1
|
Zhang M, Zeng Y, Liu Q, Li F, Zhao J, Liu Z, Liu H, Feng H. The H5N1-NS1 protein affects the host cell cycle and apoptosis through interaction with the host lncRNA PIK3CD-AS2. Virus Genes 2025; 61:38-53. [PMID: 39424707 DOI: 10.1007/s11262-024-02118-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 10/10/2024] [Indexed: 10/21/2024]
Abstract
Long noncoding RNAs (lncRNAs) are involved in the host antiviral response, but how host lncRNAs interact with viral proteins remains unclear. The NS1 protein of avian influenza viruses can affect the interferon-dependent expression of several host lncRNAs, but the exact mechanism is unknown. To further investigate the molecular mechanism and functions of NS1 proteins and host lncRNAs, we performed RNA-immunoprecipitation sequencing assays on A549 cells transfected with the H5N1-NS1 gene. We identified multiple sets of host lncRNAs that interact with NS1. The results of the RNA pulldown assay indicated that PIK3CD-AS2 can directly interact with NS1 in vitro. Immunofluorescence confocal microscopy showed that these proteins were colocalized in the nucleus. Further studies revealed that PIK3CD-AS2 can also inhibit the transcription of NS1, which in turn affects the translation of the NS1 protein. PIK3CD-AS2 overexpression regulates NS1 protein-induced cell cycle arrest and initiates apoptosis. We hope this work will help elucidate the molecular mechanisms associated with NS1 proteins in the study of viral infections to promote the development of potential treatments for patients infected with avian influenza A viruses.
Collapse
Affiliation(s)
- Man Zhang
- School of Life Science, Liaoning University, Shenyang, 110036, Liaoning, China
| | - Yingyue Zeng
- School of Life Science, Liaoning University, Shenyang, 110036, Liaoning, China
- Key Laboratory of Computational Simulation and Information Processing of Biomacromolecules of Liaoning, Shenyang, 110036, Liaoning, China
- Shenyang Key Laboratory of Computational Simulation and Information Processing of Biological Macromolecules, Shenyang, 110036, Liaoning, China
| | - Qingqing Liu
- School of Life Science, Liaoning University, Shenyang, 110036, Liaoning, China
| | - Feng Li
- School of Life Science, Liaoning University, Shenyang, 110036, Liaoning, China
| | - Jian Zhao
- School of Life Science, Liaoning University, Shenyang, 110036, Liaoning, China
- Key Laboratory of Computational Simulation and Information Processing of Biomacromolecules of Liaoning, Shenyang, 110036, Liaoning, China
- Shenyang Key Laboratory of Computational Simulation and Information Processing of Biological Macromolecules, Shenyang, 110036, Liaoning, China
- Liaoning Provincial Engineering Laboratory of Molecular Modeling and Design for Drugs, Shenyang, 110036, Liaoning, China
| | - Zhikui Liu
- Liaoning Huikang Testing and Evaluation Technology Co, Shenyang, 110179, Liaoning, China
| | - Hongsheng Liu
- Key Laboratory of Computational Simulation and Information Processing of Biomacromolecules of Liaoning, Shenyang, 110036, Liaoning, China.
- Shenyang Key Laboratory of Computational Simulation and Information Processing of Biological Macromolecules, Shenyang, 110036, Liaoning, China.
- School of Pharmacy Sciences, Liaoning University, Shenyang, 110036, Liaoning, China.
- Liaoning Provincial Engineering Laboratory of Molecular Modeling and Design for Drugs, Shenyang, 110036, Liaoning, China.
| | - Huawei Feng
- Key Laboratory of Computational Simulation and Information Processing of Biomacromolecules of Liaoning, Shenyang, 110036, Liaoning, China.
- Shenyang Key Laboratory of Computational Simulation and Information Processing of Biological Macromolecules, Shenyang, 110036, Liaoning, China.
- School of Pharmacy Sciences, Liaoning University, Shenyang, 110036, Liaoning, China.
- Liaoning Provincial Engineering Laboratory of Molecular Modeling and Design for Drugs, Shenyang, 110036, Liaoning, China.
| |
Collapse
|
2
|
Pai VJ, Lau CJ, Garcia-Ruiz A, Donaldson C, Vaughan JM, Miller B, De Souza EV, Pinto AM, Diedrich J, Gavva NR, Yu S, DeBoever C, Horman SR, Saghatelian A. Microprotein-encoding RNA regulation in cells treated with pro-inflammatory and pro-fibrotic stimuli. BMC Genomics 2024; 25:1034. [PMID: 39497054 PMCID: PMC11536906 DOI: 10.1186/s12864-024-10948-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Accepted: 10/24/2024] [Indexed: 11/06/2024] Open
Abstract
BACKGROUND Recent analysis of the human proteome via proteogenomics and ribosome profiling of the transcriptome revealed the existence of thousands of previously unannotated microprotein-coding small open reading frames (smORFs). Most functional microproteins were chosen for characterization because of their evolutionary conservation. However, one example of a non-conserved immunomodulatory microprotein in mice suggests that strict sequence conservation misses some intriguing microproteins. RESULTS We examine the ability of gene regulation to identify human microproteins with potential roles in inflammation or fibrosis of the intestine. To do this, we collected ribosome profiling data of intestinal cell lines and peripheral blood mononuclear cells and used gene expression of microprotein-encoding transcripts to identify strongly regulated microproteins, including several examples of microproteins that are only conserved with primates. CONCLUSION This approach reveals a number of new microproteins worthy of additional functional characterization and provides a dataset that can be queried in different ways to find additional gut microproteins of interest.
Collapse
Affiliation(s)
- Victor J Pai
- Clayton Foundation Peptide Biology Laboratories, The Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA, 92037, USA.
| | - Calvin J Lau
- Clayton Foundation Peptide Biology Laboratories, The Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA, 92037, USA
| | - Almudena Garcia-Ruiz
- Clayton Foundation Peptide Biology Laboratories, The Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA, 92037, USA
| | - Cynthia Donaldson
- Clayton Foundation Peptide Biology Laboratories, The Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA, 92037, USA
| | - Joan M Vaughan
- Clayton Foundation Peptide Biology Laboratories, The Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA, 92037, USA
| | - Brendan Miller
- Clayton Foundation Peptide Biology Laboratories, The Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA, 92037, USA
| | - Eduardo V De Souza
- Clayton Foundation Peptide Biology Laboratories, The Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA, 92037, USA
| | - Antonio M Pinto
- Mass Spectrometry Core, The Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA, 92037, USA
| | - Jolene Diedrich
- Mass Spectrometry Core, The Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA, 92037, USA
| | - Narender R Gavva
- Takeda Development Center Americas, Inc, San Diego, CA, 92121, USA
| | - Shan Yu
- Takeda Development Center Americas, Inc, San Diego, CA, 92121, USA
| | | | - Shane R Horman
- Takeda Development Center Americas, Inc, San Diego, CA, 92121, USA.
| | - Alan Saghatelian
- Clayton Foundation Peptide Biology Laboratories, The Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA, 92037, USA.
| |
Collapse
|
3
|
Zhang M, Zhang L, Liu T, Feng H, He Z, Li F, Zhao J, Liu H. CBIL-VHPLI: a model for predicting viral-host protein-lncRNA interactions based on machine learning and transfer learning. Sci Rep 2024; 14:17549. [PMID: 39080344 PMCID: PMC11289117 DOI: 10.1038/s41598-024-68750-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Accepted: 07/26/2024] [Indexed: 08/02/2024] Open
Abstract
Virus‒host protein‒lncRNA interaction (VHPLI) predictions are critical for decoding the molecular mechanisms of viral pathogens and host immune processes. Although VHPLI interactions have been predicted in both plants and animals, they have not been extensively studied in viruses. For the first time, we propose a new deep learning-based approach that consists mainly of a convolutional neural network and bidirectional long and short-term memory network modules in combination with transfer learning named CBIL‒VHPLI to predict viral-host protein‒lncRNA interactions. The models were first trained on large and diverse datasets (including plants, animals, etc.). Protein sequence features were extracted using a k-mer method combined with the one-hot encoding and composition-transition-distribution (CTD) methods, and lncRNA sequence features were extracted using a k-mer method combined with the one-hot encoding and Z curve methods. The results obtained on three independent external validation datasets showed that the pre-trained CBIL‒VHPLI model performed the best with an accuracy of approximately 0.9. Pretraining was followed by conducting transfer learning on a viral protein-human lncRNA dataset, and the fine-tuning results showed that the accuracy of CBIL‒VHPLI was 0.946, which was significantly greater than that of the previous models. The final case study results showed that CBIL‒VHPLI achieved a prediction reproducibility rate of 91.6% for the RIP-Seq experimental screening results. This model was then used to predict the interactions between human lncRNA PIK3CD-AS2 and the nonstructural protein 1 (NS1) of the H5N1 virus, and RNA pull-down experiments were used to prove the prediction readiness of the model in terms of prediction. The source code of CBIL‒VHPLI and the datasets used in this work are available at https://github.com/Liu-Lab-Lnu/CBIL-VHPLI for academic usage.
