1
|
Mansoori A, Allaf Noveirian H, Hoseinifar SH, Sajjadi M, Ashouri G, Imperatore R, Paolucci M. Polyphenol-rich extracts enhance growth, immune function, and antioxidant defense in juvenile rainbow trout ( Oncorhynchus mykiss). Front Nutr 2024; 11:1487209. [PMID: 39703334 PMCID: PMC11655229 DOI: 10.3389/fnut.2024.1487209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Accepted: 10/29/2024] [Indexed: 12/21/2024] Open
Abstract
Introduction The present study was conducted to investigate the effects of PMIX, a polyphenol-rich extract mixture from chestnut wood and olive, on growth performance, hematological parameters, immunity in serum and skin mucus, hepatic antioxidant enzymes, and intestinal cytokine expression in rainbow trout (Oncorhynchus mykiss). Methods Four experimental diets containing 0 g PMIX kg-1 diet (control, C), 0.5 g PMIX kg-1 diet (P0.5), 1 g PMIX kg-1 diet (P1), and 2 g PMIX kg-1 diet (P2) were fed to rainbow trout in an eight-week feeding trial. Triplicate groups of fish received each treatment. Growth performance, feed conversion ratio, protein efficiency, hepatosomatic and viscerosomatic indices, hematological parameters, immunity markers, hepatic antioxidant enzyme activities, and intestinal cytokine expression were determined. Results PMIX supplementation significantly improved feed conversion ratios, while groups P0.5 and P1 evidenced an increase in growth performance along with protein efficiency ratios. It also showed decreased hepatosomatic and viscerosomatic indices in the P1 group. Except for higher percentages of monocytes in P0.5 and P1, most hematological parameters of the fish did not differ from that of the control. Serum lysozyme and respiratory burst activities were heightened in all PMIX-treated groups, and the skin mucus lysozyme activity was enhanced in P1. The blood phagocytic activity and phagocytic index, serum immunoglobulin, total protein, and bactericidal activity against A. hydrophila did not change. Hepatic superoxide dismutase activity significantly increased in P1 and P2, even though catalase activity did not change. Intestinal interleukin-6 expression was upregulated in all PMIX-treated groups, while tumor necrosis factor-alpha and interleukin-1 beta were upregulated in P1, P2, and P0.5 respectively. Discussion The present results evidence that dietary polyphenols from chestnut wood and olive extracts enhance growth performance, antioxidant capacity, and several immunological parameters in the blood, skin mucus, and intestine of rainbow trout. A suitable supplementation level was 1 g PMIX kg-1 diet to separate these improvements.
Collapse
Affiliation(s)
- Aghil Mansoori
- Department of Fisheries, Faculty of Natural Resources, University of Guilan, Sowmeh Sara, Iran
| | - Hamid Allaf Noveirian
- Department of Fisheries, Faculty of Natural Resources, University of Guilan, Sowmeh Sara, Iran
| | - Seyed Hossein Hoseinifar
- Department of Fisheries, Faculty of Fisheries and Environmental Sciences, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
| | - Mirmasoud Sajjadi
- Department of Fisheries, Faculty of Natural Resources, University of Guilan, Sowmeh Sara, Iran
| | - Ghasem Ashouri
- Department of Sciences and Technologies, University of Sannio, Benevento, Italy
- National Artemia Research Center, Iranian Fisheries Science Research Institute, Agricultural Research, Education and Extension Organization (AREEO), Urmia, Iran
| | - Roberta Imperatore
- Department of Sciences and Technologies, University of Sannio, Benevento, Italy
| | - Marina Paolucci
- Department of Sciences and Technologies, University of Sannio, Benevento, Italy
| |
Collapse
|
2
|
Alesci A, Fumia A, Miller A, Calabrò C, Santini A, Cicero N, Lo Cascio P. Spirulina promotes macrophages aggregation in zebrafish (Danio rerio) liver. Nat Prod Res 2023; 37:743-749. [PMID: 35707902 DOI: 10.1080/14786419.2022.2089883] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The immune system of teleosts offers many ideas to deepen the immune mechanisms and cells in general. The use of zebrafish as an experimental model is increased in recent years, thanks to its genetic and anatomical characteristics. It is known that several natural compounds exert an action on the immune system, boosting it. Spirulina, a non-toxic blue-green alga, has been declared a superfood for its peculiar biological activities. In this study, we test the immunostimulant effect of spirulina on zebrafish liver macrophages by immunohistochemical analysis using optical and confocal microscopy. Our results have shown an increase in the number of macrophages after feeding with spirulina, furthermore, this natural 'superfood' can induce macrophages aggregation. These data not only provide information on the possible effect of this alga as a complementary feed on the immune cells of teleost, but also improve the knowledge of the immune mechanisms of vertebrates.
Collapse
Affiliation(s)
- Alessio Alesci
- Department of Chemical, Biological, Pharmaceutical, and Environmental Sciences, University of Messina, Messina, Italy
| | - Angelo Fumia
- Department of Clinical and Experimental Medicine, University of Messina, Padiglione C, A. O. U. Policlinico "G. Martino", Messina, Italy
| | - Anthea Miller
- Department of Veterinary Sciences, University of Messina, Polo Universitario dell'Annunziata, Messina, Italy
| | - Concetta Calabrò
- Department of Chemical, Biological, Pharmaceutical, and Environmental Sciences, University of Messina, Messina, Italy
| | - Antonello Santini
- Department of Pharmacy, University of Napoli Federico II, Napoli, Italy
| | - Nicola Cicero
- Department of Biomedical and Dental Science and Morphofunctional Imaging, University of Messina, Messina, Italy
| | - Patrizia Lo Cascio
- Department of Chemical, Biological, Pharmaceutical, and Environmental Sciences, University of Messina, Messina, Italy
| |
Collapse
|
3
|
Immunohistochemistry of the Gut-Associated Lymphoid Tissue (GALT) in African Bonytongue ( Heterotis niloticus, Cuvier 1829). Int J Mol Sci 2023; 24:ijms24032316. [PMID: 36768639 PMCID: PMC9917283 DOI: 10.3390/ijms24032316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 01/17/2023] [Accepted: 01/20/2023] [Indexed: 01/27/2023] Open
Abstract
Heterotis niloticus is a basal teleost, belonging to the Osteoglossidae family, which is widespread in many parts of Africa. The digestive tract of H. niloticus presents similar characteristics to those of higher vertebrates, exhibiting a gizzard-like stomach and lymphoid aggregates in the intestinal lamina propria. The adaptive immune system of teleost fish is linked with each of their mucosal body surfaces. In fish, the gut-associated lymphoid tissue (GALT) is generally a diffuse immune system that represents an important line of defense against those pathogens inhabiting the external environment that can enter through food. The GALT comprises intraepithelial lymphocytes, which reside in the epithelial layer, and lamina propria leukocytes, which consist of lymphocytes, macrophages, granulocytes, and dendritic-like cells. This study aims to characterize, for the first time, the leukocytes present in the GALT of H. niloticus, by confocal immuno- fluorescence techniques, using specific antibodies: toll-like receptor 2, major histocompatibility complex class II, S100 protein, serotonin, CD4, langerin, and inducible nitric oxide synthetase. Our results show massive aggregates of immune cells in the thickness of the submucosa, arranged in circumscribed oval-shaped structures that are morphologically similar to the isolated lymphoid follicles present in birds and mammals, thus expanding our knowledge about the intestinal immunity shown by this fish.
Collapse
|
4
|
Alesci A, Gitto M, Kotańska M, Lo Cascio P, Miller A, Nicosia N, Fumia A, Pergolizzi S. Immunogenicity, effectiveness, safety and psychological impact of COVID-19 mRNA vaccines. Hum Immunol 2022; 83:755-767. [PMID: 35963787 PMCID: PMC9359511 DOI: 10.1016/j.humimm.2022.08.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 07/10/2022] [Accepted: 08/03/2022] [Indexed: 12/15/2022]
Abstract
In December 2019, a new single-stranded RNA coronavirus, SARS-CoV-2, appeared in China and quickly spread around the world leading to a pandemic. Infection with SARS-CoV-2 generates symptoms ranging from asymptomatic to severe, occasionally requiring hospitalization in intensive care units, and, in more severe cases, leading to death. Scientists and researchers around the world have made a real race against time to develop various vaccines to slow down and stop the spread of the virus. In addition to conventional viral vector vaccines, new generation mRNA vaccines, BNT152b2 (Comirnaty) and mRNA-1273 (Spikevax), have been developed respectively by Pfizer/BioNTech and Moderna. These vaccines act on immune cells to induce an immune response with the production of specific antibodies against Spike protein of SARS-CoV-2, and to stimulate the differentiation of T and B memory cells. The objective of this review is to provide a detailed picture of the validity of these new vaccines and the safety of vaccination. Not only was the immunogenic effect of mRNA vaccines evaluated, but also the psychosocial impact they had on the population. The data collected show that this type of vaccine can also be an excellent candidate for future treatment and eradication of possible new pathologies with viral and non-viral etiology.
Collapse
Affiliation(s)
- Alessio Alesci
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98166 Messina, Italy.
| | - Marco Gitto
- Department of Clinical Sciences and Community Health, University of Milan, 20122 Milan, Italy; Phoniatric Unit, Department of Biomedical and Clinical Sciences "Luigi Sacco", University of Milan, 20157 Milan, Italy.
| | - Magdalena Kotańska
- Department of Pharmacological Screening, Jagiellonian University, Medical College, PL 30-688 Cracow, Poland.
| | - Patrizia Lo Cascio
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98166 Messina, Italy.
| | - Anthea Miller
- Department of Veterinary Sciences, University of Messina, Polo Universitario dell'Annunziata, 98168 Messina, Italy.
| | - Noemi Nicosia
- Department of Pharmacological Screening, Jagiellonian University, Medical College, PL 30-688 Cracow, Poland; Division of Neuroscience, Vita Salute San Raffaele University, 20132, Milan, Italy.
| | - Angelo Fumia
- Department of Clinical and Experimental Medicine, University of Messina, Padiglione C, A. O. U. Policlinico "G. Martino", 98147 Messina, Italy.
| | - Simona Pergolizzi
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98166 Messina, Italy.
| |
Collapse
|
5
|
Gammeri L, Panzera C, Calapai F, Cicero N, Gangemi S. Asian herbal medicine and chronic urticaria: which are the therapeutic perspectives? Nat Prod Res 2022; 37:1917-1934. [PMID: 36094856 DOI: 10.1080/14786419.2022.2122055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
Abstract
Chronic urticaria (CU) is a pathologic condition marked by the emergence of wheals, angioedema, or both for more than six weeks. The improper activation and degranulation of mast cells is the triggering event, which results in the production of various mediators such as histamine, leukotrienes, PAF, chemokines, and cytokines. Antihistamines are currently the most common pharmacological treatment for urticaria, but corticosteroids and monoclonal antibodies can also be employed. Patients who have been taking antihistamines for a long time are often looking for alternatives. Whole plants, portions of plants, or single extracted active compounds are all used in phytomedicine. Plant elements are frequently combined to create formulations that can be utilized to treat a variety of pathological disorders. Anti-inflammatory and/or anti-allergic properties are found in several herbs regularly used in herbal formulations. Antioxidant properties are also present in some of the constituents. Exogenous antioxidants have been shown to improve the progression of autoimmune disorders in numerous studies. The aim of this review is to identify the most common herbs used to treat chronic urticaria, and to characterize their efficacy, mechanisms of action, and risk/benefit ratio in comparison to western treatment, and also to find less often used formulations and assess their therapeutic efficacy, safety profile, and potential for wider use.
