1
|
Ferreira PMP, Ramos CLS, Filho JIAB, Conceição MLP, Almeida ML, do Nascimento Rodrigues DC, Porto JCS, de Castro E Sousa JM, Peron AP. Laboratory and physiological aspects of substitute metazoan models for in vivo pharmacotoxicological analysis. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025; 398:1315-1339. [PMID: 39298017 DOI: 10.1007/s00210-024-03437-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 09/05/2024] [Indexed: 09/21/2024]
Abstract
New methods are essential to characterize the performance of substitute procedures for detecting therapeutic action(s) of a chemical or key signal of toxicological events. Herein, it was discussed the applications and advantages of using arthropods, worms, and fishes in pharmacological and/or toxicology assessments. First of all, the illusion of similarity covers many differences between humans and mice, remarkably about liver injury and metabolism of xenobiotics. Using invertebrates, especially earthworms (Eisenia fetida), brine shrimps (Artemia salina, Daphnia magna), and insects (Drosophila melanogaster) and vertebrates as small fishes (Oryzias latipes, Pimephales promelas, Danio rerio) has countless advantages, including fewer ethical conflicts, short life cycle, high reproduction rate, simpler to handle, and less complex anatomy. They can be used to find contaminants in organic matters and water and are easier genetically engineered with orthologous-mutated genes to explore specific proteins involved in proliferative and hormonal disturbances, chemotherapy multidrug resistance, and carcinogenicity. As multicellular embryos, larvae, and mature organisms, they can be tested in bigger-sized replication platforms with 24-, 96-, or 384-multiwell plates as cheaper and faster ways to select hit compounds from drug-like libraries to predict acute, subacute or chronic toxicity, pharmacokinetics, and efficacy parameters of pharmaceutical, cosmetic, and personal care products. Meanwhile, sublethal exposures are designed to identify changes in reproduction, body weight, DNA damages, oxidation, and immune defense responses in earthworms and zebrafishes, and swimming behaviors in A. salina and D. rerio. Behavioral parameters also give specificities on sublethal effects that would not be detected in zebrafishes by OECD protocols.
Collapse
Affiliation(s)
- Paulo Michel Pinheiro Ferreira
- Laboratory of Experimental Cancerology (LabCancer), Department of Biophysics and Physiology, Federal University of Piauí, Teresina, 64049-550, Brazil.
| | - Carla Lorena Silva Ramos
- Laboratory of Experimental Cancerology (LabCancer), Department of Biophysics and Physiology, Federal University of Piauí, Teresina, 64049-550, Brazil
| | - José Ivo Araújo Beserra Filho
- Laboratory of Experimental Cancerology (LabCancer), Department of Biophysics and Physiology, Federal University of Piauí, Teresina, 64049-550, Brazil
| | - Micaely Lorrana Pereira Conceição
- Laboratory of Experimental Cancerology (LabCancer), Department of Biophysics and Physiology, Federal University of Piauí, Teresina, 64049-550, Brazil
| | - Mateus Lima Almeida
- Laboratory of Experimental Cancerology (LabCancer), Department of Biophysics and Physiology, Federal University of Piauí, Teresina, 64049-550, Brazil
| | | | - Jhonatas Cley Santos Porto
- Laboratory of Experimental Cancerology (LabCancer), Department of Biophysics and Physiology, Federal University of Piauí, Teresina, 64049-550, Brazil
| | - João Marcelo de Castro E Sousa
- Toxicological Genetics Research Laboratory (Lapgenic), Department of Biochemistry and Pharmacology, Federal University of Piauí, Teresina, 64049-550, Brazil
| | - Ana Paula Peron
- Laboratory of Ecotoxicology (Labecotox), Department of Biodiversity and Nature Conservation, Federal Technological University of Paraná, Campo Mourão, 87301-899, Brazil
| |
Collapse
|
2
|
Madrid MF, Mendoza EN, Padilla AL, Choquenaira-Quispe C, de Jesus Guimarães C, de Melo Pereira JV, Barros-Nepomuceno FWA, Lopes Dos Santos I, Pessoa C, de Moraes Filho MO, Rocha DD, Ferreira PMP. In vitro models to evaluate multidrug resistance in cancer cells: Biochemical and morphological techniques and pharmacological strategies. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART B, CRITICAL REVIEWS 2025; 28:1-27. [PMID: 39363148 DOI: 10.1080/10937404.2024.2407452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/05/2024]
Abstract
The overexpression of ATP-binding cassette (ABC) transporters contributes to the failure of chemotherapies and symbolizes a great challenge in oncology, associated with the adaptation of tumor cells to anticancer drugs such that these transporters become less effective, a mechanism known as multidrug resistance (MDR). The aim of this review is to present the most widely used methodologies for induction and comprehension of in vitro models for detection of multidrug-resistant (MDR) modulators or inhibitors, including biochemical and morphological techniques for chemosensitivity studies. The overexpression of MDR proteins, predominantly, the subfamily glycoprotein-1 (P-gp or ABCB1) multidrug resistance, multidrug resistance-associated protein 1 (MRP1 or ABCCC1), multidrug resistance-associated protein 2 (MRP2 or ABCC2) and cancer resistance protein (ABCG2), in chemotherapy-exposed cancer lines have been established/investigated by several techniques. Amongst these techniques, the most used are (i) colorimetric/fluorescent indirect bioassays, (ii) rhodamine and efflux analysis, (iii) release of 3,30-diethyloxacarbocyanine iodide by fluorescence microscopy and flow cytometry to measure P-gp function and other ABC transporters, (iv) exclusion of calcein-acetoxymethylester, (v) ATPase assays to distinguish types of interaction with ABC transporters, (vi) morphology to detail phenotypic characteristics in transformed cells, (vii) molecular testing of resistance-related proteins (RT-qPCR) and (viii) 2D and 3D models, (ix) organoids, and (x) microfluidic technology. Then, in vitro models for detecting chemotherapy MDR cells to assess innovative therapies to modulate or inhibit tumor cell growth and overcome clinical resistance. It is noteworthy that different therapies including anti-miRNAs, antibody-drug conjugates (to natural products), and epigenetic modifications were also considered as promising alternatives, since currently no anti-MDR therapies are able to improve patient quality of life. Therefore, there is also urgency for new clinical markers of resistance to more reliably reflect in vivo effectiveness of novel antitumor drugs.
Collapse
Affiliation(s)
- Maria Fernanda Madrid
- Drug Research and Development Center (NPDM), Department of Physiology and Pharmacology, Federal University of Ceará, Fortaleza, Brazil
| | - Eleicy Nathaly Mendoza
- Drug Research and Development Center (NPDM), Department of Physiology and Pharmacology, Federal University of Ceará, Fortaleza, Brazil
| | - Ana Lizeth Padilla
- Pharmaceutical Sciences, Faculty of Pharmacy, Dentistry, and Nursing, Federal University of Ceará, Fortaleza, Brazil
| | - Celia Choquenaira-Quispe
- Pharmaceutical Sciences, Faculty of Pharmacy, Dentistry, and Nursing, Federal University of Ceará, Fortaleza, Brazil
- Catholic University of Santa María, Arequipa, Perú
| | - Celina de Jesus Guimarães
- Drug Research and Development Center (NPDM), Department of Physiology and Pharmacology, Federal University of Ceará, Fortaleza, Brazil
| | - João Victor de Melo Pereira
- Drug Research and Development Center (NPDM), Department of Physiology and Pharmacology, Federal University of Ceará, Fortaleza, Brazil
| | | | - Ingredy Lopes Dos Santos
- Laboratory of Experimental Cancerology (LabCancer), Department of Biophysics and Physiology, Federal University of Piauí, Teresina, Brazil
| | - Claudia Pessoa
- Drug Research and Development Center (NPDM), Department of Physiology and Pharmacology, Federal University of Ceará, Fortaleza, Brazil
| | - Manoel Odorico de Moraes Filho
- Drug Research and Development Center (NPDM), Department of Physiology and Pharmacology, Federal University of Ceará, Fortaleza, Brazil
| | - Danilo Damasceno Rocha
- Drug Research and Development Center (NPDM), Department of Physiology and Pharmacology, Federal University of Ceará, Fortaleza, Brazil
| | - Paulo Michel Pinheiro Ferreira
- Laboratory of Experimental Cancerology (LabCancer), Department of Biophysics and Physiology, Federal University of Piauí, Teresina, Brazil
| |
Collapse
|
3
|
Gaiaschi L, Bottone MG, De Luca F. Towards Effective Treatment of Glioblastoma: The Role of Combination Therapies and the Potential of Phytotherapy and Micotherapy. Curr Issues Mol Biol 2024; 46:14324-14350. [PMID: 39727987 DOI: 10.3390/cimb46120859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Revised: 12/12/2024] [Accepted: 12/16/2024] [Indexed: 12/28/2024] Open
Abstract
Glioblastoma multiforme (GBM) is one of the most aggressive and difficult-to-treat brain tumors, with a poor prognosis due to its high resistance to conventional therapies. Current treatment options, including surgical resection, radiotherapy, and chemotherapy, have limited effectiveness in improving long-term survival. Despite the emergence of new therapies, monotherapy approaches have not shown significant improvements, highlighting the need for innovative therapeutic strategies. Combination therapies appear to be the most promising solution, as they target multiple molecular pathways involved in GBM progression. One area of growing interest is the incorporation of phytotherapy and micotherapy as complementary treatments, which offer potential benefits due to their anti-tumor, anti-inflammatory, and immunomodulatory properties. This review examines the current challenges in GBM treatment, discusses the potential of combination therapies, and highlights the promising role of phytotherapy and micotherapy as integrative therapeutic options for GBM management.
Collapse
Affiliation(s)
- Ludovica Gaiaschi
- Laboratory of Cell Biology and Neurobiology, Department of Biology and Biotechnology "L. Spallanzani", University of Pavia, Via Ferrata 9, 27100 Pavia, Italy
| | - Maria Grazia Bottone
- Laboratory of Cell Biology and Neurobiology, Department of Biology and Biotechnology "L. Spallanzani", University of Pavia, Via Ferrata 9, 27100 Pavia, Italy
| | - Fabrizio De Luca
- Laboratory of Cell Biology and Neurobiology, Department of Biology and Biotechnology "L. Spallanzani", University of Pavia, Via Ferrata 9, 27100 Pavia, Italy
| |
Collapse
|
4
|
Melo ECD, da Silva Pinheiro R, Costa BS, Lima RMTD, Dias ACS, de Jesus Aguiar Dos Santos T, Nascimento MLLBD, de Castro E Sousa JM, Islam MT, de Carvalho Melo Cavalcante AA, El-Nashar HAS, El-Shazly M, Oliveira Filho JWGD. Allium cepa as a Toxicogenetic Investigational Tool for Plant Extracts: A Systematic Review. Chem Biodivers 2024; 21:e202401406. [PMID: 39103292 DOI: 10.1002/cbdv.202401406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 08/03/2024] [Accepted: 08/05/2024] [Indexed: 08/07/2024]
Abstract
Toxicological studies are important to investigate the genotoxic effects of various substances. Allium cepa can be used as test model for this purpose. This review summarizes the scope and applications for this A. cepa test model. For this, an up-to-date (April 2023) literature search was made in the Science Direct, PubMed, and Web of Science databases to find published evidence on studies performed using A. cepa as a test model. Out of 3,748 studies, 74 fit the inclusion criteria. The results showed that the use of the test model A. cepa contributed considerably to measuring the toxicological potential of plant extracts, proving the efficacy of the test as a potent bioindicator of toxic effects. In addition, 27 studies used more than one test system to verify the toxicological potential of extracts and fractions. Studies have shown that the A. cepa model has the potential to replace other test systems that make use of animals and cell cultures, besides having other advantages such as low cost, ease of execution, and good conditions for the observation of chromosomes. In conclusion, the A. cepa test can be considered one of the potential biomonitoring systems in toxicological studies of crude extracts.
Collapse
Affiliation(s)
- Erisson Cruz de Melo
- Laboratory of Genetics and Molecular Biology - Federal Institute of Piauí (IFPI), 64001-270, Teresina, Piauí, Brazil
| | - Randyson da Silva Pinheiro
- Laboratory of Genetics and Molecular Biology - Federal Institute of Piauí (IFPI), 64001-270, Teresina, Piauí, Brazil
| | - Bruno Sousa Costa
- Laboratory of Genetics and Molecular Biology - Federal Institute of Piauí (IFPI), 64001-270, Teresina, Piauí, Brazil
| | - Rosália Maria Tôrres de Lima
- Laboratory of Genetics and Molecular Biology - Federal Institute of Piauí (IFPI), 64001-270, Teresina, Piauí, Brazil
- Northeast Biotechnology Network (RENORBIO), Postgraduate Program in Biotechnology, Federal University of Piauí - IFPI, 64049-550, Teresina, Piauí, Brazil
- Laboratory of Genetics and Toxicology-LAPGENIC, Post-Graduate Program in Pharmaceutical Science, Federal University of Piauí, 64049-550, Teresina, Piauí, Brazil
| | - Ana Carolina Soares Dias
- Laboratory of Genetics and Molecular Biology, Federal University of Maranhão, Bacanga, 65080-805, São Luís, Maranhão, Brazil
| | | | - Maria Luisa Lima Barreto do Nascimento
- Laboratory of Genetics and Toxicology-LAPGENIC, Post-Graduate Program in Pharmaceutical Science, Federal University of Piauí, 64049-550, Teresina, Piauí, Brazil
- Postgraduate Program in Pharmaceutical Sciences, Federal University of Piauí, 64049-550, Teresina, Piauí, Brazil
| | - João Marcelo de Castro E Sousa
- Northeast Biotechnology Network (RENORBIO), Postgraduate Program in Biotechnology, Federal University of Piauí - IFPI, 64049-550, Teresina, Piauí, Brazil
- Laboratory of Genetics and Toxicology-LAPGENIC, Post-Graduate Program in Pharmaceutical Science, Federal University of Piauí, 64049-550, Teresina, Piauí, Brazil
- Postgraduate Program in Pharmaceutical Sciences, Federal University of Piauí, 64049-550, Teresina, Piauí, Brazil
| | - Muhammad Torequl Islam
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, 8100, Gopalganj, Bangladesh
- Pharmacy Discipline, Khulna University, 9208, Khulna, Bangladesh
- Bioinformatics and Drug Innovation Laboratory, BioLuster Research Center, 8100, Gopalganj, Bangladesh
| | - Ana Amélia de Carvalho Melo Cavalcante
- Northeast Biotechnology Network (RENORBIO), Postgraduate Program in Biotechnology, Federal University of Piauí - IFPI, 64049-550, Teresina, Piauí, Brazil
- Laboratory of Genetics and Toxicology-LAPGENIC, Post-Graduate Program in Pharmaceutical Science, Federal University of Piauí, 64049-550, Teresina, Piauí, Brazil
| | - Heba A S El-Nashar
- Department of Pharmacognosy, Faculty of Pharmacy, Ain Shams University, 11566, Abbassia, Cairo, Egypt
| | - Mohamed El-Shazly
- Department of Pharmacognosy, Faculty of Pharmacy, Ain Shams University, 11566, Abbassia, Cairo, Egypt
| | - José Williams Gomes de Oliveira Filho
- Laboratory of Genetics and Molecular Biology - Federal Institute of Piauí (IFPI), 64001-270, Teresina, Piauí, Brazil
- Northeast Biotechnology Network (RENORBIO), Postgraduate Program in Biotechnology, Federal University of Piauí - IFPI, 64049-550, Teresina, Piauí, Brazil
- Laboratory of Genetics and Toxicology-LAPGENIC, Post-Graduate Program in Pharmaceutical Science, Federal University of Piauí, 64049-550, Teresina, Piauí, Brazil
| |
Collapse
|
5
|
Rezende GCD, Noronha RCR, Ortiz HC, do Nascimento LAS, das Neves SC, Ventura Said YL, Cardoso AL, de Mescouto VA, Vilela MLB, do Nascimento VA, Coelho HRS, Leite Kassuya CA, Pedroso TF, Salvador MJ, Oliveira RJ. Absence of maternal-fetal adverse effects of Alternanthera littoralis P. Beauv. following treatment during pregnancy in mice. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2023; 86:543-556. [PMID: 37340982 DOI: 10.1080/15287394.2023.2223624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/22/2023]
Abstract
Alternanthera littoralis P. Beauv is a plant native to Brazil that exhibits various beneficial activities including antioxidant, antibacterial, antifungal, antiprotozoal, anti-hyperalgesic, and anti-inflammatory properties. The aim of this study was to assess the impact of the ethanol extract of Alternanthera littoralis (EEAl) on reproductive outcomes, embryofetal development, and DNA integrity of pregnant female mice. Pregnant Swiss female mice were randomly assigned to three experimental groups (n = 10): controls were administered either 1% Tween 80 (vehicle), EEAl 100 mg/kg or EEAl 1000 mg/kg. Treatment was administered through gavage during the gestational period until day 18. On gestational days 16, 17, and 18, a peripheral blood sample from the tail vein was obtained for DNA integrity analysis (micronucleus test). After the last collection, animals were euthanized by cervical dislocation. Maternal organs and fetuses were collected, weighed, and subsequently analyzed. Reproductive outcome parameters were assessed by measurement of number of implants, live fetuses, and resorptions. Embryonic development was determined by adequacy of weight for gestational age as well as determination of external, visceral, and skeletal malformations. Data demonstrated that EEAl did not produce maternal toxicity at either dose associated with no marked alterations in any of the reproductive outcome parameters including implantation sites, live/dead fetuses ratio, fetal viability, post-implantation losses, resorptions, and resorption rate. However, EEAl 1000 group reduced embryofetal development by lowering placental weight. In addition, there was an increase in the frequency of external and skeletal malformations in the EEAl 1000 group, which could not be attributed to extract exposure as these values were within control levels. Based upon our findings, evidence indicates that the EEAl at the concentrations employed in our study may be considered safe for use during pregnancy and extracts of this plant show potential for development of phytomedicines to be used in pregnancy.
