238 PMCID: PMC10461884 DOI: 10.1038/s41565-020-0656-y] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Affiliation(s)
- Daniel A Heller
- Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
- Department of Pharmacology, Weill Cornell Medicine, New York, NY, USA.
| | - Prakrit V Jena
- Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Matteo Pasquali
- Department of Chemical & Biomolecular Engineering, Rice University, Houston, TX, USA
- Department of Chemistry, Rice University, Houston, TX, USA
- Department of Materials Science and Nanoengineering, Rice University, Houston, TX, USA
| | - Kostas Kostarelos
- Nanomedicine Lab, The University of Manchester, Manchester, UK
- Catalan Institute of Nanoscience and Nanotechnology (ICN2), Barcelona, Spain
| | - Lucia G Delogu
- Department of Biomedical Sciences, University of Padua, Padua, Italy
| | - Rachel E Meidl
- Baker Institute for Public Policy, Rice University, Houston, TX, USA
| | - Slava V Rotkin
- Department of Engineering Science & Mechanics, The Pennsylvania State University, University Park, PA, USA
- Materials Research Institute, The Pennsylvania State University, University Park, PA, USA
| | - David A Scheinberg
- Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Department of Pharmacology, Weill Cornell Medicine, New York, NY, USA
- Department of Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Robert E Schwartz
- Department of Pharmacology, Weill Cornell Medicine, New York, NY, USA
| | - Mauricio Terrones
- Department of Physics, The Pennsylvania State University, University Park, PA, USA
| | - YuHuang Wang
- Department of Chemistry and Biochemistry, University of Maryland, College Park, MD, USA
| | - Alberto Bianco
- CNRS, UPR3572, Immunology, Immunopathology and Therapeutic Chemistry, University of Strasbourg, ISIS, Strasbourg, France
| | - Ardemis A Boghossian
- Institute of Chemical Sciences and Engineering (ISIC), Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Sofie Cambré
- Department of Physics, University of Antwerp, Antwerp, Belgium
| | - Laurent Cognet
- Laboratoire Photonique Numérique et Nanosciences, University of Bordeaux, Talence, France
| | - Simon R Corrie
- Department of Chemical Engineering, Monash University, Clayton, Victoria, Australia
| | - Philip Demokritou
- Center for Nanotechnology and Nanotoxicology, Department of Environmental Health, Harvard T. H. Chan School of Public Health, Harvard University, Boston, MA, USA
| | - Silvia Giordani
- School of Chemical Sciences, Dublin City University, Dublin, Ireland
| | - Tobias Hertel
- Institute of Physical and Theoretical Chemistry, Julius-Maximilians University Würzburg, Würzburg, Germany
| | - Tetyana Ignatova
- Nanoscience Department, University of North Carolina at Greensboro, Greensboro, NC, USA
| | - Mohammad F Islam
- Department of Materials Science & Engineering, Carnegie Mellon University, Pittsburgh, PA, USA
| | - Nicole M Iverson
- Department of Biological Systems Engineering, University of Nebraska-Lincoln, Lincoln, NE, USA
| | - Anand Jagota
- Department of Bioengineering, Lehigh University, Bethlehem, PA, USA
| | - Dawid Janas
- Department of Chemistry, Silesian University of Technology, Gliwice, Poland
| | - Junichiro Kono
- Department of Materials Science and Nanoengineering, Rice University, Houston, TX, USA
- Department of Electrical and Computer Engineering, Rice University, Houston, TX, USA
- Department of Physics and Astronomy, Rice University, Houston, TX, USA
| | - Sebastian Kruss
- Department of Chemistry, Georg-August-Universität Göttingen, Göttingen, Germany
| | - Markita P Landry
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, CA, USA
| | - Yan Li
- College of Chemistry and Molecular Engineering, Peking University, Beijing, China
| | - Richard Martel
- Département de chimie, Université de Montréal, Montréal, Quebec, Canada
| | - Shigeo Maruyama
- Department of Mechanical Engineering, The University of Tokyo, Tokyo, Japan
| | - Anton V Naumov
- Department of Physics and Astronomy, Texas Christian University, Fort Worth, TX, USA
| | - Maurizio Prato