Collapse
Affiliation(s)
- Luca Gammeri
- Department of Clinical and Experimental Medicine, Unit and School of Allergy and Clinical Immunology, University of Messina, Messina, Italy
| | - Claudia Panzera
- Department of Clinical and Experimental Medicine, Unit and School of Allergy and Clinical Immunology, University of Messina, Messina, Italy
| | - Fabrizio Calapai
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| | - Nicola Cicero
- Department of Biomedical and Dental Science and Morphofunctional Imaging, University of Messina, Messina, Italy.,Science4Life srl, Spin-off Company of the University of Messina Viale Ferdinando Stagno D'Alcontres, Messina, Italy
| | - Sebastiano Gangemi
- Department of Clinical and Experimental Medicine, Unit and School of Allergy and Clinical Immunology, University of Messina, Messina, Italy
| |
Collapse
|
6
|
Alesci A, Pergolizzi S, Fumia A, Miller A, Cernigliaro C, Zaccone M, Salamone V, Mastrantonio E, Gangemi S, Pioggia G, Cicero N. Immune System and Psychological State of Pregnant Women during COVID-19 Pandemic: Are Micronutrients Able to Support Pregnancy? Nutrients 2022; 14:nu14122534. [PMID: 35745263 PMCID: PMC9227584 DOI: 10.3390/nu14122534] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 06/04/2022] [Accepted: 06/16/2022] [Indexed: 02/04/2023] Open
Abstract
The immune system is highly dynamic and susceptible to many alterations throughout pregnancy. Since December 2019, a pandemic caused by coronavirus disease 19 (COVID-19) has swept the globe. To contain the spread of COVID-19, immediate measures such as quarantine and isolation were implemented. These containment measures have contributed to exacerbate situations of anxiety and stress, especially in pregnant women, who are already particularly anxious about their condition. Alterations in the psychological state of pregnant women are related to alterations in the immune system, which is more vulnerable under stress. COVID-19 could therefore find fertile soil in these individuals and risk more severe forms. Normally a controlled dietary regimen is followed during pregnancy, but the use of particular vitamins and micronutrients can help counteract depressive-anxiety states and stress, can improve the immune system, and provide an additional weapon in the defense against COVID-19 to bring the pregnancy to fruition. This review aims to gather data on the impact of COVID-19 on the immune system and psychological condition of pregnant women and to assess whether some micronutrients can improve their psychophysical symptoms.
Collapse
Affiliation(s)
- Alessio Alesci
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98166 Messina, Italy;
- Correspondence: (A.A.); (A.F.); (N.C.)
| | - Simona Pergolizzi
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98166 Messina, Italy;
| | - Angelo Fumia
- Department of Clinical and Experimental Medicine, University of Messina, 98147 Messina, Italy;
- Correspondence: (A.A.); (A.F.); (N.C.)
| | - Anthea Miller
- Department of Veterinary Sciences, University of Messina, 98168 Messina, Italy;
| | - Caterina Cernigliaro
- Azienda Sanitaria Provinciale 5 Messina, 98124 Messina, Italy; (C.C.); (M.Z.); (V.S.); (E.M.)
| | - Maria Zaccone
- Azienda Sanitaria Provinciale 5 Messina, 98124 Messina, Italy; (C.C.); (M.Z.); (V.S.); (E.M.)
| | - Vanessa Salamone
- Azienda Sanitaria Provinciale 5 Messina, 98124 Messina, Italy; (C.C.); (M.Z.); (V.S.); (E.M.)
| | - Enza Mastrantonio
- Azienda Sanitaria Provinciale 5 Messina, 98124 Messina, Italy; (C.C.); (M.Z.); (V.S.); (E.M.)
| | - Sebastiano Gangemi
- Department of Clinical and Experimental Medicine, University of Messina, 98147 Messina, Italy;
| | - Giovanni Pioggia
- Institute for Biomedical Research and Innovation (IRIB), National Research Council of Italy (CNR), 98125 Messina, Italy;
| | - Nicola Cicero
- Department of Biomedical and Dental Science and Morphofunctional Imaging, University of Messina, 98125 Messina, Italy
- Correspondence: (A.A.); (A.F.); (N.C.)
| |
Collapse
|
7
|
Tardugno R, Cicero N, Costa R, Nava V, Vadalà R. Exploring Lignans, a Class of Health Promoting Compounds, in a Variety of Edible Oils from Brazil. Foods 2022; 11:1386. [PMID: 35626956 PMCID: PMC9141677 DOI: 10.3390/foods11101386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 05/08/2022] [Accepted: 05/10/2022] [Indexed: 11/16/2022] Open
Abstract
Lignans, a group of polyphenols, have been identified in eight cold pressed oils from fruits, nuts, and seeds, retrieved from the Brazilian market. The oils under investigation were avocado, Brazilian nut, canola, coconut, grapeseed, macadamia, palm, and pequi. Olive oil was selected as a reference oil, since numerous data on its lignan content are available in literature. The qualitative and quantitative profiles were obtained, after extraction, by means of UFLC-ESI-MS/MS analyses. The total lignan content showed a high variability, ranging from 0.69 mg·Kg-1 (pequi) to 7.12 mg·Kg-1 (grapeseed), with the highest content registered for olive oil. Seven lignans were quantified, matairesinol and pinoresinol being the most abundant. The LC-MS/MS method was validated, showing linearity in the range of 12.5-212.5 mg·Kg-1, LOD in the range of 0.18-11.37 mg·Kg-1, and LOQ in the range of 0.53-34.45 mg·Kg-1. Additionally, part of the study was focused on the evaluation of the flavor profile, this being a key element in consumers' evaluations, by means of HS-SPME-GC. In total, 150 volatile compounds were determined in the eight oils, with identified fractions ranging from 91.85% (avocado) to 96.31% (canola), with an average value of 94.1%. Groups of components contributed characteristically to the flavour of each oil.
Collapse
Affiliation(s)
- Roberta Tardugno
- Science4Life s.r.l., Spin Off Company, University of Messina, 98122 Messina, Italy; (R.T.); (N.C.)
| | - Nicola Cicero
- Science4Life s.r.l., Spin Off Company, University of Messina, 98122 Messina, Italy; (R.T.); (N.C.)
- Dipartimento di Scienze Biomediche, Odontoiatriche e delle Immagini Morfologiche e Funzionali (Biomorf), University of Messina, 98122 Messina, Italy; (V.N.); (R.V.)
- Consorzio di Ricerca sul Rischio Biologico in Agricoltura (Co.Ri.Bi.A.), 90100 Palermo, Italy
| | - Rosaria Costa
- Dipartimento di Scienze Biomediche, Odontoiatriche e delle Immagini Morfologiche e Funzionali (Biomorf), University of Messina, 98122 Messina, Italy; (V.N.); (R.V.)
| | - Vincenzo Nava
- Dipartimento di Scienze Biomediche, Odontoiatriche e delle Immagini Morfologiche e Funzionali (Biomorf), University of Messina, 98122 Messina, Italy; (V.N.); (R.V.)
| | - Rossella Vadalà
- Dipartimento di Scienze Biomediche, Odontoiatriche e delle Immagini Morfologiche e Funzionali (Biomorf), University of Messina, 98122 Messina, Italy; (V.N.); (R.V.)
| |
Collapse
|
8
|
Alesci A, Aragona M, Cicero N, Lauriano ER. Can nutraceuticals assist treatment and improve covid-19 symptoms? Nat Prod Res 2022; 36:2672-2691. [PMID: 33949266 DOI: 10.1080/14786419.2021.1914032] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Viral diseases have always played an important role in public and individual health. Since December 2019, the world is facing a pandemic of SARS-CoV-2, a coronavirus that results in a syndrome known as COVID-19. Several studies were conducted to implement antiviral drug therapy, until the arrival of SARS-CoV-2 vaccines. Numerous scientific investigations have considered some nutraceuticals as an additional treatment of COVID-19 patients to improve their clinical picture. In this review, we would like to emphasize the studies conducted to date about this issue and try to understand whether the use of nutraceuticals as a supplementary therapy to COVID-19 may be a valid and viable avenue. Based on the results obtained so far, quercetin, astaxanthin, luteolin, glycyrrhizin, lactoferrin, hesperidin and curcumin have shown encouraging data suggesting their use to prevent and counteract the symptoms of this pandemic infection.
Collapse
Affiliation(s)
- Alessio Alesci
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| | - Marialuisa Aragona
- Department of Veterinary Sciences, University of Messina, Messina, Italy
| | - Nicola Cicero
- Department of Biomedical and Dental Science and Morphofunctional Imaging, University of Messina, Messina, Italy
| | - Eugenia Rita Lauriano
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| |
Collapse
|
9
|
Alesci A, Cicero N, Fumia A, Petrarca C, Mangifesta R, Nava V, Lo Cascio P, Gangemi S, Di Gioacchino M, Lauriano ER. Histological and Chemical Analysis of Heavy Metals in Kidney and Gills of Boops boops: Melanomacrophages Centers and Rodlet Cells as Environmental Biomarkers. TOXICS 2022; 10:toxics10050218. [PMID: 35622632 PMCID: PMC9147125 DOI: 10.3390/toxics10050218] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 04/20/2022] [Accepted: 04/25/2022] [Indexed: 12/17/2022]
Abstract
Industrialization has resulted in a massive increase in garbage output, which is frequently discharged or stored in waterways like rivers and seas. Due to their toxicity, durability, bioaccumulation, and biomagnification, heavy metals (such as mercury, cadmium, and lead) have been identified as strong biological poisons. Their presence in the aquatic environment has the potential to affect water quality parameters and aquatic life in general. Teleosts’ histopathology provides a sensitive indicator of pollutant-induced stress, because their organs have a central role in the transformation of different active chemical compounds in the aquatic environment. In particular, the gills, kidneys, and liver are placed at the center of toxicological studies. The purpose of this study is to examine the morphological changes caused by heavy metals in the kidney and gills of Boops boops, with a focus on melanomacrophages centers (MMCs) and rodlet cells (RCs) as environmental biomarkers, using histological and histochemical stainings (hematoxylin/eosin, Van Gieson trichrome, Periodic Acid Schiff reaction, and Alcian Blue/PAS 2.5), and immunoperoxidase methods. Our findings show an increase of MMCs and RCs linked to higher exposure to heavy metals, confirming the role of these aggregates and cells as reliable biomarkers of potential aquatic environmental changes reflected in fish fauna. The cytological study of RCs and MMCs could be important in gaining a better understanding of the complicated immune systems of teleosts.
Collapse
Affiliation(s)
- Alessio Alesci
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Stagno d’Alcontres 31, 98166 Messina, Italy; (P.L.C.); (E.R.L.)
- Correspondence: (A.A.); (N.C.); (A.F.)
| | - Nicola Cicero
- Department of Biomedical and Dental Science and Morphofunctional Imaging, University of Messina, Via Consolare Valeria, 98125 Messina, Italy;
- Correspondence: (A.A.); (N.C.); (A.F.)
| | - Angelo Fumia
- Department of Clinical and Experimental Medicine, University of Messina, Viale Gazzi, 98147 Messina, Italy;
- Correspondence: (A.A.); (N.C.); (A.F.)
| | - Claudia Petrarca
- Center of Advanced Science and Technology (CAST), G. D’Annunzio University, 66100 Chieti, Italy; (C.P.); (R.M.); (M.D.G.)
- YDA–Institute of Clinical Immunotherapy and Advanced Biological Treatments, 65121 Pescara, Italy
| | - Rocco Mangifesta
- Center of Advanced Science and Technology (CAST), G. D’Annunzio University, 66100 Chieti, Italy; (C.P.); (R.M.); (M.D.G.)
| | - Vincenzo Nava
- Department of Biomedical and Dental Science and Morphofunctional Imaging, University of Messina, Via Consolare Valeria, 98125 Messina, Italy;
| | - Patrizia Lo Cascio
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Stagno d’Alcontres 31, 98166 Messina, Italy; (P.L.C.); (E.R.L.)
| | - Sebastiano Gangemi
- Department of Clinical and Experimental Medicine, University of Messina, Viale Gazzi, 98147 Messina, Italy;
| | - Mario Di Gioacchino
- Center of Advanced Science and Technology (CAST), G. D’Annunzio University, 66100 Chieti, Italy; (C.P.); (R.M.); (M.D.G.)