Collapse
Affiliation(s)
- Giovana Corbucci Danti Rezende
- Centro de Estudos em Células-Tronco, Terapia Celular e Genética Toxicológica (CeTroGen), Faculdade de Medicina (FAMED), Universidade Federal de Mato Grosso do Sul (UFMS), Campo Grande, Mato Grosso do Sul, Brasil
- Programa de Pós-Graduação em Saúde e Desenvolvimento na Região Centro-Oeste, Faculdade de Medicina (FAMED), Universidade Federal de Mato Grosso do Sul (UFMS), Campo Grande, Mato Grosso do Sul, Brasil
| | - Renata Coelho Rodrigues Noronha
- Laboratório de Citogenética, Centro de Estudos Avançados da Biodiversidade, Instituto de Ciências Biológicas (ICB), Universidade Federal Do Pará (UFPA), Belém, Brasil
| | - Hudman Cunha Ortiz
- Centro de Estudos em Células-Tronco, Terapia Celular e Genética Toxicológica (CeTroGen), Faculdade de Medicina (FAMED), Universidade Federal de Mato Grosso do Sul (UFMS), Campo Grande, Mato Grosso do Sul, Brasil
- Programa de Pós-Graduação em Saúde e Desenvolvimento na Região Centro-Oeste, Faculdade de Medicina (FAMED), Universidade Federal de Mato Grosso do Sul (UFMS), Campo Grande, Mato Grosso do Sul, Brasil
| | | | - Silvia Cordeiro das Neves
- Centro de Estudos em Células-Tronco, Terapia Celular e Genética Toxicológica (CeTroGen), Faculdade de Medicina (FAMED), Universidade Federal de Mato Grosso do Sul (UFMS), Campo Grande, Mato Grosso do Sul, Brasil
- Programa de Pós-Graduação em Saúde e Desenvolvimento na Região Centro-Oeste, Faculdade de Medicina (FAMED), Universidade Federal de Mato Grosso do Sul (UFMS), Campo Grande, Mato Grosso do Sul, Brasil
| | - Yasmin Lany Ventura Said
- Centro de Estudos em Células-Tronco, Terapia Celular e Genética Toxicológica (CeTroGen), Faculdade de Medicina (FAMED), Universidade Federal de Mato Grosso do Sul (UFMS), Campo Grande, Mato Grosso do Sul, Brasil
- Programa de Pós-Graduação em Saúde e Desenvolvimento na Região Centro-Oeste, Faculdade de Medicina (FAMED), Universidade Federal de Mato Grosso do Sul (UFMS), Campo Grande, Mato Grosso do Sul, Brasil
| | - Adauto Lima Cardoso
- Laboratório de Citogenética, Centro de Estudos Avançados da Biodiversidade, Instituto de Ciências Biológicas (ICB), Universidade Federal Do Pará (UFPA), Belém, Brasil
- Programa de Pós-Graduação em Biotecnologia, Universidade Federal do Pará (UFPA), Belém, Brasil
- Laboratório Genômica Integrativa, Departamento de Biologia Estrutural e Funcional, Instituto de Biociências de Botucatu (IBB), Universidade Estadual Paulista (UNESP), Botucatu, São Paulo, Brasil
| | | | - Marcelo Luiz Brandão Vilela
- Faculdade de Medicina (FAMED), Universidade Federal de Mato Grosso do Sul (UFMS), Campo Grande, Mato Grosso do Sul, Brasil
| | - Valter Aragão do Nascimento
- Programa de Pós-Graduação em Saúde e Desenvolvimento na Região Centro-Oeste, Faculdade de Medicina (FAMED), Universidade Federal de Mato Grosso do Sul (UFMS), Campo Grande, Mato Grosso do Sul, Brasil
| | - Henrique Rodrigues Scherer Coelho
- Centro de Estudos em Células-Tronco, Terapia Celular e Genética Toxicológica (CeTroGen), Faculdade de Medicina (FAMED), Universidade Federal de Mato Grosso do Sul (UFMS), Campo Grande, Mato Grosso do Sul, Brasil
| | | | - Taise Fonseca Pedroso
- Departamento de Biologia Vegetal, Instituto de Biologia, Universidade Estadual de Campinas (UNICAMP), São Paulo, Brasil
| | - Marcos José Salvador
- Departamento de Biologia Vegetal, Instituto de Biologia, Universidade Estadual de Campinas (UNICAMP), São Paulo, Brasil
| | - Rodrigo Juliano Oliveira
- Centro de Estudos em Células-Tronco, Terapia Celular e Genética Toxicológica (CeTroGen), Faculdade de Medicina (FAMED), Universidade Federal de Mato Grosso do Sul (UFMS), Campo Grande, Mato Grosso do Sul, Brasil
- Programa de Pós-Graduação em Saúde e Desenvolvimento na Região Centro-Oeste, Faculdade de Medicina (FAMED), Universidade Federal de Mato Grosso do Sul (UFMS), Campo Grande, Mato Grosso do Sul, Brasil
| |
Collapse
|
6
|
Senes-Lopes TFD, Luz JRDD, Guterres ZDR, Barbosa EA, Batista D, Galdino OA, Ururahy MAG, Gomes Dos Santos EC, López JA, Araujo-Silva G, Almeida MDG. Pseudobombax parvifolium Hydroalcoholic Bark Extract: Chemical Characterisation and Cytotoxic, Mutagenic, and Preclinical Aspects Associated with a Protective Effect on Oxidative Stress. Metabolites 2023; 13:748. [PMID: 37367906 DOI: 10.3390/metabo13060748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 06/04/2023] [Accepted: 06/09/2023] [Indexed: 06/28/2023] Open
Abstract
Plants have long been used in traditional medicine to treat illnesses. Nevertheless, their chemical diversity requires studies to establish the extract dosage and its safe use. Pseudobombax parvifolium, an endemic species of the Brazilian Caatinga biome, is commonly used in folk medicine, due to its anti-inflammatory properties related to cellular oxidative stress; however, its biological properties have scarcely been studied. In this study, we chemically characterized the P. parvifolium hydroalcoholic bark extract (EBHE) and evaluated its cytotoxic, mutagenic, and preclinical aspects, as well as its antioxidant effect. Our phytochemical analysis revealed a significative total polyphenol content and identified loliolide for the first time in this species. Cytotoxicity, mutagenicity, and acute oral and repeated dose indicated no toxic effects on cell culture, Drosophila melanogaster, and Wistar rat exposure to different EBHE concentrations, respectively. Furthermore, we observed a significant decrease in lipid peroxidation and a mild hypoglycemic and hypolipidemic effect with repeated oral dosing of EBHE. Although there were no significant changes in glutathione content, we did observe a significant increase in superoxide dismutase at a dose of 400 mg/kg and in glutathione peroxidase at doses of 100, 200, and 400 mg/kg. These findings suggest that EBHE has potential as a source of bioactive molecules, and it can be used safely in traditional medicine and in the development of herbal medicines for application in the public health system.
Collapse
Affiliation(s)
- Tiago Felipe de Senes-Lopes
- Postgraduate Program in Health Sciences, Center for Health Sciences, Federal University of Rio Grande do Norte, Natal 59012-570, RN, Brazil
- Multidisciplinary Research Laboratory, Department of Clinical and Toxicological Analysis, Health Sciences Center, Federal University of Rio Grande do Norte, Natal 59012-570, RN, Brazil
- Laboratory of Cytogenetics and Mutagenesis, State University of Mato Grosso do Sul, Mundo Novo 79980-000, MS, Brazil
| | - Jefferson Romáryo Duarte da Luz
- Multidisciplinary Research Laboratory, Department of Clinical and Toxicological Analysis, Health Sciences Center, Federal University of Rio Grande do Norte, Natal 59012-570, RN, Brazil
- Organic Chemistry and Biochemistry Laboratory, State University of Amapá, Macapá 68900-070, AP, Brazil
| | - Zaira da Rosa Guterres
- Laboratory of Cytogenetics and Mutagenesis, State University of Mato Grosso do Sul, Mundo Novo 79980-000, MS, Brazil
| | - Eder A Barbosa
- Laboratory of Synthesis and Analysis of Biomolecules, Institute of Chemistry, University Campus Darcy Ribeiro, University of Brasília, Brasília 70910-900, DF, Brazil
| | - Débora Batista
- Multidisciplinary Research Laboratory, Department of Clinical and Toxicological Analysis, Health Sciences Center, Federal University of Rio Grande do Norte, Natal 59012-570, RN, Brazil
| | - Ony Araújo Galdino
- Postgraduate Program in Health Sciences, Center for Health Sciences, Federal University of Rio Grande do Norte, Natal 59012-570, RN, Brazil
| | - Marcela Abbott Galvão Ururahy
- Postgraduate Program in Pharmaceutical Sciences, Center for Health Sciences, Federal University of Rio Grande do Norte, Natal 59012-570, RN, Brazil
| | - Elizabeth Cristina Gomes Dos Santos
- Multidisciplinary Research Laboratory, Department of Clinical and Toxicological Analysis, Health Sciences Center, Federal University of Rio Grande do Norte, Natal 59012-570, RN, Brazil
| | - Jorge A López
- Multidisciplinary Research Laboratory, Department of Clinical and Toxicological Analysis, Health Sciences Center, Federal University of Rio Grande do Norte, Natal 59012-570, RN, Brazil
| | - Gabriel Araujo-Silva
- Organic Chemistry and Biochemistry Laboratory, State University of Amapá, Macapá 68900-070, AP, Brazil
| | - Maria das Graças Almeida
- Postgraduate Program in Health Sciences, Center for Health Sciences, Federal University of Rio Grande do Norte, Natal 59012-570, RN, Brazil
- Multidisciplinary Research Laboratory, Department of Clinical and Toxicological Analysis, Health Sciences Center, Federal University of Rio Grande do Norte, Natal 59012-570, RN, Brazil
- Postgraduate Program in Pharmaceutical Sciences, Center for Health Sciences, Federal University of Rio Grande do Norte, Natal 59012-570, RN, Brazil
| |
Collapse
|
7
|
de Quadros APO, Baraldi IB, Petreanu M, Niero R, Mantovani MS, De Mascarenhas Gaivão IO, Maistro EL. Cytogenotoxic evaluations of leaves and stems extracts of Rubus rosifolius in primary metabolically noncompetent cells. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2023; 86:361-371. [PMID: 37096566 DOI: 10.1080/15287394.2023.2203190] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Plants with medicinal potential may also produce adverse effects in humans. This seems to be the case for the species Rubus rosifolius, where preliminary studies demonstrated genotoxic effects attributed to extracts obtained from leaves and stems of this plant using on HepG2/C3A human hepatoma cells as a model. Considering the beneficial properties of this plant as an antidiarrheal, analgesic, antimicrobial, and antihypertensive and its effects in the treatment of gastrointestinal diseases, the present study was developed with the aim of determining the cytotoxic and genotoxic potential of extracts of leaves and stems of R. rosifolius in primary without metabolic competence in human peripheral blood mononuclear cells (PBMC). Cell viability analyses at concentrations of between 0.01 and 100 µg/ml of both extracts did not markedly affect cell viability. In contrast, assessment of the genotoxic potential using the comet assay demonstrated significant damage to DNA within PBMC from a concentration of 10 µg/ml in the stem extract, and a clastogenic/aneugenic response without cytokinesis-block proliferation index (CBPI) alterations at concentrations of 10, 20, or 100 µg/ml for both extracts. Under our experimental conditions, the data obtained demonstrated genotoxic and mutagenic effects attributed to extracts from leaves and stems of R. rosifolius in cells in the absence of hepatic metabolism.