- Dipartimento di Scienze Chimiche e Farmaceutiche, University of Trieste, Trieste, Italy
- Carbon Bionanotechnology Lab, CIC biomaGUNE, San Sebastián, Spain
- Ikerbasque, Basque Foundation for Science, Bilbao, Spain
| | - Susan J Quinn
- School of Chemistry, University College Dublin, Dublin, Ireland
| | - Daniel Roxbury
- Department of Chemical Engineering, University of Rhode Island, Kingston, RI, USA
| | - Michael S Strano
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - James M Tour
- Department of Chemistry, Rice University, Houston, TX, USA
- Department of Materials Science and Nanoengineering, Rice University, Houston, TX, USA
| | | | - Wim Wenseleers
- Department of Physics, University of Antwerp, Antwerp, Belgium
| | - Masako Yudasaka
- Nanomaterials Research Institute, Advanced Industrial Science and Technology (AIST), Tsukuba, Japan
| |
Collapse
|
41
|
Adeyemi JA, Machado ART, Ogunjimi AT, Alberici LC, Antunes LMG, Barbosa F. Cytotoxicity, mutagenicity, oxidative stress and mitochondrial impairment in human hepatoma (HepG2) cells exposed to copper oxide, copper-iron oxide and carbon nanoparticles. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 189:109982. [PMID: 31830603 DOI: 10.1016/j.ecoenv.2019.109982] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2019] [Revised: 11/14/2019] [Accepted: 11/15/2019] [Indexed: 06/10/2023]
Abstract
The increasing application of nanomaterials in various fields such as drug delivery, cosmetics, disease detection, cancer treatment, food preservation etc. has resulted in high levels of engineered nanoparticles in the environment, thus leading to higher possibility of direct or indirect interactions between these particles and biological systems. In this study, the toxic effects of three commercially available nanomaterials; copper oxide nanoparticles, copper-iron oxide nanopowders and carbon nanopowders were determined in the human hepatoma HepG2 cells using various toxicological assays which are indicative of cytotoxicity (MTT and neutral red assays), mutagenicity (cytokinesis-block micronucleus assay), oxidative stress (total reactive oxygen species and superoxide anion production) and mitochondrial impairment (cellular oxygen consumption). There was increased cytotoxicity, mutagenicity, and mitochondrial impairment in the cells treated with higher concentrations of the nanomaterials, especially the copper oxide nanoparticles. The fold production of reactive oxygen species was similar at the concentrations tested in this study but longer exposure duration resulted in production of more superoxide anions. The results of this study showed that copper oxide nanoparticles are highly toxic to the human HepG2 cells, thus implying that the liver is a target organ in human for copper oxide nanoparticles toxicity.
Collapse
Affiliation(s)
- Joseph A Adeyemi
- Department of Clinical Analyses, Toxicology and Food Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Avenida do Café s/nº, CEP, 14040-903, Ribeirão Preto, São Paulo, Brazil; Department of Biology, School of Sciences, Federal University of Technology, P.M.B. 704, Akure, Ondo State, Nigeria
| | - Ana Rita Thomazela Machado
- Department of Clinical Analyses, Toxicology and Food Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Avenida do Café s/nº, CEP, 14040-903, Ribeirão Preto, São Paulo, Brazil
| | - Abayomi T Ogunjimi
- Department of Pharmaceutical Sciences and Experimental Therapeutics, College of Pharmacy, University of Iowa, 115 S Grand Avenue, Iowa City, IA, USA
| | - Luciane Carla Alberici
- Department of Physics and Chemistry, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Avenida do Café s/nº, CEP, 14040-903, Ribeirão Preto, São Paulo, Brazil
| | - Lusania Maria Greggi Antunes
- Department of Clinical Analyses, Toxicology and Food Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Avenida do Café s/nº, CEP, 14040-903, Ribeirão Preto, São Paulo, Brazil
| | - Fernando Barbosa
- Department of Clinical Analyses, Toxicology and Food Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Avenida do Café s/nº, CEP, 14040-903, Ribeirão Preto, São Paulo, Brazil.