- YDA–Institute of Clinical Immunotherapy and Advanced Biological Treatments, 65121 Pescara, Italy
| | - Eugenia Rita Lauriano
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Stagno d’Alcontres 31, 98166 Messina, Italy; (P.L.C.); (E.R.L.)
| |
Collapse
|
10
|
Alesci A, Pergolizzi S, Lo Cascio P, Capillo G, Lauriano ER. Localization of vasoactive intestinal peptide and toll-like receptor 2 immunoreactive cells in endostyle of urochordate Styela plicata (Lesueur, 1823). Microsc Res Tech 2022; 85:2651-2658. [PMID: 35394101 PMCID: PMC9324221 DOI: 10.1002/jemt.24119] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 03/16/2022] [Indexed: 12/14/2022]
Abstract
The endostyle is the first component of the ascidian digestive tract, it is shaped like a through and is located in the pharynx's ventral wall. This organ is divided longitudinally into nine zones that are parallel to each other. Each zone's cells are physically and functionally distinct. Support elements are found in zones 1, 3, and 5, while mucoproteins secreting elements related to the filtering function are found in zones 2, 4, and 6. Zones 7, 8, and 9, which are located in the lateral dorsal section of the endostyle, include cells with high iodine and peroxidase concentrations. Immunohistochemical technique using the following antibodies, Toll‐like receptor 2 (TLR‐2) and vasoactive intestinal peptide (VIP), and lectin histochemistry (WGA—wheat‐germagglutinin), were used in this investigation to define immune cells in the endostyle of Styela plicata (Lesueur, 1823). Our results demonstrate the presence of immune cells in the endostyle of S. plicata, highlighting that innate immune mechanisms are highly conserved in the phylogeny of the chordates.
Collapse
Affiliation(s)
- Alessio Alesci
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| | - Simona Pergolizzi
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| | - Patrizia Lo Cascio
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| | - Gioele Capillo
- Department of Veterinary Sciences, University of Messina, Messina, Italy.,Institute of Marine Biological Resources and Biotechnology, National Research Council (IRBIM, CNR), Spianata S. Raineri, Messina, Italy
| | - Eugenia Rita Lauriano
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| |
Collapse
|
11
|
Alesci A, Pergolizzi S, Capillo G, Lo Cascio P, Lauriano ER. Rodlet cells in kidney of goldfish (Carassius auratus, Linnaeus 1758): A light and confocal microscopy study. Acta Histochem 2022; 124:151876. [PMID: 35303512 DOI: 10.1016/j.acthis.2022.151876] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 03/09/2022] [Accepted: 03/09/2022] [Indexed: 02/08/2023]
Abstract
Rodlet cells (RCs) have always been an enigma for scientists. RCs have been given a variety of activities over the years, including ion transport, osmoregulation, and sensory function. These cells, presumably as members of the granulocyte line, are present only in teleosts and play a role in the innate immune response. RCs are migratory cells found in a variety of organs, including skin, vascular, digestive, uropoietic, reproductive, and respiratory systems, and present distinct physical properties that make them easily recognizable in tissues and organs. The development of RCs can be divided into four stages: granular, transitional, mature, and ruptured, having different morphological characteristics. Our study aims to characterize the different stages of these cells by histomorphological and histochemical techniques. Furthermore, we characterized these cells at all stages with peroxidase and fluorescence immunohistochemical techniques using different antibodies: S100, tubulin, α-SMA, piscidin, and for the first time TLR-2. From our results, the immunoreactivity of these cells to the antibodies performed may confirm that RCs play a role in fish defense mechanisms, helping to expand the state of the art on immunology and immune cells of teleosts.
Collapse
|
12
|
Alesci A, Lauriano ER, Fumia A, Irrera N, Mastrantonio E, Vaccaro M, Gangemi S, Santini A, Cicero N, Pergolizzi S. Relationship between Immune Cells, Depression, Stress, and Psoriasis: Could the Use of Natural Products Be Helpful? MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27061953. [PMID: 35335319 PMCID: PMC8954591 DOI: 10.3390/molecules27061953] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Revised: 03/12/2022] [Accepted: 03/15/2022] [Indexed: 12/13/2022]
Abstract
Psoriasis is one of the most widespread chronic inflammatory skin diseases, affecting about 2%-3% of the worldwide adult population. The pathogenesis of this disease is quite complex, but an interaction between genetic and environmental factors has been recognized with an essential modulation of inflammatory and immune responses in affected patients. Psoriatic plaques generally represent the clinical psoriatic feature resulting from an abnormal proliferation and differentiation of keratinocytes, which cause dermal hyperplasia, skin infiltration of immune cells, and increased capillarity. Some scientific pieces of evidence have reported that psychological stress may play a key role in psoriasis, and the disease itself may cause stress conditions in patients, thus reproducing a vicious cycle. The present review aims at examining immune cell involvement in psoriasis and the relationship of depression and stress in its pathogenesis and development. In addition, this review contains a focus on the possible use of natural products, thus pointing out their mechanism of action in order to counteract clinical and psychological symptoms.
Collapse
Affiliation(s)
- Alessio Alesci
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Stagno d’Alcontres, 31, 98166 Messina, Italy; (E.R.L.); (S.P.)
- Correspondence: (A.A.); (A.S.); (N.C.)
| | - Eugenia Rita Lauriano
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Stagno d’Alcontres, 31, 98166 Messina, Italy; (E.R.L.); (S.P.)
| | - Angelo Fumia
- Department of Clinical and Experimental Medicine, University of Messina, Viale Gazzi, 98147 Messina, Italy; (A.F.); (S.G.)
| | - Natasha Irrera
- Department of Clinical and Experimental Medicine—Section of Pharmacology, University of Messina, 98125 Messina, Italy;
| | | | - Mario Vaccaro
- Department of Clinical and Experimental Medicine—Section of Dermatology, University of Messina, 98125 Messina, Italy;
| | - Sebastiano Gangemi
- Department of Clinical and Experimental Medicine, University of Messina, Viale Gazzi, 98147 Messina, Italy; (A.F.); (S.G.)
| | - Antonello Santini
- Department of Pharmacy, University of Napoli Federico II, 80131 Napoli, Italy
- Correspondence: (A.A.); (A.S.); (N.C.)
| | - Nicola Cicero
- Department of Biomedical and Dental Science and Morphofunctional Imaging, University of Messina, 98125 Messina, Italy
- Correspondence: (A.A.); (A.S.); (N.C.)
| | - Simona Pergolizzi
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Stagno d’Alcontres, 31, 98166 Messina, Italy; (E.R.L.); (S.P.)
| |
Collapse
|
13
|
Alesci A, Pergolizzi S, Fumia A, Calabrò C, Lo Cascio P, Lauriano ER. Mast cells in goldfish (
Carassius auratus
) gut: Immunohistochemical characterization. ACTA ZOOL-STOCKHOLM 2022. [DOI: 10.1111/azo.12417] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Alessio Alesci
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences University of Messina Messina Italy
| | - Simona Pergolizzi
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences University of Messina Messina Italy
| | - Angelo Fumia
- Department of Clinical and Experimental Medicine University of Messina Messina Italy
| | - Concetta Calabrò
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences University of Messina Messina Italy
| | - Patrizia Lo Cascio
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences University of Messina Messina Italy
| | - Eugenia Rita Lauriano
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences University of Messina Messina Italy
| |
Collapse
|
14
|
Alesci A, Nicosia N, Fumia A, Giorgianni F, Santini A, Cicero N. Resveratrol and Immune Cells: A Link to Improve Human Health. Molecules 2022; 27:424. [PMID: 35056739 PMCID: PMC8778251 DOI: 10.3390/molecules27020424] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Revised: 01/03/2022] [Accepted: 01/05/2022] [Indexed: 02/06/2023] Open
Abstract
The use of polyphenols as adjuvants in lowering risk factors for various debilitating diseases has been investigated in recent years due to their possible antioxidant action. Polyphenols represent a fascinating and relatively new subject of research in nutraceuticals and nutrition, with interest rapidly expanding since they can help maintain health by controlling metabolism, weight, chronic diseases, and cell proliferation. Resveratrol is a phenolic compound found mostly in the pulp, peels, seeds, and stems of red grapes. It has a wide variety of biological actions that can be used to prevent the beginning of various diseases or manage their symptoms. Resveratrol can influence multiple inflammatory and non-inflammatory responses, protecting organs and tissues, thanks to its interaction with immune cells and its activity on SIRT1. This compound has anti-inflammatory, antioxidant, anti-apoptotic, neuroprotective, cardioprotective, anticancer, and antiviral properties, making it a potential adjunct to traditional pharmaceutical therapy in public health. This review aims to provide a comprehensive analysis of resveratrol in terms of active biological effects and mechanism of action in modifying the immune cellular response to promote human psychophysical health.
Collapse
Affiliation(s)
- Alessio Alesci
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Stagno d’Alcontres, 31, 98166 Messina, Italy; (A.A.); (N.N.)
| | - Noemi Nicosia
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Stagno d’Alcontres, 31, 98166 Messina, Italy; (A.A.); (N.N.)
- Foundation “Prof. Antonio Imbesi”, University of Messina, Piazza Pugliatti 1, 98122 Messina, Italy
- Department of Pharmacological Screening, Medical College, Jagiellonian University, Medyczna 9, PL 30-688 Cracow, Poland
| | - Angelo Fumia
- Department of Clinical and Experimental Medicine, University of Messina, Padiglione C, A. O. U. Policlinico “G. Martino”, Viale Gazzi, 98147 Messina, Italy;
| | - Federica Giorgianni
- Department of Biomedical and Dental Science and Morphofunctional Imaging, University of Messina, Via Consolare Valeria, 98125 Messina, Italy; (F.G.); (N.C.)
| | - Antonello Santini
- Department of Pharmacy, University of Napoli Federico II, Via D. Montesano 49, 80131 Napoli, Italy
| | - Nicola Cicero
- Department of Biomedical and Dental Science and Morphofunctional Imaging, University of Messina, Via Consolare Valeria, 98125 Messina, Italy; (F.G.); (N.C.)
- Science4life Spin-off Company, University of Messina, 98168 Messina, Italy
- Consorzio di Ricerca sul Rischio Biologico in Agricoltura (Co.Ri.Bi.A), 90129 Palermo, Italy
| |
Collapse
|
15
|
Jeria N, Cornejo S, Prado G, Bustamante A, Garcia-Diaz DF, Jimenez P, Valenzuela R, Poblete-Aro C, Echeverria F. Beneficial Effects of Bioactive Compounds Obtained from Agro-Industrial By-Products on Obesity and Metabolic Syndrome Components. FOOD REVIEWS INTERNATIONAL 2022. [DOI: 10.1080/87559129.2021.2013498] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Affiliation(s)
- Nicolas Jeria
- Escuela de Nutricion y Dietetica, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Sebastian Cornejo
- Escuela de Nutricion y Dietetica, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Gabriel Prado
- Departamento de Nutricion, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Andres Bustamante
- Departamento de Nutricion, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Diego F Garcia-Diaz
- Departamento de Nutricion, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Paula Jimenez
- Departamento de Nutricion, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Rodrigo Valenzuela
- Departamento de Nutricion, Facultad de Medicina, Universidad de Chile, Santiago, Chile
- Nutritional Science Department, Faculty of Medicine, University of Toronto, Toronto, Canada
| | - Carlos Poblete-Aro
- Laboratorio de Ciencias de la Actividad Fisica, el Deporte y la Salud, Facultad de Ciencias Medicas, Universidad de Santiago de Chile, Santiago, Chile
- Centro de Investigación en Rehabilitación en Salud, Universidad de las Americas, Santiago, Chile
| | - Francisca Echeverria
- Departamento de Nutricion, Facultad de Medicina, Universidad de Chile, Santiago, Chile
- Carrera de Nutrición y Dietética, Departamento Ciencias de la Salud, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago Chile
| |
Collapse
|
16
|
El Sheikha AF, Ray RC. Bioprocessing of Horticultural Wastes by Solid-State Fermentation into Value-Added/Innovative Bioproducts: A Review. FOOD REVIEWS INTERNATIONAL 2022. [DOI: 10.1080/87559129.2021.2004161] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Affiliation(s)
- Aly Farag El Sheikha
- College of Bioscience and Bioengineering, Jiangxi Agricultural University, Nanchang, China
- Department of Biology, McMaster University, Hamilton, Ontario, Canada
- School of Nutrition Sciences, Faculty of Health Sciences, University of Ottawa, Canada
- Bioengineering and Technological Research Centre for Edible and Medicinal Fungi, Jiangxi Agricultural University, Nanchang, China
- Jiangxi Key Laboratory for Conservation and Utilization of Fungal Resources, Jiangxi Agricultural University, Nanchang, China
| | - Ramesh C. Ray
- ICAR-Central Tuber Crops Research Institute (Regional Centre), Bhubaneswar, India
- Centre for Food Biology & Environment Studies, Bhubaneswar, India
| |
Collapse
|
17
|
Sadeghi Z, Yang JL, Venditti A, Moridi Farimani M. A review of the phytochemistry, ethnopharmacology and biological activities of Teucrium genus (Germander). Nat Prod Res 2022; 36:5647-5664. [PMID: 34986708 DOI: 10.1080/14786419.2021.2022669] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Teucrium L (Lamiaceae) is mainly distributed in the Mediterranean area. A comprehensive survey in the electronic databases (during 2000-2020 years) with keywords of 'Teucrium' and 'Germander' showed that chemical analyses are available for 27 species, with sesquiterpenoids, iridoids, di and triterpenoids, and phenolic compounds as identified structures. The neo-clerodane diterpenoids as potential chemotaxonomic markers were the main compounds of this genus. As a result, Italy and Turkey have good attempts at phytochemical analysis. The pharmacological activities of different species including antioxidant, cytotoxic activity, antidiabetic, antimicrobial, anti-inflammatory and anti-insect have been summarized. Teucrium polium and Teucrium chamaedrys mainly have been used in digestive problems and diabetes in traditional medicine. Evidence-based clinical trials are needed to confirm the therapeutic properties of this genus. As well to the popularity of Asian and Anatolian species as ingredients in contemporary medicines and products, further research is required in comparison to European species.