Collapse
Affiliation(s)
- Ana Paula Oliveira de Quadros
- Post-Graduate Program on General and Applied Biology, São Paulo State University - UNESP - Biosciences Institute, Botucatu, SP, Brazil
| | - Isabel Bragança Baraldi
- Speech and Hearing Therapy Department, São Paulo State University - UNESP - Faculty of Philosophy and Sciences, Marília, SP, Brazil
| | - Marcel Petreanu
- Department of Biological Sciences, Vale do Itajaí University (UNIVALI), Itajaí, SC, Brazil
| | - Rivaldo Niero
- Department of Biological Sciences, Vale do Itajaí University (UNIVALI), Itajaí, SC, Brazil
| | | | | | - Edson Luis Maistro
- Post-Graduate Program on General and Applied Biology, São Paulo State University - UNESP - Biosciences Institute, Botucatu, SP, Brazil
- Speech and Hearing Therapy Department, São Paulo State University - UNESP - Faculty of Philosophy and Sciences, Marília, SP, Brazil
| |
Collapse
|
8
|
Kour R, Sharma N, Showkat S, Sharma S, Nagaiah K, Kumar S, Kaur S. Methanolic fraction of Cassia fistula L. bark exhibits potential to combat oxidative stress and possess antiproliferative activity. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2023; 86:296-312. [PMID: 36919564 DOI: 10.1080/15287394.2023.2189435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Cassia fistula L. is well known for its traditional medicinal properties as an anti-inflammatory, hepatoprotective, antifungal, antibacterial, antimutagenic, and wound healing agent. The aim of the present study was to determine antioxidant, genoprotective, and cytotoxic potential of different fractions of C. fistula bark including hexane (CaMH), chloroform (CaMC), ethyl acetate (CaME), and methanol (CaMM). Among all the fractions studied, CaMM exhibited maximal radical scavenging activity in antioxidant DPPH assay, Superoxide anion radical scavenging assay and nitric oxide radical scavenging assay displayed an IC50 value of 18.95, 29.41, and 13.38 µg/ml, respectively. CaMM fraction possessed the highest phenolic (130.37 mg gallic acid equivalent/g dry weight of extract) and flavonoid (36.96 mg rutin equivalent/g dry weight of fraction) content. Data demonstrated significant positive correlation between polyphenol levels and radical scavenging activity. Single cell gel electrophoresis (Comet assay) exhibited genoprotective potential of C. fistula bark fractions against DNA damage induced by hydrogen peroxide (H2O2) in human lymphocytes. CaMM fraction displayed highest protective ability against H2O2 induced-toxicity as evidenced by significant decrease in % tail DNA content from 30 to 7% at highest concentration (200 µg/ml). CaMM was found to be rich in catechin, gallic acid, chlorogenic acid, and kaempferol. The phenolic content and antioxidant ability of the fractions was markedly negatively correlated with H2O2- induced DNA damage in human lymphocytes. Cytotoxic potential was evaluated against dermal epidermoid carcinoma (A431), pancreatic (MIA PaCa-2) and brain glioblastoma (LN-18) cancer cell lines using MTT assay. Results showed that C. fistula bark fractions possessed highest toxicity against the skin carcinoma cells. CaMM fraction reduced over 50% cell growth at the concentration of 76.72 µg/ml in A431 cells. These findings suggest that fractions of C. fistula bark exhibit potential to be considered as therapeutic agents in various carcinomas.
Collapse
Affiliation(s)
- Rasdeep Kour
- Department of Botanical & Environmental Sciences, Guru Nanak Dev University, Amritsar, India
| | - Neha Sharma
- Department of Botanical & Environmental Sciences, Guru Nanak Dev University, Amritsar, India
| | - Sheikh Showkat
- Department of Botanical & Environmental Sciences, Guru Nanak Dev University, Amritsar, India
| | - Sunil Sharma
- Aquatic toxicology lab, Department of Zoology, Guru Nanak Dev University, Amritsar, India
| | - Kommu Nagaiah
- Centre for natural products and Traditional knowledge, CSIR- Indian Institute of Chemical Technology, Hyderabad, India
| | - Subodh Kumar
- Department of Chemistry, Centre for Advanced Studies, Guru Nanak Dev University, Amritsar, Punjab, India
| | - Satwinderjeet Kaur
- Department of Botanical & Environmental Sciences, Guru Nanak Dev University, Amritsar, India
| |
Collapse
|
9
|
Samiry I, Pinon A, Limami Y, Rais S, Zaid Y, Oudghiri M, Liagre B, Mtairag EM. Antitumoral activity of Caralluma europaea on colorectal and prostate cancer cell lines. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2023; 86:230-240. [PMID: 36879544 DOI: 10.1080/15287394.2023.2181898] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Caralluma europaea is a medicinal plant used in Moroccan popular medicine, which has been employed as a remedy attributed to its anti-inflammatory, antipyretic, antinociceptive, antidiabetic, neuroprotective, and antiparasitic properties. The aim of the present study was to investigate the antitumor activity of both the methanolic and aqueous extract of C. europaea. The effects of increasing concentrations of aqueous and methanolic extracts on human colorectal cancer HT-29 and HCT116 cell lines and human prostate cancer PC3 and DU145 cell lines were examined on cell proliferation using MTT assay and cell cycle analysis. The induction of apoptosis was also assessed by determining protein expression of caspase-3 and poly-ADP-ribose polymerase (PARP) cleavage by western blot. The methanolic extract of C. europaea exerted significant antiproliferative effects on HT-29 (IC50 values 73 µg/ml), HCT116 (IC50 values 67 µg/ml), PC3 (IC50 values 63 µg/ml) and DU145 cells (IC50 values 65 µg/ml) after 48 hr treatment. Further, incubation with methanolic extract of C. europaea induced cell cycle arrest in G1 phase and an apoptotic process for all treated cell lines. In conclusion, the present results suggest that C. europaea, exhibited that these natural compounds are significant apoptosis inducers which may have considerable potential for development of effective natural product anticancer agents.
Collapse
Affiliation(s)
- Inass Samiry
- Laboratory of Immunology and Biodiversity, Faculty of Sciences Ain Chock, Hassan II University, Casablanca, Morocco
| | - Aline Pinon
- Univ. Limoges, LABCiS, UR 22722, Faculté de Pharmacie, F-87000 Limoges, France
| | - Youness Limami
- Laboratory of Immunology and Biodiversity, Faculty of Sciences Ain Chock, Hassan II University, Casablanca, Morocco
- Laboratory of Health Sciences and Technologies, Higher Institute of Health Sciences, Hassan First University of Settat, Settat, Morocco
| | - Samira Rais
- Laboratory of Immunology and Biodiversity, Faculty of Sciences Ain Chock, Hassan II University, Casablanca, Morocco
- Department of Biology, Faculty of Sciences Ben M'Sik, Hassan II University, Casablanca, Morocco
| | - Younes Zaid
- Laboratory of Immunology and Biodiversity, Faculty of Sciences Ain Chock, Hassan II University, Casablanca, Morocco
- Department of Biology, Faculty of Sciences, Mohammed V University, Rabat, Morocco
| | - Mounia Oudghiri
- Laboratory of Immunology and Biodiversity, Faculty of Sciences Ain Chock, Hassan II University, Casablanca, Morocco
| | - Bertrand Liagre
- Univ. Limoges, LABCiS, UR 22722, Faculté de Pharmacie, F-87000 Limoges, France
| | - El Mostafa Mtairag
- Laboratory of Immunology and Biodiversity, Faculty of Sciences Ain Chock, Hassan II University, Casablanca, Morocco
| |
Collapse
|
10
|
Nunes NMF, do Nascimento Silva J, Conceição MLP, da Costa Júnior JS, da Silva Sousa E, das Dores Alves de Oliveira M, Maria das Graças Lopes Citó A, Dittz D, Peron AP, Ferreira PMP. In vitro and in vivo acute toxicity of an artificial butter flavoring. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2023; 86:181-197. [PMID: 36794368 DOI: 10.1080/15287394.2023.2172502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Flavorings used in cookies, electronic cigarettes, popcorn, and breads contain approximately 30 chemical compounds, which makes it difficult to determine and correlate signs and symptoms of acute, subacute or chronic toxicity. The aim of this study was to characterize a butter flavoring chemically and subsequently examine the in vitro and in vivo toxicological profile using cellular techniques, invertebrates, and lab mammals. For the first time, the ethyl butanoate was found as the main compound of a butter flavoring (97.75%) and 24 h-toxicity assay employing Artemia salina larvae revealed a linear effect and LC50 value of 14.7 (13.7-15.7) mg/ml (R2 = 0.9448). Previous reports about higher oral doses of ethyl butanoate were not found. Observational screening with doses between 150-1000 mg/kg by gavage displayed increased amount of defecation, palpebral ptosis, and grip strength reduction, predominantly at higher doses. The flavoring also produced clinical signs of toxicity and diazepam-like behavioral changes in mice, including loss of motor coordination, muscle relaxation, increase of locomotor activity and intestinal motility, and induction of diarrhea, with deaths occurring after 48 h exposure. This substance fits into category 3 of the Globally Harmonized System. Data demonstrated that butter flavoring altered the emotional state in Swiss mice and disrupted intestinal motility, which may be a result of neurochemical changes or direct lesions in the central/peripheral nervous systems.
Collapse
Affiliation(s)
- Nárcia Mariana Fonseca Nunes
- Department of Biophysics and Physiology, Laboratory of Experimental Cancerology (LabCancer), Federal University of Piauí, Teresina, Brazil
| | - Jurandy do Nascimento Silva
- Department of Biophysics and Physiology, Laboratory of Experimental Cancerology (LabCancer), Federal University of Piauí, Teresina, Brazil
- Department of Chemistry, Federal Institute of Education and Technology of Piauí, Teresina, Brazil
| | - Micaely Lorrana Pereira Conceição
- Department of Biophysics and Physiology, Laboratory of Experimental Cancerology (LabCancer), Federal University of Piauí, Teresina, Brazil
| | | | | | | | | | - Dalton Dittz
- Department of Biochemistry and Pharmacology, Federal University of Piauí, Teresina, Brazil
| | - Ana Paula Peron
- Department of Biochemistry and Pharmacology, Federal University of Piauí, Teresina, Brazil
- Department of Biodiversity and Nature Conservation, Federal Technological University of Paraná, Campo Mourão, Brazil
| | - Paulo Michel Pinheiro Ferreira
- Department of Biophysics and Physiology, Laboratory of Experimental Cancerology (LabCancer), Federal University of Piauí, Teresina, Brazil
| |
Collapse
|
11
|
Lopes KS, Sousa HG, Artur E Silva Filho F, da Silva Neta ER, de Lima SG, Dos Santos Rocha M, Marques RB, da Costa CLS, de Oliveira AN, Bezerra DGP, Alline Martins F, de Almeida PM, Uchôa VT, Martins Maia Filho AL. Identification of bioactive compounds and cytogenotoxicity of the essential oil from the leaves of Croton heliotropiifolius Kunth. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2022; 85:1002-1018. [PMID: 36415179 DOI: 10.1080/15287394.2022.2146618] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Croton heliotropiifolius Kunth, popularly known as "quince" and "velame," contains a high concentration of volatile oils in the leaves, and widely used in folk medicine as an antiseptic, analgesic, sedative, anti-inflammatory, spasmolytic and local anesthetic. The objectives of this investigation were to (1) identify the phytochemical compounds and (2) assess the cytogenotoxicity of the essential oil extracted from the leaves of C. heliotropiifolius Kunth. The oil was extracted utilizing hydrodistillation and phytochemical profile determined using gas chromatography and mass spectrometry (GCMS). In the toxicogenetics analysis, Allium cepa roots were exposed to 1% dimethylsulfoxide or methylmethanesulfonate (MMS, 10 µg/ml) negative and positive controls, respectively, and to C. heliotropiifolius oil at 6 concentrations (0.32; 1.6; 8; 40; 200 or 1000 µg/ml). The phytochemical profile exhibited 40 chromatographic bands, and 33 compounds identified. α-pinene (16.7%) and 1,8-cineole (13.81%) were identified as the major compounds. Some of these identified secondary metabolites displayed biological and pharmacological activities previously reported including antiseptic, analgesic, sedative, anti-inflammatory as well insecticidal, antiviral, anti-fungal actions. In the A. cepa test, C. heliotropiifolius leaves oil induced cytotoxicity at concentrations of 0.32, 1.6 or 200 µg/ml and genotoxicity at 200 or 1000 µg/ml as evidenced by increased presence of micronuclei and significant chromosomal losses. Based upon our observations data demonstrated that the essential oil of C. heliotropiifolius leaves contain monoterpene hydrocarbons, and oxygenated monoterpenes, sesquiterpenes, and oxygenated sesquiterpenes which are associated with cytotoxic and genotoxic responses noted in on A. cepa cells.
Collapse
Affiliation(s)
- Katianne Soares Lopes
- Graduate Program in Chemistry/PPGQ-GERATEC-DQ - State University of Piauí, Teresina, Brazil
| | | | | | | | | | | | - Rosemarie Brandim Marques
- Graduate Program in Chemistry/PPGQ-GERATEC-DQ - State University of Piauí, Teresina, Brazil
- Research Center in Biotechnology and Biodiversity - State University of Piauí, Teresina, Brazil
| | | | - André Nunes de Oliveira
- Research Center in Biotechnology and Biodiversity - State University of Piauí, Teresina, Brazil
| | | | | | - Pedro Marcos de Almeida
- Graduate Program in Chemistry/PPGQ-GERATEC-DQ - State University of Piauí, Teresina, Brazil
- Research Center in Biotechnology and Biodiversity - State University of Piauí, Teresina, Brazil
| | | | - Antônio Luiz Martins Maia Filho
- Graduate Program in Chemistry/PPGQ-GERATEC-DQ - State University of Piauí, Teresina, Brazil
- Research Center in Biotechnology and Biodiversity - State University of Piauí, Teresina, Brazil
| |
Collapse
|
12
|
Rossato Viana A, Bianchin Bottari N, Santos D, Bolson Serafin M, Garlet Rossato B, Moresco RN, Wolf K, Ourique A, Hörner R, de Moraes Flores ÉM, Chitolina Schetinger MR, Stefanello Vizzotto B, Maria Fontanari Krause L. Insights of ethyl acetate fraction from Vassobia breviflora in multidrug-resistant bacteria and cancer cells: from biological to therapeutic. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2022; 85:972-987. [PMID: 36208226 DOI: 10.1080/15287394.2022.2130844] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Cancer and infectious diseases are among the leading causes of death in the world. Despite the diverse array of treatments available, challenges posed by resistance, side effects, high costs, and inaccessibility persist. In the Solanaceae plant family, few studies with Vassobia breviflora species relating to biological activity are known, but promising results have emerged. The phytochemicals present in the ethyl acetate fraction were obtained using ESI-MS-QTOF, and the antioxidants assays 1,1-diphenyl-2-picrylhydrazyl (DPPH), 2,2'-azinobis (3-ethylbenzothiazoline-6-sulfonic acid) radical capture (ABTS), plasma ferric reduction capacity (FRAP), and total antioxidant capacity (TAC). Cytotoxic activity was evaluated by MTT, Neutral Red, and lactate dehydrogenase (LDH) released. The production of reactive oxygen species, nitric oxide, and purinergic enzymes was also investigated. Antibacterial activity was measured through minimum inhibitory concentration (MIC), minimum bactericidal concentration (MBC), and antibiofilm activity, in addition to genotoxicity in plasmid DNA. Five major masses were identified D-glucopyranose II, allyl disulfide, γ-lactones, pharbilignoside, and one mass was not identified. V. breviflora exhibited relevant antioxidant and cytotoxic activity against the HeLa cell line and enhanced expression effect in modulation of purinergic signaling. Antibacterial activities in the assays in 7 ATCC strains and 8 multidrug-resistant clinical isolates were found. V. breviflora blocked biofilm formation in producing bacteria at the highest concentrations tested. However, there was no plasmid DNA cleavage at the concentrations tested. Data demonstrated that V. breviflora exhibited an antioxidant effect through several methods and proved to be a promising therapeutic alternative for use against tumor cells via purinergic signaling and multidrug-resistant microorganisms, presenting an anti-biofilm effect.
