1
|
Wagle SR, Kovacevic B, Sen LY, Diress M, Foster T, Ionescu CM, Lim P, Brunet A, James R, Carvalho L, Mooranian A, Al-Salami H. Revolutionizing drug delivery strategies with probucol to combat oxidative stress in retinal degeneration: A comprehensive review. Eur J Pharm Biopharm 2025; 210:114695. [PMID: 40089074 DOI: 10.1016/j.ejpb.2025.114695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Revised: 03/05/2025] [Accepted: 03/12/2025] [Indexed: 03/17/2025]
Abstract
Localized oxidative stress plays a key role in the development of retinal degenerative diseases, with diabetic retinopathy (DR) being one of them, contributing significantly to this vision-threatening complication of diabetes. Increased oxidative burden leads to dysfunction across various retinal cell types, including vascular endothelial cells, neurons, glial cells and pericytes. Importantly, even after achieving normalized glycemia, the detrimental effects of oxidative stress persist. Nonetheless, growing data highlights the therapeutic potential of antioxidants in safeguarding vision. However, extensive clinical trials using traditional antioxidants have produced mixed results. Therefore, probucol, known for its ability to limit vascular oxidative stress, decrease superoxide generation, and improve endogenous antioxidant activity, is a promising candidate explored in this review. In addition to describing probucol, this review will explore novel therapeutic formulation strategies by incorporating bile acid into probucol-loaded nanoparticles to enhance drug delivery to the posterior segment of the eye for more effective management of DR. The integration of bio-nanotechnology with probucol and bile acids represents a promising avenue for developing effective therapies for DR, addressing the limitations of traditional antioxidant treatments.
Collapse
Affiliation(s)
- Susbin Raj Wagle
- The Biotechnology and Drug Development Research Laboratory, Curtin Medical Research Institute, Curtin University, Bentley 6102, Perth, Western Australia, Australia
| | - Bozica Kovacevic
- The Biotechnology and Drug Development Research Laboratory, Curtin Medical Research Institute, Curtin University, Bentley 6102, Perth, Western Australia, Australia
| | - Le Yang Sen
- The Biotechnology and Drug Development Research Laboratory, Curtin Medical Research Institute, Curtin University, Bentley 6102, Perth, Western Australia, Australia
| | - Mengistie Diress
- The Biotechnology and Drug Development Research Laboratory, Curtin Medical Research Institute, Curtin University, Bentley 6102, Perth, Western Australia, Australia; Department of Human Physiology, School of Medicine, College of Medicine and Health Sciences, University of Gondar, Gondar, Ethiopia
| | - Thomas Foster
- The Biotechnology and Drug Development Research Laboratory, Curtin Medical Research Institute, Curtin University, Bentley 6102, Perth, Western Australia, Australia
| | - Corina Mihaela Ionescu
- The Biotechnology and Drug Development Research Laboratory, Curtin Medical Research Institute, Curtin University, Bentley 6102, Perth, Western Australia, Australia
| | - Patrick Lim
- The Biotechnology and Drug Development Research Laboratory, Curtin Medical Research Institute, Curtin University, Bentley 6102, Perth, Western Australia, Australia
| | - Alicia Brunet
- Centre for Ophthalmology and Visual Science (incorporating the Lions Eye Institute), the University of Western Australia, Perth, Western Australia, Australia
| | - Rebekah James
- Centre for Ophthalmology and Visual Science (incorporating the Lions Eye Institute), the University of Western Australia, Perth, Western Australia, Australia
| | - Livia Carvalho
- Centre for Ophthalmology and Visual Science (incorporating the Lions Eye Institute), the University of Western Australia, Perth, Western Australia, Australia; Department of Optometry and Vision Sciences, University of Melbourne, Melbourne, Victoria, Australia
| | - Armin Mooranian
- The Biotechnology and Drug Development Research Laboratory, Curtin Medical Research Institute, Curtin University, Bentley 6102, Perth, Western Australia, Australia; School of Pharmacy, University of Otago, Dunedin, Otago, New Zealand.
| | - Hani Al-Salami
- The Biotechnology and Drug Development Research Laboratory, Curtin Medical Research Institute, Curtin University, Bentley 6102, Perth, Western Australia, Australia; Medical School, University of Western Australia, Perth, Western Australia, Australia.
| |
Collapse
|
2
|
Sun W, Wang R, Gong K, Wang L, Li F, Deng J. Paeoniflorin-mediated downregulation of VEGFA: unveiling the therapeutic mechanism of buyang huanwu decoction in diabetic retinopathy. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025; 398:4571-4582. [PMID: 39508875 DOI: 10.1007/s00210-024-03562-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Accepted: 10/22/2024] [Indexed: 11/15/2024]
Abstract
Diabetic retinopathy (DR) is a leading cause of blindness globally. Buyang Huanwu decoction (BHD) is a traditional Chinese medicine for treating DR, but its therapeutic mechanisms are not fully understood. This study aimed to elucidate and validate the underlying mechanisms of BHD in DR treatment through network pharmacology and in vitro experiments. We identified active compounds in BHD and their associated targets using the TCMSP and SwissTargetPrediction. DR-related targets were sourced from GeneCards, NCBI, and OMIM databases. The protein-protein interaction (PPI) network and enrichment analyses were employed to predict common targets and pathways. Subsequent molecular docking and in vitro experiments, including cell viability assays, RT-qPCR, flow cytometry, and Western blot, were conducted to validate the anti-DR mechanism of BHD. Network pharmacology identified paeoniflorin as a key active compound in BHD for treating DR, with VEGFA emerging as a central target. Molecular docking suggested a strong binding affinity between paeoniflorin and VEGFA. In vitro experiments confirmed that paeoniflorin attenuated high glucose-induced increases in cell viability, migration, apoptosis, and inflammatory cytokine expression in retinal pigment epithelial cells. The therapeutic effect of paeoniflorin was primarily mediated through the downregulation of VEGFA expression. Our study demonstrates that paeoniflorin, a key active compound in BHD, effectively mitigates DR by downregulating VEGFA expression and reducing high glucose-induced cellular alterations, thereby highlighting its potential as a therapeutic agent for DR.
Collapse
Affiliation(s)
- Wentao Sun
- Shaanxi Eye Hospital, Xi'an People's Hospital (Xi'an Fourth Hospital), Affiliated People's Hospital of Northwest University, 21 Jiefang Road, Xi'an, 710004, China
| | - Rui Wang
- Tongchuan Wuguan Hospital, Tongchuan, 712100, China
| | - Ke Gong
- Shaanxi Eye Hospital, Xi'an People's Hospital (Xi'an Fourth Hospital), Affiliated People's Hospital of Northwest University, 21 Jiefang Road, Xi'an, 710004, China
| | - Liping Wang
- Shaanxi Eye Hospital, Xi'an People's Hospital (Xi'an Fourth Hospital), Affiliated People's Hospital of Northwest University, 21 Jiefang Road, Xi'an, 710004, China
| | - Fengzhi Li
- Shaanxi Eye Hospital, Xi'an People's Hospital (Xi'an Fourth Hospital), Affiliated People's Hospital of Northwest University, 21 Jiefang Road, Xi'an, 710004, China
| | - Jin Deng
- Shaanxi Eye Hospital, Xi'an People's Hospital (Xi'an Fourth Hospital), Affiliated People's Hospital of Northwest University, 21 Jiefang Road, Xi'an, 710004, China.
| |
Collapse
|
3
|
Floyd JL, Prasad R, Dupont MD, Adu-Rutledge Y, Anshumali S, Paul S, Li Calzi S, Qi X, Malepati A, Johnson E, Jumbo-Lucioni P, Crosson JN, Mason JO, Boulton ME, Welner RS, Grant MB. Intestinal neutrophil extracellular traps promote gut barrier damage exacerbating endotoxaemia, systemic inflammation and progression of diabetic retinopathy in type 2 diabetes. Diabetologia 2025; 68:866-889. [PMID: 39875729 PMCID: PMC11950064 DOI: 10.1007/s00125-024-06349-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Accepted: 11/01/2024] [Indexed: 01/30/2025]
Abstract
AIMS/HYPOTHESIS Within the small intestine, neutrophils play an integral role in preventing bacterial infection. Upon interaction with bacteria or bacteria-derived antigens, neutrophils initiate a multi-staged response of which the terminal stage is NETosis, formation of protease-decorated nuclear DNA into extracellular traps. NETosis has a great propensity to elicit ocular damage and has been associated with diabetic retinopathy and diabetic macular oedema (DME) progression. Here, we interrogate the relationship between gut barrier dysfunction, endotoxaemia and systemic and intestinal neutrophilia in diabetic retinopathy. METHODS In a cohort of individuals with type 2 diabetes (n=58) with varying severity of diabetic retinopathy and DME, we characterised the abundance of circulating neutrophils by flow cytometry and markers of gut permeability and endotoxaemia by plasma ELISA. In a mouse model of type 2 diabetes, we examined the effects of diabetes on abundance and function of intestinal, blood and bone marrow neutrophils, gut barrier integrity, endotoxaemia and diabetic retinopathy severity. Pharmacological inhibition of NETosis was achieved by i.p. injection of the peptidyl arginine deiminase 4 inhibitor (PAD4i) GSK484 daily for 4 weeks between 6 and 7 months of type 2 diabetes. RESULTS In human participants, neutrophilia was unique to individuals with type 2 diabetes with diabetic retinopathy and DME and was accompanied by heightened circulating markers of gut permeability. At late-stage diabetes, neutrophilia and gut barrier dysfunction were seen in db/db mice. The db/db mice exhibited an increase in stem-like pre-neutrophils in the intestine and bone marrow and a decrease in haematopoietic vascular reparative cells. In the db/db mouse intestine, enhanced loss of gut barrier integrity was associated with elevated intestinal NETosis. Inhibition of NETosis by the PAD4i GSK484 resulted in decreased abundance of premature neutrophils in the intestine and blood and resulted in neutrophil retention in the bone marrow compared with vehicle-treated db/db mice. Additionally, the PAD4i decreased senescence within the gut epithelium and yielded a slowing of diabetic retinopathy progression. CONCLUSIONS/INTERPRETATION Severity of diabetic retinopathy and DME were associated with peripheral neutrophilia, gut barrier dysfunction and endotoxaemia in the human participants. db/db mice exhibited intestinal neutrophilia, specifically stem-like pre-neutrophils, which was associated with elevated NETosis and decreased levels of vascular reparative cells. Chronic inhibition of NETosis in db/db mice reduced intestinal senescence and NETs in the retina. These changes were associated with reduced endotoxaemia and an anti-inflammatory bone marrow milieu with retention of pre-neutrophils in the bone marrow and increased gut infiltration of myeloid angiogenic cells. Collectively, PAD-4i treatment decreased gut barrier dysfunction, restoring physiological haematopoiesis and levels of haematopoietic vascular reparative cells.
Collapse
Affiliation(s)
- Jason L Floyd
- Department of Ophthalmology and Visual Sciences, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Ram Prasad
- Department of Ophthalmology and Visual Sciences, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Mariana D Dupont
- Department of Ophthalmology and Visual Sciences, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Yvonne Adu-Rutledge
- Department of Ophthalmology and Visual Sciences, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Shambhavi Anshumali
- Department of Ophthalmology and Visual Sciences, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Sarbodeep Paul
- Department of Ophthalmology and Visual Sciences, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Sergio Li Calzi
- Department of Ophthalmology and Visual Sciences, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Xiaoping Qi
- Department of Ophthalmology and Visual Sciences, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Akanksha Malepati
- Department of Ophthalmology and Visual Sciences, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Emory Johnson
- Department of Ophthalmology and Visual Sciences, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Patricia Jumbo-Lucioni
- Pharmaceutical, Social and Administrative Sciences, Samford University, Birmingham, AL, USA
| | - Jason N Crosson
- Department of Ophthalmology and Visual Sciences, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
- Retina Consultants of Alabama, Birmingham, AL, USA
| | - John O Mason
- Department of Ophthalmology and Visual Sciences, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
- Retina Consultants of Alabama, Birmingham, AL, USA
| | - Michael E Boulton
- Department of Ophthalmology and Visual Sciences, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Robert S Welner
- Department of Medicine, Division Hematology/Oncology, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Maria B Grant
- Department of Ophthalmology and Visual Sciences, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA.
| |
Collapse
|
4
|
Lin YY, Warren E, Macklin BL, Ramirez L, Gerecht S. Endothelial-pericyte interactions regulate angiogenesis via VEGFR2 signaling during retinal development and disease. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.08.642174. [PMID: 40161680 PMCID: PMC11952325 DOI: 10.1101/2025.03.08.642174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/02/2025]
Abstract
Pericytes stabilize the microvasculature by enhancing endothelial barrier integrity, resulting in functional networks. During retinal development, pericyte recruitment is crucial for stabilizing nascent angiogenic vasculature. However, in adulthood, disrupted endothelial-pericyte interactions lead to vascular dropout and pathological angiogenesis in ocular microvascular diseases, and strategies to stabilize the retinal vasculature are lacking. We demonstrate that direct endothelial-pericyte contact downregulates pVEGFR2 in endothelial cells, which enhances pericyte migration and promotes endothelial cell barrier function. Intravitreal injection of a VEGFR2 inhibitor in mouse models of the developing retina and oxygen-induced retinopathy increased pericyte recruitment and aided vascular stability. The VEGFR2 inhibitor further rescued ischemic retinopathy by enhancing vascularization and tissue growth while reducing vascular permeability. Our findings offer a druggable target to support the growth of functional and mature microvasculature in ocular microvascular diseases and tissue regeneration overall.
Collapse
|
5
|
Flindris K, Lagkada V, Christodoulou A, Gazouli M, Moschos M, Markozannes G, Kitsos G. Investigation of UCHL3 and HNMT Gene Polymorphisms in Greek Patients with Type 2 Diabetes Mellitus and Diabetic Retinopathy. Biomedicines 2025; 13:341. [PMID: 40002753 PMCID: PMC11852632 DOI: 10.3390/biomedicines13020341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2025] [Revised: 01/30/2025] [Accepted: 01/31/2025] [Indexed: 02/27/2025] Open
Abstract
BACKGROUND AND OBJECTIVES Recent studies have shed light on the association between genetic factors and diabetic retinopathy (DR) onset and progression. The purpose of our study was to investigate the association between rs4885322 single-nucleotide polymorphism (SNP) of the UCHL3 gene and rs11558538 SNP of the HNMT gene with the risk of DR in Greek patients with type 2 diabetes mellitus (T2DM). MATERIALS AND METHODS In our case-control study, we included 85 T2DM patients with DR and 71 T2DM patients without DR (NDR), matched by ethnicity and gender. Demographic and clinical data of all patients were collected, and then patients went through a complete ophthalmological examination and were genotyped for rs4885322 SNP of UCHL3 gene and for the rs11558538 SNP of HNMT gene. Statistical analysis was implemented by STATA v.16.1. RESULTS No significant differences in demographic and clinical data were observed between the DR and the NDR group (p-value ≥ 0.05), except for the lower mean of age, longer duration of DM, more frequent use of insulin therapy, and higher levels of hemoglobin A1c (HbA1c) in the DR group. The allelic effect of rs488532 increases the risk of DR by 2.04 times, and in the dominant genetic model, the risk of DR is elevated by 123%, while both associations are statistically significant (p-value < 0.05). Moreover, the allelic effect of rs11558538 is associated with a 3.27 times increased DR risk and, in the dominant genetic model, reveals an augmented risk of DR by 231%, while both associations are also statistically significant (p-value < 0.05). CONCLUSIONS The rs4885322 SNP of the UCHL3 gene and the rs11558538 SNP of the HNMT gene are associated with DR risk in Greek patients with T2DM. However, further studies with larger samples and different ethnicities should be implemented to clarify the exact association of these SNPs and DR onset.