Collapse
Affiliation(s)
- Zahra Sadeghi
- Department of Production and Utilization of Medicinal Plants, Faculty of Agricultural and Natural Resources, Higher Educational Complex of Saravan, Sistan and Baluchestan, Iran
| | - Jun-Li Yang
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics (LICP), Chinese Academy of Sciences (CAS), Lanzhou, 730000, PR China
| | | | - Mahdi Moridi Farimani
- Department of Phytochemistry, Medicinal Plants and Drugs Research Institute, Shahid Beheshti University, Evin, Tehran, Iran
| |
Collapse
|
18
|
Fumia A, Cicero N, Gitto M, Nicosia N, Alesci A. Role of nutraceuticals on neurodegenerative diseases: neuroprotective and immunomodulant activity. Nat Prod Res 2021; 36:5916-5933. [PMID: 34963389 DOI: 10.1080/14786419.2021.2020265] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Neurodegeneration is a degenerative process characterized by the progressive loss of the structure and function of neurons that involves several immune cells. It is the primary cause of dementia and other several syndromes, known as neurodegenerative diseases. These disorders are age-related and it is estimated that by 2040 there will be approximately 81.1 million people suffering from these diseases. In addition to the traditional pharmacological therapy, in recent years nutraceuticals, naturally based compounds with a broad spectrum of biological effects: anti-aging, antioxidants, hypoglycaemic, hypocholesterolemic, anticancer, anxiolytic, antidepressant, etc., assumed an important role in counteracting these pathologies. In particular, several compounds such as astaxanthin, baicalein, glycyrrhizin, St. John's wort, and Ginkgo biloba L. extracts show particular neuroprotective and immunomodulatory abilities, involving several immune cells and some neurotransmitters that play a critical role in neurodegeneration, making them particularly useful in improving the symptoms and progression of neurodegenerative diseases.
Collapse
Affiliation(s)
- Angelo Fumia
- Department of Clinical and Experimental Medicine, University of Messina, Padiglione C, A. O. U. Policlinico 'G. Martino', Messina, Italy
| | - Nicola Cicero
- Department of Biomedical and Dental Science and Morphofunctional Imaging, University of Messina, Messina, Italy
| | - Marco Gitto
- Department of Clinical and Community Sciences, Fondazione IRCCS Ca' Granada, Ospedale Maggiore Policlinico, U.O.S. di Audiologia, Milano, Italy
| | - Noemi Nicosia
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy.,Foundation 'Prof. Antonio Imbesi', University of Messina, Messina, Italy.,Department of Pharmacological Screening, Jagiellonian University, Medical College, Cracow, PL, Poland
| | - Alessio Alesci
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| |
Collapse
|
19
|
Ferreira do Amaral V, Santos ACMD, Moura JGL, Castilhos JD, Gemelli T, Hoffmann JF, Ziegler V, Ferreira CD. Antimicrobial and cytotoxic activity to human colon adenocarcinoma cell lines (HT-29) potential of olive oil extraction residue. Nat Prod Res 2021; 36:4492-4497. [PMID: 34696654 DOI: 10.1080/14786419.2021.1986708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
In the Olive drupe (Olea europaea L.) oil extraction process, 80% of the volume generated is waste (bagasse). Advancing the expansion of the olive oil market, it is necessary to develop alternatives that, in addition to adding value to industrial waste, also reduce possible environmental damage. Our study aimed to understand the antimicrobial and Cytotoxic activity potential of the residues from the extraction of olive oil from the blend of the varieties Arbequina and Arbosana. The extract shows cytotoxic activity, inhibiting about 75% of cancer cells in the human colon at a concentration of 0.15 mg of Gallic Acid equivalent (GAE)/mL. The effectiveness of the extract against microorganisms often associated with foodborne diseases and food decomposition has also been discovered, without compromising the microorganisms responsible for fermentation. Thus, this study provides future perspectives for the use of active ingredients extracted from the residue from the extraction of olive oil.
Collapse
Affiliation(s)
- Vanessa Ferreira do Amaral
- Technological Institute in Food for Health, University of Vale do Rio dos Sinos, São Leopoldo, Rio Grande do Sul, Brazil
| | | | - Josué Guilherme Lisboa Moura
- Technological Institute in Food for Health, University of Vale do Rio dos Sinos, São Leopoldo, Rio Grande do Sul, Brazil
| | - Juliana de Castilhos
- Technological Institute in Food for Health, University of Vale do Rio dos Sinos, São Leopoldo, Rio Grande do Sul, Brazil
| | - Tanise Gemelli
- Technological Institute in Food for Health, University of Vale do Rio dos Sinos, São Leopoldo, Rio Grande do Sul, Brazil
| | - Jessica Fernanda Hoffmann
- Technological Institute in Food for Health, University of Vale do Rio dos Sinos, São Leopoldo, Rio Grande do Sul, Brazil
| | - Valmor Ziegler
- Technological Institute in Food for Health, University of Vale do Rio dos Sinos, São Leopoldo, Rio Grande do Sul, Brazil
| | - Cristiano Dietrich Ferreira
- Technological Institute in Food for Health, University of Vale do Rio dos Sinos, São Leopoldo, Rio Grande do Sul, Brazil
| |
Collapse
|
20
|
Alesci A, Fumia A, Lo Cascio P, Miller A, Cicero N. Immunostimulant and Antidepressant Effect of Natural Compounds in the Management of Covid-19 Symptoms. J Am Coll Nutr 2021; 41:840-854. [PMID: 34550044 DOI: 10.1080/07315724.2021.1965503] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
In recent years, the use of natural compounds as adjuvant treatments and alternatives to traditional pharmacological therapies has become increasingly popular. These compounds have a wide range of biological effects, such as: antioxidant, anti-aging, hypocholesterolizing, hypoglycemic, antitumoral, antidepressant, anxiolytic activity, etc. Almost all of these compounds are easily available and are contained in different foods. At the end of 2019 the Coronavirus SARS-CoV-2 appeared in China and quickly spread throughout the world, causing a pandemic. The most common symptoms of this infection are dry cough, fever, dyspnea, and in severe cases bilateral interstitial pneumonia, with consequences that can lead to death. The nations, in trying to prevent the spread of infection, have imposed social distancing and lockdown measures on their citizens. This had a strong psychological-social impact, leading to phobic, anxious and depressive states. Pharmacological therapy could be accompanied by treatment with several natural compounds, such as vitamins, baicalein, zinc and essential oils. These compounds possess marked immunostimulant activity, strengthening the immune response and mitigating interactions between the virus and the host cell. They also have an antidepressant effect, acting on certain neurotransmitters.
Collapse
Affiliation(s)
- Alessio Alesci
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| | - Angelo Fumia
- Department of Clinical and Experimental Medicine, University of Messina, Padiglione C, A. O. U. Policlinico "G. Martino", Messina, Italy
| | - Patrizia Lo Cascio
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| | | | - Nicola Cicero
- Department of Biomedical and Dental Science and Morphofunctional Imaging, University of Messina, Messina, Italy
| |
Collapse
|
21
|
Alesci A, Pergolizzi S, Lo Cascio P, Fumia A, Lauriano ER. Neuronal regeneration: Vertebrates comparative overview and new perspectives for neurodegenerative diseases. ACTA ZOOL-STOCKHOLM 2021. [DOI: 10.1111/azo.12397] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Alessio Alesci
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences University of Messina Messina Italy
| | - Simona Pergolizzi
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences University of Messina Messina Italy
| | - Patrizia Lo Cascio
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences University of Messina Messina Italy
| | - Angelo Fumia
- Department of Clinical and Experimental Medicine University of Messina Messina Italy
| | - Eugenia Rita Lauriano
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences University of Messina Messina Italy
| |
Collapse
|
22
|
Lauriano ER, Aragona M, Alesci A, Lo Cascio P, Pergolizzi S. Toll-like receptor 2 and α-Smooth Muscle Actin expressed in the tunica of a urochordate, Styela plicata. Tissue Cell 2021; 71:101584. [PMID: 34224967 DOI: 10.1016/j.tice.2021.101584] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Revised: 06/14/2021] [Accepted: 06/18/2021] [Indexed: 12/27/2022]
Abstract
The tunicate, Styela plicata (Lesueur, 1823) present an open circulator system with a tubular heart and blood flowing in lacunae among organs, bathing the tissues directly. Blood vascular lacunae are present in the tunica that is situated outside the epidermis and present a fibrous structure. The cells of the tunic are in straight contact with the blood vessels or are highly mobile. Ascidians are considered model organisms in comparative immunology of the chordate, and hold an important phylogenetic position as sister group of vertebrates. In recent years, numerous studies have reported the presence of Toll-like receptors (TLRs) in the genome of non-mammalian organisms including invertebrates. Two TLRs, designated Ci-TLR1 and Ci-TLR2 were expressed in the stomach, intestine and in numerous hemocytes of Ciona intestinalis, demonstrating that these key transmembrane proteins are evolutionarily conserved in ascidians. In this study for the first time, hemocytes aggregates were identified by confocal immunofluorescence techniques, using TLR2 antibody in the tunica of Styela plicata; furthermore, α-Smooth Muscle Actin (α-SMA) expression has been shown in the cells lining the vessels of the tunic. Our results support the view that the TLR-mediated innate immune functions are conserved in ascidian tissues.
Collapse
Affiliation(s)
- Eugenia Rita Lauriano
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale F. Stagno d'Alcontres 31, I-98166, Messina, Italy
| | - Marialuisa Aragona
- Department of Veterinary Sciences, University of Messina, Viale dell'Annunziata, I-98168, Messina, Italy
| | - Alessio Alesci
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale F. Stagno d'Alcontres 31, I-98166, Messina, Italy.
| | - Patrizia Lo Cascio
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale F. Stagno d'Alcontres 31, I-98166, Messina, Italy
| | - Simona Pergolizzi
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale F. Stagno d'Alcontres 31, I-98166, Messina, Italy
| |
Collapse
|
23
|
Alesci A, Miller A, Tardugno R, Pergolizzi S. Chemical analysis, biological and therapeutic activities of Olea europaea L. extracts. Nat Prod Res 2021; 36:2932-2945. [PMID: 34160309 DOI: 10.1080/14786419.2021.1922404] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The Olea europaea L. is a very well-known and widely used plant, especially for its nutritional qualities. Its extracts from leaves and fruits are widely used in contrasting and preventing various pathologies. In this review, the collected data highlight important chemical analyses and biological effects of this plant extracts. It exhibits cholesterol-lowering, hypoglycemic, cytotoxic, antibacterial, neuroprotective, antioxidant, anti-inflammatory and hypotensive activities. The results show that extracts from O. europaea could be used as a food additive in the supplementary treatment of many diseases.