Collapse
Affiliation(s)
- Altevir Rossato Viana
- Department of Biochemistry and Molecular Biology, Federal University of Santa Maria (UFSM)Santa Maria-RS, Brazil
| | - Nathieli Bianchin Bottari
- Department of Biochemistry and Molecular Biology, Federal University of Santa Maria (UFSM)Santa Maria-RS, Brazil
| | - Daniel Santos
- Department of Chemistry, Federal University of Santa Maria (UFSM), Santa Maria-RS, Brazil
| | - Marissa Bolson Serafin
- Department of Clinical and Toxicology Analysis, Federal University of Santa Maria (UFSM), Santa Maria-RS, Brazil
| | - Bruna Garlet Rossato
- Department of Clinical and Toxicology Analysis, Federal University of Santa Maria (UFSM), Santa Maria-RS, Brazil
| | - Rafael Noal Moresco
- Department of Clinical and Toxicology Analysis, Federal University of Santa Maria (UFSM), Santa Maria-RS, Brazil
| | - Katianne Wolf
- Nanosciences Postgraduate Program, Franciscan University (UFN), Santa Maria-RS Brazil
| | - Aline Ourique
- Nanosciences Postgraduate Program, Franciscan University (UFN), Santa Maria-RS Brazil
| | - Rosmari Hörner
- Department of Clinical and Toxicology Analysis, Federal University of Santa Maria (UFSM), Santa Maria-RS, Brazil
| | | | | | | | | |
Collapse
|
13
|
Ferreira PMP, Sousa IJO, Machado KN, da Silva Neto LA, de Freitas MM, Dos Santos IL, do Nascimento Rodrigues DC, de Sousa RWR, Dos Reis AC, do Nascimento MLLB, de Menezes AAPM, do Nascimento AM, de Oliveira Ferreira JR, Peron AP, de Castro E Sousa JM. Antimitotic and toxicogenetic action of Stevia urticifolia aerial parts on proliferating vegetal and mammalian cells: in vitro and in vivo traditional and replacement methods. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2022; 85:750-766. [PMID: 35698798 DOI: 10.1080/15287394.2022.2081640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Stevia urticifolia Thunb. is an underexploited herb possessing bioactive flavonoids, saponins, and terpenoids. The aim of this study was to examine the antiproliferative and toxicogenetic properties of the ethyl acetate extract from Stevia urticifolia aerial parts (EtAcSur) upon Artemia salina, erythrocytes, Allium cepa and sarcoma 180 cells and fibroblasts, as well as in vivo studies on mice to determine systemic, macroscopic, and behavioral alterations and bone marrow chromosomal damage. The assessment using A. salina larvae and mouse blood cells revealed LC50 and EC50 values of 68.9 and 113.6 µg/ml, respectively. Root growth and mitosis were inhibited by EtAcSur, and chromosomal aberrations were detected only at 100 μg/ml. EtAcSur exhibited potent concentration-dependent viability reduction of S180 and L-929 cells and antioxidant capacity employing ABTS• and DPPH•. No previous in vivo studies were performed before with the EtAcSur. Signals of acute toxicity were not observed at 300 mg/kg. Physiological and toxicological investigations at 25 and 50 mg/mg/day i.p. for 8 days did not markedly change body or organ relative weights, nor patterns of spontaneous locomotor and exploratory activities. In contrast, clastogenic effects on bone marrow were found at 50 mg/mg/day. EtAcSur was found to (1) produce toxicity in microcrustaceans, (2) capacity as free radical scavenger, (3) antimitotic, cytotoxic and clastogenic activties upon vegetal and mammalian cells, and (4) lethality on both tumor and normal murine cells indistinctly. In vivo damage systemic effects were not remarkable and clinical signals of toxicity were not observed, suggesting the significant pharmacological potential of S. urticifolia for the development of antineoplastic agents.Abbreviations: ABTS: 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid); DMSO: dimethylsulfoxide; DPPH: 1,1-diphenyl-2-picrylhydrazyl; EC50: effective concentration 50%; EtAcSur: ethyl acetate extract from Stevia urticifolia aerial parts; Hb, hemoglobin; IC50: inhibitory concentration 50%; LC50,: lethal concentration 50%; MI: mitotic index; RBC, red blood cells; Trolox: 6-hydroxy-2,5,7,8-tetramethylchroman-2-carboxylic acid.
Collapse
Affiliation(s)
- Paulo Michel Pinheiro Ferreira
- Laboratory of Experimental Cancerology (LabCancer), Department of Biophysics and Physiology, Federal University of Piauí, Teresina, Brazil
- Postgraduate Program in Pharmacology, Federal University of Piauí, Teresina, Brazil
- Postgraduate Program in Pharmaceutical Sciences, Federal University of Piauí, Teresina, Brazil
| | - Ian Jhemes Oliveira Sousa
- Laboratory of Experimental Cancerology (LabCancer), Department of Biophysics and Physiology, Federal University of Piauí, Teresina, Brazil
- Postgraduate Program in Pharmacology, Federal University of Piauí, Teresina, Brazil
| | - Kamilla Nunes Machado
- Department of Chemistry, Institute of Exact and Biological Sciences, Federal University of Ouro Preto, Ouro Preto, Brazil
| | - Leonel Antônio da Silva Neto
- Department of Chemistry, Institute of Exact and Biological Sciences, Federal University of Ouro Preto, Ouro Preto, Brazil
| | - Milena Monteiro de Freitas
- Laboratory of Experimental Cancerology (LabCancer), Department of Biophysics and Physiology, Federal University of Piauí, Teresina, Brazil
| | - Ingredy Lopes Dos Santos
- Laboratory of Experimental Cancerology (LabCancer), Department of Biophysics and Physiology, Federal University of Piauí, Teresina, Brazil
- Postgraduate Program in Pharmacology, Federal University of Piauí, Teresina, Brazil
| | - Débora Caroline do Nascimento Rodrigues
- Laboratory of Experimental Cancerology (LabCancer), Department of Biophysics and Physiology, Federal University of Piauí, Teresina, Brazil
- Postgraduate Program in Pharmaceutical Sciences, Federal University of Piauí, Teresina, Brazil
| | - Rayran Walter Ramos de Sousa
- Laboratory of Experimental Cancerology (LabCancer), Department of Biophysics and Physiology, Federal University of Piauí, Teresina, Brazil
- Postgraduate Program in Pharmaceutical Sciences, Federal University of Piauí, Teresina, Brazil
| | - Antonielly Campinho Dos Reis
- Postgraduate Program in Pharmaceutical Sciences, Federal University of Piauí, Teresina, Brazil
- Laboratory of Toxicological Genetics (LapGenic), Department of Biochemistry and Pharmacology, Federal University of Piauí, Teresina, Brazil
| | - Maria Luisa Lima Barreto do Nascimento
- Postgraduate Program in Pharmaceutical Sciences, Federal University of Piauí, Teresina, Brazil
- Laboratory of Toxicological Genetics (LapGenic), Department of Biochemistry and Pharmacology, Federal University of Piauí, Teresina, Brazil
| | - Ag-Anne Pereira Melo de Menezes
- Postgraduate Program in Pharmaceutical Sciences, Federal University of Piauí, Teresina, Brazil
- Laboratory of Toxicological Genetics (LapGenic), Department of Biochemistry and Pharmacology, Federal University of Piauí, Teresina, Brazil
| | - Andréa Mendes do Nascimento
- Department of Chemistry, Institute of Exact and Biological Sciences, Federal University of Ouro Preto, Ouro Preto, Brazil
| | | | - Ana Paula Peron
- Department of Biodiversity and Nature Conservation, Federal Technological University of Paraná, Campo Mourão, Brazil
| | - João Marcelo de Castro E Sousa
- Postgraduate Program in Pharmaceutical Sciences, Federal University of Piauí, Teresina, Brazil
- Laboratory of Toxicological Genetics (LapGenic), Department of Biochemistry and Pharmacology, Federal University of Piauí, Teresina, Brazil
| |
Collapse
|
14
|
Grover M, Behl T, Virmani T, Sanduja M, Makeen HA, Albratty M, Alhazmi HA, Meraya AM, Bungau SG. Exploration of Cytotoxic Potential of Longifolene/Junipene Isolated from Chrysopogon zizanioides. Molecules 2022; 27:molecules27185764. [PMID: 36144491 PMCID: PMC9504982 DOI: 10.3390/molecules27185764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 08/26/2022] [Accepted: 08/31/2022] [Indexed: 11/16/2022] Open
Abstract
Since ancient times, Chrysopogon zizanioides has been utilized as a traditional medicinal plant for the treatment of numerous ailments, but neither its plant extract form nor its phytoconstituents have been fully explored. With this in mind, the present research was designed to isolate and structurally characterize one of its chemical constituents and evaluate its cytotoxic potential. Therefore, an ethanolic extract of roots was prepared and subjected to column chromatography using solvents of varying polarities. The obtained pure compound was characterized using various chromatographic and spectroscopic techniques such as high-performance liquid chromatography (HPLC), carbon and proton nuclear magnetic resonance (NMR), and liquid chromatography–mass spectroscopy (LC-MS) and identified as longifolene. This compound was evaluated for its cytotoxic potential using an MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) assay on the prostate (DU-145), oral (SCC-29B) cancer cell line and normal kidney cell line (Vero cells), taking doxorubicin as a standard drug. The obtained outcomes revealed that longifolene possesses cytotoxic potential against both prostate (IC50 = 78.64 µg/mL) as well as oral (IC50 = 88.92 µg/mL) cancer cell lines with the least toxicity in healthy Vero cells (IC50 = 246.3 µg/mL) when compared to doxorubicin. Hence, this primary exploratory study of longifolene exhibited its cytotoxic potency along with wide safety margins in healthy cell lines, giving an idea that the compounds possess some ability to differentiate between cancerous cells and healthy cells.
Collapse
Affiliation(s)
- Madhuri Grover
- Bhawani Shankar (B.S.) Anangpuria Institute of Pharmacy, Alampur 121004, India
- School of Pharmaceutical Sciences, Modern Vidya Niketan MVN University, Palwal 121105, India
| | - Tapan Behl
- School of Health Sciences, University of Petroleum and Energy Studies, Dehradun 248007, India
- Correspondence: (T.B.); (S.G.B.)
| | - Tarun Virmani
- School of Pharmaceutical Sciences, Modern Vidya Niketan MVN University, Palwal 121105, India
| | - Mohit Sanduja
- Department of Pharmacy, School of Medical and Allied Sciences, GD Goenka University, Gurugram 122103, India
| | - Hafiz A. Makeen
- Pharmacy Practice Research Unit, Clinical Pharmacy Department, College of Pharmacy, Jazan University, Jazan 45142, Saudi Arabia
| | - Mohammed Albratty
- Department of Pharmaceutical Chemistry, College of Pharmacy, Jazan University, Jazan 45142, Saudi Arabia
| | - Hassan A. Alhazmi
- Department of Pharmaceutical Chemistry, College of Pharmacy, Jazan University, Jazan 45142, Saudi Arabia
- Substance Abuse and Toxicology Research Centre, Jazan University, Jazan 45142, Saudi Arabia
| | - Abdulkarim M. Meraya
- Pharmacy Practice Research Unit, Clinical Pharmacy Department, College of Pharmacy, Jazan University, Jazan 45142, Saudi Arabia
| | - Simona Gabriela Bungau
- Department of Pharmacy, Faculty of Medicine and Pharmacy, University of Oradea, 410087 Oradea, Romania
- Doctoral School of Biomedical Sciences, University of Oradea, 410087 Oradea, Romania
- Correspondence: (T.B.); (S.G.B.)
| |
Collapse
|
15
|
Lima Bezerra JJ, Johanes I, Vieira Pinheiro AA. Anticancer potential and toxicity of the genus Handroanthus Mattos (Bignoniaceae): A systematic review. Toxicon 2022; 217:131-142. [PMID: 35998713 DOI: 10.1016/j.toxicon.2022.08.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 08/08/2022] [Accepted: 08/09/2022] [Indexed: 10/15/2022]
Abstract
The genus Handroanthus Mattos (Bignoniaceae) is widely used for the treatment of cancer in traditional medicine in Brazil and other South American countries. The anticancer potential of species of this genus has been reported in the literature, indicating that their chemical compounds may be effective against different tumor cell lines. In this perspective, the present study aimed to conduct a systematic review of ethnobotanical, pharmacological, phytochemical and toxicological information on Handroanthus species related to cancer treatment. Searches were conducted in the Google Scholar, PubMed®, ScienceDirect® and SciELO databases. A total of 78 articles published in the last thirty-two years (1990-2022) were eligible and included in the review. According to the scientific documents analyzed, five species of Handroanthus are widely used for the treatment of cancer in the traditional medicine of Brazil and other South American countries, including Bolivia and Argentina. The bark (88%) is the main part used in traditional preparations. Extracts and fractions from Handroanthus showed cytotoxicity against the following tumor cell lines: HL-60, MDA-MB-435, MDA-MB-231, MCF-7, HT-29, HCT-8, HCT-116, HEp-2, HepG2, CACO-2, SF-295, NCI-H292, NCI-H460, HeLa, and OVCAR-8. β-Lapachone, a naphthoquinone isolated from some species of this genus, is the most investigated compound for anticancer potential and has proved effective against some lung cancer cell lines (CL1-1, CL1-5 and A549). Results related to toxicological studies were not conclusive, considering that some extracts and compounds isolated from plants of this genus may present some degree of toxicity depending on the time of use and the concentration/dose used. Thus, despite the promising effects against various cancer cell lines, caution is needed when making use of these products.
Collapse
Affiliation(s)
- José Jailson Lima Bezerra
- Universidade Federal de Pernambuco, Departamento de Botânica, Programa de Pós-Graduação Em Biologia Vegetal, Av. da Engenharia, S/n, Cidade Universitária, 50670-420, Recife, PE, Brazil.
| | - Isabella Johanes
- Universidade Federal de Pernambuco, Departamento de Botânica, Programa de Pós-Graduação Em Biologia Vegetal, Av. da Engenharia, S/n, Cidade Universitária, 50670-420, Recife, PE, Brazil
| | - Anderson Angel Vieira Pinheiro
- Universidade Federal da Paraíba, Instituto de Pesquisa Em Fármacos e Medicamentos - IpeFarM, Cidade Universitária, 58051-970, João Pessoa, PB, Brazil
| |
Collapse
|
16
|
Complementary and Integrative Approaches to Cancer: A Pilot Survey of Attitudes and Habits among Cancer Patients in Italy. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:2923967. [PMID: 35958921 PMCID: PMC9359845 DOI: 10.1155/2022/2923967] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Accepted: 05/27/2022] [Indexed: 02/03/2023]
Abstract
Background. Cancer patients are among the main consumers of traditional, complementary, integrative, and alternative medicine (TCIM) such as natural products (herbals, integrators, etc.) and mind and body practices (yoga, acupuncture, etc.). Methods. A questionnaire on TCIM was submitted to 415 Italian cancer patients. The questionnaire consisted of three sections: (i) biographical and clinical information; (ii) use of natural substances; and (iii) use of mind-body practices. Results. 406 patients completed the questionnaire. The prevalence of TCIM use was 72.3%. Of them, 75.6% started to use TCIM after a tumor diagnosis. The main reasons for using TCIM were to mitigate side effects (65.0%), to regain physical and mental balance (35.9%), to relieve pain (18.3%), and to improve the efficacy of cancer therapy (16.0%). 44.7% of patients taking natural products used them during conventional therapies (chemotherapy, radiotherapy, etc.), and in 67.5% of cases without consulting a doctor. As a consequence, only about 50% of patients taking natural substances used these compounds appropriately, and the most common errors were related with the purpose of reducing the side effects of the therapy (52.3%) and for boosting immune system (32.1%). Conclusions. There is an impelling need to provide patients with scientifically validated information to raise awareness about the benefits and risks of using TCIM.