Collapse
Affiliation(s)
- Man Zhang
- School of Life Science, Liaoning University, Shenyang, 110036, China
| | - Li Zhang
- School of Life Science, Liaoning University, Shenyang, 110036, China
- Technology Innovation Center for Computer Simulating and Information Processing of Bio-Macromolecules of Liaoning Province, Shenyang, 110036, China
- Engineering Laboratory for Molecular Simulation and Designing of Drug Molecules of Liaoning, Shenyang, 110036, China
| | - Ting Liu
- School of Life Science, Liaoning University, Shenyang, 110036, China
- China Medical University-Queen's University Belfast Joint College, China Medical University, Shenyang, 110036, China
| | - Huawei Feng
- Technology Innovation Center for Computer Simulating and Information Processing of Bio-Macromolecules of Liaoning Province, Shenyang, 110036, China
- Engineering Laboratory for Molecular Simulation and Designing of Drug Molecules of Liaoning, Shenyang, 110036, China
- School of Pharmacy, Liaoning University, No. 66, Chongshan Zhonglu, Shenyang, 110036, Liaoning, China
| | - Zhe He
- School of Life Science, Liaoning University, Shenyang, 110036, China
| | - Feng Li
- School of Life Science, Liaoning University, Shenyang, 110036, China
| | - Jian Zhao
- School of Life Science, Liaoning University, Shenyang, 110036, China
| | - Hongsheng Liu
- Technology Innovation Center for Computer Simulating and Information Processing of Bio-Macromolecules of Liaoning Province, Shenyang, 110036, China.
- Engineering Laboratory for Molecular Simulation and Designing of Drug Molecules of Liaoning, Shenyang, 110036, China.
- School of Pharmacy, Liaoning University, No. 66, Chongshan Zhonglu, Shenyang, 110036, Liaoning, China.
| |
Collapse
|
4
|
Rai A, Bhagchandani T, Tandon R. Transcriptional landscape of long non-coding RNAs (lncRNAs) and its implication in viral diseases. BIOCHIMICA ET BIOPHYSICA ACTA. GENE REGULATORY MECHANISMS 2024; 1867:195023. [PMID: 38513793 DOI: 10.1016/j.bbagrm.2024.195023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 02/26/2024] [Accepted: 03/13/2024] [Indexed: 03/23/2024]
Abstract
Long non-coding RNAs (lncRNAs) are RNA transcripts of size >200 bp that do not translate into proteins. Emerging data revealed that viral infection results in systemic changes in the host at transcriptional level. These include alterations in the lncRNA expression levels and triggering of antiviral immune response involving several effector molecules and diverse signalling pathways. Thus, lncRNAs have emerged as an essential mediatory element at distinct phases of the virus infection cycle. The complete eradication of the viral disease requires more precise and novel approach, thus manipulation of the lncRNAs could be one of them. This review shed light upon the existing knowledge of lncRNAs wherein the implication of differentially expressed lncRNAs in blood-borne, air-borne, and vector-borne viral diseases and its promising therapeutic applications under clinical settings has been discussed. It further enhances our understanding of the complex interplay at host-pathogen interface with respect to lncRNA expression and function.
Collapse
Affiliation(s)
- Ankita Rai
- Laboratory of AIDS Research and Immunology, School of Biotechnology, Jawaharlal Nehru University, New Delhi, India
| | - Tannu Bhagchandani
- Laboratory of AIDS Research and Immunology, School of Biotechnology, Jawaharlal Nehru University, New Delhi, India
| | - Ravi Tandon
- Laboratory of AIDS Research and Immunology, School of Biotechnology, Jawaharlal Nehru University, New Delhi, India.
| |
Collapse
|
5
|
Gandikota C, Vaddadi K, Sivasami P, Huang C, Liang Y, Pushparaj S, Deng X, Channappanava R, Metcalf JP, Liu L. The use of human iPSC-derived alveolar organoids to explore SARS-CoV-2 variant infections and host responses. J Med Virol 2024; 96:e29579. [PMID: 38572923 PMCID: PMC11603130 DOI: 10.1002/jmv.29579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 03/19/2024] [Accepted: 03/22/2024] [Indexed: 04/05/2024]
Abstract
Severe acute respiratory syndrome-related coronavirus 2 (SARS-CoV-2) primarily targets the respiratory system. Physiologically relevant human lung models are indispensable to investigate virus-induced host response and disease pathogenesis. In this study, we generated human induced pluripotent stem cell (iPSC)-derived alveolar organoids (AOs) using an established protocol that recapitulates the sequential steps of in vivo lung development. AOs express alveolar epithelial type II cell protein markers including pro-surfactant protein C and ATP binding cassette subfamily A member 3. Compared to primary human alveolar type II cells, AOs expressed higher mRNA levels of SARS-CoV-2 entry factors, angiotensin-converting enzyme 2 (ACE2), asialoglycoprotein receptor 1 (ASGR1) and basigin (CD147). Considering the localization of ACE2 on the apical side in AOs, we used three AO models, apical-in, sheared and apical-out for SARS-CoV-2 infection. All three models of AOs were robustly infected with the SARS-CoV-2 irrespective of ACE2 accessibility. Antibody blocking experiment revealed that ASGR1 was the main receptor for SARS-CoV2 entry from the basolateral in apical-in AOs. AOs supported the replication of SARS-CoV-2 variants WA1, Alpha, Beta, Delta, and Zeta and Omicron to a variable degree with WA1 being the highest and Omicron being the least. Transcriptomic profiling of infected AOs revealed the induction of inflammatory and interferon-related pathways with NF-κB signaling being the predominant host response. In summary, iPSC-derived AOs can serve as excellent human lung models to investigate infection of SARS-CoV-2 variants and host responses from both apical and basolateral sides.
Collapse
Affiliation(s)
- Chaitanya Gandikota
- The Lundberg-Kienlen Lung Biology and Toxicology Laboratory, Department of Physiological Sciences, Oklahoma State University, Stillwater, Oklahoma
- Oklahoma Center for Respiratory and Infectious Diseases, Oklahoma State University, Stillwater, Oklahoma
| | - Kishore Vaddadi
- The Lundberg-Kienlen Lung Biology and Toxicology Laboratory, Department of Physiological Sciences, Oklahoma State University, Stillwater, Oklahoma
- Oklahoma Center for Respiratory and Infectious Diseases, Oklahoma State University, Stillwater, Oklahoma
| | - Pulavendran Sivasami
- The Lundberg-Kienlen Lung Biology and Toxicology Laboratory, Department of Physiological Sciences, Oklahoma State University, Stillwater, Oklahoma
- Oklahoma Center for Respiratory and Infectious Diseases, Oklahoma State University, Stillwater, Oklahoma
| | - Chaoqun Huang
- The Lundberg-Kienlen Lung Biology and Toxicology Laboratory, Department of Physiological Sciences, Oklahoma State University, Stillwater, Oklahoma
- Oklahoma Center for Respiratory and Infectious Diseases, Oklahoma State University, Stillwater, Oklahoma
| | - Yurong Liang
- The Lundberg-Kienlen Lung Biology and Toxicology Laboratory, Department of Physiological Sciences, Oklahoma State University, Stillwater, Oklahoma
- Oklahoma Center for Respiratory and Infectious Diseases, Oklahoma State University, Stillwater, Oklahoma
| | - Samuel Pushparaj
- The Lundberg-Kienlen Lung Biology and Toxicology Laboratory, Department of Physiological Sciences, Oklahoma State University, Stillwater, Oklahoma
- Oklahoma Center for Respiratory and Infectious Diseases, Oklahoma State University, Stillwater, Oklahoma
| | - Xufang Deng
- Oklahoma Center for Respiratory and Infectious Diseases, Oklahoma State University, Stillwater, Oklahoma
- Department of Physiological Sciences, Oklahoma State University, Stillwater, Oklahoma
| | - Rudragouda Channappanava
- Oklahoma Center for Respiratory and Infectious Diseases, Oklahoma State University, Stillwater, Oklahoma
- Department of Veterinary Pathobiology, Oklahoma State University, Stillwater, Oklahoma
| | - Jordan P. Metcalf
- Oklahoma Center for Respiratory and Infectious Diseases, Oklahoma State University, Stillwater, Oklahoma
- Pulmonary and Critical Care Division, Department of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| | - Lin Liu
- The Lundberg-Kienlen Lung Biology and Toxicology Laboratory, Department of Physiological Sciences, Oklahoma State University, Stillwater, Oklahoma
- Oklahoma Center for Respiratory and Infectious Diseases, Oklahoma State University, Stillwater, Oklahoma
| |
Collapse
|
6
|
Li S, He RC, Wu SG, Song Y, Zhang KL, Tang ML, Bei YR, Zhang T, Lu JB, Ma X, Jiang M, Qin LJ, Xu Y, Dong XH, Wu J, Dai X, Hu YW. LncRNA PSMB8-AS1 Instigates Vascular Inflammation to Aggravate Atherosclerosis. Circ Res 2024; 134:60-80. [PMID: 38084631 DOI: 10.1161/circresaha.122.322360] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 11/20/2023] [Indexed: 01/06/2024]
Abstract
BACKGROUND Increasing evidence suggests that long noncoding RNAs play significant roles in vascular biology and disease development. One such long noncoding RNA, PSMB8-AS1, has been implicated in the development of tumors. Nevertheless, the precise role of PSMB8-AS1 in cardiovascular diseases, particularly atherosclerosis, has not been thoroughly elucidated. Thus, the primary aim of this investigation is to assess the influence of PSMB8-AS1 on vascular inflammation and the initiation of atherosclerosis. METHODS We generated PSMB8-AS1 knockin and Apoe (Apolipoprotein E) knockout mice (Apoe-/-PSMB8-AS1KI) and global Apoe and proteasome subunit-β type-9 (Psmb9) double knockout mice (Apoe-/-Psmb9-/-). To explore the roles of PSMB8-AS1 and Psmb9 in atherosclerosis, we fed the mice with a Western diet for 12 weeks. RESULTS Long noncoding RNA PSMB8-AS1 is significantly elevated in human atherosclerotic plaques. Strikingly, Apoe-/-PSMB8-AS1KI mice exhibited increased atherosclerosis development, plaque vulnerability, and vascular inflammation compared with Apoe-/- mice. Moreover, the levels of VCAM1 (vascular adhesion molecule 1) and ICAM1 (intracellular adhesion molecule 1) were significantly upregulated in atherosclerotic lesions and serum of Apoe-/-PSMB8-AS1KI mice. Consistently, in vitro gain- and loss-of-function studies demonstrated that PSMB8-AS1 induced monocyte/macrophage adhesion to endothelial cells and increased VCAM1 and ICAM1 levels in a PSMB9-dependent manner. Mechanistic studies revealed that PSMB8-AS1 induced PSMB9 transcription by recruiting the transcription factor NONO (non-POU domain-containing octamer-binding protein) and binding to the PSMB9 promoter. PSMB9 (proteasome subunit-β type-9) elevated VCAM1 and ICAM1 expression via the upregulation of ZEB1 (zinc finger E-box-binding homeobox 1). Psmb9 deficiency decreased atherosclerotic lesion size, plaque vulnerability, and vascular inflammation in Apoe-/- mice in vivo. Importantly, endothelial overexpression of PSMB8-AS1-increased atherosclerosis and vascular inflammation were attenuated by Psmb9 knockout. CONCLUSIONS PSMB8-AS1 promotes vascular inflammation and atherosclerosis via the NONO/PSMB9/ZEB1 axis. Our findings support the development of new long noncoding RNA-based strategies to counteract atherosclerotic cardiovascular disease.