Collapse
Affiliation(s)
- Konstantinos Flindris
- Department of Ophthalmology, University General Hospital of Ioannina, 45500 Ioannina, Greece; (A.C.); (G.K.)
| | - Vivian Lagkada
- Laboratory of Biology, Department of Basic Medical Sciences, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece; (V.L.); (M.G.)
| | - Aikaterini Christodoulou
- Department of Ophthalmology, University General Hospital of Ioannina, 45500 Ioannina, Greece; (A.C.); (G.K.)
| | - Maria Gazouli
- Laboratory of Biology, Department of Basic Medical Sciences, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece; (V.L.); (M.G.)
| | - Marilita Moschos
- 1st Department of Ophthalmology, University of Athens, 11527 Athens, Greece;
| | - Georgios Markozannes
- Department of Hygiene and Epidemiology, Medical School, University of Ioannina, 45500 Ioannina, Greece;
| | - George Kitsos
- Department of Ophthalmology, University General Hospital of Ioannina, 45500 Ioannina, Greece; (A.C.); (G.K.)
| |
Collapse
|
6
|
Mason RH, Minaker SA, Lahaie Luna G, Bapat P, Farahvash A, Garg A, Bhambra N, Muni RH. Changes in aqueous and vitreous inflammatory cytokine levels in nonproliferative diabetic retinopathy: systematic review and meta-analysis. CANADIAN JOURNAL OF OPHTHALMOLOGY 2025; 60:e100-e116. [PMID: 39043257 DOI: 10.1016/j.jcjo.2024.05.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 11/29/2023] [Accepted: 05/27/2024] [Indexed: 07/25/2024]
Abstract
OBJECTIVE Diabetic retinopathy is a complication of diabetes mellitus with the potential for significant patient morbidity. Although changes to intraocular inflammatory cytokines are integral to disease pathogenesis, studies have been inconsistent about which exact cytokines are associated with diabetic retinopathy. We aimed to quantitatively summarize proangiogenic and proinflammatory cytokines in nonproliferative diabetic retinopathy (NPDR), given its frequency among those with diabetes mellitus. METHODS A systematic literature search without year limitation to February 21, 2022, identified 59 studies assessing vitreous or aqueous cytokine levels in NPDR, encompassing 1378 eyes with NPDR and 1288 eyes from nondiabetic controls. Effect sizes were generated as standardized mean differences (SMD) of cytokine concentrations between patients with NPDR and controls. RESULTS Concentrations (SMD, 95% confidence interval, and p value) of aqueous interleukin-6 (IL-6) (2.58, 1.17-3.99; p = 0.0003), IL-8 (1.56, 0.39-2.74; p = 0.009), IL-17 (13.55, 7.50-19.59; p < 0.001), transforming growth factor beta (TGF-β) (2.44, 1.02-3.85; p = 0.0007) and vascular endothelial growth factor (VEGF) (1.35, 0.76-1.93; p < 0.00001), and vitreous VEGF (1.49, 0.60-2.37; p = 0.001) were significantly higher in patients with NPDR when compared with those of healthy controls. CONCLUSIONS These cytokines may serve as disease markers of the biochemical alterations seen in NPDR and may guide interventions, as we move into an era of more targeted therapeutics.
Collapse
Affiliation(s)
- Ryan H Mason
- Department of Ophthalmology, St. Michael's Hospital/Unity Health Toronto, Toronto, ON; Department of Ophthalmology & Vision Sciences, University of Toronto, Toronto, ON; Kensington Vision and Research Centre, Toronto, ON
| | - Samuel A Minaker
- Department of Ophthalmology, St. Michael's Hospital/Unity Health Toronto, Toronto, ON; Department of Ophthalmology & Vision Sciences, University of Toronto, Toronto, ON; Kensington Vision and Research Centre, Toronto, ON
| | | | - Priya Bapat
- Department of Ophthalmology, St. Michael's Hospital/Unity Health Toronto, Toronto, ON; Department of Ophthalmology & Vision Sciences, University of Toronto, Toronto, ON; Kensington Vision and Research Centre, Toronto, ON
| | - Armin Farahvash
- Department of Ophthalmology, St. Michael's Hospital/Unity Health Toronto, Toronto, ON; Department of Ophthalmology & Vision Sciences, University of Toronto, Toronto, ON; Kensington Vision and Research Centre, Toronto, ON
| | - Anubhav Garg
- Department of Ophthalmology, St. Michael's Hospital/Unity Health Toronto, Toronto, ON; Department of Ophthalmology & Vision Sciences, University of Toronto, Toronto, ON; Kensington Vision and Research Centre, Toronto, ON
| | - Nishaant Bhambra
- Department of Ophthalmology, St. Michael's Hospital/Unity Health Toronto, Toronto, ON; Department of Ophthalmology & Vision Sciences, University of Toronto, Toronto, ON; Kensington Vision and Research Centre, Toronto, ON
| | - Rajeev H Muni
- Department of Ophthalmology, St. Michael's Hospital/Unity Health Toronto, Toronto, ON; Department of Ophthalmology & Vision Sciences, University of Toronto, Toronto, ON; Kensington Vision and Research Centre, Toronto, ON; University of Toronto/Kensington Health Ophthalmology Biobank and Cytokine Laboratory, Toronto, ON.
| |
Collapse
|
7
|
Xi X, Liu X, Chen Q, Ma J, Wang X, Gui Y, Zhang Y, Li Y. Acteoside relieves diabetic retinopathy through the inhibition of Müller cell reactive hyperplasia by regulating TXNIP and mediating Kir4.1 channels in a PI3K/Akt-dependent manner. PLoS One 2024; 19:e0312565. [PMID: 39689088 DOI: 10.1371/journal.pone.0312565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 10/08/2024] [Indexed: 12/19/2024] Open
Abstract
Diabetic retinopathy (DR) is a severe microangiopathy of diabetes. Müller cells play an important role in the development of DR. Acteoside (ACT) has been reported to be effective in the treatment of DR. In this study, we explored the molecular mechanism of ACT in the treatment of DR from the perspective of the reactive proliferation of Müller cells. The effect of ACT on DR was investigated via high-glucose (HG) treatment of Müller RMC-1 cells and an injection of streptozotocin (STZ) in constructed DR cells and animal models. The results showed that after ACT treatment, damage to the retinal structure in DR rats was alleviated, the number of hemangiomas was reduced, and the penetration of blood vessels was weakened. In addition, ACT treatment improved the hypertrophy and gliogenesis of Müller cells during DR, promoted the expression of Kir4.1 and activated the PI3K/Akt signaling pathway. ACT treatment inhibited the proliferation and migration of RMC-1 cells and promoted the expression of Kir4.1. TXNIP overexpression effectively reversed the inhibitory effect of ACT on the proliferation and migration of Müller cells and its induction of Kir4.1 expression. In addition, TXNIP knockdown effectively reversed the inhibitory effect of HG on the expression of p-PI3K and p-Akt, whereas TXNIP overexpression had the opposite effect, and treatment with the PI3K/AKT pathway inhibitor LY294002 effectively reversed the effect of TXNIP knockdown. Animal experiments also confirmed that the therapeutic effect of ACT on DR rats could be reversed by the overexpression of TXNIP or LY294002. In conclusion, ACT inhibits Müller cell reactive proliferation and alleviates diabetic retinopathy by regulating TXNIP and mediating the expression of Kir4.1 channels in a PI3K/Akt-dependent manner.
Collapse
Affiliation(s)
- Xiaoting Xi
- Ophthalmology Department, The First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Xiaolei Liu
- Neurology Department, The First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Qianbo Chen
- Ophthalmology Department, The First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Jia Ma
- Ophthalmology Department, The First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Xuewei Wang
- Ophthalmology Department, The First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Yufei Gui
- Ophthalmology Department, The First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Yuxin Zhang
- Ophthalmology Department, The First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Yan Li
- Ophthalmology Department, The First Affiliated Hospital of Kunming Medical University, Kunming, China
| |
Collapse
|
8
|
Galgani G, Bray G, Martelli A, Calderone V, Citi V. In Vitro Models of Diabetes: Focus on Diabetic Retinopathy. Cells 2024; 13:1864. [PMID: 39594613 PMCID: PMC11592768 DOI: 10.3390/cells13221864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 11/05/2024] [Accepted: 11/08/2024] [Indexed: 11/28/2024] Open
Abstract
Diabetic retinopathy is a major eye complication in patients with diabetes mellitus, and it is the leading cause of blindness and visual impairment in the world. Chronic hyperglycemia induces endothelial damage with consequent vascular lesions, resulting in global vasculitis, which affects the small vessels of the retina. These vascular lesions cause ischemic conditions in certain areas of the retina, with a consequent increase in the release of pro-angiogenic mediators. In addition to pharmacological interventions for controlling the blood glycaemic level, the main strategies for treating diabetic retinopathy are the intravitreal injections of drugs, surgical treatments, and vitrectomies. The complexity of diabetic retinopathy is due to its close interactions with different cell types (endothelial cells, astrocytes, and Müller cells). The evaluation of the efficacy of novel pharmacological strategies is mainly performed through in vivo models. However, the use of different animal species leads to heterogenic results and ethical concerns. For these reasons, the development of new and reliable in vitro models, such as cell co-cultures and eye organoids, represents an urgent need in this area of research. This review features an overview of the in vitro models used to date and highlights the advances in technology used to study this pathology.
Collapse
Affiliation(s)
- Giulia Galgani
- Department of Pharmacy, University of Pisa, 56126 Pisa, Italy; (G.G.); (A.M.); (V.C.); (V.C.)
| | - Giorgia Bray
- Department of Pharmacy, University of Pisa, 56126 Pisa, Italy; (G.G.); (A.M.); (V.C.); (V.C.)
| | - Alma Martelli
- Department of Pharmacy, University of Pisa, 56126 Pisa, Italy; (G.G.); (A.M.); (V.C.); (V.C.)
- Interuniversity Centre for the Promotion of the 3R Principles in Teaching and Research, Italy
| | - Vincenzo Calderone
- Department of Pharmacy, University of Pisa, 56126 Pisa, Italy; (G.G.); (A.M.); (V.C.); (V.C.)
- Interuniversity Centre for the Promotion of the 3R Principles in Teaching and Research, Italy
| | - Valentina Citi
- Department of Pharmacy, University of Pisa, 56126 Pisa, Italy; (G.G.); (A.M.); (V.C.); (V.C.)
- Interuniversity Centre for the Promotion of the 3R Principles in Teaching and Research, Italy
| |
Collapse
|
9
|
Amin NG, Rahim AA, Rohoma K, Elwafa RAA, Dabees HMF, Elrahmany S. The relation of mTOR with diabetic complications and insulin resistance in patients with type 2 diabetes mellitus. Diabetol Metab Syndr 2024; 16:222. [PMID: 39261960 PMCID: PMC11389252 DOI: 10.1186/s13098-024-01450-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 08/19/2024] [Indexed: 09/13/2024] Open
Abstract
BACKGROUND Dysregulation of the mechanistic target of rapamycin (mTOR) has been related to several metabolic conditions, notably obesity and type 2 diabetes (T2DM). This study aimed to evaluate the role of mTOR in patients with T2DM, and its relationship with insulin resistance and microvascular complications. METHODS This case-control study was conducted on 90 subjects attending the Outpatient Internal Medicine Clinic in Damanhur Teaching Hospital. Subjects were divided into 3 groups, Group I: 20 healthy controls, Group II: 20 subjects with T2DM without complications, and Group III: 50 subjects with T2DM with microvascular complications. An Enzyme-linked immunosorbent assay was used to measure serum mTOR levels. T2DM and diabetic complications were defined according to the diagnostic criteria of the American Diabetes Association. RESULTS The results revealed significant positive correlations to HbA1c (r = 0.530, P < 0.001), fasting glucose (r = 0.508, P < 0.001), and HOMA- IR (r = 0.559, P < 0.001), and a significant negative correlation to eGFR (r=-0.370, P = 0.002). Multivariate analysis revealed an independent association of mTOR and HbA1c values with the presence of microvascular complications. The prediction of microvascular complications was present at a cutoff value of 8 ng/ml mTOR with a sensitivity of 100% and specificity of 95% with an AUC of 0.983 and a p-value < 0.001. CONCLUSION mTOR is a prognostic marker of diabetic microvascular and is associated with insulin resistance in patients with T2DM. TRIAL REGISTRATION The study was conducted following the Declaration of Helsinki, and approved by the Ethics Committee of Alexandria University (0201127, 19/7/2018).
Collapse
Affiliation(s)
- Noha G Amin
- Department of Internal Medicine (Diabetes, Lipidology & Metabolism), Faculty of Medicine, Alexandria University, 17, Champollion Street, El Messallah, Alexandria, Egypt.
| | - A Abdel Rahim
- Department of Internal Medicine (Diabetes, Lipidology & Metabolism), Faculty of Medicine, Alexandria University, 17, Champollion Street, El Messallah, Alexandria, Egypt
| | - Kamel Rohoma
- Department of Internal Medicine (Diabetes, Lipidology & Metabolism), Faculty of Medicine, Alexandria University, 17, Champollion Street, El Messallah, Alexandria, Egypt
| | - Reham A Abo Elwafa
- Department of Clinical and Chemical Pathology, Faculty of Medicine, Alexandria University, Alexandria, Egypt
| | - Hossam M F Dabees
- Department of Internal Medicine (Diabetes, Lipidology & Metabolism), Faculty of Medicine, Alexandria University, 17, Champollion Street, El Messallah, Alexandria, Egypt
| | - Shimaa Elrahmany
- Department of Internal Medicine (Diabetes, Lipidology & Metabolism), Faculty of Medicine, Alexandria University, 17, Champollion Street, El Messallah, Alexandria, Egypt
| |
Collapse
|
10
|
Sheemar A, Goel P, Thakur PS, Takkar B, Kaur I, Rani PK, Tyagi M, Basu S, Venkatesh P. Diabetes, Diabetic Retinopathy, and Inflammatory Disorders. Ocul Immunol Inflamm 2024; 32:1155-1168. [PMID: 37159104 DOI: 10.1080/09273948.2023.2203742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 04/11/2023] [Accepted: 04/12/2023] [Indexed: 05/10/2023]
Abstract
This review summarizes the impact of systemic and ocular inflammatory disorders on diabetes mellitus (DM) and diabetic retinopathy (DR). Local inflammation is a key pathology in diabetic retinopathy (DR) and is also an evolving target for clinical therapy. The legacy effects of local inflammation at the intracellular level make DR a persistent self-driven vicious process. Ocular inflammation is accompanied as well as incited by systemic inflammation due to diabetes mellitus (DM) itself. Over the years, a multitude of studies have evaluated the impact of systemic inflammatory disorders (SIDs, like rheumatoid arthritis, lupus, psoriasis, etc.) and anti-inflammatory drugs prescribed for managing them on manifestations of DM. Recent studies have indicated increased insulin resistance to be a result of chronic inflammation, and the anti-inflammatory drugs to have a protective effect towards DM. Very few studies have evaluated the impact of SIDs on DR. Furthermore, the evidence from these studies is conflicting, and while local anti-inflammatory therapy has shown a lot of clinical potential for use in DR, the results of systemic anti-inflammatory therapies have been inconsistent. The impact of local ocular inflammation due to uveitis on DR is a crucial aspect that has not been evaluated well at present. Initial pre-clinical studies and small-sized clinical reports have shown a strong and positive relationship between the presence of uveitis and the severity of DR as well as its progression, while larger cross-sectional patient surveys have refuted the same. The long term impact of ocular inflammation due to uveitis on DR needs to be studied while adjusting for confounders.
Collapse
Affiliation(s)
- Abhishek Sheemar
- Department of Ophthalmology, Moorfields Eye Hospital NHS Foundation Trust, London, UK
| | - Pallavi Goel
- Brien Holden Eye Research Centre, L V Prasad Eye Institute, Hyderabad, India
| | | | - Brijesh Takkar
- Anant Bajaj Retina Institute, L V Prasad Eye Institute, Hyderabad, India
- Indian Health Outcomes, Public Health, and Economics Research (IHOPE) Centre, L V Prasad Eye Institute, Hyderabad, India
| | - Inderjeet Kaur
- Brien Holden Eye Research Centre, L V Prasad Eye Institute, Hyderabad, India
| | - Padmaja K Rani
- Anant Bajaj Retina Institute, L V Prasad Eye Institute, Hyderabad, India
| | - Mudit Tyagi
- Uveitis Services, L V Prasad Eye Institute, Kallam Anji Reddy Campus, Hyderabad, India
| | - Soumyava Basu
- Uveitis Services, L V Prasad Eye Institute, Kallam Anji Reddy Campus, Hyderabad, India
| | - Pradeep Venkatesh
- Dr. RP Centre for Ophthalmic Sciences, All India Institute of Medical Sciences, New Delhi, India
| |
Collapse
|
11
|
Ma Z, Hao J, Yang Z, Zhang M, Xin J, Bi H, Guo D. Research Progress on the Role of Ubiquitination in Eye Diseases. Cell Biochem Biophys 2024; 82:1825-1836. [PMID: 38913283 DOI: 10.1007/s12013-024-01381-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/19/2024] [Indexed: 06/25/2024]
Abstract
The occurrence and development of ophthalmic diseases are related to the dysfunction of eye tissues. Ubiquitin is an important form of protein post-translational modification, which plays an essential role in the occurrence and development of diseases through specific modification of target proteins. Ubiquitination governs a variety of intracellular signal transduction processes, including proteasome degradation, DNA damage repair, and cell cycle progression. Studies have found that ubiquitin can play a role in eye diseases such as cataracts, glaucoma, keratopathy, retinopathy, and eye tumors. In this paper, the role of protein ubiquitination in eye diseases was reviewed.