Collapse
|
17
|
Santos Silva J, França Ferreira ÉL, Maciel Lima A, de Farias RRS, Quirino Araújo B, Quilles Junior JC, Lima Santos RR, de Amorim Carvalho FA, Rai M, Vieira Júnior GM, Chaves MH. Four new cycloartane-type triterpenoids from the leaves of Combretum mellifluum Eichler: assessment of their antioxidant and antileishmanial activities. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2022; 85:364-375. [PMID: 34933666 DOI: 10.1080/15287394.2021.2015030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The beneficial pharmacological actions including antioxidant effects as an antileishmanial, antibacterial, antifungal, antidiabetic, anti-inflammatory, antitumor, antiviral, and analgesic of compounds isolated from Combretum mellifluum Eichler (Combretaceae) are well established. The aim of the present study was to determine the phytochemistry as well as assess the antioxidant and antileishmanial activities of the leaves from Combretum mellifluum Eichler (Combretaceae). Analysis of ethanolic extract resulted in isolation and identification of two epimeric mixtures of four previously unknown cycloartane-type triterpenoids, methyl quadrangularate M and methyl 24-epiquadrangularate M, and 2α,3β,24β-trihydroxy-cycloart-25-ene and 2α, 3β, 24α-trihydroxy-cycloart-25-ene, and eight known compounds. Their structures were using one-dimensional nuclear magnetic resonance (1D NMR), 2D NMR and high-resolution electrospray ionization mass spectroscopy (HRESIMS) analysis. Further, the extract and fractions were tested for antioxidant potential. The ethyl acetate and aqueous fractions demonstrated the highest antioxidant activity against 2,2-dipheny-1-picrylhydrazl (DPPH) free radicals, which correlated directly with total flavonoid content. All extracts and fractions from C. mellifluum Eichler were assessed for antileishmanial activity. The supernatant fraction exhibited highest potential, inhibiting the growth of Leishmania amazonensis with IC50 value 31.29 μg/ml. Our findings provide information on the chemical composition of C. mellifluum and the potential beneficial therapeutic usefulness as an antioxidant agent in various diseases.
Collapse
Affiliation(s)
- Jaelson Santos Silva
- Department of Chemistry, Center for Natural Sciences, Universidade Federal do Piauí, Teresina, Brazil
| | - Éverton Leandro França Ferreira
- Department of Chemistry, Center for Natural Sciences, Universidade Federal do Piauí, Teresina, Brazil
- Universidade Federal do Vale do São Francisco, Campus Serra da Capivara, São Raimundo Nonato, Brazil
| | - Amanda Maciel Lima
- Department of Chemistry, Center for Natural Sciences, Universidade Federal do Piauí, Teresina, Brazil
| | | | - Bruno Quirino Araújo
- Department of Chemistry, Center for Natural Sciences, Universidade Federal do Piauí, Teresina, Brazil
| | - José Carlos Quilles Junior
- Department of Cell and Molecular Biology, Ribeirão Preto Medical School (FMRP), Universidade de São Paulo (USP), Brazil
| | - Rodolfo Ritchelle Lima Santos
- Department of Biochemistry and Pharmacology, Medicinal Plants Research Center, NPPM, Universidade Federal do Piauí, Teresina, Brasil
| | - Fernando Aécio de Amorim Carvalho
- Department of Biochemistry and Pharmacology, Medicinal Plants Research Center, NPPM, Universidade Federal do Piauí, Teresina, Brasil
| | - Mahendra Rai
- Department of Biotechnology, Sant Gadge Baba Amravati University, Amravati, India
- Department of Microbiology, Nicolaus Copernicus University, Torun, Poland
| | | | - Mariana Helena Chaves
- Department of Chemistry, Center for Natural Sciences, Universidade Federal do Piauí, Teresina, Brazil
| |
Collapse
|
18
|
Batista D, Romáryo Duarte da Luz J, Evellyn Silva Do Nascimento T, Felipe de Senes-Lopes T, Araújo Galdino O, Victor E Silva S, Pinheiro Ferreira M, Arrison Dos Santos Azevedo M, Brandão-Neto J, Araujo-Silva G, López JA, das Graças Almeida M. Licania rigida leaf extract: Protective effect on oxidative stress, associated with cytotoxic, mutagenic and preclinical aspects. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2022; 85:276-290. [PMID: 34789080 DOI: 10.1080/15287394.2021.2002744] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Brazilian plant biodiversity is a rich alternative source of bioactive compounds since plant-derived extracts and/or their secondary metabolites exhibit potential properties to treat several diseases. In this context, Licania rigida Benth (Chrysobalanaceae Family), a large evergreen tree distributed in Brazilian semi-arid regions, deserves attention for its widespread use in popular medicine, although its biological properties are still poorly studied. The aim of this study was to examine (1) acute and sub-chronic oral toxicity at 2000 mg/kg dose; (2) in vitro cytotoxicity at 0.1; 1; 10; 100 or 1000 µg/ml; (3) in vivo mutagenicity at 5, 10 or 20 mg/ml, and (4) potential antioxidant protective effect of L. rigida aqueous leaf extract of (AELr). No marked apparent toxic and genotoxic effects were observed using in vitro and in vivo assays after in vitro treatment of Chinese hamster ovary cell line (CHO-K1) with AELr or in vivo exposure of Wistar rats and Drosophila melanogaster to different extract concentrations. Concerning the antioxidant effect, the extract exhibited a protective effect by decreasing lipid peroxidation as determined by malondialdehyde levels. No significant changes were observed for glutathione (GSH) levels and activities of superoxide dismutase (SOD) and glutathione peroxidase (GPx). Data demonstrate the beneficial potential of AELr to be employed for therapeutic purposes. However, further studies are required to validate the pharmacological application of this plant extract to develop as a phytotherapeutic formulation.
Collapse
Affiliation(s)
- Débora Batista
- Post-graduation Program in Health Sciences, Department of Clinical and Toxicological Analysis, Health Sciences Center, Federal University of Rio Grande Do Norte, Natal/RN, Brazil
- Multidisciplinary Research Laboratory, Department of Clinical and Toxicological Analysis, Health Sciences Center, Federal University of Rio Grande Do Norte, Natal/RN, Brazil
| | - Jefferson Romáryo Duarte da Luz
- Post-graduation Program in Health Sciences, Department of Clinical and Toxicological Analysis, Health Sciences Center, Federal University of Rio Grande Do Norte, Natal/RN, Brazil
- Multidisciplinary Research Laboratory, Department of Clinical and Toxicological Analysis, Health Sciences Center, Federal University of Rio Grande Do Norte, Natal/RN, Brazil
| | - Thayse Evellyn Silva Do Nascimento
- Multidisciplinary Research Laboratory, Department of Clinical and Toxicological Analysis, Health Sciences Center, Federal University of Rio Grande Do Norte, Natal/RN, Brazil
- Postgraduate Program in Pharmaceutical Sciences, Multidisciplinary Research Laboratory, Department of Clinical and Toxicological Analysis, Health Sciences Center Federal University of Rio Grande Do Norte, Natal/RN, Brazil
| | - Tiago Felipe de Senes-Lopes
- Post-graduation Program in Health Sciences, Department of Clinical and Toxicological Analysis, Health Sciences Center, Federal University of Rio Grande Do Norte, Natal/RN, Brazil
- Multidisciplinary Research Laboratory, Department of Clinical and Toxicological Analysis, Health Sciences Center, Federal University of Rio Grande Do Norte, Natal/RN, Brazil
| | - Ony Araújo Galdino
- Post-graduation Program in Health Sciences, Department of Clinical and Toxicological Analysis, Health Sciences Center, Federal University of Rio Grande Do Norte, Natal/RN, Brazil
- Multidisciplinary Research Laboratory, Department of Clinical and Toxicological Analysis, Health Sciences Center, Federal University of Rio Grande Do Norte, Natal/RN, Brazil
| | - Saulo Victor E Silva
- Multidisciplinary Research Laboratory, Department of Clinical and Toxicological Analysis, Health Sciences Center, Federal University of Rio Grande Do Norte, Natal/RN, Brazil
- Postgraduate Program in Pharmaceutical Sciences, Multidisciplinary Research Laboratory, Department of Clinical and Toxicological Analysis, Health Sciences Center Federal University of Rio Grande Do Norte, Natal/RN, Brazil
| | - Macelia Pinheiro Ferreira
- Multidisciplinary Research Laboratory, Department of Clinical and Toxicological Analysis, Health Sciences Center, Federal University of Rio Grande Do Norte, Natal/RN, Brazil
| | - Marcelo Arrison Dos Santos Azevedo
- Multidisciplinary Research Laboratory, Department of Clinical and Toxicological Analysis, Health Sciences Center, Federal University of Rio Grande Do Norte, Natal/RN, Brazil
| | - José Brandão-Neto
- Department of Clinical Medicine, Health Sciences Center, Federal University of Rio Grande Do Norte, Natal/RN, Brazil
| | - Gabriel Araujo-Silva
- Organic Chemistry and Biochemistry Laboratory, Faculty of Degree in Chemistry, Amapá State University (Ueap), Macapá/AP, Brazil
| | - Jorge A López
- Graduate Program in Industrial Biotechnology, Tiradentes University/Research and Technology Institute, Aracaj u/SE, Brazil
| | - Maria das Graças Almeida
- Post-graduation Program in Health Sciences, Department of Clinical and Toxicological Analysis, Health Sciences Center, Federal University of Rio Grande Do Norte, Natal/RN, Brazil
- Multidisciplinary Research Laboratory, Department of Clinical and Toxicological Analysis, Health Sciences Center, Federal University of Rio Grande Do Norte, Natal/RN, Brazil
- Postgraduate Program in Pharmaceutical Sciences, Multidisciplinary Research Laboratory, Department of Clinical and Toxicological Analysis, Health Sciences Center Federal University of Rio Grande Do Norte, Natal/RN, Brazil
| |
Collapse
|
19
|
A molecular docking and dynamics study to screen phytochemicals that target mutant thymidine phosphorylase for colon cancer therapy. J INDIAN CHEM SOC 2022. [DOI: 10.1016/j.jics.2022.100476] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
20
|
Michalak I, Püsküllüoğlub M. Look into my onco-forest - review of plant natural products with anticancer activity. Curr Top Med Chem 2022; 22:922-938. [PMID: 35240958 DOI: 10.2174/1568026622666220303112218] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 12/31/2021] [Accepted: 01/23/2022] [Indexed: 12/24/2022]
Abstract
Cancer is a multistage process that can be treated by numerous modalities including systemic treatment. About half of the molecules that have been approved in the last few decades count for plant derivatives. This review presents the application of tree/shrub-derived biologically active compounds as anticancer agents. Different parts of trees/shrubs - wood, bark, branches, roots, leaves, needles, fruits, flowers etc. - contain a wide variety of primary and secondary metabolites, which demonstrate anticancer properties. Special attention was paid to phenolics (phenolic acids and polyphenols, including flavonoids and non-flavonoids (tannins, lignans, stilbenes)), essential oils and their main constituents such as terpenes/terpenoids, phytosterols, alkaloids and many others. Anticancer properties of these compounds are mainly attributed to their strong antioxidant properties. In vitro experiments on various cancer cell lines revealed a cytotoxic effect of tree-derived extracts. Mechanisms of anticancer action of the extracts are also listed. Examples of drugs that successfully underwent clinical trials with well-established position in the guidelines created by oncological societies are provided. The review also focuses on directions for the future in the development of anticancer agents derived from trees/shrubs. Applying biologically active compounds derived from trees and shrubs as anticancer agents continuously seems a promising strategy in cancer systemic treatment.
Collapse
Affiliation(s)
- Izabela Michalak
- Department of Advanced Material Technologies, Faculty of Chemistry, Wrocław University of Science and Technology, Wrocław, Poland
| | - Mirosława Püsküllüoğlub
- Labcorp (Polska) Sp. z o.o., Warsaw, Poland; c Department of Clinical Oncology, Maria Sklodowska Curie National Research Institute of Oncology, Cracow Branch, Kraków, Poland
| |
Collapse
|
21
|
Furtado RA, Ozelin SD, Ferreira NH, Miura BA, Almeida Junior S, Magalhães GM, Nassar EJ, Miranda MA, Bastos JK, Tavares DC. Antitumor activity of solamargine in mouse melanoma model: relevance to clinical safety. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2022; 85:131-142. [PMID: 34612163 DOI: 10.1080/15287394.2021.1984348] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Melanoma is the most aggressive type of skin cancer, and thus it is important to develop new drugs for its treatment. The present study aimed to examine the antitumor effects of solamargine a major alkaloid heteroside present in Solanum lycocarpum fruit. In addition solamargine was incorporated into nanoparticles (NP) of yttrium vanadate functionalized with 3-chloropropyltrimethoxysilane (YVO4:Eu3+:CPTES:SM) to determine antitumor activity. The anti-melanoma assessment was performed using a syngeneic mouse melanoma model B16F10 cell line. In addition, systemic toxicity, nephrotoxic, and genotoxic parameters were assessed. Solamargine, at doses of 5 or 10 mg/kg/day administered subcutaneously to male C57BL/6 mice for 5 days, decreased tumor size and frequency of mitoses in tumor tissue, indicative of a decrease in cell proliferation. Treatments with YVO4:Eu3+:CPTES:SM significantly reduced the number of mitoses in tumor tissue, associated with no change in tumor size. There were no apparent signs of systemic toxicity, nephrotoxicity, and genotoxicity initiated by treatments either with solamargine alone or plant alkaloid incorporated into NP. The animals treated with YVO4:Eu3+:CPTES:SM exhibited significant increase in spleen weight accompanied by no apparent histological changes in all tissues examined. In addition, animals treated with solamargine (10 mg/kg/day) and YVO4:Eu3+:CPTES:SM demonstrated significant reduction in hepatic DNA damage which was induced by tumor growth. Therefore, data suggest that solamargine may be considered a promising candidate in cancer therapy with no apparent toxic effects.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Mariza Abreu Miranda
- School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Sao Paulo, SP, Brazil
| | - Jairo Kenupp Bastos
- School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Sao Paulo, SP, Brazil
| | | |
Collapse
|
22
|
Diel KAP, Marinho LC, von Poser GL. The ethnobotanical relevance of the tribe Symphonieae (Clusiaceae) around the world. JOURNAL OF ETHNOPHARMACOLOGY 2022; 284:114745. [PMID: 34656665 DOI: 10.1016/j.jep.2021.114745] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 09/27/2021] [Accepted: 10/11/2021] [Indexed: 06/13/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The tribe Symphonieae (Clusiaceae) encompasses 48 species accommodated in seven genera (Lorostemon, Montrouziera, Moronobea, Pentadesma, Platonia, Symphonia and Thysanostemon). Parts of these plants, mainly the exudates and the seeds oil are useful for different purposes, especially for treating dermatological conditions. In addition to the role in the folk medicine, some species are of great economic and cultural importance for native people from different continents. AIM OF THE REVIEW The goal of this review is to critically summarize the current knowledge on systematics, ethnobotanical, chemical and pharmacological aspects of species from the tribe Symphonieae, as well as to provide support for future taxonomic and phylogenetic studies on the Clusiaceae family. MATERIALS AND METHODS The available information was gathered from many different databases (Web of Science, ScienceDirect, Scopus, Pubmed, ChemSpider, SciFinder, ACS Publications, Wiley Online Library, Useful Tropical Plants Database, Google Scholar). Additional data from books, theses and dissertations were also included in this review. RESULTS Chemical studies of Symphonieae have demonstrated that the genera are a source of benzophenones, xanthones and biflavonoids. Components as sesquiterpenoids, triterpenoids, flavonoids, free fatty acids, among others, have also been reported. Extracts and compounds isolated from a variety of species have been exhibiting antimicrobial, cytotoxic and antiprotozoal activities, corroborating part of their medicinal uses. In addition, certain species produce edible fruits and a kind of "butter" with economic importance. All species produce exudate, which often has great relevance in the daily lives of local people. CONCLUSION Several species of Symphonieae have potential therapeutic applications and some of them have been investigated to scientifically validate their popular uses. In addition, a number of species have proved to be a rich source of promising pharmacologically active compounds. Finally, the value of fruits, exudate and butter, for instance, should serve as a stimulus for the sustainable development of products that aim to take advantage of these natural resources.
