1
|
Wani AB, Noor W, Pandit A, Husaini AM. Upregulated expression of MYB4, DREB1 and AP37 transcription factors modulates cold stress response in high-altitude Himalayan rice via time-dependent ROS regulation. Mol Biol Rep 2025; 52:417. [PMID: 40266391 DOI: 10.1007/s11033-025-10507-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Accepted: 04/11/2025] [Indexed: 04/24/2025]
Abstract
BACKGROUND Cold stress is an upcoming challenge for rice (Oryza sativa L.) cultivation, especially at the seedling establishment stage. It causes serious constraints in its production and productivity as it is a thermophilic cereal crop. North-western Himalayan region has a rich repository of temperate rice genotypes, and there is a need to identify cold-tolerant rice varieties from these available genetic resources. METHODS AND RESULTS The present study screened 90 rice accessions (indica and japonica) grown in the high-altitude regions at 2200 m amsl for cold tolerance (5 °C) at the seedling stage, and found 14 highly cold-tolerant accessions. Almost eighty per cent of the indica types clustered into cold-sensitive class. One cold-tolerant japonica (GS-74) accession and one cold-susceptible (SR-4) accession were used to compare their biochemical and gene expression response during cold stress and after recovery. A wide range of differences was noticed at different time points in the accumulation of ROS scavengers, osmo-protectants and antioxidant enzymes, with significant differences between the contrasting genotypes. Similarly, gene expression of five transcription factors OsMYB4, OsAP37, OsDREB1A, OsDREB1B and OsDREB1D revealed their role in cold responsiveness at the seedling stage, critically modulating the cold-induced osmoprotectant-mediated tolerance mechanism. CONCLUSION This is the first study that explored the high-altitude Himalayan rice germplasm for cold tolerance at the critical S3 seedling stage under controlled conditions. It demonstrated that the upregulation of OsDREB1A, OsDREB1B, OsMYB4 and OsAP37 transcription factors modulates cold stress response in rice via a complex mechanism involving ROS scavengers and osmoprotectants.
Collapse
Affiliation(s)
- Amir B Wani
- Genome Engineering and Societal Biotechnology Lab, Division of Plant Biotechnology, Sher-e-Kashmir University of Agricultural Sciences and Technology of Kashmir, Shalimar, Jammu and Kashmir, 190025, India
| | - Wasifa Noor
- Genome Engineering and Societal Biotechnology Lab, Division of Plant Biotechnology, Sher-e-Kashmir University of Agricultural Sciences and Technology of Kashmir, Shalimar, Jammu and Kashmir, 190025, India
- Centre of Research for Development, University of Kashmir, Hazratbal, Srinagar, India
| | - Arif Pandit
- Genome Engineering and Societal Biotechnology Lab, Division of Plant Biotechnology, Sher-e-Kashmir University of Agricultural Sciences and Technology of Kashmir, Shalimar, Jammu and Kashmir, 190025, India
| | - Amjad M Husaini
- Genome Engineering and Societal Biotechnology Lab, Division of Plant Biotechnology, Sher-e-Kashmir University of Agricultural Sciences and Technology of Kashmir, Shalimar, Jammu and Kashmir, 190025, India.
| |
Collapse
|
2
|
Siemieniuk A, Rudnicka M, Karcz W. The effect of H 2O 2 on elongation growth and oxidative stress in maize coleoptile cells treated with auxin and fusicoccin. Sci Rep 2025; 15:12903. [PMID: 40234506 PMCID: PMC12000566 DOI: 10.1038/s41598-025-96912-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Accepted: 04/01/2025] [Indexed: 04/17/2025] Open
Abstract
The aim of this study was to evaluate the impact of hydrogen peroxide (H2O2) on the elongation growth of maize coleoptile cells induced by auxin (IAA) and fusicoccin (FC) according to the "acid growth theory". The key component of this process is PM H+-ATPase activity and the resulting proton extrusion. In order to complete this objective, measurements of coleoptile growth were made, pump activity was analyzed through changes in environmental pH and cell membrane potential, and the impact on oxidative stress in response to H2O2 was determined. It was found that although hydrogen peroxide restricts acid growth induced by both IAA and FC to a similar level, the PM H+-ATPase activity is inhibited differently. These findings indicate that in the presence of H2O2, the previously described wall-stiffening process might be the primary limiting factor in the elongation growth of maize coleoptile cells.
Collapse
Affiliation(s)
- Agnieszka Siemieniuk
- Plant Ecophysiology Team, Faculty of Natural Sciences, Institute of Biology, Biotechnology and Environmental Protection, University of Silesia in Katowice, 28 Jagiellońska St., 40-032, Katowice, Poland.
| | - Małgorzata Rudnicka
- Plant Ecophysiology Team, Faculty of Natural Sciences, Institute of Biology, Biotechnology and Environmental Protection, University of Silesia in Katowice, 28 Jagiellońska St., 40-032, Katowice, Poland
| | - Waldemar Karcz
- Plant Ecophysiology Team, Faculty of Natural Sciences, Institute of Biology, Biotechnology and Environmental Protection, University of Silesia in Katowice, 28 Jagiellońska St., 40-032, Katowice, Poland
| |
Collapse
|
3
|
Li H, Li F, Wang M, Hou C, Jia F, Wang X, Li M. Growth and selenium bioaccumulation in rape seedlings promoted by strain Limosilactobacillus sp. LF-17. BMC PLANT BIOLOGY 2025; 25:429. [PMID: 40186103 PMCID: PMC11970001 DOI: 10.1186/s12870-025-06480-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Accepted: 03/27/2025] [Indexed: 04/07/2025]
Abstract
Selenium (Se) is an essential trace element that plays a critical role in human tissue formation, metabolism, and physiological functions. However, many individuals worldwide suffer from Se deficiency diseases. This study aims to evaluate the impact of Se-tolerant LF-17 agents and exogenous Na2SeO3 application on the growth, enzyme activity, and metabolic characteristics of rape seedlings. Treatment LF-3 (inoculation of Se-tolerant LF-17 agent and exogenous Na2SeO3, with the soil Se concentration of 5 mg/kg) led to a 38.62% increase in plant height and a 116.7% increase in fresh weight. And the Se-tolerant LF-17 agent in treatment LF-3 also reduced the oxidative stress induced by exogenous Na2SeO3 compared to that of treatment LF-2 (with the same amount exogenous Na2SeO3 only), as evidenced by the lower activities of SOD, POD, and CAT, as well as less content of malondialdehyde. Furthermore, the upregulation of metabolic pathways such as "cuticle, suberine, and wax biosynthesis" "flavonoid biosynthesis," and "terpenoid backbone biosynthesis" enhanced the plant's stress resistance as revealed by non-targeted metabolomics sequencing method. This approach offers promising applications for improving Se bioavailability in crops, mitigating Se toxicity, addressing global Se deficiency challenges and is expected to contribute to fulfilling the Se supplementation needs of the population.
Collapse
Affiliation(s)
- Haifeng Li
- College of Biological Engineering, Henan University of Technology, Zhengzhou, 450001, China.
| | - Fengjiao Li
- College of Biological Engineering, Henan University of Technology, Zhengzhou, 450001, China
| | - Mengyu Wang
- College of Biological Engineering, Henan University of Technology, Zhengzhou, 450001, China
| | - Caibo Hou
- College of Biological Engineering, Henan University of Technology, Zhengzhou, 450001, China
| | - Feng Jia
- College of Biological Engineering, Henan University of Technology, Zhengzhou, 450001, China.
| | - Xifeng Wang
- College of Biological Engineering, Henan University of Technology, Zhengzhou, 450001, China
| | - Mingjun Li
- Henan Haochuang Agricultural Technology Group Company Limited, Zhengzhou, 450001, China
| |
Collapse
|
4
|
Zhao YQ, Sun C, Hu KD, Yu Y, Liu Z, Song YC, Xiong RJ, Ma Y, Zhang H, Yao GF. A transcription factor SlWRKY71 activated the H 2S generating enzyme SlDCD1 enhancing the response to Pseudomonas syringae pv DC3000 in tomato leaves. THE NEW PHYTOLOGIST 2025. [PMID: 39887348 DOI: 10.1111/nph.20431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Accepted: 01/14/2025] [Indexed: 02/01/2025]
Abstract
H2S is a well-known gaseous signaling molecule that plays important roles in plant response to biotic stresses. Pseudomonas syringae pv tomato (Pst) could cause enormous loss, while whether H2S could modulate plant defense against Pst is still unclear. By CRISPR/Cas9, the Sldcd1 gene editing mutant showed reduced endogenous H2S content and attenuated resistance, whereas treatment with exogenous H2S could enhance the resistance. A transcription factor, SlWRKY71, was screened and identified to promote the transcription of SlDCD1 via yeast one-hybrid, dual-luciferase reporter system, electrophoretic mobility shift assays, and transient overexpression. Here, it was found that exogenous H2S relieved the symptoms of bacterial speck disease in tomato leaves, conferring tolerance to Pst. DC3000, and the expression of the H2S-producing enzyme SlDCD1 was significantly induced. The Slwrky71 mutant also showed reduced defense in tomato leaves against Pst. DC3000, whereas SlWRKY71-OE tomato leaves showed increased tolerance. Transient overexpression of SlDCD1 in the context of Slwrky71 with exogenous H2S treatment has stronger resistance, and the overexpression of SlWRKY71 in the context of Sldcd1 showed relatively weak disease resistance, and with the addition of H2S enhanced the effect. Therefore, we concluded that SlWRKY71 could activate SlDCD1 expression and promote endogenous H2S production, thereby improving tomato leaves resistance to Pst. DC3000.
Collapse
Affiliation(s)
- Yu-Qi Zhao
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Chen Sun
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230009, China
- School of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Hangzhou, 310023, China
| | - Kang-Di Hu
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Yue Yu
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Zhi Liu
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Ying-Chun Song
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Ren-Jie Xiong
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Yue Ma
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Hua Zhang
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Gai-Fang Yao
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230009, China
| |
Collapse
|
5
|
Sobhy SE, Abo-Kassem EEM, Sewelam NA, Saad-Allah KM, Aseel DG, Saleh AA, Hafez EE. Growth, physiological and molecular response of calcium and salicylic acid primed wheat under lead stress. Mol Biol Rep 2025; 52:133. [PMID: 39825077 DOI: 10.1007/s11033-025-10226-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2024] [Accepted: 01/06/2025] [Indexed: 01/20/2025]
Abstract
BACKGROUND Heavy metal contamination, particularly from lead (Pb), poses a significant threat to plant agriculture worldwide, adversely affecting growth, physiological functions, and yield. Signalling molecules such as calcium and salicylic acid are known to mitigate various stresses in plants, prompting this study to explore their interaction with Pb stress in wheat. METHODS A pot experiment was conducted in which wheat grains were primed with either distilled water, 5 mM calcium (Ca), or 0.05 mM salicylic acid (SA) for 12 h. Following germination, seedlings were exposed to 100 mM Pb six days later, while the control group received water irrigation. Growth parameters, physiological changes, molecular responses, and yield characteristics were assessed to understand the impact of the treatments. RESULTS The application of Ca and SA acid significantly ameliorated Pb-induced reductions in growth parameters, yield criteria, and phenolic content. These treatments also reduced oxidative stress by restoring osmoprotectants, Pb ion content, and antioxidant enzyme activities to normal levels. Additionally, they downregulated genes that were overexpressed in Pb-stressed wheat. CONCLUSIONS Ca and SA treatments effectively mitigate lead toxicity in wheat by protecting growth, enhancing physiological resilience, and maintaining productivity. These findings suggest that leveraging chemical stimulants such as calcium and salicylic acid constitutes a viable strategy for reducing the detrimental impacts of heavy metal stress on crop yields.
Collapse
Affiliation(s)
- Sherien E Sobhy
- Plant Protection and Bimolecular Diagnosis Department, Arid Lands Cultivation Research Institute, City of Scientific Research and Technological Applications, New Borg El-Arab 21934, Alexandria, Egypt
| | | | - Nasser A Sewelam
- Botany Department, Faculty of Science, Tanta University, Tanta, 31527, Egypt
| | - Khalil M Saad-Allah
- Botany Department, Faculty of Science, Tanta University, Tanta, 31527, Egypt
| | - Dalia G Aseel
- Plant Protection and Bimolecular Diagnosis Department, Arid Lands Cultivation Research Institute, City of Scientific Research and Technological Applications, New Borg El-Arab 21934, Alexandria, Egypt
| | - Ahmed A Saleh
- Faculty of Agriculture (Al-Shatby), Alexandria University, Alexandria City, 11865, Egypt.
| | - Elsayed E Hafez
- Plant Protection and Bimolecular Diagnosis Department, Arid Lands Cultivation Research Institute, City of Scientific Research and Technological Applications, New Borg El-Arab 21934, Alexandria, Egypt
| |
Collapse
|
6
|
Zhang M, Peng XJ, Liu NN, Lu ZX, Zhao YQ, Yao GF, Li J, Xu RF, Hu KD, Zhang H. An Importin Protein SlIMPA3 Interacts with SlLCD1 and Regulates Tomato Fruit Ripening. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025; 73:1492-1504. [PMID: 39743834 DOI: 10.1021/acs.jafc.4c09530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
Abstract
A nuclear-localized cysteine desulfhydrase, LCD1, plays a crucial role in mediating endogenous hydrogen sulfide production in tomatoes. However, the mechanism underlying the nuclear localization of SlLCD1 is not yet fully understood. In this study, it was found that SlLCD1 specifically interacted with nuclear import receptor importin α3 (SlIMPA3). Furthermore, it was demonstrated that silencing SlIMPA3 through virus-induced gene silencing or introducing mutations in SlIMPA3 via CRISPR/Cas9 significantly accelerated fruit ripening. Moreover, enhanced chlorophyll degradation, carotenoid accumulation, and premature upregulation of ripening-associated genes in the slimpa3 mutant indicated SlIMPA3 to be a negative regulator of fruit ripening and leaf senescence. Besides, SlIMPA3 deletion resulted in excessive hydrogen peroxide accumulation in fruits and leaves, potentially leading to premature leaf senescence and accelerated fruit ripening in the slimpa3 mutant. SlIMPA3 exhibited pronounced nuclear localization with weak distribution in the cytoplasm. SlLCD1 showed specific nuclear localization; however, after GFP tagging in slimpa3-edited tomato leaves, it migrated to the cytoplasm, suggesting that SlIMPA3 mediated the nuclear localization of SlLCD1. SlLCD1 transient expression in slimpa3 mutant fruits indicated that it did not inhibit tomato ripening following the SlIMPA3 mutation. In summary, our study revealed that SlIMPA3 interacted with SlLCD1 to facilitate its nuclear entry. Mutations in SlIMPA3 led to premature fruit ripening and leaf senescence, likely due to disrupted reactive oxygen species homeostasis resulting from SlLCD1 mislocalization in the slimpa3 mutant.
Collapse
Affiliation(s)
- Min Zhang
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China
| | - Xiang-Jun Peng
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China
| | - Nan-Nan Liu
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China
| | - Zi-Xu Lu
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China
| | - Yu-Qi Zhao
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China
| | - Gai-Fang Yao
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China
| | - Juan Li
- Rice Research Institute, Anhui Academy of Agricultural Sciences, Hefei 230031, P. R. China
| | - Rong-Fang Xu
- Rice Research Institute, Anhui Academy of Agricultural Sciences, Hefei 230031, P. R. China
| | - Kang-Di Hu
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China
| | - Hua Zhang
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China
| |
Collapse
|
7
|
dos Santos LC, Martins GS, Benevenute PAN, de Sousa Lima J, dos Santos FR, Andrade OVS, de Oliveira IP, Bispo FHA, Botelho L, Rabêlo FHS, Marchiori PER, Guilherme LRG, Lopes G. Soil Application of Selenium in Wheat ( Triticum aestivum L.) Under Water Stress Improves Grain Quality and Reduces Production Losses. PLANTS (BASEL, SWITZERLAND) 2024; 13:3460. [PMID: 39771158 PMCID: PMC11677958 DOI: 10.3390/plants13243460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 12/04/2024] [Accepted: 12/05/2024] [Indexed: 01/11/2025]
Abstract
Selenium (Se) is an essential element for humans. However, much of the world's human population is deficient in this element, which has become a public health problem. This study aimed to evaluate whether applying severe water stress to wheat plants (Triticum aestivum L.) could allow Se to reduce the production losses and increase the grain quality, thereby contributing to the reduction in hidden hunger. The experiment was conducted in a randomized block design with four replications in a 5 × 2 factorial scheme, with five doses of Se (0.00, 0.25, 0.50, 1.00, and 2.00 mg dm-3) and two irrigation conditions (with and without water deficit). When sodium selenate (Na2SeO4) was applied to the soil, the grains were rich in Se. Under low doses, there was an enrichment of the grains in sulfur, iron, copper, and zinc as well as total free amino acids and total soluble proteins, and lower losses in productivity under severe water stress. Higher doses decreased the concentration of malondialdehyde (MDA) and hydrogen peroxide (H2O2), increased the catalase activity, and increased the water use efficiency (WUE). Therefore, applying Se at a dose of 0.25 mg dm-3 is effective for the biofortification of wheat grains. It enhances grain nutritional quality, increases Se bioaccessibility, and reduces production losses under water stress conditions.