Collapse
Affiliation(s)
- Zhongyu Ma
- Shandong University of Traditional Chinese Medicine, Jinan, 250002, China
| | - Jiawen Hao
- Shandong University of Traditional Chinese Medicine, Jinan, 250002, China
| | - Zhaohui Yang
- Shandong University of Traditional Chinese Medicine, Jinan, 250002, China
| | - Miao Zhang
- Shandong University of Traditional Chinese Medicine, Jinan, 250002, China
| | - Jizhao Xin
- Shandong University of Traditional Chinese Medicine, Jinan, 250002, China
| | - Hongsheng Bi
- Affiliated Eye Hospital of Shandong University of Traditional Chinese Medicine, Jinan, 250002, China.
- Shandong Provincial Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Therapy of Ocular Diseases, Shandong Academy of Eye Disease Prevention and Therapy, Shandong Provincial Clinical Research Center of Ophthalmology and Children Visual Impairment Prevention and Control, Shandong Engineering Technology Research Center of Visual Intelligence, Shandong Academy of Health and Myopia Prevention and Control of Children and Adolescents, Jinan, 250002, China.
- Medical College of Optometry and Ophthalmology, Shandong University of Traditional Chinese Medicine, Jinan, 250002, China.
| | - Dadong Guo
- Affiliated Eye Hospital of Shandong University of Traditional Chinese Medicine, Jinan, 250002, China.
- Shandong Provincial Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Therapy of Ocular Diseases, Shandong Academy of Eye Disease Prevention and Therapy, Shandong Provincial Clinical Research Center of Ophthalmology and Children Visual Impairment Prevention and Control, Shandong Engineering Technology Research Center of Visual Intelligence, Shandong Academy of Health and Myopia Prevention and Control of Children and Adolescents, Jinan, 250002, China.
- Medical College of Optometry and Ophthalmology, Shandong University of Traditional Chinese Medicine, Jinan, 250002, China.
| |
Collapse
|
12
|
Yapislar H, Gurler EB. Management of Microcomplications of Diabetes Mellitus: Challenges, Current Trends, and Future Perspectives in Treatment. Biomedicines 2024; 12:1958. [PMID: 39335472 PMCID: PMC11429415 DOI: 10.3390/biomedicines12091958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 08/12/2024] [Accepted: 08/13/2024] [Indexed: 09/30/2024] Open
Abstract
Diabetes mellitus is a chronic metabolic disorder characterized by high blood sugar levels, which can lead to severe health issues if not managed effectively. Recent statistics indicate a significant global impact, with 463 million adults diagnosed worldwide and this projected to rise to 700 million by 2045. Type 1 diabetes is an autoimmune disorder where the immune system attacks pancreatic beta cells, reducing insulin production. Type 2 diabetes is primarily due to insulin resistance. Both types of diabetes are linked to severe microvascular and macrovascular complications if unmanaged. Microvascular complications, such as diabetic retinopathy, nephropathy, and neuropathy, result from damage to small blood vessels and can lead to organ and tissue dysfunction. Chronic hyperglycemia plays a central role in the onset of these complications, with prolonged high blood sugar levels causing extensive vascular damage. The emerging treatments and current research focus on various aspects, from insulin resistance to the intricate cellular damage induced by glucose toxicity. Understanding and intervening in these pathways are critical for developing effective treatments and managing diabetes long term. Furthermore, ongoing health initiatives, such as increasing awareness, encouraging early detection, and improving treatments, are in place to manage diabetes globally and mitigate its impact on health and society. These initiatives are a testament to the collective effort to combat this global health challenge.
Collapse
Affiliation(s)
- Hande Yapislar
- Department of Physiology, Faculty of Medicine, Acibadem University, 34752 Istanbul, Türkiye
| | - Esra Bihter Gurler
- Department of Basic Sciences, Faculty of Dentistry, Istanbul Galata University, 34430 Istanbul, Türkiye
| |
Collapse
|
13
|
Schiano E, Vaccaro S, Scorcia V, Carnevali A, Borselli M, Chisari D, Guerra F, Iannuzzo F, Tenore GC, Giannaccare G, Novellino E. From Vineyard to Vision: Efficacy of Maltodextrinated Grape Pomace Extract (MaGPE) Nutraceutical Formulation in Patients with Diabetic Retinopathy. Nutrients 2024; 16:2850. [PMID: 39275167 PMCID: PMC11397461 DOI: 10.3390/nu16172850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 08/19/2024] [Accepted: 08/21/2024] [Indexed: 09/16/2024] Open
Abstract
Despite recent advances, pharmacological treatments of diabetic retinopathy (DR) do not directly address the underlying oxidative stress. This study evaluates the efficacy of a nutraceutical formulation based on maltodextrinated grape pomace extract (MaGPE), an oxidative stress inhibitor, in managing DR. A 6-month, randomized, placebo-controlled clinical trial involving 99 patients with mild to moderate non-proliferative DR was conducted. The MaGPE group showed improvement in best-corrected visual acuity (BCVA) values at T3 (p < 0.001) and T6 (p < 0.01), a reduction in CRT (at T3 and T6, both p < 0.0001) and a stabilization of vascular perfusion percentage, with slight increases at T3 and T6 (+3.0% and +2.7% at T3 and T6, respectively, compared to baseline). Additionally, the levels of reactive oxygen metabolite derivatives (dROMs) decreased from 1100.6 ± 430.1 UCARR at T0 to 974.8 ± 390.2 UCARR at T3 and further to 930.6 ± 310.3 UCARR at T6 (p < 0.05 vs. T0). Similarly, oxidized low-density lipoprotein (oxLDL) levels decreased from 953.9 ± 212.4 µEq/L at T0 to 867.0 ± 209.5 µEq/L at T3 and markedly to 735.0 ± 213.7 µEq/L at T6 (p < 0.0001 vs. T0). These findings suggest that MaGPE supplementation effectively reduces retinal swelling and oxidative stress, contributing to improved visual outcomes in DR patients.
Collapse
Affiliation(s)
- Elisabetta Schiano
- Inventia Biotech-Healthcare Food Research Center s.r.l., Strada Statale Sannitica KM 20.700, 81020 Caserta, Italy; (E.S.); (F.G.); (E.N.)
| | - Sabrina Vaccaro
- Department of Ophthalmology, University Magna Graecia of Catanzaro, 88100 Catanzaro, Italy; (S.V.); (V.S.); (A.C.); (M.B.); (D.C.)
| | - Vincenzo Scorcia
- Department of Ophthalmology, University Magna Graecia of Catanzaro, 88100 Catanzaro, Italy; (S.V.); (V.S.); (A.C.); (M.B.); (D.C.)
| | - Adriano Carnevali
- Department of Ophthalmology, University Magna Graecia of Catanzaro, 88100 Catanzaro, Italy; (S.V.); (V.S.); (A.C.); (M.B.); (D.C.)
| | - Massimiliano Borselli
- Department of Ophthalmology, University Magna Graecia of Catanzaro, 88100 Catanzaro, Italy; (S.V.); (V.S.); (A.C.); (M.B.); (D.C.)
| | - Domenico Chisari
- Department of Ophthalmology, University Magna Graecia of Catanzaro, 88100 Catanzaro, Italy; (S.V.); (V.S.); (A.C.); (M.B.); (D.C.)
| | - Fabrizia Guerra
- Inventia Biotech-Healthcare Food Research Center s.r.l., Strada Statale Sannitica KM 20.700, 81020 Caserta, Italy; (E.S.); (F.G.); (E.N.)
| | - Fortuna Iannuzzo
- Department of Pharmacy, University of Chieti-Pescara G. D’Annunzio, 66100 Chieti, Italy;
| | - Gian Carlo Tenore
- Department of Pharmacy, University of Naples Federico II, Via Domenico Montesano 59, 80131 Naples, Italy;
| | - Giuseppe Giannaccare
- Eye Clinic, Department of Surgical Sciences, University of Cagliari, 09124 Cagliari, Italy
| | - Ettore Novellino
- Inventia Biotech-Healthcare Food Research Center s.r.l., Strada Statale Sannitica KM 20.700, 81020 Caserta, Italy; (E.S.); (F.G.); (E.N.)
| |
Collapse
|
14
|
Pei X, Huang D, Li Z. Genetic insights and emerging therapeutics in diabetic retinopathy: from molecular pathways to personalized medicine. Front Genet 2024; 15:1416924. [PMID: 39246572 PMCID: PMC11378321 DOI: 10.3389/fgene.2024.1416924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Accepted: 08/12/2024] [Indexed: 09/10/2024] Open
Abstract
Diabetic retinopathy (DR) is a major complication of diabetes worldwide, significantly causing vision loss and blindness in working-age adults, and imposing a substantial socioeconomic burden globally. This review examines the crucial role of genetic factors in the development of DR and highlights the shift toward personalized treatment approaches. Advances in genetic research have identified specific genes and variations involved in angiogenesis, inflammation, and oxidative stress that increase DR susceptibility. Understanding these genetic markers enables early identification of at-risk individuals and the creation of personalized treatment plans. Incorporating these genetic insights, healthcare providers can develop early intervention strategies and tailored treatment plans to improve patient outcomes and minimize side effects. This review emphasizes the transformative potential of integrating genetic information into clinical practice, marking a paradigm shift in DR management and advancing toward a more personalized and effective healthcare model.
Collapse
Affiliation(s)
- Xiaoting Pei
- Henan Eye Institute, Henan Eye Hospital, Henan Provincial People's Hospital, People's Hospital of Henan University, People's Hospital of Zhengzhou University, Zhengzhou, China
| | - Duliurui Huang
- Henan Eye Institute, Henan Eye Hospital, Henan Provincial People's Hospital, People's Hospital of Henan University, People's Hospital of Zhengzhou University, Zhengzhou, China
| | - Zhijie Li
- Henan Eye Institute, Henan Eye Hospital, Henan Provincial People's Hospital, People's Hospital of Henan University, People's Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
15
|
Lomelí Martínez SM, Cortés Trujillo I, Martínez Nieto M, Mercado González AE. Periodontal disease: A silent factor in the development and progression of diabetic retinopathy. World J Diabetes 2024; 15:1672-1676. [PMID: 39192852 PMCID: PMC11346087 DOI: 10.4239/wjd.v15.i8.1672] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 05/10/2024] [Accepted: 05/27/2024] [Indexed: 07/25/2024] Open
Abstract
The global increase in the prevalence of type 2 diabetes mellitus (T2DM) and its complications presents significant challenges to public health. Recently, per-iodontal disease (PD) was recognized as a factor that is likely to influence the progression of T2DM and its complications due to its potential to exacerbate systemic inflammation and oxidative stress. In this editorial, we comment on the article published by Thazhe Poyil et al in the very recent issue of the World Journal of Diabetes in 2024, which investigated the correlation between PD and diabetic retinopathy (DR) in T2DM patients, with emphasis on the association between periodontal swollen surface area, glycated hemoglobin (HbA1c), interleukin-6 (IL-6), and lipoprotein (a). The findings by Thazhe Poyil et al are significant as they demonstrate a strong link between PD and DR in T2DM patients. This correlation highlights the importance of addressing periodontal health in diabetes management to potentially reduce the risk and severity of DR, a complication of diabetes. The integration of periodontal evaluation and treatment into diabetes care protocols may lead to improved glycemic control and better overall outcomes for T2DM patients . A few studies have established an interconnection between PD and diabetic complication, specifically DR, in T2DM patients, which we aim to highlight in this editorial. Emphasis was placed on the different mechanisms that suggest a bidirectional relationship between PD and T2DM, where the presence of periodontal inflammation negatively influenced glycemic control and contributed to the development and progression of DR through shared inflammatory and vascular mechanisms. This article highlights the importance of collaboration amongst diabetes specialists, ophthalmologists, periodontists, and public health professionals to advance the prevention, early detection, and treatment of PD and DR. This will improve the health and quality of life of T2DM patients. Moreover, the editorial highlights the need for further research on the specific molecular and immunological mechanisms that underlie the link between periodontitis and DR, with identification of common inflammatory biomarkers and signaling pathways. This is expected to facilitate effective direction of therapeutic objectives, thereby improving the management of diabetes and its complications through integrated care that incorporates oral health.
Collapse
Affiliation(s)
- Sarah Monserrat Lomelí Martínez
- Department of Medical and Life Sciences, Centro Universitario de la Ciénega, Universidad de Guadalajara, Ocotlán 47810, Mexico
- Master of Public Health, Department of Wellbeing and Sustainable, Centro Universitario del Norte, Universidad de Guadalajara, Colotlán 46200, Mexico
| | - Irán Cortés Trujillo
- Department of Medical and Life Sciences, Centro Universitario de la Ciénega, Universidad de Guadalajara, Ocotlán 47810, Mexico
| | - Melissa Martínez Nieto
- Periodontics Program, Department of Integrated Dentistry Clinics, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara 44340, Mexico
| | | |
Collapse
|
16
|
Li J, Zhao T, Sun Y. Interleukin-17A in diabetic retinopathy: The crosstalk of inflammation and angiogenesis. Biochem Pharmacol 2024; 225:116311. [PMID: 38788958 DOI: 10.1016/j.bcp.2024.116311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 05/19/2024] [Accepted: 05/21/2024] [Indexed: 05/26/2024]
Abstract
Diabetic retinopathy (DR) is a severe ocular complication of diabetes which can leads to irreversible vision loss in its late-stage. Chronic inflammation results from long-term hyperglycemia contributes to the pathogenesis and progression of DR. In recent years, the interleukin-17 (IL-17) family have attracted the interest of researchers. IL-17A is the most widely explored cytokine in IL-17 family, involved in various acute and chronic inflammatory diseases. Growing body of evidence indicate the role of IL-17A in the pathogenesis of DR. However, the pro-inflammatory and pro-angiogenic effect of IL-17A in DR have not hitherto been reviewed. Gaining an understanding of the pro-inflammatory role of IL-17A, and how IL-17A control/impact angiogenesis pathways in the eye will deepen our understanding of how IL-17A contributes to DR pathogenesis. Herein, we aimed to thoroughly review the pro-inflammatory role of IL-17A in DR, with focus in how IL-17A impact inflammation and angiogenesis crosstalk.
Collapse
Affiliation(s)
- Jiani Li
- Department of Ophthalmology, the Second Xiangya Hospital, Central South University, Changsha, Hunan, China; Hunan Clinical Research Center of Ophthalmic Disease, Changsha, Hunan, China
| | - Tantai Zhao
- Department of Ophthalmology, the Second Xiangya Hospital, Central South University, Changsha, Hunan, China; Hunan Clinical Research Center of Ophthalmic Disease, Changsha, Hunan, China
| | - Yun Sun
- Department of Ophthalmology, the Second Xiangya Hospital, Central South University, Changsha, Hunan, China; Hunan Clinical Research Center of Ophthalmic Disease, Changsha, Hunan, China.
| |
Collapse
|
17
|
Massengill MT, Cubillos S, Sheth N, Sethi A, Lim JI. Response of Diabetic Macular Edema to Anti-VEGF Medications Correlates with Improvement in Macular Vessel Architecture Measured with OCT Angiography. OPHTHALMOLOGY SCIENCE 2024; 4:100478. [PMID: 38827030 PMCID: PMC11141254 DOI: 10.1016/j.xops.2024.100478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 12/20/2023] [Accepted: 01/19/2024] [Indexed: 06/04/2024]
Abstract
Purpose Improvements in best-corrected visual acuity (BCVA) and central subfield thickness (CST) have been well documented after intravitreal injection of anti-VEGF medications in diabetic macular edema (DME); however, their effect on the vasculature of the macula in diabetic retinopathy (DR) remains poorly understood. Our aim was to explore the effect of intravitreal injection of anti-VEGF on parameters of retinal vascular microstructure in DR with OCT angiography (OCTA). Design Retrospective study of adult patients with DME that were treated with anti-VEGF intravitreal injections at the University of Illinois at Chicago between 2017 and 2022. Participants Forty-one eyes from 30 patients with nonproliferative or proliferative DR with a mean age of 58.83 ± 11.71 years, mean number of intravitreal injections of 2.8 ± 1.4, and mean follow-up of 6.5 ± 1.7 months. Methods ImageJ was employed to measure parameters of retinal vascular microstructure in OCTA images, which included perfusion density, vessel-length density (VLD), vessel diameter, and foveal avascular zone (FAZ) characteristics (area, perimeter, and circularity). Student t tests and analysis of variance were used to determine statistical significance. Main Outcome Measures A primary analysis was performed comparing the mean of each parameter of all patients as a single group at the beginning and end of the study period. A subgroup analysis was then performed after stratifying patients based on visual improvement, change in CST, prior injection history, and number of injections. Results Eyes demonstrated statistical improvement in BCVA logarithm of the minimum angle of resolution score and CST after anti-VEGF treatment. Primary analysis showed a reduction in the vessel diameter of the superficial and deep retinal vasculature, as well as an increase in the circularity of the FAZ within the superficial retinal vasculature after anti-VEGF treatment. Subgroup analysis revealed that eyes with improvement in BCVA exhibited reduced vessel diameter in the superficial retinal vasculature and that eyes with the largest decrease in CST displayed increased perfusion density and VLD in the deep retinal vasculature. Conclusions Intravitreal injection of anti-VEGF agents to treat DME improved parameters of retinal vascular microstructure on OCTA over a period of 3 to 9 months, and this effect was most pronounced in eyes that experienced improvement in BCVA and CST. Financial Disclosures Proprietary or commercial disclosure may be found in the Footnotes and Disclosures at the end of this article.
