1
|
Luganini A, Boschi D, Lolli ML, Gribaudo G. DHODH inhibitors: What will it take to get them into the clinic as antivirals? Antiviral Res 2025; 236:106099. [PMID: 39938808 DOI: 10.1016/j.antiviral.2025.106099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Revised: 01/19/2025] [Accepted: 02/05/2025] [Indexed: 02/14/2025]
Abstract
The emergence of new human viruses with epidemic or pandemic potential has reaffirmed the urgency to develop effective broad-spectrum antivirals (BSAs) as part of a strategic framework for pandemic prevention and preparedness. To this end, the host nucleotide metabolic pathway has been subject to intense investigation in the search for host-targeting agents (HTAs) with potential BSA activity. In particular, human dihydroorotate dehydrogenase (hDHODH), a rate-limiting enzyme in the de novo pyrimidine biosynthetic pathway, has been identified as a preferential target of new HTAs. Viral replication in fact relies on cellular pyrimidine replenishment, making hDHODH an ideal HTA target. The depletion of the host pyrimidine pool that ensues the pharmacological inhibition of hDHODH activity elicits effective BSA activity through three distinct mechanisms: it blocks viral DNA and RNA synthesis; it activates effector mechanisms of the host innate antiviral response; and it mitigates the virus-induced inflammatory response. However, despite the spectacular results obtained in vitro, the hDHODH inhibitors examined as mono-drug therapies in animal models of human viral infections and in clinical trials have produced disappointing levels of overall antiviral efficacy. To overcome this inherent limitation, pharmacological strategies based on multi-drug combination treatments should be considered to enable efficacy of hDHODH-targeted antiviral therapies. Here, we review the state-of-the-art of antiviral applications of hDHODH inhibitors, discuss the challenges that have emerged from their testing in animal models and human clinical trials and consider how they might be addressed to advance the development of hDHODH inhibitors as BSA for the treatment of viral diseases.
Collapse
Affiliation(s)
- Anna Luganini
- Department of Life Sciences and Systems Biology, University of Turin, 10123, Turin, Italy
| | - Donatella Boschi
- Department of Drug Sciences and Technology, University of Turin, 10125, Turin, Italy
| | - Marco L Lolli
- Department of Drug Sciences and Technology, University of Turin, 10125, Turin, Italy
| | - Giorgio Gribaudo
- Department of Life Sciences and Systems Biology, University of Turin, 10123, Turin, Italy.
| |
Collapse
|
2
|
Dong Z, Huang Y, Xia W, Liao Y, Yang CG. A patenting perspective of fat mass and obesity associated protein (FTO) inhibitors: 2017-present. Expert Opin Ther Pat 2025:1-10. [PMID: 40052926 DOI: 10.1080/13543776.2025.2477482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Accepted: 03/06/2025] [Indexed: 03/14/2025]
Abstract
INTRODUCTION The fat mass and obesity-associated protein (FTO) catalytically demethylates RNA N6-methyl adenosine (m6A) modification, dynamically regulates gene expression in eukaryotes. Interestingly, FTO is highly expressed and functions as an oncogenic factor in a wide range of cancers. Therefore, using small-molecule inhibitors to target FTO has been established as a promising therapeutic strategy for combating cancers. AREAS COVERED Patent literature claiming novel chemical entities as FTO inhibitors disclosed from 2017 to present is available in Espacenet, including dozens of patent documents. EXPERT OPINION The pivotal influence of FTO demethylase in a particular epigenetic layer of regulation of gene expression renders it promising for FTO to be a therapeutical target for many diseases, including malignant cancers. Several institutions were prompted and have patented chemical frameworks as FTO inhibitors. Remarkedly, the FTO inhibitor CS1 (Bisantrene) has advanced to clinical trials for treating acute myeloid leukemia (AML). The successful advancement of CS1 into clinical trials would continuingly stimulate researches on RNA epigenetic enzymes targeted first-in-class anticancer drug discovery.
Collapse
Affiliation(s)
- Ze Dong
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, China
| | - Yue Huang
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, China
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Wenyang Xia
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Yonggang Liao
- Rname Pharmaceutical Technology (Shanghai) Co., LTD., Shanghai, China
| | - Cai-Guang Yang
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, China
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
- Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug Discovery, Yantai, China
| |
Collapse
|
3
|
Hai Y, Fan R, Zhao T, Lin R, Zhuang J, Deng A, Meng S, Hou Z, Wei G. A novel mitochondria-targeting DHODH inhibitor induces robust ferroptosis and alleviates immune suppression. Pharmacol Res 2024; 202:107115. [PMID: 38423231 DOI: 10.1016/j.phrs.2024.107115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 02/21/2024] [Accepted: 02/22/2024] [Indexed: 03/02/2024]
Abstract
Dihydroorotate dehydrogenase (DHODH)-mediated ferroptosis defense is a targetable vulnerability in cancer. Currently, only a few DHODH inhibitors have been utilized in clinical practice. To further enhance DHODH targeting, we introduced the mitochondrial targeting group triphenylphosphine (TPP) to brequinar (BRQ), a robust DHODH inhibitor, resulting in the creation of active molecule B2. This compound exhibits heightened anticancer activity, effectively inhibiting proliferation in various cancer cells, and restraining tumor growth in melanoma xenografts in mice. B2 achieves these effects by targeting DHODH, triggering the formation of reactive oxygen species (ROS), promoting mitochondrial lipid peroxidation, and inducing ferroptosis in B16F10 and A375 cells. Surprisingly, B2 significantly downregulates PD-L1 and alleviates immune suppression. Importantly, B2 exhibits no apparent adverse effects in mice. Collectively, these findings highlight that enhancing the mitochondrial targeting capability of the DHODH inhibitor is a promising therapeutic approach for melanoma treatment.
Collapse
Affiliation(s)
- Yongrui Hai
- Institute of Medical Research, Northwestern Polytechnical University, Xi'an 710072, China; Research & Development Institute of Northwestern Polytechnical University in Shenzhen, 518057, China
| | - Renming Fan
- Institute of Medical Research, Northwestern Polytechnical University, Xi'an 710072, China; Research & Development Institute of Northwestern Polytechnical University in Shenzhen, 518057, China
| | - Ting Zhao
- School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Ruizhuo Lin
- Institute of Medical Research, Northwestern Polytechnical University, Xi'an 710072, China; Research & Development Institute of Northwestern Polytechnical University in Shenzhen, 518057, China
| | - Junyan Zhuang
- Institute of Medical Research, Northwestern Polytechnical University, Xi'an 710072, China; Research & Development Institute of Northwestern Polytechnical University in Shenzhen, 518057, China
| | - Aohua Deng
- Institute of Medical Research, Northwestern Polytechnical University, Xi'an 710072, China; Research & Development Institute of Northwestern Polytechnical University in Shenzhen, 518057, China
| | - Shanshui Meng
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China.
| | - Zhuang Hou
- School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang 110016, China.
| | - Gaofei Wei
- Institute of Medical Research, Northwestern Polytechnical University, Xi'an 710072, China; Research & Development Institute of Northwestern Polytechnical University in Shenzhen, 518057, China.
| |
Collapse
|
4
|
Gehlot P, Vyas VK. A Patent Review of Human Dihydroorotate Dehydrogenase (hDHODH) Inhibitors as Anticancer Agents and their Other Therapeutic Applications (1999-2022). Recent Pat Anticancer Drug Discov 2024; 19:280-297. [PMID: 37070439 DOI: 10.2174/1574892818666230417094939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 02/02/2023] [Accepted: 02/06/2023] [Indexed: 04/19/2023]
Abstract
Highly proliferating cells, such as cancer cells, are in high demand of pyrimidine nucleotides for their proliferation, accomplished by de novo pyrimidine biosynthesis. The human dihydroorotate dehydrogenase (hDHODH) enzyme plays a vital role in the rate-limiting step of de novo pyrimidine biosynthesis. As a recognised therapeutic target, hDHODH plays a significant role in cancer and other illness. In the past two decades, small molecules as inhibitors hDHODH enzyme have drawn much attention as anticancer agents, and their role in rheumatoid arthritis (RA), and multiple sclerosis (MS). In this patent review, we have compiled patented hDHODH inhibitors published between 1999 and 2022 and discussed the development of hDHODH inhibitors as anticancer agents. Therapeutic potential of small molecules as hDHODH inhibitors for the treatment of various diseases, such as cancer, is very well recognised. Human DHODH inhibitors can rapidly cause intracellular uridine monophosphate (UMP) depletion to produce starvation of pyrimidine bases. Normal cells can better endure a brief period of starvation without the side effects of conventional cytotoxic medication and resume synthesis of nucleic acid and other cellular functions after inhibition of de novo pathway using an alternative salvage pathway. Highly proliferative cells such as cancer cells do not endure starvation because they are in high demand of nucleotides for cell differentiation, which is fulfilled by de novo pyrimidine biosynthesis. In addition, hDHODH inhibitors produce their desired activity at lower doses rather than a cytotoxic dose of other anticancer agents. Thus, inhibition of de novo pyrimidine biosynthesis will create new prospects for the development of novel targeted anticancer agents, which ongoing preclinical and clinical experiments define. Our work brings together a comprehensive patent review of the role of hDHODH in cancer, as well as various patents related to the hDHODH inhibitors and their anticancer and other therapeutic potential. This compiled work on patented DHODH inhibitors will guide researchers in pursuing the most promising drug discovery strategies against the hDHODH enzyme as anticancer agents.