Collapse
Affiliation(s)
- Leônidas Canuto dos Santos
- Department of Soil Science, School of Agricultural Science, Federal University of Lavras (UFLA), Lavras 37200-900, MG, Brazil; (L.C.d.S.); (G.S.M.); (P.A.N.B.); (F.R.d.S.); (F.H.A.B.); (L.B.); (L.R.G.G.)
| | - Gabryel Silva Martins
- Department of Soil Science, School of Agricultural Science, Federal University of Lavras (UFLA), Lavras 37200-900, MG, Brazil; (L.C.d.S.); (G.S.M.); (P.A.N.B.); (F.R.d.S.); (F.H.A.B.); (L.B.); (L.R.G.G.)
| | - Pedro Antônio Namorato Benevenute
- Department of Soil Science, School of Agricultural Science, Federal University of Lavras (UFLA), Lavras 37200-900, MG, Brazil; (L.C.d.S.); (G.S.M.); (P.A.N.B.); (F.R.d.S.); (F.H.A.B.); (L.B.); (L.R.G.G.)
| | - Jucelino de Sousa Lima
- Department of Biology, Institute of Natural Sciences, Federal University of Lavras (UFLA), Lavras 37200-900, MG, Brazil; (J.d.S.L.); (O.V.S.A.); (P.E.R.M.)
| | - Fernanda Ribeiro dos Santos
- Department of Soil Science, School of Agricultural Science, Federal University of Lavras (UFLA), Lavras 37200-900, MG, Brazil; (L.C.d.S.); (G.S.M.); (P.A.N.B.); (F.R.d.S.); (F.H.A.B.); (L.B.); (L.R.G.G.)
| | - Otávio Vitor Souza Andrade
- Department of Biology, Institute of Natural Sciences, Federal University of Lavras (UFLA), Lavras 37200-900, MG, Brazil; (J.d.S.L.); (O.V.S.A.); (P.E.R.M.)
| | - Indira Pereira de Oliveira
- Department of Agricultures, School of Agricultural Science, Federal University of Lavras (UFLA), Lavras 37200-900, MG, Brazil;
| | - Fábio Henrique Alves Bispo
- Department of Soil Science, School of Agricultural Science, Federal University of Lavras (UFLA), Lavras 37200-900, MG, Brazil; (L.C.d.S.); (G.S.M.); (P.A.N.B.); (F.R.d.S.); (F.H.A.B.); (L.B.); (L.R.G.G.)
| | - Lívia Botelho
- Department of Soil Science, School of Agricultural Science, Federal University of Lavras (UFLA), Lavras 37200-900, MG, Brazil; (L.C.d.S.); (G.S.M.); (P.A.N.B.); (F.R.d.S.); (F.H.A.B.); (L.B.); (L.R.G.G.)
| | - Flávio Henrique Silveira Rabêlo
- Department of Soil Science, Luiz de Queiroz College of Agriculture (ESALQ), University of São Paulo, Piracicaba 13418-900, SP, Brazil;
| | - Paulo Eduardo Ribeiro Marchiori
- Department of Biology, Institute of Natural Sciences, Federal University of Lavras (UFLA), Lavras 37200-900, MG, Brazil; (J.d.S.L.); (O.V.S.A.); (P.E.R.M.)
| | - Luiz Roberto Guimarães Guilherme
- Department of Soil Science, School of Agricultural Science, Federal University of Lavras (UFLA), Lavras 37200-900, MG, Brazil; (L.C.d.S.); (G.S.M.); (P.A.N.B.); (F.R.d.S.); (F.H.A.B.); (L.B.); (L.R.G.G.)
| | - Guilherme Lopes
- Department of Soil Science, School of Agricultural Science, Federal University of Lavras (UFLA), Lavras 37200-900, MG, Brazil; (L.C.d.S.); (G.S.M.); (P.A.N.B.); (F.R.d.S.); (F.H.A.B.); (L.B.); (L.R.G.G.)
| |
Collapse
|
8
|
Awere CO, Sneha A, Rakkammal K, Muthui MM, Kumari R A, Govindan S, Batur Çolak A, Bayrak M, Muthuramalingam P, Anadebe VC, Archana P, Sekar C, Ramesh M. Carbon dot unravels accumulation of triterpenoid in Evolvulus alsinoides hairy roots culture by stimulating growth, redox reactions and ANN machine learning model prediction of metabolic stress response. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 216:109142. [PMID: 39357200 DOI: 10.1016/j.plaphy.2024.109142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 09/19/2024] [Accepted: 09/20/2024] [Indexed: 10/04/2024]
Abstract
Evolvulus alsinoides, a therapeutically valuable shrub can provide consistent supply of secondary metabolites (SM) with pharmaceutical significance. Nonetheless, because of its short life cycle, fresh plant material for research and medicinal diagnostics is severely scarce throughout the year. The effects of exogenous carbon quantum dot (CD) application on metabolic profiles, machine learning (ML) prediction of metabolic stress response, and SM yields in hairy root cultures of E. alsinoides were investigated and quantified. The range of the particle size distribution of the CDs was between 3 and 7 nm. The CDs EPR signal and spin trapping experiments demonstrated the formation of O2-•spin-adducts at (g = 2.0023). Carbon dot treatment increased the levels of hydrogen peroxide and malondialdehyde concentrations as well as increased antioxidant enzyme activity. CD treatments (6 μg mL-1) significantly enhanced the accumulation of squalene and stigmasterol (7 and 5-fold respectively). The multilayer perceptron (MLP) algorithm demonstrated remarkable prediction accuracy (MSE value = 1.99E-03 and R2 = 0.99939) in both the training and testing sets for modelling. Based on the prediction, the maximum oxidative stress index and enzymatic activities were highest in the medium supplemented with 10 μg mL-1 CDs. The outcome of this study indicated that, for the first time, using CD could serve as a novel elicitor for the production of valuable SM. MLP may also be used as a forward-thinking tool to optimize and predict SM with high pharmaceutical significance. This study would be a touchstone for understanding the use of ML and luminescent nanomaterials in the production and commercialization of important SM.
Collapse
Affiliation(s)
- Collince Omondi Awere
- Department of Biotechnology, Science Campus, Alagappa University, Karaikudi, 630003, India
| | - Anbalagan Sneha
- Department of Biotechnology, Science Campus, Alagappa University, Karaikudi, 630003, India
| | - Kasinathan Rakkammal
- Department of Biotechnology, Science Campus, Alagappa University, Karaikudi, 630003, India
| | - Martin Mwaura Muthui
- Department of Pure and Applied Sciences, Technical University of Mombasa, Mombasa, Kenya
| | - Anitha Kumari R
- N Rama Varier Ayurveda Foundation, AVN Ayurveda Formulation Private Limited, Madurai, India
| | - Suresh Govindan
- N Rama Varier Ayurveda Foundation, AVN Ayurveda Formulation Private Limited, Madurai, India
| | - Andaç Batur Çolak
- Information Technologies Application and Research Center, Istanbul Ticaret University, İstanbul 34445, Turkiye
| | - Mustafa Bayrak
- Mechanical Engineering Department, Niğde Ömer Halisdemir University, Niğde 51240, Turkiye
| | - Pandiyan Muthuramalingam
- Division of Horticultural Science, College of Agriculture and Life Sciences, Gyeongsang National University, Jinju, 52725, South Korea
| | - Valentine Chikaodili Anadebe
- Department of Chemical Engineering, Alex Ekwueme Federal University Ndufu Alike PMB 1010 Abakailiki, Ebonyi State, Nigeria
| | - Pandi Archana
- Department of Bioelectronics and Biosensors, Alagappa University, Karaikudi, 630003, India
| | - Chinnathambi Sekar
- Department of Bioelectronics and Biosensors, Alagappa University, Karaikudi, 630003, India
| | - Manikandan Ramesh
- Department of Biotechnology, Science Campus, Alagappa University, Karaikudi, 630003, India.
| |
Collapse
|
9
|
Niu J, Yan X, Bai Y, Li W, Lu G, Wang Y, Liu H, Shi Z, Liang J. Integration of Transcriptomics and WGCNA to Characterize Trichoderma harzianum-Induced Systemic Resistance in Astragalus mongholicus for Defense against Fusarium solani. Genes (Basel) 2024; 15:1180. [PMID: 39336771 PMCID: PMC11431081 DOI: 10.3390/genes15091180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Revised: 09/05/2024] [Accepted: 09/06/2024] [Indexed: 09/30/2024] Open
Abstract
Beneficial fungi of the genus Trichoderma are among the most widespread biocontrol agents that induce a plant's defense response against pathogens. Fusarium solani is one of the main pathogens that can negatively affect Astragalus mongholicus production and quality. To investigate the impact of Trichoderma harzianum on Astragalus mongholicus defense responses to Fusarium solani, A. mongholicus roots under T. harzianum + F. solani (T + F) treatment and F. solani (F) treatment were sampled and subjected to transcriptomic analysis. A differential expression analysis revealed that 6361 differentially expressed genes (DEGs) responded to T. harzianum induction. The Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis of the 6361 DEGs revealed that the genes significantly clustered into resistance-related pathways, such as the plant-pathogen interaction pathway, phenylpropanoid biosynthesis pathway, flavonoid biosynthesis pathway, isoflavonoid biosynthesis pathway, mitogen-activated protein kinase (MAPK) signaling pathway, and plant hormone signal transduction pathway. Pathway analysis revealed that the PR1, formononetin biosynthesis, biochanin A biosynthesis, and CHIB, ROS production, and HSP90 may be upregulated by T. harzianum and play important roles in disease resistance. Our study further revealed that the H2O2 content was significantly increased by T. harzianum induction. Formononetin and biochanin A had the potential to suppress F. solani. Weighted gene coexpression network analysis (WGCNA) revealed one module, including 58 DEGs associated with T. harzianum induction. One core hub gene, RPS25, was found to be upregulated by T. harzianum, SA (salicylic acid) and ETH (ethephon). Overall, our data indicate that T. harzianum can induce induced systemic resistance (ISR) and systemic acquired resistance (SAR) in A. mongholicus. The results of this study lay a foundation for a further understanding of the molecular mechanism by which T. harzianum induces resistance in A. mongholicus.
Collapse
Affiliation(s)
- Jingping Niu
- College of Life Sciences, Shanxi Agricultural University, Taigu, Jinzhong 030801, China; (J.N.); (X.Y.); (Y.B.); (W.L.); (G.L.); (Y.W.); (H.L.) (Z.S.)
| | - Xiang Yan
- College of Life Sciences, Shanxi Agricultural University, Taigu, Jinzhong 030801, China; (J.N.); (X.Y.); (Y.B.); (W.L.); (G.L.); (Y.W.); (H.L.) (Z.S.)
| | - Yuguo Bai
- College of Life Sciences, Shanxi Agricultural University, Taigu, Jinzhong 030801, China; (J.N.); (X.Y.); (Y.B.); (W.L.); (G.L.); (Y.W.); (H.L.) (Z.S.)
| | - Wandi Li
- College of Life Sciences, Shanxi Agricultural University, Taigu, Jinzhong 030801, China; (J.N.); (X.Y.); (Y.B.); (W.L.); (G.L.); (Y.W.); (H.L.) (Z.S.)
| | - Genglong Lu
- College of Life Sciences, Shanxi Agricultural University, Taigu, Jinzhong 030801, China; (J.N.); (X.Y.); (Y.B.); (W.L.); (G.L.); (Y.W.); (H.L.) (Z.S.)
| | - Yuanyuan Wang
- College of Life Sciences, Shanxi Agricultural University, Taigu, Jinzhong 030801, China; (J.N.); (X.Y.); (Y.B.); (W.L.); (G.L.); (Y.W.); (H.L.) (Z.S.)
| | - Hongjun Liu
- College of Life Sciences, Shanxi Agricultural University, Taigu, Jinzhong 030801, China; (J.N.); (X.Y.); (Y.B.); (W.L.); (G.L.); (Y.W.); (H.L.) (Z.S.)
| | - Zhiyong Shi
- College of Life Sciences, Shanxi Agricultural University, Taigu, Jinzhong 030801, China; (J.N.); (X.Y.); (Y.B.); (W.L.); (G.L.); (Y.W.); (H.L.) (Z.S.)
| | - Jianping Liang
- College of Life Sciences, Shanxi Agricultural University, Taigu, Jinzhong 030801, China; (J.N.); (X.Y.); (Y.B.); (W.L.); (G.L.); (Y.W.); (H.L.) (Z.S.)
- Modern Research Center for Traditional Chinese Medicine, Shanxi University, Taiyuan 030006, China
| |
Collapse
|
10
|
Ji W, Ma J, Zheng Z, Al-Herrawy AZ, Xie B, Wu D. Algae blooms with resistance in fresh water: Potential interplay between Microcystis and antibiotic resistance genes. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 940:173528. [PMID: 38802023 DOI: 10.1016/j.scitotenv.2024.173528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 05/23/2024] [Accepted: 05/24/2024] [Indexed: 05/29/2024]
Abstract
Microcystis, a type of cyanobacteria known for producing microcystins (MCs), is experiencing a global increase in blooms. They have been recently recognized as potential contributors to the widespread of antibiotic resistance genes (ARGs). By reviewing approximately 150 pieces of recent studies, a hypothesis has been formulated suggesting that significant fluctuations in MCs concentrations and microbial community structure during Microcystis blooms could influence the dynamics of waterborne ARGs. Among all MCs, microcystin-LR (MC-LR) is the most widely distributed worldwide, notably abundant in reservoirs during summer. MCs inhibit protein phosphatases or increase reactive oxygen species (ROS), inducing oxidative stresses, enhancing membrane permeability, and causing DNA damage. This further enhances selective pressures and horizontal gene transfer (HGT) chances of ARGs. The mechanisms by which Microcystis regulates ARG dissemination have been systematically organized for the first time, focusing on the secretion of MCs and the alterations of bacterial community structure. However, several knowledge gaps remain, particularly concerning how MCs interfere with the electron transport chain and how Microcystis facilitates HGT of ARGs. Concurrently, the predominance of Microcystis forming the algal microbial aggregates is considered a hotspot for preserving and transferring ARGs. Yet, Microcystis can deplete the nutrients from other taxa within these aggregates, thereby reducing the density of ARG-carrying bacteria. Therefore, further studies are needed to explore the 'symbiotic - competitive' relationships between Microcystis and ARG-hosting bacteria under varied nutrient conditions. Addressing these knowledge gaps is crucial to understand the impacts of the algal aggregates on dynamics of waterborne antibiotic resistome, and underscores the need for effective control of Microcystis to curb the spread of antibiotic resistance. Constructed wetlands and photocatalysis represent advantageous strategies for halting the spread of ARGs from the perspective of Microcystis blooms, as they can effectively control Microcystis and MCs while maintaining the stability of aquatic ecosystem.
Collapse
Affiliation(s)
- Wenhui Ji
- Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China; Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China; Chongqing Key Laboratory of Precision Optics, Chongqing Institute of East China Normal University, Chongqing 401120, China
| | - Jingkai Ma
- Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China; Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China; Chongqing Key Laboratory of Precision Optics, Chongqing Institute of East China Normal University, Chongqing 401120, China
| | - Zhipeng Zheng
- Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China; Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China; Chongqing Key Laboratory of Precision Optics, Chongqing Institute of East China Normal University, Chongqing 401120, China
| | - Ahmad Z Al-Herrawy
- Water Pollution Research Department, National Research Centre, Giza, Egypt
| | - Bing Xie
- Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China
| | - Dong Wu
- Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China; Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China; Chongqing Key Laboratory of Precision Optics, Chongqing Institute of East China Normal University, Chongqing 401120, China.
| |
Collapse
|
11
|
Wang R, Yan SJ, Liu C, Guo H, Cui YN. Comparative Physiological and Gene Expression Analyses Reveal Mechanisms Involved in Maintaining Photosynthesis Capacity, Alleviating Ion Toxicity and Oxidative Stress of Kentucky Bluegrass under NaCl Treatment. PLANTS (BASEL, SWITZERLAND) 2024; 13:2107. [PMID: 39124225 PMCID: PMC11313982 DOI: 10.3390/plants13152107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 07/24/2024] [Accepted: 07/25/2024] [Indexed: 08/12/2024]
Abstract
Kentucky bluegrass (Poa pratensis L.), a widely used cool-season turfgrass, shows a high sensitivity to soil salinity. Clarifying the adaptative mechanisms of Kentucky bluegrass that serve to improve its salt tolerance in saline environments is urgent for the application of this turfgrass in salt-affected regions. In this study, physiological responses of the Kentucky bluegrass cultivars "Explorer" and "Blue Best" to NaCl treatment, as well as gene expressions related to photosynthesis, ion transport, and ROS degradation, were analyzed. The results showed that the growth of "Explorer" was obviously better compared to "Blue Best" under 400 mM NaCl treatment. "Explorer" exhibited a much stronger photosynthetic capacity than "Blue Best" under NaCl treatment, and the expression of key genes involved in chlorophyll biosynthesis, photosystem II, and the Calvin cycle in "Explorer" was greatly induced by salt treatment. Compared with "Blue Best", "Explorer" could effectively maintain Na+/K+ homeostasis in its leaves under NaCl treatment, which can be attributed to upregulated expression of genes, such as HKT1;5, HAK5, and SKOR. The relative membrane permeability and contents of O2- and H2O2 in "Explorer" were significantly lower than those in "Blue Best" under NaCl treatment, and, correspondingly, the activities of SOD and POD in the former were significantly higher than in the latter. Moreover, the expression of genes involved in the biosynthesis of enzymes in the ROS-scavenging system of "Explorer" was immediately upregulated after NaCl treatment. Additionally, free proline and betaine are important organic osmolytes for maintaining hydration status in Kentucky bluegrass under NaCl treatment, as the contents of these metabolites in "Explorer" were significantly higher than in "Blue Best". This work lays a theoretical basis for the improvement of salt tolerance in Kentucky bluegrass.