Collapse
Affiliation(s)
- Michael T. Massengill
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, Illinois
| | - Samuel Cubillos
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, Illinois
| | - Neil Sheth
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, Illinois
| | - Abhishek Sethi
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, Illinois
| | - Jennifer I. Lim
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, Illinois
| |
Collapse
|
18
|
Li J, Lv P, Xiao Z, Xiao J. Protective Effects of Bioactive Compound-Derived Nanoparticle Against Diabetic Retinopathy Through the Modulation of the NF-κB Signaling Pathway. ACS OMEGA 2024; 9:26267-26274. [PMID: 38911745 PMCID: PMC11191572 DOI: 10.1021/acsomega.4c02066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Revised: 05/04/2024] [Accepted: 05/21/2024] [Indexed: 06/25/2024]
Abstract
Diabetic retinopathy is a prevalent and severe microvascular complication of diabetes, often causing visual impairment and blindness in adults. This condition significantly impacts the quality of life for many diabetes patients worldwide. Berberine (BBR), a bioactive compound known for its effects on blood glucose levels, has shown promise in managing diabetic complications. However, the exact mechanism of how BBR influences the development of diabetic retinopathy remains unclear. In this study, we focused on synthesizing a formulation derived from BBR and assessing its protective effects against diabetic retinopathy. The formulation was created using a green synthesis method and thoroughly characterized. In vitro studies demonstrated the antioxidant activity of the formulation against 2,2-diphenyl-1-picryl-hydrazyl-hydrate. We also examined the NF-κB signaling pathway at a molecular level using real-time polymerase chain reaction. To mimic diabetic retinopathy in a controlled setting, a diabetic rat model was established through streptozotocin injection. The rats were divided into normal, diabetic, and treatment groups. The treatment group received the formulated treatment via intragastric administration for several weeks, while the other groups received normal saline. Evaluation of histopathological characteristics and microstructural changes in the retina using hematoxylin and eosin staining revealed that the bioactive compound-derived nanoparticle exhibited favorable biological, chemical, and physical properties. Treatment with the formulation effectively reduced oxidative stress induced by diabetes and inhibited the NF-κB signaling pathway in the diabetic rat model. Under high glucose conditions, oxidative stress was heightened, leading to mitochondria-dependent cell apoptosis in Müller cells via the activation of the NF-κB signaling pathway. The bioactive compound-derived formulation counteracted these effects by decreasing IκB phosphorylation, preventing NF-κB nuclear translocation, and deactivating the NF-κB signaling pathway. Furthermore, treatment with the bioactive compound-derived formulation mitigated retinal micro- and ultrastructural changes associated with diabetic retinopathy. These results indicate that the formulation protects against diabetic retinopathy by suppressing oxidative stress, reducing cell apoptosis, and deactivating the NF-κB signaling pathway. This suggests that the bioactive compound-derived formulation could be a promising therapeutic option for diabetic retinopathy.
Collapse
Affiliation(s)
- Jianting Li
- Department
of Endocrinology, Central Hospital Affiliated
to Shandong First Medical University, No. 105 Jiefang Road, Jinan 250012, China
| | - Ping Lv
- Department
of Endocrinology, The Fourth People’s
Hospital of Jinan, No.
50, Normal Road, Tianqiao District, Jinan 250031, China
| | - Zhanzhan Xiao
- Department
of Medical Device Management, The Fourth
People’s Hospital of Jinan, No. 50, Normal Road, Tianqiao
District, Jinan 250031, China
| | - Juan Xiao
- Department
of Endocrinology, Qingdao Municipal Hospital, No. 1, Jiaozhou Road, Qingdao 266011, China
| |
Collapse
|
19
|
Wang M, Song B, Xu H. Effect of propylene glycol mannate sulfate on non-proliferative diabetic retinopathy. Am J Transl Res 2024; 16:2509-2516. [PMID: 39006273 PMCID: PMC11236637 DOI: 10.62347/urtf9525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 05/17/2024] [Indexed: 07/16/2024]
Abstract
PURPOSE To evaluate the effect of propylene glycol mannate sulfate (PGMS) on retinopathy in non-proliferative diabetic patients. METHODS Eighty patients (111 eyes) with non-proliferative diabetic retinopathy were selected and retrospectively analyzed. Patients were divided into a control group (40 cases, 56 eyes) and an experimental group (40 cases, 55 eyes) using a random number table method. The control group continued had routine blood glucose management, while the experimental group received PGMS 100 mg additionally TID for 60 days. Changes in visual acuity, fundus conditions including hemorrhage points and exudation in each quadrant, and non-perfusion area were revealed through fundus angiography before and after the treatment period. RESULTS After PGMS treatment, the experimental group demonstrated significant improvements compared to the control group in terms of eyesight improvement (P=0.002), the macular edema and macular retinal thickness (P=0.008). The total clinical efficacy rate of the experimental group was 67.86%, which was higher than 38.18% of the control group (P=0.032). Notably, there was a significant reduction in macular hemorrhage and hard extrusion. CONCLUSION Oral administration of PGMS is an effective treatment for non-proliferative diabetic retinopathy.
Collapse
Affiliation(s)
- Mingming Wang
- Department of Ophthalmology, Chengyang People's Hospital Qingdao, Shandong, China
| | - Bangjian Song
- Department of Ophthalmology, Rizhao Central Hospital Rizhao, Shandong, China
| | - Haining Xu
- Department of Ophthalmology, Weihaiwei People's Hospital Weihai, Shandong, China
| |
Collapse
|
20
|
Kaur P, Dahiya R, Nandave M, Sharma K, Goyal RK. Unveiling the crucial role of intercellular adhesion molecule-1 in secondary diabetic complications. Cell Biochem Funct 2024; 42:e4037. [PMID: 38736204 DOI: 10.1002/cbf.4037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 04/06/2024] [Accepted: 05/02/2024] [Indexed: 05/14/2024]
Abstract
Diabetes mellitus is associated with secondary complications such as diabetic retinopathy (DR), nephropathy (DN), and cardiomyopathy (DCM), all of which significantly impact patient health. Intercellular adhesion molecule-1 (ICAM-1) has been implicated in inflammatory responses and endothelial dysfunction, both crucial in the pathogenesis of these complications. The goal of this review is to investigate at potential therapy methods that target ICAM-1 pathways and to better understand the multifaceted role of ICAM-1 in secondary diabetic problems. A meticulous analysis of scholarly literature published globally was conducted to examine ICAM-1involvement in inflammatory processes, endothelial dysfunction, and oxidative stress related to diabetes and its complications. Elevated ICAM-1 levels are strongly associated with augmented leukocyte adhesion, compromised microvascular function, and heightened oxidative stress in diabetes. These pathways contribute significantly to DR, DN, and DCM pathogenesis, highlighting ICAM-1 as a key player in their progression. Understanding ICAM-1 role in secondary diabetic complications offers insights into novel therapeutic strategies. Targeting ICAM-1 pathways may mitigate inflammation, improve endothelial function, and ultimately attenuate diabetic complications, thereby enhancing patient health outcomes. Continued research in this area is crucial for developing effective targeted therapies.
Collapse
Affiliation(s)
- Prabhnain Kaur
- Department of Pharmacology, School of Pharmaceutical Sciences, Delhi Pharmaceutical Sciences and Research University, New Delhi, India
| | - Ritu Dahiya
- Department of Pharmacology, School of Pharmaceutical Sciences, Delhi Pharmaceutical Sciences and Research University, New Delhi, India
| | - Mukesh Nandave
- Department of Pharmacology, School of Pharmaceutical Sciences, Delhi Pharmaceutical Sciences and Research University, New Delhi, India
| | - Kalicharan Sharma
- Department of Pharmaceutical Chemistry, ISF College of Pharmacy, Moga, India
| | - Ramesh K Goyal
- Department of Pharmacology, School of Pharmaceutical Sciences, Delhi Pharmaceutical Sciences and Research University, New Delhi, India
| |
Collapse
|
21
|
Tang WSW, Lau NXM, Krishnan MN, Chin YC, Ho CSH. Depression and Eye Disease-A Narrative Review of Common Underlying Pathophysiological Mechanisms and their Potential Applications. J Clin Med 2024; 13:3081. [PMID: 38892791 PMCID: PMC11172702 DOI: 10.3390/jcm13113081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Revised: 05/20/2024] [Accepted: 05/22/2024] [Indexed: 06/21/2024] Open
Abstract
Background: Depression has been shown to be associated with eye diseases, including dry eye disease (DED), cataracts, glaucoma, age-related macular degeneration (AMD), and diabetic retinopathy (DR). This narrative review explores potential pathophysiological connections between depression and eye disease, as well as its potential correlations with ocular parameters. Methods: A literature search was conducted in August 2022 in PUBMED, EMBASE, and PsycINFO. Published articles related to the subject were consolidated and classified according to respective eye diseases and pathophysiological mechanisms. Results: The literature reviewed suggests that common pathophysiological states like inflammation and neurodegeneration may contribute to both depression and certain eye diseases, while somatic symptoms and altered physiology, such as disruptions in circadian rhythm due to eye diseases, can also influence patients' mood states. Grounded in the shared embryological, anatomical, and physiological features between the eye and the brain, depression is also correlated to changes observed in non-invasive ophthalmological imaging modalities, such as changes in the retinal nerve fibre layer and retinal microvasculature. Conclusions: There is substantial evidence of a close association between depression and eye diseases. Understanding the underlying concepts can inform further research on treatment options and monitoring of depression based on ocular parameters.
Collapse
Affiliation(s)
- Wymann Shao Wen Tang
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119077, Singapore
| | - Nicole Xer Min Lau
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119077, Singapore
| | | | - You Chuen Chin
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119077, Singapore
- Raffles Medical Group, Singapore 188770, Singapore
| | - Cyrus Su Hui Ho
- Department of Psychological Medicine, National University of Singapore, Singapore 119077, Singapore
- Department of Psychological Medicine, National University Hospital, Singapore 119228, Singapore
| |
Collapse
|
22
|
Boroughani M, Tahmasbi Z, Heidari MM, Johari M, Hashempur MH, Heydari M. Potential therapeutic effects of green tea ( Camellia sinensis) in eye diseases, a review. Heliyon 2024; 10:e28829. [PMID: 38601618 PMCID: PMC11004586 DOI: 10.1016/j.heliyon.2024.e28829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 03/08/2024] [Accepted: 03/26/2024] [Indexed: 04/12/2024] Open
Abstract
This review aims to evaluate the therapeutic potential of green tea (GT), scientifically named Camellia sinensis, in treating eye diseases. We provide an overview of the ingredients and traditional use of Camellia sinensis, followed by a detailed discussion of its therapeutic uses in various eye diseases, including ocular surface diseases (allergic diseases, dry eye, pterygium, and infections), cataract, glaucoma, uveitis, retinal diseases, and optic nerve diseases. The pharmacologic activities related to ocular diseases, such as anti-vascular endothelial growth factor, aldose reductase inhibitor activity, anti-bacterial, anti-inflammatory, and antioxidant effects are also explored in this review. The dose and route of administration of GT in various studies are discussed. Safety issues related to the use of GT, such as the side effects associated with high doses and long-term use, are also addressed. The review highlights the potential of GT as a natural therapeutic agent for a variety of ocular diseases. Its various pharmacologic activities make it a promising treatment option. However, more well-designed studies are needed to determine the optimal dose and route of administration and to assess its long-term safety and efficacy. Overall, GT appears to be a promising adjunct therapy for various ocular diseases.
Collapse
Affiliation(s)
- Mohadese Boroughani
- Student research Committee, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Zahra Tahmasbi
- Student research Committee, Shiraz University of Medical Sciences, Shiraz, Iran
| | | | - Mohammadkarim Johari
- Poostchi Ophthalmology Research Center, Department of Ophthalmology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mohammad Hashem Hashempur
- Research Center for Traditional Medicine and History of Medicine, Department of Persian Medicine, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mojtaba Heydari
- Poostchi Ophthalmology Research Center, Department of Ophthalmology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
- Research Center for Traditional Medicine and History of Medicine, Department of Persian Medicine, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
23
|
Luo Y, Li C. Advances in Research Related to MicroRNA for Diabetic Retinopathy. J Diabetes Res 2024; 2024:8520489. [PMID: 38375094 PMCID: PMC10876316 DOI: 10.1155/2024/8520489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 08/21/2023] [Accepted: 01/27/2024] [Indexed: 02/21/2024] Open
Abstract
Diabetic retinopathy (DR) is a severe microvascular complication of diabetes and is one of the primary causes of blindness in the working-age population in Europe and the United States. At present, no cure is available for DR, but early detection and timely intervention can prevent the rapid progression of the disease. Several treatments for DR are known, primarily ophthalmic treatment based on glycemia, blood pressure, and lipid control, which includes laser photocoagulation, glucocorticoids, vitrectomy, and antivascular endothelial growth factor (anti-VEGF) medications. Despite the clinical efficacy of the aforementioned therapies, none of them can entirely shorten the clinical course of DR or reverse retinopathy. MicroRNAs (miRNAs) are vital regulators of gene expression and participate in cell growth, differentiation, development, and apoptosis. MicroRNAs have been shown to play a significant role in DR, particularly in the molecular mechanisms of inflammation, oxidative stress, and neurodegeneration. The aim of this review is to systematically summarize the signaling pathways and molecular mechanisms of miRNAs involved in the occurrence and development of DR, mainly from the pathogenesis of oxidative stress, inflammation, and neovascularization. Meanwhile, this article also discusses the research progress and application of miRNA-specific therapies for DR.
Collapse
Affiliation(s)
- Yahan Luo
- Shanghai TCM-Integrated Hospital, Shanghai University of TCM, Shanghai, China
- Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Chunxia Li
- Shanghai TCM-Integrated Hospital, Shanghai University of TCM, Shanghai, China
| |
Collapse
|
24
|
Upadhyay T, Prasad R, Mathurkar S. A Narrative Review of the Advances in Screening Methods for Diabetic Retinopathy: Enhancing Early Detection and Vision Preservation. Cureus 2024; 16:e53586. [PMID: 38455792 PMCID: PMC10918290 DOI: 10.7759/cureus.53586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 01/29/2024] [Indexed: 03/09/2024] Open
Abstract
Diabetes mellitus (DM) is putting a great burden worldwide. This rise in DM cases, both type 1 and 2, significantly impacts public health. India has grappled with a diabetes epidemic for several years, leading to many misdiagnosed and untreated diabetes cases. Diabetes remains a significant factor in adult-onset blindness despite improvements in diabetes management. This increases the danger of diabetic retinopathy (DR) with permanent loss of sight for those affected. The screening for DR aims to identify those persons with complications arising from diabetes or DR, which could potentially result in blindness, so that treatment can be started immediately and blindness can be avoided. A comprehensive health system approach is required to ensure that the public sector in India effectively screens for DR. Improving patient outcomes and avoiding visual loss depends significantly on early identification and treatment. This article discusses the actions that should be implemented to establish a national effort for systematic DR screening. It also highlights the importance of screening in DR and its impact on treatment effectiveness. Regular screenings enable the early detection of retinopathy, allowing for timely intervention and treatment. Early screening helps prevent complications associated with DR, such as macular edema or retinal detachment. Screening also assists healthcare providers in planning, optimizing treatment approaches, and monitoring treatment effectiveness. Meanwhile, early intervention is essential for enhancing treatment outcomes, thus enhancing the chances of preserving vision and preventing further progression of the disease. This helps in improving the overall management of this sight-threatening complication.
