1
|
Jiang Q, Xu T, Zhou H, Xiao Z, Xing L, Zheng X, Yu P, Chao Z, He Z, Yang W, Gu L. METTL14 regulates proliferation and differentiation of duck myoblasts through targeting MiR-133b. PLoS One 2025; 20:e0320659. [PMID: 40153415 PMCID: PMC11952261 DOI: 10.1371/journal.pone.0320659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Accepted: 02/23/2025] [Indexed: 03/30/2025] Open
Abstract
The development of duck pectoral muscle has a significant impact on meat quality, and miRNA and m6A modification play key roles in this process. In the early stage, by using MeRIP-seq and miRNA-seq to analyze the pectoral muscle tissue of duck embryos at day 13 (E13), day 19 (E19), and day 27 (E27) of incubation, we found that METTL14, as a core component of the m6A methylation transferase complex, showed significant differences in expression at different developmental stages and may have an important impact on pectoral muscle development. In this study, qRT-PCR detection revealed that the expression of proliferation and differentiation marker genes CDK2, CyclinD1, MYOG and MYHC varied at different stages, with the highest m6A level at E13 and the lowest expression of METTL14 at the same stage. After constructing overexpression and interference vectors for METTL14, we found that METTL14 interference promoted the proliferation of duck embryo myoblasts and inhibited differentiation, while overexpression inhibited proliferation and accelerated differentiation. In particular, the overexpression of METTL14 increased the expression of miR-133b, whose precursor sequence contains m6A modification sites, suggesting that METTL14 may participate in the regulation of muscle development by affecting the expression of miR-133b. This study provides new insights into the molecular mechanisms of duck pectoral muscle development and offers potential molecular targets for the genetic improvement of duck pectoral muscle.
Collapse
Affiliation(s)
- Qicheng Jiang
- School of Life and Health Sciences, Hainan University, Haikou, Hainan, China
| | - Tieshan Xu
- Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, Hainan, China
| | - Hailong Zhou
- School of Life and Health Sciences, Hainan University, Haikou, Hainan, China
| | - Zhepeng Xiao
- Institute of Animal Science & Veterinary Medicine, Hainan Academy of Agricultural Sciences, Haikou, Hainan, China
| | - Lingjing Xing
- Institute of Animal Science & Veterinary Medicine, Hainan Academy of Agricultural Sciences, Haikou, Hainan, China
| | - Xinli Zheng
- Institute of Animal Science & Veterinary Medicine, Hainan Academy of Agricultural Sciences, Haikou, Hainan, China
| | - Ping Yu
- Institute of Tropical Agriculture and Forestry, Hainan University, Haikou, Hainan, China
| | - Zhe Chao
- Institute of Animal Science & Veterinary Medicine, Hainan Academy of Agricultural Sciences, Haikou, Hainan, China
| | - Zhongchun He
- Institute of Animal Science & Veterinary Medicine, Hainan Academy of Agricultural Sciences, Haikou, Hainan, China
| | - Wei Yang
- Qionghai Animal Husbandry and Veterinary Service Center, Qionghai, Hainan, China
| | - Lihong Gu
- Institute of Animal Science & Veterinary Medicine, Hainan Academy of Agricultural Sciences, Haikou, Hainan, China
| |
Collapse
|
2
|
Sawutdeechaikul P, Hwang S, Klangprapan J, Phan TV, Lam CB, Yoon YJ, Seo S, Hong S, Lim JY, Ferreira JN. Mechanisms Tackling Salivary Gland Diseases with Extracellular Vesicle Therapies. J Dent Res 2025:220345251319295. [PMID: 40134140 DOI: 10.1177/00220345251319295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/27/2025] Open
Abstract
Extracellular vesicles (EVs) are lipid-enclosed particles released from cells, containing lipids, DNA, RNA, metabolites, and cytosolic and cell surface proteins. EVs support intercellular communication and orchestrate organogenesis by transferring bioactive molecules in between cells. Mesenchymal stem cells are known to produce EVs, which exhibit immunomodulatory and regenerative capabilities in many target organs, including the salivary glands (SGs). Since cell-based therapies still pose challenges (e.g., donor variability, limited hemocompatibility, and safety), specific EVs may constitute a therapeutic alternative for SG diseases. New EV guidelines (MISEV2023) have recently been updated and reported by our consortium to consolidate the principles of EV biology and expand the boundaries toward innovative therapies. These guidelines provide valuable guidance for researchers to consistently assess the effectiveness of mesenchymal stem cell-derived EV cargo cues, such as microRNA, proteins, and other molecules, to target SG diseases. This review provides a narrative synthesis of preclinical studies on EVs by highlighting EV mechanisms and their potential therapeutic applications for SG diseases, such as radiotherapy-induced SG hypofunction and Sjögren's syndrome, as well as inflammatory and aging-related SG conditions. Additionally, we highlight key areas of the MISEV2023 guidelines that will support future EV-based therapies in SG research. This review adhered to PRESS guidelines (Peer Review of Electronic Search Strategies) and utilized established databases, including Medline/PubMed, Embase, Web of Science, and Scopus, alongside machine learning tools for sorting the most impactful EV studies for SG diseases.
Collapse
Affiliation(s)
- P Sawutdeechaikul
- Center of Excellence and Innovation for Oral Health and Health Longevity, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand
| | - S Hwang
- Department of Otorhinolaryngology, College of Medicine, YonseiUniversity, Seoul, South Korea
| | - J Klangprapan
- Center of Excellence and Innovation for Oral Health and Health Longevity, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand
| | - T V Phan
- Center of Excellence and Innovation for Oral Health and Health Longevity, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand
| | - C Buu Lam
- Center of Excellence and Innovation for Oral Health and Health Longevity, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand
| | - Y-J Yoon
- Department of Otorhinolaryngology, College of Medicine, YonseiUniversity, Seoul, South Korea
| | - S Seo
- Department of Otorhinolaryngology, College of Medicine, YonseiUniversity, Seoul, South Korea
| | - S Hong
- Department of Otorhinolaryngology, College of Medicine, YonseiUniversity, Seoul, South Korea
| | - J-Y Lim
- Department of Otorhinolaryngology, College of Medicine, YonseiUniversity, Seoul, South Korea
| | - J N Ferreira
- Center of Excellence and Innovation for Oral Health and Health Longevity, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand
| |
Collapse
|
3
|
Tang Z, Xu X, Shi W, Ren X, Luo H, Xu Y, Li C. Huc-MSC-derived exosomes alleviates alcohol-induced osteonecrosis of the femoral head through targeting the miR-25-3p/GREM1 axis. Genomics 2025; 117:110996. [PMID: 39826815 DOI: 10.1016/j.ygeno.2025.110996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 12/05/2024] [Accepted: 01/03/2025] [Indexed: 01/22/2025]
Abstract
Osteonecrosis of the femoral head (ONFH) is a destructive bone disease, and overuse of alcohol is one of the major contributing factors. Although mesenchymal stem cells (MSCs) and their exosomes have been reported to attenuate ONFH, the potential mechanisms of alcohol-induced ONFH (AONFH) are unclear. Here, we isolated and identified human umbilical cord MSCs-derived exosomal (hucMSCs-exos) miR-25-3p. We observed that hucMSCs-exos transferred miR-25-3p into bone marrow stem cells (BMSCs). HucMSCs-exos miR-25-3p increased cell viability, osteogenic differentiation, and inhibited apoptosis of alcohol-treated BMSCs and AONFH rat model. Mechanically, hucMSCs-exos upregulated miR-25-3p expression in BMSCs by repressing miR-25-3p DNA methylation, and DNA methylation inhibitor 5-Aza-2-deoxycytidine (DAC) ameliorated AONFH. Besides, miR-25-3p suppressed gremlin 1 (GREM1) expression, and upregulation of GREM1 restored the inhibition of hucMSCs-exos on AONFH. Therefore, we determined that hucMSCs-exos miR-25-3p alleviated AONFH by inhibiting miR-25-3p DNA methylation and GREM1 expression, which may help identify novel biomarkers, diagnostic and therapeutic targets.
Collapse
Affiliation(s)
- Zhifang Tang
- Institute of Traumatology and Orthopedics, 920th Hospital of Joint Logistics Support Force, PLA, Kunming 650000, China
| | - Xiaoyan Xu
- Institute of Traumatology and Orthopedics, 920th Hospital of Joint Logistics Support Force, PLA, Kunming 650000, China
| | - Wei Shi
- Institute of Traumatology and Orthopedics, 920th Hospital of Joint Logistics Support Force, PLA, Kunming 650000, China; Institute of Traumatology and Orthopedics, 927th Hospital of Joint Logistics Support Force, PLA, Pu'er 665000, China
| | - Xianzhen Ren
- Institute of Traumatology and Orthopedics, 920th Hospital of Joint Logistics Support Force, PLA, Kunming 650000, China
| | - Huan Luo
- Graduate School of Kunming Medical University, Kunming 650500, China
| | - Yongqing Xu
- Institute of Traumatology and Orthopedics, 920th Hospital of Joint Logistics Support Force, PLA, Kunming 650000, China.
| | - Chuan Li
- Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, Yunnan, China.
| |
Collapse
|
4
|
Staub E, Cao Q, Chen XM, Pollock C. Concentration of kidney markers and detection of exosomes in urine samples collected in cotton wool balls in preterm and term neonates. Pathology 2025; 57:81-86. [PMID: 39516170 DOI: 10.1016/j.pathol.2024.07.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 07/01/2024] [Accepted: 07/17/2024] [Indexed: 11/16/2024]
Abstract
Collecting urine samples in neonates by catheterisation or suprapubic puncture causes trauma, whereas self-adhesive collection bags can damage fragile skin. An alternative method is the collection of samples from urine-soaked cotton wool balls placed in diapers. The aim of this study was to compare the concentration of albumin, creatinine, neutrophil gelatinase-associated lipocalin (NGAL), and uromodulin between clean-catch urine and samples collected in cotton wool balls in neonates and assess the efficiency of exosome extraction. Standard clean-catch urine samples were assayed for albumin, creatinine, NGAL, and uromodulin using commercial enzyme-linked immunosorbent assay (ELISA) kits. Concentrations were compared to the same urine samples extracted immediately from soaked cotton wool balls (sample 2, S2) or the urine extracted from cotton wool balls placed in a diaper in a warm incubator for 2 h before extraction (sample 3, S3). Exosomes were extracted from all three samples of one patient for visualisation by electron microscopy. Twenty-six infants (17 males) of median gestational age at birth of 32+1 weeks had urine collected at a median age of 29 days at 37+6 weeks corrected age. Concentrations in S2 and S3 were within 10% of the concentration of standard samples in 46% and 35% of specimens for albumin, 69% and 58% for creatinine, 12% and 12% for NGAL, and 27% and 15% for uromodulin, respectively, without consistent positive or negative bias. Urine albumin/creatinine ratios (UACRs) were 4.3% less in S2 and 4.5% less in S3 than in standard samples. Exosomes were extracted and visualised from all three sample types. Neonatal urine samples extracted from cotton wool balls can be used to screen for relevant albuminuria but provide imprecise estimates of NGAL and uromodulin. The proof of exosome extraction from urine collection in cotton wool balls opens the potential to examine exosomal cargo.
Collapse
Affiliation(s)
- Eveline Staub
- Department of Neonatology, Royal North Shore Hospital, St Leonards, NSW, Australia; Northern Clinical School, Faculty of Medicine and Health, University of Sydney, St Leonards, NSW, Australia.
| | - Qinghua Cao
- Renal Research, Kolling Institute of Medical Research, Royal North Shore Hospital, St Leonards, NSW, Australia
| | - Xin-Ming Chen
- Northern Clinical School, Faculty of Medicine and Health, University of Sydney, St Leonards, NSW, Australia; Renal Research, Kolling Institute of Medical Research, Royal North Shore Hospital, St Leonards, NSW, Australia
| | - Carol Pollock
- Northern Clinical School, Faculty of Medicine and Health, University of Sydney, St Leonards, NSW, Australia; Renal Research, Kolling Institute of Medical Research, Royal North Shore Hospital, St Leonards, NSW, Australia
| |
Collapse
|
5
|
Iwaya C, Iwata J. Associations between metabolic disorders and Sjögren's disease. JAPANESE DENTAL SCIENCE REVIEW 2024; 60:232-238. [PMID: 39502167 PMCID: PMC11535258 DOI: 10.1016/j.jdsr.2024.06.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 06/24/2024] [Accepted: 06/27/2024] [Indexed: 11/08/2024] Open
Abstract
Sjögren's disease (SjD) is a systemic autoimmune disorder characterized by dry eyes and mouth caused by chronic inflammation and is often accompanied by various extra-glandular manifestations, including fatigue and diffuse pain. Although the pathogenesis of the disease remains elusive, several factors (e.g. environmental, genetic and hormonal factors, abnormal metabolic status) are associated with this condition. Accumulating evidence suggests a potential role of cholesterol metabolism in immune and non-immune modulation in various diseases. In this review, we summarize the current findings on the associations between cholesterol metabolism and SjD.