Collapse
Affiliation(s)
| | | | | | - Huan Guo
- College of Grassland Agriculture, Northwest A&F University, Yangling 712100, China; (R.W.); (S.-J.Y.); (C.L.)
| | - Yan-Nong Cui
- College of Grassland Agriculture, Northwest A&F University, Yangling 712100, China; (R.W.); (S.-J.Y.); (C.L.)
| |
Collapse
|
12
|
Yu P, Song X, Zhang W, Yao Y, Ren J, Wang L, Liu W, Meng Z, Meng X. Analysis of ginseng rusty root symptoms transcriptome and its pathogenesis directed by reactive oxygen species theory. PLANT DIRECT 2024; 8:e586. [PMID: 38766510 PMCID: PMC11099884 DOI: 10.1002/pld3.586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 04/07/2024] [Accepted: 04/12/2024] [Indexed: 05/22/2024]
Abstract
Ginseng rusty root symptoms (GRS) is a primary disease of ginseng, which seriously decreases the yield and quality of ginseng and causes enormous losses to ginseng production. GRS prevention and control is still challenging due to its unclear etiology. In this study, the phloem tissue of healthy Panax ginseng (AG), the nonred tissue of the phloem epidermis around the lesion (BG), and the red lesion site tissue of GRS (CG) were extracted for mRNA transcriptomic analysis; 35,958 differentially expressed genes (DEGs) were identified and were associated with multiple stress resistance pathways, reactive oxygen species (ROS), and iron ion binding. Further study showed that the contents of O2 •-, H2O2, and malondialdehyde (MDA) were significantly increased in BG and CG tissues. Under anaerobic conditions caused by excessive soil moisture, the overproduction of ROS destroys cell membranes, simultaneously converting Fe2+ to Fe3+ and depositing it in the cell wall, which results in GRS, as evidenced by the success of the GRS induction test.
Collapse
Affiliation(s)
- Pengcheng Yu
- Country College of PharmacyHeilongjiang University of Chinese MedicineHarbinChina
| | - Xiaowen Song
- Country College of PharmacyHeilongjiang University of Chinese MedicineHarbinChina
| | - Wei Zhang
- Country College of PharmacyHeilongjiang University of Chinese MedicineHarbinChina
| | - Yao Yao
- Country College of PharmacyHeilongjiang University of Chinese MedicineHarbinChina
| | - Junling Ren
- Country College of PharmacyHeilongjiang University of Chinese MedicineHarbinChina
| | - Liyang Wang
- Country College of PharmacyHeilongjiang University of Chinese MedicineHarbinChina
| | - Wenfei Liu
- Country College of PharmacyHeilongjiang University of Chinese MedicineHarbinChina
| | - Zhaoping Meng
- Country College of PharmacyHeilongjiang University of Chinese MedicineHarbinChina
| | - Xiangcai Meng
- Country College of PharmacyHeilongjiang University of Chinese MedicineHarbinChina
| |
Collapse
|
13
|
Niu J, Zhao J, Guo Q, Zhang H, Yue A, Zhao J, Yin C, Wang M, Du W. WGCNA Reveals Hub Genes and Key Gene Regulatory Pathways of the Response of Soybean to Infection by Soybean mosaic virus. Genes (Basel) 2024; 15:566. [PMID: 38790195 PMCID: PMC11120672 DOI: 10.3390/genes15050566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 04/22/2024] [Accepted: 04/24/2024] [Indexed: 05/26/2024] Open
Abstract
Soybean mosaic virus (SMV) is one of the main pathogens that can negatively affect soybean production and quality. To study the gene regulatory network of soybeans in response to SMV SC15, the resistant line X149 and susceptible line X97 were subjected to transcriptome analysis at 0, 2, 8, 12, 24, and 48 h post-inoculation (hpi). Differential expression analysis revealed that 10,190 differentially expressed genes (DEGs) responded to SC15 infection. Weighted gene co-expression network analysis (WGCNA) was performed to identify highly related resistance gene modules; in total, eight modules, including 2256 DEGs, were identified. Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis of 2256 DEGs revealed that the genes significantly clustered into resistance-related pathways, such as the plant-pathogen interaction pathway, mitogen-activated protein kinases (MAPK) signaling pathway, and plant hormone signal transduction pathway. Among these pathways, we found that the flg22, Ca2+, hydrogen peroxide (H2O2), and abscisic acid (ABA) regulatory pathways were fully covered by 36 DEGs. Among the 36 DEGs, the gene Glyma.01G225100 (protein phosphatase 2C, PP2C) in the ABA regulatory pathway, the gene Glyma.16G031900 (WRKY transcription factor 22, WRKY22) in Ca2+ and H2O2 regulatory pathways, and the gene Glyma.04G175300 (calcium-dependent protein kinase, CDPK) in Ca2+ regulatory pathways were highly connected hub genes. These results indicate that the resistance of X149 to SC15 may depend on the positive regulation of flg22, Ca2+, H2O2, and ABA regulatory pathways. Our study further showed that superoxide dismutase (SOD) activity, H2O2 content, and catalase (CAT) and peroxidase (POD) activities were significantly up-regulated in the resistant line X149 compared with those in 0 hpi. This finding indicates that the H2O2 regulatory pathway might be dependent on flg22- and Ca2+-pathway-induced ROS generation. In addition, two hub genes, Glyma.07G190100 (encoding F-box protein) and Glyma.12G185400 (encoding calmodulin-like proteins, CMLs), were also identified and they could positively regulate X149 resistance. This study provides pathways for further investigation of SMV resistance mechanisms in soybean.
Collapse
Affiliation(s)
- Jingping Niu
- College of Life Sciences, Shanxi Agricultural University, Taigu, Jinzhong 030801, China;
| | - Jing Zhao
- College of Agronomy, Shanxi Agricultural University, Taigu, Jinzhong 030801, China; (J.Z.); (Q.G.); (H.Z.); (A.Y.); (M.W.)
| | - Qian Guo
- College of Agronomy, Shanxi Agricultural University, Taigu, Jinzhong 030801, China; (J.Z.); (Q.G.); (H.Z.); (A.Y.); (M.W.)
| | - Hanyue Zhang
- College of Agronomy, Shanxi Agricultural University, Taigu, Jinzhong 030801, China; (J.Z.); (Q.G.); (H.Z.); (A.Y.); (M.W.)
| | - Aiqin Yue
- College of Agronomy, Shanxi Agricultural University, Taigu, Jinzhong 030801, China; (J.Z.); (Q.G.); (H.Z.); (A.Y.); (M.W.)
| | - Jinzhong Zhao
- Department of Basic Sciences, Shanxi Agricultural University, Taigu, Jinzhong 030801, China; (J.Z.); (C.Y.)
| | - Congcong Yin
- Department of Basic Sciences, Shanxi Agricultural University, Taigu, Jinzhong 030801, China; (J.Z.); (C.Y.)
| | - Min Wang
- College of Agronomy, Shanxi Agricultural University, Taigu, Jinzhong 030801, China; (J.Z.); (Q.G.); (H.Z.); (A.Y.); (M.W.)
| | - Weijun Du
- College of Agronomy, Shanxi Agricultural University, Taigu, Jinzhong 030801, China; (J.Z.); (Q.G.); (H.Z.); (A.Y.); (M.W.)
| |
Collapse
|
14
|
Ali A, Mashwani ZUR, Raja NI, Mohammad S, Ahmad MS, Luna-Arias JP. Exposure of Caralluma tuberculata to biogenic selenium nanoparticles as in vitro rooting agent: Stimulates morpho-physiological and antioxidant defense system. PLoS One 2024; 19:e0297764. [PMID: 38598493 PMCID: PMC11006134 DOI: 10.1371/journal.pone.0297764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Accepted: 01/11/2024] [Indexed: 04/12/2024] Open
Abstract
The commercial-scale production of Caralluma tuberculata faces significant challenges due to lower seed viability and sluggish rate of root growth in natural conditions. To overcome these obstacles, using phyto-mediated selenium nanomaterials as an in vitro rooting agent in plant in vitro cultures is a promising approach to facilitate rapid propagation and enhance the production of valuable therapeutic compounds. This study aimed to investigate the impact of phytosynthesized selenium nanoparticles (SeNPs) on the morphological growth attributes, physiological status, and secondary metabolite fabrication in in vitro propagated Caralluma tuberculata. The results demonstrated that a lower dose of SeNPs (100 μg/L) along with plant growth regulators (IBA 1 mg/L) had an affirmative effect on growth parameters and promoted earliest root initiation (4.6±0.98 days), highest rooting frequency (68.21±5.12%), number of roots (6.3±1.8), maximum fresh weight (710±6.01 mg) and dry weight (549.89±6.77 mg). However, higher levels of SeNPs (200 and 400 μg/L) in the growth media proved detrimental to growth and development. Further, stress caused by SeNPs at 100 μg/L along with PGRs (IBA 1 mg/L) produced a higher level of total chlorophyll contents (32.66± 4.36 μg/ml), while cultures exposed to 200 μg/L SeNPs alone exhibited the maximum amount of proline contents (10.5± 1.32 μg/ml). Interestingly, exposure to 400 μg/L SeNPs induced a stress response in the cultures, leading to increased levels of total phenolic content (3.4 ± 0.052), total flavonoid content (1.8 ± 0.034), and antioxidant activity 82 ± 4.8%). Furthermore, the combination of 100 μg/L SeNPs and plant growth regulators (1 mg/L IBA) led to accelerated enzymatic antioxidant activities, including superoxide dismutase (SOD = 4.4 ± 0.067 U/mg), peroxidase dismutase (POD = 3.3 ± 0.043 U/mg), catalase (CAT = 2.8 ± 0.048 U/mg), and ascorbate peroxidase (APx = 1.6 ± 0.082 U/mg). This is the first report that highlights the efficacy of SeNPs in culture media and presents a promising approach for the commercial propagation of C. tuberculata with a strong antioxidant defense system in vitro.
Collapse
Affiliation(s)
- Amir Ali
- Department of Botany, PMAS Arid Agriculture University Rawalpindi, Rawalpindi, Pakistan
- Biotechnology Laboratory, Agricultural Research Institute (ARI) Tarnab, Peshawar, Pakistan
| | - Zia-ur-Rehman Mashwani
- Department of Botany, PMAS Arid Agriculture University Rawalpindi, Rawalpindi, Pakistan
- Pakistan Academy of Sciences, Islamabad, Pakistan
| | - Naveed Iqbal Raja
- Department of Botany, PMAS Arid Agriculture University Rawalpindi, Rawalpindi, Pakistan
| | - Sher Mohammad
- Biotechnology Laboratory, Agricultural Research Institute (ARI) Tarnab, Peshawar, Pakistan
| | - M. Sheeraz Ahmad
- University Institute of Biochemistry and Biotechnology (UIBB), PMAS-Arid Agriculture University, Rawalpindi, Pakistan
| | - Juan Pedro Luna-Arias
- Department of Cell Biology and Nanoscience and Nanotechnology Ph.D. Program, Center for Research and Advanced Studies of the National Polytechnic Institute, Mexico City, Mexico
| |
Collapse
|
15
|
Malbezin L, Morin S, Lavoie I. Effects of atrazine and S-metolachlor on stream periphyton taxonomic and fatty acid compositions. ECOTOXICOLOGY (LONDON, ENGLAND) 2024; 33:190-204. [PMID: 38386230 DOI: 10.1007/s10646-024-02738-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 02/05/2024] [Indexed: 02/23/2024]
Abstract
Extensive pesticide use for agriculture can diffusely pollute aquatic ecosystems through leaching and runoff events and has the potential to negatively affect non-target organisms. Atrazine and S-metolachlor are two widely used herbicides often detected in high concentrations in rivers that drain nearby agricultural lands. Previous studies focused on concentration-response exposure of algal monospecific cultures, over a short exposure period, with classical descriptors such as cell density, mortality or photosynthetic efficiency as response variables. In this study, we exposed algal biofilms (periphyton) to a concentration gradient of atrazine and S-metolachlor for 14 days. We focused on fatty acid composition as the main concentration-response descriptor, and we also measured chlorophyll a fluorescence. Results showed that atrazine increased cyanobacteria and diatom chlorophyll a fluorescence. Both herbicides caused dissimilarities in fatty acid profiles between control and high exposure concentrations, but S-metolachlor had a stronger effect than atrazine on the observed increase or reduction in saturated fatty acids (SFAs) and very long-chain fatty acids (VLCFAs), respectively. Our study demonstrates that two commonly used herbicides, atrazine and S-metolachlor, can negatively affect the taxonomic composition and fatty acid profiles of stream periphyton, thereby altering the nutritional quality of this resource for primary consumers.
Collapse
Affiliation(s)
- Laura Malbezin
- Institut national de la recherche scientifique, centre Eau Terre Environnement, 490 rue de la Couronne, G1K 9A9, Quebec City, QC, Canada.
| | - Soizic Morin
- INRAE, EABX, 50 avenue de Verdun, 33612, Cestas Cedex, France
| | - Isabelle Lavoie
- Institut national de la recherche scientifique, centre Eau Terre Environnement, 490 rue de la Couronne, G1K 9A9, Quebec City, QC, Canada
| |
Collapse
|
16
|
Shah T, Khan H, Ali A, Khan Z, Alsahli AA, Dewil R, Ahmad P. Silicon and arbuscular mycorrhizal fungi alleviate chromium toxicity in Brassica rapa by regulating Cr uptake, antioxidant defense expression, the glyoxalase system, and secondary metabolites. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 206:108286. [PMID: 38169223 DOI: 10.1016/j.plaphy.2023.108286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 11/20/2023] [Accepted: 12/15/2023] [Indexed: 01/05/2024]
Abstract
The potential contribution of silicon (Si) (300 mg kg-1 potash silica) or arbuscular mycorrhizal fungi (AMF) (Rhizophagus irregularis) to reduce chromium toxicity (Cr; 0 and 300 mg kg-1) in Brassica rapa was examined in this work. Under Cr stress, Si and AMF were used separately and in combination (no Si, or AMF, Si, AMF, and Si + AMF). Brassica rapa growth, colonization, photosynthesis, and physio-biochemical characteristics decreased under Cr stress. Oxidative stress was a side effect of Cr stress and was associated with high levels of methylglyoxal (MG), hydrogen peroxide (H2O2), lipid peroxidation (MDA), and maximum lipoxygenase activity (LOX). On the other hand, quantitative real-time PCR analyses of gene expression showed that under Cr stress, the expression of genes for secondary metabolites and antioxidant enzymes was higher than that under the control. The co-application of Si and AMF activated the plant defense system by improving the antioxidative enzymes activities, the potassium citrate and glutathione pool, the glyoxalase system, metabolites, and genes encoding these enzymes under Cr stress. Under the influence of Cr stress, oxidative stress was reduced by the coordinated control of the antioxidant and glyoxalase systems. However, the restricted Cr uptake and root and shoot accumulation of Si and AMF co-applied to only Cr-stressed plants was more significant. In summary, Si and AMF applied together successfully counteract the deleterious effects of Cr stress and restore growth and physio-biochemical characteristics. As a result, the beneficial effects of the combined Si and AMF application may be attributed to mycorrhizae-mediated enhanced Si absorption and metal resistance.