Collapse
Affiliation(s)
- Shu Li
- Department of Clinical Laboratory, Guangzhou Women & Children Medical Center, Guangzhou Medical University, Guangdong, China (S.L., R.-C.H., Y.S., K.-L.Z., M.-L.T., T.Z., M.J., X.-H.D., J.W., Y.-W.H.)
| | - Run-Chao He
- Department of Clinical Laboratory, Guangzhou Women & Children Medical Center, Guangzhou Medical University, Guangdong, China (S.L., R.-C.H., Y.S., K.-L.Z., M.-L.T., T.Z., M.J., X.-H.D., J.W., Y.-W.H.)
| | - Shao-Guo Wu
- Department of Clinical Laboratory, Guangzhou Twelfth People's Hospital, Guangdong, China (S.-G.W.)
| | - Yu Song
- Department of Clinical Laboratory, Guangzhou Women & Children Medical Center, Guangzhou Medical University, Guangdong, China (S.L., R.-C.H., Y.S., K.-L.Z., M.-L.T., T.Z., M.J., X.-H.D., J.W., Y.-W.H.)
| | - Ke-Lan Zhang
- Department of Clinical Laboratory, Guangzhou Women & Children Medical Center, Guangzhou Medical University, Guangdong, China (S.L., R.-C.H., Y.S., K.-L.Z., M.-L.T., T.Z., M.J., X.-H.D., J.W., Y.-W.H.)
| | - Mao-Lin Tang
- Department of Clinical Laboratory, Guangzhou Women & Children Medical Center, Guangzhou Medical University, Guangdong, China (S.L., R.-C.H., Y.S., K.-L.Z., M.-L.T., T.Z., M.J., X.-H.D., J.W., Y.-W.H.)
| | - Yan-Rou Bei
- Laboratory Medicine Center (Y.-R.B.), Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Ting Zhang
- Department of Clinical Laboratory, Guangzhou Women & Children Medical Center, Guangzhou Medical University, Guangdong, China (S.L., R.-C.H., Y.S., K.-L.Z., M.-L.T., T.Z., M.J., X.-H.D., J.W., Y.-W.H.)
| | - Jin-Bo Lu
- Department of Peripheral Vascular Surgery, Fuwai Hospital Chinese Academy of Medical Sciences, Shenzhen (J.-B.L.)
| | - Xin Ma
- Department of Anesthesiology (X.M.), Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Min Jiang
- Department of Clinical Laboratory, Guangzhou Women & Children Medical Center, Guangzhou Medical University, Guangdong, China (S.L., R.-C.H., Y.S., K.-L.Z., M.-L.T., T.Z., M.J., X.-H.D., J.W., Y.-W.H.)
| | - Liang-Jun Qin
- Department of Pathology, Guangzhou Women & Children Medical Center, Guangzhou Medical University, Guangdong, China (L.J.Q.)
| | - Yudan Xu
- Laboratory Medicine Center, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China (Y.X.)
| | - Xian-Hui Dong
- Department of Clinical Laboratory, Guangzhou Women & Children Medical Center, Guangzhou Medical University, Guangdong, China (S.L., R.-C.H., Y.S., K.-L.Z., M.-L.T., T.Z., M.J., X.-H.D., J.W., Y.-W.H.)
| | - Jia Wu
- Department of Clinical Laboratory, Guangzhou Women & Children Medical Center, Guangzhou Medical University, Guangdong, China (S.L., R.-C.H., Y.S., K.-L.Z., M.-L.T., T.Z., M.J., X.-H.D., J.W., Y.-W.H.)
| | - Xiaoyan Dai
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences, Guangzhou Medical University, Guangdong, China (X.D.)
- Clinical Research Institute, The Second Affiliated Hospital, Hengyang Medical School, University of South China, Hunan, China (X.D.)
| | - Yan-Wei Hu
- Department of Clinical Laboratory, Guangzhou Women & Children Medical Center, Guangzhou Medical University, Guangdong, China (S.L., R.-C.H., Y.S., K.-L.Z., M.-L.T., T.Z., M.J., X.-H.D., J.W., Y.-W.H.)
- Department of Laboratory Medicine, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China (Y.-W.H.)
| |
Collapse
|
7
|
Liu H, Zhang J, Li J, Cao X, Yu K, Xia X, Li Z, Wang F. LncRNA PSMB8-AS1 increases glioma malignancy via the miR-382-3p/BCAT1 axis. Transl Oncol 2024; 39:101806. [PMID: 38235619 PMCID: PMC10628860 DOI: 10.1016/j.tranon.2023.101806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 09/25/2023] [Accepted: 10/14/2023] [Indexed: 01/19/2024] Open
Abstract
BACKGROUND This study aimed to investigate the specific roles of the long non-coding RNA (lncRNA) proteasome 20S subunit beta 8 (PSMB8)-antisense RNA 1 (AS1)/microRNA (miR)-382-3p/branched-chain amino acid transaminase 1 (BCAT1) interaction network in gliomas. METHODS Western blotting and quantitative reverse transcription-polymerase chain reaction were performed to assess the expression levels of lncRNA PSMB8-AS1, BCAT1, and miR-382-3p. Moreover, the cell proliferation, migration, and apoptosis were assessed using the cell counting kit-8, Transwell, and caspase-3 activity assays, respectively. The biological role of lncRNA PSMB8-AS1 in glioma was investigated in vivo using a xenograft mouse model. Additionally, the associations among lncRNA PSMB8-AS1, miR-382-3p, and BCAT1 were analyzed using dual-luciferase and RNA immunoprecipitation assays and bioinformatics analyses. RESULTS Glioma cell lines and tissues exhibited overexpression of lncRNA PSMB8-AS1 and BCAT1 and low expression of miR-382-3p. Knockdown of PSMB8-AS1 remarkably repressed the tumor growth in vivo and the migration and proliferation of glioma cells in vitro. In contrast, knockdown of lncRNA PSMB8-AS1 increased the cell apoptosis. Mechanistically, PSMB8-AS1 directly targeted miR-382-3p. By sponging miR-382-3p, lncRNA PSMB8-AS1 stimulated the migration and proliferation of glioma cells and suppressed their apoptosis. Additionally, miR-382-3p directly targeted BCAT1. Inhibition of miR-382-3p reversed the antitumor effects of BCAT1 silencing on glioma progression. CONCLUSION Our study revealed that lncRNA PSMB8-AS1 aggravated glioma malignancy by enhancing BCAT1 expression after competitively binding to miR-382-3p. Therefore, lncRNA PSMB8-AS1 may be a potential biomarker and therapeutic target for glioma treatment.
Collapse
Affiliation(s)
- Haibo Liu
- Department of Neurosurgery, Pengzhou People's Hospital, Chengdu 610500, Sichuan, China; Department of Neurosurgery, Pengzhou Second People's Hospital, Chengdu 610500, Sichuan, China; Department of Neurosurgery, The First Affiliated Hospital of Chengdu Medical College, Chengdu 610500, Sichuan, China
| | - Jie Zhang
- Department of Neurosurgery, The First Affiliated Hospital of Chengdu Medical College, Chengdu 610500, Sichuan, China
| | - Jiamin Li
- Department of Critical Care Medicine, Xindu District People's Hospital of Chengdu, Chengdu 610500, Sichuan, China
| | - Xiaoying Cao
- Department of Neurosurgery, The First Affiliated Hospital of Chengdu Medical College, Chengdu 610500, Sichuan, China
| | - Kai Yu
- Department of Neurosurgery, The First Affiliated Hospital of Chengdu Medical College, Chengdu 610500, Sichuan, China
| | - Xun Xia
- Department of Neurosurgery, The First Affiliated Hospital of Chengdu Medical College, Chengdu 610500, Sichuan, China
| | - Zongxi Li
- Department of Neurosurgery, The First Affiliated Hospital of Chengdu Medical College, Chengdu 610500, Sichuan, China
| | - Fengbo Wang
- Department of Rehabilitation, The First Affiliated Hospital of Chengdu Medical College, Chengdu 610500, Sichuan, China.