Collapse
Affiliation(s)
- Alessio Alesci
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| | | | - Roberta Tardugno
- Science4life s.r.l., Spin-off of the University of Messina, Messina, Italy
| | - Simona Pergolizzi
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| |
Collapse
|
24
|
Pagano I, Campone L, Celano R, Piccinelli AL, Rastrelli L. Green non-conventional techniques for the extraction of polyphenols from agricultural food by-products: A review. J Chromatogr A 2021; 1651:462295. [PMID: 34118529 DOI: 10.1016/j.chroma.2021.462295] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 05/22/2021] [Accepted: 05/25/2021] [Indexed: 12/19/2022]
Abstract
Food processing industry is accompanied with the generation of a great production of wastes and by-products exceptionally rich in bioactive compounds (especially phenolics), with antioxidant activity. The recovery of these health molecules constitutes a key point for the valorization of by-products, with the possibility of creating new ingredients to be used for the formulation of food and cosmetic products. One of the main limitations to reuse by-products is linked to the high cost to obtain bioactive compounds, consequently in order to exploit these resources commercially valuable it is necessary to develop innovative, economic and environmentally friendly extraction strategies. These extraction methods should be able to reduce petroleum solvents, energy consumption and chemical wastes, protecting both environment and consumers and ensuring safe and high-quality final products. The purpose of this review is to summarize current knowledge and applications of the new extraction techniques such as supercritical fluid extraction, pressurized liquid extraction, ultrasound assisted extraction applied to polyphenols extraction from agricultural food by-products. Particular attention has been paid to theoretical background, highlighting mechanisms and safety precautions. Authors concluded that relevant results of these techniques represent an opportunity to industrial scale-up, improving the extraction yields, minimizing time, costs and environmental impact.
Collapse
Affiliation(s)
- Imma Pagano
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II 132, Fisciano, (SA) 84084, Italy
| | - Luca Campone
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza Della Scienza 2, Milano 20126, Italy.
| | - Rita Celano
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II 132, Fisciano, (SA) 84084, Italy
| | - Anna Lisa Piccinelli
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II 132, Fisciano, (SA) 84084, Italy
| | - Luca Rastrelli
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II 132, Fisciano, (SA) 84084, Italy
| |
Collapse
|
25
|
Alessio A, Pergolizzi S, Gervasi T, Aragona M, Lo Cascio P, Cicero N, Lauriano ER. Biological effect of astaxanthin on alcohol-induced gut damage in Carassius auratus used as experimental model. Nat Prod Res 2020; 35:5737-5743. [DOI: 10.1080/14786419.2020.1830396] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Alesci Alessio
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| | - S. Pergolizzi
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| | - T. Gervasi
- Department of Biomedical and Dental Science and Morphofunctional Imaging, University of Messina, Messina, Italy
| | - M. Aragona
- Department of Veterinary Sciences, University of Messina, Messina, Italy
| | - P. Lo Cascio
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| | - N. Cicero
- Department of Biomedical and Dental Science and Morphofunctional Imaging, University of Messina, Messina, Italy
| | - E. R. Lauriano
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| |
Collapse
|
26
|
Alesci A, Lauriano ER, Aragona M, Capillo G, Pergolizzi S. Marking vertebrates langerhans cells, from fish to mammals. Acta Histochem 2020; 122:151622. [PMID: 33066843 PMCID: PMC7480233 DOI: 10.1016/j.acthis.2020.151622] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 08/28/2020] [Accepted: 08/28/2020] [Indexed: 12/27/2022]
Abstract
Langerhans cells (LCs) are specialized dendritic cells (DCs) that play a defense role in recognizing foreign antigens, in tissue where antigenic exposures occur, as in the skin and mucous membranes. LCs are able to continuously move within the tissues thanks to dendritic contraction and distension performing their surveillance and/or phagocytosis role. These cells are characterized by the presence of Birbeck granules in their cytoplasm, involved in endocytosis. LCs have been characterized in several classes of vertebrates, from fish to mammals using different histological and molecular techniques. The aim of the present review is to define the state of art and the need of information about immunohistochemical markers of LCs in different classes of vertebrates. The most used immunohistochemical (IHC) markers are Langerin/CD207, CD1a, S-100 and TLR. These IHC markers are described in relation to their finding in different vertebrate classes with phylogenetical considerations. Among the four markers, Langerin/CD207 and TLR have the widest spectrum of cross reactivity in LCs.
Collapse
|
27
|
Magrone T, Spagnoletta A, Magrone M, Russo MA, Corriero A, Jirillo E, Passantino L. Effects of Polyphenol Administration to European Farmed Sea Bass ( Dicentrharcus labrax L.): Special Focus on Hepatopancreas Morphology. Endocr Metab Immune Disord Drug Targets 2020; 19:526-533. [PMID: 30306883 DOI: 10.2174/1871530318666181009111214] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Revised: 07/26/2018] [Accepted: 09/03/2018] [Indexed: 12/22/2022]
Abstract
BACKGROUND AND OBJECTIVE Hepatopancreas is an accessory organ associated with the liver in some fish, even including sea bass (Dicentrharcus labrax L.). Hepatopancreas contains an exocrine portion but until now its function has poorly been investigated. METHODS Here, European farmed sea bass have been treated with a feed enriched in polyphenols extracted from seeds of red grape (Nero di Troia cultivar) at two different doses (100 and 200 mg/kg, respectively) from day 273 to day 323. In fish samples, hepatopancreas area sizes have been measured to evaluate the effects of this dietary regimen on its morphology. RESULTS Quite interestingly, in treated fish area sizes of hepatopancreas were higher than those detected in untreated fish. Two hundred mg dose of polyphenols was more effective than that of 100 mg/kg polyphenols. Finally, hepatic polyphenol concentration was diminished in fish receiving 100 mg dose polyphenols and normalized with 200 mg dose in comparison to untreated fish. This evidence suggests the utilization of polyphenols for liver function, even including hepatopancreas development. CONCLUSION Our data suggest an expansion of hepatopancreas induced by polyphenol administration that is also associated with less mortality in farmed fish.
Collapse
Affiliation(s)
- Thea Magrone
- Department of Basic Medical Sciences, Neuroscience and Sensory Organs, School of Medicine, University of Bari "Aldo Moro", Bari, Italy
| | - Anna Spagnoletta
- Department of Basic Medical Sciences, Neuroscience and Sensory Organs, School of Medicine, University of Bari "Aldo Moro", Bari, Italy.,ENEA Research Centre Trisaia, Laboratory "BioProducts and BioProcesses", Rotondella (MT), Italy
| | - Manrico Magrone
- Department of Basic Medical Sciences, Neuroscience and Sensory Organs, School of Medicine, University of Bari "Aldo Moro", Bari, Italy
| | - Matteo Antonio Russo
- MEBIC Consortium, San Raffaele Open University of Rome and IRCCS San Raffaele Pisana of Rome, Rome, Italy
| | - Aldo Corriero
- Department of Emergency and Organ Transplantation, University of Bari, 70124 Bari, Italy
| | - Emilio Jirillo
- Department of Basic Medical Sciences, Neuroscience and Sensory Organs, School of Medicine, University of Bari "Aldo Moro", Bari, Italy
| | - Letizia Passantino
- Department of Emergency and Organ Transplantation, University of Bari, 70124 Bari, Italy
| |
Collapse
|
28
|
Magrone T, Russo MA, Jirillo E. Dietary Approaches to Attain Fish Health with Special Reference to their Immune System. Curr Pharm Des 2019; 24:4921-4931. [PMID: 30608037 DOI: 10.2174/1381612825666190104121544] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Revised: 12/25/2018] [Accepted: 12/28/2018] [Indexed: 02/08/2023]
Abstract
Fish despite their low collocation in the vertebrate phylum possess a complete immune system. In teleost fish both innate and adaptive immune responses have been described with melanomacrophage centers (MMCs) equivalent to mammalian germinal centers. Primary lymphoid organs are represented by the thymus and kidney, while spleen and mucosa-associated lymphoid tissues act as secondary lymphoid organs. Functions of either innate immune cells (e.g., macrophages and dendritic cells) or adaptive immune cells (T and B lymphocytes) will be described in detail, even including their products, such as cytokines and antibodies. In spite of a robust immune arsenal, fish are very much exposed to infectious agents (marine bacteria, parasites, fungi, and viruses) and, consequentially, mortality is very much enhanced especially in farmed fish. In fact, in aquaculture stressful events (overcrowding), microbial infections very frequently lead to a high rate of mortality. With the aim to reduce mortality of farmed fish through the reinforcement of their immune status the current trend is to administer natural products together with the conventional feed. Then, in the second part of the present review emphasis will be placed on a series of products, such as prebiotics, probiotics and synbiotics, β-glucans, vitamins, fatty acids and polyphenols all used to feed farmed fish. With special reference to polyphenols, results of our group using red grape extracts to feed farmed European sea bass will be illustrated. In particular, determination of cytokine production at intestinal and splenic levels, areas of MMCs and development of hepatopancreas will represent the main biomarkers considered. All together, our own data and those of current literature suggests that natural product administration to farmed fish for their beneficial effects may, in part, solve the problem of fish mortality in aquaculture, enhancing their immune responses.
Collapse
Affiliation(s)
- Thea Magrone
- Department of Basic Medical Sciences, Neuroscience and Sensory Organs, University of Bari, School of Medicine, Bari, Italy
| | - Matteo A Russo
- MEBIC Consortium, San Raffaele Open University of Rome and IRCCS San Raffaele Pisana of Rome, Rome, Italy
| | - Emilio Jirillo
- Department of Basic Medical Sciences, Neuroscience and Sensory Organs, University of Bari, School of Medicine, Bari, Italy
| |
Collapse
|
29
|
Parrino V, Kesbiç OS, Acar Ü, Fazio F. Hot pepper (Capsicum sp.) oil and its effects on growth performance and blood parameters in rainbow trout (Oncorhynchus mykiss). Nat Prod Res 2019; 34:3226-3230. [DOI: 10.1080/14786419.2018.1550769] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Affiliation(s)
- Vincenzo Parrino
- Department of Chemical, Biological, Pharmaceutical, and Environmental Sciences, University of Messina, Messina, Italy
| | | | - Ümit Acar
- Department of Forestry Vocational School of Bayramic, Canakkale Onsekiz Mar University, Canakkale, Turkey
| | - Francesco Fazio
- Department of Veterinary Sciences, University of Messina, Messina, Italy
| |
Collapse
|
30
|
Coelho MPM, Correia JE, Vasques LI, Marcato ACDC, Guedes TDA, Soto MA, Basso JB, Kiang C, Fontanetti CS. Toxicity evaluation of leached of sugarcane vinasse: Histopathology and immunostaining of cellular stress protein. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2018; 165:367-375. [PMID: 30216895 DOI: 10.1016/j.ecoenv.2018.08.099] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Revised: 08/21/2018] [Accepted: 08/27/2018] [Indexed: 06/08/2023]
Abstract
Sugarcane vinasse is a residue generated at a rate fifteen times greater than the ethanol production. Because of its high organic and micronutrient content, this residue is used as a fertilizer on sugarcane crops. However, when used in large quantities, vinasse can saturate the soil and contaminate nearby water resources by percolation and leaching. Given the proven toxic potential of in natura vinasse, the present study aimed to evaluate the toxic potential of leached sugarcane vinasse using Nile tilapia (Oreochromis niloticus) as a test organism. A bioassay was performed after vinasse percolation in laboratory soil columns. The bioassay included one control group containing fresh water and two treatment groups, the first exposed to a 2,5% dilution of leached of vinasse and the second to a 2,5% dilution of in natura vinasse. After exposure, histopathological analysis was performed in gills and livers, and the latter were labelled for HSP70 proteins. No significant changes were detected in the gills of the exposed fish. However, in the liver, both in natura and leached vinasse induced statistically significant histopathological changes. These changes include hydropic degeneration, cell boundary losses, pyknotic nuclei and cellular disorganization. HSP70 expression significant increase in liver of both treatment groups were observed, being higher for the in natura vinasse exposed group. Results suggested that both leached vinasse and in natura vinasse were toxic, its still able to provoke histological changes and induce the cytoprotective response in exposed fish liver, evidenced by a immunostaining of cellular stress proteins. Thus, in order to reduce its environmental impact, appropriated effluent disposal is essential.