Collapse
Affiliation(s)
- Kriptsan Abdon Poletto Diel
- Universidade Federal do Rio Grande do Sul, Programa de Pós-Graduação em Ciências Farmacêuticas, Avenida Ipiranga 2752, Santana, 90610-000, Porto Alegre, Rio Grande do Sul, Brazil
| | - Lucas Cardoso Marinho
- Universidade Federal do Maranhão, Departamento de Biologia, Avenida dos Portugueses 1966, Bacanga, 65080-805, São Luís, Maranhão, Brazil
| | - Gilsane Lino von Poser
- Universidade Federal do Rio Grande do Sul, Programa de Pós-Graduação em Ciências Farmacêuticas, Avenida Ipiranga 2752, Santana, 90610-000, Porto Alegre, Rio Grande do Sul, Brazil.
| |
Collapse
|
23
|
Maistro EL, Terrazzas PM, Sawaya ACHF, Rosa PCP, Perazzo FF, de Mascarenhas Gaivão IO. In vivo toxicogenic potential of Salix alba (Salicaceae) bark extract. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2022; 85:121-130. [PMID: 34674609 DOI: 10.1080/15287394.2021.1989351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Salix alba (white willow) bark extract is widely used for conditions associated with inflammation, fever, microbial infection or pain. Exposure of human cultured leukocytes to S. alba in vitro noted a genotoxic response. However, data regarding the influence of this bark extract on DNA damage in vivo are lacking. The main goal of this study was to examine the potential of S.alba bark extract to induce DNA damage and chromosome aberrations in an in vivo model using cells obtained from male Swiss albino mice administered the compound orally. The extract was administered by oral gavage daily for 7 days at doses of 500, 1000, or 2000 mg/kg b.w. Genotoxicity analysis was performed using the comet assay on peripheral blood leukocytes, as well as liver, bone marrow, heart, and testicular cells collected 4 hr after the last treatment and the micronucleus (MN) test on bone marrow cells. In essence cells were collected 28 hr after the penultimate treatment Data demonstrated that S. alba bark extract did not induce significant DNA damage in any cell types examined, or clastogenic/aneugenic effects as detected by the MN test at the three tested doses. Under these experimental conditions, evidence indicates that S.alba bark extract did not initiate genotoxic or chromosome aberrations in various mouse cells investigated.
Collapse
Affiliation(s)
- Edson Luis Maistro
- Speech and Hearing Therapy Department, São Paulo State University - Unesp, São Paulo, Brazil
- Programa De Pós-Graduação Em Biologia Geral E Aplicada - São Paulo State University - Unesp, Instituto De Biociências, Botucatu, Brazil
| | - Peterson Menezes Terrazzas
- Programa De Pós-Graduação Em Biologia Geral E Aplicada - São Paulo State University - Unesp, Instituto De Biociências, Botucatu, Brazil
| | | | | | - Fábio Ferreira Perazzo
- Department of Genetics and Biotechnology and Animal and Veterinary Research Centre (CECAV), University of Trás-os-Montes and Alto Douro (Utad), Vila Real, Portugal
| | - Isabel O'Neill de Mascarenhas Gaivão
- Universidade De Tras-os-Montes E Alto Douro Escola De Ciencias Agrarias E Veterinarias, Genet. Biotech. Animal Veterinary Res. Centre, Vila Real, Portugal
| |
Collapse
|
24
|
Chemotherapeutic and Safety Profile of a Fraction from Mimosa caesalpiniifolia Stem Bark. JOURNAL OF ONCOLOGY 2021; 2021:9031975. [PMID: 34917149 PMCID: PMC8670915 DOI: 10.1155/2021/9031975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 10/22/2021] [Accepted: 11/17/2021] [Indexed: 11/17/2022]
Abstract
Mimosa caesalpiniifolia (Fabaceae) is used by Brazilian people to treat hypertension, bronchitis, and skin infections. Herein, we evaluated the antiproliferative action of the dichloromethane fraction from M. caesalpiniifolia (DFMC) stem bark on murine tumor cells and the in vivo toxicogenetic profile. Initially, the cytotoxic activity of DFMC on primary cultures of Sarcoma 180 (S180) cells by Alamar Blue, trypan, and cytokinesis block micronucleus (CBMN) assays was assessed after 72 h of exposure, followed by the treatment of S180-bearing Swiss mice for 7 days, physiological investigations, and DNA/chromosomal damage. DFMC and betulinic acid revealed similar in vitro antiproliferative action on S180 cells and induced a reduction in viable cells, induced a reduction in viable cells and caused the emergence of bridges, buds, and morphological features of apoptosis and necrosis. S180-transplanted mice treated with DFMC (50 and 100 mg/kg/day), a betulinic acid-rich dichloromethane, showed for the first time in vivo tumor growth reduction (64.8 and 80.0%) and poorer peri- and intratumor quantities of vessels. Such antiproliferative action was associated with detectible side effects (loss of weight, reduction of spleen, lymphocytopenia, and neutrophilia and increasing of GOT and micronucleus in bone marrow), but preclinical general anticancer properties of the DFMC were not threatened by toxicological effects, and these biomedical discoveries validate the ethnopharmacological reputation of Mimosa species as emerging phytotherapy sources of lead molecules.
Collapse
|
25
|
Chung DC, Long Le T, Ho NQC, Nguyen TT, Do DG, Do DT, Nguyen TPM, Nguyen TPT, Hoang NS. Evaluation of in vitro cytotoxicity and in vivo potential toxicity of the extract from in vitro cultivated Anoectochilus roxburghii Lindl. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2021; 84:987-1003. [PMID: 34384338 DOI: 10.1080/15287394.2021.1963363] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Anoectochilus roxburghii Lind. (A. roxburghii) has promising anti-oxidant, hyperglycemic, hepatoprotective, and immunomodulatory activities as well as anti-tumor effects. However, the pharmacological actions of in vitro cultured plants remain to be determined. Therefore, the objective of the study was to assess in vitro cytotoxicity and in vivo potential toxicity of an extract derived from in vitro cultivated A. roxburghii, termed as iARE. The total flavonoid content and predominant flavonoid compounds of extract were identified and quantitatively analyzed. The in vitro cytotoxicity of iARE was examined using several cancer and normal cell lines. The apoptotic activity and expression of apoptosis-associated genes were also examined in MCF7 cells to determine the underlying mechanisms related to anti-proliferative effects. In vivo potential toxicity of iARE was assessed following acute and subchronic oral administration in Sprague Dawley rats. Quercetin, kaempferol, and isorhamnetin were three flavonoid components identified in iARE. The extract exerted cytotoxic effects on various cancer cells but not normal fibroblasts. Apoptosis in MCF7 cells was induced by iARE in a concentration-dependent manner associated with increased Bax/Bcl-2 ratio and reduced mitochondrial membrane potential ΔΨm, leading to release of cytochrome c, activation of caspase-3/7 and caspase-9, and cleavage of PARP. In the acute oral toxicity study, no mortality or toxicological signs were observed in rats at 1000 or 5000 mg/kg. In a subchronic oral toxicity study, iARE at a dosage of up to 1000 mg/kg produced no mortality or treatment-related adverse effects on general behavior, food intake, body weight, relative organ weights. No apparent marked changes in the histopathology of the liver and kidney were detected. Data demonstrated that iARE induced in vitro cytotoxic effects in cancer cells are associated with lackof invivo toxicity. Thus, iARE was suggested to be considered as apotential therapeutic candidate for cancer treatment.
Collapse
Affiliation(s)
- Doan Chinh Chung
- Department of Animal Biotechnology, Institute of Tropical Biology, Vietnam Academy of Science and Technology, Ho Chi Minh City, Vietnam
- Faculty of Biotechnology, Graduate University of Science and Technology, Vietnam Academy of Science and Technology, Ha Noi City, Vietnam
| | - Thanh Long Le
- Department of Animal Biotechnology, Institute of Tropical Biology, Vietnam Academy of Science and Technology, Ho Chi Minh City, Vietnam
- Faculty of Biotechnology, Graduate University of Science and Technology, Vietnam Academy of Science and Technology, Ha Noi City, Vietnam
| | - Nguyen Quynh Chi Ho
- Department of Animal Biotechnology, Institute of Tropical Biology, Vietnam Academy of Science and Technology, Ho Chi Minh City, Vietnam
| | - Thi Thuy Nguyen
- Department of Animal Biotechnology, Institute of Tropical Biology, Vietnam Academy of Science and Technology, Ho Chi Minh City, Vietnam
| | - Dang Giap Do
- Department of Animal Biotechnology, Institute of Tropical Biology, Vietnam Academy of Science and Technology, Ho Chi Minh City, Vietnam
| | - Duc Thang Do
- Department of Animal Biotechnology, Institute of Tropical Biology, Vietnam Academy of Science and Technology, Ho Chi Minh City, Vietnam
| | - Thi Phuong Mai Nguyen
- Museum Department, Tay Nguyen Institute for Scientific Research, Vietnam Academy of Science and Technology, Da Lat City, Vietnam
| | - Thi Phuong Thao Nguyen
- Department of Animal Biotechnology, Institute of Tropical Biology, Vietnam Academy of Science and Technology, Ho Chi Minh City, Vietnam
- Faculty of Biotechnology, Graduate University of Science and Technology, Vietnam Academy of Science and Technology, Ha Noi City, Vietnam
| | - Nghia Son Hoang
- Department of Animal Biotechnology, Institute of Tropical Biology, Vietnam Academy of Science and Technology, Ho Chi Minh City, Vietnam
- Faculty of Biotechnology, Graduate University of Science and Technology, Vietnam Academy of Science and Technology, Ha Noi City, Vietnam
| |
Collapse
|
26
|
Khan A, Ali S, Murad W, Hayat K, Siraj S, Jawad M, Khan RA, Uddin J, Al-Harrasi A, Khan A. Phytochemical and pharmacological uses of medicinal plants to treat cancer: A case study from Khyber Pakhtunkhwa, North Pakistan. JOURNAL OF ETHNOPHARMACOLOGY 2021; 281:114437. [PMID: 34391861 DOI: 10.1016/j.jep.2021.114437] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 07/16/2021] [Accepted: 07/17/2021] [Indexed: 06/13/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Cancer is the top death causing disease in the world, due to its occurrence through various mechanism and form. Medicinal plants have been extensively used for the purifications and isolations of phytochemicals for the treatment and prevention of cancer. OBJECTIVES Consequently, this research was designed to document the traditional practices of anti-cancer plants and its phytochemical essay across the districts of KP, Pakistan. MATERIALS AND METHODS Semi-structured interviews were conducted in 24 districts from the informants mostly the traditional herbalists (key informants). The information were compared with the publish data using various authentic search engines including, google, researchgate, google scholar and NCBI. RESULTS One hundred and fifty-four (154) anti-cancer plants were recognized belonging to 69 families among all, Lamiaceae (13 sp.), Asteraceae (12 sp.) and Solanaceae (9 sp.) were the preferred families. The local inhabitants in the area typically prepare ethnomedicinal recipes from leaves (33.70%) and whole plants (23.37%) in the form of decoction and powder (24.67%), respectively. Herbs stayed the most preferred life form (61.68%) followed by shrub (21.4%). Similarly, breast (29.22%) and lung cancer (14.83%) was the common disease type. Literature study also authorize that, the medicinal plants of the research area were rich in phytochemical like quercetin, coumarine, kaempferol, apigenin, colchicine, alliin, rutin, lupeol, allicin, berbarine, lutolin, vanilic acid, urocilic acid and solamargine have revealed significant activates concerning the cancer diseases, that replicating the efficacy of these plants as medicines. CONCLUSION The Khyber Pakhtunkhwa is rural area and the local inhabitants have very strong traditional knowledge about the medicinal plants for different diseases like cancer. The medicinal plants for significant ranked disorder might be pharmacologically and phtyochemicaly explored to demonstrate their efficacy. Moreover, the local flora especially medicinal plants facing overgrazing, overexploitation and inappropriate way of collection, however, proper management strategies like reforestation, controlled grazing, proper permission from concerned department and rangeland strategies among others may be assumed to enhance the proper usage of medicinal plants.
Collapse
Affiliation(s)
- Asif Khan
- Department of Botany, Garden Campus Abdul Wali Khan University, Mardan, Pakistan
| | - Sajid Ali
- Department of Botany, Garden Campus Abdul Wali Khan University, Mardan, Pakistan
| | - Waheed Murad
- Department of Botany, Garden Campus Abdul Wali Khan University, Mardan, Pakistan.
| | - Khizar Hayat
- Key Laboratory of Plant Ecology, Northeast Forestry University, Harbin, China
| | - Shumaila Siraj
- Department of Botany, Garden Campus Abdul Wali Khan University, Mardan, Pakistan
| | - Muhammad Jawad
- Center of Geographical Information System, University of Punjab, Pakistan
| | | | - Jalal Uddin
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Khalid University, Abha, Saudi Arabia
| | - Ahmed Al-Harrasi
- Natural and Medical Sciences Research Center, University of Nizwa, Birkat Al Mauz, Nizwa, Oman.
| | - Ajmal Khan
- Natural and Medical Sciences Research Center, University of Nizwa, Birkat Al Mauz, Nizwa, Oman.
| |
Collapse
|
27
|
da Silva Araújo JR, Silva Morais JG, Santos CM, Araújo Rocha KC, Rios Fagundes ADCA, E Silva Filho FA, Martins FA, de Almeida PM. Phytochemical prospecting, isolation, and protective effect of the ethanolic extract of the leaves of Jatropha mollissima (Pohl) Baill. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2021; 84:743-760. [PMID: 34120581 DOI: 10.1080/15287394.2021.1938767] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Jatropha mollissima is used in folk medicine as antimicrobial, antiparasitic, and larvicidal. However, few toxicogenetic studies have been carried out. Therefore, the aim of this study was to determine the phytochemical profile of ethanolic leaf extract of J. mollissima (EEJM) as well as potential cytotoxic, mutagenic, and antimutagenic properties. The EEJM was subjected to successive fractionation for the isolation of secondary metabolites, and five concentrations (0.01; 0.1; 1; 10 and 100 mg/ml) of extract were investigated using Allium cepa assay and the Somatic Mutation and Recombination (SMART) test. The mitotic index and % damage reduction were analyzed for A. cepa and the frequency of mutant hair for SMART. The presence of coumarins, alkaloids, flavonoids, saponins, and tannins was detected, while spinasterol and n-triacontane were the isolates identified for the first time for this species. EEJM did not exhibit cytotoxicity and was not mutagenic at 1 or 10 mg/ml using A. cepa and all concentrations of EEJM were not mutagenic in the SMART test. A cytoprotective effect was found at all concentrations. At 1 or 10 mg/ml EEJM exhibited antimutagenicity in A. cepa. In SMART, the protective effect was observed at 0.1 to 100 mg/ml EEJM. Our results demonstrate the important chemopreventive activity of EEJM, a desired quality in the search for natural anticarcinogenic compounds.