| |
Collapse
|
8
|
Yang X, Wang J, Liu W. Molecular markers of type II alveolar epithelial cells in acute lung injury by bioinformatics analysis. Sci Rep 2023; 13:17797. [PMID: 37853056 PMCID: PMC10584938 DOI: 10.1038/s41598-023-45129-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Accepted: 10/16/2023] [Indexed: 10/20/2023] Open
Abstract
In this study, we aimed to identify molecular markers associated with type II alveolar epithelial cell injury in acute lung injury (ALI) models using bioinformatics methods. The objective was to provide new insights for the diagnosis and treatment of ALI/ARDS. We downloaded RNA SEQ datasets (GSE109913, GSE179418, and GSE119123) from the Gene Expression Omnibus (GEO) and used R language package to screen differentially expressed genes (DEGs). DEGs were annotated using Gene Ontology (GO), and their pathways were analyzed using Kyoto Encyclopedia of Genes and Genomes (KEGG). DEGs were imported into the STRING database and analyzed using Cytoscape software to determine the protein network of DEGs and calculate the top 10 nodes for the hub genes. Finally, potential therapeutic drugs for the hub genes were predicted using the DGIdb database. We identified 78 DEGs, including 70 up-regulated genes and 8 down-regulated genes. GO analysis revealed that the DEGs were mainly involved in biological processes such as granulocyte migration, response to bacterial-derived molecules, and cytokine-mediated signaling pathways. Additionally, they had cytokine activity, chemokine activity, and receptor ligand activity, and functioned in related receptor binding, CXCR chemokine receptor binding, G protein-coupled receptor binding, and other molecular functions. KEGG analysis indicated that the DEGs were mainly involved in TNF signaling pathway, IL-17 signaling pathway, NF-κB signal pathway, chemokine signal pathway, cytokine-cytokine receptor interaction signal pathway, and others. We identified eight hub genes, including IRF7, IFIT1, IFIT3, PSMB8, PSMB9, BST2, OASL2, and ZBP1, which were all up-regulated genes. We identified several hub genes of type II alveolar epithelial cells in ALI mouse models using bioinformatics analysis. These results provide new targets for understanding and treating of ALI.
Collapse
Affiliation(s)
- Xiaoting Yang
- Emergency Department, The First Hospital of China Medical University, No.155 of North Street Nanjing, Heping District, Shenyang City, 110001, Liaoning Province, China
| | - Jing Wang
- Emergency Department, The First Hospital of China Medical University, No.155 of North Street Nanjing, Heping District, Shenyang City, 110001, Liaoning Province, China
| | - Wei Liu
- Emergency Department, The First Hospital of China Medical University, No.155 of North Street Nanjing, Heping District, Shenyang City, 110001, Liaoning Province, China.
| |
Collapse
|
9
|
Thatai AKS, Ammankallu S, Devasahayam Arokia Balaya R, Soman SP, Nisar M, Babu S, John L, George A, Anto CK, Sanjeev D, Kandiyil MK, Raj SS, Awasthi K, Vinodchandra SS, Prasad TSK, Raju R. VirhostlncR: A comprehensive database to explore lncRNAs and their targets in viral infections. Comput Biol Med 2023; 164:107279. [PMID: 37572440 DOI: 10.1016/j.compbiomed.2023.107279] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 07/11/2023] [Accepted: 07/16/2023] [Indexed: 08/14/2023]
Abstract
Long non-coding-RNAs (lncRNAs) are an expanding set of cis-/trans-regulatory RNA genes that outnumber the protein-coding genes. Although being increasingly discovered, the functional role of the majority of lncRNAs in diverse biological conditions is undefined. Increasing evidence supports the critical role of lncRNAs in the emergence, regulation, and progression of various viral infections including influenza, hepatitis, coronavirus, and human immunodeficiency virus. Hence, the identification of signature lncRNAs would facilitate focused analysis of their functional roles accounting for their targets and regulatory mechanisms associated with infections. Towards this, we compiled 2803 lncRNAs identified to be modulated by 33 viral strains in various mammalian cell types and are provided through the resource named VirhostlncR (http://ciods.in/VirhostlncR/). The information on each of the viral strains, their multiplicity of infection, duration of infection, host cell name and cell types, fold change of lncRNA expression, and their specific identification methods are integrated into VirhostlncR. Based on the current datasets, we report 150 lncRNAs including differentiation antagonizing non-protein coding RNA (DANCR), metastasis-associated lung adenocarcinoma transcript 1 (MALAT1), maternally expressed gene 3 (MEG3), nuclear paraspeckle assembly transcript 1 (NEAT1), and plasmacytoma variant translocation 1 (PVT1) to be perturbed by two or more viruses. Analysis of viral protein interactions with human transcription factors (TFs) or TF-containing protein complexes identified that distinct viruses can transcriptionally regulate many of these lncRNAs through multiple protein complexes. Together, we believe that the current dataset will enable priority selection of lncRNAs for identification of their targets and serve as an effective platform for the analysis of noncoding RNA-mediated regulations in viral infections.
Collapse
Affiliation(s)
- Arun Kumar Sumaithangi Thatai
- Centre for Systems Biology and Molecular Medicine (CSBMM), Yenepoya Research Centre, Yenepoya (Deemed to be University), Deralakatte, Mangalore, 575 018, Karnataka, India.
| | - Shruthi Ammankallu
- Centre for Systems Biology and Molecular Medicine (CSBMM), Yenepoya Research Centre, Yenepoya (Deemed to be University), Deralakatte, Mangalore, 575 018, Karnataka, India.
| | - Rex Devasahayam Arokia Balaya
- Centre for Integrative Omics Data Science (CIODS), Yenepoya (Deemed to be University), Manjanade, Mangalore, 575 018, Karnataka, India.
| | - Sreelakshmi Pathappillil Soman
- Centre for Systems Biology and Molecular Medicine (CSBMM), Yenepoya Research Centre, Yenepoya (Deemed to be University), Deralakatte, Mangalore, 575 018, Karnataka, India; Centre for Integrative Omics Data Science (CIODS), Yenepoya (Deemed to be University), Manjanade, Mangalore, 575 018, Karnataka, India.
| | - Mahammad Nisar
- Centre for Integrative Omics Data Science (CIODS), Yenepoya (Deemed to be University), Manjanade, Mangalore, 575 018, Karnataka, India.
| | - Sreeranjini Babu
- Centre for Systems Biology and Molecular Medicine (CSBMM), Yenepoya Research Centre, Yenepoya (Deemed to be University), Deralakatte, Mangalore, 575 018, Karnataka, India; Centre for Integrative Omics Data Science (CIODS), Yenepoya (Deemed to be University), Manjanade, Mangalore, 575 018, Karnataka, India.
| | - Levin John
- Centre for Integrative Omics Data Science (CIODS), Yenepoya (Deemed to be University), Manjanade, Mangalore, 575 018, Karnataka, India.
| | - Anju George
- Centre for Systems Biology and Molecular Medicine (CSBMM), Yenepoya Research Centre, Yenepoya (Deemed to be University), Deralakatte, Mangalore, 575 018, Karnataka, India.
| | - Christy Kallely Anto
- Centre for Integrative Omics Data Science (CIODS), Yenepoya (Deemed to be University), Manjanade, Mangalore, 575 018, Karnataka, India.
| | - Diya Sanjeev
- Centre for Integrative Omics Data Science (CIODS), Yenepoya (Deemed to be University), Manjanade, Mangalore, 575 018, Karnataka, India.
| | - Mrudula Kinarulla Kandiyil
- Centre for Systems Biology and Molecular Medicine (CSBMM), Yenepoya Research Centre, Yenepoya (Deemed to be University), Deralakatte, Mangalore, 575 018, Karnataka, India.
| | - Sini S Raj
- Department of Computer Science, University of Kerala, Thiruvananthapuram, 695 581, Kerala, India.
| | - Kriti Awasthi
- Centre for Systems Biology and Molecular Medicine (CSBMM), Yenepoya Research Centre, Yenepoya (Deemed to be University), Deralakatte, Mangalore, 575 018, Karnataka, India.
| | - S S Vinodchandra
- Department of Computer Science, University of Kerala, Thiruvananthapuram, 695 581, Kerala, India.
| | - Thottethodi Subrahmanya Keshava Prasad
- Centre for Systems Biology and Molecular Medicine (CSBMM), Yenepoya Research Centre, Yenepoya (Deemed to be University), Deralakatte, Mangalore, 575 018, Karnataka, India; Omics Analytics Pvt. Ltd., Yenepoya Incubator, Deralakatte, Mangalore, 575 018, Karnataka, India.
| | - Rajesh Raju
- Centre for Systems Biology and Molecular Medicine (CSBMM), Yenepoya Research Centre, Yenepoya (Deemed to be University), Deralakatte, Mangalore, 575 018, Karnataka, India; Centre for Integrative Omics Data Science (CIODS), Yenepoya (Deemed to be University), Manjanade, Mangalore, 575 018, Karnataka, India; Omics Analytics Pvt. Ltd., Yenepoya Incubator, Deralakatte, Mangalore, 575 018, Karnataka, India.
| |
Collapse
|
10
|
Hu J, Zhang L, Zheng X, Wang G, Chen X, Hu Z, Chen Y, Wang X, Gu M, Hu S, Liu X, Jiao X, Peng D, Liu X. Long noncoding RNA #61 exerts a broad anti-influenza a virus effect by its long arm rings. Antiviral Res 2023; 215:105637. [PMID: 37196902 DOI: 10.1016/j.antiviral.2023.105637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 05/11/2023] [Accepted: 05/14/2023] [Indexed: 05/19/2023]
Abstract
Emerging evidence has demonstrated the critical role of long noncoding RNAs (lncRNAs) in regulating gene expression. However, the functional significance and mechanisms underlying influenza A virus (IAV)-host lncRNA interactions are still elusive. Here, we identified a functional lncRNA, LncRNA#61, as a broad anti-IAV factor. LncRNA#61 is highly upregulated by different subtypes of IAV, including human H1N1 virus and avian H5N1 and H7N9 viruses. Furthermore, nuclear-enriched LncRNA#61 can translocate from the nucleus to the cytoplasm soon after IAV infection. Forced LncRNA#61 expression dramatically impedes viral replication of various subtypes of IAV, including human H1N1 virus and avian H3N2/N8, H4N6, H5N1, H6N2/N8, H7N9, H8N4, H10N3, H11N2/N6/N9 viruses. Conversely, abolishing LncRNA#61 expression substantially favored viral replication. More importantly, LncRNA#61 delivered by the lipid nanoparticle (LNP)-encapsulated strategy shows good performance in restraining viral replication in mice. Interestingly, LncRNA#61 is involved in multiple steps of the viral replication cycle, including virus entry, viral RNA synthesis and the virus release period. Mechanistically, the four long ring arms of LncRNA#61 mainly mediate its broad antiviral effect and contribute to its inhibition of viral polymerase activity and nuclear aggregation of key polymerase components. Therefore, we defined LncRNA#61 as a potential broad-spectrum antiviral factor for IAV. Our study further extends our understanding of the stunning and unanticipated biology of lncRNAs as well as their close interaction with IAV, providing valuable clues for developing novel broad anti-IAV therapeutics targeting host lncRNAs.