Collapse
Affiliation(s)
- Tanisha Upadhyay
- Ophthalmology, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education and Research, Wardha, IND
| | - Roshan Prasad
- Medicine, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education and Research, Wardha, IND
| | - Swapneel Mathurkar
- Ophthalmology, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education and Research, Wardha, IND
| |
Collapse
|
25
|
Nanji K, Sarohia GS, Xie J, Patil NS, Phillips M, Zeraatkar D, Thabane L, Guymer RH, Kaiser PK, Sivaprasad S, Sadda SR, Wykoff CC, Chaudhary V. Anti-vascular endothelial growth factor therapy and retinal non-perfusion in diabetic retinopathy: A meta-analysis of randomised trials. Acta Ophthalmol 2024; 102:e31-e41. [PMID: 37042340 DOI: 10.1111/aos.15673] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Revised: 02/19/2023] [Accepted: 03/27/2023] [Indexed: 04/13/2023]
Abstract
PURPOSE Retinal non-perfusion (RNP) is fundamental to disease onset and progression in diabetic retinopathy (DR). Whether anti-vascular endothelial growth factor (anti-VEGF) therapy can modify RNP progression is unclear. This investigation quantified the impact of anti-VEGF therapy on RNP progression compared with laser or sham at 12 months. METHODS A systematic review and meta-analysis of randomised controlled trials (RCTs) were performed; Ovid MEDLINE, EMBASE and CENTRAL were searched from inception to 4th March 2022. The change in any continuous measure of RNP at 12 months and 24 months was the primary and secondary outcomes, respectively. Outcomes were reported utilising standardised mean differences (SMD). The Cochrane Risk of Bias Tool version-2 and the Grading of Recommendations Assessment, Development and Evaluation (GRADE) guidelines informed risk of bias and certainty of evidence assessments. RESULTS Six RCTs (1296 eyes) and three RCTs (1131 eyes) were included at 12 and 24 months, respectively. Meta-analysis demonstrated that RNP progression may be slowed with anti-VEGF therapy compared with laser/sham at 12 months (SMD: -0.17; 95% confidence interval [CI]: -0.29, -0.06; p = 0.003; I2 = 0; GRADE rating: LOW) and 24-months (SMD: -0.21; 95% CI: -0.37, -0.05; p = 0.009; I2 = 28%; GRADE rating: LOW). The certainty of evidence was downgraded due to indirectness and due to imprecision. CONCLUSION Anti-VEGF treatment may slightly impact the pathophysiologic process of progressive RNP in DR. The dosing regimen and the absence of diabetic macular edema may impact this potential effect. Future trials are needed to increase the precision of the effect and inform the association between RNP progression and clinically important events. PROSPERO REGISTRATION CRD42022314418.
Collapse
Affiliation(s)
- Keean Nanji
- Department of Surgery, Division of Ophthalmology, McMaster University, 2757 King Street East, Hamilton, Ontario, Canada
- Department of Health Research Methods, Evidence and Impact, McMaster University, 1280 Main Street West, Hamilton, Ontario, Canada
| | - Gurkaran S Sarohia
- Department of Ophthalmology and Visual Sciences, University of Alberta, 2319 Active Treatment Centre, 10240 Kingsway Avenue NW, Edmonton, Alberta, Canada, T5H 3V8
| | - Jim Xie
- Department of Surgery, Division of Ophthalmology, McMaster University, 2757 King Street East, Hamilton, Ontario, Canada
| | - Nikhil S Patil
- Department of Surgery, Division of Ophthalmology, McMaster University, 2757 King Street East, Hamilton, Ontario, Canada
| | - Mark Phillips
- Department of Health Research Methods, Evidence and Impact, McMaster University, 1280 Main Street West, Hamilton, Ontario, Canada
| | - Dena Zeraatkar
- Department of Health Research Methods, Evidence and Impact, McMaster University, 1280 Main Street West, Hamilton, Ontario, Canada
| | - Lehana Thabane
- Department of Health Research Methods, Evidence and Impact, McMaster University, 1280 Main Street West, Hamilton, Ontario, Canada
- Biostatistics Unit, St. Joseph's Healthcare Hamilton, Hamilton, Ontario, Canada
- Faculty of Health Sciences, University of Johannesburg, Johannesburg, South Africa
| | - Robyn H Guymer
- Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, East Melbourne, Victoria, Australia
- Department of Surgery (Ophthalmology), the University of Melbourne, Melbourne, Australia
| | - Peter K Kaiser
- Cole Eye Institute, Cleveland Clinic, 9500 Euclid Avenue, Cleveland, Ohio, USA
| | - Sobha Sivaprasad
- NIHR Moorfields Biomedical Research Centre, Moorfields Eye Hospital, London, UK
| | - Srinivas R Sadda
- Doheny Eye Institute, David Geffen School of Medicine, University of California - Los Angeles, Los Angeles, California, USA
| | - Charles C Wykoff
- Retina Consultants of Texas, Houston, Texas, Blanton Eye Institute, Houston Methodist Hospital, Houston, Texas, USA
| | - Varun Chaudhary
- Department of Surgery, Division of Ophthalmology, McMaster University, 2757 King Street East, Hamilton, Ontario, Canada
- Department of Health Research Methods, Evidence and Impact, McMaster University, 1280 Main Street West, Hamilton, Ontario, Canada
| |
Collapse
|
26
|
Fedoruk NA. [Current views on pathogenesis and treatment of neovascular glaucoma]. Vestn Oftalmol 2024; 140:110-116. [PMID: 38962986 DOI: 10.17116/oftalma2024140031110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/05/2024]
Abstract
Neovascular glaucoma is a type of secondary glaucoma characterized by the most severe course, and ranking second among the causes of irreversible blindness. This review summarizes the results of numerous studies devoted to the search for prevention measures and the most effective treatment strategy. The main ways of preventing the development of neovascular glaucoma are timely diagnosis and elimination of ischemic processes in the retina, combined with adequate control of intraocular pressure and treatment of the underlying disease.
Collapse
Affiliation(s)
- N A Fedoruk
- Krasnov Research Institute of Eye Diseases, Moscow, Russia
| |
Collapse
|
27
|
Biswas A, Choudhury AD, Agrawal S, Bisen AC, Sanap SN, Verma SK, Kumar M, Mishra A, Kumar S, Chauhan M, Bhatta RS. Recent Insights into the Etiopathogenesis of Diabetic Retinopathy and Its Management. J Ocul Pharmacol Ther 2024; 40:13-33. [PMID: 37733327 DOI: 10.1089/jop.2023.0068] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/22/2023] Open
Abstract
Purpose: Diabetic retinopathy (DR) is a microvascular retinal disease associated with chronic diabetes mellitus, characterized by the damage of blood vessels in the eye. It is projected to become the leading cause of blindness, given the increasing burden of the diabetic population worldwide. The diagnosis and management of DR pose significant challenges for physicians because of the involvement of multiple biochemical pathways and the complexity of ocular tissues. This review aims to provide a comprehensive understanding of the molecular pathways implicated in the pathogenesis of DR, including the polyo pathway, hexosamine pathway, protein kinase C (PKC), JAK/STAT signaling pathways, and the renin-angiotensin system (RAS). Methods: Academic databases such as PubMed, Scopus, Google Scholar and Web of Science was systematically searched using a carefully constructed search strategy incorporating keywords like "Diabetic Retinopathy," "Molecular Pathways," "Pharmacological Treatments," and "Clinical Trials" to identify relevant literature for the comprehensive review. Results: In addition to activating other inflammatory cascades, these pathways contribute to the generation of oxidative stress within the retina. Furthermore, it aims to explore the existing pharmacotherapy options available for the treatment of DR. In addition to conventional pharmacological therapies such as corticosteroids, antivascular endothelial growth factors, and nonsteroidal anti-inflammatory drugs (NSAIDs), this review highlights the potential of repurposed drugs, phyto-pharmaceuticals, and novel pipeline drugs currently undergoing various stages of clinical trials. Conclusion: Overall, this review serves as a technical exploration of the complex nature of DR, highlighting both established and emerging molecular pathways implicated in its pathogenesis. Furthermore, it delves into the available pharmacological treatments, as well as the promising repurposed drugs, phyto-pharmaceuticals, and novel drugs currently being evaluated in clinical trials, with a focus on their specific mechanisms of action.
Collapse
Affiliation(s)
- Arpon Biswas
- Pharmaceutics and Pharmacokinetic Division, CSIR-Central Drug Research Institute, Lucknow, India
- Jawaharlal Nehru University, New Delhi, India
| | - Abhijit Deb Choudhury
- Pharmaceutics and Pharmacokinetic Division, CSIR-Central Drug Research Institute, Lucknow, India
- Jawaharlal Nehru University, New Delhi, India
| | - Sristi Agrawal
- Pharmaceutics and Pharmacokinetic Division, CSIR-Central Drug Research Institute, Lucknow, India
- Academy of Scientific and Innovative Research, New Delhi, India
| | - Amol Chhatrapati Bisen
- Pharmaceutics and Pharmacokinetic Division, CSIR-Central Drug Research Institute, Lucknow, India
- Academy of Scientific and Innovative Research, New Delhi, India
| | - Sachin Nashik Sanap
- Pharmaceutics and Pharmacokinetic Division, CSIR-Central Drug Research Institute, Lucknow, India
- Academy of Scientific and Innovative Research, New Delhi, India
| | - Sarvesh Kumar Verma
- Pharmaceutics and Pharmacokinetic Division, CSIR-Central Drug Research Institute, Lucknow, India
- Jawaharlal Nehru University, New Delhi, India
| | - Mukesh Kumar
- Pharmaceutics and Pharmacokinetic Division, CSIR-Central Drug Research Institute, Lucknow, India
- Jawaharlal Nehru University, New Delhi, India
| | - Anjali Mishra
- Pharmaceutics and Pharmacokinetic Division, CSIR-Central Drug Research Institute, Lucknow, India
- Academy of Scientific and Innovative Research, New Delhi, India
| | - Shivansh Kumar
- Pharmaceutics and Pharmacokinetic Division, CSIR-Central Drug Research Institute, Lucknow, India
| | - Mridula Chauhan
- Pharmaceutics and Pharmacokinetic Division, CSIR-Central Drug Research Institute, Lucknow, India
| | - Rabi Sankar Bhatta
- Pharmaceutics and Pharmacokinetic Division, CSIR-Central Drug Research Institute, Lucknow, India
| |
Collapse
|
28
|
Shanbagh S, Gadde SG, Shetty R, Heymans S, Abilash VG, Chaurasia SS, Ghosh A. Hyperglycemia-induced miR182-5p drives glycolytic and angiogenic response in Proliferative Diabetic Retinopathy and RPE cells via depleting FoxO1. Exp Eye Res 2024; 238:109713. [PMID: 37952722 DOI: 10.1016/j.exer.2023.109713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 09/10/2023] [Accepted: 11/02/2023] [Indexed: 11/14/2023]
Abstract
PURPOSE Diabetic Retinopathy (DR) is associated with metabolic dysfunction in cells such as retinal pigmented epithelium (RPE). Small molecular weight microRNAs can simultaneously regulate multiple gene products thus having pivotal roles in disease pathogenesis. Since miR182-5p is involved in regulating glycolysis and angiogenesis, two pathologic processes of DR, we investigated its status in DR eyes and in high glucose model in vitro. METHOD ology: Total RNA was extracted from vitreous humor of PDR (n = 48) and macular hole (n = 22) subjects followed by quantification of miR182-5p and its target genes. ARPE-19 cells, cultured in DMEM under differential glucose conditions (5 mM and 25 mM) were used for metabolic and biochemical assays. Cells were transfected with miRNA182 mimic or antagomir to evaluate the gain and loss of function effects. RESULTS PDR patient eyes had high levels of miR182-5p levels (p < 0.05). RPE cells under high glucose stress elevated miR182-5p expression with altered glycolytic pathway drivers such as HK2, PFKP and PKM2 over extended durations. Additionally, RPE cells under high glucose conditions exhibited reduced FoxO1 and enhanced Akt activation. RPE cells transfected with miR182-5p mimic phenocopied the enhanced basal and compensatory glycolytic rates observed under high glucose conditions with increased VEGF secretion. Conversely, inhibiting miR182-5p reduced Akt activation, glycolytic pathway proteins, and VEGF while stabilizing FoxO1. CONCLUSION Glycolysis-associated proteins downstream of the FoxO1-Akt axis were regulated by miR182-5p. Further, miR182-5p increased expression of VEGFR2 and VEGF levels, likely via inhibition of ZNF24. Thus, the FoxO1-Akt-glycolysis/VEGF pathway driving metabolic dysfunction with concurrent angiogenic signaling in PDR may be potentially targeted for treatment via miR182-5p modulation.
Collapse
Affiliation(s)
- Shaika Shanbagh
- GROW Research Laboratory, Narayana Nethralaya Foundation, Bangalore, India; Department of Biomedical Sciences, School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, India
| | | | | | | | - V G Abilash
- Department of Biomedical Sciences, School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, India.
| | - Shyam S Chaurasia
- Ocular Immunology & Angiogenesis Lab, Department of Ophthalmology and Visual Sciences, Medical College of Wisconsin, Milwaukee, WI, 53226, USA.
| | - Arkasubhra Ghosh
- GROW Research Laboratory, Narayana Nethralaya Foundation, Bangalore, India.
| |
Collapse
|
29
|
Rohilla M, Rishabh, Bansal S, Garg A, Dhiman S, Dhankhar S, Saini M, Chauhan S, Alsubaie N, Batiha GES, Albezrah NKA, Singh TG. Discussing pathologic mechanisms of Diabetic retinopathy & therapeutic potentials of curcumin and β-glucogallin in the management of Diabetic retinopathy. Biomed Pharmacother 2023; 169:115881. [PMID: 37989030 DOI: 10.1016/j.biopha.2023.115881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 11/04/2023] [Accepted: 11/09/2023] [Indexed: 11/23/2023] Open
Abstract
Diabetic retinopathy (DR) is a form of retinal microangiopathy that occurs as a result of long-term Diabetes mellitus (DM). Patients with Diabetes mellitus typically suffer from DR as a progression of the disease that may be due to initiation and dysregulation of pathways like the polyol, hexosamine, the AGE/RAGE, and the PKC pathway, which all have negative impacts on eye health and vision. In this review, various databases, including PubMed, Google Scholar, Web of Science, and Science Direct, were scoured for data relevant to the aforementioned title. The three most common therapies for DR today are retinal photocoagulation, anti-vascular endothelial growth factor (VEGF) therapy, and vitrectomy, however, there are a number of drawbacks and limits to these methods. So, it is of critical importance and profound interest to discover treatments that may successfully address the pathogenesis of DR. Curcumin and β-glucogallin are the two potent compounds of natural origin that are already being used in various nutraceutical formulations for several ailments. They have been shown potent antiapoptotic, anti-inflammatory, antioxidant, anticancer, and pro-vascular function benefits in animal experiments. Their parent plant species have been used for generations by practitioners of traditional herbal medicine for the treatment and prevention of various eye ailments. In this review, we will discuss about pathophysiology of Diabetic retinopathy and the therapeutic potentials of curcumin and β-glucogallin one of the principal compounds from Curcuma longa and Emblica officinalis in Diabetic retinopathy.
Collapse
Affiliation(s)
- Manni Rohilla
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab 140401, India; Swami Vivekanand College of Pharmacy, Ram Nagar, Banur, Punjab 140601, India
| | - Rishabh
- M. M. College of Pharmacy, Maharishi Markandeshwar (Deemed to be University), Mullana, Ambala, Haryana 133207, India
| | - Seema Bansal
- M. M. College of Pharmacy, Maharishi Markandeshwar (Deemed to be University), Mullana, Ambala, Haryana 133207, India
| | - Anjali Garg
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab 140401, India; Swami Devi Dyal College of Pharmacy, Golpura Barwala, Panchkula, Haryana 134118, India
| | - Sachin Dhiman
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab 140401, India
| | - Sanchit Dhankhar
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab 140401, India
| | - Monika Saini
- Swami Vivekanand College of Pharmacy, Ram Nagar, Banur, Punjab 140601, India; M. M. College of Pharmacy, Maharishi Markandeshwar (Deemed to be University), Mullana, Ambala, Haryana 133207, India
| | - Samrat Chauhan
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab 140401, India.
| | - Nawal Alsubaie
- Department of Pharmacy Practice, College of Pharmacy, Princess Nourah Bint Abdulrahman University, P.O. Box 84428, Riyadh, Saudi Arabia
| | - Gaber El-Saber Batiha
- Department of Pharmacology and Therapeutics, Faculty of Veterinary Medicine, Damanhour University, Damanhour 22511, AlBeheira, Egypt
| | - Nisreen Khalid Aref Albezrah
- Obstetric and Gynecology Department, Medicine College, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia.
| | - Thakur Gurjeet Singh
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab 140401, India.
| |
Collapse
|
30
|
Luo L, Cai Y, Jiang Y, Gong Y, Cai C, Lai D, Jin X, Guan Z, Qiu Q. Pipecolic acid mitigates ferroptosis in diabetic retinopathy by regulating GPX4-YAP signaling. Biomed Pharmacother 2023; 169:115895. [PMID: 37984309 DOI: 10.1016/j.biopha.2023.115895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Revised: 11/09/2023] [Accepted: 11/13/2023] [Indexed: 11/22/2023] Open
Abstract
Diabetic retinopathy (DR) is currently recognized as the leading cause of end-stage eye disease. Pipecolic acid, a metabolite, has a significant regulatory effect on several pathological processes. However, the exact mechanism by which it causes damage in diabetic retinopathy is unknown. Between September 2021 and December 2022, 40 patients were retrospectively examined and divided into two groups: the healthy group (n = 20) and the DR group (n = 20). Metabolomic analysis found that pipecolic acid plays an important role in this process. Streptozotocin-induced diabetic mice and high-glucose cultured human retinal capillary endothelial cells (HRCECs) were then treated with pipecolic acid. Several oxidative stress measurements and RNA sequencing of retinal cells were tested. A gene interaction study was conducted using bioinformatics. Comparison of serological metabolites between healthy volunteers and DR patients showed that pipecolic acid was significantly lower in DR patients, and there was a negative correlation between the level of pipecolic acid with blood glucose and glycated hemoglobin. Yes-associated protein (YAP) mRNA, Malondialdehyde (MDA), and reactive oxygen species (ROS) levels were significantly higher in diabetic mice, but glutathione peroxidase (GSH-Px) levels were significantly lower. Pipecolic acid significantly alleviated oxidative stress and YAP expression. The number of vascular tubes was significantly higher in the DR group, and pipecolic acid treatment significantly reduced tube formation. RNA-Sequencing analysis revealed that YAP and glutathione-dependent lipid hydroperoxidase glutathione peroxidase 4 (GPX4) expression was reduced, and functional enrichment analysis revealed that ferroptosis and Hippo signaling pathways play an important role in this process. Additionally, pipecolic acid's ability to improve DR is diminished after YAP and GPX4 ablation. This study found that pipecolic acid, as a metabolite, may impede the progression of DR by inhibiting the YAP-GPX4 signaling pathway.