Collapse
Affiliation(s)
- Pinky Gehlot
- Department of Pharmaceutical Chemistry, Institute of Pharmacy, Nirma University, Ahmedabad, 382481, Gujrat, India
| | - Vivek K Vyas
- Department of Pharmaceutical Chemistry, Institute of Pharmacy, Nirma University, Ahmedabad, 382481, Gujrat, India
| |
Collapse
|
5
|
Ren X, Liu X, Hua M, Dai Y, Ren X, Sui C, Li X, Jiang Z, Tian M, Yang B. Discovery a series of novel inhibitors of human dihydroorotate dehydrogenase: Biological activity evaluation and molecular docking. Chem Biol Drug Des 2024; 103:e14388. [PMID: 37926553 DOI: 10.1111/cbdd.14388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Revised: 10/18/2023] [Accepted: 10/23/2023] [Indexed: 11/07/2023]
Abstract
Human dihydroorotate dehydrogenase (hDHODH) is a key enzyme that catalyzes the de novo synthesis of pyrimidine. In recent years, various studies have shown that inhibiting this enzyme can treat autoimmune diseases such as rheumatoid arthritis (RA) and cancer. This study designed and synthesized a series of novel thiazolidone hDHODH inhibitors. Through biological activity evaluation, Compound 14 was found to have high inhibitory activity, with an IC50 value reaching nanomolar level. Preliminary structure-activity relationship studies found that the carboxyl group in R1 and the naphthalene in R2 are key factors in improving activity. Through molecular docking, the binding mode between inhibitors and proteins was elucidated. This study provides an important reference for further optimizing hDHODH inhibitors.
Collapse
Affiliation(s)
- Xiaoli Ren
- College of Environment and Quality Inspection, Chongqing Chemical Industry Vocational College, Chongqing, China
| | - Xiaoyong Liu
- College of Environment and Quality Inspection, Chongqing Chemical Industry Vocational College, Chongqing, China
| | - Miao Hua
- Chongqing Experimental School, Chongqing, China
| | - Yan Dai
- College of Environment and Quality Inspection, Chongqing Chemical Industry Vocational College, Chongqing, China
| | - Xiaoping Ren
- College of Environment and Quality Inspection, Chongqing Chemical Industry Vocational College, Chongqing, China
| | - Chaoya Sui
- College of Environment and Quality Inspection, Chongqing Chemical Industry Vocational College, Chongqing, China
| | - Xiangbi Li
- Chongqing Auleon Biologicals Co., Ltd, Chongqing, China
| | - Zhiyong Jiang
- College of Environment and Quality Inspection, Chongqing Chemical Industry Vocational College, Chongqing, China
| | - Min Tian
- College of Pharmacy, Chongqing University of Arts and Sciences, Chongqing, China
| | - Bing Yang
- College of Environment and Quality Inspection, Chongqing Chemical Industry Vocational College, Chongqing, China
| |
Collapse
|
6
|
Luganini A, Sibille G, Pavan M, Mello Grand M, Sainas S, Boschi D, Lolli ML, Chiorino G, Gribaudo G. Mechanisms of antiviral activity of the new hDHODH inhibitor MEDS433 against respiratory syncytial virus replication. Antiviral Res 2023; 219:105734. [PMID: 37852322 DOI: 10.1016/j.antiviral.2023.105734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 10/14/2023] [Accepted: 10/15/2023] [Indexed: 10/20/2023]
Abstract
Human respiratory syncytial virus (RSV) is an important cause of acute lower respiratory infections, for which no effective drugs are currently available. The development of new effective anti-RSV agents is therefore an urgent priority, and Host-Targeting Antivirals (HTAs) can be considered to target RSV infections. As a contribution to this antiviral avenue, we have characterized the molecular mechanisms of the anti-RSV activity of MEDS433, a new inhibitor of human dihydroorotate dehydrogenase (hDHODH), a key cellular enzyme of de novo pyrimidine biosynthesis. MEDS433 was found to exert a potent antiviral activity against RSV-A and RSV-B in the one-digit nanomolar range. Analysis of the RSV replication cycle in MEDS433-treated cells, revealed that the hDHODH inhibitor suppressed the synthesis of viral genome, consistently with its ability to specifically target hDHODH enzymatic activity. Then, the capability of MEDS433 to induce the expression of antiviral proteins encoded by Interferon-Stimulated Genes (ISGs) was identified as a second mechanism of its antiviral activity against RSV. Indeed, MEDS433 stimulated secretion of IFN-β and IFN-λ1 that, in turn, induced the expression of some ISG antiviral proteins, such as IFI6, IFITM1 and IRF7. Singly expression of these ISG proteins reduced RSV-A replication, thus likely contributing to the overall anti-RSV activity of MEDS433. Lastly, MEDS433 proved to be effective against RSV-A replication even in a primary human small airway epithelial cell model. Taken as a whole, these observations provide new insights for further development of MEDS433, as a promising candidate to develop new strategies for treatment of RSV infections.
Collapse
Affiliation(s)
- Anna Luganini
- Department of Life Sciences and Systems Biology, University of Torino, 10123, Torino, Italy
| | - Giulia Sibille
- Department of Life Sciences and Systems Biology, University of Torino, 10123, Torino, Italy
| | - Marta Pavan
- Department of Life Sciences and Systems Biology, University of Torino, 10123, Torino, Italy
| | | | - Stefano Sainas
- Department of Drug Sciences and Technology, University of Torino, 10125, Torino, Italy
| | - Donatella Boschi
- Department of Drug Sciences and Technology, University of Torino, 10125, Torino, Italy
| | - Marco L Lolli
- Department of Drug Sciences and Technology, University of Torino, 10125, Torino, Italy
| | | | - Giorgio Gribaudo
- Department of Life Sciences and Systems Biology, University of Torino, 10123, Torino, Italy.
| |
Collapse
|
7
|
Fraser-Pitt D, Mercer DK, Francis ML, Toledo-Aparicio D, Smith DW, O'Neil DA. Cysteamine-mediated blockade of the glycine cleavage system modulates epithelial cell inflammatory and innate immune responses to viral infection. Biochem Biophys Res Commun 2023; 677:168-181. [PMID: 37597441 DOI: 10.1016/j.bbrc.2023.08.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 08/07/2023] [Accepted: 08/09/2023] [Indexed: 08/21/2023]
Abstract
Transient blockade of glycine decarboxylase (GLDC) can restrict de novo pyrimidine synthesis, which is a well-described strategy for enhancing the host interferon response to viral infection and a target pathway for some licenced anti-inflammatory therapies. The aminothiol, cysteamine, is produced endogenously during the metabolism of coenzyme A, and is currently being investigated in a clinical trial as an intervention in community acquired pneumonia resulting from viral (influenza and SARS-CoV-2) and bacterial respiratory infection. Cysteamine is known to inhibit both bacterial and the eukaryotic host glycine cleavage systems via competitive inhibition of GLDC at concentrations, lower than those required for direct antimicrobial or antiviral activity. Here, we demonstrate for the first time that therapeutically achievable concentrations of cysteamine can inhibit glycine utilisation by epithelial cells and improve cell-mediated responses to infection with respiratory viruses, including human coronavirus 229E and Influenza A. Cysteamine reduces interleukin-6 (IL-6) and increases the interferon-λ (IFN-λ) response to viral challenge and in response to liposomal polyinosinic:polycytidylic acid (poly I:C) simulant of RNA viral infection.
Collapse
Affiliation(s)
- Douglas Fraser-Pitt
- NovaBiotics Ltd, Silverburn Crescent, Bridge of Don, Aberdeen, AB23 8EW, United Kingdom.
| | - Derry K Mercer
- NovaBiotics Ltd, Silverburn Crescent, Bridge of Don, Aberdeen, AB23 8EW, United Kingdom; Bioaster, LYON (headquarters) 40, Avenue Tony Garnier, 69007, Lyon, France
| | - Marie-Louise Francis
- NovaBiotics Ltd, Silverburn Crescent, Bridge of Don, Aberdeen, AB23 8EW, United Kingdom
| | - David Toledo-Aparicio
- NovaBiotics Ltd, Silverburn Crescent, Bridge of Don, Aberdeen, AB23 8EW, United Kingdom
| | - Daniel W Smith
- NovaBiotics Ltd, Silverburn Crescent, Bridge of Don, Aberdeen, AB23 8EW, United Kingdom
| | - Deborah A O'Neil
- NovaBiotics Ltd, Silverburn Crescent, Bridge of Don, Aberdeen, AB23 8EW, United Kingdom
| |
Collapse
|
8
|
Amos A, Amos A, Wu L, Xia H. The Warburg effect modulates DHODH role in ferroptosis: a review. Cell Commun Signal 2023; 21:100. [PMID: 37147673 PMCID: PMC10161480 DOI: 10.1186/s12964-022-01025-9] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 12/22/2022] [Indexed: 05/07/2023] Open
Abstract
Ferroptosis is an iron-dependent regulated cell death that suppresses tumor growth. It is activated by extensive peroxidation of membrane phospholipids caused by oxidative stress. GPX4, an antioxidant enzyme, reduces these peroxidized membrane phospholipids thereby inhibiting ferroptosis. This enzyme has two distinct subcellular localization; the cytosol and mitochondria. Dihydroorotate dehydrogenase (DHODH) complements mitochondrial GPX4 in reducing peroxidized membrane phospholipids. It is the rate-limiting enzyme in de novo pyrimidine nucleotide biosynthesis. Its role in ferroptosis inhibition suggests that DHODH inhibitors could have two complementary mechanisms of action against tumors; inhibiting de novo pyrimidine nucleotide biosynthesis and enhancing ferroptosis. However, the link between mitochondrial function and ferroptosis, and the involvement of DHODH in the ETC suggests that its role in ferroptosis could be modulated by the Warburg effect. Therefore, we reviewed relevant literature to get an insight into the possible effect of this metabolic reprogramming on the role of DHODH in ferroptosis. Furthermore, an emerging link between DHODH and cellular GSH pool has also been highlighted. These insights could contribute to the rational design of ferroptosis-based anticancer drugs. Video Abstract.