Collapse
Affiliation(s)
- Jiao Hu
- Animal Infectious Disease Laboratory, School of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou, Jiangsu, China; Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agri-food Safety and Quality, Ministry of Agriculture of China (26116120), Yangzhou University, Yangzhou, China
| | - Lei Zhang
- Animal Infectious Disease Laboratory, School of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou, Jiangsu, China; Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agri-food Safety and Quality, Ministry of Agriculture of China (26116120), Yangzhou University, Yangzhou, China
| | - Xinxin Zheng
- Animal Infectious Disease Laboratory, School of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou, Jiangsu, China; Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agri-food Safety and Quality, Ministry of Agriculture of China (26116120), Yangzhou University, Yangzhou, China
| | - Guoqing Wang
- Animal Infectious Disease Laboratory, School of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou, Jiangsu, China; Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agri-food Safety and Quality, Ministry of Agriculture of China (26116120), Yangzhou University, Yangzhou, China
| | - Xia Chen
- Animal Infectious Disease Laboratory, School of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou, Jiangsu, China; Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agri-food Safety and Quality, Ministry of Agriculture of China (26116120), Yangzhou University, Yangzhou, China
| | - Zenglei Hu
- Animal Infectious Disease Laboratory, School of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China; Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou, China; Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agri-food Safety and Quality, Ministry of Agriculture of China (26116120), Yangzhou University, Yangzhou, China
| | - Yu Chen
- Animal Infectious Disease Laboratory, School of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou, Jiangsu, China; Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agri-food Safety and Quality, Ministry of Agriculture of China (26116120), Yangzhou University, Yangzhou, China
| | - Xiaoquan Wang
- Animal Infectious Disease Laboratory, School of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou, Jiangsu, China; Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agri-food Safety and Quality, Ministry of Agriculture of China (26116120), Yangzhou University, Yangzhou, China
| | - Min Gu
- Animal Infectious Disease Laboratory, School of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou, Jiangsu, China; Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agri-food Safety and Quality, Ministry of Agriculture of China (26116120), Yangzhou University, Yangzhou, China
| | - Shunlin Hu
- Animal Infectious Disease Laboratory, School of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou, Jiangsu, China; Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agri-food Safety and Quality, Ministry of Agriculture of China (26116120), Yangzhou University, Yangzhou, China
| | - Xiaowen Liu
- Animal Infectious Disease Laboratory, School of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou, Jiangsu, China; Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agri-food Safety and Quality, Ministry of Agriculture of China (26116120), Yangzhou University, Yangzhou, China
| | - Xinan Jiao
- Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agri-food Safety and Quality, Ministry of Agriculture of China (26116120), Yangzhou University, Yangzhou, China; Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, China
| | - Daxin Peng
- Animal Infectious Disease Laboratory, School of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou, Jiangsu, China; Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agri-food Safety and Quality, Ministry of Agriculture of China (26116120), Yangzhou University, Yangzhou, China
| | - Xiufan Liu
- Animal Infectious Disease Laboratory, School of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou, Jiangsu, China; Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agri-food Safety and Quality, Ministry of Agriculture of China (26116120), Yangzhou University, Yangzhou, China.
| |
Collapse
|
11
|
Jiang S, Hu J, Bai Y, Hao R, Liu L, Chen H. Transcriptome-wide 5-methylcytosine modification profiling of long non-coding RNAs in A549 cells infected with H1N1 influenza A virus. BMC Genomics 2023; 24:316. [PMID: 37308824 DOI: 10.1186/s12864-023-09432-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Accepted: 06/06/2023] [Indexed: 06/14/2023] Open
Abstract
BACKGROUND In recent years, accumulating evidences have revealed that influenza A virus (IAV) infections induce significant differential expression of host long noncoding RNAs (lncRNAs), some of which play important roles in the regulation of virus-host interactions and determining the virus pathogenesis. However, whether these lncRNAs bear post-translational modifications and how their differential expression is regulated remain largely unknown. In this study, the transcriptome-wide 5-methylcytosine (m5C) modification of lncRNAs in A549 cells infected with an H1N1 influenza A virus was analyzed and compared with uninfected cells by Methylated RNA immunoprecipitation sequencing (MeRIP-Seq). RESULTS Our data identified 1317 upregulated m5C peaks and 1667 downregulated peaks in the H1N1 infected group. Gene ontology (GO) and the Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses showed that the differentially modified lncRNAs were associated with protein modification, organelle localization, nuclear export and other biological processes. Furthermore, conjoint analysis of the differentially modified (DM) and differentially expressed (DE) lncRNAs identified 143 'hyper-up', 81 'hypo-up', 6 'hypo-down' and 4 'hyper-down' lncRNAs. GO and KEGG analyses revealed that these DM and DE lncRNAs were predominantly associated with pathogen recognition and disease pathogenesis pathways, indicating that m5C modifications could play an important role in the regulation of host response to IAV replication by modulating the expression and/or stability of lncRNAs. CONCLUSION This study presented the first m5C modification profile of lncRNAs in A549 cells infected with IAV and demonstrated a significant alteration of m5C modifications on host lncRNAs upon IAV infection. These data could give a reference to future researches on the roles of m5C methylation in virus infection.
Collapse
Affiliation(s)
- Shengqiang Jiang
- College of Life Sciences, Northwest A & F University, Yangling, 712100, Shanxi, P. R. China
| | - Jing Hu
- College of Life Sciences, Northwest A & F University, Yangling, 712100, Shanxi, P. R. China
| | - Yang Bai
- College of Life Sciences, Northwest A & F University, Yangling, 712100, Shanxi, P. R. China
| | - Ruiwei Hao
- College of Life Sciences, Northwest A & F University, Yangling, 712100, Shanxi, P. R. China
| | - Long Liu
- School of Basic Medical Sciences, Hubei University of Medicine, Shiyan, 442000, Hubei, P. R. China
| | - Hongying Chen
- College of Life Sciences, Northwest A & F University, Yangling, 712100, Shanxi, P. R. China.
| |
Collapse
|
12
|
Yang Y, Ge J, Lu Y, Zhou Y, Sun H, Li H. Long noncoding RNAs expression profile of RIP2 knockdown in chicken HD11 macrophages associated with avian pathogenic E. coli (APEC) infection. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2023; 142:104650. [PMID: 36736641 DOI: 10.1016/j.dci.2023.104650] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Revised: 01/27/2023] [Accepted: 01/27/2023] [Indexed: 06/18/2023]
Abstract
Avian pathogenic E. coli (APEC) has been detected to cause many acute and chronic diseases, resulting in huge economic losses to the poultry industry. Previous experiments have identified the effect of receptor interacting serine/threonine kinase 2 (RIP2) gene in APEC infection. Moreover, increasing evidence indicates that long noncoding RNAs (lncRNAs) play important roles in the anti-bacteria responses. However, little is known about the functions of lncRNAs, especially related to RIP2, in response to APEC. Therefore, we tried to reveal lncRNAs potentially involved in the immune and inflammatory response against APEC infection, with a particular focus on those possibly correlated with RIP2. A total of 1856 and 1373 differentially expressed (DE) lncRNAs were identified in knockdown of RIP2 cells following APEC infection (shRIP2+APEC) vs. APEC and shRIP2 vs. wild type cells (WT), respectively, which were mainly enriched in lysosome, phagosome, NOD-like receptor signaling pathway, TGF-beta signaling pathway. Significantly, TCONS_00009695 regulated by RIP2 could directly alter the expression of target BIRC3 to modulate cytokines and to participate in immune and inflammatory response against APEC infection. Our findings aid to a better understanding of host responses to APEC infection and provide new directions for understanding the potential association between lncRNAs and APEC pathogenesis.