Collapse
Affiliation(s)
- Chihiro Iwaya
- Department of Diagnostic & Biomedical Sciences, The University of Texas Health Science Center at Houston (UTHealth), School of Dentistry, Houston, Texas 77054, USA
- Center for Craniofacial Research, The University of Texas Health Science Center at Houston, School of Dentistry, Houston, TX 77054, USA
| | - Junichi Iwata
- Department of Diagnostic & Biomedical Sciences, The University of Texas Health Science Center at Houston (UTHealth), School of Dentistry, Houston, Texas 77054, USA
- Center for Craniofacial Research, The University of Texas Health Science Center at Houston, School of Dentistry, Houston, TX 77054, USA
- MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX 77030, USA
| |
Collapse
|
6
|
Chen S, Wang Z, Lu H, Yang R, Wu J. Crucial Factors Influencing the Involvement of Odontogenic Exosomes in Dental Pulp Regeneration. Stem Cell Rev Rep 2023; 19:2632-2649. [PMID: 37578647 DOI: 10.1007/s12015-023-10597-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/16/2023] [Indexed: 08/15/2023]
Abstract
Recent progress in exosome based studies has revealed that they possess several advantages over cells, including "cell-free" properties, low immunogenicity and ethical controversy, high biological safety and effective action. These characteristics confer exosomes significant advantages that allow them to overcome the limitations associated with traditional "cell therapy" by circumventing the issues of immune rejection, scarcity of donor cells, heterogeneity, and ethical concerns. Identification of a complete and effective radical treatment for irreversible pulpal disease, a common clinical problem, continues to pose challenges. Although traditional root canal therapy remains the primary clinical treatment, it does not fully restore the physiological functions of pulp. Although stem cell transplantation appears to be a relatively viable treatment strategy for pulp disease, issues such as cell heterogeneity and poor regeneration effects remain problematic. Dental pulp regeneration strategies based on "cell-free" exosome therapies explored by numerous studies appear to have shown significant advantages. In particular, exosomes derived from odontogenic stem cells have demonstrated considerable potential in tooth tissue regeneration engineering, and continue to exhibit superior therapeutic effects compared to non-odontogenic stem cell-derived exosomes. However, only a few studies have comprehensively summarised their research results, particularly regarding the critical factors involved in the process. Therefore, in this study, our purpose was to review the effects exerted by odontogenic exosomes on pulp regeneration and to analyse and discus crucial factors related to this process, thereby providing scholars with a feasible and manageable new concept with respect to regeneration schemes.
Collapse
Affiliation(s)
- San Chen
- Department of Endodontics, School of Stomatology/Affiliated Stomatological Hospital, Zunyi Medical University, Zunyi, 563000, Guizhou, China
| | - Zijie Wang
- Department of Endodontics, School of Stomatology/Affiliated Stomatological Hospital, Zunyi Medical University, Zunyi, 563000, Guizhou, China
| | - Hongqiao Lu
- Department of Endodontics, School of Stomatology/Affiliated Stomatological Hospital, Zunyi Medical University, Zunyi, 563000, Guizhou, China
| | - Runze Yang
- Department of Endodontics, School of Stomatology/Affiliated Stomatological Hospital, Zunyi Medical University, Zunyi, 563000, Guizhou, China
| | - Jiayuan Wu
- Department of Endodontics, School of Stomatology/Affiliated Stomatological Hospital, Zunyi Medical University, Zunyi, 563000, Guizhou, China.
| |
Collapse
|
7
|
Shchegolev YY, Sorokin DV, Scherbakov AM, Andreeva OE, Salnikova DI, Mikhaevich EI, Gudkova MV, Krasil’nikov MA. Exosomes are involved in the intercellular transfer of rapamycin resistance in the breast cancer cells. BIOIMPACTS : BI 2023; 13:313-321. [PMID: 37645026 PMCID: PMC10460766 DOI: 10.34172/bi.2023.27490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 05/17/2023] [Accepted: 05/20/2023] [Indexed: 08/31/2023]
Abstract
Introduction Resistance to chemotherapy and/or irradiation remains one of the key features of malignant tumors, which largely limits the efficiency of antitumor therapy. In this work, we studied the progression mechanism of breast cancer cell resistance to target drugs, including mTOR blockers, and in particular, we studied the exosome function in intercellular resistance transfer. Methods The cell viability was assessed by the MTT assay, exosomes were purified by successive centrifugations, immunoblotting was used to evaluate protein expression, AP-1 activity was analyzed using reporter assay. Results In experiments on the MCF-7 cell line (breast cancer) and the MCF-7/Rap subline that is resistant to rapamycin, the capability of resistant cell exosomes to trigger a similar rapamycin resistance in the parent MCF-7 cells was demonstrated. Exosome-induced resistance reproduces the changes revealed in MCF-7/Rap resistant cells, including the activation of ERK/AP-1 signaling, and it remains for a long time, for at least several months, after exosome withdrawal. We have shown that both the MCF-7 subline resistant to rapamycin and cells having exosome-triggered resistance demonstrate a stable decrease in the expression of DNMT3A, the key enzyme responsible for DNA methylation. Knockdown of DNMT3A in MCF-7 cells by siRNA leads to partial cell resistance to rapamycin; thus, the DNMT3A suppression is regarded as one of the necessary elements for the development of acquired rapamycin resistance. Conclusion We propose that DNA demethylation followed by increased expression of key genes may be one of the factors responsible for the progression and maintenance of the resistant cell phenotype that includes exosome-induced resistance.
Collapse
Affiliation(s)
- Yuri Yu. Shchegolev
- Department of Experimental Tumor Biology, Institute of Carcinogenesis, N.N. Blokhin National Medical Research Center of Oncology, Kashirskoye Shosse 24, Moscow 115522, Russia
| | - Danila V. Sorokin
- Department of Experimental Tumor Biology, Institute of Carcinogenesis, N.N. Blokhin National Medical Research Center of Oncology, Kashirskoye Shosse 24, Moscow 115522, Russia
| | - Alexander M. Scherbakov
- Department of Experimental Tumor Biology, Institute of Carcinogenesis, N.N. Blokhin National Medical Research Center of Oncology, Kashirskoye Shosse 24, Moscow 115522, Russia
| | - Olga E. Andreeva
- Department of Experimental Tumor Biology, Institute of Carcinogenesis, N.N. Blokhin National Medical Research Center of Oncology, Kashirskoye Shosse 24, Moscow 115522, Russia
| | - Diana I. Salnikova
- Department of Experimental Tumor Biology, Institute of Carcinogenesis, N.N. Blokhin National Medical Research Center of Oncology, Kashirskoye Shosse 24, Moscow 115522, Russia
| | - Ekaterina I. Mikhaevich
- Department of Experimental Tumor Biology, Institute of Carcinogenesis, N.N. Blokhin National Medical Research Center of Oncology, Kashirskoye Shosse 24, Moscow 115522, Russia
| | - Margarita V. Gudkova
- Department of Experimental Tumor Biology, Institute of Carcinogenesis, N.N. Blokhin National Medical Research Center of Oncology, Kashirskoye Shosse 24, Moscow 115522, Russia
| | - Mikhail A. Krasil’nikov
- Department of Experimental Tumor Biology, Institute of Carcinogenesis, N.N. Blokhin National Medical Research Center of Oncology, Kashirskoye Shosse 24, Moscow 115522, Russia
| |
Collapse
|
8
|
Zhang E, Phan P, Zhao Z. Cellular nanovesicles for therapeutic immunomodulation: A perspective on engineering strategies and new advances. Acta Pharm Sin B 2023; 13:1789-1827. [PMID: 37250173 PMCID: PMC10213819 DOI: 10.1016/j.apsb.2022.08.020] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 07/11/2022] [Accepted: 07/28/2022] [Indexed: 02/08/2023] Open
Abstract
Cellular nanovesicles which are referred to as cell-derived, nanosized lipid bilayer structures, have emerged as a promising platform for regulating immune responses. Owing to their outstanding advantages such as high biocompatibility, prominent structural stability, and high loading capacity, cellular nanovesicles are suitable for delivering various immunomodulatory molecules, such as small molecules, nucleic acids, peptides, and proteins. Immunomodulation induced by cellular nanovesicles has been exploited to modulate immune cell behaviors, which is considered as a novel cell-free immunotherapeutic strategy for the prevention and treatment of diverse diseases. Here we review emerging concepts and new advances in leveraging cellular nanovesicles to activate or suppress immune responses, with the aim to explicate their applications for immunomodulation. We overview the general considerations and principles for the design of engineered cellular nanovesicles with tailored immunomodulatory activities. We also discuss new advances in engineering cellular nanovesicles as immunotherapies for treating major diseases.
Collapse
Affiliation(s)
- Endong Zhang
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Illinois Chicago, Chicago, IL 60612, USA
| | - Philana Phan
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Illinois Chicago, Chicago, IL 60612, USA
| | - Zongmin Zhao
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Illinois Chicago, Chicago, IL 60612, USA
- Translational Oncology Program, University of Illinois Cancer Center, Chicago, IL 60612, USA
| |
Collapse
|
9
|
Yang H, Zhang H, Gu H, Wang J, Zhang J, Zen K, Li D. Comparative Analyses of Human Exosome Proteomes. Protein J 2023:10.1007/s10930-023-10100-0. [PMID: 36892742 DOI: 10.1007/s10930-023-10100-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/27/2023] [Indexed: 03/10/2023]
Abstract
Exosomes are responsible for cell-to-cell communication and serves as a valuable drug delivery vehicle. However, exosome heterogeneity, non-standardized isolation methods and proteomics/bioinformatics approaches limit its clinical applications. To better understand exosome heterogeneity, biological function and molecular mechanism of its biogenesis, secretion and uptake, techniques in proteomics or bioinformatics were applied to investigate human embryonic kidney cell (293T cell line)-derived exosome proteome and enable an integrative comparison of exosomal proteins and protein-protein interaction (PPI) networks of eleven exosome proteomes extracted from diverse human samples, including 293T (two datasets), dermal fibroblast, mesenchymal stem cell, thymic epithelial primary cell, breast cancer cell line (MDA-MB-231), patient neuroblastoma cell, plasma, saliva, serum and urine. Mapping of exosome biogenesis/secretion/uptake-related proteins onto exosome proteomes highlights exosomal origin-specific routes of exosome biogenesis/secretion/uptake and exosome-dependent intercellular communication. The finding provides insight into comparative exosome proteomes and its biogenesis, secretion and uptake, and potentially contributes to clinical applications.
Collapse
Affiliation(s)
- Hao Yang
- State Key Laboratory of Pharmaceutical Biotechnology, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, School of Life Sciences, Nanjing University, 210023, Jiangsu, P.R. China
| | - Haiyang Zhang
- State Key Laboratory of Pharmaceutical Biotechnology, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, School of Life Sciences, Nanjing University, 210023, Jiangsu, P.R. China
| | - Hongwei Gu
- State Key Laboratory of Pharmaceutical Biotechnology, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, School of Life Sciences, Nanjing University, 210023, Jiangsu, P.R. China
| | - Jin Wang
- State Key Laboratory of Pharmaceutical Biotechnology, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, School of Life Sciences, Nanjing University, 210023, Jiangsu, P.R. China
| | - Junfeng Zhang
- State Key Laboratory of Pharmaceutical Biotechnology, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, School of Life Sciences, Nanjing University, 210023, Jiangsu, P.R. China
| | - Ke Zen
- State Key Laboratory of Pharmaceutical Biotechnology, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, School of Life Sciences, Nanjing University, 210023, Jiangsu, P.R. China
| | - Donghai Li
- State Key Laboratory of Pharmaceutical Biotechnology, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, School of Life Sciences, Nanjing University, 210023, Jiangsu, P.R. China.
| |
Collapse
|
10
|
Chansaenroj A, Adine C, Charoenlappanit S, Roytrakul S, Sariya L, Osathanon T, Rungarunlert S, Urkasemsin G, Chaisuparat R, Yodmuang S, Souza GR, Ferreira JN. Magnetic bioassembly platforms towards the generation of extracellular vesicles from human salivary gland functional organoids for epithelial repair. Bioact Mater 2022; 18:151-163. [PMID: 35387159 PMCID: PMC8961305 DOI: 10.1016/j.bioactmat.2022.02.007] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 01/27/2022] [Accepted: 02/08/2022] [Indexed: 11/04/2022] Open
Abstract
Salivary glands (SG) are exocrine organs with secretory units commonly injured by radiotherapy. Bio-engineered organoids and extracellular vesicles (EV) are currently under investigation as potential strategies for SG repair. Herein, three-dimensional (3D) cultures of SG functional organoids (SGo) and human dental pulp stem cells (hDPSC) were generated by magnetic 3D bioassembly (M3DB) platforms. Fibroblast growth factor 10 (FGF10) was used to enrich the SGo in secretory epithelial units. After 11 culture days via M3DB, SGo displayed SG-specific acinar epithelial units with functional properties upon neurostimulation. To consistently develop 3D hDPSC in vitro, 3 culture days were sufficient to maintain hDPSC undifferentiated genotype and phenotype for EV generation. EV isolation was performed via sequential centrifugation of the conditioned media of hDPSC and SGo cultures. EV were characterized by nanoparticle tracking analysis, electron microscopy and immunoblotting. EV were in the exosome range for hDPSC (diameter: 88.03 ± 15.60 nm) and for SGo (123.15 ± 63.06 nm). Upon ex vivo administration, exosomes derived from SGo significantly stimulated epithelial growth (up to 60%), mitosis, epithelial progenitors and neuronal growth in injured SG; however, such biological effects were less distinctive with the ones derived from hDPSC. Next, these exosome biological effects were investigated by proteomic arrays. Mass spectrometry profiling of SGo exosomes predicted that cellular growth, development and signaling was due to known and undocumented molecular targets downstream of FGF10. Semaphorins were identified as one of the novel targets requiring further investigations. Thus, M3DB platforms can generate exosomes with potential to ameliorate SG epithelial damage.