Collapse
Affiliation(s)
- Tariq Shah
- Department of Agronomy, Faculty of Crop Production Sciences, The University of Agriculture Peshawar 25130, Pakistan.
| | - Hamad Khan
- Institute of Cotton Research by Chinese Academy of Agricultural Sciences, State Key Laboratory of Cotton Biology, Anyang, Henan-455000, PR China
| | - Ahmad Ali
- Department of Plant Biotechnology, Atta-ur-Rahman School of Applied Biosciences, National University of Sciences and Technology, Islamabad 44000, Pakistan
| | - Zeeshan Khan
- Department of Plant Biotechnology, Atta-ur-Rahman School of Applied Biosciences, National University of Sciences and Technology, Islamabad 44000, Pakistan
| | - Abdulaziz Abdullah Alsahli
- Botany and Microbiology Department, College of Science, King Saud University, Riyadh-11451, Saudi Arabia
| | - Raf Dewil
- Department of Chemical Engineering, KU Leuven, Belgium; Department of Engineering Science, Univeristy of Oxford, United Kingdom
| | - Parvaiz Ahmad
- Department of Botany, GDC Pulwama-192301, Jammu and Kashmir, India.
| |
Collapse
|
17
|
Feng YX, Tian P, Lin YJ, Cao DY, Li CZ, Ullah A. Gaseous signaling molecule H 2S as a multitasking signal molecule in ROS metabolism of Oryza sativa under thiocyanate (SCN -) pollution. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 340:122816. [PMID: 37898431 DOI: 10.1016/j.envpol.2023.122816] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Revised: 10/04/2023] [Accepted: 10/25/2023] [Indexed: 10/30/2023]
Abstract
The induction of disruption in the electronic transport chain by thiocyanate (SCN-) leads to an excessive generation of reactive oxygen species (ROS) within rice (Oryza sativa). Hydrogen sulfide (H2S) assumes a crucial role as a gaseous signaling molecule, holding significant potential in alleviating SCN--related stress. Nevertheless, there remains a dearth of understanding regarding the intricate interplay between H2S and ROS in Oryza sativa amidst SCN- pollution. In this investigation, a hydroponics-based experiment was meticulously devised to explore how H2S-mediated modifications influence the genetic feedback network governing ROS metabolism within the subcellular organelles of Oryza sativa when exposed to varying effective concentrations (EC20: 24 mg SCN/L; EC50: 96 mg SCN/L; EC75: 300 mg SCN/L) of SCN-. The findings unveiled the enhanced capacity of Oryza sativa to uptake SCN- under H2S + SCN- treatments in comparison to SCN- treatments alone. Notably, the relative growth rate (RGR) of seedlings subjected to H2S + SCN- exhibited a superior performance when contrasted with seedlings exposed solely to SCN-. Furthermore, the application of exogenous H2S yielded a significant reduction in ROS levels within Oryza sativa tissues during SCN- exposure. To elucidate the intricacies of gene regulation governing ROS metabolism at the mRNA level, the 52 targeted genes were categorized into four distinct types, namely: initial regulatory ROS generation genes (ROS-I), direct ROS scavenging genes (ROS-II), indirect ROS scavenging genes (ROS-III), and lipid oxidation genes (ROS-IV). On the whole, exogenous H2S exhibited the capacity to activate the majority of ROS-I ∼ ROS-IV genes within both Oryza sativa tissues at the EC20 concentration of SCN-. However, genetic positive/negative feedback networks emphasized the pivotal role of ROS-II genes in governing ROS metabolism within Oryza sativa. Notably, these genes were predominantly activated within the cytoplasm, chloroplasts, mitochondria, peroxisomes, and the cell wall.
Collapse
Affiliation(s)
- Yu-Xi Feng
- College of Environmental Science & Engineering, Guilin University of Technology, Guilin, Guangxi, 541004, China; Jiangmen Laboratory of Carbon Science and Technology, Hong Kong University of Science and Technology (Guangzhou), Jiangmen, Guangdong, 529199, China.
| | - Peng Tian
- College of Environmental Science & Engineering, Guilin University of Technology, Guilin, Guangxi, 541004, China
| | - Yu-Juan Lin
- College of Environmental Science & Engineering, Guilin University of Technology, Guilin, Guangxi, 541004, China
| | - Dan-Yang Cao
- Jiangmen Laboratory of Carbon Science and Technology, Hong Kong University of Science and Technology (Guangzhou), Jiangmen, Guangdong, 529199, China
| | - Cheng-Zhi Li
- College of Environmental Science & Engineering, Guilin University of Technology, Guilin, Guangxi, 541004, China
| | - Abid Ullah
- College of Environmental Science & Engineering, Guilin University of Technology, Guilin, Guangxi, 541004, China
| |
Collapse
|
18
|
Ma J, Hua Z, Noreen S, Malik Z, Riaz M, Kamran M, Ali S, Elshikh MS, Chen F. Chemical and mechanical coating of sulfur on baby corn biochar and their role in soil Pb availability, uptake, and growth of tomato under Pb contamination. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 338:122654. [PMID: 37778489 DOI: 10.1016/j.envpol.2023.122654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 09/17/2023] [Accepted: 09/28/2023] [Indexed: 10/03/2023]
Abstract
In recent ages, industrial revolution and natural weathering processes have been increasing lead (Pb) contamination in agricultural soils, therefore, green remediation technologies are becoming attractive and cost-effective. In the current pot study, 1% and 2% (w/w) application rates of sulfur (S) alone and novel chemo-mechanically S-modified baby corn biochars (CSB and MSB) were applied in a Pb-contaminated (500 mg/kg) soil to evaluate tomato (Lycopersicon esculentum L.) growth, Pb uptake and its soil availability. The results from SEM-EDS and XRD patterns confirmed the S enrichment on the surface of baby-corn biochar. Further, Pb treatment alone imposed a significant reduction in biomass accumulation, photosynthetic pigments, antioxidative mechanism, root traits, and Pb-tolerance index because of increased soil Pb availability and its uptake, translocation and biological accumulation in various tissues of tomato. However, incorporation of lower rate of elemental S (1%) and higher rates of biochars, especially chemically S-modified biochar, CSB (2%) significantly improved dry biomass production, Pb-tolerance index, physiological attributes and antioxidative defense system of tomato plants. These results might be due to a prominent decrease in soil Pb availability by 37.5%, Pb concentration in shoot by 66.7% and root by 58.3%, soil to root transfer by 33.8%, and root to shoot transfer by 20.2% in tomato plants under 2% application rate of CSB, as compared with the Pb treatment without any amendment. Moreover, sulfur treatment induced a significant impact in reduction of soil pH (from 8.97-7.47) as compared to the biochar treatments under Pb-toxicity. The current findings provided an insight that 2% chemically S-modified biochar (CSB) has significant potential to improve the tomato growth by reducing Pb bioavailability in the Pb-contaminated soil, compared to the S alone and MSB amendments.
Collapse
Affiliation(s)
- Jing Ma
- School of Public Administration, Hohai University, Nanjing 211100, China
| | - Ziyi Hua
- School of Public Administration, Hohai University, Nanjing 211100, China
| | - Sana Noreen
- Department of Soil Science, Faculty of Agriculture and Environmental Sciences, The Islamia University of Bahawalpur 63100, Pakistan
| | - Zaffar Malik
- Department of Soil Science, Faculty of Agriculture and Environmental Sciences, The Islamia University of Bahawalpur 63100, Pakistan
| | - Muhammad Riaz
- College of Resources and Environment, Zhongkai University of Agriculture and Engineering, Guangzhou, 510225, China
| | - Muhamamd Kamran
- Department of Soil Science, Faculty of Agriculture and Environmental Sciences, The Islamia University of Bahawalpur 63100, Pakistan; CAS Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, PR China
| | - Shafaqat Ali
- Department of Environmental Science, Government College University Faisalabad, Faisalabad, 38000, Pakistan; Department of Biological Sciences and Technology, China Medical University, Taichung 40402, Taiwan.
| | - Mohamed S Elshikh
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Fu Chen
- School of Public Administration, Hohai University, Nanjing 211100, China
| |
Collapse
|
19
|
Wang W, Shi S, Kang W, He L. Enriched endogenous free Spd and Spm in alfalfa (Medicago sativa L.) under drought stress enhance drought tolerance by inhibiting H 2O 2 production to increase antioxidant enzyme activity. JOURNAL OF PLANT PHYSIOLOGY 2023; 291:154139. [PMID: 37988872 DOI: 10.1016/j.jplph.2023.154139] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 10/12/2023] [Accepted: 11/09/2023] [Indexed: 11/23/2023]
Abstract
Drought stress is a major factor limiting agricultural development, and exogenous polyamines (PAs) can increase plant drought resistance by enhancing antioxidant activity, but few studies have examined whether endogenous PAs enhance the plant antioxidant system. Here, to investigate the effects of endogenous PAs on the antioxidant system of alfalfa under drought stress and the underlying mechanisms, two alfalfa cultivars, Longzhong (drought resistant) and Gannong No. 3 (drought sensitive), were used as test materials, and their seedlings were treated with polyethylene glycol (PEG-6000) for 8 days at -1.2 MPa to simulate drought stress. The levels of free PAs [putrescine (Put), spermidine (Spd) and spermine (Spm)], hydrogen peroxide (H2O2), malondialdehyde (MDA), key PA metabolism enzyme [arginine decarboxylase (ADC), ornithine decarboxylase (ODC), S-adenosylmethionine decarboxylase (SAMDC), polyamine oxidase (PAO), and diamine oxidase (DAO)] activities, and antioxidant enzyme [superoxide dismutase (SOD), catalase (CAT), and peroxidase (POD)] activities were measured. These physiological indicators were used for correlation analysis to investigate the relationship between PA metabolism and the antioxidant enzyme system. The results showed that PA synthesis in alfalfa under drought stress was dominated by the ADC pathway. Spd and Spm played an important role in improving drought tolerance. The high levels of ADC and SAMDC activities were facilitated by the conversion of Put to Spd and Spm. H2O2 generation by oxidative decomposition of PAs was mainly dependent on the oxidative decomposition of DAO but not PAO. Low DAO activity favored low H2O2 production. Spd, Spm, ADC, ODC and SAMDC were positively correlated with the antioxidant enzymes SOD, CAT and POD in both cultivars under drought. Therefore, we concluded that high ADC and SAMDC activities in alfalfa promoted the conversion of Put to Spd and Spm, leading to high accumulation of Spd and Spm and low Put accumulation. Low Put levels led to low H2O2 production through low DAO activity, and low H2O2 levels induced the expression of antioxidant enzyme-encoding genes to improve antioxidant enzyme activity and reduce MDA accumulation and thereby enhanced drought resistance in alfalfa.
Collapse
Affiliation(s)
- Wenjuan Wang
- College of Grassland Science, Key Laboratory of Grassland Ecosystem (Ministry of Education), Pratacultural Engineering Laboratory of Gansu Province, Sino-U.S. Centers for Grazing Land Ecosystem Sustainability, Gansu Agricultural University, Lanzhou, China
| | - Shangli Shi
- College of Grassland Science, Key Laboratory of Grassland Ecosystem (Ministry of Education), Pratacultural Engineering Laboratory of Gansu Province, Sino-U.S. Centers for Grazing Land Ecosystem Sustainability, Gansu Agricultural University, Lanzhou, China.
| | - Wenjuan Kang
- College of Grassland Science, Key Laboratory of Grassland Ecosystem (Ministry of Education), Pratacultural Engineering Laboratory of Gansu Province, Sino-U.S. Centers for Grazing Land Ecosystem Sustainability, Gansu Agricultural University, Lanzhou, China.
| | - Long He
- College of Grassland Science, Key Laboratory of Grassland Ecosystem (Ministry of Education), Pratacultural Engineering Laboratory of Gansu Province, Sino-U.S. Centers for Grazing Land Ecosystem Sustainability, Gansu Agricultural University, Lanzhou, China
| |
Collapse
|
20
|
Shahtousi S, Talaee L. The effect of spermine on Tetranychus urticae-Cucumis sativus interaction. BMC PLANT BIOLOGY 2023; 23:575. [PMID: 37978429 PMCID: PMC10655325 DOI: 10.1186/s12870-023-04573-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 10/30/2023] [Indexed: 11/19/2023]
Abstract
BACKGROUND Two spotted spider mite, Tetranychus urticae (Acari: Tetranychidae) is one of the most important plant pests in the world. Due to increased resistance of mites to acaricides, it is necessary to use other methods such as inducing resistance in plants by natural compounds for pests' management. Polyamins such as spermine are effective in increasing plant resistance to biotic and abiotic stressors. In this research, the effect of spermine treatments in cucumber plants on life table parameters of T. urticae was investigated. Also, top-down effect of spermine and T. urticae on cucumber biochemical parameters was measured. In the experiments, 1, 2 and 3 mM spermine concentrations were used. RESULTS Amongst the spermine treatments, those mites that fed on cucumbers which received 1 mM spermine showed the shortest protonymphal period and higher ovipositon period, fecundity, gross and net reproductive rates and life expectancy compare to control. Treatment with 2 mM spermine lead to the longest teleochrysalis period and shortest range of age-stage-specific fecundity period. In addition, 2 mM spermine lowered intrinsic and finite rate of population increase in T. urticae. The longest larval period of T. urticae was observed in 3 mM spermine. Feeding of T. urticae from cucumber plants increased hydrogen peroxide (H2O2), malondialdehyde (MDA) content, electrolyte leakage (EL) level and ascorbate peroxidase (APX) activity but inhibited catalase (CAT) activity in this plant. Infested cucumber plants treated with 2 mM spermine showed lower H2O2 and MDA content and highest activity of APX and CAT on day 1 and 3 compare to the others. The 3 mM spermine increased H2O2 content in infested plants during the whole experiment as well as non-infested plants in day 5 and 9 only. This treatment induced the highest MDA content and lowest catalase activity on day1, 3 and 5 of experiment in infested plants. CONCLUSION This study showed that 2 mM spermine was the only effective concentration that reduce cucumber sensitivity to T. urticae. The trend of changes in biochemical parameters, especially H2O2, in 3 mM spermine was abnormal, and this concentration could be considered toxic.
Collapse
Affiliation(s)
- Shima Shahtousi
- Department of Plant Protection, College of Agriculture, Isfahan University of Technology, Isfahan, 84156-83111, Iran
| | - Ladan Talaee
- Department of Plant Protection, College of Agriculture, Isfahan University of Technology, Isfahan, 84156-83111, Iran.
| |
Collapse
|
21
|
Çavuşoğlu K, Çavuşoğlu D. Investigation of the potential role of fusicoccin, a fungal phytotoxin, in mitigating salt stress in onion roots. Sci Rep 2023; 13:9801. [PMID: 37328634 PMCID: PMC10275882 DOI: 10.1038/s41598-023-36917-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Accepted: 06/12/2023] [Indexed: 06/18/2023] Open
Abstract
Fusicoccin is a diterpene glycoside that plays an important role in the regulation of plant growth and development. Fusicoccin produced by Fusicoccum amydali fungus is known to affect plant growth positively with external applications due to its potential to stimulate the tolerance system of plants under stress conditions. In this study, it was aimed to reduce the negative effects of salt (0.15 M NaCl) stress on the germination and growth of onion (Allium cepa L.) bulbs by external fusicoccin (3 µM) application. For this purpose, the germination percentage, root length, root number, fresh weight, mitotic activity, micronucleus frequency, chromosomal abnormality, antioxidant enzyme activity, osmolyte accumulation, cell membrane damage and root anatomical structure were investigated in the current study. Salt stress caused a statistically significant difference (p < 0.05) in all examined parameters. External application of fusicoccin to onion bulbs germinated under salt stress conditions was found to be promising as a plant growth promoter and mitosis stimulator. In addition, fusicoccin application alleviated the harmful effects of salt stress on the chromosome structure and root anatomical structure and protected the cells from the cytotoxic and genotoxic effects of salt. Moreover, this application contributed to the fight against reactive oxygen species of onion plant and increased salt tolerance by regulating the accumulation of osmolyte substances such as proline and antioxidant enzymes such as superoxide dismutase and catalase, and by minimizing cell membrane damage in root cells. In conclusion, this study showed that exogenous application of 3 µM fusicoccin reduced the damage caused by oxidative stress in onion bulbs and served for healthy germination and growth.
Collapse
Affiliation(s)
- Kürşat Çavuşoğlu
- Faculty of Arts and Science, Department of Biology, Süleyman Demirel University, Isparta, Turkey.
| | - Dilek Çavuşoğlu
- Atabey Vocational High School, Department of Plant and Animal Production, Isparta University of Applied Sciences, Isparta, Turkey
| |
Collapse
|
22
|
Liu Y, Li J, Zeng J, Yu X, Sun X, Zhou Z, Xu J, Xu L, Li L. Complete oxidative degradation of diclofenac via coupling free radicals and oxygenases of a micro/nanostructured biogenic Mn oxide composite from engineered Pseudomonas sp. MB04R-2. JOURNAL OF HAZARDOUS MATERIALS 2023; 456:131657. [PMID: 37245362 DOI: 10.1016/j.jhazmat.2023.131657] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 05/06/2023] [Accepted: 05/16/2023] [Indexed: 05/30/2023]
Abstract
Oxidative degradation can effectively degrade aromatic emerging contaminants (ECs). However, the degradability of lone inorganic/biogenic oxides or oxidases is typically limited when treating polycyclic ECs. Herein, we report a dual-dynamic oxidative system comprising engineered Pseudomonas and biogenic Mn oxides (BMO), which completely degrades diclofenac (DCF), a representative halogen-containing polycyclic EC. Correspondingly, recombinant Pseudomonas sp. MB04R-2 was constructed via gene deletion and chromosomal insertion of a heterologous multicopper oxidase cotA, allowing for enhanced Mn(II)-oxidizing activity and rapid formation of the BMO aggregate complex. Additionally, we characterized it as a micro/nanostructured ramsdellite (MnO2) composite using multiple-phase composition and fine structure analyses. Furthermore, using real-time quantitative polymerase chain reaction, gene knockout, and expression complementation of oxygenase genes, we demonstrated the central and associative roles of intracellular oxygenases and cytogenic/BMO-derived free radicals (FRs) in degrading DCF and determined the effects of FR excitation and quenching on the DCF degradation efficiency. Finally, after identifying the degraded intermediates of 2H-labeled DCF, we constructed the DCF metabolic pathway. In addition, we evaluated the degradation and detoxification effects of the BMO composite on DCF-containing urban lake water and on biotoxicity in zebrafish embryos. Based on our findings, we proposed a mechanism for oxidative degradation of DCF by associative oxygenases and FRs.