Collapse
Affiliation(s)
- Liying Luo
- Department of Ophthalmology, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China
| | - Yuying Cai
- Department of Ophthalmology, Yangpu Hospital, School of Medicine, Tongji University, Shanghai, PR China
| | - Yanyun Jiang
- Department of Ophthalmology, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China
| | - Yingying Gong
- Department of Ophthalmology, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China
| | - Chunyang Cai
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China; National Clinical Research Center for Eye Diseases, Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Diseases, Shanghai, PR China
| | - Dongwei Lai
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China; National Clinical Research Center for Eye Diseases, Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Diseases, Shanghai, PR China
| | - Xiao Jin
- Department of Rheumatology and Immunology, Xuzhou Municipal Hospital Affiliated with Xuzhou Medical University, Xuzhou, Jiangsu PR China
| | - Zhiqiang Guan
- Department of Dermatology, Xuzhou Municipal Hospital Affiliated with Xuzhou Medical University, Xuzhou, Jiangsu, PR China.
| | - Qinghua Qiu
- Department of Ophthalmology, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China.
| |
Collapse
|
31
|
Parmar UM, Jalgaonkar MP, Kansara AJ, Oza MJ. Emerging links between FOXOs and diabetic complications. Eur J Pharmacol 2023; 960:176089. [PMID: 37838103 DOI: 10.1016/j.ejphar.2023.176089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 09/27/2023] [Accepted: 09/28/2023] [Indexed: 10/16/2023]
Abstract
Diabetes and its complications are increasing worldwide in the working population as well as in elders. Prolonged hyperglycemia results in damage to blood vessels of various tissues followed by organ damage. Hyperglycemia-induced damage in small blood vessels as in nephrons, retina, and neurons results in diabetic microvascular complications which involve nephropathy, retinopathy, and diabetic neuropathy. Additionally, damage in large blood vessels is considered as a macrovascular complication including diabetic cardiomyopathy. These long-term complications can result in organ failure and thus becomes the leading cause of diabetic-related mortality in patients. Members of the Forkhead Box O family (FOXO) are involved in various body functions including cell proliferation, metabolic processes, differentiation, autophagy, and apoptosis. Moreover, increasing shreds of evidence suggest the involvement of FOXO family members FOXO1, FOXO3, FOXO4, and FOXO6 in several chronic diseases including diabetes and diabetic complications. Hence, this review focuses on the role of FOXO transcription factors in the regulation of diabetic complications.
Collapse
Affiliation(s)
- Urvi M Parmar
- SVKM's Dr Bhanuben Nanavati College of Pharmacy, Vile Parle (W), Mumbai, 400056, India
| | - Manjiri P Jalgaonkar
- SVKM's Dr Bhanuben Nanavati College of Pharmacy, Vile Parle (W), Mumbai, 400056, India
| | - Aayush J Kansara
- SVKM's Dr Bhanuben Nanavati College of Pharmacy, Vile Parle (W), Mumbai, 400056, India
| | - Manisha J Oza
- SVKM's Dr Bhanuben Nanavati College of Pharmacy, Vile Parle (W), Mumbai, 400056, India.
| |
Collapse
|
32
|
Poojari AS, Wairkar S, Kulkarni YA. Stem cells as a regenerative medicine approach in treatment of microvascular diabetic complications. Tissue Cell 2023; 85:102225. [PMID: 37801960 DOI: 10.1016/j.tice.2023.102225] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 09/20/2023] [Accepted: 09/20/2023] [Indexed: 10/08/2023]
Abstract
Diabetes mellitus (DM) is a chronic metabolic disorder characterized by high blood glucose and is associated with high morbidity and mortality among the diabetic population. Uncontrolled chronic hyperglycaemia causes increased formation and accumulation of different oxidative and nitrosative stress markers, resulting in microvascular and macrovascular complications, which might seriously affect the quality of a patient's life. Conventional treatment strategies are confined to controlling blood glucose by regulating the insulin level and are not involved in attenuating the life-threatening complications of diabetes mellitus. Thus, there is an unmet need to develop a viable treatment strategy that could target the multi-etiological factors involved in the pathogenesis of diabetic complications. Stem cell therapy, a regenerative medicine approach, has been investigated in diabetic complications owing to their unique characteristic features of self-renewal, multilineage differentiation and regeneration potential. The present review is focused on potential therapeutic applications of stem cells in the treatment of microvascular diabetic complications such as nephropathy, retinopathy, and polyneuropathy.
Collapse
Affiliation(s)
- Avinash S Poojari
- Shobhabhen Pratapbhai Patel School of Pharmacy & Technology Management, SVKM's NMIMS, V.L. Mehta Road, Vile Parle (W), Mumbai 400056, India
| | - Sarika Wairkar
- Shobhabhen Pratapbhai Patel School of Pharmacy & Technology Management, SVKM's NMIMS, V.L. Mehta Road, Vile Parle (W), Mumbai 400056, India
| | - Yogesh A Kulkarni
- Shobhabhen Pratapbhai Patel School of Pharmacy & Technology Management, SVKM's NMIMS, V.L. Mehta Road, Vile Parle (W), Mumbai 400056, India.
| |
Collapse
|
33
|
Cao H, Hou C. Cell Division Control Protein 42 Facilitates Diabetic Retinopathy Progression by Activating the MEK/ERK Pathway. TOHOKU J EXP MED 2023; 261:211-219. [PMID: 37635064 DOI: 10.1620/tjem.2023.j068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/29/2023]
Abstract
Cell division control protein 42 (CDC42) modulates insulin secretion and angiogenesis to participate in the pathology of diabetic complications and retinal vascular-associated diseases. This study intended to explore the role of CDC42 in the progression of diabetic retinopathy, and the underlying mechanism. Human retinal microvascular endothelial cells (hRMECs) were cultured in 5.5 mM glucose (normal glucose) or 25 mM glucose (high glucose; HG) medium, respectively. CDC42 overexpression plasmid and small interference RNA (oe-CDC42 and si-CDC42) or corresponding negative controls (oe-NC and si-NC) were transfected into hRMECs under HG. Then, platelet-activating factor C-16 (C16-PAF) (MEK/ERK pathway activator) was added to si-CDC42 or si-NC transfected hRMECs under HG. Our study showed that HG increased CDC42 mRNA and protein, cell viability, invasive cell count, branch points, and tube length but reduced cell apoptosis in hRMECs. CDC42 upregulation enhanced cell viability, invasive cell count, branch points, tube length, p-MEK, and p-ERK, but attenuated cell apoptosis. Downregulation of CDC42 exhibited opposite trends. In addition, C16-PAF also increased cell viability, invasive cell count, branch points, and tube length, p-MEK, and p-ERK, but retarded cell apoptosis. Notably, C16-PAF diminished the effect of CDC42 downregulation on the above-mentioned functions in hRMECs under HG. Conclusively, CDC42 promotes HG-induced hRMEC viability and invasion, as well as angiogenesis, but inhibits apoptosis by activating the MEK/ERK pathway, which may be responsible for the progression of diabetic retinopathy.
Collapse
Affiliation(s)
- Hui Cao
- Department of Ophthalmology, The Affiliated Changsha Central Hospital, Hengyang Medical School, University of South China
| | - Changzheng Hou
- Department of Anesthesiology, The Third Xiangya Hospital of Central South University
| |
Collapse
|
34
|
Sienkiewicz-Szłapka E, Fiedorowicz E, Król-Grzymała A, Kordulewska N, Rozmus D, Cieślińska A, Grzybowski A. The Role of Genetic Polymorphisms in Diabetic Retinopathy: Narrative Review. Int J Mol Sci 2023; 24:15865. [PMID: 37958858 PMCID: PMC10650381 DOI: 10.3390/ijms242115865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 10/23/2023] [Accepted: 10/27/2023] [Indexed: 11/15/2023] Open
Abstract
Diabetic retinopathy (DR) is renowned as a leading cause of visual loss in working-age populations with its etiopathology influenced by the disturbance of biochemical metabolic pathways and genetic factors, including gene polymorphism. Metabolic pathways considered to have an impact on the development of the disease, as well as genes and polymorphisms that can affect the gene expression, modify the quantity and quality of the encoded product (protein), and significantly alter the metabolic pathway and its control, and thus cause changes in the functioning of metabolic pathways. In this article, the screening of chromosomes and the most important genes involved in the etiology of diabetic retinopathy is presented. The common databases with manuscripts published from January 2000 to June 2023 have been taken into consideration and chosen. This article indicates the role of specific genes in the development of diabetic retinopathy, as well as polymorphic changes within the indicated genes that may have an impact on exacerbating the symptoms of the disease. The collected data will allow for a broader look at the disease and help to select candidate genes that can become markers of the disease.
Collapse
Affiliation(s)
- Edyta Sienkiewicz-Szłapka
- Department of Biochemistry, Faculty of Biology and Biotechnology, University of Warmia and Mazury, 10-719 Olsztyn, Poland; (E.S.-S.); (E.F.); (A.K.-G.); (N.K.); (D.R.)
| | - Ewa Fiedorowicz
- Department of Biochemistry, Faculty of Biology and Biotechnology, University of Warmia and Mazury, 10-719 Olsztyn, Poland; (E.S.-S.); (E.F.); (A.K.-G.); (N.K.); (D.R.)
| | - Angelika Król-Grzymała
- Department of Biochemistry, Faculty of Biology and Biotechnology, University of Warmia and Mazury, 10-719 Olsztyn, Poland; (E.S.-S.); (E.F.); (A.K.-G.); (N.K.); (D.R.)
| | - Natalia Kordulewska
- Department of Biochemistry, Faculty of Biology and Biotechnology, University of Warmia and Mazury, 10-719 Olsztyn, Poland; (E.S.-S.); (E.F.); (A.K.-G.); (N.K.); (D.R.)
| | - Dominika Rozmus
- Department of Biochemistry, Faculty of Biology and Biotechnology, University of Warmia and Mazury, 10-719 Olsztyn, Poland; (E.S.-S.); (E.F.); (A.K.-G.); (N.K.); (D.R.)
| | - Anna Cieślińska
- Department of Biochemistry, Faculty of Biology and Biotechnology, University of Warmia and Mazury, 10-719 Olsztyn, Poland; (E.S.-S.); (E.F.); (A.K.-G.); (N.K.); (D.R.)
| | - Andrzej Grzybowski
- Institute for Research in Ophthalmology, Foundation for Ophthalmology Development, Gorczyczewskiego 2/3, 61-553 Poznań, Poland;
| |
Collapse
|
35
|
Yeganeh-Hajahmadi M, Mehrabani M, Esmaili M, Farokhi MS, Sanjari M. Protamine as a barrier against the angiogenic effect of insulin: a possible role of apelin. Sci Rep 2023; 13:17267. [PMID: 37828117 PMCID: PMC10570368 DOI: 10.1038/s41598-023-44639-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 10/10/2023] [Indexed: 10/14/2023] Open
Abstract
Insulin is proved to have angiogenic ability thereby may worsen the diabetic retinopathy (DR) progression. Insulin also triggers the expression of endogenous angiogenic peptide, apelin. Since protamine was introduced as an inhibitor of the apelin receptor, we hypothesized that use of protaminated insulin instead of non-protaminated insulin can decrease the negative role of insulin in progression of DR. Firstly, the incidence of DR was compared among three diabetic patient groups: an oral medication, non-protaminated insulin, and protaminated insulin (PIns). Proliferation and migration rate of HUVECs was measured after insulin, apelin, and protamine exposure. In clinical study, the chance of developing DR was 8.5 and 4.1 times higher in insulin group and PIns groups compared with oral group respectively. Insulin group had a chance of 9.5-folds of non-proliferative DR compared to oral group. However, the difference of non-proliferative DR between PIns and oral group wasn't significant. In-vitro tests showed that concomitant use of insulin and apelin increases viability and migratory potential of HUVECs. However, protamine could reverse this effect. Protamine present in some insulins might show a promising protective role against diabetic retinopathy. Thus, protaminated insulins may be preferable in the treatment of diabetes.
Collapse
Affiliation(s)
- Mahboobeh Yeganeh-Hajahmadi
- Physiology Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Mehrnaz Mehrabani
- Physiology Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran.
| | - Mojdeh Esmaili
- Herbal and Traditional Medicines Research Center, Kerman University of Medical Sciences, Kerman, Iran
| | - Mitra Shadkam Farokhi
- Cardiovascular Research Center, Institute of Basic and Clinical Physiology Sciences, Kerman University of Medical Sciences, Kerman, Iran
| | - Mojgan Sanjari
- Endocrinology and Metabolism Research Center, Institute of Basic and Clinical Physiology Sciences, Kerman University of Medical Sciences, Boulevard Jahad, Ebne Sina Avenue, Kerman, 76137-53767, Iran.
| |
Collapse
|
36
|
Liu WJ, Chen JY, Niu SR, Zheng YS, Lin S, Hong Y. Recent advances in the study of circadian rhythm disorders that induce diabetic retinopathy. Biomed Pharmacother 2023; 166:115368. [PMID: 37647688 DOI: 10.1016/j.biopha.2023.115368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 08/18/2023] [Accepted: 08/22/2023] [Indexed: 09/01/2023] Open
Abstract
Diabetic retinopathy (DR) is a severe microvascular complication of diabetes mellitus and a major cause of blindness in young adults. Multiple potential factors influence DR; however, the exact mechanisms are poorly understood. Advanced treatments for DR, including laser therapy, vitrectomy, and intraocular drug injections, slow the disease's progression but fail to cure or reverse visual impairment. Therefore, additional effective methods to prevent and treat DR are required. The biological clock plays a crucial role in maintaining balance in the circadian rhythm of the body. Poor lifestyle habits, such as irregular routines and high-fat diets, may disrupt central and limbic circadian rhythms. Disrupted circadian rhythms can result in altered glucose metabolism and obesity. Misaligned central and peripheral clocks lead to a disorder of the rhythm of glucose metabolism, and chronically high sugar levels lead to the development of DR. We observed a disturbance in clock function in patients with diabetes, and a misaligned clock could accelerate the development of DR. In the current study, we examine the relationship between circadian rhythm disorders, diabetes, and DR. We conclude that: 1) abnormal function of the central clock and peripheral clock leads to abnormal glucose metabolism, further causing DR and 2) diabetes causes abnormal circadian rhythms, further exacerbating DR. Thus, our study presents new insights into the prevention and treatment of DR.
Collapse
Affiliation(s)
- Wen-Jing Liu
- Department of Ophthalmology, the Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian Province 362000, China; Centre of Neurological and Metabolic Research, the Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian Province 362000, China
| | - Jie-Yu Chen
- Department of Ophthalmology, the Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian Province 362000, China; Centre of Neurological and Metabolic Research, the Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian Province 362000, China
| | - Si-Ru Niu
- Department of Ophthalmology, the Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian Province 362000, China; Centre of Neurological and Metabolic Research, the Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian Province 362000, China
| | - Yi-Sha Zheng
- Department of Ophthalmology, the Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian Province 362000, China; Centre of Neurological and Metabolic Research, the Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian Province 362000, China
| | - Shu Lin
- Centre of Neurological and Metabolic Research, the Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian Province 362000, China; Group of Neuroendocrinology, Garvan Institute of Medical Research, 384 Victoria St, Sydney, Australia.
| | - Yu Hong
- Department of Ophthalmology, the Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian Province 362000, China; Centre of Neurological and Metabolic Research, the Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian Province 362000, China.
| |
Collapse
|
37
|
Huang Y, Lu J, Zhao L, Fu X, Peng S, Zhang W, Wang R, Yuan W, Luo R, Wang X, Li Z, Zhang Z. Retinal cell-targeted liposomal ginsenoside Rg3 attenuates retinal ischemia-reperfusion injury via alleviating oxidative stress and promoting microglia/macrophage M2 polarization. Free Radic Biol Med 2023; 206:162-179. [PMID: 37380044 DOI: 10.1016/j.freeradbiomed.2023.06.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 06/18/2023] [Accepted: 06/23/2023] [Indexed: 06/30/2023]
Abstract
Retinal ischemia-reperfusion (RIR) injury remains a major challenge that is detrimental to retinal cell survival in a variety of ocular diseases. However, current clinical treatments focus on a single pathological mechanism, making them unable to provide comprehensive retinal protection. A variety of natural products including ginsenoside Rg3 (Rg3) exhibit potent antioxidant and anti-inflammatory activities. Unfortunately, the hydrophobicity of Rg3 and the presence of various intraocular barriers limit its effective application in clinical settings. Hyaluronic acid (HA)- specifically binds to cell surface receptors, CD44, which is widely expressed in retinal pigment epithelial cells and M1-type macrophage. Here, we developed HA-decorated liposomes loaded with Rg3, termed Rg3@HA-Lips, to protect against retinal damage caused by RIR injury. Treatment with Rg3@HA-Lips significantly inhibited the oxidative stress induced by RIR injury. In addition, Rg3@HA-Lips promoted the transition of M1-type macrophage to the M2 type, ultimately reversing the pro-inflammatory microenvironment. The mechanism of Rg3@HA-Lips was further investigated and found that they can regulateSIRT/FOXO3a, NF-κB and STAT3 signaling pathways. Together with as well demonstrated good safety profiles, this CD44-targeted platform loaded with a natural product alleviates RIR injury by modulating the retinal microenvironment and present a potential clinical treatment strategy.