Collapse
Affiliation(s)
- Maria Paula Mancini Coelho
- UNESP - São Paulo State University, IB (Instituto de Biociências), Av. 24-A, 1515, CEP: 13506-900 Rio Claro, São Paulo, Brazil
| | - Jorge Evangelista Correia
- UNESP - São Paulo State University, IB (Instituto de Biociências), Av. 24-A, 1515, CEP: 13506-900 Rio Claro, São Paulo, Brazil
| | - Louise Idalgo Vasques
- UNESP - São Paulo State University, IB (Instituto de Biociências), Av. 24-A, 1515, CEP: 13506-900 Rio Claro, São Paulo, Brazil
| | - Ana Claudia de Castro Marcato
- UNESP - São Paulo State University, IB (Instituto de Biociências), Av. 24-A, 1515, CEP: 13506-900 Rio Claro, São Paulo, Brazil
| | - Thays de Andrade Guedes
- UNESP - São Paulo State University, IB (Instituto de Biociências), Av. 24-A, 1515, CEP: 13506-900 Rio Claro, São Paulo, Brazil
| | - Miguel Alfaro Soto
- São Paulo State University (Unesp), IGCE (Instituto de Geociências e Ciências Exatas), Av. 24-A, 1515, CEP: 13506-900 Rio Claro, São Paulo, Brazil
| | - Juliana Broggio Basso
- São Paulo State University (Unesp), IGCE (Instituto de Geociências e Ciências Exatas), Av. 24-A, 1515, CEP: 13506-900 Rio Claro, São Paulo, Brazil
| | - Chang Kiang
- São Paulo State University (Unesp), IGCE (Instituto de Geociências e Ciências Exatas), Av. 24-A, 1515, CEP: 13506-900 Rio Claro, São Paulo, Brazil
| | - Carmem Silvia Fontanetti
- UNESP - São Paulo State University, IB (Instituto de Biociências), Av. 24-A, 1515, CEP: 13506-900 Rio Claro, São Paulo, Brazil.
| |
Collapse
|
31
|
Pergolizzi S, D’Angelo V, Aragona M, Dugo P, Cacciola F, Capillo G, Dugo G, Lauriano ER. Evaluation of antioxidant and anti-inflammatory activity of green coffee beans methanolic extract in rat skin. Nat Prod Res 2018; 34:1535-1541. [DOI: 10.1080/14786419.2018.1523161] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Simona Pergolizzi
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale F. Stagno, d’Alcontres 31, 98166 Messina, Italy
| | - Valeria D’Angelo
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale F. Stagno, d’Alcontres 31, 98166 Messina, Italy
| | - Marialuisa Aragona
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale F. Stagno, d’Alcontres 31, 98166 Messina, Italy
| | - Paola Dugo
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale F. Stagno, d’Alcontres 31, 98166 Messina, Italy
- Department of Medicine, University Campus Bio-Medico of Rome, Via Álvaro del Portillo, 21, 00128 Rome, Italy
- Chromaleont s.r.l., c/o Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Polo Annunziata, Viale Annunziata, 98168 Messina, Italy
| | - Francesco Cacciola
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, Via Consolare Valeria, 98125 Messina, Italy
| | - Gioele Capillo
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale F. Stagno, d’Alcontres 31, 98166 Messina, Italy
| | - Giacomo Dugo
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, Via Consolare Valeria, 98125 Messina, Italy
| | - Eugenia Rita Lauriano
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale F. Stagno, d’Alcontres 31, 98166 Messina, Italy
| |
Collapse
|
32
|
Wang L, Bai M, Qin Y, Liu B, Wang Y, Zhou Y. Application of Ionic Liquid-Based Ultrasonic-Assisted Extraction of Flavonoids from Bamboo Leaves. Molecules 2018; 23:molecules23092309. [PMID: 30201916 PMCID: PMC6225495 DOI: 10.3390/molecules23092309] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Revised: 09/04/2018] [Accepted: 09/06/2018] [Indexed: 11/17/2022] Open
Abstract
Ionic liquids (ILs), known as environmentally benign “green” solvents, were developed as an optimal solvent for the green extraction and separation field. In this paper, an ionic liquid-based ultrasonic-assisted extraction (IL-UAE) of flavonoids (FVs) from bamboo leaves of Phyllostachys heterocycla was developed for the first time. First, 1-butyl-3-methylimidazolium bromide ([Bmim] Br), with the best extraction efficiency, was selected from fifteen ionic liquids with diverse structure, like carbon chains or anions. Then, the influencing parameters of ionic liquid (IL) concentration, liquid-solid ratio, ultrasonic time, and ultrasonic power, were investigated by single factor tests, and further optimized using response surface methodology (RSM). In the optimization experiment, the best conditions were 1.5 mol/L [BMIM]Br aqueous solution, liquid-solid ratio 41 mL/g, ultrasonic time 90 min, and ultrasonic power 300 W. Furthermore, the microstructures of bamboo leaves and the recovery of FVs and [BMIM]Br were also studied. Therefore, this simple, green and effective IL-UAE method has potentiality for the extraction of FVs from bamboo leaves for the large-scale operations.
Collapse
Affiliation(s)
- Liling Wang
- Zhejiang Academy of Forestry, Hangzhou 310023, China.
| | - Minge Bai
- Zhejiang Academy of Forestry, Hangzhou 310023, China.
| | - Yuchuan Qin
- Zhejiang Academy of Forestry, Hangzhou 310023, China.
| | - Bentong Liu
- Zhejiang Academy of Forestry, Hangzhou 310023, China.
| | - Yanbin Wang
- Zhejiang Academy of Forestry, Hangzhou 310023, China.
| | - Yifeng Zhou
- School of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Hangzhou 310023, China.
- Zhejiang Provincial Key Lab for Chemical and Biological Processing Technology of Farm Produces, Hangzhou 310023, China.
- Zhejiang Province Collaborative Innovation Center of Agricultural Biological Resources Biochemical Manufacuring, Hangzhou 310023, China.
| |
Collapse
|
33
|
Licata P, Tardugno R, Pergolizzi S, Capillo G, Aragona M, Colombo A, Gervasi T, Pellizzeri V, Cicero N, Calò M. In vivo effects of PCB-126 and genistein on vitellogenin expression in zebrafish. Nat Prod Res 2018; 33:2507-2514. [PMID: 29607746 DOI: 10.1080/14786419.2018.1455048] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
In this study, the vitellogenin (Vtg) modulation by genistein and polychlorinated biphenyl-126 (PCB-126) exposure in zebrafishes has been investigated. Both PCB-126 and genistein have been identified as aquatic pollutants and can further increase estrogenicity of waterways. Vtg is egg yolk precursor protein release by the hepatocytes during vitellogenesis. This process occurs normally in the hepatocytes in response to the activation with the estrogens such as 17-β-estradiol. Our immunohistochemical findings showed a Vtg expression that increases at 12 h and at 72 h in the liver of treated fishes with both PCB-126 and genistein, individually and in combination. Furthermore, for the first time, also hepatic stellate cells (HSC) in the liver parenchyma were strongly positive for vitellogenin.
Collapse
Affiliation(s)
- Patrizia Licata
- a Department of Veterinary Science, Veterinary Pharmacology and Toxicology , University of Messina , Messina , Italy
| | - Roberta Tardugno
- b Department of Biomedical and Dental Sciences and Morphofunctional Imaging , University of Messina , Messina , Italy
| | - Simona Pergolizzi
- c Department of Chemical, Biological, Pharmaceutical and Environmental Sciences , University of Messina , Messina , Italy
| | - Gioele Capillo
- c Department of Chemical, Biological, Pharmaceutical and Environmental Sciences , University of Messina , Messina , Italy
| | - Marialuisa Aragona
- c Department of Chemical, Biological, Pharmaceutical and Environmental Sciences , University of Messina , Messina , Italy
| | - Antonio Colombo
- d Azienda Sanitaria Provinciale Messina (ASP) , Messina , Italy
| | - Teresa Gervasi
- b Department of Biomedical and Dental Sciences and Morphofunctional Imaging , University of Messina , Messina , Italy
| | - Vito Pellizzeri
- b Department of Biomedical and Dental Sciences and Morphofunctional Imaging , University of Messina , Messina , Italy
| | - Nicola Cicero
- c Department of Chemical, Biological, Pharmaceutical and Environmental Sciences , University of Messina , Messina , Italy.,e Science4Life s.r.l., A Spin-off of the University of Messina , Messina , Italy
| | - Margherita Calò
- a Department of Veterinary Science, Veterinary Pharmacology and Toxicology , University of Messina , Messina , Italy
| |
Collapse
|
34
|
Aybeke M. Genotoxic effects of olive oil wastewater on sunflower. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2018; 147:972-981. [PMID: 29976009 DOI: 10.1016/j.ecoenv.2017.09.071] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2017] [Revised: 09/26/2017] [Accepted: 09/28/2017] [Indexed: 06/08/2023]
Abstract
The aim of this study is to determine in detail the genotoxic effects of Olive Oil Wastewater (OOWW) on sunflower. For this reason, different concentrations of OOWW (1/1,1/10,1/100) were applied as irrigation water to sunflowers at different times (3-day, 5-day, 10-day). In the plants taken during these times, RAPD-based genomic template stability (GTS) assays and gene expression (transcriptomic) levels of different free radical scavenging enzyme genes (SOD, CAT, SOD2, GST, GPX, APX), protein repair/chaperoning genes (HSP26, HSP70, HSP83), N metabolism gene (GS) and apoptotic genes (BAX, BCL2, BCLXL, CYT-C, XIAP) were compared to the those of the control (OOWW-free) group. As a result; The GTS rates seemed to be fairly lower than the control and therefore the OOWW was likely to cause significant damage to the DNA's nucleotide and genomic structure, and the GTS value increased inversely proportional when the OOWW concentration was reduced from 1/1 to 1/10, and after a 10-day application, it seemed to be partly healing. In transcriptomic analysis; all OOWW experiments caused a free radical threat, and especially in 5-day OOWW applications, this raised significantly almost all expressions of antioxidants, protein repair, N metabolism, and apoptotic genes. So, the damages of 5-day OOWW treatments were found to be relatively more than those of 3-day treatments. Regarding 10-day transcriptomic data; a partial repair was found. Additionally, it was determined that the values of B, F, Al, Mn, Ni, Cr, As, Se, Cd, Pb and total polyphenols were high in OOWW. Our findings were also supported by plant images and various heavy metals' and OOWW polyphenols' toxicity results. Our results pointed to key findings in OOWW genotoxicology.
Collapse
Affiliation(s)
- Mehmet Aybeke
- Trakya University, Faculty of Science, Dept. of Biology, Balcan Campus, 22030 Edirne, Turkey.
| |
Collapse
|
35
|
Gervasi T, Pellizzeri V, Benameur Q, Gervasi C, Santini A, Cicero N, Dugo G. Valorization of raw materials from agricultural industry for astaxanthin and β-carotene production by Xanthophyllomyces dendrorhous. Nat Prod Res 2017; 32:1554-1561. [DOI: 10.1080/14786419.2017.1385024] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Teresa Gervasi
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, Polo Universitario Annunziata, Messina, Italy
| | - Vito Pellizzeri
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, Polo Universitario Annunziata, Messina, Italy
| | - Qada Benameur
- Faculty of Natural Sciences and Life, Nursing Department, University of Mostaganem, Mostaganem, Algeria
| | - Claudio Gervasi
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, Polo Universitario Annunziata, Messina, Italy
| | - Antonello Santini
- Dipartimento di Farmacia, Università di Napoli Federico II, Napoli, Italy
| | - Nicola Cicero
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, Polo Universitario Annunziata, Messina, Italy
- Science4Life, Spin Off Company, University of Messina, Messina, Italy
| | - Giacomo Dugo
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, Polo Universitario Annunziata, Messina, Italy
- Science4Life, Spin Off Company, University of Messina, Messina, Italy
| |
Collapse
|
36
|
Ghosh PR, Fawcett D, Sharma SB, Poinern GEJ. Production of High-Value Nanoparticles via Biogenic Processes Using Aquacultural and Horticultural Food Waste. MATERIALS (BASEL, SWITZERLAND) 2017; 10:E852. [PMID: 28773212 PMCID: PMC5578218 DOI: 10.3390/ma10080852] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Revised: 07/13/2017] [Accepted: 07/18/2017] [Indexed: 02/03/2023]
Abstract
The quantities of organic waste produced globally by aquacultural and horticulture are extremely large and offer an attractive renewable source of biomolecules and bioactive compounds. The availability of such large and diverse sources of waste materials creates a unique opportunity to develop new recycling and food waste utilisation strategies. The aim of this review is to report the current status of research in the emerging field of producing high-value nanoparticles from food waste. Eco-friendly biogenic processes are quite rapid, and are usually carried out at normal room temperature and pressure. These alternative clean technologies do not rely on the use of the toxic chemicals and solvents commonly associated with traditional nanoparticle manufacturing processes. The relatively small number of research articles in the field have been surveyed and evaluated. Among the diversity of waste types, promising candidates and their ability to produce various high-value nanoparticles are discussed. Experimental parameters, nanoparticle characteristics and potential applications for nanoparticles in pharmaceuticals and biomedical applications are discussed. In spite of the advantages, there are a number of challenges, including nanoparticle reproducibility and understanding the formation mechanisms between different food waste products. Thus, there is considerable scope and opportunity for further research in this emerging field.