Collapse
Affiliation(s)
- Alvan Amos
- Department of Radiation Oncology, Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research & The Affiliated Cancer Hospital of Nanjing Medical University, 42 Baiziting Road, Nanjing, 210009, China
- Department of Biochemistry, Faculty of Science, Kaduna State University, PMB 2339 Tafawa Balewa Way, Kaduna, Nigeria
| | - Alex Amos
- Department of Pharmacology, Faculty of Pharmaceutical Sciences, Ahmadu Bello University Zaria, Zaria, Nigeria
| | - Lirong Wu
- Department of Radiation Oncology, Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research & The Affiliated Cancer Hospital of Nanjing Medical University, 42 Baiziting Road, Nanjing, 210009, China
| | - He Xia
- Department of Radiation Oncology, Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research & The Affiliated Cancer Hospital of Nanjing Medical University, 42 Baiziting Road, Nanjing, 210009, China.
| |
Collapse
|
9
|
DHODH Inhibition Exerts Synergistic Therapeutic Effect with Cisplatin to Induce Ferroptosis in Cervical Cancer through Regulating mTOR Pathway. Cancers (Basel) 2023; 15:cancers15020546. [PMID: 36672495 PMCID: PMC9856746 DOI: 10.3390/cancers15020546] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 01/03/2023] [Accepted: 01/14/2023] [Indexed: 01/18/2023] Open
Abstract
Ferroptosis exhibits a potent antitumor effect and dihydroorotate dehydrogenase (DHODH) has recently been identified as a novel ferroptosis defender. However, the role of DHODH inhibition in cervical cancer cells is unclear, particularly in synergy with cisplatin via ferroptosis. Herein, shRNA and brequinar were used to knock down DHODH and directly inhibit DHODH, respectively. Immunohistochemistry and Western blotting assays were performed to measure the expression of proteins. CCK-8 and colony formation assays were employed to assess the cell viability and proliferation. Ferroptosis was monitored through flow cytometry, the malondialdehyde assay kit and JC-1 staining analyses. The nude mouse xenograft model was generated to examine the effect of combination of DHODH inhibition and cisplatin on tumor growth in vivo. The expression of DHODH was increased in cervical cancer tissues. DHODH inhibition inhibited the proliferation and promoted the ferroptosis in cervical cancer cells. A combination of DHODH inhibition and cisplatin synergistically induced both in vitro and in vivo ferroptosis and downregulated the ferroptosis defender mTOR pathway. Therefore, the combination of DHODH inhibition and cisplatin exhibits synergistic effects on ferroptosis induction via inhibiting the mTOR pathway could provide a promising way for cervical cancer therapy.
Collapse
|
10
|
Colligan SH, Amitrano AM, Zollo RA, Peresie J, Kramer ED, Morreale B, Barbi J, Singh PK, Yu H, Wang J, Opyrchal M, Sykes DB, Nemeth MJ, Abrams SI. Inhibiting the biogenesis of myeloid-derived suppressor cells enhances immunotherapy efficacy against mammary tumor progression. J Clin Invest 2022; 132:e158661. [PMID: 36453551 PMCID: PMC9711879 DOI: 10.1172/jci158661] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 10/05/2022] [Indexed: 12/05/2022] Open
Abstract
While immune checkpoint inhibitors (ICIs) have transformed the therapeutic landscape in oncology, they are effective in select subsets of patients. Efficacy may be limited by tumor-driven immune suppression, of which 1 key mechanism is the development of myeloid-derived suppressor cells (MDSCs). A fundamental gap in MDSC therapeutics is the lack of approaches that target MDSC biogenesis. We hypothesized that targeting MDSC biogenesis would mitigate MDSC burden and bolster tumor responses to ICIs. We tested a class of agents, dihydroorotate dehydrogenase (DHODH) inhibitors, that have been previously shown to restore the terminal differentiation of leukemic myeloid progenitors. DHODH inhibitors have demonstrated preclinical safety and are under clinical study for hematologic malignancies. Using mouse models of mammary cancer that elicit robust MDSC responses, we demonstrated that the DHODH inhibitor brequinar (a) suppressed MDSC production from early-stage myeloid progenitors, which was accompanied by enhanced myeloid maturation; (b) augmented the antitumor and antimetastatic activities of programmed cell death 1-based (PD-1-based) ICI therapy in ICI-resistant mammary cancer models; and (c) acted in concert with PD-1 blockade through modulation of MDSC and CD8+ T cell responses. Moreover, brequinar facilitated myeloid maturation and inhibited immune-suppressive features in human bone marrow culture systems. These findings advance the concept of MDSC differentiation therapy in immuno-oncology.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Joseph Barbi
- Department of Immunology
- Department of Thoracic Surgery
| | | | - Han Yu
- Department of Biostatistics and Bioinformatics, Roswell Park Comprehensive Cancer Center, Buffalo, New York, USA
| | - Jianmin Wang
- Department of Biostatistics and Bioinformatics, Roswell Park Comprehensive Cancer Center, Buffalo, New York, USA
| | - Mateusz Opyrchal
- Department of Medicine, Indiana University, Indianapolis, Indiana, USA
| | - David B. Sykes
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA
- Harvard Stem Cell Institute, Cambridge, Massachusetts, USA
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, Massachusetts, USA
| | | | | |
Collapse
|
11
|
Proof-of-principle studies on a strategy to enhance nucleotide imbalance specifically in cancer cells. Cell Death Dis 2022; 8:464. [PMID: 36424385 PMCID: PMC9691752 DOI: 10.1038/s41420-022-01254-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 11/07/2022] [Accepted: 11/11/2022] [Indexed: 11/26/2022]
Abstract
Highly specific and potent inhibitors of dihydroorotate dehydrogenase (DHODH), an essential enzyme of the de novo pyrimidine ribonucleotide synthesis pathway, are in clinical trials for autoimmune diseases, viral infections and cancer. However, because DHODH inhibitors (DHODHi) are immunosuppressants they may reduce the anticancer activity of the immune system. Therefore, there may be a need to improve the therapeutic index of DHODHi in cancer patients. The aim of this study was to find strategies to protect activated T cells from DHODHi and to identify cancer types hypersensitive to these inhibitors. First, we observed that like uridine supplementation, adding cytidine to the culture medium protects T cells from DHODH blockage. Next, we identified tumor types with altered expression of pyrimidine ribonucleotide synthesis enzymes. In this regard, we detected that the expression of cytidine deaminase (CDA), which converts cytidine into uridine, is low in an important proportion of cancer cell lines and consistently low in neuroblastoma samples and in cell lines from neuroblastoma and small cell lung carcinoma. This suggested that in the presence of a DHODHi, an excess of cytidine would be deleterious for low CDA expressing cancer cell lines. We show that this was the case (as could be seen almost immediately after treatment) when cells were cultured with fetal bovine serum but, was significantly less evident when cultures contained human serum. One interesting feature of CDA is that aside from acting intracellularly, it is also present in human plasma/serum. Altogether, experiments using recombinant CDA, human serum, pharmacologic inhibition of CDA and T cell/cancer cell co-cultures suggest that the therapeutic index of DHODHi could be improved by selecting patients with low-CDA expressing cancers in combination with strategies to increase cytidine or the cytidine/uridine ratio in the extracellular environment. Collectively, this proof-of-principle study warrants the discovery of agents to deplete extracellular CDA.
Collapse
|
12
|
Banerjee R, Purhonen J, Kallijärvi J. The mitochondrial coenzyme Q junction and complex III: biochemistry and pathophysiology. FEBS J 2022; 289:6936-6958. [PMID: 34428349 DOI: 10.1111/febs.16164] [Citation(s) in RCA: 57] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 08/13/2021] [Accepted: 08/23/2021] [Indexed: 01/13/2023]
Abstract
Coenzyme Q (CoQ, ubiquinone) is the electron-carrying lipid in the mitochondrial electron transport system (ETS). In mammals, it serves as the electron acceptor for nine mitochondrial inner membrane dehydrogenases. These include the NADH dehydrogenase (complex I, CI) and succinate dehydrogenase (complex II, CII) but also several others that are often omitted in the context of respiratory enzymes: dihydroorotate dehydrogenase, choline dehydrogenase, electron-transferring flavoprotein dehydrogenase, mitochondrial glycerol-3-phosphate dehydrogenase, proline dehydrogenases 1 and 2, and sulfide:quinone oxidoreductase. The metabolic pathways these enzymes are involved in range from amino acid and fatty acid oxidation to nucleotide biosynthesis, methylation, and hydrogen sulfide detoxification, among many others. The CoQ-linked metabolism depends on CoQ reoxidation by the mitochondrial complex III (cytochrome bc1 complex, CIII). However, the literature is surprisingly limited as for the role of the CoQ-linked metabolism in the pathogenesis of human diseases of oxidative phosphorylation (OXPHOS), in which the CoQ homeostasis is directly or indirectly affected. In this review, we give an introduction to CIII function, and an overview of the pathological consequences of CIII dysfunction in humans and mice and of the CoQ-dependent metabolic processes potentially affected in these pathological states. Finally, we discuss some experimental tools to dissect the various aspects of compromised CoQ oxidation.
Collapse
Affiliation(s)
- Rishi Banerjee
- Folkhälsan Research Center, Helsinki, Finland.,Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, Finland
| | - Janne Purhonen
- Folkhälsan Research Center, Helsinki, Finland.,Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, Finland
| | - Jukka Kallijärvi
- Folkhälsan Research Center, Helsinki, Finland.,Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, Finland
| |
Collapse
|
13
|
Taibe NS, Kord MA, Badawy MA, Shytaj IL, Elhefnawi MM. Progress, pitfalls, and path forward of drug repurposing for COVID-19 treatment. Ther Adv Respir Dis 2022; 16:17534666221132736. [PMID: 36282077 PMCID: PMC9597285 DOI: 10.1177/17534666221132736] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
On 30 January 2020, the World Health Organization (WHO) declared the novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) epidemic a public health emergency of international concern. The viral outbreak led in turn to an exponential growth of coronavirus disease 2019 (COVID-19) cases, that is, a multiorgan disease that has led to more than 6.3 million deaths worldwide, as of June 2022. There are currently few effective drugs approved for treatment of SARS-CoV-2/COVID-19 patients. Many of the compounds tested so far have been selected through a drug repurposing approach, that is, by identifying novel indications for drugs already approved for other conditions. We here present an up-to-date review of the main Food and Drug Administration (FDA)-approved drugs repurposed against SARS-CoV-2 infection, discussing their mechanism of action and their most important preclinical and clinical results. Reviewed compounds were chosen to privilege those that have been approved for use in SARS-CoV-2 patients or that have completed phase III clinical trials. Moreover, we also summarize the evidence on some novel and promising repurposed drugs in the pipeline. Finally, we discuss the current stage and possible steps toward the development of broadly effective drug combinations to suppress the onset or progression of COVID-19.