Collapse
Affiliation(s)
- Yongxuan Liu
- National Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Jiaoqing Li
- Guangdong Provincial Key Laboratory of Conservation and Precision Utilization of Characteristic Agricultural Resources in Mountainous Areas, School of Life Sciences, Jiaying University, Meizhou 514015, China
| | - Jie Zeng
- National Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Xun Yu
- National Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Xiaowen Sun
- National Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Zhicheng Zhou
- National Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Jingjing Xu
- National Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Liangzheng Xu
- Guangdong Provincial Key Laboratory of Conservation and Precision Utilization of Characteristic Agricultural Resources in Mountainous Areas, School of Life Sciences, Jiaying University, Meizhou 514015, China
| | - Lin Li
- National Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China.
| |
Collapse
|
23
|
Kumar S, Masurkar P, Sravani B, Bag D, Sharma KR, Singh P, Korra T, Meena M, Swapnil P, Rajput VD, Minkina T. A review on phytotoxicity and defense mechanism of silver nanoparticles (AgNPs) on plants. JOURNAL OF NANOPARTICLE RESEARCH 2023; 25:54. [DOI: 10.1007/s11051-023-05708-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 03/05/2023] [Indexed: 06/18/2023]
|
24
|
Zhao YQ, Hu KD, Yao GF, Wang SY, Peng XJ, Zhang H. A D-cysteine desulfhydrase, SlDCD2, participates in tomato fruit ripening by modulating ROS homoeostasis and ethylene biosynthesis. HORTICULTURE RESEARCH 2023; 10:uhad014. [PMID: 36968183 PMCID: PMC10031741 DOI: 10.1093/hr/uhad014] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 01/26/2023] [Indexed: 06/18/2023]
Abstract
Hydrogen sulfide (H2S) is involved in multiple processes during plant growth and development. D-cysteine desulfhydrase (DCD) can produce H2S with D-cysteine as the substrate; however, the potential developmental roles of DCD have not been explored during the tomato lifecycle. In the present study, SlDCD2 showed increasing expression during fruit ripening. Compared with the control fruits, the silencing of SlDCD2 by pTRV2-SlDCD2 accelerated fruit ripening. A SlDCD2 gene-edited mutant was constructed by CRISPR/Cas9 transformation, and the mutant exhibited accelerated fruit ripening, decreased H2S release, higher total cysteine and ethylene contents, enhanced chlorophyll degradation and increased carotenoid accumulation. Additionally, the expression of multiple ripening-related genes, including NYC1, PAO, SGR1, PDS, PSY1, ACO1, ACS2, E4, CEL2, and EXP was enhanced during the dcd2 mutant tomato fruit ripening. Compared with the wild-type fruits, SlDCD2 mutation induced H2O2 and malondialdehyde (MDA) accumulation in fruits, which led to an imbalance in reactive oxygen species (ROS) metabolism. A correlation analysis indicated that H2O2 content was strongly positively correlated with carotenoids content, ethylene content and ripening-related gene expression and negatively correlated with the chlorophyll content. Additionally, the dcd2 mutant showed earlier leaf senescence, which may be due to disturbed ROS homeostasis. In short, our findings show that SlDCD2 is involved in H2S generation and that the reduction in endogenous H2S production in the dcd2 mutant causes accelerated fruit ripening and premature leaf senescence. Additionally, decreased H2S in the dcd2 mutant causes excessive H2O2 accumulation and increased ethylene release, suggesting a role of H2S and SlDCD2 in modulating ROS homeostasis and ethylene biosynthesis.
Collapse
Affiliation(s)
- Yu-Qi Zhao
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China
| | - Kang-Di Hu
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China
| | - Gai-Fang Yao
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China
| | - Si-Yue Wang
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China
| | - Xiang-Jun Peng
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China
| | - Hua Zhang
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China
| |
Collapse
|
25
|
Çavuşoğlu D. Modulation of NaCl-induced osmotic, cytogenetic, oxidative and anatomic damages by coronatine treatment in onion (Allium cepa L.). Sci Rep 2023; 13:1580. [PMID: 36709377 PMCID: PMC9884239 DOI: 10.1038/s41598-023-28849-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 01/25/2023] [Indexed: 01/29/2023] Open
Abstract
Coronatine (COR), a bacterial phytotoxin produced by Pseudomonas syringae, plays important roles in many plant growth processes. Onion bulbs were divided four groups to investigate the effects of COR against sodium chloride (NaCl) stress exposure in Allium cepa L. root tips. While control group bulbs were soaked in tap water medium, treatment group bulbs were grown in 0.15 M NaCl, 0.01 µM COR and 0.01 µM COR + 0.15 M NaCl medium, respectively. NaCl stress seriously inhibited the germination, root lenght, root number and fresh weight of the bulbs. It significantly decreased the mitotic index (MI), whereas dramatically increased the micronucleus (MN) frequency and chromosomal aberrations (CAs). Moreover, in order to determine the level of lipid peroxidation occurring in the cell membrane, malondialdehyde (MDA) content was measured and it was determined that it was at the highest level in the group germinated in NaCl medium alone. Similarly, it was revealed that the superoxide dismutase (SOD), catalase (CAT) and free proline contents in the group germinated in NaCl medium alone were higher than the other groups. On the other hand, NaCl stress caused significant injuries such as epidermis/cortex cell damage, MN formation in epidermis/cortex cells, flattened cells nuclei, unclear vascular tissue, cortex cell wall thickening, accumulation of certain chemical compounds in cortex cells and necrotic areas in the anatomical structure of bulb roots. However, exogenous COR application significantly alleviated the negative effects of NaCl stress on bulb germination and growth, antioxidant defense system, cytogenetic and anatomical structure. Thus, it has been proven that COR can be used as a protective agent against the harmful effects of NaCl on onion.
Collapse
Affiliation(s)
- Dilek Çavuşoğlu
- Department of Plant and Animal Production, Plant Protection Program, Atabey Vocational High School, Isparta University of Applied Sciences, Isparta, Turkey.
| |
Collapse
|
26
|
Behiry S, Soliman SA, Massoud MA, Abdelbary M, Kordy AM, Abdelkhalek A, Heflish A. Trichoderma pubescens Elicit Induced Systemic Resistance in Tomato Challenged by Rhizoctonia solani. J Fungi (Basel) 2023; 9:jof9020167. [PMID: 36836282 PMCID: PMC9961125 DOI: 10.3390/jof9020167] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 01/16/2023] [Accepted: 01/25/2023] [Indexed: 01/31/2023] Open
Abstract
Rhizoctonia solani causes severe diseases in many plant species, particularly root rot in tomato plants. For the first time, Trichoderma pubescens effectively controls R. solani in vitro and in vivo. R. solani strain R11 was identified using the ITS region (OP456527); meanwhile, T. pubescens strain Tp21 was characterized by the ITS region (OP456528) and two genes (tef-1 and rpb2). The antagonistic dual culture method revealed that T. pubescens had a high activity of 76.93% in vitro. A substantial increase in root length, plant height, shoot fresh and dry, and root fresh and dry weight was indicated after applying T. pubescens to tomato plants in vivo. Additionally, it significantly increased the chlorophyll content and total phenolic compounds. The treatment with T. pubescens exhibited a low disease index (DI, 16.00%) without significant differences with Uniform® fungicide at a concentration of 1 ppm (14.67%), while the R. solani-infected plants showed a DI of 78.67%. At 15 days after inoculation, promising increases in the relative expression levels of three defense-related genes (PAL, CHS, and HQT) were observed in all T. pubescens treated plants compared with the non-treated plants. Plants treated with T. pubescens alone showed the highest expression value, with relative transcriptional levels of PAL, CHS, and HQT that were 2.72-, 4.44-, and 3.72-fold higher in comparison with control plants, respectively. The two treatments of T. pubescens exhibited increasing antioxidant enzyme production (POX, SOD, PPO, and CAT), while high MDA and H2O2 levels were observed in the infected plants. The HPLC results of the leaf extract showed a fluctuation in polyphenolic compound content. T. pubescens application alone or for treating plant pathogen infection showed elevated phenolic acids such as chlorogenic and coumaric acids. Therefore, the ability of T. pubescens to inhibit the growth of R. solani, enhance the development of tomato plants, and induce systemic resistance supports the application of T. pubescens as a potential bioagent for managing root rot disease and productivity increase of crops.
Collapse
Affiliation(s)
- Said Behiry
- Agricultural Botany Department, Faculty of Agriculture (Saba Basha), Alexandria University, Alexandria 21531, Egypt
- Correspondence: (S.B.); (A.A.)
| | - Seham A. Soliman
- Plant Protection and Biomolecular Diagnosis Department, ALCRI, City of Scientific Research and Technological Applications, New Borg El Arab City 21934, Egypt
| | - Magdy A. Massoud
- Plant Protection Department, Faculty of Agriculture (Saba Basha), Alexandria University, Alexandria 21531, Egypt
| | - Moawad Abdelbary
- Plant Protection Department, Faculty of Agriculture (Saba Basha), Alexandria University, Alexandria 21531, Egypt
| | - Ahmed M. Kordy
- Plant Protection Department, Faculty of Agriculture (Saba Basha), Alexandria University, Alexandria 21531, Egypt
| | - Ahmed Abdelkhalek
- Plant Protection and Biomolecular Diagnosis Department, ALCRI, City of Scientific Research and Technological Applications, New Borg El Arab City 21934, Egypt
- Correspondence: (S.B.); (A.A.)
| | - Ahmed Heflish
- Agricultural Botany Department, Faculty of Agriculture (Saba Basha), Alexandria University, Alexandria 21531, Egypt
| |
Collapse
|
27
|
Kurepa J, Shull TE, Smalle JA. Friends in Arms: Flavonoids and the Auxin/Cytokinin Balance in Terrestrialization. PLANTS (BASEL, SWITZERLAND) 2023; 12:517. [PMID: 36771601 PMCID: PMC9921348 DOI: 10.3390/plants12030517] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/01/2023] [Revised: 01/17/2023] [Accepted: 01/18/2023] [Indexed: 06/18/2023]
Abstract
Land plants survive the challenges of new environments by evolving mechanisms that protect them from excess irradiation, nutrient deficiency, and temperature and water availability fluctuations. One such evolved mechanism is the regulation of the shoot/root growth ratio in response to water and nutrient availability by balancing the actions of the hormones auxin and cytokinin. Plant terrestrialization co-occurred with a dramatic expansion in secondary metabolism, particularly with the evolution and establishment of the flavonoid biosynthetic pathway. Flavonoid biosynthesis is responsive to a wide range of stresses, and the numerous synthesized flavonoid species offer two main evolutionary advantages to land plants. First, flavonoids are antioxidants and thus defend plants against those adverse conditions that lead to the overproduction of reactive oxygen species. Second, flavonoids aid in protecting plants against water and nutrient deficiency by modulating root development and establishing symbiotic relations with beneficial soil fungi and bacteria. Here, we review different aspects of the relationships between the auxin/cytokinin module and flavonoids. The current body of knowledge suggests that whereas both auxin and cytokinin regulate flavonoid biosynthesis, flavonoids act to fine-tune only auxin, which in turn regulates cytokinin action. This conclusion agrees with the established master regulatory function of auxin in controlling the shoot/root growth ratio.
Collapse
Affiliation(s)
| | | | - Jan A. Smalle
- Plant Physiology, Biochemistry, Molecular Biology Program, Department of Plant and Soil Sciences, University of Kentucky, Lexington, KY 40546, USA
| |
Collapse
|
28
|
Huang B, Cui J, Ran Y, Chen C, Li F, Zhang Y, Li Z, Xie E. Mechanism of macroalgae Gracilaria bailiniae responding to cadmium and lanthanum. FRONTIERS IN PLANT SCIENCE 2022; 13:1076526. [PMID: 36531398 PMCID: PMC9756850 DOI: 10.3389/fpls.2022.1076526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Accepted: 11/17/2022] [Indexed: 06/17/2023]
Abstract
Macroalgae can accumulate a wide array of metals, leading to their appliance as biomonitors of aquatic environments. With the rapid development of industrial and agricultural-based activities, Cd pollution in aquatic environments is considered an increasingly severe problem worldwide. Although La could alleviate the Cd stress in higher terrestrial plants, the response mechanisms of macroalgae to Cd and La are unknown. Along these lines, in this work, Cd significantly affected the growth, internal cellular structure, photosynthesis, pigment content, antioxidant enzyme activity, and lipid peroxidation level of G. bailiniae. However, the presence of La alleviated these adverse effects from Cd. Furthermore, the response mechanism of G. bailiniae to Cd was attributed to the self-antioxidant ability enhancement, membrane defense, and programmed-cellular regulation. However, the presence of La mediated the biosynthesis of both flavonoids and lipids, which inhibited the Cd accumulation, modulated algal stress signalling networks, renewed the impaired chlorophyll molecule, maintained the activity of the crucial enzyme, enhanced antioxidant ability, and maintained the stabilization of redox homeostasis, alleviating the adverse impact from Cd and improve the growth of G. bailiniae. The experimental results successfully demonstrate a new detoxicant to alleviate Cd stress, promoting a more comprehensive array of macroalgal applications.
Collapse
Affiliation(s)
- Bowen Huang
- Fishery College, Guangdong Ocean University, Zhanjiang, China
- Guangdong Laboratory of Marine Ecology Environment Monitoring and Warning, Zhanjiang, China
| | - Jianjun Cui
- Fishery College, Guangdong Ocean University, Zhanjiang, China
| | - Yu Ran
- Fishery College, Guangdong Ocean University, Zhanjiang, China
| | - Chunli Chen
- Fishery College, Guangdong Ocean University, Zhanjiang, China
| | - Feng Li
- Fishery College, Guangdong Ocean University, Zhanjiang, China
- Guangdong Laboratory of Marine Ecology Environment Monitoring and Warning, Zhanjiang, China
| | - Yulei Zhang
- Fishery College, Guangdong Ocean University, Zhanjiang, China
- Guangdong Laboratory of Marine Ecology Environment Monitoring and Warning, Zhanjiang, China
| | - Zailiang Li
- Fishery College, Guangdong Ocean University, Zhanjiang, China
| | - Enyi Xie
- Fishery College, Guangdong Ocean University, Zhanjiang, China
| |
Collapse
|
29
|
Meng L, Song W, Chen S, Hu F, Pang B, Cheng J, He B, Sun F. Widely targeted metabolomics analysis reveals the mechanism of quality improvement of flue-cured tobacco. FRONTIERS IN PLANT SCIENCE 2022; 13:1074029. [PMID: 36523627 PMCID: PMC9746875 DOI: 10.3389/fpls.2022.1074029] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 11/10/2022] [Indexed: 06/17/2023]
Abstract
Flue-curing of top leaves with stems is a widely applied curing technology. Owing to the presence of stems, the quality of flue-cured leaves was significantly improved. However, the contribution of stems to flue-cured leaves is still unknown. In this study, the differences in physicochemical properties and metabolomics data between separated leaves (stem(-)) and leaves with stems (stem(+)) were investigated. The metabolic profiling of stem(+) was significantly different from that of stem(-), with phytohormone indole-3-acetic acid (IAA) being one of the most differential metabolites. The presence of stems reduced the rate of water loss in leaves, which led to less ROS accumulation, higher antioxidant enzyme activities and a lower level of membrane lipid peroxidation in stem(+) than in stem(-). The presence of stems also helped maintain the cellular membrane integrity of leaf cells by preventing the accumulation of IAA in leaf cells. Better cellular membrane integrity during flue-curing means a lower risk of leaf browning. In addition, stem(+) had a lower starch content than stem(-) because of a higher level of amylase activity. In summary, these results indicated that the presence of stems caused metabolism changes in leaves, prevented flue-cured leaves from browning and enhanced starch degradation in leaves during flue-curing.