Collapse
Affiliation(s)
- Purabi R Ghosh
- Murdoch Applied Nanotechnology Research Group, Department of Physics, Energy Studies and Nanotechnology, School of Engineering and Energy, Murdoch University, Murdoch, Western Australia 6150, Australia.
| | - Derek Fawcett
- Murdoch Applied Nanotechnology Research Group, Department of Physics, Energy Studies and Nanotechnology, School of Engineering and Energy, Murdoch University, Murdoch, Western Australia 6150, Australia.
| | - Shashi B Sharma
- Department of Primary Industries and Regional Development, 3 Baron Hay Court, South Perth, Western Australia 6151, Australia.
| | - Gerrard E J Poinern
- Murdoch Applied Nanotechnology Research Group, Department of Physics, Energy Studies and Nanotechnology, School of Engineering and Energy, Murdoch University, Murdoch, Western Australia 6150, Australia.
| |
Collapse
|
37
|
Gervasi T, Pellizzeri V, Calabrese G, Di Bella G, Cicero N, Dugo G. Production of single cell protein (SCP) from food and agricultural waste by using Saccharomyces cerevisiae. Nat Prod Res 2017; 32:648-653. [DOI: 10.1080/14786419.2017.1332617] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Teresa Gervasi
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, Messina, Italy
| | - Vito Pellizzeri
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, Messina, Italy
| | - Giorgio Calabrese
- Department of Pharmacy, Università degli Studi di Napoli Federico II, Napoli, Italy
| | - Giuseppa Di Bella
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, Messina, Italy
| | - Nicola Cicero
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, Messina, Italy
- Department of Pharmacy, Università degli Studi di Napoli Federico II, Napoli, Italy
| | - Giacomo Dugo
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, Messina, Italy
- Science4Life, Spin Off Company, University of Messina, Messina, Italy
| |
Collapse
|
38
|
Calò M, Bitto A, Lo Cascio P, Giarratana F, Altavilla D, Gervasi T, Campone L, Cicero N, Licata P. PCB-126 effects on aryl hydrocarbon receptor, ubiquitin and p53 expression levels in a fish product (Sparus aurata L.). Nat Prod Res 2017; 32:1136-1144. [DOI: 10.1080/14786419.2017.1320794] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Margherita Calò
- Department of Veterinary Science, University of Messina, Messina, Italy
| | - Alessandra Bitto
- Department of Clinical and Experimental Medicine, University of Messina, Messina, Italy
| | - Patrizia Lo Cascio
- Department of Chemical, Biological, Pharmacological and Environmental Sciences, University of Messina, Messina, Italy
| | | | - Domenica Altavilla
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, Messina, Italy
| | - Teresa Gervasi
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, Messina, Italy
| | - Luca Campone
- Department of Pharmacy, University of Salerno, Fisciano SA, Italy
| | - Nicola Cicero
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, Messina, Italy
- Science4Life, Spin Off Company, University of Messina, Messina, Italy
| | - Patrizia Licata
- Department of Veterinary Science, University of Messina, Messina, Italy
| |
Collapse
|
39
|
Mirbagheri VS, Alizadeh E, Yousef Elahi M, Esmaeilzadeh Bahabadi S. Phenolic content and antioxidant properties of seeds from different grape cultivars grown in Iran. Nat Prod Res 2017; 32:425-429. [DOI: 10.1080/14786419.2017.1306705] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
40
|
The Application of Supercritical Carbon Dioxide and Ethanol for the Extraction of Phenolic Compounds from Chokeberry Pomace. APPLIED SCIENCES-BASEL 2017. [DOI: 10.3390/app7040322] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
41
|
Kucharska AZ, Sokół-Łętowska A, Oszmiański J, Piórecki N, Fecka I. Iridoids, Phenolic Compounds and Antioxidant Activity of Edible Honeysuckle Berries (Lonicera caerulea var. kamtschatica Sevast.). Molecules 2017; 22:molecules22030405. [PMID: 28273885 PMCID: PMC6155291 DOI: 10.3390/molecules22030405] [Citation(s) in RCA: 88] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2016] [Revised: 02/22/2017] [Accepted: 02/28/2017] [Indexed: 11/26/2022] Open
Abstract
Iridoid and polyphenol profiles of 30 different honeysuckle berry cultivars and genotypes were studied. Compounds were identified by ultra-performance liquid chromatography coupled with electrospray ionization mass spectrometry (UPLC-ESI-qTOF-MS/MS) in positive and negative ion modes and quantified by HPLC-PDA. The 50 identified compounds included 15 iridoids, 6 anthocyanins, 9 flavonols, 2 flavanonols (dihydroflavonols), 5 flavones, 6 flavan-3-ols, and 7 phenolic acids. 8-epi-Loganic acid, pentosyl-loganic acid, taxifolin 7-O-dihexoside, and taxifolin 7-O-hexoside were identified in honeysuckle berries for the first time. Iridoids and anthocyanins were the major groups of bioactive compounds of honeysuckle constituents. The total content of quantified iridoids and anthocyanins was between 128.42 mg/100 g fresh weight (fw) (‘Dlinnoplodnaya’) and 372 mg/100 g fw (‘Kuvshinovidnaya’) and between 150.04 mg/100 g fw (‘Karina’) and 653.95 mg/100 g fw (‘Amur’), respectively. Among iridoids, loganic acid was the dominant compound, and it represented between 22% and 73% of the total amount of quantified iridoids in honeysuckle berry. A very strong correlation was observed between the antioxidant potential and the quantity of anthocyanins. High content of iridoids in honeysuckle berries can complement antioxidant properties of phenolic compounds.
Collapse
Affiliation(s)
- Alicja Z Kucharska
- Department of Fruit, Vegetable and Plant Nutraceutical Technology, Wrocław University of Environmental and Life Science, Chełmońskiego 37, 51-630 Wrocław, Poland.
| | - Anna Sokół-Łętowska
- Department of Fruit, Vegetable and Plant Nutraceutical Technology, Wrocław University of Environmental and Life Science, Chełmońskiego 37, 51-630 Wrocław, Poland.
| | - Jan Oszmiański
- Department of Fruit, Vegetable and Plant Nutraceutical Technology, Wrocław University of Environmental and Life Science, Chełmońskiego 37, 51-630 Wrocław, Poland.
| | - Narcyz Piórecki
- Arboretum and Institute of Physiography in Bolestraszyce, 37-700 Przemyśl, Poland.
- University of Rzeszów, Towarnickiego 3, 35-959 Rzeszów, Poland.
| | - Izabela Fecka
- Department of Pharmacognosy, Wrocław Medical University, Borowska 211A, 50-556 Wrocław, Poland.
| |
Collapse
|
42
|
Lo Cascio P, Calabrò C, Bertuccio C, Paterniti I, Palombieri D, Calò M, Albergamo A, Salvo A, Gabriella Denaro M. Effects of fasting and refeeding on the digestive tract of zebrafish (Danio rerio) fed with Spirulina (Arthrospira platensis), a high protein feed source. Nat Prod Res 2017; 31:1478-1485. [DOI: 10.1080/14786419.2016.1274893] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Patrizia Lo Cascio
- Department of Chemical, Biological, Pharmacological and Environmental Sciences, University of Messina, Messina, Italy
| | - Concetta Calabrò
- Department of Chemical, Biological, Pharmacological and Environmental Sciences, University of Messina, Messina, Italy
| | - Clara Bertuccio
- Department of Chemical, Biological, Pharmacological and Environmental Sciences, University of Messina, Messina, Italy
| | - Irene Paterniti
- Department of Chemical, Biological, Pharmacological and Environmental Sciences, University of Messina, Messina, Italy
| | - Deborah Palombieri
- Department of Chemical, Biological, Pharmacological and Environmental Sciences, University of Messina, Messina, Italy
| | - Margherita Calò
- Department of Veterinary Sciences, University of Messina, Messina, Italy
| | - Ambrogina Albergamo
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, Messina, Italy
- Science4Life S.r.l., An Academic Spin-Off of the University of Messina, Messina, Italy
| | - Andrea Salvo
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, Messina, Italy
- Science4Life S.r.l., An Academic Spin-Off of the University of Messina, Messina, Italy
| | - Maria Gabriella Denaro
- Department of Chemical, Biological, Pharmacological and Environmental Sciences, University of Messina, Messina, Italy
| |
Collapse
|
43
|
Lauriano ER, Pergolizzi S, Capillo G, Kuciel M, Alesci A, Faggio C. Immunohistochemical characterization of Toll-like receptor 2 in gut epithelial cells and macrophages of goldfish Carassius auratus fed with a high-cholesterol diet. FISH & SHELLFISH IMMUNOLOGY 2016; 59:250-255. [PMID: 27818343 DOI: 10.1016/j.fsi.2016.11.003] [Citation(s) in RCA: 93] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2016] [Revised: 10/28/2016] [Accepted: 11/02/2016] [Indexed: 06/06/2023]
Abstract
Toll-like receptors (TLRs) are a group of pattern recognition molecules that play a crucial role in innate immunity. The structural conservation of the archaic TLR system suggests that the regulation of the immune response might be similar in fish and mammals. Several TLRs (TLR-1, -2, and -4) are expressed by activated macrophages, "foam cells" in human atherosclerotic lesions. To date, 20 different TLRs were identified in more than a dozen different fish species. In this study we found that feeding goldfish, Carrassius auratus, a high-cholesterol diet (HCD) resulted macrophage foam cell formation in the intestinal tissues. The expression of TLR2 has been found in foam cells and in the cytoplasm of enterocytes, however the staining was more intense at the apical surface of polarized intestinal epithelial cells and in the lamina propria. In the intestinal epithelial cells and in the lamina propria cells of the control fish the TLR2 was expressed at low levels. The intestinal epithelium is directly involved in the mucosal immune response through its expression of proinflammatory genes, release of inflammatory cytokines, and recruitment of inflammatory cells.
Collapse
Affiliation(s)
- E R Lauriano
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale F. Stagno d'Alcontres 31, 98166 Messina, Italy
| | - S Pergolizzi
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale F. Stagno d'Alcontres 31, 98166 Messina, Italy
| | - G Capillo
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale F. Stagno d'Alcontres 31, 98166 Messina, Italy
| | - M Kuciel
- Department of Comparative Anatomy, Institute of Zoology, Jagiellonian University, Gronostajowa 9, 30-387 Krakow, Poland
| | - A Alesci
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale F. Stagno d'Alcontres 31, 98166 Messina, Italy
| | - C Faggio
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale F. Stagno d'Alcontres 31, 98166 Messina, Italy.
| |
Collapse
|
44
|
Salvo A, Rotondo A, La Torre GL, Cicero N, Dugo G. Determination of 1,2/1,3-diglycerides in Sicilian extra-virgin olive oils by 1H-NMR over a one-year storage period. Nat Prod Res 2016; 31:822-828. [PMID: 27871189 DOI: 10.1080/14786419.2016.1247084] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
This study is aimed to monitor by 1H NMR spectroscopy the effect of a 12-month storage period on the 1,2-diglycerides over 1,3-diglycerides ratio for five mono-cultivar 'extra virgin olive oils' (EVOO) (Arbequina, Arbosana, Cerasuola, Nocellara and FS17) and one blend of two different cultivars (Nocellara + Biancolilla) preserved in the dark and at room temperature. These quantifications, at 500 MHz, are readily extracted through a specific and original integration difference method. Albeit it was known that the isomerisation rate is affected by the free acidity, we here demonstrate that it also depends on the presence of specific macromolecules (lipases), indeed, different EVOO cultivars with similar free acidity, show different isomerisation rate. Our results are consistent with similar diglyceride monitoring performed on Greek and Spanish EVOOs by 31P NMR.