| |
Collapse
|
42
|
Bi Y, Marcus AK, Robert H, Krajmalnik-Brown R, Rittmann BE, Westerhoff P, Ropers MH, Mercier-Bonin M. The complex puzzle of dietary silver nanoparticles, mucus and microbiota in the gut. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART B, CRITICAL REVIEWS 2020; 23:69-89. [PMID: 31920169 DOI: 10.1080/10937404.2019.1710914] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Hundreds of consumer and commercial products containing silver nanoparticles (AgNPs) are currently used in food, personal-care products, pharmaceutical, and many other applications. Human exposure to AgNPs includes oral intake, inhalation, and dermal contact. The aim of this review was to focus on oral intake, intentional and incidental of AgNPs where well-known antimicrobial characteristics that might affect the microbiome and mucus in the gastrointestinal tract (GIT). This critical review summarizes what is known regarding the impacts of AgNPs on gut homeostasis. It is fundamental to understand the forms of AgNPs and their physicochemical characterization before and during digestion. For example, lab-synthesized AgNPs differ from "real" ingestable AgNPs used as food additives and dietary supplements. Similarly, the gut environment alters the chemical and physical state of Ag that is ingested as AgNPs. Emerging research on in vitro and in vivo rodent and human indicated complex multi-directional relationships among AgNPs, the intestinal microbiota, and the epithelial mucus. It may be necessary to go beyond today's descriptive approach to a modeling-based ecosystem approach that might quantitatively integrate spatio-temporal interactions among microbial groups, host factors (e.g., mucus), and environmental factors, including lifestyle-based stressors. It is suggested that future research (1) utilize more representative AgNPs, focus on microbe/mucus interactions, (2) assess the effects of environmental stressors for longer and longitudinal conditions, and (3) be integrated using quantitative modeling.
Collapse
Affiliation(s)
- Yuqiang Bi
- Nanosystems Engineering Research Center for Nanotechnology-Enabled Water Treatment, Arizona State University, Tempe, AZ, USA
- School of Sustainable Engineering and the Built Environment, Arizona State University, Tempe, AZ, USA
| | - Andrew K Marcus
- Biodesign Swette Center for Environmental Biotechnology, Arizona State University, Tempe, AZ, USA
| | - Hervé Robert
- Toxalim (Research Centre in Food Toxicology), Université de Toulouse, INRA, ENVT, INP-Purpan, UPS, Toulouse, France
| | - Rosa Krajmalnik-Brown
- School of Sustainable Engineering and the Built Environment, Arizona State University, Tempe, AZ, USA
- Biodesign Swette Center for Environmental Biotechnology, Arizona State University, Tempe, AZ, USA
| | - Bruce E Rittmann
- School of Sustainable Engineering and the Built Environment, Arizona State University, Tempe, AZ, USA
- Biodesign Swette Center for Environmental Biotechnology, Arizona State University, Tempe, AZ, USA
| | - Paul Westerhoff
- Nanosystems Engineering Research Center for Nanotechnology-Enabled Water Treatment, Arizona State University, Tempe, AZ, USA
- School of Sustainable Engineering and the Built Environment, Arizona State University, Tempe, AZ, USA
| | | | - Muriel Mercier-Bonin
- Toxalim (Research Centre in Food Toxicology), Université de Toulouse, INRA, ENVT, INP-Purpan, UPS, Toulouse, France
| |
Collapse
|
43
|
Lekamge S, Miranda AF, Pham B, Ball AS, Shukla R, Nugegoda D. The toxicity of non-aged and aged coated silver nanoparticles to the freshwater shrimp Paratya australiensis. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2020; 82:1207-1222. [PMID: 31900064 DOI: 10.1080/15287394.2019.1710887] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Nanoparticles (NPs) transform in the environment which result in alterations to their physicochemical properties. However, the effects of aging on the toxicity of NPs to aquatic organisms remain to be determined. Further the reports that have been published present contradictory results. The aim of this study was to examine the stability of differently coated silver nanoparticles (AgNPs) in media and the influence of aging of these NP on potential toxicity to freshwater shrimp Paratya australiensis. Coating-dependent changes in the stability of AgNP were observed with aging. Curcumin (C) coated AgNPs were stable, while tyrosine (T) coated AgNPs and epigallocatechin gallate (E) coated AgNPs aggregated in the P. australiensis medium. Increased lipid peroxidation and catalase activity was noted in P. australiensis exposed to AgNPs, suggesting oxidative stress was associated with NP exposure. The enhanced oxidative stress initiated by aged C-AgNPs suggests that aging of these NPs produced different toxicological responses. In summary, data suggest that coating-dependent alterations in NPs, together with aging affect both persistence and subsequent toxicity of NPs to freshwater organisms. Thus, the coating-dependent fate and toxicity of AgNPs together with the effect of their aging need to be considered in assessing the environmental risk of AgNPs to aquatic organisms.