Collapse
Affiliation(s)
- Lin Meng
- Key Laboratory of Tobacco Biology and Processing, Ministry of Agriculture, Tobacco Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Qingdao, China
| | - Wenjing Song
- Key Laboratory of Tobacco Biology and Processing, Ministry of Agriculture, Tobacco Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Qingdao, China
| | - Shuaiwei Chen
- Technology Center, China Tobacco Shandong Industrial Co., Ltd, Jinan, China
| | - Fengqin Hu
- Excellence and Innovation Center, Jiangsu Academy of Agricultural Sciences (JAAS), Nanjing, China
| | - Bingwen Pang
- Excellence and Innovation Center, Jiangsu Academy of Agricultural Sciences (JAAS), Nanjing, China
| | - Junjie Cheng
- Excellence and Innovation Center, Jiangsu Academy of Agricultural Sciences (JAAS), Nanjing, China
| | - Bing He
- Excellence and Innovation Center, Jiangsu Academy of Agricultural Sciences (JAAS), Nanjing, China
| | - Fushan Sun
- Key Laboratory of Tobacco Biology and Processing, Ministry of Agriculture, Tobacco Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Qingdao, China
| |
Collapse
|
30
|
Wang Q, Hu J, Hu H, Li Y, Xiang M, Wang D. Integrated eco-physiological, biochemical, and molecular biological analyses of selenium fortification mechanism in alfalfa. PLANTA 2022; 256:114. [PMID: 36370252 DOI: 10.1007/s00425-022-04027-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Accepted: 11/03/2022] [Indexed: 06/16/2023]
Abstract
Foliar Se (IV) application at 100 mg/kg can act as a positive bio-stimulator of redox, photosynthesis, and nutrient metabolism in alfalfa via phenotypes, nutritional compositions, biochemistry, combined with transcriptome analysis. Selenium (Se) is an essential element for mammals, and plants are the primary source of dietary Se. However, Se usually has dual (beneficial/toxic) effects on the plant itself. Alfalfa (Medicago sativa L.) is one of the most important forage resources in the world due to its high nutritive value. In this study, we have investigated the effects of sodium selenite (Se (IV)) (0, 100, 200, 300, and 500 mg/kg) on eco-physiological, biochemical, and transcriptional mechanisms in alfalfa. The phenotypic and nutritional composition alterations revealed that lower Se (IV) (100 mg/kg) levels positively affected alfalfa; it enhanced the antioxidant activity, which may contribute to redox homeostasis and chloroplast function. At 100 mg/kg Se (IV) concentration, the H2O2, and malondialdehyde (MDA) contents decreased by 36.72% and 22.62%, respectively, whereas the activity of glutathione peroxidase (GPX) increased by 31.10%. Se supplementation at 100 mg/kg increased the plant pigments contents, the light-harvesting capacity of PSII (Fv/Fm) and PSI (ΔP700max), and the carbon fixation efficiency, which was demonstrated by enhanced photosynthesis (37.6%). Furthermore, alfalfa shifted carbon flux to protein synthesis to improve quality at 100 mg/kg of Se (IV) by upregulating carbohydrate and amino acid metabolic genes. On the contrary, at 500 mg/kg, Se (IV) became toxic. Higher Se (IV) disordered the plant antioxidant system, increasing H2O2 and MDA by 14.2 and 4.3%, respectively. Moreover, photosynthesis was inhibited by 20.2%, and more structural substances, such as lignin, were synthesized. These results strongly suggest that Se (IV) at a concentration of 100 mg/kg act as the positive bio-stimulator of redox metabolism, photosynthesis, and nutrient in alfalfa.
Collapse
Affiliation(s)
- Qingdong Wang
- School of Life Sciences, Zhengzhou University, Zhengzhou, 450001, Henan, China
- Henan Key Laboratory of Bioactive Macromolecules, Zhengzhou, 450001, Henan, China
- Henan Grass and Animal Engineering Technology Research Center, Zhengzhou, 450046, Henan, China
| | - Jinke Hu
- School of Life Sciences, Zhengzhou University, Zhengzhou, 450001, Henan, China
- Henan Key Laboratory of Bioactive Macromolecules, Zhengzhou, 450001, Henan, China
- Henan Grass and Animal Engineering Technology Research Center, Zhengzhou, 450046, Henan, China
| | - Huafeng Hu
- School of Life Sciences, Zhengzhou University, Zhengzhou, 450001, Henan, China.
- Henan University of Animal Husbandry and Economy, Zhengzhou, 450046, Hennan, China.
- Henan Key Laboratory of Bioactive Macromolecules, Zhengzhou, 450001, Henan, China.
- Henan Grass and Animal Engineering Technology Research Center, Zhengzhou, 450046, Henan, China.
| | - Yan Li
- School of Life Sciences, Zhengzhou University, Zhengzhou, 450001, Henan, China
- Henan Key Laboratory of Bioactive Macromolecules, Zhengzhou, 450001, Henan, China
- Henan Grass and Animal Engineering Technology Research Center, Zhengzhou, 450046, Henan, China
| | - Meiling Xiang
- School of Life Sciences, Zhengzhou University, Zhengzhou, 450001, Henan, China
- Henan Key Laboratory of Bioactive Macromolecules, Zhengzhou, 450001, Henan, China
- Henan Grass and Animal Engineering Technology Research Center, Zhengzhou, 450046, Henan, China
| | - Dezhen Wang
- School of Life Sciences, Zhengzhou University, Zhengzhou, 450001, Henan, China
- Henan Key Laboratory of Bioactive Macromolecules, Zhengzhou, 450001, Henan, China
- Henan Grass and Animal Engineering Technology Research Center, Zhengzhou, 450046, Henan, China
| |
Collapse
|
31
|
Galicia-Campos E, García-Villaraco Velasco A, Montero-Palmero MB, Gutiérrez-Mañero FJ, Ramos-Solano B. Modulation of Photosynthesis and ROS Scavenging Response by Beneficial Bacteria in Olea europaea Plantlets under Salt Stress Conditions. PLANTS (BASEL, SWITZERLAND) 2022; 11:2748. [PMID: 36297772 PMCID: PMC9611751 DOI: 10.3390/plants11202748] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 09/28/2022] [Accepted: 10/07/2022] [Indexed: 06/16/2023]
Abstract
Climate change consequences for agriculture involve an increase of saline soils which results in lower crop yields due to increased oxidative stress in plants. The present study reports the use of Plant Growth Promoting Bacteria (PGPB) as a tool to modulate plant innate mechanisms of adaptation to water stress (salinity and drought) in one year-old olive plantlets var. Arbosana and Arbequina. Integration of external changes in plants involve changes in Reactive Oxygen Species (ROS) that behave as signals to trigger plant adaptative mechanisms; however, they become toxic in high concentrations. For this reason, plants are endowed with antioxidant systems to keep ROS under control. So, the working hypothesis is that specific beneficial strains will induce a systemic response able to modulate oxidative stress and improve plant adaptation to water stress. Ten strains were assayed, evaluating changes in photosynthesis, pigments, ROS scavenging enzymes and antioxidant molecules, osmolytes and malondialdehyde, as oxidative stress marker. Photosynthesis and photosynthetic pigments were the most affected variables. Despite the specific response of each variety, the favorite targets of PGPBs to improve plant fitness were photosynthetic pigments and the antioxidant pools of glutathione and ascorbate. Our results show the potential of PGPBs to improve plant fitness modulating oxidative stress.
Collapse
|
32
|
Maltseva SY, Kulikovskiy MS, Maltsev YI. Functional State of Coelastrella multistriata (Sphaeropleales, Chlorophyta) in an Enrichment Culture. Microbiology (Reading) 2022. [DOI: 10.1134/s0026261722601385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
33
|
Lin YJ, Feng YX, Zhang Q, Yu XZ. Proline-mediated modulation on DNA repair pathway in rice seedlings under chromium stress by integrating gene chip and co-expression network analysis. ECOTOXICOLOGY (LONDON, ENGLAND) 2022; 31:1266-1275. [PMID: 36121537 DOI: 10.1007/s10646-022-02586-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 09/06/2022] [Indexed: 05/24/2023]
Abstract
Chromium (Cr) stress can cause oxidative burst to plants. Application of exogenous proline (Pro) is one of the most effective approaches to improve the tolerance of plants to Cr stress. In this study, we integrated the data of gene chip with co-expression network analysis to identify the key pathways involved in the DNA repair processes in rice seedlings under Cr(VI) stress. Based on KEGG pathway analysis, 158 genes identified are activated in five different types of DNA repair pathways, namely base excision repair (BER, 20 genes), mismatch repair (MMR, 30 genes), nonhomologous end joining (NHEJ, 8 genes), nucleotide excision repair (NER, 56 genes) and homologous recombination (HR, 44 genes). Co-expression network analysis showed that genes activated in DNA repair pathways were categorized into six different modules, wherein Module 1 (45.36%), Module 2 (27.84%) and Module 3 (19.59%) carried more weight than others. Integrating the data of gene chip and co-expression network analysis indicated that coordinated actions of HR and NER pathways are mainly associated with DNA repair processes in Cr(VI)-treated rice seedlings supplied with exogenous Pro. OsCSB, OsXPG, OsBRIP1, OsRAD51C, OsRAD51A2, OsRPA, OsTOPBP1C, OsTOP3, and OsXRCC3 activated in the HR pathway had a stronger impact on repairing DNA damage induced by Cr(VI) stress in rice seedlings supplied with exogenous Pro, while OsXPB1, OsTTDA2, OsTFIIH1, OsXPC, OsRAD23, OsDSS1, and OsRPA located at the NER pathway showed more contribution to repairing DNA damage than others.
Collapse
Affiliation(s)
- Yu-Juan Lin
- The Guangxi Key Laboratory of Theory & Technology for Environmental Pollution Control, College of Environmental Science & Engineering, Guilin University of Technology, Guilin, 541004, People's Republic of China
| | - Yu-Xi Feng
- The Guangxi Key Laboratory of Theory & Technology for Environmental Pollution Control, College of Environmental Science & Engineering, Guilin University of Technology, Guilin, 541004, People's Republic of China
| | - Qing Zhang
- The Guangxi Key Laboratory of Theory & Technology for Environmental Pollution Control, College of Environmental Science & Engineering, Guilin University of Technology, Guilin, 541004, People's Republic of China
| | - Xiao-Zhang Yu
- The Guangxi Key Laboratory of Theory & Technology for Environmental Pollution Control, College of Environmental Science & Engineering, Guilin University of Technology, Guilin, 541004, People's Republic of China.
| |
Collapse
|
34
|
Elsharkawy MM, Alotibi FO, Al-Askar AA, Adnan M, Kamran M, Abdelkhalek A, Behiry SI, Saleem MH, Ahmad AA, Khedr AA. Systemic Resistance Induction of Potato and Tobacco Plants against Potato Virus Y by Klebsiella oxytoca. Life (Basel) 2022; 12:life12101521. [PMID: 36294956 PMCID: PMC9605255 DOI: 10.3390/life12101521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 09/21/2022] [Accepted: 09/26/2022] [Indexed: 11/25/2022] Open
Abstract
Simple Summary Klebsiella oxytoca, as a type of plant growth-promoting rhizobacteria (PGPR), was studied with regards to promoting plant growth and inducing plant systemic resistance against Potato Virus Y (PVY). The results of greenhouse experiments with tobacco and potato plants demonstrated that treatments with the Klebsiella oxytoca and biochar significantly enhanced the growth, while clearly lowering the disease severity and concentration of PVY. An RT-PCR analysis of the defense genes in the tobacco and potato treated with the Klebsiella oxytoca and biochar revealed an association with enhancing the systemic resistance of tobacco and potato to PVY. Klebsiella oxytoca and biochar may be considered valuable options to control PVY in potato and other Solanaceae crops. Abstract Potato Virus Y (PVY) is a serious potato disease that may significantly decrease potato production. To suppress potato virus infection, several measures have been undertaken. The utilization of plant growth-promoting rhizobacteria is one of these methods. Biochar soil treatment is believed to provide plants with a number of advantages, including increased plant growth and the development of systemic resistance to a variety of plant diseases. The goal of this research was to see whether adding biochar and Klebsiella oxytoca to the soil might cause PVY resistance and enhance the involved mechanisms in PVY resistance. Potato and tobacco seedlings treated with Klebsiella oxytoca and biochar exhibited the same impact of significant symptom reduction, with complete negative ELISA findings, supporting the antiviral activity of K. oxytoca and biochar. Furthermore, owing to the connection between the ISR implicated substrates, significant amounts of polyphenol oxidase, catalase, and superoxide dismutase were observed in treated plants, with the same behavior as defense genes expression levels. It may be a step forward in the development of biochar and K. oxytoca as potential environmentally friendly disease control strategies against PVY.
Collapse
Affiliation(s)
- Mohsen Mohamed Elsharkawy
- Department of Agricultural Botany, Faculty of Agriculture, Kafrelsheikh University, Kafr El-Sheikh 33516, Egypt
- Correspondence: ; Tel.: +20-01065772170
| | - Fatimah O. Alotibi
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Abdulaziz A. Al-Askar
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Muhammad Adnan
- Department of Plant, Soil and Microbial Sciences, Michigan State University, East Lansing, MI 48824, USA
| | - Muhammad Kamran
- School of Agriculture, Food and Wine, The University of Adelaide, Adelaide, SA 5005, Australia
| | - Ahmed Abdelkhalek
- Plant Protection and Biomolecular Diagnosis Department, ALCRI, City of Scientific Research and Technological Applications, New Borg El Arab City, Alexandria 21934, Egypt
| | - Said I. Behiry
- Agricultural Botany Department, Faculty of Agriculture (Saba Basha), Alexandria University, Alexandria 21531, Egypt
| | - Muhammad Hamzah Saleem
- MOA Key Laboratory of Crop Ecophysiology and Farming System Core in the Middle Reaches of the Yangtze River, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Abdelmonim Ali Ahmad
- Department of Plant Pathology, Faculty of Agriculture, Minia University, El-Minia 61519, Egypt
| | - Amr Ahmed Khedr
- Department of Agricultural Botany, Faculty of Agriculture, Kafrelsheikh University, Kafr El-Sheikh 33516, Egypt
| |
Collapse
|
35
|
Antifungal Peptide P852 Controls Fusarium Wilt in Faba Bean (Viciafaba L.) by Promoting Antioxidant Defense and Isoquinoline Alkaloid, Betaine, and Arginine Biosyntheses. Antioxidants (Basel) 2022; 11:antiox11091767. [PMID: 36139841 PMCID: PMC9495604 DOI: 10.3390/antiox11091767] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 09/02/2022] [Accepted: 09/05/2022] [Indexed: 11/24/2022] Open
Abstract
Green pesticides are highly desirable, as they are environmentally friendly and efficient. In this study, the antifungal peptide P852 was employed to suppress Fusarium wilt in the Faba bean. The disease index and a range of physiological and metabolomic analyses were performed to explore the interactions between P852 and the fungal disease. The incidence and disease index of Fusarium wilt were substantially decreased in diseased Faba beans that were treated with two different concentrations of P852 in both the climate chamber and field trial. For the first time, P852 exhibited potent antifungal effects on Fusarium in an open field condition. To explore the mechanisms that underlie P852′s antifungal effects, P852 treatment was found to significantly enhance antioxidant enzyme capacities including guaiacol peroxidase (POD), superoxide dismutase (SOD), catalase (CAT), and the activities of antifungal enzymes including chitinase and β-1,3-glucanase, as well as plant dry and fresh weights, and chlorophyll content compared to the control group (p ≤ 0.05). Metabolomics analysis of the diseased Faba bean treated with P852 showed changes in the TCA cycle, biological pathways, and many primary and secondary metabolites. The Faba bean treated with a low concentration of P852 (1 μg/mL, IC50) led to upregulated arginine and isoquinoline alkaloid biosynthesis, whereas those treated with a high concentration of P852 (10 μg/mL, MFC) exhibited enhanced betaine and arginine accumulation. Taken together, these findings suggest that P852 induces plant tolerance under Fusarium attack by enhancing the activities of antioxidant and antifungal enzymes, and restoring plant growth and development.
Collapse
|
36
|
Chu Y, Zhang C, Chen X, Li X, Ren N, Ho SH. Multistage defense response of microalgae exposed to pharmaceuticals in wastewater. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.08.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
37
|
Yao Y, Yuan H, Wu G, Ma C, Gong Z. Proteome Analysis of the Soybean Nodule Phosphorus Response Mechanism and Characterization of Stress-Induced Ribosome Structural and Protein Expression Changes. FRONTIERS IN PLANT SCIENCE 2022; 13:908889. [PMID: 35755677 PMCID: PMC9218819 DOI: 10.3389/fpls.2022.908889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 05/11/2022] [Indexed: 06/15/2023]
Abstract
In agroecosystems, a plant-usable form of nitrogen is mainly generated by legume-based biological nitrogen fixation, a process that requires phosphorus (P) as an essential nutrient. To investigate the physiological mechanism whereby phosphorus influences soybean nodule nitrogen fixation, soybean root nodules were exposed to four phosphate levels: 1 mg/L (P stress), 11 mg/L (P stress), 31 mg/L (Normal P), and 61 mg/L (High P) then proteome analysis of nodules was conducted to identify phosphorus-associated proteome changes. We found that phosphorus stress-induced ribosomal protein structural changes were associated with altered key root nodule protein synthesis profiles. Importantly, up-regulated expression of peroxidase was observed as an important phosphorus stress-induced nitrogen fixation-associated adaptation that supported two nodule-associated activities: scavenging of reactive oxygen species (ROS) and cell wall growth. In addition, phosphorus transporter (PT) and purple acid phosphatase (PAPs) were up-regulated that regulated phosphorus transport and utilization to maintain phosphorus balance and nitrogen fixation function in phosphorus-stressed root nodules.