Collapse
Affiliation(s)
- Ajjima Chansaenroj
- Avatar Biotechnologies for Oral Health and Healthy Longevity Research Unit, Faculty of Dentistry, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Christabella Adine
- Faculty of Dentistry, National University of Singapore, 119077, Singapore, Singapore
- Department of Biomedical Engineering, Faculty of Engineering, National University of Singapore, 119077, Singapore, Singapore
| | - Sawanya Charoenlappanit
- Functional Ingredients and Food Innovation Research Group, National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Pathum Thani, 12120, Thailand
| | - Sittiruk Roytrakul
- Functional Ingredients and Food Innovation Research Group, National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Pathum Thani, 12120, Thailand
| | - Ladawan Sariya
- The Monitoring and Surveillance Center for Zoonotic Diseases in Wildlife and Exotic Animals, Faculty of Veterinary Science, Mahidol University, Nakhon Pathom, 73170, Thailand
| | - Thanaphum Osathanon
- Department of Anatomy, Faculty of Dentistry, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Sasitorn Rungarunlert
- Department of Preclinical and Applied Animal Science, Faculty of Veterinary Science, Mahidol University, Nakhon Pathom, 73170, Thailand
| | - Ganokon Urkasemsin
- Department of Preclinical and Applied Animal Science, Faculty of Veterinary Science, Mahidol University, Nakhon Pathom, 73170, Thailand
| | - Risa Chaisuparat
- Avatar Biotechnologies for Oral Health and Healthy Longevity Research Unit, Faculty of Dentistry, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Supansa Yodmuang
- Avatar Biotechnologies for Oral Health and Healthy Longevity Research Unit, Faculty of Dentistry, Chulalongkorn University, Bangkok, 10330, Thailand
- Research Affairs, Faculty of Medicine, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Glauco R. Souza
- University of Texas Health Sciences Center at Houston, Houston, TX, 77030, USA
- Nano3D Biosciences Inc., Houston, TX, 77030, USA
- Greiner Bio-One North America Inc, Monroe, NC, 28110, USA
| | - João N. Ferreira
- Avatar Biotechnologies for Oral Health and Healthy Longevity Research Unit, Faculty of Dentistry, Chulalongkorn University, Bangkok, 10330, Thailand
- Faculty of Dentistry, National University of Singapore, 119077, Singapore, Singapore
| |
Collapse
|
11
|
Yu W, Li S, Zhang G, Xu HHK, Zhang K, Bai Y. New frontiers of oral sciences: Focus on the source and biomedical application of extracellular vesicles. Front Bioeng Biotechnol 2022; 10:1023700. [PMID: 36338125 PMCID: PMC9627311 DOI: 10.3389/fbioe.2022.1023700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Accepted: 10/04/2022] [Indexed: 12/05/2022] Open
Abstract
Extracellular vesicles (EVs) are a class of nanoparticles that are derived from almost any type of cell in the organism tested thus far and are present in all body fluids. With the capacity to transfer "functional cargo and biological information" to regulate local and distant intercellular communication, EVs have developed into an attractive focus of research for various physiological and pathological conditions. The oral cavity is a special organ of the human body. It includes multiple types of tissue, and it is also the beginning of the digestive tract. Moreover, the oral cavity harbors thousands of bacteria. The importance and particularity of oral function indicate that EVs derived from oral cavity are quite complex but promising for further research. This review will discuss the extensive source of EVs in the oral cavity, including both cell sources and cell-independent sources. Besides, accumulating evidence supports extensive biomedical applications of extracellular vesicles in oral tissue regeneration and development, diagnosis and treatment of head and neck tumors, diagnosis and therapy of systemic disease, drug delivery, and horizontal gene transfer (HGT). The immune cell source, odontoblasts and ameloblasts sources, diet source and the application of EVs in tooth development and HGT were reviewed for the first time. In conclusion, we concentrate on the extensive source and potential applications offered by these nanovesicles in oral science.
Collapse
Affiliation(s)
- Wenting Yu
- Department of Orthodontics, Beijing Stomatological Hospital, School of Stomatology, Capital Medical University, Beijing, China
| | - Shengnan Li
- Department of Orthodontics, Beijing Stomatological Hospital, School of Stomatology, Capital Medical University, Beijing, China
| | - Guohao Zhang
- Department of Oral and Maxillofacial Surgery, Peking University School and Hospital of Stomatology and National Center of Stomatology and National Clinical Research Center for Oral Diseases and National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing, China
| | - Hockin H. K. Xu
- Biomaterials and Tissue Engineering Division, Department of Advanced Oral Sciences and Therapeutics, University of Maryland School of Dentistry, Baltimore, MD, United States
- Center for Stem Cell Biology and Regenerative Medicine, University of Maryland School of Medicine, Baltimore, MD, United States
- Marlene and Stewart Greenebaum Cancer Center, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Ke Zhang
- Department of Orthodontics, Beijing Stomatological Hospital, School of Stomatology, Capital Medical University, Beijing, China
| | - Yuxing Bai
- Department of Orthodontics, Beijing Stomatological Hospital, School of Stomatology, Capital Medical University, Beijing, China
| |
Collapse
|
12
|
Eliason S, Hong L, Sweat Y, Chalkley C, Cao H, Liu Q, Qi H, Xu H, Zhan F, Amendt BA. Extracellular vesicle expansion of PMIS-miR-210 expression inhibits colorectal tumour growth via apoptosis and an XIST/NME1 regulatory mechanism. Clin Transl Med 2022; 12:e1037. [PMID: 36116139 PMCID: PMC9482803 DOI: 10.1002/ctm2.1037] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 08/10/2022] [Accepted: 08/15/2022] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND Colorectal cancer (CRC) has a high mortality rate, and therapeutic approaches to treat these cancers are varied and depend on the metabolic state of the tumour. Profiles of CRC tumours have identified several biomarkers, including microRNAs. microRNA-210 (miR-210) levels are directly correlated with CRC survival. miR-210 expression is higher in metastatic colon cancer cells versus non-metastatic and normal colon epithelium. Therefore, efficient methods to inhibit miR-210 expression in CRC may provide new advances in treatments. METHODS Expression of miRs was determined in several metastatic and non-metastatic cell lines. miR-210 expression was inhibited using PMIS-miR-210 in transduced cells, which were transplanted into xenograft mice. In separate experiments, CRC tumours were allowed to grow in xenograft mice and treated with therapeutic injections of PMIS-miR-210. Molecular and biochemical experiments identified several new pathways targeted by miR-210 inhibition. RESULTS miR-210 inhibition can significantly reduce tumour growth of implanted colon cancer cells in xenograft mouse models. The direct administration of PMIS-miR-210 to existing tumours can inhibit tumour growth in both NSG and Foxn1nu/j mouse models and is more efficacious than capecitabine treatments. Tumour cells further transfer the PMIS-miR-210 inhibitor to neighbouring cells by extracellular vesicles to inhibit miR-210 throughout the tumour. miR-210 inhibition activates the cleaved caspase 3 apoptotic pathway to reduce tumour formation. We demonstrate that the long non-coding transcript XIST is regulated by miR-210 correlating with decreased XIST expression in CRC tumours. XIST acts as a competing endogenous RNA for miR-210, which reduces XIST levels and miR-210 inhibition increases XIST transcripts in the nucleus and cytoplasm. The increased expression of NME1 is associated with H3K4me3 and H3K27ac modifications in the NME1 proximal promoter by XIST. CONCLUSION Direct application of the PMIS-miR-210 inhibitor to growing tumours may be an effective colorectal cancer therapeutic.
Collapse
Affiliation(s)
- Steven Eliason
- Department of Anatomy and Cell BiologyThe University of IowaIowa CityIowaUSA
- Craniofacial Anomalies Research CenterThe University of IowaIowa CityIowaUSA
| | - Liu Hong
- Craniofacial Anomalies Research CenterThe University of IowaIowa CityIowaUSA
- Iowa Institute for Oral Health ResearchThe University of IowaIowa CityIowaUSA
| | - Yan Sweat
- Department of Anatomy and Cell BiologyThe University of IowaIowa CityIowaUSA
- Craniofacial Anomalies Research CenterThe University of IowaIowa CityIowaUSA
| | - Camille Chalkley
- Department of Anatomy and Cell BiologyThe University of IowaIowa CityIowaUSA
- Craniofacial Anomalies Research CenterThe University of IowaIowa CityIowaUSA
| | - Huojun Cao
- Iowa Institute for Oral Health ResearchThe University of IowaIowa CityIowaUSA
| | - Qi Liu
- Department of Anatomy and Cell BiologyThe University of IowaIowa CityIowaUSA
| | - Hank Qi
- Department of Anatomy and Cell BiologyThe University of IowaIowa CityIowaUSA
| | - Hongwei Xu
- Department of Internal MedicineUniversity of Arkansas for Medical ScienceLittle RockArkansasUSA
| | - Fenghuang Zhan
- Department of Internal MedicineUniversity of Arkansas for Medical ScienceLittle RockArkansasUSA
| | - Brad A. Amendt
- Department of Anatomy and Cell BiologyThe University of IowaIowa CityIowaUSA
- Craniofacial Anomalies Research CenterThe University of IowaIowa CityIowaUSA
- Iowa Institute for Oral Health ResearchThe University of IowaIowa CityIowaUSA
| |
Collapse
|
13
|
Hayashi T, Eto K, Kadoya Y. Downregulation of ten-eleven translocation-2 triggers epithelial differentiation during organogenesis. Differentiation 2022; 125:45-53. [DOI: 10.1016/j.diff.2022.05.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 03/25/2022] [Accepted: 05/02/2022] [Indexed: 11/26/2022]
|
14
|
Xu C, Hou L, Zhao J, Wang Y, Jiang F, Jiang Q, Zhu Z, Tian L. Exosomal let-7i-5p from three-dimensional cultured human umbilical cord mesenchymal stem cells inhibits fibroblast activation in silicosis through targeting TGFBR1. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 233:113302. [PMID: 35189518 DOI: 10.1016/j.ecoenv.2022.113302] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 02/07/2022] [Accepted: 02/08/2022] [Indexed: 06/14/2023]
Abstract
Silicosis of pulmonary fibrosis (PF) is related to long-term excessive inhalation of silica. The activation of fibroblasts into myofibroblasts is the main terminal effect leading to lung fibrosis, which is of great significance to the study of the occurrence and development of silicosis fibrosis and its prevention and treatment. Exosomes derived from human umbilical cord mesenchymal stem cells (hucMSC-Exos) are considered to be a potential therapy of silica-induced PF, however, their exact mechanism remains unknown. Therefore, this study aims to explore whether hucMSC-Exos affect the activation of fibroblasts to alleviate PF. In this study, a three-dimensional (3D) method was applied to culture hucMSCs and MRC-5 cells (human embryonic lung fibroblasts), and exosomes were isolated from serum-free media, identified by nanoparticle tracking analysis (NTA), transmission electron microscopy (TEM) and Western blotting analysis. Then, the study used an animal model of silica-induced PF to observe the effects of hucMSC-Exos and MRC-5-Exos on activation of fibroblasts. In addition, the activation of fibroblasts was analyzed by Western blotting analysis, wound healing, and migration assay with the treatment of hucMSC-Exos and MRC-5-Exos in NIH-3T3 cells (mouse embryonic fibroblasts). Furthermore, differential expression of microRNAs (DE miRNAs) was measured between hucMSCs-Exos and MRC-5-Exos by high throughput sequence. HucMSC-Exos inhibited the activation of fibroblasts in mice and NIH-3T3 cells. Let-7i-5p was significantly up-regulated in hucMSCs-Exos compared to MRC-5-Exos, which was related to silica-induced PF. Let-7i-5p of hucMSCs-Exos was responsible for the activation of fibroblasts by targeting TGFBR1. Meanwhile, Smad3 was also an important role in the activation of fibroblasts. The study demonstrates that hucMSCs-Exos act as a mediator that transfers let-7i-5p to inhibit the activation of fibroblasts, which alleviates PF through the TGFBR1/Smad3 signaling pathway. The mechanism has potential value for the treatment of silica-induced PF.