Collapse
Affiliation(s)
- Sam Lekamge
- Ecotoxicology Research Group, School of Science, RMIT University, Bundoora, Australia
- Centre for Environmental Sustainability and Remediation, School of Science, RMIT University, Bundoora, Australia
| | - Ana F Miranda
- Ecotoxicology Research Group, School of Science, RMIT University, Bundoora, Australia
| | - Ben Pham
- Ecotoxicology Research Group, School of Science, RMIT University, Bundoora, Australia
| | - Andrew S Ball
- Centre for Environmental Sustainability and Remediation, School of Science, RMIT University, Bundoora, Australia
| | - Ravi Shukla
- Nanobiotechnology Research Laboratory, RMIT University, Melbourne, Australia
| | - Dayanthi Nugegoda
- Ecotoxicology Research Group, School of Science, RMIT University, Bundoora, Australia
- Centre for Environmental Sustainability and Remediation, School of Science, RMIT University, Bundoora, Australia
| |
Collapse
|
44
|
Heddagaard FE, Møller P. Hazard assessment of small-size plastic particles: is the conceptual framework of particle toxicology useful? Food Chem Toxicol 2019; 136:111106. [PMID: 31899364 DOI: 10.1016/j.fct.2019.111106] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Revised: 12/24/2019] [Accepted: 12/27/2019] [Indexed: 12/16/2022]
Abstract
Humans are exposed to plastic particles, but there are no studies on environmental plastics in cell cultures or animals. The toxicological understanding arises from model particles like polystyrene, polyethylene or non-plastic particles like food-grade titanium dioxide. The majority of studies on polystyrene particles show toxicological effects on measures of oxidative stress, inflammation, mitochondrial dysfunction, lysosomal dysfunction and apoptosis. The toxic effects in cell cultures mainly occur at high concentrations. Polyethylene particles seem to generate inflammatory reactions, whereas other toxicological effects have not been assessed. There are very few studies on effects of polystyrene particles in animal models and these have not demonstrated overt indices of toxicity. Studies in animals are the likely way for hazard assessment of micro- or nanoplastics. However, co-culture systems that mimic the complex architecture of mammalian tissues can cost-efficiently determine the hazards of micro- and nanoplastics. Future studies should include low doses of micro- and nanoplastic particles, which are more relevant in the assessment of health risk than the extrapolation of effects from high doses to realistic doses. Based on studies on model particles, environmental exposure to micro- and nanoplastic particles may be a hazard to human health.
Collapse
Affiliation(s)
- Frederikke Emilie Heddagaard
- Department of Public Health, Section of Environmental Health, University of Copenhagen, Øster Farimagsgade 5A, DK-1014, Copenhagen K, Denmark
| | - Peter Møller
- Department of Public Health, Section of Environmental Health, University of Copenhagen, Øster Farimagsgade 5A, DK-1014, Copenhagen K, Denmark.