Collapse
Affiliation(s)
- Andrea Salvo
- a Department BIOMORF , University of Messina , Messina , Italy
| | | | | | - Nicola Cicero
- a Department BIOMORF , University of Messina , Messina , Italy
| | - Giacomo Dugo
- a Department BIOMORF , University of Messina , Messina , Italy
| |
Collapse
|
45
|
Albergamo A, Rotondo A, Salvo A, Pellizzeri V, Bua DG, Maggio A, Cicero N, Dugo G. Metabolite and mineral profiling of “Violetto di Niscemi” and “Spinoso di Menfi” globe artichokes by 1H-NMR and ICP-MS. Nat Prod Res 2016; 31:990-999. [DOI: 10.1080/14786419.2016.1258563] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Ambrogina Albergamo
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, Polo Universitario Annunziata, Messina, Italy
| | - Archimede Rotondo
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, Polo Universitario Annunziata, Messina, Italy
| | - Andrea Salvo
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, Polo Universitario Annunziata, Messina, Italy
| | - Vito Pellizzeri
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, Polo Universitario Annunziata, Messina, Italy
| | - Daniel G. Bua
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, Polo Universitario Annunziata, Messina, Italy
| | - Antonella Maggio
- Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche, Università di Palermo, Palermo, Italy
| | - Nicola Cicero
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, Polo Universitario Annunziata, Messina, Italy
- Science4Life, Spin Off Company, University of Messina, Messina, Italy
| | - Giacomo Dugo
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, Polo Universitario Annunziata, Messina, Italy
- Science4Life, Spin Off Company, University of Messina, Messina, Italy
- Co.Ri.Bi.A. (Consorzio di Ricerca sul Rischio Biologico in Agricoltura- Palermo), Palermo, Italy
| |
Collapse
|
46
|
Evaluating the potential of phenolic profiles as discriminant features among extra virgin olive oils from Moroccan controlled designations of origin. Food Res Int 2016. [DOI: 10.1016/j.foodres.2016.03.010] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
47
|
Gervasi T, Oliveri F, Gottuso V, Squadrito M, Bartolomeo G, Cicero N, Dugo G. Nero d’Avola and Perricone cultivars: determination of polyphenols, flavonoids and anthocyanins in grapes and wines. Nat Prod Res 2016; 30:2329-37. [DOI: 10.1080/14786419.2016.1174229] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
- Teresa Gervasi
- Dipartimento di Scienze biomediche, odontoiatriche e delle immagini morfologiche e funzionali, Viale Ferdinando Stagno d’Alcontres, Messina, Italy
| | - Francesca Oliveri
- APICE, Science4Life srl Spin Off Company – University of Messina, Messina, Italy
| | - Valentina Gottuso
- Co.Ri.Bi.A. (Consorzio di Ricerca sul Rischio Biologico in Agricoltura- Palermo), Palermo, Italy
| | - Margherita Squadrito
- APICE – Regione Sicilia, U.O.S. Marsala (Centro per l’innovazione della filiera vitivinicola) Assessorato Regionale dell’Agricoltura, Marsala, Italy
| | - Giovanni Bartolomeo
- Dipartimento di Scienze biomediche, odontoiatriche e delle immagini morfologiche e funzionali, Viale Ferdinando Stagno d’Alcontres, Messina, Italy
| | - Nicola Cicero
- Dipartimento di Scienze biomediche, odontoiatriche e delle immagini morfologiche e funzionali, Viale Ferdinando Stagno d’Alcontres, Messina, Italy
- APICE, Science4Life srl Spin Off Company – University of Messina, Messina, Italy
| | - Giacomo Dugo
- Dipartimento di Scienze biomediche, odontoiatriche e delle immagini morfologiche e funzionali, Viale Ferdinando Stagno d’Alcontres, Messina, Italy
- APICE, Science4Life srl Spin Off Company – University of Messina, Messina, Italy
- Co.Ri.Bi.A. (Consorzio di Ricerca sul Rischio Biologico in Agricoltura- Palermo), Palermo, Italy
| |
Collapse
|
48
|
Administration of a Polyphenol-Enriched Feed to Farmed Sea Bass (Dicentrarchus labrax L.) Modulates Intestinal and Spleen Immune Responses. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2015; 2016:2827567. [PMID: 26779301 PMCID: PMC4686725 DOI: 10.1155/2016/2827567] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/01/2015] [Revised: 08/27/2015] [Accepted: 09/02/2015] [Indexed: 01/30/2023]
Abstract
Farmed fish are exposed to a continuous antigenic pressure by microbial and environmental agents, which may lead to a condition of chronic inflammation. In view of the notion that polyphenols, largely contained in fruits and vegetables, are endowed with antioxidant and anti-inflammatory activities, farmed sea bass (Dicentrarchus labrax L.) have been administered with red grape polyphenol-enriched feed. Polyphenols were extracted from the seeds of Canosina Nero di Troia Vitis vinifera and mixed with conventional feed at two different concentrations (100 and 200 mg/kg, resp.). Fish samples collected at days 223 and 273, respectively, were evaluated for intestinal and spleen cytokine release as well as for spleen macrophage (MØ) and melanomacrophage center (MMC) areas and distribution. Data will show that in treated fish decrease of intestinal interleukin- (IL-) 1β and IL-6 and increase of splenic interferon- (IFN-) γ occur. On the other hand, in the spleen reduction of MØ number seems to parallel increase in MMCs. Collectively, these data suggest that polyphenol-administered sea bass generate lower levels of intestinal proinflammatory cytokines, while producing larger amounts of spleen IFN-γ, as an expression of a robust and protective adaptive immune response. Increase of MMCs corroborates the evidence for a protective spleen response induced by feed enriched with polyphenols.
Collapse
|
49
|
Zena R, Speciale A, Calabrò C, Calò M, Palombieri D, Saija A, Cimino F, Trombetta D, Lo Cascio P. Exposure of sea bream (Sparus aurata) to toxic concentrations of benzo[a]pyrene: possible human health effect. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2015; 122:116-125. [PMID: 26232038 DOI: 10.1016/j.ecoenv.2015.07.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2015] [Revised: 06/30/2015] [Accepted: 07/01/2015] [Indexed: 06/04/2023]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) can accumulate in the food chain, due to their lipophilic properties. Fish can accumulate contaminants including PAHs and frequent consumption of such contaminated fish can pose risk to human health. The aim of this study was to clarify if acute exposure of sea bream (Sparus aurata, a fish species of great economic importance in the Atlantic and Mediterranean areas) to a PAH, benzo[a]pyrene (B[a]P), at a dose that can induce CYP1A and pathological changes in fish gills, liver and muscle, can induce accumulation in muscle. We investigated the cytotoxic effects (as changes in cell viability, DNA laddering and glutathione content) of in vitro exposure of human peripheral blood mononuclear cells (PBMCs) to organic extracts obtained from muscle of sea breams previously exposed via water to B[a]P (2mg/l, for 12, 24 and 72 h). At this level of exposure, B[a]P caused morphological changes, inflammatory response and CYP1A induction not only in sea bream gills and liver but also in muscle; furthermore, in fish muscle we observed a substantial B[a]P accumulation, which may be associated with the increased CYP1A activity in liver and especially in muscle. However, when PBMCs were exposed to organic extracts obtained from sea bream muscle contaminated with B[a]P, a toxic, although modest effect was revealed, consisting in a significant decrease in cell glutathione levels without alterations in cell viability and DNA laddering. This suggests that consumption of sea breams from B[a]P contaminated waters might represent a risk for human health.
Collapse
Affiliation(s)
- R Zena
- Department of Drug Sciences and Health Products, University of Messina, V.le SS. Annunziata, 98168 Messina, Italy
| | - A Speciale
- Department of Drug Sciences and Health Products, University of Messina, V.le SS. Annunziata, 98168 Messina, Italy
| | - C Calabrò
- Department of Biological and Environmental Sciences, University of Messina, Salita Sperone 31, S. Agata, Messina, 98166, Italy
| | - M Calò
- Department of Veterinary Science, University of Messina, Polo SS Annunziata, 98168 Messina, Italy
| | - D Palombieri
- Department of Biological and Environmental Sciences, University of Messina, Salita Sperone 31, S. Agata, Messina, 98166, Italy
| | - A Saija
- Department of Drug Sciences and Health Products, University of Messina, V.le SS. Annunziata, 98168 Messina, Italy
| | - F Cimino
- Department of Drug Sciences and Health Products, University of Messina, V.le SS. Annunziata, 98168 Messina, Italy
| | - D Trombetta
- Department of Drug Sciences and Health Products, University of Messina, V.le SS. Annunziata, 98168 Messina, Italy.
| | - P Lo Cascio
- Department of Biological and Environmental Sciences, University of Messina, Salita Sperone 31, S. Agata, Messina, 98166, Italy
| |
Collapse
|
50
|
Corsaro C, Mallamace D, Vasi S, Ferrantelli V, Dugo G, Cicero N. (1)H HR-MAS NMR Spectroscopy and the Metabolite Determination of Typical Foods in Mediterranean Diet. JOURNAL OF ANALYTICAL METHODS IN CHEMISTRY 2015; 2015:175696. [PMID: 26495154 PMCID: PMC4606108 DOI: 10.1155/2015/175696] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/04/2015] [Revised: 04/29/2015] [Accepted: 05/01/2015] [Indexed: 06/05/2023]
Abstract
NMR spectroscopy has become an experimental technique widely used in food science. The experimental procedures that allow precise and quantitative analysis on different foods are relatively simple. For a better sensitivity and resolution, NMR spectroscopy is usually applied to liquid sample by means of extraction procedures that can be addressed to the observation of particular compounds. For the study of semisolid systems such as intact tissues, High-Resolution Magic Angle Spinning (HR-MAS) has received great attention within the biomedical area and beyond. Metabolic profiling and metabolism changes can be investigated both in animal organs and in foods. In this work we present a proton HR-MAS NMR study on the typical vegetable foods of Mediterranean diet such as the Protected Geographical Indication (PGI) cherry tomato of Pachino, the PGI Interdonato lemon of Messina, several Protected Designation of Origin (PDO) extra virgin olive oils from Sicily, and the Traditional Italian Food Product (PAT) red garlic of Nubia. We were able to identify and quantify the main metabolites within the studied systems that can be used for their characterization and authentication.
Collapse
Affiliation(s)
- Carmelo Corsaro
- Istituto per i Processi Chimico-Fisici del CNR di Messina, Viale F. Stagno D'Alcontres 37, 98158 Messina, Italy
- Dipartimento di Fisica e Scienze della Terra, Università di Messina, Viale F. Stagno D'Alcontres 31, 98166 Messina, Italy
| | - Domenico Mallamace
- Dipartimento di Scienze dell'Ambiente, della Sicurezza, del Territorio, degli Alimenti e della Salute, Università di Messina, Viale F. Stagno d'Alcontres 31, 98166 Messina, Italy
| | - Sebastiano Vasi
- Dipartimento di Fisica e Scienze della Terra, Università di Messina, Viale F. Stagno D'Alcontres 31, 98166 Messina, Italy
| | - Vincenzo Ferrantelli
- Istituto Zooprofilattico Sperimentale della Sicilia “A. Mirri”, Via G. Marinuzzi 3, 90129 Palermo, Italy
| | - Giacomo Dugo
- Dipartimento di Scienze dell'Ambiente, della Sicurezza, del Territorio, degli Alimenti e della Salute, Università di Messina, Viale F. Stagno d'Alcontres 31, 98166 Messina, Italy
- Science4life SRL Academic Spin-off, Università di Messina, Viale F. Stagno D'Alcontres 31, 98166 Messina, Italy
| | - Nicola Cicero
- Dipartimento di Scienze dell'Ambiente, della Sicurezza, del Territorio, degli Alimenti e della Salute, Università di Messina, Viale F. Stagno d'Alcontres 31, 98166 Messina, Italy
- Science4life SRL Academic Spin-off, Università di Messina, Viale F. Stagno D'Alcontres 31, 98166 Messina, Italy
| |
Collapse
|