Collapse
Affiliation(s)
- Chunjie Xu
- Department of Occupational and Environmental Health, School of Public Health, Capital Medical University, Beijing 100069, China; Laboratory of Pharmacology/Beijing Key Laboratory of Antimicrobial Agents, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China
| | - Lin Hou
- Department of Occupational and Environmental Health, School of Public Health, Capital Medical University, Beijing 100069, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China
| | - Jing Zhao
- Department of Occupational and Environmental Health, School of Public Health, Capital Medical University, Beijing 100069, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China
| | - Yan Wang
- Department of Occupational and Environmental Health, School of Public Health, Capital Medical University, Beijing 100069, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China
| | - Fuyang Jiang
- Department of Occupational and Environmental Health, School of Public Health, Capital Medical University, Beijing 100069, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China
| | - Qiyue Jiang
- Department of Occupational and Environmental Health, School of Public Health, Capital Medical University, Beijing 100069, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China
| | - Zhonghui Zhu
- Department of Occupational and Environmental Health, School of Public Health, Capital Medical University, Beijing 100069, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China.
| | - Lin Tian
- Department of Occupational and Environmental Health, School of Public Health, Capital Medical University, Beijing 100069, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China.
| |
Collapse
|
15
|
Screening of MicroRNAs with Potential Systemic Effects Released from Goose Fatty Liver. J Poult Sci 2021; 58:263-269. [PMID: 34899022 PMCID: PMC8630403 DOI: 10.2141/jpsa.0200097] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2020] [Accepted: 12/07/2020] [Indexed: 12/28/2022] Open
Abstract
Communication between tissues and organs plays an important role in the maintenance of normal physiological functions as well as the occurrence and development of diseases. Communication molecules act as a bridge for interactions between tissues and organs, playing not only a local role in the tissues and organs where they are secreted but also in exerting systemic effects on the whole body via circulation. In this study, blood microRNA-omics analysis of overfed vs. normally fed (control) Landes geese revealed that the content of each of the 21 microRNAs (miRNAs) in the blood of overfed geese was significantly higher than that in the blood of control geese. These miRNAs may have systematic effects in the development of goose fatty liver as well as being candidate markers for the diagnosis of goose fatty liver. We determined the expression of miR-143, miR-455-5p, miR-222a-5p, miR-184, miR-1662, and miR-129-5p using quantitative PCR in goose fatty liver vs. that in normal liver. The expression of these miRNAs, except miR-129-5p, in goose fatty liver was also significantly higher than that in normal liver (P<0.05), suggesting that these blood miRNAs are released from goose fatty liver. In addition, we found that expression of IGFBP5, the predicted target gene of miR-143, was significantly decreased in goose fatty liver vs. the normal liver (P<0.05), indicating that miR-143 may exert both local and systematic effects by inhibiting the expression of IGFBP5, thus promoting the development of goose fatty liver. In conclusion, we identified several miRNAs, including those we validated (i.e., miR-143, miR-455-5p, miR-222a-5p, miR-184, miR-1662, and miR-129-5p) that may serve as candidate markers in the diagnosis of goose fatty liver as well as local and global regulators contributing to the development of goose fatty liver.
Collapse
|
16
|
Jin Y, Ai L, Chai X, Tang P, Zhang W, Yang L, Hu Y, Xu Y, Li S. Maternal Circulating Exosomal miRNAs as Non-invasive Biomarkers for the Prediction of Fetal Ventricular Septal Defect. Front Genet 2021; 12:717208. [PMID: 34567071 PMCID: PMC8458870 DOI: 10.3389/fgene.2021.717208] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Accepted: 08/16/2021] [Indexed: 11/22/2022] Open
Abstract
Objective: This study aimed to identify maternal circulating exosomal miRNAs as potential non-invasive biomarkers for the early detection of fetal ventricular septal defects (VSDs). Methods: In total, 182 pregnant women, comprising 91 VSD cases and 91 matched controls, were included in this study. Exosomes were isolated; dysregulated exosomal miRNAs were profiled using next-generation sequencing. Differential abundance of miRNAs was verified using quantitative real-time polymerase chain reaction (qRT-PCR). Diagnostic accuracy was evaluated by constructing receiver operating characteristic (ROC) curves. Results: In total, 77 serum exosomal miRNAs were found to be differentially expressed in the VSD group compared to their expression in the control group. Among these, five downregulated exosomal miRNAs were validated using qRT-PCR. hsa-miR-146a-5p was identified to be capable of distinguishing VSD cases from controls (area under the ROC curve [AUC]: 0.997; p < 1.00E-05). Conclusion: Circulating exosomal miRNAs, particularly hsa-miR-146a-5p, may be predictive biomarkers for the non-invasive prenatal diagnosis of fetal VSDs.
Collapse
Affiliation(s)
- Yuxia Jin
- Department of Prenatal Diagnostic, Jiaxing Maternity and Children Health Care Hospital, Jiaxing University, Jiaxing, China
| | - Ling Ai
- Department of Prenatal Diagnostic, Jiaxing Maternity and Children Health Care Hospital, Jiaxing University, Jiaxing, China
| | - Xiaojun Chai
- Department of Prenatal Diagnostic, Jiaxing Maternity and Children Health Care Hospital, Jiaxing University, Jiaxing, China
| | - Ping Tang
- Department of Prenatal Diagnostic, Jiaxing Maternity and Children Health Care Hospital, Jiaxing University, Jiaxing, China
| | - Weihua Zhang
- Department of Prenatal Diagnostic, Jiaxing Maternity and Children Health Care Hospital, Jiaxing University, Jiaxing, China
| | - Li Yang
- Department of Prenatal Diagnostic, Jiaxing Maternity and Children Health Care Hospital, Jiaxing University, Jiaxing, China
| | - Yue Hu
- Department of Prenatal Diagnostic, Jiaxing Maternity and Children Health Care Hospital, Jiaxing University, Jiaxing, China
| | - Ying Xu
- College of Medicine, Jiaxing University, Jiaxing, China
| | - Suping Li
- Department of Prenatal Diagnostic, Jiaxing Maternity and Children Health Care Hospital, Jiaxing University, Jiaxing, China
| |
Collapse
|
17
|
Xiang K, Akram M, Elbossaty WF, Yang J, Fan C. Exosomes in atrial fibrillation: therapeutic potential and role as clinical biomarkers. Heart Fail Rev 2021; 27:1211-1221. [PMID: 34251579 DOI: 10.1007/s10741-021-10142-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/05/2021] [Indexed: 12/21/2022]
Abstract
Atrial fibrillation (AF), the most common cardiac arrhythmia, is a global epidemic. AF can cause heart failure and myocardial infarction and increase the risk of stroke, disability, and thromboembolic events. AF is becoming increasingly ubiquitous and is associated with increased morbidity and mortality at higher ages, resulting in an increasing threat to human health as well as substantial medical and social costs. Currently, treatment strategies for AF focus on controlling heart rate and rhythm with medications to restore and maintain sinus rhythm, but this approach has limitations. Catheter ablation is not entirely satisfactory and does not address the issues underlying AF. Research exploring the mechanisms causing AF is urgently needed for improved prevention, diagnosis, and treatment of AF. Exosomes are small vesicles (30-150 nm) released by cells that transmit information between cells. MicroRNAs in exosomes play an important role in the pathogenesis of AF and are established as a biomarker for AF. In this review, a summary of the role of exosomes in AF is presented. The role of exosomes and microRNAs in AF occurrence, their therapeutic potential, and their potential role as clinical biomarkers is considered. A better understanding of exosomes has the potential to improve the prognosis of AF patients worldwide, reducing the global medical burden of this disease.
Collapse
Affiliation(s)
- Kun Xiang
- Department of Cardiovascular Surgery, the Second Xiangya Hospital, Central South University, Middle Renmin Road 139, Changsha, 410011, China
| | - Muhammad Akram
- Department of Eastern Medicine, Government College University Faisalabad, Faisalabad, Pakistan
| | | | - Jinfu Yang
- Department of Cardiovascular Surgery, the Second Xiangya Hospital, Central South University, Middle Renmin Road 139, Changsha, 410011, China
| | - Chengming Fan
- Department of Cardiovascular Surgery, the Second Xiangya Hospital, Central South University, Middle Renmin Road 139, Changsha, 410011, China.
| |
Collapse
|
18
|
Shi X, Jiang N, Mao J, Luo D, Liu Y. Mesenchymal stem cell‐derived exosomes for organ development and cell‐free therapy. NANO SELECT 2021. [DOI: 10.1002/nano.202000286] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Affiliation(s)
- Xin Shi
- Center and School of Stomatology Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration Tongji Hospital of Tongji Medical College Huazhong University of Science and Technology Wuhan P.R. China
- Laboratory of Biomimetic Nanomaterials Department of Orthodontics National Engineering Laboratory for Digital and Material Technology of Stomatology Beijing Key Laboratory of Digital Stomatology Peking University School and Hospital of Stomatology Beijing P.R. China
| | - Nan Jiang
- Laboratory of Biomimetic Nanomaterials Department of Orthodontics National Engineering Laboratory for Digital and Material Technology of Stomatology Beijing Key Laboratory of Digital Stomatology Peking University School and Hospital of Stomatology Beijing P.R. China
- Central Laboratory National Engineering Laboratory for Digital and Material Technology of Stomatology Beijing Key Laboratory of Digital Stomatology Peking University School and Hospital of Stomatology Beijing P.R. China
| | - Jing Mao
- Center and School of Stomatology Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration Tongji Hospital of Tongji Medical College Huazhong University of Science and Technology Wuhan P.R. China
| | - Dan Luo
- CAS Center for Excellence in Nanoscience Beijing Key Laboratory of Micro‐nano Energy and Sensor Beijing Institute of Nanoenergy and Nanosystems Chinese Academy of Sciences Beijing P.R. China
| | - Yan Liu
- Laboratory of Biomimetic Nanomaterials Department of Orthodontics National Engineering Laboratory for Digital and Material Technology of Stomatology Beijing Key Laboratory of Digital Stomatology Peking University School and Hospital of Stomatology Beijing P.R. China
| |
Collapse
|
19
|
Zhao B, Zheng J, Qiao Y, Wang Y, Luo Y, Zhang D, Cai Q, Xu Y, Zhou Z, Shen W. Prostatic fluid exosome-mediated microRNA-155 promotes the pathogenesis of type IIIA chronic prostatitis. Transl Androl Urol 2021; 10:1976-1987. [PMID: 34159078 PMCID: PMC8185664 DOI: 10.21037/tau-21-139] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Background The latest research has shown that exosomes play an important role in cell-to-cell communication and are closely related to the occurrence of many chronic inflammatory diseases. However, no studies have clarified whether exosomes are involved in the pathogenesis of aseptic inflammation, type IIIA chronic prostatitis/chronic pelvic pain syndrome (CP/CPPS-A). This study aimed to explore the relationship between prostatic fluid exosomes and CP/CPPS-A and reveal new pathogenesis. Methods Our group collected prostatic fluid samples from CP/CPPS-A patients and normal adult men. Electron microscope, quantitative PCR (qPCR), Western Blot, nanoparticle tracking analysis, hematoxylin-and-eosin (HE) staining, immunofluorescence staining and miRNA-155 functional analysis were used to verify the role of exosomes in CP/CPPS-A in vivo and in vitro. Results Exosomes were abundantly enriched in the prostatic fluid of CP/CPPS-A patients and selectively overloaded with microRNA-155 (miRNA-155). These exosomes were taken up by prostatic stromal cells in large quantities. They activated interleukin (IL)-8 and tumor necrosis factor-alpha (TNF-α) expression in vitro, and the integrity of the exosomes' plasma membrane is a necessary condition for information transmission by exosomes. In in vivo experiments, histological results showed that prostatic fluid exosomes induced prostatitis in rats. Also, immunofluorescence staining showed excessive activation of IL-8, TNF-α, and inducible nitric oxide synthase (iNOS). Conclusions Exosomes in the prostatic fluid and the miRNA-155 contained therein were may be involved with the pathogenesis of CP/CPPS-A.