| |
Collapse
|
45
|
Liu Y, Ji J, Ji L, Li Y, Zhang B, Yang T, Yang J, Lv L, Wu G. Translocation of intranasal (i.n.) instillation of different-sized cerium dioxide (CeO 2) particles: potential adverse effects in mice. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2019; 82:1069-1075. [PMID: 31760910 DOI: 10.1080/15287394.2019.1686867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Cerium oxide (CeO2), one of many engineered nanomaterials (ENMs), is composed primarily of metal oxides, such as cerium oxide (CeO2). CeO2-containing materials are widely used as a polishing agent for glass mirrors, plate glass, television tubes, ophthalmic lenses, and precision optics. The widespread use of this nanomaterial (NM) resulted in increased environmental contamination levels and consequent human exposure. However, the influence of Ce on humans remains to be determined. The aim of this study was to expose female ICR mice to varying nanoparticle sizes of 35 nm, 300 nm as well as a mixture of 1-5 µM CeO2 particles through intranasal (i.n.) instillation at 40 mg/kg dose on day 1, 3 and 5, and the experiment terminated on day 7. Histopathology findings demonstrated that hydropic degeneration was prominently associated with hemorrhage in renal cortex and medulla in all CeO2-administered groups. In liver of CeO2-exposed mice, hydropic degeneration was also prominent. Serum chemistries also indicated signs of renal and hepatic lesion as evidenced by significantly decreased serum levels of total bilirubin (TBIL) and total phosphate (TP) and activity of alkaline phosphatase (ALP). ICP-MS analysis group demonstrated that Ce levels were not significantly higher in liver and kidneys of mice exposed to 35 nm CeO2. An increase in Ce content was observed in hepatic and renal tissues of mice exposed to 300 nm or 1-5 µM CeO2. The levels of Ce were similar in these two groups suggesting a threshold level of Ce was attained regardless of NP size. Data thus demonstrated that i.n. instillation of different-sized CeO2 particles translocated to liver and kidney and that size difference of CeO2 particles did not exert significant in the observed histopathology responses.
Collapse
Affiliation(s)
- Yang Liu
- Department of Preclinical Medicine and Forensic, Baotou Medical College, Inner Mongolia University of Science & Technology, Baotou, PR China
| | - Jun Ji
- Department of General Surgery, The First Affiliated Hospital of Baotou Medical College, Baotou, PR China
| | - Le Ji
- Department of Preclinical Medicine and Forensic, Baotou Medical College, Inner Mongolia University of Science & Technology, Baotou, PR China
| | - Yuanyuan Li
- Department of Preclinical Medicine and Forensic, Baotou Medical College, Inner Mongolia University of Science & Technology, Baotou, PR China
| | - Bowen Zhang
- Department of Preclinical Medicine and Forensic, Baotou Medical College, Inner Mongolia University of Science & Technology, Baotou, PR China
| | - Tongwang Yang
- Department of Preclinical Medicine and Forensic, Baotou Medical College, Inner Mongolia University of Science & Technology, Baotou, PR China
| | - Jing Yang
- Department of Preclinical Medicine and Forensic, Baotou Medical College, Inner Mongolia University of Science & Technology, Baotou, PR China
| | - Liping Lv
- Department of Preclinical Medicine and Forensic, Baotou Medical College, Inner Mongolia University of Science & Technology, Baotou, PR China
| | - Gang Wu
- Department of Preclinical Medicine and Forensic, Baotou Medical College, Inner Mongolia University of Science & Technology, Baotou, PR China
| |
Collapse
|
46
|
Guo X, Seo JE, Li X, Mei N. Genetic toxicity assessment using liver cell models: past, present, and future. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART B, CRITICAL REVIEWS 2019; 23:27-50. [PMID: 31746269 DOI: 10.1080/10937404.2019.1692744] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Genotoxic compounds may be detoxified to non-genotoxic metabolites while many pro-carcinogens require metabolic activation to exert their genotoxicity in vivo. Standard genotoxicity assays were developed and utilized for risk assessment for over 40 years. Most of these assays are conducted in metabolically incompetent rodent or human cell lines. Deficient in normal metabolism and relying on exogenous metabolic activation systems, the current in vitro genotoxicity assays often have yielded high false positive rates, which trigger unnecessary and costly in vivo studies. Metabolically active cells such as hepatocytes have been recognized as a promising cell model in predicting genotoxicity of carcinogens in vivo. In recent years, significant advances in tissue culture and biological technologies provided new opportunities for using hepatocytes in genetic toxicology. This review encompasses published studies (both in vitro and in vivo) using hepatocytes for genotoxicity assessment. Findings from both standard and newly developed genotoxicity assays are summarized. Various liver cell models used for genotoxicity assessment are described, including the potential application of advanced liver cell models such as 3D spheroids, organoids, and engineered hepatocytes. An integrated strategy, that includes the use of human-based cells with enhanced biological relevance and throughput, and applying the quantitative analysis of data, may provide an approach for future genotoxicity risk assessment.