Collapse
Affiliation(s)
- Noha Samir Taibe
- Biotechnology-Biomolecular Chemistry Program, Chemistry Department, Faculty of Science, Cairo University, Giza, Egypt
| | - Maimona A. Kord
- Department of Botany, Faculty of Science, Cairo University, Giza, Egypt
| | | | | | | |
Collapse
|
14
|
Sibille G, Luganini A, Sainas S, Boschi D, Lolli ML, Gribaudo G. The Novel hDHODH Inhibitor MEDS433 Prevents Influenza Virus Replication by Blocking Pyrimidine Biosynthesis. Viruses 2022; 14:v14102281. [PMID: 36298835 PMCID: PMC9611833 DOI: 10.3390/v14102281] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 10/14/2022] [Accepted: 10/14/2022] [Indexed: 11/26/2022] Open
Abstract
The pharmacological management of influenza virus (IV) infections still poses a series of challenges due to the limited anti-IV drug arsenal. Therefore, the development of new anti-influenza agents effective against antigenically different IVs is therefore an urgent priority. To meet this need, host-targeting antivirals (HTAs) can be evaluated as an alternative or complementary approach to current direct-acting agents (DAAs) for the therapy of IV infections. As a contribution to this antiviral strategy, in this study, we characterized the anti-IV activity of MEDS433, a novel small molecule inhibitor of the human dihydroorotate dehydrogenase (hDHODH), a key cellular enzyme of the de novo pyrimidine biosynthesis pathway. MEDS433 exhibited a potent antiviral activity against IAV and IBV replication, which was reversed by the addition of exogenous uridine and cytidine or the hDHODH product orotate, thus indicating that MEDS433 targets notably hDHODH activity in IV-infected cells. When MEDS433 was used in combination either with dipyridamole (DPY), an inhibitor of the pyrimidine salvage pathway, or with an anti-IV DAA, such as N4-hydroxycytidine (NHC), synergistic anti-IV activities were observed. As a whole, these results indicate MEDS433 as a potential HTA candidate to develop novel anti-IV intervention approaches, either as a single agent or in combination regimens with DAAs.
Collapse
Affiliation(s)
- Giulia Sibille
- Department of Life Sciences and Systems Biology, University of Torino, 10123 Torino, Italy
| | - Anna Luganini
- Department of Life Sciences and Systems Biology, University of Torino, 10123 Torino, Italy
| | - Stefano Sainas
- Department of Sciences and Drug Technology, University of Torino, 10125 Torino, Italy
| | - Donatella Boschi
- Department of Sciences and Drug Technology, University of Torino, 10125 Torino, Italy
| | - Marco Lucio Lolli
- Department of Sciences and Drug Technology, University of Torino, 10125 Torino, Italy
| | - Giorgio Gribaudo
- Department of Life Sciences and Systems Biology, University of Torino, 10123 Torino, Italy
- Correspondence: ; Tel.: +39-011-6704648
| |
Collapse
|
15
|
Sainas S, Giorgis M, Circosta P, Poli G, Alberti M, Passoni A, Gaidano V, Pippione AC, Vitale N, Bonanni D, Rolando B, Cignetti A, Ramondetti C, Lanno A, Ferraris DM, Canepa B, Buccinnà B, Piccinini M, Rizzi M, Saglio G, Al-Karadaghi S, Boschi D, Miggiano R, Tuccinardi T, Lolli ML. Targeting Acute Myelogenous Leukemia Using Potent Human Dihydroorotate Dehydrogenase Inhibitors Based on the 2-Hydroxypyrazolo[1,5- a]pyridine Scaffold: SAR of the Aryloxyaryl Moiety. J Med Chem 2022; 65:12701-12724. [PMID: 36162075 PMCID: PMC9574863 DOI: 10.1021/acs.jmedchem.2c00496] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Indexed: 11/28/2022]
Abstract
In recent years, human dihydroorotate dehydrogenase inhibitors have been associated with acute myelogenous leukemia as well as studied as potent host targeting antivirals. Starting from MEDS433 (IC50 1.2 nM), we kept improving the structure-activity relationship of this class of compounds characterized by 2-hydroxypyrazolo[1,5-a]pyridine scaffold. Using an in silico/crystallography supported design, we identified compound 4 (IC50 7.2 nM), characterized by the presence of a decorated aryloxyaryl moiety that replaced the biphenyl scaffold, with potent inhibition and pro-differentiating abilities on AML THP1 cells (EC50 74 nM), superior to those of brequinar (EC50 249 nM) and boosted when in combination with dipyridamole. Finally, compound 4 has an extremely low cytotoxicity on non-AML cells as well as MEDS433; it has shown a significant antileukemic activity in vivo in a xenograft mouse model of AML.
Collapse
Affiliation(s)
- Stefano Sainas
- Department
of Drug Science and Technology, University
of Turin, Via P. Giuria 9, Turin 10125, Italy
| | - Marta Giorgis
- Department
of Drug Science and Technology, University
of Turin, Via P. Giuria 9, Turin 10125, Italy
| | - Paola Circosta
- Department
of Clinical and Biological Sciences, University
of Turin, Regione Gonzole 10, Orbassano, Turin 10043, Italy
- Molecular
Biotechnology Center, University of Turin, Via Nizza 52, Turin 10126, Italy
| | - Giulio Poli
- Department
of Pharmacy, University of Pisa, Via Bonanno 6, Pisa 56126, Italy
| | - Marta Alberti
- Department
of Pharmaceutical Sciences, University of
Piemonte Orientale, Via
G. Bovio 6, Novara 28100, Italy
| | - Alice Passoni
- Laboratory
of Mass Spectrometry, Department of Environmental Health Sciences, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Via Mario Negri 2, Milan 20156, Italy
| | - Valentina Gaidano
- Division
of Hematology and Cell Therapy, AO Ordine
Mauriziano, Largo Filippo
Turati, 62, Turin 10128, Italy
| | - Agnese C. Pippione
- Department
of Drug Science and Technology, University
of Turin, Via P. Giuria 9, Turin 10125, Italy
| | - Nicoletta Vitale
- Department
of Molecular Biotechnology and Health Sciences, University of Turin, Via Nizza 52, Turin 10126, Italy
| | - Davide Bonanni
- Department
of Drug Science and Technology, University
of Turin, Via P. Giuria 9, Turin 10125, Italy
- Life
Science Department, University of Modena, Via Università 4, Modena 41121, Italy
| | - Barbara Rolando
- Department
of Drug Science and Technology, University
of Turin, Via P. Giuria 9, Turin 10125, Italy
| | - Alessandro Cignetti
- Division
of Hematology and Cell Therapy, AO Ordine
Mauriziano, Largo Filippo
Turati, 62, Turin 10128, Italy
| | - Cristina Ramondetti
- Department
of Oncology, University of Turin, Via Michelangelo 27/B, Turin 10125, Italy
| | - Alessia Lanno
- Laboratory
of Mass Spectrometry, Department of Environmental Health Sciences, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Via Mario Negri 2, Milan 20156, Italy
| | - Davide M. Ferraris
- Department
of Pharmaceutical Sciences, University of
Piemonte Orientale, Via
G. Bovio 6, Novara 28100, Italy
| | - Barbara Canepa
- GEM FORLAB, Via Ing.
Comotto 36, Caluso, Turin, 10014, Italy
| | - Barbara Buccinnà
- Department
of Oncology, University of Turin, Via Michelangelo 27/B, Turin 10125, Italy
| | - Marco Piccinini
- Department
of Oncology, University of Turin, Via Michelangelo 27/B, Turin 10125, Italy
| | - Menico Rizzi
- Department
of Pharmaceutical Sciences, University of
Piemonte Orientale, Via
G. Bovio 6, Novara 28100, Italy
| | - Giuseppe Saglio
- Department
of Clinical and Biological Sciences, University
of Turin, Regione Gonzole 10, Orbassano, Turin 10043, Italy
- Division
of Hematology and Cell Therapy, AO Ordine
Mauriziano, Largo Filippo
Turati, 62, Turin 10128, Italy
| | - Salam Al-Karadaghi
- Department
of Biochemistry and Structural Biology, Lund University, Naturvetarvägen
14, Box 124, Lund 221 00, Sweden
| | - Donatella Boschi
- Department
of Drug Science and Technology, University
of Turin, Via P. Giuria 9, Turin 10125, Italy
| | - Riccardo Miggiano
- Department
of Pharmaceutical Sciences, University of
Piemonte Orientale, Via
G. Bovio 6, Novara 28100, Italy
| | - Tiziano Tuccinardi
- Molecular
Biotechnology Center, University of Turin, Via Nizza 52, Turin 10126, Italy
| | - Marco L. Lolli
- Department
of Drug Science and Technology, University
of Turin, Via P. Giuria 9, Turin 10125, Italy
| |
Collapse
|
16
|
Li C, Zhou Y, Xu J, Zhou X, Liu S, Huang Z, Qiu Z, Zeng T, Gou K, Tao L, Zhong X, Yang X, Zhou Y, Su N, Chen Q, Zhao Y, Luo Y. Discovery of potent human dihydroorotate dehydrogenase inhibitors based on a benzophenone scaffold. Eur J Med Chem 2022; 243:114737. [PMID: 36115209 DOI: 10.1016/j.ejmech.2022.114737] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 08/20/2022] [Accepted: 08/29/2022] [Indexed: 12/26/2022]
Abstract
Blocking the de novo biosynthesis of pyrimidine by inhibiting human dihydroorotate dehydrogenase (hDHODH) is an effective way to suppress the proliferation of cancer cells and activated lymphocytes. Herein, eighteen teriflunomide derivatives and four ASLAN003 derivatives were designed and synthesized as novel hDHODH inhibitors based on a benzophenone scaffold. The optimal compound 7d showed a potent hDHODH inhibitory activity with an IC50 value of 10.9 nM, and displayed promising antiproliferative activities against multiple human cancer cells with IC50 values of 0.1-0.8 μM. Supplementation of exogenous uridine rescued the cell viability of 7d-treated Raji and HCT116 cells. Meanwhile, 7d significantly induced cell cycle S-phase arrest in Raji and HCT116 cells. Furthermore, 7d exhibited favorable safety profiles in mice and displayed effective antitumor activities with tumor growth inhibition (TGI) rates of 58.3% and 42.1% at an oral dosage of 30 mg/kg in Raji and HCT116 cells xenograft models, respectively. Taken together, these findings provide a promising hDHODH inhibitor 7d with potential activities against some tumors.