Collapse
Affiliation(s)
- Baixiong Zhao
- Department of Urology, Southwest Hospital, The First Affiliated Hospital of Third Military Medical University (Army Medical University), Chongqing, China
| | - Jun Zheng
- Department of Urology, Southwest Hospital, The First Affiliated Hospital of Third Military Medical University (Army Medical University), Chongqing, China
| | - Yang Qiao
- Department of Urology, Southwest Hospital, The First Affiliated Hospital of Third Military Medical University (Army Medical University), Chongqing, China
| | - Yongquan Wang
- Department of Urology, Southwest Hospital, The First Affiliated Hospital of Third Military Medical University (Army Medical University), Chongqing, China
| | - Yang Luo
- Center of Smart Laboratory and Molecular Medicine, Medical College, Chongqing University, Chongqing, China
| | - Dinglin Zhang
- Department of Urology, Southwest Hospital, The First Affiliated Hospital of Third Military Medical University (Army Medical University), Chongqing, China.,Department of Chemistry, College of Basic Medicine, Third Military Medical University (Army Medical University), Chongqing, China
| | - Qiyan Cai
- Department of Histology and Embryology, College of Basic Medicine, Army Medical University, Chongqing, China
| | - Yang Xu
- Department of Histology and Embryology, College of Basic Medicine, Army Medical University, Chongqing, China.,Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Army Medical University, Chongqing, China
| | - Zhansong Zhou
- Department of Urology, Southwest Hospital, The First Affiliated Hospital of Third Military Medical University (Army Medical University), Chongqing, China
| | - Wenhao Shen
- Department of Urology, Southwest Hospital, The First Affiliated Hospital of Third Military Medical University (Army Medical University), Chongqing, China
| |
Collapse
|
20
|
Wu Y, Zhang Y, Zhang X, Luo S, Yan X, Qiu Y, Zheng L, Li L. Research advances for exosomal miRNAs detection in biosensing: From the massive study to the individual study. Biosens Bioelectron 2021; 177:112962. [DOI: 10.1016/j.bios.2020.112962] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 12/28/2020] [Accepted: 12/29/2020] [Indexed: 02/06/2023]
|
21
|
Chansaenroj A, Yodmuang S, Ferreira JN. Trends in Salivary Gland Tissue Engineering: From Stem Cells to Secretome and Organoid Bioprinting. TISSUE ENGINEERING PART B-REVIEWS 2021; 27:155-165. [DOI: 10.1089/ten.teb.2020.0149] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Ajjima Chansaenroj
- Exocrine Gland Biology and Regeneration Research Group, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand
| | - Supansa Yodmuang
- Exocrine Gland Biology and Regeneration Research Group, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand
- Research Affairs, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - João N. Ferreira
- Exocrine Gland Biology and Regeneration Research Group, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand
- Faculty of Dentistry, National University of Singapore, Singapore, Singapore
| |
Collapse
|
22
|
Zailaie SA, Siddiqui JJ, Al Saadi RM, Anbari DM, S Alomari A, Cupler EJ. Serum Based miRNA as a Diagnostic Biomarker for Multiple Sclerosis: a Systematic Review and Meta-Analysis. Immunol Invest 2021; 51:947-962. [PMID: 33660581 DOI: 10.1080/08820139.2021.1887888] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
This systematic review and meta-analysis aimed to identify deferentially expressed serum miRNAs in multiple sclerosis patients and to evaluate their diagnostic value in multiple sclerosis diagnosis. Studies were identified on PubMed, Google scholar and Saudi digital library up to 30 September 2019. Articles that examined miRNA expression level in MS patients compared to healthy control group were included in the review and the data were extracted by three independent author. The comprehensive Meta-Analysis version 3 software was used for meta-analysis and heterogeneity of studies was identified according to I2 value. Our literatures search identified 9 eligible articles concerning the serum miRNA as a diagnostic biomarker for multiple sclerosis in comparison to healthy control group. 19 serum miRNAs differentially expressed in MS patients were identified (8 downregulated, 11 upregulated and 1 with discordant result). In publications that provided information on specific miRNA diagnostic value, the pooled AUC was 72% (95% CI 0.65-0.78, p-value 0.00) for the overall multiple sclerosis patients and primary progressive MS (PPMS) (95% CI 0.66-0.78 p-value 0.00). A miRNA panel of four miRNAs showed high sensitivity (73%) and specificity (68%) in distinguishing multiple sclerosis from control groups. When using single miRNA (miR-145), the sensitivity increased to 79% and the specificity to 87%. The available data from the literature and this meta-analysis suggests the potential use of serum miRNA as biomarkers for early diagnosis of MS with high sensitivity and specificity in distinguishing multiple sclerosis subtypes from healthy controls.Abbreviation: MS: Multiple sclerosis; IDD: inflammatory demyelinating diseases; RRMS: relapsing-remitting Multiple sclerosis; PPMS: primary progressive Multiple sclerosis; SPMS: secondary progressive Multiple sclerosis; NMO: Neuromyelitis optica; miRNA: microRNA; ECmiRNA: extracellular microRNA; AUC: Area Under the Curve; ROC: Receiver Operator Characteristic.
Collapse
Affiliation(s)
- Samar A Zailaie
- Research Center Department, King Faisal Specialist Hospital and Research Center, Jeddah, Kingdom of Saudi Arabia
| | - Jumana Jamal Siddiqui
- Research Center Department, King Faisal Specialist Hospital and Research Center, Jeddah, Kingdom of Saudi Arabia
| | - Rawan Mansour Al Saadi
- Research Center Department, King Faisal Specialist Hospital and Research Center, Jeddah, Kingdom of Saudi Arabia
| | - Dalia Mohammad Anbari
- Research Center Department, King Faisal Specialist Hospital and Research Center, Jeddah, Kingdom of Saudi Arabia.,Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah, Kingdom of Saudi Arabia
| | - Amani S Alomari
- Research Center Department, King Faisal Specialist Hospital and Research Center, Jeddah, Kingdom of Saudi Arabia.,Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah, Kingdom of Saudi Arabia
| | - Edward James Cupler
- Research Center Department, King Faisal Specialist Hospital and Research Center, Jeddah, Kingdom of Saudi Arabia.,Neuroscience Department, King Faisal Specialist Hospital and Research Center, Jeddah, Kingdom of Saudi Arabia
| |
Collapse
|
23
|
Wang S, Li L, Hu X, Liu T, Jiang W, Wu R, Ren Y, Wang M. Effects of Atrial Fibrillation-Derived Exosome Delivery of miR-107 to Human Umbilical Vein Endothelial Cells. DNA Cell Biol 2021; 40:568-579. [PMID: 33651959 DOI: 10.1089/dna.2020.6356] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The aim of this study was to explore the effects of atrial fibrillation (AF)-derived exosome delivery of miR-107 to human umbilical vein endothelial cells (HUVECs) and its related mechanisms. Exosomes were isolated from the plasma of patients with AF and healthy controls, followed by characterization. The expression levels of miR-320d, miR-103a-3p, and miR-107 were measured using real-time quantitative PCR (RT-qPCR). The dual-luciferase reporter gene was used to verify the downstream target of miR-107. Afterward, HUVECs were treated with AF-derived exosomes or transfected with miR-107 mimics. After cell culture, Cell Counting Kit-8, Transwell, and flow cytometry were used to determine cell viability, migration, and apoptosis and cell cycle phase. Finally, RT-qPCR was performed to examine the expression of related genes. NanoSight, transmission electron microscopy, and western blotting showed that exosomes were successfully isolated, and that AF-derived exosomes could be taken up by HUVECs. The expression of miR-107 was significantly higher in AF-derived exosomes than in normal exosomes (p < 0.05). USP14 was shown to be the direct target of miR-107. In addition, miR-107 mimics and AF-derived exosomes significantly suppressed cell viability and migration (p < 0.05) and enhanced cell apoptosis; they also increased G0/G1-phase cells and reduced S-phase cells. RT-qPCR showed that exosomal miR-107 overexpression significantly downregulated the expression of USP14 and Bcl2 (p < 0.05), whereas it markedly upregulated the expression of ERK2, FAK, and Bax (p < 0.05). AF-derived exosomes can deliver miR-107 to HUVECs, and exosomal miR-107 may regulate cell viability, migration, and apoptosis and cell cycle progression by mediating the miR-107/USP14 pathway.
Collapse
Affiliation(s)
- Shuo Wang
- Department of Cardiology, Hebei Medical University, Shijiazhuang, China.,Department of Cardiology, Shijiazhuang People's Hospital, Shijiazhuang, China
| | - Liu Li
- Department of Cardiology, The First Hospital of Hebei Medical University, Shijiazhuang, China
| | - Xitian Hu
- Department of Cardiology, Shijiazhuang People's Hospital, Shijiazhuang, China
| | - Tao Liu
- Department of Cardiology, Hebei Medical University, Shijiazhuang, China
| | - Wenyan Jiang
- Department of Cardiology, Hebei Medical University, Shijiazhuang, China
| | - Rubing Wu
- Department of Cardiology, Shijiazhuang People's Hospital, Shijiazhuang, China
| | - Yanchun Ren
- Department of Cardiology, Shijiazhuang People's Hospital, Shijiazhuang, China
| | - Mei Wang
- Department of Cardiology, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| |
Collapse
|
24
|
Hu H, Wang D, Li L, Yin H, He G, Zhang Y. Role of microRNA-335 carried by bone marrow mesenchymal stem cells-derived extracellular vesicles in bone fracture recovery. Cell Death Dis 2021; 12:156. [PMID: 33542183 PMCID: PMC7862274 DOI: 10.1038/s41419-021-03430-3] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 01/11/2021] [Accepted: 01/13/2021] [Indexed: 01/30/2023]
Abstract
Mesenchymal stem cells (MSCs) have the potential to reduce healing time and treat nonunion in fracture patients. In this study, bone marrow MSCs-derived extracellular vesicles (B-EVs) were firstly extracted and identified. CD9-/- and normal mice were enrolled for the establishment of fracture models and then injected with B-EVs. Osteoblast differentiation and fracture recovery were estimated. The levels of osteoblast-related genes were detected, and differentially expressed microRNAs (miRs) in B-EVs-treated normal fracture mice were screened and verified. The downstream mechanisms of miR were predicted and assessed. The loss-of functions of miR-335 in B-EV and gain-of-functions of VapB were performed in animal and cell experiments to evaluate their roles in bone fracture. Collectively, B-EVs promoted bone fracture recovery and osteoblast differentiation by releasing miR-335. miR-335 downregulation in B-EVs impaired B-EV functions in fracture recovery and osteoblast differentiation. miR-335 could target VapB, and VapB overexpression reversed the effects of B-EVs on osteoblast differentiation. B-EV treatment activated the Wnt/β-catenin pathway in fracture mice and osteoblasts-like cells. Taken together, the study suggested that B-EVs carry miR-335 to promote bone fracture recovery via VapB and the Wnt/β-catenin pathway. This study may offer insights into bone fracture treatment.