Collapse
Affiliation(s)
- Yubo Yao
- Heilongjiang Academy of Agricultural Sciences Postdoctoral Programme, Harbin, China
- Institute of Industrial Crops, Heilongjiang Academy of Agricultural Sciences, Harbin, China
| | - Hongmei Yuan
- Institute of Industrial Crops, Heilongjiang Academy of Agricultural Sciences, Harbin, China
| | - Guangwen Wu
- Institute of Industrial Crops, Heilongjiang Academy of Agricultural Sciences, Harbin, China
| | - Chunmei Ma
- College of Agriculture, Northeast Agricultural University, Harbin, China
| | - Zhenping Gong
- College of Agriculture, Northeast Agricultural University, Harbin, China
| |
Collapse
|
38
|
Lucas JA, García-Villaraco A, Ramos-Solano B, Akdi K, Gutierrez-Mañero FJ. Lipo-Chitooligosaccharides (LCOs) as Elicitors of the Enzymatic Activities Related to ROS Scavenging to Alleviate Oxidative Stress Generated in Tomato Plants under Stress by UV-B Radiation. PLANTS 2022; 11:plants11091246. [PMID: 35567247 PMCID: PMC9101198 DOI: 10.3390/plants11091246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Accepted: 04/29/2022] [Indexed: 12/02/2022]
Abstract
Exposure to ultraviolet-B (UV-B) radiation can lead to oxidative damage in plants, increasing reactive oxygen species (ROS) production. To overcome ROS burst, plants have antioxidant mechanisms related to ROS scavenging which can be improved by elicitation with biological agents or derived molecules (elicitors), as they can trigger a physiological alert state called “priming”. This work describes the effects of lipo-chitooligosaccharides (LCOs) treatment applied to tomato plants under UV-B stress. The LCOs used in the study are produced by three species of the genus Ensifer (formerly Sinorhizobium) (SinCEU-1, SinCEU-2, and SinCEU-3) were assayed on tomato plants under UV-B stress. LCOs were able to significantly increase most of the enzymatic activities related to ROS scavenging while non-enzymatic antioxidants were not modified. This response was associated with a lower oxidative stress, according to malondialdehyde (MDA) levels and the higher antioxidant capacity of the plants. Furthermore, the photosynthetic efficiency of LCOs-treated plants indicated a better physiological state than the control plants. Therefore, although more studies and deepening of certain aspects are necessary, LCOs have shown great potential to protect plants from high UV-B radiation conditions.
Collapse
Affiliation(s)
- José A. Lucas
- Plant Physiology, Pharmaceutical and Health Sciences Department, Faculty of Pharmacy, Universidad San Pablo-CEU Universities, 28668 Boadilla del Monte, Spain; (A.G.-V.); (B.R.-S.); (F.J.G.-M.)
- Correspondence:
| | - Ana García-Villaraco
- Plant Physiology, Pharmaceutical and Health Sciences Department, Faculty of Pharmacy, Universidad San Pablo-CEU Universities, 28668 Boadilla del Monte, Spain; (A.G.-V.); (B.R.-S.); (F.J.G.-M.)
| | - Beatriz Ramos-Solano
- Plant Physiology, Pharmaceutical and Health Sciences Department, Faculty of Pharmacy, Universidad San Pablo-CEU Universities, 28668 Boadilla del Monte, Spain; (A.G.-V.); (B.R.-S.); (F.J.G.-M.)
| | - Khalid Akdi
- Trichodex S.A., Polígono Industrial La Isla, Rio Viejo 57-59, 41703 Sevilla, Spain;
| | - Francisco Javier Gutierrez-Mañero
- Plant Physiology, Pharmaceutical and Health Sciences Department, Faculty of Pharmacy, Universidad San Pablo-CEU Universities, 28668 Boadilla del Monte, Spain; (A.G.-V.); (B.R.-S.); (F.J.G.-M.)
| |
Collapse
|
39
|
Qin S, Xu Y, Nie Z, Liu H, Gao W, Li C, Zhao P. Metabolomic and antioxidant enzyme activity changes in response to cadmium stress under boron application of wheat (Triticum aestivum). ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:34701-34713. [PMID: 35040057 DOI: 10.1007/s11356-021-17123-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 10/15/2021] [Indexed: 06/14/2023]
Abstract
Boron (B) has previously been shown to inhibit cadmium (Cd) uptake in wheat. Here, we investigated the physiological response of external B application (C for no B added, B for B added, B+Cd for B and Cd added, B/Cd for B 24 h pretreatment before Cd added, B and Cd were 46.2 μM and 5 μM, respectively) on wheat growth under Cd stress. The results showed that the wheat growth was significantly weaker under Cd treatment, while B application did not significantly improve the wheat growth under Cd stress. However, B application decreased Cd concentrations and malondialdehyde (MDA) concentrations of shoot and root. The key enzyme activities including superoxide dismutase (SOD) and peroxidase (POD) significantly increased under Cd treatments while decreased under B treatments. Further, a total of 198, 680 and 204 of the differential metabolites were isolated between B and C treatment, Cd and C treatment and B+Cd and Cd treatment, respectively. The metabolites with up-accumulation in B application (B+Cd) roots were mainly galactaric acid, citric acid, N6-galacturonyl-L-lysine, D-glucose, while the metabolites with down-accumulation were mainly threoninyl-tryptophan and C16 sphinganine. The differential metabolic pathways were mainly concentrated in linoleic acid metabolism, galactose metabolism, sphingolipid metabolism, glycolysis/gluconeogenesis, propanoate metabolism in diabetic complications between B+Cd treatment and B treatment. The results indicate that B alleviates Cd toxicity in winter wheat by inhibiting Cd uptake, increasing antioxidant enzyme activity and changing metabolites.
Collapse
Affiliation(s)
- Shiyu Qin
- College of Resources and Environment, Henan Agricultural University, No. 63, Nongye Road, Jinshui District, Zhengzhou, 450002, Henan, China
- Key Laboratory of Soil Pollution and Remediation of Henan Province, Zhengzhou, 450002, China
| | - Yafang Xu
- College of Resources and Environment, Henan Agricultural University, No. 63, Nongye Road, Jinshui District, Zhengzhou, 450002, Henan, China
- Key Laboratory of Soil Pollution and Remediation of Henan Province, Zhengzhou, 450002, China
| | - Zhaojun Nie
- College of Resources and Environment, Henan Agricultural University, No. 63, Nongye Road, Jinshui District, Zhengzhou, 450002, Henan, China
- Key Laboratory of Soil Pollution and Remediation of Henan Province, Zhengzhou, 450002, China
| | - Hongen Liu
- College of Resources and Environment, Henan Agricultural University, No. 63, Nongye Road, Jinshui District, Zhengzhou, 450002, Henan, China
- Key Laboratory of Soil Pollution and Remediation of Henan Province, Zhengzhou, 450002, China
| | - Wei Gao
- College of Resources and Environment, Henan Agricultural University, No. 63, Nongye Road, Jinshui District, Zhengzhou, 450002, Henan, China
- Key Laboratory of Soil Pollution and Remediation of Henan Province, Zhengzhou, 450002, China
| | - Chang Li
- College of Resources and Environment, Henan Agricultural University, No. 63, Nongye Road, Jinshui District, Zhengzhou, 450002, Henan, China
- Key Laboratory of Soil Pollution and Remediation of Henan Province, Zhengzhou, 450002, China
| | - Peng Zhao
- College of Resources and Environment, Henan Agricultural University, No. 63, Nongye Road, Jinshui District, Zhengzhou, 450002, Henan, China.
- Key Laboratory of Soil Pollution and Remediation of Henan Province, Zhengzhou, 450002, China.
| |
Collapse
|
40
|
Popov VN, Syromyatnikov MY, Franceschi C, Moskalev AA, Krutovsky KV, Krutovsky KV. Genetic mechanisms of aging in plants: What can we learn from them? Ageing Res Rev 2022; 77:101601. [PMID: 35278719 DOI: 10.1016/j.arr.2022.101601] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 02/03/2022] [Accepted: 03/02/2022] [Indexed: 12/18/2022]
Abstract
Plants hold all records in longevity. Their aging is a complex process. In the presented review, we analyzed published data on various aspects of plant aging with focus on any inferences that could shed a light on aging in animals and help to fight it in human. Plant aging can be caused by many factors, such as telomere depletion, genomic instability, loss of proteostasis, changes in intercellular interaction, desynchronosis, autophagy misregulation, epigenetic changes and others. Plants have developed a number of mechanisms to increase lifespan. Among these mechanisms are gene duplication ("genetic backup"), the active work of telomerases, abundance of meristematic cells, capacity of maintaining the meristems permanently active and continuous activity of phytohormones. Plant aging usually occurs throughout the whole perennial life, but could be also seasonal senescence. Study of causes for seasonal aging can also help to uncover the mechanisms of plant longevity. The influence of different factors such as microbiome communities, glycation, alternative oxidase activity, mitochondrial dysfunction on plant longevity was also reviewed. Adaptive mechanisms of long-lived plants are considered. Further comparative study of the mechanisms underlying longevity of plants is necessary. This will allow us to reach a potentially new level of understanding of the aging process of plants.
Collapse
|
41
|
Endophytic aspergillus oryzae reprograms Abelmoschus esculentus L. to higher growth under salt stress via regulation of physiochemical attributes and antioxidant system. Biologia (Bratisl) 2022. [DOI: 10.1007/s11756-022-01096-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
42
|
Kang S, Kim JE, Zhen S, Kim J. Mild-Intensity UV-A Radiation Applied Over a Long Duration Can Improve the Growth and Phenolic Contents of Sweet Basil. FRONTIERS IN PLANT SCIENCE 2022; 13:858433. [PMID: 35519818 PMCID: PMC9062229 DOI: 10.3389/fpls.2022.858433] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 03/28/2022] [Indexed: 06/14/2023]
Abstract
UV-A radiation (320-400 nm) is an abiotic stressor that may be used to enhance the production of beneficial secondary metabolites in crops such as leafy vegetables. However, tradeoffs between enhanced phytochemical contents and overall growth/yield reductions have been reported. The responses varied depending on the UV-A intensity, spectral peak, exposure time, species, and varieties. We quantified the changes in growth, morphology, photosynthesis, and phenolic contents of sweet basil grown under a base red/blue/green LED light with four supplemental UV-A intensity treatments (0, 10, 20, and 30 W·m-2) in an indoor environment over 14 days. The objective was to determine whether UV-A radiation could be utilized to improve both yield and quality of high-value sweet basil in a controlled production environment. Biomass harvested at 14 days after treatment (DAT) was highest under mild-intensity UV-A treatment of 10 W·m-2 and lowest under high-intensity UV-A treatment of 30 W·m-2. The total leaf area and the number of leaves were significantly lower under the 30 W·m-2 treatment than under the 10 and 20 W·m-2 treatments at 14 DAT. The maximum quantum efficiency of photosystem II (PSII) for photochemistry (Fv/Fm ) showed a gradual decrease under the 20 and 30 W·m-2 treatments from 3 to 14 DAT, whereas Fv/Fm remained relatively constant under the 0 and 10 W·m-2 treatments over the entire 14 days. The leaf net photosynthesis rate showed a significant decrease of 17.4% in the 30 W·m-2 treatment compared to that in the 10 W·m-2 treatment at 14 DAT. Phenolic contents (PAL enzyme activity, total phenolic concentration, and antioxidant capacity) were the highest under the 20 W·m-2 treatment, followed by the 10, 30, and 0 W·m-2 treatments. Overall, our results indicate that the biomass production and accumulation of beneficial phenolic compounds in sweet basil varied depending on the intensity and duration of UV-A application. Mild UV-A radiation (10-20 W·m-2) can be a beneficial stressor to improve sweet basil yield and quality over relatively long-term cultivation.
Collapse
Affiliation(s)
- Seonghwan Kang
- Department of Horticultural Sciences, Texas A&M University, College Station, TX, United States
| | - Jo Eun Kim
- Department of Horticultural Biotechnology, Korea University, Seoul, South Korea
| | - Shuyang Zhen
- Department of Horticultural Sciences, Texas A&M University, College Station, TX, United States
| | - Jongyun Kim
- Department of Plant Biotechnology, Korea University, Seoul, South Korea
| |
Collapse
|
43
|
Integrative Seed and Leaf Treatment with Ascorbic Acid Extends the Planting Period by Improving Tolerance to Late Sowing Influences in Parsley. HORTICULTURAE 2022. [DOI: 10.3390/horticulturae8040334] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Abnormal production of reactive oxygen species (ROS) is an undesirable event which occurs in plants due to stress. To meet this event, plants synthesize ROS-neutralizing compounds, including the non-enzymatic oxidant scavenger known as vitamin C: ascorbic acid (AsA). In addition to scavenging ROS, AsA modulates many vital functions in stressed or non-stressed plants. Thus, two-season (2018/2019 and 2019/2020) trials were conducted to study the effect of integrative treatment (seed soaking + foliar spray) using 1.0 or 2.0 mM AsA vs. distilled water (control) on the growth, seed yield, and oil yield of parsley plants under three sowing dates (SDs; November, December, and January, which represent adverse conditions of late sowing) vs. October as the optimal SD (control). The ion balance, osmotic-modifying compounds, and different antioxidants were also studied. The experimental layout was a split plot in a completely randomized block design. Late sowing (December and January) noticeably reduced growth traits, seed and oil yield components, and chlorophyll and nutrient contents. However, soluble sugar, proline, and AsA contents were significantly increased along with the activities of catalase (CAT) and superoxide dismutase (SOD). Under late sowing conditions, the use of AsA significantly increased growth, different yields, essential oil fractions, CAT and SOD activities, and contents of chlorophylls, nutrients, soluble sugars, free proline, and AsA. The interaction treatments of SDs and AsA concentrations indicated that AsA at a concentration of 2 mM was more efficient in conferring greater tolerance to adverse conditions of late sowing in parsley plants. Therefore, this study recommends 2.0 mM AsA for integrative (seed soaking + foliar spraying) treatment to prolong the sowing period of parsley seeds (from October up to December) and avoid damage caused by adverse conditions of late sowing.
Collapse
|
44
|
Algicidal Effects of a High-Efficiency Algicidal Bacterium Shewanella Y1 on the Toxic Bloom-Causing Dinoflagellate Alexandrium pacificum. Mar Drugs 2022; 20:md20040239. [PMID: 35447912 PMCID: PMC9024950 DOI: 10.3390/md20040239] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 03/16/2022] [Accepted: 03/24/2022] [Indexed: 02/06/2023] Open
Abstract
Alexandriumpacificum is a typical toxic bloom-forming dinoflagellate, causing serious damage to aquatic ecosystems and human health. Many bacteria have been isolated, having algicidal effects on harmful algal species, while few algicidal bacteria have been found to be able to lyse A. pacificum. Herein, an algicidal bacterium, Shewanella Y1, with algicidal activity to the toxic dinoflagellate A. pacificum, was isolated from Jiaozhou Bay, China, and the physiological responses to oxidative stress in A. pacificum were further investigated to elucidate the mechanism involved in Shewanella Y1. Y1 exhibited a significant algicidal effect (86.64 ± 5.04% at 24 h) and algicidal activity in an indirect manner. The significant declines of the maximal photosynthetic efficiency (Fv/Fm), initial slope of the light limited region (alpha), and maximum relative photosynthetic electron transfer rate (rETRmax) indicated that the Y1 filtrate inhibited photosynthetic activities of A. pacificum. Impaired photosynthesis induced the overproduction of reactive oxygen species (ROS) and caused strong oxidative damage in A. pacificum, ultimately inducing cell death. These findings provide a better understanding of the biological basis of complex algicidal bacterium-harmful algae interactions, providing a potential source of bacterial agent to control harmful algal blooms.
Collapse
|
45
|
Krishnamurthy P, Pothiraj R, Suthanthiram B, Somasundaram SM, Subbaraya U. Phylogenomic classification and synteny network analyses deciphered the evolutionary landscape of aldo-keto reductase (AKR) gene superfamily in the plant kingdom. Gene 2022; 816:146169. [PMID: 35026291 DOI: 10.1016/j.gene.2021.146169] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 10/29/2021] [Accepted: 12/15/2021] [Indexed: 11/18/2022]
Abstract
Aldo-keto reductase-domain (PF00248) containing proteins (AKRs) are NAD(P)(H)-dependent oxidoreductases of a multigene superfamily that mediate versatile functions in plants ranging from detoxification, metal chelation, potassium ion efflux to specialized metabolism. To uncover the complete repertoire of AKR gene superfamily in plants, a systematic kingdom-wide identification, phylogeny reconstruction, classification and synteny network clustering analyses were performed in this study using 74 diverse plant genomes. Plant AKRs were omnipresent, legitimately classified into 4 groups (based on phylogeny) and 14 subgroups (based on the ≥ 60% of protein sequence identity). Species composition of AKR subgroups highlights their distinct emergence during plant evolution. Loss of AKR subgroups among plants was apparent and that various lineage-, order/family- and species-specific losses were observed. The subgroups IA, IVB and IVF were flourished and diversified well during plant evolution, likely related to the complexity of plant's specialized metabolism and environmental adaptation. About 65% of AKRs were in genomic synteny regions across the plant kingdom and the AKRs relevant to important functions (e.g. vitamin B6 metabolism) were in profoundly conserved angiosperm-wide synteny communities. This study underscores the evolutionary landscape of plant AKRs and provides a comprehensive resource to facilitate the functional characterization of them.