Collapse
Affiliation(s)
- Chungen Li
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University, Chengdu, 610041, China
| | - Yue Zhou
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University, Chengdu, 610041, China
| | - Jing Xu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University, Chengdu, 610041, China
| | - Xia Zhou
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University, Chengdu, 610041, China
| | - Song Liu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University, Chengdu, 610041, China
| | - Zongkai Huang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University, Chengdu, 610041, China
| | - Zhiqiang Qiu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University, Chengdu, 610041, China
| | - Ting Zeng
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University, Chengdu, 610041, China
| | - Kun Gou
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University, Chengdu, 610041, China
| | - Lei Tao
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University, Chengdu, 610041, China
| | - Xi Zhong
- Department of Pharmacology, Key Laboratory of Drug Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610041, China
| | - Xiaowei Yang
- Department of Pharmacology, Key Laboratory of Drug Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610041, China
| | - Yang Zhou
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University, Chengdu, 610041, China
| | - Na Su
- Department of Pharmacy, West China Hospital, West China Medical School, Sichuan University, Chengdu, 610041, China
| | - Qiang Chen
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University, Chengdu, 610041, China
| | - Yinglan Zhao
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University, Chengdu, 610041, China; Department of Pharmacology, Key Laboratory of Drug Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610041, China.
| | - Youfu Luo
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
17
|
Cisar JS, Pietsch C, DeRatt LG, Jacoby E, Kazmi F, Keohane C, Legenski K, Matico R, Shaffer P, Simonnet Y, Tanner A, Wang CY, Wang W, Attar R, Edwards JP, Kuduk SD. N-Heterocyclic 3-Pyridyl Carboxamide Inhibitors of DHODH for the Treatment of Acute Myelogenous Leukemia. J Med Chem 2022; 65:11241-11256. [PMID: 35925768 DOI: 10.1021/acs.jmedchem.2c00788] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Acute myelogenous leukemia (AML), a disease of the blood and bone marrow, is characterized by the inability of myeloblasts to differentiate into mature cell types. Dihydroorotate dehydrogenase (DHODH) is an enzyme well-known in the pyrimidine biosynthesis pathway; however, small molecule DHODH inhibitors were recently shown to induce differentiation in multiple AML subtypes. Using virtual screening and structure-based drug design approaches, a new series of N-heterocyclic 3-pyridyl carboxamide DHODH inhibitors were discovered. Two lead compounds, 19 and 29, have potent biochemical and cellular DHODH activity, favorable physicochemical properties, and efficacy in a preclinical model of AML.
Collapse
Affiliation(s)
- Justin S Cisar
- Janssen Research and Development, 1400 McKean Rd, Spring House, Pennsylvania 19477, United States
| | - Christine Pietsch
- Janssen Research and Development, 1400 McKean Rd, Spring House, Pennsylvania 19477, United States
| | - Lindsey G DeRatt
- Janssen Research and Development, 1400 McKean Rd, Spring House, Pennsylvania 19477, United States
| | - Edgar Jacoby
- Janssen Research and Development, Turnhoutseweg 30, 2340 Beerse, Belgium
| | - Faraz Kazmi
- Janssen Research and Development, 1400 McKean Rd, Spring House, Pennsylvania 19477, United States
| | - Colleen Keohane
- Janssen Research and Development, 1400 McKean Rd, Spring House, Pennsylvania 19477, United States
| | - Katie Legenski
- Janssen Research and Development, 1400 McKean Rd, Spring House, Pennsylvania 19477, United States
| | - Rosalie Matico
- Janssen Research and Development, 1400 McKean Rd, Spring House, Pennsylvania 19477, United States
| | - Paul Shaffer
- Janssen Research and Development, 1400 McKean Rd, Spring House, Pennsylvania 19477, United States
| | - Yvan Simonnet
- Janssen Research and Development, 1400 McKean Rd, Spring House, Pennsylvania 19477, United States
| | - Alexandra Tanner
- Janssen Research and Development, 1400 McKean Rd, Spring House, Pennsylvania 19477, United States
| | - Chao-Yuan Wang
- Janssen Research and Development, 1400 McKean Rd, Spring House, Pennsylvania 19477, United States
| | - Weixue Wang
- Janssen Research and Development, 1400 McKean Rd, Spring House, Pennsylvania 19477, United States
| | - Ricardo Attar
- Janssen Research and Development, 1400 McKean Rd, Spring House, Pennsylvania 19477, United States
| | - James P Edwards
- Janssen Research and Development, San Diego, California 92121, United States
| | - Scott D Kuduk
- Janssen Research and Development, 1400 McKean Rd, Spring House, Pennsylvania 19477, United States
| |
Collapse
|
18
|
A novel series of teriflunomide derivatives as orally active inhibitors of human dihydroorotate dehydrogenase for the treatment of colorectal carcinoma. Eur J Med Chem 2022; 238:114489. [DOI: 10.1016/j.ejmech.2022.114489] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 05/18/2022] [Accepted: 05/20/2022] [Indexed: 11/21/2022]
|
19
|
Alqahtani SS, Koltai T, Ibrahim ME, Bashir AHH, Alhoufie STS, Ahmed SBM, Molfetta DD, Carvalho TMA, Cardone RA, Reshkin SJ, Hifny A, Ahmed ME, Alfarouk KO. Role of pH in Regulating Cancer Pyrimidine Synthesis. J Xenobiot 2022; 12:158-180. [PMID: 35893264 PMCID: PMC9326563 DOI: 10.3390/jox12030014] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 06/17/2022] [Accepted: 06/28/2022] [Indexed: 11/18/2022] Open
Abstract
Replication is a fundamental aspect of cancer, and replication is about reproducing all the elements and structures that form a cell. Among them are DNA, RNA, enzymes, and coenzymes. All the DNA is doubled during each S (synthesis) cell cycle phase. This means that six billion nucleic acids must be synthesized in each cycle. Tumor growth, proliferation, and mutations all depend on this synthesis. Cancer cells require a constant supply of nucleotides and other macromolecules. For this reason, they must stimulate de novo nucleotide synthesis to support nucleic acid provision. When deregulated, de novo nucleic acid synthesis is controlled by oncogenes and tumor suppressor genes that enable increased synthesis and cell proliferation. Furthermore, cell duplication must be achieved swiftly (in a few hours) and in the midst of a nutrient-depleted and hypoxic environment. This also means that the enzymes participating in nucleic acid synthesis must work efficiently. pH is a critical factor in enzymatic efficiency and speed. This review will show that the enzymatic machinery working in nucleic acid synthesis requires a pH on the alkaline side in most cases. This coincides with many other pro-tumoral factors, such as the glycolytic phenotype, benefiting from an increased intracellular pH. An increased intracellular pH is a perfect milieu for high de novo nucleic acid production through optimal enzymatic performance.
Collapse
Affiliation(s)
- Saad Saeed Alqahtani
- Department of Pharmacy Practice, College of Pharmacy, Jazan University, Jazan 45142, Saudi Arabia;
- Pharmacy Practice Research Unit, College of Pharmacy, Jazan University, Jazan 45142, Saudi Arabia
| | | | - Muntaser E. Ibrahim
- Department of Molecular Biology, Institute of Endemic Diseases, University of Khartoum, Khartoum 11111, Sudan; (M.E.I.); (A.H.H.B.)
| | - Adil H. H. Bashir
- Department of Molecular Biology, Institute of Endemic Diseases, University of Khartoum, Khartoum 11111, Sudan; (M.E.I.); (A.H.H.B.)
| | - Sari T. S. Alhoufie
- Medical Laboratories Technology Department, College of Applied Medical Sciences, Taibah University, Medina 42353, Saudi Arabia;
| | - Samrein B. M. Ahmed
- Department of Biosciences and Chemistry, College of Health, Wellbeing and Life Sciences, Sheffield Hallam University, Sheffield S1 1WB, UK;
| | - Daria Di Molfetta
- Department of Biosciences, Biotechnologies, and Biopharmaceutics, University of Bari, 70126 Bari, Italy; (D.D.M.); (T.M.A.C.); (R.A.C.); (S.J.R.)
| | - Tiago M. A. Carvalho
- Department of Biosciences, Biotechnologies, and Biopharmaceutics, University of Bari, 70126 Bari, Italy; (D.D.M.); (T.M.A.C.); (R.A.C.); (S.J.R.)
| | - Rosa Angela Cardone
- Department of Biosciences, Biotechnologies, and Biopharmaceutics, University of Bari, 70126 Bari, Italy; (D.D.M.); (T.M.A.C.); (R.A.C.); (S.J.R.)
| | - Stephan Joel Reshkin
- Department of Biosciences, Biotechnologies, and Biopharmaceutics, University of Bari, 70126 Bari, Italy; (D.D.M.); (T.M.A.C.); (R.A.C.); (S.J.R.)