Collapse
Affiliation(s)
- Yanmei Huang
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, 264005, People's Republic of China
| | - Jing Lu
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, 264005, People's Republic of China
| | - Laien Zhao
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, 264005, People's Republic of China
| | - Xiaoxuan Fu
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, 264005, People's Republic of China
| | - Shengjun Peng
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, 264005, People's Republic of China
| | - Wen Zhang
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, 264005, People's Republic of China
| | - Rong Wang
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, 264005, People's Republic of China
| | - Wenze Yuan
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, 264005, People's Republic of China
| | - Rongrui Luo
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, 264005, People's Republic of China
| | - Xiaojie Wang
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, 264005, People's Republic of China
| | - Zelin Li
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, 264005, People's Republic of China
| | - Zhuhong Zhang
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, 264005, People's Republic of China.
| |
Collapse
|
38
|
Fu XL, He FT, Li MH, Fu CY, Chen JZ. Up-regulation of miR-192-5p inhibits the ELAVL1/PI3Kδ axis and attenuates microvascular endothelial cell proliferation, migration and angiogenesis in diabetic retinopathy. Diabet Med 2023; 40:e15077. [PMID: 36861382 DOI: 10.1111/dme.15077] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 02/07/2023] [Accepted: 02/22/2023] [Indexed: 03/03/2023]
Abstract
BACKGROUND Diabetic retinopathy (DR) is a common complication of diabetes mellitus that poses a threat to adults. MicroRNAs (miRNAs) play a key role in DR progression. However, the role and mechanism of miR-192-5p in DR remain unclear. We aimed to investigate the effect of miR-192-5p on cell proliferation, migration and angiogenesis in DR. METHODS Expression of miR-192-5p, ELAV-like RNA binding protein 1 (ELAVL1) and phosphoinositide 3-kinase delta (PI3Kδ) in human retinal fibrovascular membrane (FVM) samples and human retinal microvascular endothelial cells (HRMECs) was assessed using RT-qPCR. ELAVL1 and PI3Kδ protein levels were evaluated by Western blot. RIP and dual luciferase reporter assays were performed to confirm the miR-192-5p/ELAVL1/PI3Kδ regulatory networks. Cell proliferation, migration and angiogenesis were assessed by CCK8, transwell and tube formation assays. RESULTS MiR-192-5p was decreased in FVM samples from DR patients and high glucose (HG)-treated HRMECs. Functionally, overexpressed miR-192-5p inhibited cell proliferation, migration and angiogenesis in HG-treated HRMECs. Mechanically, miR-192-5p directly targeted ELAVL1 and decreased its expression. We further verified that ELAVL1 bound to PI3Kδ and maintained PI3Kδ mRNA stability. Rescue analysis demonstrated that the suppressive effects of HG-treated HRMECs caused by miR-192-5p up-regulation were overturned by overexpressed ELAVL1 or PI3Kδ. CONCLUSION MiR-192-5p attenuates DR progression by targeting ELAVL1 and reducing PI3Kδ expression, suggesting a biomarker for the treatment of DR.
Collapse
Affiliation(s)
- Xiao-Lin Fu
- Department of Ophthalmology, Hainan West Central Hospital, Danzhou, Hainan Province, P.R. China
| | - Fu-Tao He
- Department of Ophthalmology, Hainan West Central Hospital, Danzhou, Hainan Province, P.R. China
| | - Mo-Han Li
- Department of Ophthalmology, Hainan West Central Hospital, Danzhou, Hainan Province, P.R. China
| | - Chun-Yan Fu
- Department of Ophthalmology, Hainan West Central Hospital, Danzhou, Hainan Province, P.R. China
| | - Jian-Zhi Chen
- Department of Ophthalmology, Hainan West Central Hospital, Danzhou, Hainan Province, P.R. China
| |
Collapse
|
39
|
Rosa JGS, Disner GR, Pinto FJ, Lima C, Lopes-Ferreira M. Revisiting Retinal Degeneration Hallmarks: Insights from Molecular Markers and Therapy Perspectives. Int J Mol Sci 2023; 24:13079. [PMID: 37685886 PMCID: PMC10488251 DOI: 10.3390/ijms241713079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 08/04/2023] [Accepted: 08/14/2023] [Indexed: 09/10/2023] Open
Abstract
Visual impairment and blindness are a growing public health problem as they reduce the life quality of millions of people. The management and treatment of these diseases represent scientific and therapeutic challenges because different cellular and molecular actors involved in the pathophysiology are still being identified. Visual system components, particularly retinal cells, are extremely sensitive to genetic or metabolic alterations, and immune responses activated by local insults contribute to biological events, culminating in vision loss and irreversible blindness. Several ocular diseases are linked to retinal cell loss, and some of them, such as retinitis pigmentosa, age-related macular degeneration, glaucoma, and diabetic retinopathy, are characterized by pathophysiological hallmarks that represent possibilities to study and develop novel treatments for retinal cell degeneration. Here, we present a compilation of revisited information on retinal degeneration, including pathophysiological and molecular features and biochemical hallmarks, and possible research directions for novel treatments to assist as a guide for innovative research. The knowledge expansion upon the mechanistic bases of the pathobiology of eye diseases, including information on complex interactions of genetic predisposition, chronic inflammation, and environmental and aging-related factors, will prompt the identification of new therapeutic strategies.
Collapse
Affiliation(s)
| | | | | | | | - Monica Lopes-Ferreira
- Immunoregulation Unit, Laboratory of Applied Toxinology (CeTICs/FAPESP), Butantan Institute, São Paulo 05503900, Brazil; (J.G.S.R.); (G.R.D.); (F.J.P.); (C.L.)
| |
Collapse
|
40
|
Li G, Zhang H, Lai H, Liang G, Huang J, Zhao F, Xie X, Peng C. Erianin: A phytoestrogen with therapeutic potential. Front Pharmacol 2023; 14:1197056. [PMID: 37608888 PMCID: PMC10440559 DOI: 10.3389/fphar.2023.1197056] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 07/03/2023] [Indexed: 08/24/2023] Open
Abstract
Erianin, a phytoestrogen with therapeutic potential, is one of the major active components of Dendrobll caulis. Erianin has a variety of pharmacological effects, such as anti-tumor, anti-inflammatory, anti-diabetic retinopathy, anti-psoriasis, and antibacterial effects. Especially, in regard to the anti-tumor effect of erianin, the underlying molecular mechanism has been partly clarified. In fact, the numerous pharmacological actions of erianin are complex and interrelated, mainly including ERK1/2, PI3K/Akt, JAK2/STAT3, HIF-1α/PD-L1, PPT1/mTOR, JNK/c-Jun, and p38 MAPK signal pathway. However, on account of the poor water solubility and the low bioavailability of erianin, greatly affected and limited its further development and application. And it is worthwhile and meaningful to explore more extensive pharmacological effects and mechanisms, clarify pharmacokinetics, and synthesize the derivatives of erianin. Conclusively, in this paper, the pharmacological effects of erianin and its mechanism, pharmacokinetics, and derivatives studies were reviewed, in order to provide a reference for the development and application of erianin.
Collapse
Affiliation(s)
- Gangmin Li
- Department of Pharmacy, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, China
| | - Huiqiong Zhang
- Safety Evaluation Center, Sichuan Institute for Drug Control (Sichuan Testing Center of Medical Devices), Chengdu, China
| | - Hui Lai
- Department of Pharmacy, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, China
| | - Gang Liang
- Department of Pharmacy, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, China
| | - Jiang Huang
- Department of Pharmacy, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, China
| | - Fulan Zhao
- Department of Pharmacy, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, China
| | - Xiaofang Xie
- State Key Laboratory of Traditional Chinese Medicine Resources in Southwest China, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Cheng Peng
- State Key Laboratory of Traditional Chinese Medicine Resources in Southwest China, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
41
|
Hector S, Thulesius HO, Landin-Olsson M, Hillman M, Melin EO. Soluble CD163 and glycated haemoglobin were independently associated with the progression of diabetic retinopathy in adult patients with type 1 diabetes. BMJ Open Ophthalmol 2023; 8:e001314. [PMID: 37493689 PMCID: PMC10351291 DOI: 10.1136/bmjophth-2023-001314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 06/21/2023] [Indexed: 07/27/2023] Open
Abstract
OBJECTIVE High vitreous levels of soluble (s)CD163 have been demonstrated in severe diabetic retinopathy (DR). The aim of this study was to explore the predictive values of plasma sCD163 and glycated haemoglobin (HbA1c) for DR progression in adults with type 1 diabetes. METHODS AND ANALYSES The study design was prospective. Fundus photography performed in 2009 and at follow-up (≤12 years later) were compared after being categorised according to the International Clinical Diabetic Retinopathy Disease Severity Scale. 'DR progression at least one level' was calculated. In 2009, data collection (sex, age, diabetes duration, metabolic variables, serum creatinine, macroalbuminuria and lifestyle factors) and biochemical analyses were performed. Plasma sCD163 and HbA1c were divided into quartiles. Logistic regression analyses were performed. RESULTS The prevalence of DR in 2009 versus at follow-up in 270 participants (57% male) were: no apparent 28% vs 18%; mild 20% vs 13%; moderate 24% vs 26%; severe 11% vs 13%; and proliferative DR 17% vs 30% (p<0.001). DR progression occurred in 101 (45%) patients. HbA1c ≥54 mmol/mol (≥7.1%) (>1st quartile) (adjusted odds ratio (AOR) 3.8, p<0.001) and sCD163 ≥343 ng/mL (>1st quartile) (AOR 2.6, p=0.004) were independently associated with DR progression. The associations with DR progression increased significantly from the first to the fourth quartile for HbA1c (AORs: 1; 2.5; 3.6; 7.4), but not for sCD163 (AORs: 1; 2.9; 2.4; 2.4). CONCLUSION Plasma sCD163 may constitute a valuable biomarker for DR progression in addition to and independent of the well-established biomarker HbA1c.
Collapse
Affiliation(s)
- Sven Hector
- Research and Development, Region Kronoberg, Växjö, Sweden
- Ophthalmology, Central Hospital Växjö, Växjö, Kronoberg, Sweden
| | - Hans Olav Thulesius
- Department of Medicine and Optometry, Linnaeus University, Kalmar, Sweden
- Division of Family Medicine, Lund University Faculty of Medicine, Malmö, Sweden
| | - Mona Landin-Olsson
- Department of Clinical Sciences, Diabetology and Endocrinology, Lund University Faculty of Medicine, Lund, Sweden
- Diabetes Research Laboratory, Lund University Faculty of Medicine, Lund, Sweden
| | - Magnus Hillman
- Diabetes Research Laboratory, Lund University Faculty of Medicine, Lund, Sweden
| | - Eva Olga Melin
- Department of Clinical Sciences, Diabetology and Endocrinology, Lund University Faculty of Medicine, Lund, Sweden
- Diabetes Research Laboratory, Lund University Faculty of Medicine, Lund, Sweden
| |
Collapse
|
42
|
Fernández-Carneado J, Almazán-Moga A, Ramírez-Lamelas DT, Cuscó C, Alonso de la Fuente JI, Pastor JC, López Gálvez MI, Ponsati B. Quantification of Microvascular Lesions in the Central Retinal Field: Could It Predict the Severity of Diabetic Retinopathy? J Clin Med 2023; 12:3948. [PMID: 37373641 DOI: 10.3390/jcm12123948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 06/01/2023] [Accepted: 06/02/2023] [Indexed: 06/29/2023] Open
Abstract
Diabetic retinopathy (DR) is a neurodegenerative disease characterized by the presence of microcirculatory lesions. Among them, microaneurysms (MAs) are the first observable hallmark of early ophthalmological changes. The present work aims to study whether the quantification of MAs, hemorrhages (Hmas) and hard exudates (HEs) in the central retinal field could have a predictive value on DR severity. These retinal lesions were quantified in a single field NM-1 of 160 retinographies of diabetic patients from the IOBA's reading center. Samples included different disease severity levels and excluded proliferating forms: no DR (n = 30), mild non-proliferative (n = 30), moderate (n = 50) and severe (n = 50). Quantification of MAs, Hmas, and HEs revealed an increasing trend as DR severity progresses. Differences between severity levels were statistically significant, suggesting that the analysis of the central field provides valuable information on severity level and could be used as a clinical tool to assess DR grading in the eyecare routine. Even though further validation is needed, counting microvascular lesions in a single retinal field can be proposed as a rapid screening system to classify DR patients with different stages of severity according to the international classification.
Collapse
Affiliation(s)
- Jimena Fernández-Carneado
- BCN Peptides, S.A., Polígon Industrial Els Vinyets-Els Fogars II, 08777 Sant Quintí de Mediona, Barcelona, Spain
| | - Ana Almazán-Moga
- BCN Peptides, S.A., Polígon Industrial Els Vinyets-Els Fogars II, 08777 Sant Quintí de Mediona, Barcelona, Spain
| | - Dolores T Ramírez-Lamelas
- BCN Peptides, S.A., Polígon Industrial Els Vinyets-Els Fogars II, 08777 Sant Quintí de Mediona, Barcelona, Spain
| | - Cristina Cuscó
- BCN Peptides, S.A., Polígon Industrial Els Vinyets-Els Fogars II, 08777 Sant Quintí de Mediona, Barcelona, Spain
| | | | - J Carlos Pastor
- IOBA Reading Center, University of Valladolid, Paseo de Belén, 17, 47011 Valladolid, Spain
| | | | - Berta Ponsati
- BCN Peptides, S.A., Polígon Industrial Els Vinyets-Els Fogars II, 08777 Sant Quintí de Mediona, Barcelona, Spain
| |
Collapse
|
43
|
Fanaro GB, Marques MR, Calaza KDC, Brito R, Pessoni AM, Mendonça HR, Lemos DEDA, de Brito Alves JL, de Souza EL, Cavalcanti Neto MP. New Insights on Dietary Polyphenols for the Management of Oxidative Stress and Neuroinflammation in Diabetic Retinopathy. Antioxidants (Basel) 2023; 12:1237. [PMID: 37371967 PMCID: PMC10295526 DOI: 10.3390/antiox12061237] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Revised: 06/05/2023] [Accepted: 06/06/2023] [Indexed: 06/29/2023] Open
Abstract
Diabetic retinopathy (DR) is a neurodegenerative and vascular pathology that is considered one of the leading causes of blindness worldwide, resulting from complications of advanced diabetes mellitus (DM). Current therapies consist of protocols aiming to alleviate the existing clinical signs associated with microvascular alterations limited to the advanced disease stages. In response to the low resolution and limitations of the DR treatment, there is an urgent need to develop more effective alternative therapies to optimize glycemic, vascular, and neuronal parameters, including the reduction in the cellular damage promoted by inflammation and oxidative stress. Recent evidence has shown that dietary polyphenols reduce oxidative and inflammatory parameters of various diseases by modulating multiple cell signaling pathways and gene expression, contributing to the improvement of several chronic diseases, including metabolic and neurodegenerative diseases. However, despite the growing evidence for the bioactivities of phenolic compounds, there is still a lack of data, especially from human studies, on the therapeutic potential of these substances. This review aims to comprehensively describe and clarify the effects of dietary phenolic compounds on the pathophysiological mechanisms involved in DR, especially those of oxidative and inflammatory nature, through evidence from experimental studies. Finally, the review highlights the potential of dietary phenolic compounds as a prophylactic and therapeutic strategy and the need for further clinical studies approaching the efficacy of these substances in DR management.