Collapse
Affiliation(s)
- Yexin Yang
- College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, China
| | - Jiayi Ge
- College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, China
| | - Yue Lu
- College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, China
| | - Yuyang Zhou
- College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, China
| | - Hongyan Sun
- College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, China; Joint International Research Laboratory of Agriculture & Agri-Product Safety, Ministry of Education, Yangzhou University, Yangzhou, 225009, China.
| | - Huan Li
- School of Biological and Chemical Engineering, Yangzhou Polytechnic College, Yangzhou, 225009, China; Yangzhou Engineering Research Center of Agricultural Products Intelligent Measurement and Control & Cleaner Production, Yangzhou, 225009, China
| |
Collapse
|
13
|
Li H, Ma Q, Ren J, Guo W, Feng K, Li Z, Huang T, Cai YD. Immune responses of different COVID-19 vaccination strategies by analyzing single-cell RNA sequencing data from multiple tissues using machine learning methods. Front Genet 2023; 14:1157305. [PMID: 37007947 PMCID: PMC10065150 DOI: 10.3389/fgene.2023.1157305] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 03/07/2023] [Indexed: 03/19/2023] Open
Abstract
Multiple types of COVID-19 vaccines have been shown to be highly effective in preventing SARS-CoV-2 infection and in reducing post-infection symptoms. Almost all of these vaccines induce systemic immune responses, but differences in immune responses induced by different vaccination regimens are evident. This study aimed to reveal the differences in immune gene expression levels of different target cells under different vaccine strategies after SARS-CoV-2 infection in hamsters. A machine learning based process was designed to analyze single-cell transcriptomic data of different cell types from the blood, lung, and nasal mucosa of hamsters infected with SARS-CoV-2, including B and T cells from the blood and nasal cavity, macrophages from the lung and nasal cavity, alveolar epithelial and lung endothelial cells. The cohort was divided into five groups: non-vaccinated (control), 2*adenovirus (two doses of adenovirus vaccine), 2*attenuated (two doses of attenuated virus vaccine), 2*mRNA (two doses of mRNA vaccine), and mRNA/attenuated (primed by mRNA vaccine, boosted by attenuated vaccine). All genes were ranked using five signature ranking methods (LASSO, LightGBM, Monte Carlo feature selection, mRMR, and permutation feature importance). Some key genes that contributed to the analysis of immune changes, such as RPS23, DDX5, PFN1 in immune cells, and IRF9 and MX1 in tissue cells, were screened. Afterward, the five feature sorting lists were fed into the feature incremental selection framework, which contained two classification algorithms (decision tree [DT] and random forest [RF]), to construct optimal classifiers and generate quantitative rules. Results showed that random forest classifiers could provide relative higher performance than decision tree classifiers, whereas the DT classifiers provided quantitative rules that indicated special gene expression levels under different vaccine strategies. These findings may help us to develop better protective vaccination programs and new vaccines.
Collapse
Affiliation(s)
- Hao Li
- College of Food Engineering, Jilin Engineering Normal University, Changchun, China
| | - Qinglan Ma
- School of Life Sciences, Shanghai University, Shanghai, China
| | - Jingxin Ren
- School of Life Sciences, Shanghai University, Shanghai, China
| | - Wei Guo
- Key Laboratory of Stem Cell Biology, Shanghai Institutes for Biological Sciences (SIBS), Shanghai Jiao Tong University School of Medicine (SJTUSM), Chinese Academy of Sciences (CAS), Shanghai, China
| | - Kaiyan Feng
- Department of Computer Science, Guangdong AIB Polytechnic College, Guangzhou, China
| | - Zhandong Li
- College of Food Engineering, Jilin Engineering Normal University, Changchun, China
| | - Tao Huang
- Bio-Med Big Data Center, CAS Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Yu-Dong Cai
- School of Life Sciences, Shanghai University, Shanghai, China
| |
Collapse
|
14
|
Xiang X, Guo Y, Chen Z, Zhang F, Huang J, Qin Y. A prognostic risk prediction model based on ferroptosis-related long non-coding RNAs in bladder cancer: A bulk RNA-seq research and scRNA-seq validation. Medicine (Baltimore) 2022; 101:e32558. [PMID: 36595859 PMCID: PMC9794272 DOI: 10.1097/md.0000000000032558] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND To construct a prognostic risk model of bladder cancer (BC) from the perspective of long non-coding RNAs (lncRNAs) and ferroptosis, in order to guide clinical prognosis and identify potential therapeutic targets. METHODS In-hours BC samples were collected from 4 patients diagnosed with BC, who underwent radical cystectomy. Single cell transcriptome sequencing was performed and Seurat package were used for quality control and secondary analysis. LncRNAs expression profiles of BC samples were extracted from The Cancer Genome Atlas database. And sex, age, tumor, node, metastasis stage and other clinical data was downloaded at the same time. Ferroptosis-related lncRNAs were identified by co-expression analysis. We constructed a risk model by Cox regression and least absolute shrinkage and selection operator regression analyses. The predictive strength of the risk model for overall survival (OS) of patients with BC was evaluated by the log-rank test and Kaplan-Meier method. Finally, the enrichment analysis was performed and visualized. RESULTS We identified and included 15 prognostic ferroptosis-related lncRNAs (AL356740.1, FOXC2AS1, ZNF528AS1, LINC02535, PSMB8AS1, AL590428.1, AP000347.2, OCIAD1-AS1, AP001347.1, AC104986.2, AC018926.2, LINC00867, AC099518.4, USP30-AS1, and ARHGAP5-AS1), to build our ferroptosis-related lncRNAs risk model. Using this risk model, BC patients were divided into high and low-risk groups, and their respective survival lengths were calculated. The results showed that the OS of the low-risk group was significantly longer than that of the high-risk group. A nomogram was utilized to predict the survival rate of BC patients. As indicated in the nomogram, risk score was the most important indicator of OS in patients with BC. The ferroptosis-related lncRNAs risk model is an independent tool for prognostic risk assessment in patients with BC. Single cell transcriptome sequencing suggests that ferroptosis-related lncRNAs express specifically in BC tumor microenvironment. AL356740.1, LINC02535 and LINC00867 were mainly expressed in tumor cells. CONCLUSION The risk model based on the ferroptosis-related lncRNAs and the genomic clinico-pathological nomogram could be used to accurately predict the prognosis of patients with BC. The lncRNAs used to build this model might become potential therapeutic targets in the future.
Collapse
Affiliation(s)
- Xuebao Xiang
- Department of Urology, Affiliated Hospital of Guilin Medical College, Guilin, People’s Republic of China
- Centre for Genomic and Personalized Medicine, Guangxi Medical University, Nanning, People’s Republic of China
| | - Yi Guo
- Centre for Genomic and Personalized Medicine, Guangxi Medical University, Nanning, People’s Republic of China
| | - Zhongyuan Chen
- Centre for Genomic and Personalized Medicine, Guangxi Medical University, Nanning, People’s Republic of China
| | - Fangxin Zhang
- Centre for Genomic and Personalized Medicine, Guangxi Medical University, Nanning, People’s Republic of China
| | - Jiefu Huang
- Department of Urology, Affiliated Hospital of Guilin Medical College, Guilin, People’s Republic of China
| | - Yan Qin
- Department of Health Management, The People’s Hospital of Guangxi Zhuang Autonomous Region & Research center of Health Management, Guangxi Academy of Medical Sciences, Nanning, People’s Republic of China
- * Correspondence: Yan Qin, Department of Health Management, The People’s Hospital of Guangxi Zhuang Autonomous Region & Research center of Health Management, Guangxi Academy of Medical Sciences, Nanning, Guangxi 530021, People’s Republic of China (e-mail: )
| |
Collapse
|
15
|
Liu Q, Yang H, Zhao L, Huang N, Ping J. A Novel lncRNA SAAL Suppresses IAV Replication by Promoting Innate Responses. Microorganisms 2022; 10:microorganisms10122336. [PMID: 36557591 PMCID: PMC9785332 DOI: 10.3390/microorganisms10122336] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 11/09/2022] [Accepted: 11/23/2022] [Indexed: 11/29/2022] Open
Abstract
Influenza A virus (IAV) infection has traditionally been a serious problem in animal husbandry and human public health security. Recently, many studies identified that long noncoding RNAs play an important role in the antiviral immune response after the infection of the influenza virus. However, there are still lots of IAV-related lncRNAs that have not been well-characterized. Using RNA sequencing analysis, we identified a lncRNA, named Serpina3i Activation Associated lncRNA (SAAL), which can be significantly upregulated in mice after IAV infection. In this study, we found that overexpression of SAAL inhibited the replication of A/WSN/33(WSN). SAAL upregulated Serpina3i with or without WSN infection. Overexpression of Serpina3i reduced influenza virus infection. Meanwhile, knockdown of Serpina3i enhanced the replication of WSN. Furthermore, knockdown of Serpina3i abolished the SAAL-mediated decrease in WSN infection. Overexpression of SAAL or Serpina3i positively regulated the transcription of interferon β (IFN-β) and several critical ISGs after WSN infection. In conclusion, we found that the novel lncRNA SAAL is a critical anti-influenza regulator by upregulating the mRNA level of Serpina3i.
Collapse
Affiliation(s)
- Qingzheng Liu
- MOE Joint International Research Laboratory of Animal Health and Food Safety, Engineering Laboratory of Animal Immunity of Jiangsu Province, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
- Key Laboratory of Livestock and Poultry Multi-Omics of MARA, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan 250100, China
- Shandong Key Laboratory of Animal Disease Control and Breeding, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan 250100, China
| | - Hongjun Yang
- Key Laboratory of Livestock and Poultry Multi-Omics of MARA, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan 250100, China
- Shandong Key Laboratory of Animal Disease Control and Breeding, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan 250100, China
| | - Lingcai Zhao
- MOE Joint International Research Laboratory of Animal Health and Food Safety, Engineering Laboratory of Animal Immunity of Jiangsu Province, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Nan Huang
- MOE Joint International Research Laboratory of Animal Health and Food Safety, Engineering Laboratory of Animal Immunity of Jiangsu Province, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Jihui Ping
- MOE Joint International Research Laboratory of Animal Health and Food Safety, Engineering Laboratory of Animal Immunity of Jiangsu Province, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
- Correspondence:
| |
Collapse
|
16
|
Min J, Liu W, Li J. Emerging Role of Interferon-Induced Noncoding RNA in Innate Antiviral Immunity. Viruses 2022; 14:2607. [PMID: 36560611 PMCID: PMC9780829 DOI: 10.3390/v14122607] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 11/21/2022] [Accepted: 11/21/2022] [Indexed: 11/24/2022] Open
Abstract
Thousands of unique noncoding RNAs (ncRNAs) exist within the genomes of higher eukaryotes. Upon virus infection, the host generates interferons (IFNs), which initiate the expression of hundreds of interferon-stimulated genes (ISGs) through IFN receptors on the cell surface, establishing a barrier as the host's antiviral innate immunity. With the development of novel RNA-sequencing technology, many IFN-induced ncRNAs have been identified, and increasing attention has been given to their functions as regulators involved in the antiviral innate immune response. IFN-induced ncRNAs regulate the expression of viral proteins, IFNs, and ISGs, as well as host genes that are critical for viral replication, cytokine and chemokine production, and signaling pathway activation. This review summarizes the complex regulatory role of IFN-induced ncRNAs in antiviral innate immunity from the above aspects, aiming to improve understanding of ncRNAs and provide reference for the basic research of antiviral innate immunity.