| | | | - Mohamed E. Ahmed
- Research Center, Zamzam University College, Khartoum 11123, Sudan;
| | - Khalid Omer Alfarouk
- Research Center, Zamzam University College, Khartoum 11123, Sudan;
- Alfarouk Biomedical Research LLC, Temple Terrace, FL 33617, USA
- Hala Alfarouk Cancer Center, Khartoum 11123, Sudan
- Correspondence:
| |
Collapse
|
20
|
Yang X, Li C, Gou K, Liu X, Zhou Y, Zou J, Chen Q, Luo Y, Zhao Y. A novel and potent dihydroorotate dehydrogenase inhibitor suppresses the proliferation of colorectal cancer by inducing mitochondrial dysfunction and DNA damage. MEDCOMM – ONCOLOGY 2022. [DOI: 10.1002/mog2.6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Xiaowei Yang
- Department of Pharmacology, Key Laboratory of Drug Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant‐Sourced Drug, West China School of Pharmacy, Sichuan Research Center for Drug Precision Industrial Technology Sichuan University Chengdu Sichuan China
| | - Chungen Li
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital West China Medical Chengdu Sichuan China
| | - Kun Gou
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital West China Medical Chengdu Sichuan China
| | - Xiaocong Liu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital West China Medical Chengdu Sichuan China
| | - Yue Zhou
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital West China Medical Chengdu Sichuan China
| | - Jiao Zou
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital West China Medical Chengdu Sichuan China
| | - Qiang Chen
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital West China Medical Chengdu Sichuan China
| | - Youfu Luo
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital West China Medical Chengdu Sichuan China
| | - Yinglan Zhao
- Department of Pharmacology, Key Laboratory of Drug Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant‐Sourced Drug, West China School of Pharmacy, Sichuan Research Center for Drug Precision Industrial Technology Sichuan University Chengdu Sichuan China
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital West China Medical Chengdu Sichuan China
| |
Collapse
|
21
|
New Insights into the Interaction of Class II Dihydroorotate Dehydrogenases with Ubiquinone in Lipid Bilayers as a Function of Lipid Composition. Int J Mol Sci 2022; 23:ijms23052437. [PMID: 35269583 PMCID: PMC8910288 DOI: 10.3390/ijms23052437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 02/14/2022] [Accepted: 02/17/2022] [Indexed: 12/10/2022] Open
Abstract
The fourth enzymatic reaction in the de novo pyrimidine biosynthesis, the oxidation of dihydroorotate to orotate, is catalyzed by dihydroorotate dehydrogenase (DHODH). Enzymes belonging to the DHODH Class II are membrane-bound proteins that use ubiquinones as their electron acceptors. We have designed this study to understand the interaction of an N-terminally truncated human DHODH (HsΔ29DHODH) and the DHODH from Escherichia coli (EcDHODH) with ubiquinone (Q10) in supported lipid membranes using neutron reflectometry (NR). NR has allowed us to determine in situ, under solution conditions, how the enzymes bind to lipid membranes and to unambiguously resolve the location of Q10. Q10 is exclusively located at the center of all of the lipid bilayers investigated, and upon binding, both of the DHODHs penetrate into the hydrophobic region of the outer lipid leaflet towards the Q10. We therefore show that the interaction between the soluble enzymes and the membrane-embedded Q10 is mediated by enzyme penetration. We can also show that EcDHODH binds more efficiently to the surface of simple bilayers consisting of 1-palmitoyl, 2-oleoyl phosphatidylcholine, and tetraoleoyl cardiolipin than HsΔ29DHODH, but does not penetrate into the lipids to the same degree. Our results also highlight the importance of Q10, as well as lipid composition, on enzyme binding.
Collapse
|
22
|
Zhang L, Zhang J, Wang J, Ren C, Tang P, Ouyang L, Wang Y. Recent advances of human dihydroorotate dehydrogenase inhibitors for cancer therapy: Current development and future perspectives. Eur J Med Chem 2022; 232:114176. [DOI: 10.1016/j.ejmech.2022.114176] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 01/19/2022] [Accepted: 02/02/2022] [Indexed: 12/12/2022]
|
23
|
Calistri A, Luganini A, Mognetti B, Elder E, Sibille G, Conciatori V, Del Vecchio C, Sainas S, Boschi D, Montserrat N, Mirazimi A, Lolli ML, Gribaudo G, Parolin C. The New Generation hDHODH Inhibitor MEDS433 Hinders the In Vitro Replication of SARS-CoV-2 and Other Human Coronaviruses. Microorganisms 2021; 9:microorganisms9081731. [PMID: 34442810 PMCID: PMC8398173 DOI: 10.3390/microorganisms9081731] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 08/03/2021] [Accepted: 08/13/2021] [Indexed: 12/22/2022] Open
Abstract
Although coronaviruses (CoVs) have long been predicted to cause zoonotic diseases and pandemics with high probability, the lack of effective anti-pan-CoVs drugs rapidly usable against the emerging SARS-CoV-2 actually prevented a promptly therapeutic intervention for COVID-19. Development of host-targeting antivirals could be an alternative strategy for the control of emerging CoVs infections, as they could be quickly repositioned from one pandemic event to another. To contribute to these pandemic preparedness efforts, here we report on the broad-spectrum CoVs antiviral activity of MEDS433, a new inhibitor of the human dihydroorotate dehydrogenase (hDHODH), a key cellular enzyme of the de novo pyrimidine biosynthesis pathway. MEDS433 inhibited the in vitro replication of hCoV-OC43 and hCoV-229E, as well as of SARS-CoV-2, at low nanomolar range. Notably, the anti-SARS-CoV-2 activity of MEDS433 against SARS-CoV-2 was also observed in kidney organoids generated from human embryonic stem cells. Then, the antiviral activity of MEDS433 was reversed by the addition of exogenous uridine or the product of hDHODH, the orotate, thus confirming hDHODH as the specific target of MEDS433 in hCoVs-infected cells. Taken together, these findings suggest MEDS433 as a potential candidate to develop novel drugs for COVID-19, as well as broad-spectrum antiviral agents exploitable for future CoVs threats.
Collapse
Affiliation(s)
- Arianna Calistri
- Department of Molecular Medicine, University of Padua, 35121 Padua, Italy; (A.C.); (V.C.); (C.D.V.); (C.P.)
| | - Anna Luganini
- Department of Life Sciences and Systems Biology, University of Turin, 10123 Turin, Italy; (A.L.); (B.M.); (G.S.)
| | - Barbara Mognetti
- Department of Life Sciences and Systems Biology, University of Turin, 10123 Turin, Italy; (A.L.); (B.M.); (G.S.)
| | - Elizabeth Elder
- Public Health Agency of Sweden, 17182 Solna, Sweden; (E.E.); (A.M.)
| | - Giulia Sibille
- Department of Life Sciences and Systems Biology, University of Turin, 10123 Turin, Italy; (A.L.); (B.M.); (G.S.)
| | - Valeria Conciatori
- Department of Molecular Medicine, University of Padua, 35121 Padua, Italy; (A.C.); (V.C.); (C.D.V.); (C.P.)
| | - Claudia Del Vecchio
- Department of Molecular Medicine, University of Padua, 35121 Padua, Italy; (A.C.); (V.C.); (C.D.V.); (C.P.)
| | - Stefano Sainas
- Department of Sciences and Drug Technology, University of Turin, 10125 Turin, Italy; (S.S.); (D.B.); (M.L.L.)
| | - Donatella Boschi
- Department of Sciences and Drug Technology, University of Turin, 10125 Turin, Italy; (S.S.); (D.B.); (M.L.L.)
| | - Nuria Montserrat
- Pluripotency for Organ Regeneration, Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Technology (BIST), 08028 Barcelona, Spain;
- Catalan Institution for Research and Advanced Studies (ICREA), 08010 Barcelona, Spain
- Centro de Investigación Biomédica en Red en Bioingeniería, Biomateriales y Nanomedicina, 28029 Madrid, Spain
| | - Ali Mirazimi
- Public Health Agency of Sweden, 17182 Solna, Sweden; (E.E.); (A.M.)
- Karolinska Institute and Karolinska University Hospital, Department of Laboratory Medicine, Unit of Clinical Microbiology, 17177 Stockholm, Sweden
- National Veterinary Institute, 75189 Uppsala, Sweden
| | - Marco Lucio Lolli
- Department of Sciences and Drug Technology, University of Turin, 10125 Turin, Italy; (S.S.); (D.B.); (M.L.L.)
| | - Giorgio Gribaudo
- Department of Life Sciences and Systems Biology, University of Turin, 10123 Turin, Italy; (A.L.); (B.M.); (G.S.)