Collapse
Affiliation(s)
- Gustavo Bernardes Fanaro
- Institute of Health and Biotechnology, Federal University of Amazonas, Manaus 69460000, Amazonas, Brazil;
| | | | - Karin da Costa Calaza
- Department of Neurobiology, Institute of Biology, Fluminense Federal University, Niterói 24210201, Rio de Janeiro, Brazil;
| | - Rafael Brito
- Department of Cellular and Molecular Biology, Institute of Biology, Fluminense Federal University, Niterói 24210201, Rio de Janeiro, Brazil;
| | | | - Henrique Rocha Mendonça
- Institute of Biodiversity and Sustainability (NUPEM), Federal University of Rio de Janeiro, Macaé 27965045, Rio de Janeiro, Brazil; (H.R.M.); (M.P.C.N.)
| | | | - José Luiz de Brito Alves
- Department of Nutrition, Health Sciences Center, Federal University of Paraíba, João Pessoa 58051900, Paraíba, Brazil; (D.E.d.A.L.); (J.L.d.B.A.)
| | - Evandro Leite de Souza
- Department of Nutrition, Health Sciences Center, Federal University of Paraíba, João Pessoa 58051900, Paraíba, Brazil; (D.E.d.A.L.); (J.L.d.B.A.)
| | - Marinaldo Pacífico Cavalcanti Neto
- Institute of Biodiversity and Sustainability (NUPEM), Federal University of Rio de Janeiro, Macaé 27965045, Rio de Janeiro, Brazil; (H.R.M.); (M.P.C.N.)
| |
Collapse
|
44
|
He W, Chang L, Li X, Mei Y. Research progress on the mechanism of ferroptosis and its role in diabetic retinopathy. Front Endocrinol (Lausanne) 2023; 14:1155296. [PMID: 37334304 PMCID: PMC10268817 DOI: 10.3389/fendo.2023.1155296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 05/09/2023] [Indexed: 06/20/2023] Open
Abstract
Ferroptosis is iron-dependent regulatory cell death (RCD). Morphologically, ferroptosis is manifested as mitochondrial atrophy and increased mitochondrial membrane density. Biochemically, ferroptosis is characterized by the depletion of glutathione (GSH), the inactivation of glutathione peroxidase 4 (GPX4), and an increase in lipid peroxides (LPO)and divalent iron ions. Ferroptosis is associated with various diseases, but the relationship with diabetic retinopathy(DR) is less studied. DR is one of the complications of diabetes mellitus and has a severe impact on visual function. The pathology of DR is complex, and the current treatment is unsatisfactory. Therefore, exploring pathogenesis is helpful for the clinical treatment of DR. This paper reviews the pathological mechanism of ferroptosis and DR in recent years and the involvement of ferroptosis in the pathology of DR. In addition, we propose problems that need to be addressed in this research field. It is expected to provide new ideas for treating DR by analyzing the role of ferroptosis in DR.
Collapse
Affiliation(s)
- Wei He
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, China
- Department of Ophthalmology, The Affiliated Hospital of Kunming University of Science and Technology, Kunming, China
- Department of Ophthalmology, The First People's Hospital of Yunnan Province, Kunming, China
- Medical School, Kunming University of Science and Technology, Kunming, China
| | - Lu Chang
- Department of Ophthalmology, Kunming Aier Eye Hospital, Kunming, China
| | - Xinlu Li
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, China
| | - Yan Mei
- Department of Ophthalmology, The Affiliated Hospital of Kunming University of Science and Technology, Kunming, China
- Department of Ophthalmology, The First People's Hospital of Yunnan Province, Kunming, China
| |
Collapse
|
45
|
Bhutia CU, Kaur P, Singh K, Kaur S. Evaluating peripheral blood inflammatory and metabolic biomarkers as predictors in diabetic retinopathy and diabetic macular edema. Indian J Ophthalmol 2023; 71:2521-2525. [PMID: 37322673 PMCID: PMC10417976 DOI: 10.4103/ijo.ijo_345_23] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Revised: 03/20/2023] [Accepted: 03/21/2023] [Indexed: 06/17/2023] Open
Abstract
Purpose To determine the correlation between serum inflammatory and metabolic biomarkers of patients with diabetic retinopathy (DR) and diabetic macular edema (DME). Methods Serum samples were obtained from 100 diabetic patients. Patients were divided into three groups: group 1 (patients with no DR, n = 27), group 2 (DR with DME, n = 34), and group 3 (DR without DME, n = 39). Serum concentrations of C-reactive protein (CRP) and interleukin-6 (IL-6) were measured by quantitative turbidimetric immunoassay and sandwich chemiluminescence immunoassay, respectively. Metabolic parameters such as glycated hemoglobin (HbA1c), total cholesterol, low-density lipoprotein (LDL), high-density lipoprotein (HDL), triglyceride (TG), serum creatinine, and blood urea were determined by automated analyzer om-360 after standardization. Results The levels of IL-6 and CRP differed significantly in patients with DR and without DR (P < 0.001 and P = 0.045, respectively). We also found a positive correlation between IL-6 and CRP with the severity of DR. When DR patients with DME were compared to patients without DME, only IL-6 was observed to be significantly elevated (P < 0.001). None of the metabolic markers correlated significantly with DR and DME. Conclusion Significantly raised levels of serum inflammatory biomarkers can be used to elucidate the significant role of inflammation in the pathogenesis of DR. Therefore, circulating biomarkers can serve as diagnostic and therapeutic predictors for monitoring the onset and progression of DR and DME.
Collapse
Affiliation(s)
| | - Prempal Kaur
- Department of Ophthalmology, GMC Amritsar, Punjab, India
| | - Karamjit Singh
- Department of Ophthalmology, GMC Amritsar, Punjab, India
| | - Sukhraj Kaur
- Department of Biochemistry, GMC Amritsar, Punjab, India
| |
Collapse
|
46
|
Vofo BN, Chowers I. Suppressing Inflammation for the Treatment of Diabetic Retinopathy and Age-Related Macular Degeneration: Dazdotuftide as a Potential New Multitarget Therapeutic Candidate. Biomedicines 2023; 11:1562. [PMID: 37371657 PMCID: PMC10295757 DOI: 10.3390/biomedicines11061562] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 05/24/2023] [Accepted: 05/25/2023] [Indexed: 06/29/2023] Open
Abstract
Diabetic retinopathy (DR) and age-related macular degeneration (AMD) are major causes of blindness globally. The primary treatment option for DME and neovascular AMD (nAMD) is anti-vascular endothelial growth factor (VEGF) compounds, but this treatment modality often yields insufficient results, and monthly injections can place a burden on the health system and patients. Although various inflammatory pathways and mediators have been recognized as key players in the development of DR and AMD, there are limited treatment options targeting these pathways. Molecular pathways that are interlinked, or triggers of multiple inflammatory pathways, could be promising targets for drug development. This review focuses on the role of inflammation in the pathogenesis of DME and AMD and presents current anti-inflammatory compounds, as well as a potential multitarget anti-inflammatory compound (dazdotuftide) that could be a candidate treatment option for the management of DME and AMD.
Collapse
Affiliation(s)
| | - Itay Chowers
- Department of Ophthalmology, Hadassah—Hebrew University Medical Center, Jerusalem 91120, Israel;
| |
Collapse
|
47
|
Kovács-Valasek A, Rák T, Pöstyéni E, Csutak A, Gábriel R. Three Major Causes of Metabolic Retinal Degenerations and Three Ways to Avoid Them. Int J Mol Sci 2023; 24:ijms24108728. [PMID: 37240082 DOI: 10.3390/ijms24108728] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 05/10/2023] [Accepted: 05/11/2023] [Indexed: 05/28/2023] Open
Abstract
An imbalance of homeostasis in the retina leads to neuron loss and this eventually results in a deterioration of vision. If the stress threshold is exceeded, different protective/survival mechanisms are activated. Numerous key molecular actors contribute to prevalent metabolically induced retinal diseases-the three major challenges are age-related alterations, diabetic retinopathy and glaucoma. These diseases have complex dysregulation of glucose-, lipid-, amino acid or purine metabolism. In this review, we summarize current knowledge on possible ways of preventing or circumventing retinal degeneration by available methods. We intend to provide a unified background, common prevention and treatment rationale for these disorders and identify the mechanisms through which these actions protect the retina. We suggest a role for herbal medicines, internal neuroprotective substances and synthetic drugs targeting four processes: parainflammation and/or glial cell activation, ischemia and related reactive oxygen species and vascular endothelial growth factor accumulation, apoptosis and/or autophagy of nerve cells and an elevation of ocular perfusion pressure and/or intraocular pressure. We conclude that in order to achieve substantial preventive or therapeutic effects, at least two of the mentioned pathways should be targeted synergistically. A repositioning of some drugs is considered to use them for the cure of the other related conditions.
Collapse
Affiliation(s)
- Andrea Kovács-Valasek
- Department of Experimental Zoology and Neurobiology, University of Pécs, Ifjúság útja 6, 7624 Pécs, Hungary
| | - Tibor Rák
- Department of Ophthalmology, Medical School, University of Pécs, Szigeti út 12, 7624 Pécs, Hungary
| | - Etelka Pöstyéni
- Department of Experimental Zoology and Neurobiology, University of Pécs, Ifjúság útja 6, 7624 Pécs, Hungary
| | - Adrienne Csutak
- Department of Ophthalmology, Medical School, University of Pécs, Szigeti út 12, 7624 Pécs, Hungary
| | - Robert Gábriel
- Department of Experimental Zoology and Neurobiology, University of Pécs, Ifjúság útja 6, 7624 Pécs, Hungary
- János Szentágothai Research Centre, University of Pécs, Ifjúság útja 20, 7624 Pécs, Hungary
| |
Collapse
|
48
|
Gullaksen S, Vernstrøm L, Sørensen SS, Funck KL, Petersen L, Bek T, Poulsen PL, Laugesen E. Effects of semaglutide and empagliflozin on oxygenation, vascular autoregulation, and central thickness of the retina in people with type 2 diabetes: A prespecified secondary analysis of a randomised clinical trial. J Diabetes Complications 2023; 37:108472. [PMID: 37062189 DOI: 10.1016/j.jdiacomp.2023.108472] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 03/20/2023] [Accepted: 04/04/2023] [Indexed: 04/18/2023]
Abstract
AIMS Semaglutide and empagliflozin have shown cardiovascular protection. In SUSTAIN-6, semaglutide was associated with an increased risk of diabetic retinopathy. We investigated whether changes in retinal oxygenation, retinal vascular autoregulation, and central retinal thickness are altered by semaglutide, empagliflozin or the combination. METHODS This study was a prespecified, secondary outcome from a randomised, 32 weeks partly placebo-controlled, partly open-label, clinical trial on the effects of semaglutide and empagliflozin on arterial stiffness and kidney oxygenation. A total of 120 participants with type 2 diabetes, established or high risk of cardiovascular disease and age ≥50 years were randomised into four parallel groups (semaglutide, empagliflozin, the combination or tablet placebo, n = 30 for each group). We primarily hypothesized that semaglutide would increase venular oxygenation. RESULTS We found no changes in retinal arteriolar, venular or venular-arteriolar oxygenation nor in retinal vessel diameter regardless of treatment group. Semaglutide increased central retinal thickness compared to placebo with ~1 % (3.8 μm 95 % CI [0.9;6.7], p = 0.009) with no changes in the empagliflozin or combination group. CONCLUSION Neither semaglutide, empagliflozin nor the combination alters markers of retinal function. The effect of semaglutide on central retinal thickness was small, but the clinical significance is uncertain.
Collapse
Affiliation(s)
- Søren Gullaksen
- Department of Clinical Medicine, Aarhus University, 8000 Aarhus, Denmark; Department of Endocrinology and Internal Medicine, Aarhus University Hospital, 8200 Aarhus N, Denmark; Steno Diabetes Center, Aarhus University Hospital, 8200 Aarhus N, Denmark.
| | - Liv Vernstrøm
- Department of Clinical Medicine, Aarhus University, 8000 Aarhus, Denmark; Department of Endocrinology and Internal Medicine, Aarhus University Hospital, 8200 Aarhus N, Denmark
| | - Steffen Skovgaard Sørensen
- Department of Clinical Medicine, Aarhus University, 8000 Aarhus, Denmark; Department of Endocrinology and Internal Medicine, Aarhus University Hospital, 8200 Aarhus N, Denmark
| | | | - Line Petersen
- Department of Ophthalmology, Aarhus University Hospital, 8200 Aarhus N, Denmark
| | - Toke Bek
- Department of Ophthalmology, Aarhus University Hospital, 8200 Aarhus N, Denmark
| | - Per Løgstrup Poulsen
- Department of Clinical Medicine, Aarhus University, 8000 Aarhus, Denmark; Steno Diabetes Center, Aarhus University Hospital, 8200 Aarhus N, Denmark
| | - Esben Laugesen
- Department of Endocrinology and Internal Medicine, Aarhus University Hospital, 8200 Aarhus N, Denmark; Steno Diabetes Center, Aarhus University Hospital, 8200 Aarhus N, Denmark; Diagnostic Centre, Silkeborg Regional Hospital, 8600 Silkeborg, Denmark
| |
Collapse
|
49
|
Rezazadeh-Gavgani E, Oladghaffari M, Bahramian S, Majidazar R, Dolati S. MicroRNA-21: A critical underestimated molecule in diabetic retinopathy. Gene 2023; 859:147212. [PMID: 36690226 DOI: 10.1016/j.gene.2023.147212] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Revised: 12/11/2022] [Accepted: 01/16/2023] [Indexed: 01/22/2023]
Abstract
Diabetes mellitus (DM) has grown in attention in recent years as a result of its debilitating complications and chronic disabilities. Diabetic retinopathy (DR) is a chronic microvascular complication of DM and is considered as the primary reason for blindness in adults. Early diagnosis of diabetes complications along with targeted therapy options are critical in avoiding morbidity and mortality associated with complications of diabetes. miR-21 is an important and widely studied non-coding-RNA (ncRNA) with considerable roles in various pathologic conditions including diabetic complications. miR-21 is one of the most elevated miRNAs in response to hyperglycemia and its role in angiogenesis is a major culprit of a wide range of disorders including DR. The main role of miR-21 in DR pathophysiology is believed to be through regulating angiogenesis in retina. This article aims to outline miR-21 biogenesis and distribution in human body along with discussions about its role in DR pathogenesis and its biomarker value in order to facilitate understanding of the new characteristics of miR-21 in DR management.
Collapse
Affiliation(s)
| | - Mobina Oladghaffari
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Shirin Bahramian
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Reza Majidazar
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Sanam Dolati
- Physical Medicine and Rehabilitation Research Center, Aging Research Institute, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
50
|
Habibi A, Zarei-Behjani Z, Falamarzi K, Malekpour M, Ebrahimi F, Soleimani M, Nejabat M, Khosravi A, Moayedfard Z, Pakbaz S, Dehdari Ebrahimi N, Azarpira N. Extracellular vesicles as a new horizon in the diagnosis and treatment of inflammatory eye diseases: A narrative review of the literature. Front Immunol 2023; 14:1097456. [PMID: 36969177 PMCID: PMC10033955 DOI: 10.3389/fimmu.2023.1097456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Accepted: 02/14/2023] [Indexed: 03/11/2023] Open
Abstract
Extracellular vesicles include exosomes, microvesicles, and apoptotic bodies. Their cargos contain a diverse variety of lipids, proteins, and nucleic acids that are involved in both normal physiology and pathology of the ocular system. Thus, studying extracellular vesicles may lead to a more comprehensive understanding of the pathogenesis, diagnosis, and even potential treatments for various diseases. The roles of extracellular vesicles in inflammatory eye disorders have been widely investigated in recent years. The term "inflammatory eye diseases" refers to a variety of eye conditions such as inflammation-related diseases, degenerative conditions with remarkable inflammatory components, neuropathy, and tumors. This study presents an overview of extracellular vesicles' and exosomes' pathogenic, diagnostic, and therapeutic values in inflammatory eye diseases, as well as existing and potential challenges.
Collapse
Affiliation(s)
- Azam Habibi
- Department of Tissue Engineering and Cell Therapy, School of Advanced Technologies in Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Zeinab Zarei-Behjani
- Department of Tissue Engineering and Cell Therapy, School of Advanced Technologies in Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Kimia Falamarzi
- Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mahdi Malekpour
- Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Fatemeh Ebrahimi
- Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Masood Soleimani
- Department of Tissue Engineering and Applied Cell Science, School of Advanced Technologies in Medicine, Shaheed Beheshti University of Medical Sciences, Tehran, Iran
| | - Mahmood Nejabat
- Department of Ophthalmology School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Amir Khosravi
- Department of Ophthalmology School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Zahra Moayedfard
- Department of Tissue Engineering and Cell Therapy, School of Advanced Technologies in Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Sara Pakbaz
- Department of Pathology, University of Toronto, Toronto, ON, Canada
| | | | - Negar Azarpira
- Transplant Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|