Collapse
Affiliation(s)
- Jie Min
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
- Savaid Medical School, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wenjun Liu
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
- Savaid Medical School, University of Chinese Academy of Sciences, Beijing 100049, China
- Institute of Microbiology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Beijing 100101, China
| | - Jing Li
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
- Savaid Medical School, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
17
|
Hackett J, Gibson H, Frelinger J, Buntzman A. Using the Collaborative Cross and Diversity Outbred Mice in Immunology. Curr Protoc 2022; 2:e547. [PMID: 36066328 PMCID: PMC9612550 DOI: 10.1002/cpz1.547] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
The Collaborative Cross (CC) and the Diversity Outbred (DO) stock mouse panels are the most powerful murine genetics tools available to the genetics community. Together, they combine the strength of inbred animal models with the diversity of outbred populations. Using the 63 CC strains or a panel of DO mice, each derived from the same 8 parental mouse strains, researchers can map genetic contributions to exceptionally complex immunological and infectious disease traits that would require far greater powering if performed by genome-wide association studies (GWAS) in human populations. These tools allow genes to be studied in heterozygous and homozygous states and provide a platform to study epistasis between interacting loci. Most importantly, once a quantitative phenotype is investigated and quantitative trait loci are identified, confirmatory genetic studies can be performed, which is often problematic using the GWAS approach. In addition, novel stable mouse models for immune phenotypes are often derived from studies utilizing the DO and CC mice that can serve as stronger model systems than existing ones in the field. The CC/DO systems have contributed to the fields of cancer immunology, autoimmunity, vaccinology, infectious disease, allergy, tissue rejection, and tolerance but have thus far been greatly underutilized. In this article, we present a recent review of the field and point out key areas of immunology that are ripe for further investigation and awaiting new CC/DO research projects. We also highlight some of the strong computational tools that have been developed for analyzing CC/DO genetic and phenotypic data. Additionally, we have formed a centralized community on the CyVerse infrastructure where immunogeneticists can utilize those software tools, collaborate with groups across the world, and expand the use of the CC and DO systems for investigating immunogenetic phenomena. © 2022 Wiley Periodicals LLC.
Collapse
Affiliation(s)
- Justin Hackett
- Barbara Ann Karmanos Cancer Institute, Hudson-Webber Cancer Research Center, Detroit, Michigan
| | - Heather Gibson
- Barbara Ann Karmanos Cancer Institute, Hudson-Webber Cancer Research Center, Detroit, Michigan
| | - Jeffrey Frelinger
- University of Arizona, Valley Fever Center for Excellence, Tucson, Arizona
- Department of Microbiology and Immunology, University of North Carolina System, Chapel Hill, North Carolina
| | - Adam Buntzman
- University of Arizona, BIO5 Institute, Valley Fever Center for Excellence, Tucson, Arizona
| |
Collapse
|
18
|
Venkatesan A, Barik A, Paul D, Muthaiyan M, Das R. Identification of novel lncRNA by reanalysis of RNA-seq data in Zika Virus Infected hiNPCs. Virusdisease 2022; 33:185-193. [DOI: 10.1007/s13337-022-00771-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Accepted: 06/03/2022] [Indexed: 11/29/2022] Open
|
19
|
Bhide K, Mochnáčová E, Tkáčová Z, Petroušková P, Kulkarni A, Bhide M. Signaling events evoked by domain III of envelop glycoprotein of tick-borne encephalitis virus and West Nile virus in human brain microvascular endothelial cells. Sci Rep 2022; 12:8863. [PMID: 35614140 PMCID: PMC9133079 DOI: 10.1038/s41598-022-13043-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 05/19/2022] [Indexed: 11/24/2022] Open
Abstract
Tick-borne encephalitis virus and West Nile virus can cross the blood–brain barrier via hematogenous route. The attachment of a virion to the cells of a neurovascular unit, which is mediated by domain III of glycoprotein E, initiates a series of events that may aid viral entry. Thus, we sought to uncover the post-attachment biological events elicited in brain microvascular endothelial cells by domain III. RNA sequencing of cells treated with DIII of TBEV and WNV showed significant alteration in the expression of 309 and 1076 genes, respectively. Pathway analysis revealed activation of the TAM receptor pathway. Several genes that regulate tight-junction integrity were also activated, including pro-inflammatory cytokines and chemokines, cell-adhesion molecules, claudins, and matrix metalloprotease (mainly ADAM17). Results also indicate activation of a pro-apoptotic pathway. TLR2 was upregulated in both cases, but MyD88 was not. In the case of TBEV DIII, a MyD88 independent pathway was activated. Furthermore, both cases showed dramatic dysregulation of IFN and IFN-induced genes. Results strongly suggest that the virus contact to the cell surface emanates a series of events namely viral attachment and diffusion, breakdown of tight junctions, induction of virus uptake, apoptosis, reorganization of the extracellular-matrix, and activation of the innate immune system.
Collapse
Affiliation(s)
- Katarína Bhide
- Laboratory of Biomedical Microbiology and Immunology, University of Veterinary Medicine and Pharmacy, Komenského 73, 04181, Kosice, Slovak Republic
| | - Evelína Mochnáčová
- Laboratory of Biomedical Microbiology and Immunology, University of Veterinary Medicine and Pharmacy, Komenského 73, 04181, Kosice, Slovak Republic
| | - Zuzana Tkáčová
- Laboratory of Biomedical Microbiology and Immunology, University of Veterinary Medicine and Pharmacy, Komenského 73, 04181, Kosice, Slovak Republic
| | - Patrícia Petroušková
- Laboratory of Biomedical Microbiology and Immunology, University of Veterinary Medicine and Pharmacy, Komenského 73, 04181, Kosice, Slovak Republic
| | - Amod Kulkarni
- Laboratory of Biomedical Microbiology and Immunology, University of Veterinary Medicine and Pharmacy, Komenského 73, 04181, Kosice, Slovak Republic.,Institute of Neuroimmunology of Slovak Academy of Sciences, Bratislava, Slovak Republic
| | - Mangesh Bhide
- Laboratory of Biomedical Microbiology and Immunology, University of Veterinary Medicine and Pharmacy, Komenského 73, 04181, Kosice, Slovak Republic. .,Institute of Neuroimmunology of Slovak Academy of Sciences, Bratislava, Slovak Republic.
| |
Collapse
|
20
|
The Role of Long Noncoding RNA BST2-2 in the Innate Immune Response to Viral Infection. J Virol 2022; 96:e0020722. [PMID: 35297670 DOI: 10.1128/jvi.00207-22] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Long noncoding RNAs (lncRNAs) widely exist in the cells and play important roles in various biological processes. The role of lncRNAs in immunity remains largely unknown. lncRNA BST2-2 (lncBST2-2) was upregulated upon viral infection and dependent on the interferon (IFN)/JAK/STAT signaling pathway. There was no coding potential found in the lncBST2-2 transcript. Overexpression of lncBST2-2 inhibited the replication of hepatitis C virus (HCV), Newcastle disease virus (NDV), vesicular stomatitis virus (VSV), and herpes simplex virus (HSV), while knockdown of lncBST2-2 facilitated viral replication. Further studies showed that lncBST2-2 promoted the phosphorylation, dimerization, and nuclear transport of IRF3, promoting the production of IFNs. Importantly, lncBST2-2 interacted with the DNA-binding domain of IRF3, which augmented TBK1 and IRF3 interaction, thereby inducing robust production of IFNs. Moreover, lncBST2-2 impaired the interaction between IRF3 and PP2A-RACK1 complex, an essential step for the dephosphorylation of IRF3. These data shown that lncBST2-2 promotes the innate immune response to viral infection through targeting IRF3. Our study reveals the lncRNA involved in the activation of IRF3 and provides a new insight into the role of lncRNA in antiviral innate immunity. IMPORTANCE Innate immunity is an important part of the human immune system to resist the invasion of foreign pathogens. IRF3 plays a critical role in the innate immune response to viral infection. In this study, we demonstrated that lncBST2-2 plays an important role in innate immunity. Virus-induced lncBST2-2 positively regulates innate immunity by interacting with IRF3 and blocking the dephosphorylation effect of RACK1-PP2A complex on IRF3, thus inhibiting viral infection. Our study provides a new insight into the role of lncBST2-2 in the regulation of IRF3 signaling activation.