Collapse
Affiliation(s)
- Xiaoqing Guo
- Division of Genetic and Molecular Toxicology, National Center for Toxicological Research, Jefferson, AR, USA
| | - Ji-Eun Seo
- Division of Genetic and Molecular Toxicology, National Center for Toxicological Research, Jefferson, AR, USA
| | - Xilin Li
- Division of Genetic and Molecular Toxicology, National Center for Toxicological Research, Jefferson, AR, USA
| | - Nan Mei
- Division of Genetic and Molecular Toxicology, National Center for Toxicological Research, Jefferson, AR, USA
| |
Collapse
|
47
|
Yu S, Mu Y, Zhang X, Li J, Lee C, Wang H. Molecular mechanisms underlying titanium dioxide nanoparticles (TiO 2NP) induced autophagy in mesenchymal stem cells (MSC). JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2019; 82:997-1008. [PMID: 31718501 DOI: 10.1080/15287394.2019.1688482] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The bone marrow is one of the target tissues for titanium dioxide nanoparticles (TiO2NP) following environmental exposure. At present, the consequences of TiO2NP exposure in bone are not well known. The aim of this study was to investigate the effects of TiO2NP on mesenchymal stem cells (MSCs) and potential underlying mechanisms. Mesenchymal bone marrow-derived cells were cultured and treated with various concentrations of TiO2NP. Results showed that TiO2NP incubation produced cytotoxicity as evidenced by reduced cell viability. Using Western blotting TiO2NP was found to increase autophagy as determined by elevation in ratio of LC3-II from LC3-I without evidence of necrotic cell death as estimated by lactic dehydrogenase (LDH) level. TiO2NP produced a rise in intracellular reactive oxygen species (ROS) levels. The observed alterations in autophagy and oxidant stress were associated with upregulation of protein expression of p38, JNK, and ERK. Data indicate that TiO2NP-mediated decrease in MSC survival involves a complex series of events associated stimulation of mitogen-activated protein kinase (MAPK) pathway and consequent autophagy and oxidative damage.
Collapse
Affiliation(s)
- Shunbang Yu
- School of Health Sciences, Faculty of Health and Medicine, University of Newcastle, Newcastle, Australia
| | - Yongping Mu
- Tumor Molecular Diagnostic Laboratory, Department of Clinical Laboratory Centre, The Affiliated People's Hospital of Inner Mongolia Medical University, Hohhot, China
| | - Xudong Zhang
- School of Health Sciences, Faculty of Health and Medicine, University of Newcastle, Newcastle, Australia
| | - Jian Li
- Department of Biostatistics and Bioinformatics, School of Public Health and Tropical Medicine, Tulane University, New Orleans, US
| | - Charles Lee
- School of Health Sciences, Faculty of Health and Medicine, University of Newcastle, Singapore
| | - He Wang
- School of Health Sciences, Faculty of Health and Medicine, University of Newcastle, Newcastle, Australia
| |
Collapse
|
48
|
Stueckle TA, Roberts JR. Perspective on Current Alternatives in Nanotoxicology Research. ACTA ACUST UNITED AC 2019. [DOI: 10.1089/aivt.2019.29020.jrr] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Todd A. Stueckle
- Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Morgantown, West Virginia
| | - Jenny R. Roberts
- Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Morgantown, West Virginia
| |
Collapse
|
49
|
Krajnak K, Waugh S, Stefaniak A, Schwegler-Berry D, Roach K, Barger M, Roberts J. Exposure to graphene nanoparticles induces changes in measures of vascular/renal function in a load and form-dependent manner in mice. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2019; 82:711-726. [PMID: 31370764 DOI: 10.1080/15287394.2019.1645772] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Graphenes isolated from crystalline graphite are used in several industries. Employees working in the production of graphenes may be at risk of developing respiratory problems attributed to inhalation or contact with particulate matter (PM). However, graphene nanoparticles might also enter the circulation and accumulate in other organs. The aim of this study was to examine how different forms of graphene affect peripheral vascular functions, generation of reactive oxygen species (ROS) and changes in gene expression that may be indicative of cardiovascular and/or renal dysfunction. In the first investigation, different doses of graphene nanoplatelets were administered to mice via oropharyngeal aspiration. These effects were compared to those of dispersion medium (DM) and carbon black (CB). Gene expression alterations were observed in the heart for CB and graphene; however, only CB produced changes in peripheral vascular function. In the second study, oxidized forms of graphene were administered. Both oxidized forms increased the sensitivity of peripheral blood vessels to adrenoreceptor-mediated vasoconstriction and induced changes in ROS levels in the heart. Based upon the results of these investigations, exposure to graphene nanoparticles produced physiological and alterations in ROS and gene expression that may lead to cardiovascular dysfunction. Evidence indicates that the effects of these particles may be dependent upon dose and graphene form to which an individual may be exposed to.