Collapse
Affiliation(s)
- José Rafael da Silva Araújo
- Department Genetics, Laboratory of Genetics and Vegetal Biotechnology, Federal University of Pernambuco, Recife, Brazil
| | - João Gabriel Silva Morais
- Department of Biology, Center of Agrarian Sciences, Laboratory of Molecular Biology, Federal University of Piauí, Teresina, Brazil
| | - Cleidiane Macêdo Santos
- Department of Biology, Center of Agrarian Sciences, Laboratory of Molecular Biology, Federal University of Piauí, Teresina, Brazil
| | - Kelvim Crist Araújo Rocha
- Department of Biology, Center of Agrarian Sciences, Laboratory of Molecular Biology, Federal University of Piauí, Teresina, Brazil
| | | | - Francisco Artur E Silva Filho
- Department of Biology, Bioprospecting Laboratory for Bioactive Molecules, State University of Piauí, Teresina, Brazil
| | - Francielle Alline Martins
- Department of Biology, Center of Agrarian Sciences, Laboratory of Molecular Biology, Federal University of Piauí, Teresina, Brazil
| | - Pedro Marcos de Almeida
- Department of Biology, Center of Natural Sciences (CCN), Laboratory of Genetics, State University of Piauí, Teresina, Brazil
| |
Collapse
|
28
|
Ozelin SD, Senedese JM, Alves JM, Munari CC, Costa JDCD, Resende FA, Campos DL, Lima IMDS, Andrade AF, Varanda EA, Bastos JK, Tavares DC. Preventive activity of Copaifera langsdorffii Desf. leaves extract and its major compounds, afzelin and quercitrin, on DNA damage in in vitro and in vivo models. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2021; 84:569-581. [PMID: 33730993 DOI: 10.1080/15287394.2021.1898505] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Copaifera langsdorffii Desf. is a plant found in South America, especially in Brazil. Oleoresin and the leaves of this plant is used as a popular medicinal agent. However, few studies on the chemical composition of aerial parts and related biological activities are known. This study aimed to examine the cytotoxic, genotoxic, and antigenotoxic potential of C. langsdorffii aerial parts hydroalcoholic extract (CLE) and two of its major compounds afzelin and quercitrin. The cytotoxic and antigenotoxic potential of CLE was determined as follows: 1) against genotoxicity induced by doxorubicin (DXR) or methyl methanesulfonate (MMS) in V79 cells; 2) by direct and indirect-acting mutagens in Salmonella typhimurium strains; and 3) by MMS in male Swiss mice. The protective effects of afzelin and quercitrin against DXR or MMS were also evaluated in V79 and HepG2 cells. CLE was cytotoxic as evidenced by clonogenic efficiency assay. Further, CLE did not induce a significant change in frequencies of chromosomal aberrations and micronuclei; as well as number of revertants in the Ames test demonstrating absence of genotoxicity. In contrast, CLE was found to be antigenotoxic in mammalian cells. The results also showed that CLE exerted inhibitory effect against indirect-acting mutagens in the Ames test. Afzelin and quercitrin did not reduce genotoxicity induced by DXR or MMS in V79 cells. However, treatments using afzelin and quercitrin decreased MMS-induced genotoxicity in HepG2 cells. The antigenotoxic effect of CLE observed in this study may be partially attributed to the antioxidant activity of the combination of major components afzelin and quercitrin.
Collapse
Affiliation(s)
- Saulo Duarte Ozelin
- Laboratório De Mutagênese, Universidade De Franca, Franca, São Paulo, Brazil
| | | | | | | | | | - Flávia Aparecida Resende
- Faculdade De Ciências Farmacêuticas De Araraquara, Universidade Estadual Paulista, Araraquara, São Paulo, Brazil
| | - Débora Leite Campos
- Faculdade De Ciências Farmacêuticas De Araraquara, Universidade Estadual Paulista, Araraquara, São Paulo, Brazil
| | | | | | - Eliana Aparecida Varanda
- Faculdade De Ciências Farmacêuticas De Araraquara, Universidade Estadual Paulista, Araraquara, São Paulo, Brazil
| | - Jairo Kenupp Bastos
- Facudade De Ciências Farmacêuticas De Ribeirão Preto, Universidade De São Paulo, São Paulo, Brazil
| | | |
Collapse
|
29
|
Silva BO, Orlando JB, Pires CL, Hiruma-Lima CA, de Mascarenhas Gaivão I, Perazzo FF, Maistro EL. Genotoxicity induced by nerol, an essential oil present in citric plants using human peripheral blood mononuclear cells (PBMC) and HepG2/C3A cells as a model. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2021; 84:518-528. [PMID: 33761836 DOI: 10.1080/15287394.2021.1902443] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Nerol (cis-3,7-dimethyl-2,6-octadien-1-ol) is a monoterpene widely used in cosmetic products, household detergents and cleaners, as well as a flavoring in several food products. Despite the high level of human exposure to nerol, an absence of studies regarding potential genetic toxicity in human cells exists. The aim of this investigation was to examine the cytotoxic and genotoxic potential of this monoterpene on human peripheral blood mononuclear cells as well as hepatic metabolizing HepG2/C3A human cell line. Cytotoxicity was assessed using trypan blue staining and MTT assay while genotoxicity was determined utilizing the comet and micronucleus test. Cytotoxicity tests showed cell viability greater than 70% for concentrations between 2.5 and 500 µg/ml. Both cell types exhibited significant DNA damage and chromosomal mutations after medium and high concentration incubation with nerol indicating that the safety of use of this monoterpene in various formulations to which humans are exposed needs to be monitored and requires more comprehensive investigations.
Collapse
Affiliation(s)
- Brian Ogushi Silva
- Speech and Hearing Therapy Department, São Paulo State University - UNESP - Faculty of Philosophy and Sciences, Marília, Brazil
| | - Juliana Botinhon Orlando
- Speech and Hearing Therapy Department, São Paulo State University - UNESP - Faculty of Philosophy and Sciences, Marília, Brazil
| | - Camila Lehnhardt Pires
- Programa De Pós-Graduação Em Biologia Geral E Aplicada - São Paulo State University (UNESP), Instituto De Biociências, Botucatu, Brazil
| | - Clélia Akiko Hiruma-Lima
- Programa De Pós-Graduação Em Biologia Geral E Aplicada - São Paulo State University (UNESP), Instituto De Biociências, Botucatu, Brazil
| | - Isabel de Mascarenhas Gaivão
- Department of Genetics and Biotechnology and Animal and Veterinary Research Centre (CECAV), University of Trás-os-Montes and Alto Douro (UTAD), Vila Real, Portugal
| | - Fábio Ferreira Perazzo
- Institute of Environmental, Chemistry and Pharmaceutical Sciences, Federal University of São Paulo (UNIFESP), Diadema, Brazil
| | - Edson Luis Maistro
- Speech and Hearing Therapy Department, São Paulo State University - UNESP - Faculty of Philosophy and Sciences, Marília, Brazil
- Programa De Pós-Graduação Em Biologia Geral E Aplicada - São Paulo State University (UNESP), Instituto De Biociências, Botucatu, Brazil
| |
Collapse
|
30
|
Amorim VR, Rodrigues DCDN, Silva JDN, Ramos CLS, Almeida LMN, Almeida AAC, Pinheiro-Neto FR, Almeida FRC, Rizzo MS, Pereira-Freire JA, Ferreira PMP. Anti-inflammatory mechanisms of fruits and by-products from Mauritia flexuosa, an exotic plant with functional benefits . JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2021; 84:441-457. [PMID: 33641623 DOI: 10.1080/15287394.2021.1881672] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Mauritia flexuosa L., traditionally known as "buriti", exhibits chemoprotective properties including antioxidant, antithrombotic, and nutritional actions. The aim of this study was to examine the oral anti-inflammatory activity of epicarp, mesocarp and endocarp obtained from M. flexuosa fruits using in vivo models to verify physiological benefits. The anti-edematogenic action was determined using phlogistic agents to induce paw edema and peritonitis. Pro-inflammatory cytokines, cell migration of peritoneal cells, histological changes, and abdominal swelling induced by acetic acid were also investigated. Carrageenan-induced edema was found to be decreased in mice pre-treated with epicarp by 50.8%, 53.7% and 39.2% and mesocarp by 41.8%, 65.3% and 71.9% after 2, 3, and 4 hr stimuli, respectively. Edema initiated by specific agents such as compound 48/80, histamine, serotonin, and prostaglandin E2 were also reduced, and better outcomes were found against histamine-induced edema, as evidenced by the decline at all times analyzed (30-120 min) with both doses of water extract of mesocarp (500 or 1000 mg/kg). Mesocarp-pre-treatment reduced inflammatory tissue parameters such as number of peritoneal leukocytes and TNF-α levels, but only epicarp diminished abdominal pain. In summary, M. flexuosa fruits, especially mesocarp, exhibited oral physiological benefits and capacity to modify biochemical and cellular steps in the inflammatory cascade, indicating that dietary supplements containing these fruits may be combined with pharmacological tools to ameliorate or prevent diseases of inflammatory origin.
Collapse
Affiliation(s)
- Vivianne Rodrigues Amorim
- Postgraduate Program in Biotechnology (RENORBIO), Federal University of Piauí, Teresina, Brazil
- Department of Biophysics and Physiology, Laboratory of Experimental Cancerology, Federal University of Piauí, Teresina, Brazil
| | - Débora Caroline do Nascimento Rodrigues
- Department of Biophysics and Physiology, Laboratory of Experimental Cancerology, Federal University of Piauí, Teresina, Brazil
- Postgraduate Program in Pharmaceutical Sciences, Federal University of Piauí, Teresina, Brazil
| | - Jurandy do Nascimento Silva
- Department of Biophysics and Physiology, Laboratory of Experimental Cancerology, Federal University of Piauí, Teresina, Brazil
- Laboratory for Food Analysis, Federal Institute of Education, Science and Technology of Piauí, Teresina, Brazil
| | - Carla Lorena Silva Ramos
- Department of Biophysics and Physiology, Laboratory of Experimental Cancerology, Federal University of Piauí, Teresina, Brazil
- Postgraduate Program in Pharmaceutical Sciences, Federal University of Piauí, Teresina, Brazil
| | - Lívia Maria Nunes Almeida
- Department of Biophysics and Physiology, Laboratory of Experimental Cancerology, Federal University of Piauí, Teresina, Brazil
- Postgraduate Program in Pharmaceutical Sciences, Federal University of Piauí, Teresina, Brazil
| | - Antonia Amanda Cardoso Almeida
- Department of Biophysics and Physiology, Laboratory of Experimental Cancerology, Federal University of Piauí, Teresina, Brazil
- Postgraduate Program in Pharmaceutical Sciences, Federal University of Piauí, Teresina, Brazil
| | - Flaviano Ribeiro Pinheiro-Neto
- Department of Biochemistry and Pharmacology, Postgraduate Program in Pharmacology, Federal University of Piauí, Teresina, Brazil
| | - Fernanda Regina Castro Almeida
- Department of Biochemistry and Pharmacology, Postgraduate Program in Pharmacology, Federal University of Piauí, Teresina, Brazil
| | | | | | - Paulo Michel Pinheiro Ferreira
- Postgraduate Program in Biotechnology (RENORBIO), Federal University of Piauí, Teresina, Brazil
- Department of Biophysics and Physiology, Laboratory of Experimental Cancerology, Federal University of Piauí, Teresina, Brazil
- Postgraduate Program in Pharmaceutical Sciences, Federal University of Piauí, Teresina, Brazil
| |
Collapse
|
31
|
Sousa HG, Uchôa VT, Cavalcanti SMG, de Almeida PM, Chaves MH, Lima Neto JDS, Nunes PHM, da Costa Júnior JS, Rai M, Do Carmo IS, de Sousa EA. Phytochemical screening, phenolic and flavonoid contents, antioxidant and cytogenotoxicity activities of Combretum leprosum Mart. (Combretaceae). JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2021; 84:399-417. [PMID: 33494643 DOI: 10.1080/15287394.2021.1875345] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Combretum leprosum Mart. (Combretaceae), a shrub popularly known as mofumbo, is used in folk medicine for treatment of uterine bleeding, pertussis, gastric pain, and as a sedative. The aim of this study was to (1) determine the phytochemical profile,(2) identify chemical constituents and (3) examine antioxidant and cytogenotoxic activity of ethanolic extracts and fractions of stem bark and leaves. The plant material (leaf and stem bark) was submitted to extraction with ethanol, followed by partition using hexane, chloroform, and ethyl acetate. It was possible to identify and quantify the epicatechin in the ethanolic stem bark extract (0.065 mg/g extract) and rutin in the leaf extract (3.33 mg/g extract). Based upon in vitro tests a significant relationship was noted between findings from antioxidant tests and levels of total phenolic and flavonoid. Comparing all samples (extracts and fractions), the ethyl acetate fractions of stem bark (411.40 ± 15.38 GAE/g) and leaves (225.49 ± 9.47 GAE/g) exhibited higher phenolic content, whereas hexanic fraction of stem bark (124.28 ± 56 mg/g sample) and ethyl acetate fraction of leaves (238.91 ± 1.73 mg/g sample) demonstrated a higher content of flavonoids. Among the antioxidant tests, the intermediate fraction of stem bark (28.5 ± 0.60 μg/ml) and ethyl acetate fraction of leaves (40 ± 0.56 μg/ml) displayed a higher % inhibition of free radical DPPH activity, whereas intermediate fraction of stem bark (27.5 ± 0.9 μg/ml) and hydromethanol fraction of leaves (81 ± 1.4 μg/ml) demonstrated inhibition of the free radical ABTS. In biological tests (Allium cepa and micronucleus in peripheral blood), data showed that none of the tested concentrations of ethanolic extracts of leaves and stem bark produced significant cytotoxicity, genotoxicity, and mutagenic activity.Abbreviations AA%: percentage of antioxidant activity; ABTS: 2,2'-azinobis-(3-ethylbenzothiazoline-6-sulfonic acid); CEUA: Ethics Committee in the Use of Animals; TLC: Thin Layer Chromatography; DNA: deoxyribonucleic acid; DPPH: 1,1-diphenyl-2-picrylhydrazyl; ROS: Reactive oxygen species; EEB: ethanol extract of the stem bark; HFB: Hexanic fraction of stem bark; IFB: Intermediate fraction of stem bark; CFB: Chloroform fraction of stem bark; EAFB: Ethyl acetate fraction of stem bark; HMFB: Hydromethanol fraction of the stem bark; EEL: Ethanol extract from leaves; HFL: Hexane fraction of leaves; CFL: Chloroform fraction of leaves; EAFL: Ethyl acetate fraction of leaves; HMFL: Hydromethanol fraction of leaves; GAE: Gallic Acid Equivalent; IC50: 50% inhibition concentration; HCOOH: Formic acid; HCl: hydrochloric acid; HPLC: High-performance liquid chromatography; MN: micronucleus; WHO: World Health Organization; UFLC: Ultra-Fast Liquid Chromatography; UESPI: State University of Piauí.