Collapse
Affiliation(s)
| | - Ramanujam Pothiraj
- Crop Improvement Division, ICAR National Research Centre for Banana, Tiruchirappalli 620 102, India
| | - Backiyarani Suthanthiram
- Crop Improvement Division, ICAR National Research Centre for Banana, Tiruchirappalli 620 102, India
| | | | - Uma Subbaraya
- Crop Improvement Division, ICAR National Research Centre for Banana, Tiruchirappalli 620 102, India
| |
Collapse
|
46
|
Manzoor H, Mehwish, Bukhat S, Rasul S, Rehmani MIA, Noreen S, Athar HUR, Zafar ZU, Skalicky M, Soufan W, Brestic M, Habib-ur-Rahman M, Ogbaga CC, EL Sabagh A. Methyl Jasmonate Alleviated the Adverse Effects of Cadmium Stress in Pea ( Pisum sativum L.): A Nexus of Photosystem II Activity and Dynamics of Redox Balance. FRONTIERS IN PLANT SCIENCE 2022; 13:860664. [PMID: 35401592 PMCID: PMC8987981 DOI: 10.3389/fpls.2022.860664] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Accepted: 02/28/2022] [Indexed: 08/29/2023]
Abstract
The accumulation of cadmium (Cd) in leaves reduces photosynthetic capacity by degrading photosynthetic pigments, reducing photosystem II activity, and producing reactive oxygen species (ROS). Though it was demonstrated that the application of Methyl Jasmonate (MeJA) induces heavy metal (HM) stress tolerance in plants, its role in adjusting redox balance and photosynthetic machinery is unclear. In this study, the role of MeJA in modulating photosystem II (PSII) activity and antioxidant defense system was investigated to reduce the toxic effects of Cd on the growth of pea (Pisum sativum L.) cultivars. One-week-old seedlings of three pea varieties were subjected to Cd stress (0, 50, 100 μm), and MeJA (0, 1, 5, 10 μm) was applied as a foliar spray for 2 weeks. Cadmium stress reduced the growth of all three pea varieties. Cadmium stress decreased photosynthetic pigments [Chl a (58.15%), Chl b (48.97%), total Chl (51.9%) and carotenoids (44.01%)] and efficiency of photosystem II [Fv/Fm (19.52%) and Y(II; 67.67%)], while it substantially increased Cd accumulation along with an increase in ROS (79.09%) and lipid peroxidation (129.28%). However, such adverse effects of Cd stress varied in different pea varieties. Exogenous application of MeJA increased the activity of a battery of antioxidant enzymes [superoxide dismutase (33.68%), peroxidase (29.75%), and catalase (38.86%)], improved photosynthetic pigments and PSII efficiency. This led to improved growth of pea varieties under Cd stress, such as increased fresh and dry weights of shoots and roots. In addition, improvement in root biomass by MeJA was more significant than that of shoot biomass. Thus, the mitigating effect of MeJA was attributed to its role in cellular redox balance and photosynthetic machinery of pea plants when exposed to Cd stress.
Collapse
Affiliation(s)
- Hamid Manzoor
- Institute of Molecular Biology and Biotechnology, Bahauddin Zakariya University, Multan, Pakistan
| | - Mehwish
- Institute of Molecular Biology and Biotechnology, Bahauddin Zakariya University, Multan, Pakistan
| | - Sherien Bukhat
- Institute of Molecular Biology and Biotechnology, Bahauddin Zakariya University, Multan, Pakistan
| | - Sumaira Rasul
- Institute of Molecular Biology and Biotechnology, Bahauddin Zakariya University, Multan, Pakistan
| | | | - Sibgha Noreen
- Institute of Pure and Applied Biology, Bahauddin Zakariya University, Multan, Pakistan
| | - Habib-ur-Rehman Athar
- Institute of Pure and Applied Biology, Bahauddin Zakariya University, Multan, Pakistan
| | - Zafar Ullah Zafar
- Institute of Pure and Applied Biology, Bahauddin Zakariya University, Multan, Pakistan
| | - Milan Skalicky
- Department of Botany and Plant Physiology, Faculty of Agrobiology, Food, and Natural Resources, Czech University of Life Sciences Prague, Prague, Czechia
| | - Walid Soufan
- Plant Production Department, College of Food and Agriculture Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Marian Brestic
- Department of Botany and Plant Physiology, Faculty of Agrobiology, Food, and Natural Resources, Czech University of Life Sciences Prague, Prague, Czechia
- Laboratory Slovak University of Agriculture in Nitradisabled, Nitra, Slovakia
| | - Muhammad Habib-ur-Rahman
- Crop Science, Institute of Crop Science and Resource Conservation (INRES), University of Bonn, Bonn, Germany
| | - Chukwuma C. Ogbaga
- Department of Biological Sciences, Nile University of Nigeria, Abuja, Nigeria
| | - Ayman EL Sabagh
- Department of Agronomy, Faculty of Agriculture, Kafrelsheikh University, Kafr El-Shaikh, Egypt
| |
Collapse
|
47
|
Tiwari M, Kidwai M, Dutta P, Narayan S, Gautam N, Chawda K, Shirke PA, Mishra AK, Chakrabarty D. A tau class glutathione-S-transferase (OsGSTU5) confers tolerance against arsenic toxicity in rice by accumulating more arsenic in root. JOURNAL OF HAZARDOUS MATERIALS 2022; 426:128100. [PMID: 34954436 DOI: 10.1016/j.jhazmat.2021.128100] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 09/03/2021] [Accepted: 12/15/2021] [Indexed: 05/27/2023]
Abstract
Arsenic (As) considered as one of the hazardous metalloid that hampers various physiological activities in rice. To study the mechanism of As tolerance in rice, one differentially expressed tau class glutathione-S-transferase (OsGSTU5) has been selected and transgenic rice plants with knockdown (KD) and overexpressing (OE) OsGSTU5 were generated. Our results suggested that KD lines became less tolerant to As stress than WT plants, while OE lines showed enhanced tolerance to As. Under As toxicity, OE and KD lines showed enhanced and reduced antioxidant activities such as, SOD, PRX and catalase, respectively indicating its role in ROS homeostasis. In addition, higher malondialdehyde content, poor photosynthetic parameters and higher reactive oxygen species (ROS) in KD plant, suggests that knockdown of OsGSTU5 renders KD plants more susceptible to oxidative damage. Also, the relative expression profile of various transporters such as OsABCC1 (As sequestration), Lsi2 and Lsi6 (As translocaters) and GSH dependent activity of GSTU5 suggests that GSTU5 might help in chelation of As with GSH and sequester it into the root vacuole using OsABCC1 transporter and thus limits the upward translocation of As towards shoot. This study suggests the importance of GSTU5 as a good target to improve the As tolerance in rice.
Collapse
Affiliation(s)
- Madhu Tiwari
- Biotechnology and Molecular Biology Division, CSIR-National Botanical Research Institute, Lucknow 226001, India; Laboratory of Microbial Genetics, Department of Botany, Banaras Hindu University, Varanasi 221005, India
| | - Maria Kidwai
- Biotechnology and Molecular Biology Division, CSIR-National Botanical Research Institute, Lucknow 226001, India
| | - Prasanna Dutta
- Biotechnology and Molecular Biology Division, CSIR-National Botanical Research Institute, Lucknow 226001, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Shiv Narayan
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India; Plant Physiology Laboratory, CSIR-National Botanical Research Institute, Lucknow 226001, India
| | - Neelam Gautam
- Biotechnology and Molecular Biology Division, CSIR-National Botanical Research Institute, Lucknow 226001, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Khushboo Chawda
- Biotechnology and Molecular Biology Division, CSIR-National Botanical Research Institute, Lucknow 226001, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Pramod Arvind Shirke
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India; Plant Physiology Laboratory, CSIR-National Botanical Research Institute, Lucknow 226001, India
| | - Arun Kumar Mishra
- Laboratory of Microbial Genetics, Department of Botany, Banaras Hindu University, Varanasi 221005, India
| | - Debasis Chakrabarty
- Biotechnology and Molecular Biology Division, CSIR-National Botanical Research Institute, Lucknow 226001, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.
| |
Collapse
|
48
|
Helaly MN, El-Hoseiny HM, Elsheery NI, Kalaji HM, de los Santos-Villalobos S, Wróbel J, Hassan IF, Gaballah MS, Abdelrhman LA, Mira AM, Alam-Eldein SM. 5-Aminolevulinic Acid and 24-Epibrassinolide Improve the Drought Stress Resilience and Productivity of Banana Plants. PLANTS (BASEL, SWITZERLAND) 2022; 11:743. [PMID: 35336624 PMCID: PMC8949027 DOI: 10.3390/plants11060743] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 02/17/2022] [Accepted: 03/01/2022] [Indexed: 05/14/2023]
Abstract
Plant growth, development, and productivity are adversely affected under drought conditions. Previous findings indicated that 5-aminolevulinic acid (ALA) and 24-epibrassinolide (EBL) play an important role in the plant response to adverse environmental conditions. This study demonstrated the role of ALA and EBL on oxidative stress and photosynthetic capacity of drought-stressed 'Williams' banana grown under the Egyptian semi-arid conditions. Exogenous application of either ALA or EBL at concentrations of 15, 30, and 45 mg·L-1 significantly restored plant photosynthetic activity and increased productivity under reduced irrigation; this was equivalent to 75% of the plant's total water requirements. Both compounds significantly reduced drought-induced oxidative damages by increasing antioxidant enzyme activities (superoxide dismutase 'SOD', catalase 'CAT', and peroxidase 'POD') and preserving chloroplast structure. Lipid peroxidation, electrolyte loss and free non-radical H2O2 formation in the chloroplast were noticeably reduced compared to the control, but chlorophyll content and photosynthetic oxygen evolution were increased. Nutrient uptake, auxin and cytokinin levels were also improved with the reduced abscisic acid levels. The results indicated that ALA and EBL could reduce the accumulation of reactive oxygen species and maintain the stability of the chloroplast membrane structure under drought stress. This study suggests that the use of ALA or EBL at 30 mg·L-1 can promote the growth, productivity and fruit quality of drought-stressed banana plants.
Collapse
Affiliation(s)
- Mohamed N. Helaly
- Agricultural Botany Department, Faculty of Agriculture, Mansoura University, Mansoura 35516, Egypt;
| | - Hanan M. El-Hoseiny
- Horticulture Department, Faculty of Desert and Environmental Agriculture, Matrouh University, Fouka 51511, Egypt;
| | - Nabil I. Elsheery
- Agricultural Botany Department, Faculty of Agriculture, Tanta University, Tanta 31527, Egypt;
| | - Hazem M. Kalaji
- Department of Plant Physiology, Institute of Biology, Warsaw University of Life Sciences SGGW, 02-776 Warsaw, Poland; or
- Institute of Technology and Life Sciences, National Research Institute, Falenty, Al.Hrabska 3, 05-090 Pruszków, Poland
| | | | - Jacek Wróbel
- Department of Bioengineering, West Pomeranian University of Technology, 71-434 Szczecin, Poland;
| | - Islam F. Hassan
- Water Relations and Field Irrigation Department, Agricultural and Biological Research Institute, National Research Center, Giza 12622, Egypt; (I.F.H.); (M.S.G.)
| | - Maybelle S. Gaballah
- Water Relations and Field Irrigation Department, Agricultural and Biological Research Institute, National Research Center, Giza 12622, Egypt; (I.F.H.); (M.S.G.)
| | - Lamyaa A. Abdelrhman
- Soil, Water and Environment Research Institute (SWERI), Agricultural Research Center, Giza 12619, Egypt;
| | - Amany M. Mira
- Department of Horticulture, Faculty of Agriculture, Tanta University, Tanta 31527, Egypt;
| | - Shamel M. Alam-Eldein
- Department of Horticulture, Faculty of Agriculture, Tanta University, Tanta 31527, Egypt;
| |
Collapse
|
49
|
Dastogeer KMG, Zahan MI, Rhaman MS, Sarker MSA, Chakraborty A. Microbe-Mediated Thermotolerance in Plants and Pertinent Mechanisms- A Meta-Analysis and Review. Front Microbiol 2022; 13:833566. [PMID: 35330772 PMCID: PMC8940538 DOI: 10.3389/fmicb.2022.833566] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Accepted: 02/04/2022] [Indexed: 01/10/2023] Open
Abstract
Microbial symbionts can mediate plant stress responses by enhancing thermal tolerance, but less attention has been paid to measuring these effects across plant-microbe studies. We performed a meta-analysis of published studies as well as discussed with relevant literature to determine how the symbionts influence plant responses under non-stressed versus thermal-stressed conditions. As compared to non-inoculated plants, inoculated plants had significantly higher biomass and photosynthesis under heat stress conditions. A significantly decreased accumulation of malondialdehyde (MDA) and hydrogen peroxide (H2O2) indicated a lower oxidation level in the colonized plants, which was also correlated with the higher activity of catalase, peroxidase, glutathione reductase enzymes due to microbial colonization under heat stress. However, the activity of superoxide dismutase, ascorbate oxidase, ascorbate peroxidase, and proline were variable. Our meta-analysis revealed that microbial colonization influenced plant growth and physiology, but their effects were more noticeable when their host plants were exposed to high-temperature stress than when they grew under ambient temperature conditions. We discussed the mechanisms of microbial conferred plant thermotolerance, including at the molecular level based on the available literature. Further, we highlighted and proposed future directions toward exploring the effects of symbionts on the heat tolerances of plants for their implications in sustainable agricultural production.
Collapse
Affiliation(s)
| | - Mst. I. Zahan
- Scientific Officer (Breeding Division), Bangladesh Sugarcrop Research Institute, Pabna, Bangladesh
| | - Mohammad S. Rhaman
- Department of Seed Science and Technology, Bangladesh Agricultural University, Mymensingh, Bangladesh
| | - Mohammad S. A. Sarker
- Basic and Applied Research on Jute Project, Bangladesh Jute Research Institute (BJRI), Dhaka, Bangladesh
| | - Anindita Chakraborty
- Department of Genetic Engineering and Biotechnology, Shahjalal University of Science and Technology, Sylhet, Bangladesh
| |
Collapse
|
50
|
Yan Z, Yang X, Lynch I, Cui F. Comparative evaluation of the mechanisms of toxicity of graphene oxide and graphene oxide quantum dots to blue-green algae Microcystis aeruginosa in the aquatic environment. JOURNAL OF HAZARDOUS MATERIALS 2022; 425:127898. [PMID: 34894507 DOI: 10.1016/j.jhazmat.2021.127898] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 11/05/2021] [Accepted: 11/22/2021] [Indexed: 06/14/2023]
Abstract
Due to the diverse applications, graphene-family nanomaterials (GFNs) have a high probability of release into the aquatic system, potentially posing risks to the aquatic environment. The acute effects on single-celled Microcystis aeruginosa by graphene oxide (GO) or graphene oxide quantum dots (GOQDs) were compared in the present study. GOQDs dispersed more effectively in water than GO at all pH values tested. The 96-hour median effective concentration (EC50) of GO and GOQDs were determined to be 49.32 and 22.46 mg/L, respectively. Both GO and GOQDs were internalized by heteroagglomeration and envelopment processes, with GOQDs inducing stronger upregulation of cell permeability, plasmolysis and lipid bodies than GO. Cracking of thylakoid layers, disappearance of nucleoid, and disintegration of cell infrastructure were observed at higher concentrations. In comparison to GO, GOQDs induced higher reactive oxygen species (ROS) and malondialdehyde (MDA) and disrupted antioxidant enzymes, leading to the inhibition of cellular contents such as chlorophyll a and proteins. Furthermore, both GO and GOQDs adsorbed nutrients from the algal medium, resulting in nutrient depletion-induced indirect toxicity, with GOQDs depleting more nutrients than GO. The current study provides new understanding of nanotoxicity of GO and GOQD and aids in the potential risks of nanomaterials in aquatic environments.
Collapse
Affiliation(s)
- Zhongda Yan
- School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Xiaonan Yang
- School of Environment, Harbin Institute of Technology, Harbin 150090, China.
| | - Iseult Lynch
- School of Geography, Earth and Environmental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | - Fuyi Cui
- School of Environment, Harbin Institute of Technology, Harbin 150090, China; College of Environment and Ecology, Chongqing University, Chongqing 400044, China
| |
Collapse
|