Collapse
Affiliation(s)
- Haifeng Hu
- Department of Orthopaedics, Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Dong Wang
- Department of Orthopaedics, Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Lihong Li
- Department of Clinical Laboratory, China-Japan Union Hospital of Jilin University, Changchun, Jilin, China
| | - Haiyang Yin
- Department of Orthopaedics, Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Guoyu He
- Department of Orthopaedics, Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Yonghong Zhang
- Department of Orthopaedics, Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, China.
| |
Collapse
|
25
|
The Roles of the miRNAome and Transcriptome in the Ovine Ovary Reveal Poor Efficiency in Juvenile Superovulation. Animals (Basel) 2021; 11:ani11010239. [PMID: 33477862 PMCID: PMC7832859 DOI: 10.3390/ani11010239] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 01/09/2021] [Accepted: 01/12/2021] [Indexed: 01/22/2023] Open
Abstract
Simple Summary Using the technology of juvenile superovulation, more follicles can be acquired in juvenile animals than in adult animals. However, oocytes derived from the follicles of juvenile animals are usually of poor quality, meaning that they have lower levels of subsequent maturation and embryonic development. In the present study, we used an exogenous hormone treatment to stimulate Hu sheep in order to compare the differences in ovarian superovulation effects and serum hormone secretion in juvenile and adult sheep. Differentially expressed microRNA (miRNA) and messenger RNA (mRNA) from the ovaries of juvenile and adult Hu sheep were then investigated using high-throughput sequencing technology to reveal the formation mechanism of large numbers of follicles and poor oocyte quality in juvenile ovaries under superovulation treatment. We found that molecules of oar-miR-143 and follicle-stimulating hormone receptor (FSHR), among others, might regulate follicle formation, while oar-miR-485-3p, oar-miR-377-3p, and pentraxin 3 (PTX3), among others, may be associated with oocyte quality. The results will help us to identify miRNAs and mRNAs that could be used to predict ovarian superovulation potential and oocyte quality in the future. Abstract Juvenile superovulation can provide a wealth of oocyte material for embryo production, animal cloning, and genetic modification research, but embryos derived from juvenile oocytes show poor efficiency in subsequent developmental capacity. In order to reveal the formation mechanism of large numbers of follicles and poor oocyte quality in juvenile ovaries under superovulation treatment, differentially expressed microRNAs (miRNAs) and messenger RNAs (mRNAs) were characterized and investigated in the ovaries of lambs and adult sheep using high-throughput sequencing technology. The majority of differentially expressed miRNAs (337/358) were upregulated in lamb libraries. The expression levels of mRNAs related to hormone receptors (follicle-stimulating hormone receptor, FSHR; luteinizing hormone/choriogonadotropin receptor, LHCGR; estrogen receptor 1, ESR1), steroid hormone secretion (cytochrome P450 family 11 subfamily A member 1, CYP11A1; cytochrome P450 family 17 subfamily A member 1, CYP17A1; cytochrome P450 family 19 subfamily A member 1, CYP19A1), and oocyte quality (pentraxin 3, PTX3; BCL2 apoptosis regulator, BCL2; caspase 3, CASP3) were significantly different between the lamb and adult libraries. The miRNA aor-miR-143, which targets FSHR, was highly and differentially expressed, and PTX3 was predicted to be targeted by oar-miR-485-3p and oar-miR-377-3p in the ovine ovary. A considerable number of miRNAs were predicted to inhibit ESR1 expression in lamb ovaries. In conclusion, oar-miR-143 and FSHR molecules, among others, might regulate follicle formation, and oar-miR-485-3p, oar-miR-377-3p, and PTX3, among others, may be associated with oocyte quality. These identified miRNAs and mRNAs will be beneficial for the prediction of ovarian superovulation potential and screening of oocytes.
Collapse
|
26
|
MiR-206 regulates the progression of osteoporosis via targeting HDAC4. Eur J Med Res 2021; 26:8. [PMID: 33461610 PMCID: PMC7812640 DOI: 10.1186/s40001-021-00480-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Accepted: 01/06/2021] [Indexed: 11/16/2022] Open
Abstract
Background More and more studies have confirmed that miRNAs play an important role in maintaining bone remodeling and bone metabolism. This study investigated the expression level of miR-206 in the serum of osteoporosis (OP) patients and explored the effect and mechanism of miR-206 on the occurrence and development of osteoporosis. Methods 120 postmenopausal women were recruited, including 63 cases with OP and 57 women without OP. The levels of miR-206 were determined by qRT-PCR technology. Spearman correlation coefficient was used to evaluate the correlation of miR-206 with bone mineral density (BMD). An ROC curve was used to evaluate the diagnostic value of miR-206 in osteoporosis. The effects of miR-206 on cell proliferation and cell apoptosis of hFOBs were measured by CCK-8 assay and flow cytometry, respectively. Luciferase reporter gene assay was used to confirm the interaction of miR-206 and the 3′UTR of HDAC4. Results Serum miR-206 had low expression level in osteoporosis patient group compared with control group. The expression level of serum miR-206 had diagnostic value for osteoporosis, and the serum miR-206 levels were positively correlated with BMD. The down-regulated miR-206 could inhibit cell proliferation and promote cell apoptosis. Luciferase analysis indicated that HDAC4 was the target gene of miR-206. Conclusions MiR-206 could be used as a new potential diagnostic biomarker for osteoporosis, and in in vitro cell experiments, miR-206 may regulate osteoblast cell proliferation and apoptosis by targeting HDAC4.
Collapse
|
27
|
Yin Z, Xu X, Tan Y, Cao H, Zhou W, Dong X, Mao H. Expression analysis of microRNAs and their target mRNAs of testes with high and low sperm motility in domestic pigeons (Columba livia). Genomics 2020; 113:257-264. [PMID: 33338630 DOI: 10.1016/j.ygeno.2020.12.024] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 11/09/2020] [Accepted: 12/13/2020] [Indexed: 11/24/2022]
Abstract
Sperm motility is one of the most important indicators to evaluate poultry fertility. In order to explore key molecular regulation roles related to sperm motility, we employed testicular RNA sequencing of pigeon. A total of 705 known and 385 novel microRNAs were identified. Compared with the low sperm motility group, four upregulated and two downregulated miRNAs in the high sperm motility group were identified. A total of 3567 target mRNAs were predicted and four target mRNAs were selected to validate by qPCR. The miRNA-mRNA interaction network analysis, indicated that mmu-miR-183-5p /FOXO1 and PC-3p-244994_31/CHDH pairs might affect sperm motility. GO and KEGG annotation analysis showed that target genes of differentially expressed miRNAs were related to serine/threonine kinase activity, ATP binding, Wnt and MAPK signaling pathway. The study provided a global miRNAs transcriptome of pigeon and a novel insight into the expression of the miRNAs in testes that associated with sperm motility.
Collapse
Affiliation(s)
- Zhaozheng Yin
- Animal Science College, Zhejiang University, Zijingang Campus, Hangzhou 310058, China
| | - Xiuli Xu
- Animal Science College, Zhejiang University, Zijingang Campus, Hangzhou 310058, China
| | - Yuge Tan
- Animal Science College, Zhejiang University, Zijingang Campus, Hangzhou 310058, China
| | - Haiyue Cao
- Animal Science College, Zhejiang University, Zijingang Campus, Hangzhou 310058, China
| | - Wei Zhou
- Animal Science College, Zhejiang University, Zijingang Campus, Hangzhou 310058, China
| | - Xinyang Dong
- Animal Science College, Zhejiang University, Zijingang Campus, Hangzhou 310058, China
| | - Haiguang Mao
- Animal Science College, Zhejiang University, Zijingang Campus, Hangzhou 310058, China.
| |
Collapse
|
28
|
Fan J, Lee CS, Kim S, Chen C, Aghaloo T, Lee M. Generation of Small RNA-Modulated Exosome Mimetics for Bone Regeneration. ACS NANO 2020; 14:11973-11984. [PMID: 32897692 PMCID: PMC7530137 DOI: 10.1021/acsnano.0c05122] [Citation(s) in RCA: 136] [Impact Index Per Article: 27.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Administration of exosomes is considered an attractive cell-free approach to skeletal repair and pathological disease treatment. However, poor yield for the production technique and unexpected therapeutic efficacy of exosomes have been obstacles to their widespread use in clinical practices. Here, we report an alternative strategy to produce exosome-related vesicles with high yields and improved regenerative capability. An extrusion approach was employed to amass exosome mimetics (EMs) from human mesenchymal stem cells (hMSCs). The collected EMs had a significantly increased proportion of vesicles positive for the exosome-specific CD-63 marker compared with MSC-derived exosomes. EMs were further obtained from genetically modified hMSCs in which expression of noggin, a natural bone morphogenetic protein antagonist, was down-regulated to enhance osteogenic properties of EMs. Moreover, the administration of hMSC-EMs in conjunction with an injectable chitosan hydrogel into mouse nonhealing calvarial defects demonstrated robust bone regeneration. Importantly, mechanistic studies revealed that the enhanced osteogenesis by EMs in which noggin was suppressed was mediated via inhibition of miR-29a. These findings demonstrate the great promise of MSC-mediated EMs and modulation of small RNA signaling for skeletal regeneration and cell-free therapy.
Collapse
Affiliation(s)
- Jiabing Fan
- Division of Advanced Prosthodontics, School of Dentistry, University of California, Los Angeles, California, 90095, USA
- Weintraub Center for Reconstructive Biotechnology, School of Dentistry, University of California, Los Angeles, California, 90095, USA
| | - Chung-Sung Lee
- Division of Advanced Prosthodontics, School of Dentistry, University of California, Los Angeles, California, 90095, USA
| | - Soyon Kim
- Division of Advanced Prosthodontics, School of Dentistry, University of California, Los Angeles, California, 90095, USA
| | - Chen Chen
- Division of Advanced Prosthodontics, School of Dentistry, University of California, Los Angeles, California, 90095, USA
| | - Tara Aghaloo
- Division of Diagnostic and Surgical Sciences, School of Dentistry, University of California, Los Angeles, California, 90095, USA
| | - Min Lee
- Division of Advanced Prosthodontics, School of Dentistry, University of California, Los Angeles, California, 90095, USA
- Weintraub Center for Reconstructive Biotechnology, School of Dentistry, University of California, Los Angeles, California, 90095, USA
- Department of Bioengineering, University of California, Los Angeles, California, 90095, USA
- To whom correspondence should be addressed: Min Lee, PhD, Professor, Division of Advanced Prosthodontics, Weintraub Center for Reconstructive Biotechnology, Department of Bioengineering, University of California, Los Angeles, Phone: 310-825-6674, Fax: (310) 825-6345,
| |
Collapse
|
29
|
Yan Y, Zhang K, Zhou G, Hu W. MicroRNAs Responding to Space Radiation. Int J Mol Sci 2020; 21:ijms21186603. [PMID: 32917057 PMCID: PMC7555309 DOI: 10.3390/ijms21186603] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2020] [Revised: 09/02/2020] [Accepted: 09/07/2020] [Indexed: 12/15/2022] Open
Abstract
High-energy and high-atom-number (HZE) space radiation poses an inevitable potential threat to astronauts on deep space exploration missions. Compared with low-LET radiation, high-energy and high-LET radiation in space is more efficient in inducing clustered DNA damage with more serious biological consequences, such as carcinogenesis, central nervous system injury and degenerative disease. Space radiation also causes epigenetic changes in addition to inducing damage at the DNA level. Considering the important roles of microRNAs in the regulation of biological responses of radiation, we systematically reviewed both expression profiling and functional studies relating to microRNAs responding to space radiation as well as to space compound environment. Finally, the directions for improvement of the research related to microRNAs responding to space radiation are proposed. A better understanding of the functions and underlying mechanisms of the microRNAs responding to space radiation is of significance to both space radiation risk assessment and therapy development for lesions caused by space radiation.
Collapse
Affiliation(s)
| | | | - Guangming Zhou
- Correspondence: (G.Z.); (W.H.); Tel.: +86-512-65884829 (G.Z.); +86-512-65882451 (W.H.)
| | - Wentao Hu
- Correspondence: (G.Z.); (W.H.); Tel.: +86-512-65884829 (G.Z.); +86-512-65882451 (W.H.)
| |
Collapse
|
30
|
Mancilla VJ, Peeri NC, Silzer T, Basha R, Felini M, Jones HP, Phillips N, Tao MH, Thyagarajan S, Vishwanatha JK. Understanding the Interplay Between Health Disparities and Epigenomics. Front Genet 2020; 11:903. [PMID: 32973872 PMCID: PMC7468461 DOI: 10.3389/fgene.2020.00903] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Accepted: 07/21/2020] [Indexed: 12/13/2022] Open
Abstract
Social epigenomics has emerged as an integrative field of research focused on identification of socio-environmental factors, their influence on human biology through epigenomic modifications, and how they contribute to current health disparities. Several health disparities studies have been published using genetic-based approaches; however, increasing accessibility and affordability of molecular technologies have allowed for an in-depth investigation of the influence of external factors on epigenetic modifications (e.g., DNA methylation, micro-RNA expression). Currently, research is focused on epigenetic changes in response to environment, as well as targeted epigenetic therapies and environmental/social strategies for potentially minimizing certain health disparities. Here, we will review recent findings in this field pertaining to conditions and diseases over life span encompassing prenatal to adult stages.