- Correspondence: ; Tel.: +39-011-6704648
| | - Cristina Parolin
- Department of Molecular Medicine, University of Padua, 35121 Padua, Italy; (A.C.); (V.C.); (C.D.V.); (C.P.)
| |
Collapse
|
24
|
Schneider T, Fleischmann M, Hergesell D, Majstorović N, Maas G. A Convenient Synthesis of 4‐CF
3
‐Quinolines from 1‐Trifluoromethyl‐prop‐2‐yne 1‐Iminium Salts and Arylamines. European J Org Chem 2021. [DOI: 10.1002/ejoc.202100378] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Affiliation(s)
- Thomas Schneider
- Institute of Organic Chemistry I Ulm University Albert-Einstein-Allee 11 89081 Ulm Germany
| | - Maximilian Fleischmann
- Institute of Organic Chemistry I Ulm University Albert-Einstein-Allee 11 89081 Ulm Germany
| | - Daniel Hergesell
- Institute of Organic Chemistry I Ulm University Albert-Einstein-Allee 11 89081 Ulm Germany
| | - Nicola Majstorović
- Institute of Organic Chemistry I Ulm University Albert-Einstein-Allee 11 89081 Ulm Germany
| | - Gerhard Maas
- Institute of Organic Chemistry I Ulm University Albert-Einstein-Allee 11 89081 Ulm Germany
| |
Collapse
|
25
|
Effective deploying of a novel DHODH inhibitor against herpes simplex type 1 and type 2 replication. Antiviral Res 2021; 189:105057. [PMID: 33716051 DOI: 10.1016/j.antiviral.2021.105057] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 01/28/2021] [Accepted: 03/03/2021] [Indexed: 12/18/2022]
Abstract
Emergence of drug resistance and adverse effects often affect the efficacy of nucleoside analogues in the therapy of Herpes simplex type 1 (HSV-1) and type 2 (HSV-2) infections. Host-targeting antivirals could therefore be considered as an alternative or complementary strategy in the management of HSV infections. To contribute to this advancement, here we report on the ability of a new generation inhibitor of a key cellular enzyme of de novo pyrimidine biosynthesis, the dihydroorotate dehydrogenase (DHODH), to inhibit HSV-1 and HSV-2 in vitro replication, with a potency comparable to that of the reference drug acyclovir. Analysis of the HSV replication cycle in MEDS433-treated cells revealed that it prevented the accumulation of viral genomes and reduced late gene expression, thus suggesting an impairment at a stage prior to viral DNA replication consistent with the ability of MEDS433 to inhibit DHODH activity. In fact, the anti-HSV activity of MEDS433 was abrogated by the addition of exogenous uridine or of the product of DHODH, the orotate, thus confirming DHODH as the MEDS433 specific target in HSV-infected cells. A combination of MEDS433 with dipyridamole (DPY), an inhibitor of the pyrimidine salvage pathway, was then observed to be effective in inhibiting HSV replication even in the presence of exogenous uridine, thus mimicking in vivo conditions. Finally, when combined with acyclovir and DPY in checkerboard experiments, MEDS433 exhibited highly synergistic antiviral activity. Taken together, these findings suggest that MEDS433 is a promising candidate as either single agent or in combination regimens with existing direct-acting anti-HSV drugs to develop new strategies for treatment of HSV infections.
Collapse
|
26
|
Kadir MFA, Othman S, Nellore K. Dihydroorotate Dehydrogenase Inhibitors Promote Cell Cycle Arrest and Disrupt Mitochondria Bioenergetics in Ramos Cells. Curr Pharm Biotechnol 2021; 21:1654-1665. [PMID: 32525770 DOI: 10.2174/1389201021666200611113734] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 04/10/2020] [Accepted: 05/18/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND The re-emerging of targeting Dihydroorotate Dehydrogenase (DHODH) in cancer treatment particularly Acute Myelogenous Leukemia (AML) has corroborated the substantial role of DHODH in cancer and received the attention of many pharmaceutical industries. OBJECTIVE The effects of Brequinar Sodium (BQR) and 4SC-101 on lymphoblastoid cell lines were investigated. METHODS DHODH expression and cell proliferation inhibition of lymphoblastoid and lymphoma cell lines were analyzed using Western blot analysis and XTT assay, respectively. JC-1 probe and ATP biochemiluminescence kit were used to evaluate the mitochondrial membrane potential and ATP generation in these cell lines. Furthermore, we explored the cell cycle progression using Muse™ Cell Cycle Kit. RESULTS Ramos, SUDHL-1 and RPMI-1788 cells are fast-growing cells with equal expression of DHODH enzyme and sensitivity to DHODH inhibitors that showed that the inhibition of DHODH was not cancer-specific. In ATP depletion assay, the non-cancerous RPMI-1788 cells showed only a minor ATP reduction compared to Ramos and SUDHL-1 (cancer) cells. In the mechanistic impact of DHODH inhibitors on non-cancerous vs cancerous cells, the mitochondrial membrane potential assay revealed that significant depolarization and cytochrome c release occurred with DHODH inhibitors treatment in Ramos but not in the RPMI-1788 cells, indicating a different mechanism of proliferation inhibition in normal cells. CONCLUSION The findings of this study provide evidence that DHODH inhibitors perturb the proliferation of non-cancerous cells via a distinct mechanism compared to cancerous cells. These results may lead to strategies for overcoming the impact on non-cancerous cells during treatment with DHODH inhibitors, leading to a better therapeutic window in patients.
Collapse
Affiliation(s)
- Mohamad F A Kadir
- Department of Molecular Medicine, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Shatrah Othman
- Department of Molecular Medicine, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Kavitha Nellore
- Department of Cell and Molecular Biology, Aurigene Discovery Technologies Pte Ltd, Bangalore, Karnataka, India
| |
Collapse
|
27
|
Huchting J. Targeting viral genome synthesis as broad-spectrum approach against RNA virus infections. Antivir Chem Chemother 2020; 28:2040206620976786. [PMID: 33297724 PMCID: PMC7734526 DOI: 10.1177/2040206620976786] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Zoonotic spillover, i.e. pathogen transmission from animal to human, has repeatedly introduced RNA viruses into the human population. In some cases, where these viruses were then efficiently transmitted between humans, they caused large disease outbreaks such as the 1918 flu pandemic or, more recently, outbreaks of Ebola and Coronavirus disease. These examples demonstrate that RNA viruses pose an immense burden on individual and public health with outbreaks threatening the economy and social cohesion within and across borders. And while emerging RNA viruses are introduced more frequently as human activities increasingly disrupt wild-life eco-systems, therapeutic or preventative medicines satisfying the “one drug-multiple bugs”-aim are unavailable. As one central aspect of preparedness efforts, this review digs into the development of broadly acting antivirals via targeting viral genome synthesis with host- or virus-directed drugs centering around nucleotides, the genomes’ universal building blocks. Following the first strategy, selected examples of host de novo nucleotide synthesis inhibitors are presented that ultimately interfere with viral nucleic acid synthesis, with ribavirin being the most prominent and widely used example. For directly targeting the viral polymerase, nucleoside and nucleotide analogues (NNAs) have long been at the core of antiviral drug development and this review illustrates different molecular strategies by which NNAs inhibit viral infection. Highlighting well-known as well as recent, clinically promising compounds, structural features and mechanistic details that may confer broad-spectrum activity are discussed. The final part addresses limitations of NNAs for clinical development such as low efficacy or mitochondrial toxicity and illustrates strategies to overcome these.
Collapse
Affiliation(s)
- Johanna Huchting
- Chemistry Department, Institute for Organic Chemistry, Faculty of Mathematics, Computer Science and Natural Sciences, University of Hamburg, Hamburg, Germany
| |
Collapse
|
28
|
Jin R, Liu B, Liu X, Fan Y, Peng W, Huang C, Marcus A, Sica G, Gilbert-Ross M, Liu Y, Zhou W. Leflunomide Suppresses the Growth of LKB1-Inactivated Tumors in the Immune-Competent Host and Attenuates Distant Cancer Metastasis. Mol Cancer Ther 2020; 20:274-283. [PMID: 33293343 DOI: 10.1158/1535-7163.mct-20-0567] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 09/20/2020] [Accepted: 11/17/2020] [Indexed: 11/16/2022]
Abstract
Liver kinase B1 (LKB1)-inactivated tumors are vulnerable to the disruption of pyrimidine metabolism, and leflunomide emerges as a therapeutic candidate because its active metabolite, A77-1726, inhibits dihydroorotate dehydrogenase, which is essential for de novo pyrimidine biosynthesis. However, it is unclear whether leflunomide inhibits LKB1-inactivated tumors in vivo, and whether its inhibitory effect on the immune system will promote tumor growth. Here, we carried out a comprehensive analysis of leflunomide treatment in various LKB1-inactivated murine xenografts, patient-derived xenografts, and genetically engineered mouse models. We also generated a mouse tumor-derived cancer cell line, WRJ388, that could metastasize to the lung within a month after subcutaneous implantation in all animals. This model was used to assess the ability of leflunomide to control distant metastasis. Leflunomide treatment shrank a HeLa xenograft and attenuated the growth of an H460 xenograft, a patient-derived xenograft, and lung adenocarcinoma in the immune-competent genetically engineered mouse models. Interestingly, leflunomide suppressed tumor growth through at least three different mechanisms. It caused apoptosis in HeLa cells, induced G1 cell-cycle arrest in H460 cells, and promoted S-phase cell-cycle arrest in WRJ388 cells. Finally, leflunomide treatment prevented lung metastasis in 78% of the animals in our novel lung cancer metastasis model. In combination, these results demonstrated that leflunomide utilizes different pathways to suppress the growth of LKB1-inactivated tumors, and it also prevents cancer metastasis at distant sites. Therefore, leflunomide should be evaluated as a therapeutic agent for tumors with LKB1 inactivation.