Collapse
Affiliation(s)
- K Krajnak
- a Health Effects Laboratory Division, National Institute for Occupational Safety and Health , Morgantown , WV , USA
| | - S Waugh
- a Health Effects Laboratory Division, National Institute for Occupational Safety and Health , Morgantown , WV , USA
| | - Ab Stefaniak
- b Respiratory Health Division, West Virginia University , Morgantown , WV , USA
| | - D Schwegler-Berry
- a Health Effects Laboratory Division, National Institute for Occupational Safety and Health , Morgantown , WV , USA
| | | | - M Barger
- a Health Effects Laboratory Division, National Institute for Occupational Safety and Health , Morgantown , WV , USA
| | - Jr Roberts
- a Health Effects Laboratory Division, National Institute for Occupational Safety and Health , Morgantown , WV , USA
| |
Collapse
|
50
|
Brown DM, Danielsen PH, Derr R, Moelijker N, Fowler P, Stone V, Hendriks G, Møller P, Kermanizadeh A. The mechanism-based toxicity screening of particles with use in the food and nutrition sector via the ToxTracker reporter system. Toxicol In Vitro 2019; 61:104594. [PMID: 31279906 DOI: 10.1016/j.tiv.2019.104594] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Revised: 06/19/2019] [Accepted: 07/03/2019] [Indexed: 12/29/2022]
Abstract
The rapid expansion of the incorporation of nano-sized materials in consumer products overlaps with the necessity for high-throughput reliable screening tools for the identification of the potential hazardous properties of the nanomaterials. The ToxTracker assay (mechanism-based reporter assay based on embryonic stem cells that uses GFP-tagged biomarkers for detection of DNA damage, oxidative stress and general cellular stress) is one such tool, which could prove useful in the field of particle toxicology allowing for high throughput screening. Here, ToxTracker was utilised to evaluate the potential hazardous properties of two particulates currently used in the food industry (vegetable carbon (E153) and food-grade TiO2 (E171)). Due to the fact that ToxTracker is based on a stem cell format, it is crucial that the data generated is assessed for its suitability and comparability to more conventionally used relevant source of cells - in this case cells from the gastrointestinal tract and the liver. Therefore, the cell reporter findings were compared to data from traditional assays (cytotoxicity, anti-oxidant depletion and DNA damage) and tissue relevant cell types. The data showed E171 to be the most cytotoxic, decreased intracellular glutathione and the most significant with regards to genotoxic effects. The ToxTracker data showed comparability to conventional toxicity and oxidative stress assays; however, some discrepancies were evident between the findings from ToxTracker and the comet assay.
Collapse
Affiliation(s)
- David M Brown
- Heriot Watt University, School of Engineering and Physical Sciences, Edinburgh, UK
| | - Pernille Høgh Danielsen
- University of Copenhagen, Department of Public Health, Section of Environmental Health, Copenhagen, Denmark
| | | | | | | | - Vicki Stone
- Heriot Watt University, School of Engineering and Physical Sciences, Edinburgh, UK
| | | | - Peter Møller
- University of Copenhagen, Department of Public Health, Section of Environmental Health, Copenhagen, Denmark
| | - Ali Kermanizadeh
- Heriot Watt University, School of Engineering and Physical Sciences, Edinburgh, UK.
| |
Collapse
|