Collapse
Affiliation(s)
- Viviana J. Mancilla
- Department of Microbiology, Immunology and Genetics, Graduate School of Biomedical Sciences, University of North Texas Health Science Center, Fort Worth, TX, United States
| | - Noah C. Peeri
- Department of Biostatistics and Epidemiology, School of Public Health, University of North Texas Health Science Center, Fort Worth, TX, United States
| | - Talisa Silzer
- Department of Microbiology, Immunology and Genetics, Graduate School of Biomedical Sciences, University of North Texas Health Science Center, Fort Worth, TX, United States
| | - Riyaz Basha
- Department of Pediatrics, Texas College of Osteopathic Medicine, University of North Texas Health Science Center, Fort Worth, TX, United States
- Texas Center for Health Disparities, University of North Texas Health Science Center, Fort Worth, TX, United States
| | - Martha Felini
- Department of Pediatrics, Texas College of Osteopathic Medicine, University of North Texas Health Science Center, Fort Worth, TX, United States
- Texas Center for Health Disparities, University of North Texas Health Science Center, Fort Worth, TX, United States
| | - Harlan P. Jones
- Department of Microbiology, Immunology and Genetics, Graduate School of Biomedical Sciences, University of North Texas Health Science Center, Fort Worth, TX, United States
- Texas Center for Health Disparities, University of North Texas Health Science Center, Fort Worth, TX, United States
| | - Nicole Phillips
- Department of Microbiology, Immunology and Genetics, Graduate School of Biomedical Sciences, University of North Texas Health Science Center, Fort Worth, TX, United States
- Texas Center for Health Disparities, University of North Texas Health Science Center, Fort Worth, TX, United States
| | - Meng-Hua Tao
- Department of Biostatistics and Epidemiology, School of Public Health, University of North Texas Health Science Center, Fort Worth, TX, United States
- Texas Center for Health Disparities, University of North Texas Health Science Center, Fort Worth, TX, United States
| | - Srikantha Thyagarajan
- Department of Microbiology, Immunology and Genetics, Graduate School of Biomedical Sciences, University of North Texas Health Science Center, Fort Worth, TX, United States
- Texas Center for Health Disparities, University of North Texas Health Science Center, Fort Worth, TX, United States
| | - Jamboor K. Vishwanatha
- Department of Microbiology, Immunology and Genetics, Graduate School of Biomedical Sciences, University of North Texas Health Science Center, Fort Worth, TX, United States
- Texas Center for Health Disparities, University of North Texas Health Science Center, Fort Worth, TX, United States
| |
Collapse
|
31
|
Wei J, Song Y, Du Z, Yu F, Zhang Y, Jiang N, Ge X. Exosomes derived from human exfoliated deciduous teeth ameliorate adult bone loss in mice through promoting osteogenesis. J Mol Histol 2020; 51:455-466. [PMID: 32656578 DOI: 10.1007/s10735-020-09896-3] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2020] [Accepted: 07/06/2020] [Indexed: 12/18/2022]
Abstract
Cell-free based therapy is an effective strategy in regenerative medicine as it avoids controversial issues, such as immunomodulation and stability. Recently, exosomes have been explored as a favorable substitution for stem cell therapy as they exhibit multiple advantages, such as the ability to be endocytosed and innate biocompatibility. This study aimed to investigate the effects of stem cells from human exfoliated deciduous teeth (SHED)-derived exosomes (SHED-Exo) on bone marrow stromal cells (BMSCs) osteogenesis and bone recovery. SHED-Exo were isolated, characterized, and applied to the bone loss area caused by periodontitis in a mouse model. We found that the injection of SHED-Exo restored bone loss to the same extent as original stem cells. Without affecting BMSCs proliferation, SHED-Exo mildly inhibited apoptosis. Moreover, SHED-Exo specifically promoted BMSCs osteogenesis and inhibited adipogenesis compared with SHED-derived conditioned medium. The expression of osteogenic marker genes, alkaline phosphatase activity, and Alizarin Red S staining of BMSCs was significantly increased by co-culturing with SHED-Exo. Moreover, Western blot analysis showed that Runx2, a key transcriptional factor in osteogenic differentiation, and p-Smad5 were upregulated upon SHED-Exo stimulation. Expression of the adipogenic marker PPARγ and the amount of lipid droplets decreased when exosomes were present. Low doses of exosomes inhibited the expression of the inflammatory cytokines IL-6 and TNF-α. In conclusion, SHED-Exo directly promoted BMSCs osteogenesis, differentiation, and bone formation. Therefore, exosomes have the potential to be utilized in the treatment of periodontitis and other bone diseases.
Collapse
Affiliation(s)
- Jizhen Wei
- Department of Periodontics, Shanxi Medical University School and Hospital of Stomatology, Taiyuan, Shanxi, China
- Central Laboratory, Peking University School and Hospital of Stomatology, #22 Zhongguancun South Avenue, Haidian District, Beijing, 100081, China
| | - Yeqing Song
- Central Laboratory, Peking University School and Hospital of Stomatology, #22 Zhongguancun South Avenue, Haidian District, Beijing, 100081, China
| | - Zhihao Du
- Central Laboratory, Peking University School and Hospital of Stomatology, #22 Zhongguancun South Avenue, Haidian District, Beijing, 100081, China
| | - Feiyan Yu
- Department of Oral Medicine, Shanxi Medical University School and Hospital of Stomatology, Taiyuan, Shanxi, China
| | - Yimei Zhang
- First Dental Center, Peking University School and Hospital of Stomatology, Beijing, China
| | - Nan Jiang
- Central Laboratory, Peking University School and Hospital of Stomatology, #22 Zhongguancun South Avenue, Haidian District, Beijing, 100081, China.
| | - Xuejun Ge
- Department of Periodontics, Shanxi Medical University School and Hospital of Stomatology, Taiyuan, Shanxi, China.
| |
Collapse
|
32
|
Smith HJ, Sharma A, Mair WB. Metabolic Communication and Healthy Aging: Where Should We Focus Our Energy? Dev Cell 2020; 54:196-211. [PMID: 32619405 PMCID: PMC8168458 DOI: 10.1016/j.devcel.2020.06.011] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 06/01/2020] [Accepted: 06/07/2020] [Indexed: 02/09/2023]
Abstract
Aging is associated with a loss of metabolic homeostasis and plasticity, which is causally linked to multiple age-onset pathologies. The majority of the interventions-genetic, dietary, and pharmacological-that have been found to slow aging and protect against age-related disease in various organisms do so by targeting central metabolic pathways. However, targeting metabolic pathways chronically and ubiquitously makes it difficult to define the downstream effects responsible for lifespan extension and often results in negative effects on growth and health, limiting therapeutic potential. Insight into how metabolic signals are relayed between tissues, cells, and organelles opens up new avenues to target metabolic regulators locally rather than globally for healthy aging. In this review, we discuss the pro-longevity effects of targeting metabolic pathways in specific tissues and how these interventions communicate with distal cells to modulate aging. These studies may be crucial in designing interventions that promote longevity without negative health consequences.
Collapse
Affiliation(s)
- Hannah J Smith
- Harvard T.H. Chan School of Public Health, Department of Molecular Metabolism, Boston, MA, USA
| | - Arpit Sharma
- Harvard T.H. Chan School of Public Health, Department of Molecular Metabolism, Boston, MA, USA
| | - William B Mair
- Harvard T.H. Chan School of Public Health, Department of Molecular Metabolism, Boston, MA, USA.
| |
Collapse
|
33
|
Zhang S, Yang Y, Jia S, Chen H, Duan Y, Li X, Wang S, Wang T, Lyu Y, Chen G, Tian W. Exosome-like vesicles derived from Hertwig's epithelial root sheath cells promote the regeneration of dentin-pulp tissue. Am J Cancer Res 2020; 10:5914-5931. [PMID: 32483427 PMCID: PMC7254987 DOI: 10.7150/thno.43156] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Accepted: 04/03/2020] [Indexed: 02/05/2023] Open
Abstract
Background: The formation of dentin-pulp involves complex epithelial-mesenchymal interactions between Hertwig's epithelial root sheath cells (HERS) and dental papilla cells (DPCs). Earlier studies have identified some of the regulatory molecules participating in the crosstalk between HERS and DPCs and the formation of dentin-pulp. In the present study we focused on the role of HERS-secreted exosomes in DPCs and the formation of dentin-pulp. Specifically, we hypothesized that exosome-like vesicles (ELVs) might mediate the function of HERS and trigger lineage-specific differentiation of dental mesenchymal cells. To test our hypothesis, we evaluated the potential of ELVs derived from a HERS cell line (ELVs-H1) in inducing in vitro and in vivo differentiation of DPCs. Methods: ELVs-H1 were characterized using transmission electron microscopy and dynamic light scattering. The proliferation, migration, and odontoblast differentiation of DPCs after treatment with ELVs-H1, was detected by CCK8, transwell, ALP, and mineralization assays, respectively. Real time PCR and western blotting were used to detect gene and protein expression. For in vivo studies, DPC cells were mixed with collagen gel combined with or without ELVs and transplanted into the renal capsule of rats or subcutaneously into nude mice. HE staining and immunostaining were used to verify the regeneration of dentin-pulp and expression of odontoblast differentiation markers. Results: ELVs-H1 promoted the migration and proliferation of DPCs and also induced odontogenic differentiation and activation of Wnt/β-catenin signaling. ELVs-H1 also contributed to tube formation and neural differentiation in vitro. In addition, ELVs-H1 attached to the collagen gel, and were slowly released and endocytosed by DPCs, enhancing cell survival. ELVs-H1 together with DPCs triggered regeneration of dental pulp-dentin like tissue comprised of hard (reparative dentin-like tissue) and soft (blood vessels and neurons) tissue, in an in vivo tooth root slice model. Conclusion: Our data highlighted the potential of ELVs-H1 as biomimetic tools in providing a microenvironment for specific differentiation of dental mesenchymal stem cells. From a developmental perspective, these vesicles might be considered as novel mediators facilitating the epithelial-mesenchymal crosstalk. Their instructive potency might be exploited for the regeneration of dental pulp-dentin tissues.
Collapse
|
34
|
Zhang J, Liu Y, Yin W, Hu X. Adipose-derived stromal cells in regulation of hematopoiesis. Cell Mol Biol Lett 2020; 25:16. [PMID: 32161623 PMCID: PMC7059705 DOI: 10.1186/s11658-020-00209-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Accepted: 02/25/2020] [Indexed: 12/21/2022] Open
Abstract
Over the past decade, mesenchymal stromal cells (MSCs) found in the bone marrow microenvironment have been considered to be important candidates in cellular therapy. However, the application of MSCs in clinical settings is limited by the difficulty and low efficiency associated with the separation of MSCs from the bone marrow. Therefore, distinct sources of MSCs have been extensively explored. Adipose-derived stromal cells (ASCs), a cell line similar to MSCs, have been identified as a promising source. ASCs have become increasingly popular in many fields, as they can be conveniently extracted from fat tissue. This review focuses on the properties of ASCs in hematopoietic regulation and the underlying mechanisms, as well as the current applications and future perspectives in ASC-based therapy.
Collapse
Affiliation(s)
- Jing Zhang
- 1Department of Transfusion Medicine, Xijing Hospital, Xi'an, 710032 China
| | - Yunsheng Liu
- 2Department of Rocket Force Medicine, Third Military Medical University, Chongqing, 400038 China
| | - Wen Yin
- 1Department of Transfusion Medicine, Xijing Hospital, Xi'an, 710032 China
| | - Xingbin Hu
- 1Department of Transfusion Medicine, Xijing Hospital, Xi'an, 710032 China
| |
Collapse
|
35
|
Cooper LF, Ravindran S, Huang CC, Kang M. A Role for Exosomes in Craniofacial Tissue Engineering and Regeneration. Front Physiol 2020; 10:1569. [PMID: 32009978 PMCID: PMC6971208 DOI: 10.3389/fphys.2019.01569] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Accepted: 12/13/2019] [Indexed: 12/16/2022] Open
Abstract
Tissue engineering and regenerative medicine utilize mesenchymal stem cells (MSCs) and their secretome in efforts to create or induce functional tissue replacement. Exosomes are specific extracellular vesicles (EVs) secreted by MSCs and other cells that carry informative cargo from the MSC to targeted cells that influence fundamental cellular processes including apoptosis, proliferation, migration, and lineage-specific differentiation. In this report, we review the current knowledge regarding MSC exosome biogenesis, cargo and function. This review summarizes the use of MSC exosomes to control or induce bone, cartilage, dentin, mucosa, and pulp tissue formation. The next-step engineering of exosomes provides additional avenues to enhance oral and craniofacial tissue engineering and regeneration.
Collapse
Affiliation(s)
- Lyndon F. Cooper
- College of Dentistry, The University of Illinois at Chicago, Chicago, IL, United States
| | | | | | | |
Collapse
|
36
|
Cardiosomal microRNAs Are Essential in Post-Infarction Myofibroblast Phenoconversion. Int J Mol Sci 2019; 21:ijms21010201. [PMID: 31892162 PMCID: PMC6982041 DOI: 10.3390/ijms21010201] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2019] [Revised: 12/19/2019] [Accepted: 12/21/2019] [Indexed: 12/14/2022] Open
Abstract
The inclusion of microRNAs (miRNAs) in extracellular microvesicles/exosomes (named cardiosomes when deriving from cardiomyocytes) allows their active transportation and ensures cell-cell communication. We hypothesize that cardiosomal miRNAs play a pivotal role in the activation of myofibroblasts following ischemic injury. Using a murine model of myocardial infarction (MI), we tested our hypothesis by measuring in isolated fibroblasts and cardiosomes the expression levels of a set of miRNAs, which are upregulated in cardiomyocytes post-MI and involved in myofibroblast phenoconversion. We found that miR-195 was significantly upregulated in cardiosomes and in fibroblasts isolated after MI compared with SHAM conditions. Moreover, primary isolated cardiac fibroblasts were activated both when incubated with cardiosomes isolated from ischemic cardiomyocytes and when cultured in conditioned medium of post-MI cardiomyocytes, whereas no significant effect was observed following incubation with cardiosomes or medium from sham cardiomyocytes. Taken together, our findings indicate for the first time that a cardiomyocyte-specific miRNA, transferred to fibroblasts in form of exosomal cargo, is crucial in the activation of myofibroblasts.