Collapse
Affiliation(s)
- Rui Jin
- Department of Hematology and Medical Oncology, Emory University School of Medicine, Atlanta, Georgia
| | - Boxuan Liu
- Department of Hematology and Medical Oncology, Emory University School of Medicine, Atlanta, Georgia
| | - Xiuju Liu
- Department of Hematology and Medical Oncology, Emory University School of Medicine, Atlanta, Georgia
| | - Yijian Fan
- Department of Hematology and Medical Oncology, Emory University School of Medicine, Atlanta, Georgia
| | - Wei Peng
- Department of Hematology and Medical Oncology, Emory University School of Medicine, Atlanta, Georgia
| | - Chunzi Huang
- The Cancer Animal Models Shared Resource of Winship Cancer Institute, Emory University School of Medicine, Atlanta, Georgia
| | - Adam Marcus
- Department of Hematology and Medical Oncology, Emory University School of Medicine, Atlanta, Georgia
| | - Gabriel Sica
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, Georgia
| | - Melissa Gilbert-Ross
- Department of Hematology and Medical Oncology, Emory University School of Medicine, Atlanta, Georgia.,The Cancer Animal Models Shared Resource of Winship Cancer Institute, Emory University School of Medicine, Atlanta, Georgia
| | - Yuan Liu
- Department of Biostatistics and Bioinformatics, Emory University Rollins School of Public Health, Atlanta, Georgia
| | - Wei Zhou
- Department of Hematology and Medical Oncology, Emory University School of Medicine, Atlanta, Georgia. .,Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, Georgia
| |
Collapse
|
29
|
McDonald G, Chubukov V, Coco J, Truskowski K, Narayanaswamy R, Choe S, Steadman M, Artin E, Padyana AK, Jin L, Ronseaux S, Locuson C, Fan ZP, Erdmann T, Mann A, Hayes S, Fletcher M, Nellore K, Rao SS, Subramanya H, Reddy KS, Panigrahi SK, Antony T, Gopinath S, Sui Z, Nagaraja N, Dang L, Lenz G, Hurov J, Biller SA, Murtie J, Marks KM, Ulanet DB. Selective Vulnerability to Pyrimidine Starvation in Hematologic Malignancies Revealed by AG-636, a Novel Clinical-Stage Inhibitor of Dihydroorotate Dehydrogenase. Mol Cancer Ther 2020; 19:2502-2515. [PMID: 33082276 DOI: 10.1158/1535-7163.mct-20-0550] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 09/20/2020] [Accepted: 09/25/2020] [Indexed: 11/16/2022]
Abstract
Agents targeting metabolic pathways form the backbone of standard oncology treatments, though a better understanding of differential metabolic dependencies could instruct more rationale-based therapeutic approaches. We performed a chemical biology screen that revealed a strong enrichment in sensitivity to a novel dihydroorotate dehydrogenase (DHODH) inhibitor, AG-636, in cancer cell lines of hematologic versus solid tumor origin. Differential AG-636 activity translated to the in vivo setting, with complete tumor regression observed in a lymphoma model. Dissection of the relationship between uridine availability and response to AG-636 revealed a divergent ability of lymphoma and solid tumor cell lines to survive and grow in the setting of depleted extracellular uridine and DHODH inhibition. Metabolic characterization paired with unbiased functional genomic and proteomic screens pointed to adaptive mechanisms to cope with nucleotide stress as contributing to response to AG-636. These findings support targeting of DHODH in lymphoma and other hematologic malignancies and suggest combination strategies aimed at interfering with DNA-damage response pathways.
Collapse
Affiliation(s)
| | | | - John Coco
- Agios Pharmaceuticals, Inc., Cambridge, Massachusetts
| | | | | | - Sung Choe
- Agios Pharmaceuticals, Inc., Cambridge, Massachusetts
| | - Mya Steadman
- Agios Pharmaceuticals, Inc., Cambridge, Massachusetts
| | - Erin Artin
- Agios Pharmaceuticals, Inc., Cambridge, Massachusetts
| | | | - Lei Jin
- Agios Pharmaceuticals, Inc., Cambridge, Massachusetts
| | | | | | - Zi-Peng Fan
- Agios Pharmaceuticals, Inc., Cambridge, Massachusetts
| | - Tabea Erdmann
- Department of Medicine A for Hematology, Oncology, and Pneumology, Universitätsklinikum Münster, Münster, Germany
| | - Alan Mann
- Agios Pharmaceuticals, Inc., Cambridge, Massachusetts
| | | | - Mark Fletcher
- Agios Pharmaceuticals, Inc., Cambridge, Massachusetts
| | | | | | | | | | | | - Thomas Antony
- Aurigene Discovery Technologies Ltd., Bangalore, India
| | | | - Zhihua Sui
- Agios Pharmaceuticals, Inc., Cambridge, Massachusetts
| | | | - Lenny Dang
- Agios Pharmaceuticals, Inc., Cambridge, Massachusetts
| | - Georg Lenz
- Department of Medicine A for Hematology, Oncology, and Pneumology, Universitätsklinikum Münster, Münster, Germany
| | | | | | - Josh Murtie
- Agios Pharmaceuticals, Inc., Cambridge, Massachusetts
| | - Kevin M Marks
- Agios Pharmaceuticals, Inc., Cambridge, Massachusetts
| | | |
Collapse
|
30
|
Al-Horani RA, Kar S. Potential Anti-SARS-CoV-2 Therapeutics That Target the Post-Entry Stages of the Viral Life Cycle: A Comprehensive Review. Viruses 2020; 12:E1092. [PMID: 32993173 PMCID: PMC7600245 DOI: 10.3390/v12101092] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Revised: 09/08/2020] [Accepted: 09/23/2020] [Indexed: 02/06/2023] Open
Abstract
The coronavirus disease-2019 (COVID-19) pandemic continues to challenge health care systems around the world. Scientists and pharmaceutical companies have promptly responded by advancing potential therapeutics into clinical trials at an exponential rate. Initial encouraging results have been realized using remdesivir and dexamethasone. Yet, the research continues so as to identify better clinically relevant therapeutics that act either as prophylactics to prevent the infection or as treatments to limit the severity of COVID-19 and substantially decrease the mortality rate. Previously, we reviewed the potential therapeutics in clinical trials that block the early stage of the viral life cycle. In this review, we summarize potential anti-COVID-19 therapeutics that block/inhibit the post-entry stages of the viral life cycle. The review presents not only the chemical structures and mechanisms of the potential therapeutics under clinical investigation, i.e., listed in clinicaltrials.gov, but it also describes the relevant results of clinical trials. Their anti-inflammatory/immune-modulatory effects are also described. The reviewed therapeutics include small molecules, polypeptides, and monoclonal antibodies. At the molecular level, the therapeutics target viral proteins or processes that facilitate the post-entry stages of the viral infection. Frequent targets are the viral RNA-dependent RNA polymerase (RdRp) and the viral proteases such as papain-like protease (PLpro) and main protease (Mpro). Overall, we aim at presenting up-to-date details of anti-COVID-19 therapeutics so as to catalyze their potential effective use in fighting the pandemic.
Collapse
Affiliation(s)
- Rami A. Al-Horani
- Division of Basic Pharmaceutical Sciences, College of Pharmacy, Xavier University of Louisiana, New Orleans, LA 70125, USA;
| | | |
Collapse
|
31
|
Kim YJ, Cubitt B, Cai Y, Kuhn JH, Vitt D, Kohlhof H, de la Torre JC. Novel Dihydroorotate Dehydrogenase Inhibitors with Potent Interferon-Independent Antiviral Activity against Mammarenaviruses In Vitro. Viruses 2020; 12:v12080821. [PMID: 32751087 PMCID: PMC7472048 DOI: 10.3390/v12080821] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Revised: 07/23/2020] [Accepted: 07/24/2020] [Indexed: 12/22/2022] Open
Abstract
Mammarenaviruses cause chronic infections in rodents, which are their predominant natural hosts. Human infection with some of these viruses causes high-consequence disease, posing significant issues in public health. Currently, no FDA-licensed mammarenavirus vaccines are available, and anti-mammarenavirus drugs are limited to an off-label use of ribavirin, which is only partially efficacious and associated with severe side effects. Dihydroorotate dehydrogenase (DHODH) inhibitors, which block de novo pyrimidine biosynthesis, have antiviral activity against viruses from different families, including Arenaviridae, the taxonomic home of mammarenaviruses. Here, we evaluate five novel DHODH inhibitors for their antiviral activity against mammarenaviruses. All tested DHODH inhibitors were potently active against lymphocytic choriomeningitis virus (LCMV) (half-maximal effective concentrations [EC50] in the low nanomolar range, selectivity index [SI] > 1000). The tested DHODH inhibitors did not affect virion cell entry or budding, but rather interfered with viral RNA synthesis. This interference resulted in a potent interferon-independent inhibition of mammarenavirus multiplication in vitro, including the highly virulent Lassa and Junín viruses.
Collapse
Affiliation(s)
- Yu-Jin Kim
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA; (Y.-J.K.); (B.C.)
| | - Beatrice Cubitt
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA; (Y.-J.K.); (B.C.)
| | - Yingyun Cai
- Integrated Research Facility at Fort Detrick (IRF-Frederick), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), B-8200 Research Plaza, Fort Detrick, MD 21702, USA; (Y.C.); (J.H.K.)
| | - Jens H. Kuhn
- Integrated Research Facility at Fort Detrick (IRF-Frederick), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), B-8200 Research Plaza, Fort Detrick, MD 21702, USA; (Y.C.); (J.H.K.)
| | - Daniel Vitt
- Immunic Therapeutics, New York City, NY 10036, USA; (D.V.); (H.K.)
| | - Hella Kohlhof
- Immunic Therapeutics, New York City, NY 10036, USA; (D.V.); (H.K.)
| | - Juan C. de la Torre
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA; (Y.-J.K.); (B.C.)
- Correspondence:
| |
Collapse
|
32
|
Stuani L, Sabatier M, Sarry JE. Exploiting metabolic vulnerabilities for personalized therapy in acute myeloid leukemia. BMC Biol 2019; 17:57. [PMID: 31319822 PMCID: PMC6637566 DOI: 10.1186/s12915-019-0670-4] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Changes in cell metabolism and metabolic adaptation are hallmark features of many cancers, including leukemia, that support biological processes involved into tumor initiation, growth, and response to therapeutics. The discovery of mutations in key metabolic enzymes has highlighted the importance of metabolism in cancer biology and how these changes might constitute an Achilles heel for cancer treatment. In this Review, we discuss the role of metabolic and mitochondrial pathways dysregulated in acute myeloid leukemia, and the potential of therapeutic intervention targeting these metabolic dependencies on the proliferation, differentiation, stem cell function and cell survival to improve patient stratification and outcomes.
Collapse
Affiliation(s)
- Lucille Stuani
- Centre de Recherches en Cancérologie de Toulouse, UMR1037, Inserm, Université de Toulouse 3 Paul Sabatier, Equipe Labellisée LIGUE 2018, F-31037, Toulouse, France.
| | - Marie Sabatier
- Centre de Recherches en Cancérologie de Toulouse, UMR1037, Inserm, Université de Toulouse 3 Paul Sabatier, Equipe Labellisée LIGUE 2018, F-31037, Toulouse, France
| | - Jean-Emmanuel Sarry
- Centre de Recherches en Cancérologie de Toulouse, UMR1037, Inserm, Université de Toulouse 3 Paul Sabatier, Equipe Labellisée LIGUE 2018, F-31037, Toulouse, France.
| |
Collapse
|