Collapse
Affiliation(s)
- Herbert Gonzaga Sousa
- Department of Chemistry, Natural Sciences Center, State University of Piauí, Teresina, Piauí, Brazil
| | - Valdiléia Teixeira Uchôa
- Department of Chemistry, Natural Sciences Center, State University of Piauí, Teresina, Piauí, Brazil
| | | | - Pedro Marcos de Almeida
- Health Sciences Center, Department of Genetics, State University of Piauí, Teresina, Piauí, Brazil
| | - Mariana Helena Chaves
- Department of Organic Chemistry, Federal University of Piauí, Teresina, Piauí, Brazil
| | | | | | | | - Mahendra Rai
- Department of Biotechnology, Sant Gadge Baba Amravati University Amravati, Maharashtra, India
| | | | | |
Collapse
|
32
|
Selbach MT, Scotti AS, Feistel CC, Nicolau CC, Dalberto D, Dos Santos NG, Borsoi G, Ferraz ABF, Grivicich I, de Souza GMS, Chytry P, Dias JF, Corrêa DS, da Silva J. Evaluation of the cytotoxic and genotoxic effects of Sida planicaulis Cav extract using human neuroblastoma cell line SH-SY5Y. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2021; 84:345-355. [PMID: 33435828 DOI: 10.1080/15287394.2020.1871144] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Sida planicaulis is a weed thought to have originated in Brazil, where it is present in abundant quantities, but also this plant is also found in south-central Florida, Indian Ocean Islands, and the Pacific Islands. Sida planicaulis produces neurotoxicity that adversely affects livestock breeding with heavy animal losses and consequent negative impact on Brazil's economy. The aim of this study was to determine the chemical profile, cytotoxic and genotoxic effects of ethanolic extracts of S. planicaulis collected in winter (leaf extract) and summer (leaf extract and leaf + flower extract) using an in vitro model of human neuroblastoma cell line SH-SY5Y. Phytochemical screening demonstrated the presence of alkaloids, flavonoids, and apolar compounds. Rutin, quercetin, and swainsonine were detected by HPLC and GC/MS, respectively. Phosphorus, potassium, iron, and zinc were the inorganic elements found. Extracts produced cytotoxicity at all concentrations tested (7-4,000 μg/ml) as evidenced by the colorimetric assay [3-(4,5-dimethyl-thiazol-2-yl) -2,5-diphenyl-tetrazolium bromide (MTT)]. Based upon the alkaline comet assay extracts were found to induce genotoxicity at concentrations ranging from 0.437 to 7 μg/ml. DNA damage produced by extracts was affirmed using a modified comet assay with the enzymes Endo III and FPG in a concentration dependent manner. Further, enzyme-modified comet assay showed both oxidized purines and pyrimidines, and consequently oxidative stress was related to genomic instability and cell death. Data suggest that low concentrations of ethanolic extracts of S. planicaulis (different seasons) induced increased DNA damage related to oxidative stress and chemical composition.
Collapse
Affiliation(s)
- Mariana Terezinha Selbach
- Laboratory of Genetic Toxicology, PPGBioSaúde (Postgraduate Program in Cellular and Molecular Biology Applied to Health), Lutheran University of Brazil (ULBRA), Canoas, RS, Brazil
| | - Amanda Souza Scotti
- Laboratory of Genetic Toxicology, PPGBioSaúde (Postgraduate Program in Cellular and Molecular Biology Applied to Health), Lutheran University of Brazil (ULBRA), Canoas, RS, Brazil
| | - Cleverson Costa Feistel
- Pharmacognosy and Phytochemistry Laboratory, PPGBioSaúde (Postgraduate Program in Cellular and Molecular Biology Applied to Health), Lutheran University of Brazil (ULBRA), Canoas, RS, Brazil
| | - Caroline C Nicolau
- Laboratory of Genetic Toxicology, PPGBioSaúde (Postgraduate Program in Cellular and Molecular Biology Applied to Health), Lutheran University of Brazil (ULBRA), Canoas, RS, Brazil
| | - Daiana Dalberto
- Laboratory of Genetic Toxicology, PPGBioSaúde (Postgraduate Program in Cellular and Molecular Biology Applied to Health), Lutheran University of Brazil (ULBRA), Canoas, RS, Brazil
| | - Natália Garcia Dos Santos
- Pharmacognosy and Phytochemistry Laboratory, PPGBioSaúde (Postgraduate Program in Cellular and Molecular Biology Applied to Health), Lutheran University of Brazil (ULBRA), Canoas, RS, Brazil
| | - Guilherme Borsoi
- Pharmacognosy and Phytochemistry Laboratory, PPGBioSaúde (Postgraduate Program in Cellular and Molecular Biology Applied to Health), Lutheran University of Brazil (ULBRA), Canoas, RS, Brazil
| | - Alexandre Barros Falcão Ferraz
- Pharmacognosy and Phytochemistry Laboratory, PPGBioSaúde (Postgraduate Program in Cellular and Molecular Biology Applied to Health), Lutheran University of Brazil (ULBRA), Canoas, RS, Brazil
| | - Ivana Grivicich
- Laboratory of Cancer Biology, PPGBioSaúde (Postgraduate Program in Cellular and Molecular Biology Applied to Health), Lutheran University of Brazil (ULBRA), Canoas, RS, Brazil
| | | | - Paola Chytry
- Ion Implantation Laboratory, Institute of Physics, Federal University of Rio Grande Do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Johnny Ferraz Dias
- Ion Implantation Laboratory, Institute of Physics, Federal University of Rio Grande Do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Dione Silva Corrêa
- Center for Research in Product and Development (CEPPED), Lutheran University of Brazil (ULBRA), Canoas, RS, Brazil
| | - Juliana da Silva
- Laboratory of Genetic Toxicology, PPGBioSaúde (Postgraduate Program in Cellular and Molecular Biology Applied to Health), Lutheran University of Brazil (ULBRA), Canoas, RS, Brazil
| |
Collapse
|
33
|
Park JH, Lee BM, Kim HS. Potential protective roles of curcumin against cadmium-induced toxicity and oxidative stress. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART B, CRITICAL REVIEWS 2021; 24:95-118. [PMID: 33357071 DOI: 10.1080/10937404.2020.1860842] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Curcumin, used as a spice and traditional medicine in India, exerts beneficial effects against several diseases, owing to its antioxidant, analgesic, and anti-inflammatory properties. Evidence indicates that curcumin might protect against heavy metal-induced organ toxicity by targeting biological pathways involved in anti-oxidation, anti-inflammation, and anti-tumorigenesis. Curcumin has received considerable attention owing to its therapeutic properties, and the mechanisms underlying some of its actions have been recently investigated. Cadmium (Cd) is a heavy metal found in the environment and used extensively in industries. Chronic Cd exposure induces damage to bones, liver, kidneys, lungs, testes, and the immune and cardiovascular systems. Because of its long half-life, exposure to even low Cd levels might be harmful. Cd-induced toxicity involves the overproduction of reactive oxygen species (ROS), resulting in oxidative stress and damage to essential biomolecules. Dietary antioxidants, such as chelating agents, display the potential to reduce Cd accumulation and metal-induced toxicity. Curcumin scavenges ROS and inhibits oxidative damage, thus resulting in many therapeutic properties. This review aims to address the effectiveness of curcumin against Cd-induced organ toxicity and presents evidence supporting the use of curcumin as a protective antioxidant.
Collapse
Affiliation(s)
- Jae Hyeon Park
- School of Pharmacy, Sungkyunkwan University, Suwon Republic of Korea
| | - Byung Mu Lee
- School of Pharmacy, Sungkyunkwan University, Suwon Republic of Korea
| | - Hyung Sik Kim
- School of Pharmacy, Sungkyunkwan University, Suwon Republic of Korea
| |
Collapse
|
34
|
Cavalcanti BC, Neto JBDA, Silva AADS, Barreto FS, Ferreira JRDO, Magalhães HIF, Silva CRD, Vieira ÍGP, Ricardo NMPS, Nobre Júnior HV, Moraes MO. Chemopreventive effect of troxerutin against hydrogen peroxide-induced oxidative stress in human leukocytes through modulation of glutathione-dependent enzymes. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2021; 84:137-151. [PMID: 33103637 DOI: 10.1080/15287394.2020.1836541] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Troxerutin is a natural flavonoid present abundantly in tea, coffee, olives, wheat, and a variety of fruits and vegetables. Due to its diverse pharmacological properties, this flavonoid has aroused interest for treatment of various diseases, and consequently prompted investigation into its toxicological characteristics. The aim of this study was to evaluate the genotoxic and mutagenic effects and chemoprotective activity attributed to troxerutin using human peripheral blood leukocytes (PBLs) through several well-established experimental protocols based upon different parameters. Data demonstrated that troxerutin (100 to 1000 µM) induced no marked cytotoxic effect on PBLs after 24 hr, and did not produce strand breaks and mutagenicity. Regarding chemoprevention, this flavonoid attenuated cytotoxicity, genotoxicity, and mutagenicity initiated by hydrogen peroxide (H2O2) in human PBLs. Further, troxerutin demonstrated no marked cytotoxic effect on PBLs and exerted a protective effect against oxidative stress induced by H2O2 through modulation of GSH-dependent enzymes.
Collapse
Affiliation(s)
- Bruno Coêlho Cavalcanti
- Drug Research and Development Center, Federal University of Ceará , Fortaleza, Brazil
- Department of Physiology and Pharmacology, Federal University of Ceará , Fortaleza, CE, Brazil
| | - João Batista de Andrade Neto
- Drug Research and Development Center, Federal University of Ceará , Fortaleza, Brazil
- School of Pharmacy, Laboratory for Bioprospection of Antimicrobial Molecules, Federal University of Ceará , Fortaleza, Brazil
- Christus University Center (UNICHRISTUS) , Fortaleza, Brazil
| | | | | | | | | | - Cecília Rocha da Silva
- Drug Research and Development Center, Federal University of Ceará , Fortaleza, Brazil
- School of Pharmacy, Laboratory for Bioprospection of Antimicrobial Molecules, Federal University of Ceará , Fortaleza, Brazil
| | | | | | - Hélio Vitoriano Nobre Júnior
- Drug Research and Development Center, Federal University of Ceará , Fortaleza, Brazil
- School of Pharmacy, Laboratory for Bioprospection of Antimicrobial Molecules, Federal University of Ceará , Fortaleza, Brazil
| | - Manoel Odorico Moraes
- Drug Research and Development Center, Federal University of Ceará , Fortaleza, Brazil
- Department of Physiology and Pharmacology, Federal University of Ceará , Fortaleza, CE, Brazil
| |
Collapse
|
35
|
Sbardelotto AB, Barros-Nepomuceno FWA, Soares BM, Cavalcanti BC, Ramos de Sousa RW, Costa MPD, Pessoa ODL, Pessoa C, Ferreira PMP. Cellular and biochemical antileukemic mechanisms of the meroterpenoid Oncocalyxone A. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2021; 84:95-111. [PMID: 33092495 DOI: 10.1080/15287394.2020.1835763] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Oncocalyxone A, a 1,4-benzoquinone derived from Cordia oncocalyx, exhibits anti-inflammatory, antimicrobial and antidiabetic properties. The aim of this study was to (1) examine the cytotoxic actions of oncocalyxone A on human normal and tumor cell lines and (2) determine mechanistic actions underlying effects upon leukemia cells using cellular and molecular techniques. Antiproliferative studies on cancer cell lines, peripheral blood mononuclear cells, and human erythrocytes were performed using colorimetric assays. To understand cytotoxicity, assessments were performed with HL-60 leukemia cells (8, 16.5, or 33 µM) after 24 hr incubation using light and fluorescence microscopy, trypan blue, flow cytometry, Comet assay, western blot of caspases and poly-ADP-ribose polymerase (PARP), and effects on topoisomerase I and II. Oncocalyxone A exhibited cytotoxic action upon HL-60 cells and dividing leukocytes, but minimal hemolytic action on erythrocytes. Mechanistic investigations demonstrated reduction of cell viability, loss of membrane integrity, cell shrinking, chromatin condensation, blebbings, externalization of phosphatidylserine, caspase activation, PARP cleavage, mitochondrial depolarization, and DNA damage. Pre-treatment with N-acetylcysteine 4 mM significantly reduced DNA damage and prevented membrane integrity loss. Oncocalyxone A displayed free radical dependent antileukemic activity via apoptotic pathways and induced DNA damage in HL-60 cells. Oncocalyxone A possesses structural chemical simplicity enabling it to be a cost-effective alternative. These properties justify further improvements to enhance activity and selectivity and the development of pharmaceutical formulations. Abbreviations Acridine orange, AO; ANOVA, analysis of variance; BSA, bovine serum albumin; DI, Damage Index; DMSO, dimethylsulfoxide; EC50, effective concentration 50%; EDTA, ethylenediamine tetraacetic acid; EB, ethidium bromide; HCT-116, colon carcinoma line; HL-60, promyelocytic leukemia line; IC50, inhibitory concentration 50%; MTT, 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2H-tetrazolium bromide; OVCAR-8, ovarian carcinoma line; NAC, N-acetylcysteine, PBMC, peripheral blood mononuclear cells; PBS, phosphate-buffered saline; PI, propidium iodide; PARP, poly-ADP-ribose polymerase; RPMI-1640, Roswell Park Memorial Institute medium; SF-295, glioblastoma line; ROS, reactive oxygen species; 7-AAD, 7-amino-actinomycin D; H2-DCF-DA, 7'-dichlorodihydrofluorescein diacetate.
Collapse
Affiliation(s)
- Aline Borba Sbardelotto
- Department of Physiology and Pharmacology, Faculty of Medicine, Federal University of Ceará , Fortaleza, Brazil
| | | | - Bruno Marques Soares
- Department of Physiology and Pharmacology, Faculty of Medicine, Federal University of Ceará , Fortaleza, Brazil
| | - Bruno Coêlho Cavalcanti
- Department of Physiology and Pharmacology, Faculty of Medicine, Federal University of Ceará , Fortaleza, Brazil
| | - Rayran Walter Ramos de Sousa
- Postgraduate Program in Pharmaceutical Sciences, Federal University of Piauí , Teresina, Brazil
- Laboratory of Experimental Cancerology, Department of Biophysics and Physiology, Federal University of Piauí , Teresina, Brazil
| | - Marcília Pinheiro da Costa
- Postgraduate Program in Pharmaceutical Sciences, Federal University of Piauí , Teresina, Brazil
- Department of Pharmacy, Federal University of Piauí , Teresina, Brazil
| | | | - Cláudia Pessoa
- Department of Physiology and Pharmacology, Faculty of Medicine, Federal University of Ceará , Fortaleza, Brazil
| | - Paulo Michel Pinheiro Ferreira
- Postgraduate Program in Pharmaceutical Sciences, Federal University of Piauí , Teresina, Brazil
- Laboratory of Experimental Cancerology, Department of Biophysics and Physiology, Federal University of Piauí , Teresina, Brazil
| |
Collapse
|
36
|
Dos Santos Freire J, Dos Santos Fernandes BC, da Silva JAC, da Silva Araújo JR, de Almeida PM, da Costa Júnior JS, da Silva JN, de Freitas SDL, Martins FA. Phytochemical and antioxidant characterization, cytogenotoxicity and antigenotoxicity of the fractions of the ethanolic extract of in Poincianella bracteosa (Tul.) L.P. Queiroz. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2020; 83:730-747. [PMID: 32998665 DOI: 10.1080/15287394.2020.1824136] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
has been widely used in folk medicine to treat catarrhal infections, diarrhea, and anemia; however, phytochemical and toxicogenetic data are still lacking. The objective of this study was to examine the phytochemical and antioxidant characteristics as well as assess cytogenotoxicity and antigenotoxicity in hexane (HF), ether (EF) and ethyl acetate (AF) fractions of P. bracteosa leaves using Allium cepa bioassay. Phytochemical analysis revealed the presence of saponins and phenolic groups. EF fraction contained a higher content of total phenolics (441.23 ± 1.82 mg GAE/g), while HF fraction showed a higher content of total flavonoids (84.77 ± 5.33 mg QE/g). Higher antioxidant activity was observed in EF (EC50 25.06 ± 0.07 µg/ml). Cytotoxic effect was verified for all fractions, but no chromosomal alterations were observed in the A. cepa assay. With respect to antigenotoxicity, the protective effect of EF and AF fractions was attributed to as evidenced by the modulation of mutagenic action of methyl methanesulfonate (MMS), mainly by inhibiting the development of micronuclei. Among the fractions, EF was considered the most promising, as it exhibited higher antioxidant activity, was not genotoxic, exerted protective activity against the damage induced by MMS and also presented cytotoxic activity, a desired quality in the search for natural anticarcinogenic compounds.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Francielle Alline Martins
- Programa de Pós-Graduação em Química, Universidade Estadual do Piauí - UESPI , Teresina, Brasil
- Centro de Ciências da Natureza, Universidade Estadual do Piauí - UESPI , Teresina, Brasil
| |
Collapse
|