Collapse
|
37
|
Lin Y, Lu Y, Li X. Biological characteristics of exosomes and genetically engineered exosomes for the targeted delivery of therapeutic agents. J Drug Target 2019; 28:129-141. [PMID: 31280623 DOI: 10.1080/1061186x.2019.1641508] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
A primary focus of pharmacology is the accurate transport of drugs from the peripheral veins and their delivery to specific tissues and organs. Exosomes are nanoscale extracellular vesicles with comparatively enhanced circulation stability, biocompatibility, physicochemical stability and bio-barrier permeation ability, as well as reduced toxicity. Therefore, they are considered a superior drug delivery platform. Core ligands and homing peptides fuse with transmembrane proteins on the exosome surface. Genetically engineered exosomes target specific tissues or organs and agents such as siRNA, miRNA and chemotherapeutics can be loaded into exosomes to improve the regulation of target tissues and organs. Here, we review exosome biogenesis, release, uptake and isolation. We also summarise the current applications of genetically engineered exosomes for tumours, and neurological, cardiovascular and liver diseases.
Collapse
Affiliation(s)
- Yan Lin
- The First Clinical Medical College, Lanzhou University, Lanzhou, People's Republic of China
| | - Yaqiong Lu
- Gansu Provincial Cancer Hospital, Gansu Provincial Academic Institute for Medical Research, Lanzhou, People's Republic of China
| | - Xun Li
- The First Clinical Medical College, Lanzhou University, Lanzhou, People's Republic of China.,The Fifth Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou, People's Republic of China.,Key Laboratory of Biotherapy and Regenerative Medicine of Gansu Province, Lanzhou, People's Republic of China.,Hepatopancreatobiliary Surgery Institute of Gansu Province, Medical College Cancer Center of Lanzhou, Lanzhou, People's Republic of China
| |
Collapse
|
38
|
Capomaccio S, Cappelli K, Bazzucchi C, Coletti M, Gialletti R, Moriconi F, Passamonti F, Pepe M, Petrini S, Mecocci S, Silvestrelli M, Pascucci L. Equine Adipose-Derived Mesenchymal Stromal Cells Release Extracellular Vesicles Enclosing Different Subsets of Small RNAs. Stem Cells Int 2019; 2019:4957806. [PMID: 31011332 PMCID: PMC6442443 DOI: 10.1155/2019/4957806] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Revised: 11/13/2018] [Accepted: 12/19/2018] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Equine adipose-derived mesenchymal stromal cells (e-AdMSC) exhibit attractive proregenerative properties strongly related to the delivery of extracellular vesicles (EVs) that enclose different kinds of molecules including RNAs. In this study, we investigated small RNA content of EVs produced by e-AdMSC with the aim of speculating on their possible biological role. METHODS EVs were obtained by ultracentrifugation of the conditioned medium of e-AdMSC of 4 subjects. Transmission electron microscopy and scanning electron microscopy were performed to assess their size and nanostructure. RNA was isolated, enriched for small RNAs (<200 nt), and sequenced by Illumina technology. After bioinformatic analysis with state-of-the-art pipelines for short sequences, mapped reads were used to describe EV RNA cargo, reporting classes, and abundances. Enrichment analyses were performed to infer involved pathways and functional categories. RESULTS Electron microscopy showed the presence of vesicles ranging in size from 30 to 300 nm and expressing typical markers. RNA analysis revealed that ribosomal RNA was the most abundant fraction, followed by small nucleolar RNAs (snoRNAs, 13.67%). Miscellaneous RNA (misc_RNA) reached 4.57% of the total where Y RNA, RNaseP, and vault RNA represented the main categories. miRNAs were sequenced at a lower level (3.51%) as well as protein-coding genes (1.33%). Pathway analyses on the protein-coding fraction revealed a significant enrichment for the "ribosome" pathway followed by "oxidative phosphorylation." Gene Ontology analysis showed enrichment for terms like "extracellular exosome," "organelle envelope," "RNA binding," and "small molecule metabolic process." The miRNA target pathway analysis revealed the presence of "signaling pathways regulating pluripotency of stem cells" coherent with the source of the samples. CONCLUSION We herein demonstrated that e-AdMSC release EVs enclosing different subsets of small RNAs that potentially regulate a number of biological processes. These findings shed light on the role of EVs in the context of MSC biology.
Collapse
Affiliation(s)
- Stefano Capomaccio
- Dipartimento di Medicina Veterinaria, Università degli Studi di Perugia, Via San Costanzo, 4, 06126 Perugia, Italy
- Centro di Ricerca sul Cavallo Sportivo (CRCS), Università degli Studi di Perugia, Italy
| | - Katia Cappelli
- Dipartimento di Medicina Veterinaria, Università degli Studi di Perugia, Via San Costanzo, 4, 06126 Perugia, Italy
- Centro di Ricerca sul Cavallo Sportivo (CRCS), Università degli Studi di Perugia, Italy
| | - Cinzia Bazzucchi
- Dipartimento di Medicina Veterinaria, Università degli Studi di Perugia, Via San Costanzo, 4, 06126 Perugia, Italy
| | - Mauro Coletti
- Dipartimento di Medicina Veterinaria, Università degli Studi di Perugia, Via San Costanzo, 4, 06126 Perugia, Italy
- Centro di Ricerca sul Cavallo Sportivo (CRCS), Università degli Studi di Perugia, Italy
| | - Rodolfo Gialletti
- Dipartimento di Medicina Veterinaria, Università degli Studi di Perugia, Via San Costanzo, 4, 06126 Perugia, Italy
- Centro di Ricerca sul Cavallo Sportivo (CRCS), Università degli Studi di Perugia, Italy
| | - Franco Moriconi
- Dipartimento di Medicina Veterinaria, Università degli Studi di Perugia, Via San Costanzo, 4, 06126 Perugia, Italy
- Centro di Ricerca sul Cavallo Sportivo (CRCS), Università degli Studi di Perugia, Italy
| | - Fabrizio Passamonti
- Dipartimento di Medicina Veterinaria, Università degli Studi di Perugia, Via San Costanzo, 4, 06126 Perugia, Italy
- Centro di Ricerca sul Cavallo Sportivo (CRCS), Università degli Studi di Perugia, Italy
| | - Marco Pepe
- Dipartimento di Medicina Veterinaria, Università degli Studi di Perugia, Via San Costanzo, 4, 06126 Perugia, Italy
- Centro di Ricerca sul Cavallo Sportivo (CRCS), Università degli Studi di Perugia, Italy
| | - Stefano Petrini
- Istituto Zooprofilattico Sperimentale dell'Umbria e delle Marche, Italy
| | - Samanta Mecocci
- Dipartimento di Medicina Veterinaria, Università degli Studi di Perugia, Via San Costanzo, 4, 06126 Perugia, Italy
- Centro di Ricerca sul Cavallo Sportivo (CRCS), Università degli Studi di Perugia, Italy
| | - Maurizio Silvestrelli
- Dipartimento di Medicina Veterinaria, Università degli Studi di Perugia, Via San Costanzo, 4, 06126 Perugia, Italy
- Centro di Ricerca sul Cavallo Sportivo (CRCS), Università degli Studi di Perugia, Italy
| | - Luisa Pascucci
- Dipartimento di Medicina Veterinaria, Università degli Studi di Perugia, Via San Costanzo, 4, 06126 Perugia, Italy
- Centro di Ricerca sul Cavallo Sportivo (CRCS), Università degli Studi di Perugia, Italy
| |
Collapse
|
39
|
Hadley EE, Sheller-Miller S, Saade G, Salomon C, Mesiano S, Taylor RN, Taylor BD, Menon R. Amnion epithelial cell-derived exosomes induce inflammatory changes in uterine cells. Am J Obstet Gynecol 2018; 219:478.e1-478.e21. [PMID: 30138617 PMCID: PMC6239974 DOI: 10.1016/j.ajog.2018.08.021] [Citation(s) in RCA: 84] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Revised: 08/08/2018] [Accepted: 08/13/2018] [Indexed: 12/11/2022]
Abstract
BACKGROUND Fetal endocrine signals are generally considered to contribute to the timing of birth and the initiation of labor. Fetal tissues under oxidative stress release inflammatory mediators that lead to sterile inflammation within the maternal-fetal interface. Importantly, these inflammatory mediators are packaged into exosomes, bioactive cell-derived extra cellular vesicles that function as vectors and transport them from the fetal side to the uterine tissues where they deposit their cargo into target cells enhancing uterine inflammatory load. This exosome-mediated signaling is a novel mechanism for fetal-maternal communication. OBJECTIVE This report tested the hypothesis that oxidative stress can induce fetal amnion cells to produce exosomes, which function as a paracrine intermediary between the fetus and mother and biochemically signal readiness for parturition. STUDY DESIGN Primary amnion epithelial cells were grown in normal cell culture (control) or exposed to oxidative stress conditions (induced by cigarette smoke extract). Exosomes were isolated from cell supernatant by sequential ultracentrifugation. Exosomes were quantified and characterized based on size, shape, and biochemical markers. Myometrial, decidual, and placental cells (BeWo) were treated with 2 × 105, 2 × 107, and 2 × 109 control or oxidative stress-derived amnion epithelial cell exosomes for 24 hours. Entry of amnion epithelial cell exosomes into cells was confirmed by confocal microscopy of fluorescent-labeled exosomes. The effect of amnion epithelial cell exosomes on target cell inflammatory status was determined by measuring production of interleukin-6, interleukin-8, interleukin-1β, tumor necrosis factor-α, and prostaglandin E2 by enzyme-linked immunosorbent assay and inflammatory gene transcription factor (nuclear factor-κβ) activation status by immunoblotting for phosphorylated RelA/p65. Localization of NANOG in term human myometrium and decidua obtained from women before labor and during labor was performed using immunohistochemistry. Data were analyzed by Wilcoxon-Mann-Whitney test to compare effects of exosomes from control and oxidative stress-treated amnion epithelial cells on inflammatory status of target cells. RESULTS Amnion epithelial cells released ∼125 nm, cup-shaped exosomes with ∼899 and 1211 exosomes released per cell from control and oxidative stress-induced cells, respectively. Amnion epithelial cell exosomes were detected in each target cell type after treatment using confocal microscopy. Treatment with amnion epithelial cell exosomes increased secretion of interleukin-6, interleukin-8, and PGE2 and activation of NF-κβ (each P < .05) in myometrial and decidual cells. Exosome treatments had no effect on interleukin-6 and PGE2 production in BeWo cells. NANOG staining was higher in term labor myometrium and decidua compared to tissues not in labor. CONCLUSION In vitro, amnion epithelial cell exosomes lead to an increased inflammatory response in maternal uterine cells whereas placental cells showed refractoriness. Fetal cell exosomes may function to signal parturition by increasing maternal gestational cell inflammation.
Collapse
Affiliation(s)
- Emily E Hadley
- Division of Maternal-Fetal Medicine and Perinatal Research, Department of Obstetrics and Gynecology, University of Texas Medical Branch at Galveston, Galveston, TX
| | - Samantha Sheller-Miller
- Division of Maternal-Fetal Medicine and Perinatal Research, Department of Obstetrics and Gynecology, University of Texas Medical Branch at Galveston, Galveston, TX; Department of Biochemistry and Molecular Biology, University of Texas Medical Branch at Galveston, Galveston, TX
| | - George Saade
- Division of Maternal-Fetal Medicine and Perinatal Research, Department of Obstetrics and Gynecology, University of Texas Medical Branch at Galveston, Galveston, TX
| | - Carlos Salomon
- Exosome Biology Laboratory, Center for Clinical Diagnostics, Center for Clinical Research, Royal Brisbane and Women's Hospital, University of Queensland, Brisbane, Australia; Department of Clinical Biochemistry and Immunology, Faculty of Pharmacy, University of Concepción, Concepción, Chile
| | - Sam Mesiano
- Department of Reproductive Biology, Case Western Reserve University, School of Medicine, Cleveland, OH
| | - Robert N Taylor
- Department of Obstetrics and Gynecology, Wake Forest School of Medicine, Winston-Salem, NC
| | - Brandie D Taylor
- Department of Epidemiology and Biostatistics, Texas A&M University, College Station, TX
| | - Ramkumar Menon
- Division of Maternal-Fetal Medicine and Perinatal Research, Department of Obstetrics and Gynecology, University of Texas Medical Branch at Galveston, Galveston, TX.
| |
Collapse
|