Collapse
|
21
|
Pushparaj S, Zhu Z, Huang C, More S, Liang Y, Lin K, Vaddadi K, Liu L. Regulation of influenza A virus infection by Lnc-PINK1-2:5. J Cell Mol Med 2022; 26:2285-2298. [PMID: 35201667 PMCID: PMC8995437 DOI: 10.1111/jcmm.17249] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 01/14/2022] [Accepted: 02/08/2022] [Indexed: 12/13/2022] Open
Abstract
Influenza virus causes approximately 291,000 to 646,000 human deaths worldwide annually. It is also a disease of zoonotic importance, affecting animals such as pigs, horses, and birds. Even though vaccination is being used to prevent influenza virus infection, there are limited options available to treat the disease. Long noncoding RNAs (lncRNAs) are RNA molecules with more than 200 nucleotides that do not translate into proteins. They play important roles in the physiological and pathological processes. In this study, we identified a novel transcript, Lnc‐PINK1‐2:5 that was upregulated by influenza virus. This lncRNA was predominantly located in the nucleus and was not affected by type I interferons. Overexpression of Lnc‐PINK1‐2:5 reduced the influenza viral mRNA and protein levels in cells as well as titres in culture media. Knockdown of Lnc‐PINK1‐2:5 using CRISPR interference enhanced the virus replication. Antiviral activity of Lnc‐PINK1‐2:5 was independent of influenza virus strains. RNA sequencing analysis revealed that Lnc‐PINK1‐2:5 upregulated thioredoxin interacting protein (TXNIP) during influenza virus infection. Overexpression of TXNIP reduced influenza virus infection, suggesting that TXNIP is an antiviral gene. Knockdown of TXNIP abolished the Lnc‐PINK1‐2:5‐mediated increase in influenza virus infection. In conclusion, the newly identified Lnc‐PINK1‐2:5 isoform is an anti‐influenza lncRNA acting through the upregulation of TXNIP gene expression.
Collapse
Affiliation(s)
- Samuel Pushparaj
- Oklahoma Center for Respiratory and Infectious Diseases, Oklahoma State University, Stillwater, Oklahoma, USA.,The Lundberg-Kienlen Lung Biology and Toxicology Laboratory, Department of Physiological Sciences, Oklahoma State University, Stillwater, Oklahoma, USA
| | - Zhengyu Zhu
- Oklahoma Center for Respiratory and Infectious Diseases, Oklahoma State University, Stillwater, Oklahoma, USA.,The Lundberg-Kienlen Lung Biology and Toxicology Laboratory, Department of Physiological Sciences, Oklahoma State University, Stillwater, Oklahoma, USA
| | - Chaoqun Huang
- Oklahoma Center for Respiratory and Infectious Diseases, Oklahoma State University, Stillwater, Oklahoma, USA.,The Lundberg-Kienlen Lung Biology and Toxicology Laboratory, Department of Physiological Sciences, Oklahoma State University, Stillwater, Oklahoma, USA
| | - Sunil More
- Oklahoma Center for Respiratory and Infectious Diseases, Oklahoma State University, Stillwater, Oklahoma, USA.,The Lundberg-Kienlen Lung Biology and Toxicology Laboratory, Department of Physiological Sciences, Oklahoma State University, Stillwater, Oklahoma, USA
| | - Yurong Liang
- Oklahoma Center for Respiratory and Infectious Diseases, Oklahoma State University, Stillwater, Oklahoma, USA.,The Lundberg-Kienlen Lung Biology and Toxicology Laboratory, Department of Physiological Sciences, Oklahoma State University, Stillwater, Oklahoma, USA
| | - Kong Lin
- Oklahoma Center for Respiratory and Infectious Diseases, Oklahoma State University, Stillwater, Oklahoma, USA.,The Lundberg-Kienlen Lung Biology and Toxicology Laboratory, Department of Physiological Sciences, Oklahoma State University, Stillwater, Oklahoma, USA
| | - Kishore Vaddadi
- Oklahoma Center for Respiratory and Infectious Diseases, Oklahoma State University, Stillwater, Oklahoma, USA.,The Lundberg-Kienlen Lung Biology and Toxicology Laboratory, Department of Physiological Sciences, Oklahoma State University, Stillwater, Oklahoma, USA
| | - Lin Liu
- Oklahoma Center for Respiratory and Infectious Diseases, Oklahoma State University, Stillwater, Oklahoma, USA.,The Lundberg-Kienlen Lung Biology and Toxicology Laboratory, Department of Physiological Sciences, Oklahoma State University, Stillwater, Oklahoma, USA
| |
Collapse
|
22
|
Liao Y, Guo S, Liu G, Qiu Z, Wang J, Yang D, Tian X, Qiao Z, Ma Z, Liu Z. Host Non-Coding RNA Regulates Influenza A Virus Replication. Viruses 2021; 14:v14010051. [PMID: 35062254 PMCID: PMC8779696 DOI: 10.3390/v14010051] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 12/21/2021] [Accepted: 12/21/2021] [Indexed: 12/12/2022] Open
Abstract
Outbreaks of influenza, caused by the influenza A virus (IAV), occur almost every year in various regions worldwide, seriously endangering human health. Studies have shown that host non-coding RNA is an important regulator of host-virus interactions in the process of IAV infection. In this paper, we comprehensively analyzed the research progress on host non-coding RNAs with regard to the regulation of IAV replication. According to the regulation mode of host non-coding RNAs, the signal pathways involved, and the specific target genes, we found that a large number of host non-coding RNAs directly targeted the PB1 and PB2 proteins of IAV. Nonstructural protein 1 and other key genes regulate the replication of IAV and indirectly participate in the regulation of the retinoic acid-induced gene I-like receptor signaling pathway, toll-like receptor signaling pathway, Janus kinase signal transducer and activator of transcription signaling pathway, and other major intracellular viral response signaling pathways to regulate the replication of IAV. Based on the above findings, we mapped the regulatory network of host non-coding RNAs in the innate immune response to the influenza virus. These findings will provide a more comprehensive understanding of the function and mechanism of host non-coding RNAs in the cellular anti-virus response as well as clues to the mechanism of cell-virus interactions and the discovery of antiviral drug targets.
Collapse
Affiliation(s)
- Yuejiao Liao
- Gansu Tech Innovation Center of Animal Cell, Biomedical Research Center, Northwest Minzu University, Lanzhou 730030, China; (Y.L.); (S.G.); (G.L.); (Z.Q.); (J.W.); (D.Y.); (Z.Q.); (Z.M.)
- Life Science and Engineering College, Northwest Minzu University, Lanzhou 730030, China;
| | - Shouqing Guo
- Gansu Tech Innovation Center of Animal Cell, Biomedical Research Center, Northwest Minzu University, Lanzhou 730030, China; (Y.L.); (S.G.); (G.L.); (Z.Q.); (J.W.); (D.Y.); (Z.Q.); (Z.M.)
- Life Science and Engineering College, Northwest Minzu University, Lanzhou 730030, China;
| | - Geng Liu
- Gansu Tech Innovation Center of Animal Cell, Biomedical Research Center, Northwest Minzu University, Lanzhou 730030, China; (Y.L.); (S.G.); (G.L.); (Z.Q.); (J.W.); (D.Y.); (Z.Q.); (Z.M.)
- Life Science and Engineering College, Northwest Minzu University, Lanzhou 730030, China;
| | - Zhenyu Qiu
- Gansu Tech Innovation Center of Animal Cell, Biomedical Research Center, Northwest Minzu University, Lanzhou 730030, China; (Y.L.); (S.G.); (G.L.); (Z.Q.); (J.W.); (D.Y.); (Z.Q.); (Z.M.)
- Life Science and Engineering College, Northwest Minzu University, Lanzhou 730030, China;
| | - Jiamin Wang
- Gansu Tech Innovation Center of Animal Cell, Biomedical Research Center, Northwest Minzu University, Lanzhou 730030, China; (Y.L.); (S.G.); (G.L.); (Z.Q.); (J.W.); (D.Y.); (Z.Q.); (Z.M.)
- Key Laboratory of Biotechnology & Bioengineering of State Ethnic Affairs Commission, Biomedical Research Center, Northwest Minzu University, Lanzhou 730030, China
| | - Di Yang
- Gansu Tech Innovation Center of Animal Cell, Biomedical Research Center, Northwest Minzu University, Lanzhou 730030, China; (Y.L.); (S.G.); (G.L.); (Z.Q.); (J.W.); (D.Y.); (Z.Q.); (Z.M.)
- Key Laboratory of Biotechnology & Bioengineering of State Ethnic Affairs Commission, Biomedical Research Center, Northwest Minzu University, Lanzhou 730030, China
| | - Xiaojing Tian
- Life Science and Engineering College, Northwest Minzu University, Lanzhou 730030, China;
- Key Laboratory of Biotechnology & Bioengineering of State Ethnic Affairs Commission, Biomedical Research Center, Northwest Minzu University, Lanzhou 730030, China
| | - Ziling Qiao
- Gansu Tech Innovation Center of Animal Cell, Biomedical Research Center, Northwest Minzu University, Lanzhou 730030, China; (Y.L.); (S.G.); (G.L.); (Z.Q.); (J.W.); (D.Y.); (Z.Q.); (Z.M.)
- Key Laboratory of Biotechnology & Bioengineering of State Ethnic Affairs Commission, Biomedical Research Center, Northwest Minzu University, Lanzhou 730030, China
| | - Zhongren Ma
- Gansu Tech Innovation Center of Animal Cell, Biomedical Research Center, Northwest Minzu University, Lanzhou 730030, China; (Y.L.); (S.G.); (G.L.); (Z.Q.); (J.W.); (D.Y.); (Z.Q.); (Z.M.)
- Key Laboratory of Biotechnology & Bioengineering of State Ethnic Affairs Commission, Biomedical Research Center, Northwest Minzu University, Lanzhou 730030, China
| | - Zhenbin Liu
- Gansu Tech Innovation Center of Animal Cell, Biomedical Research Center, Northwest Minzu University, Lanzhou 730030, China; (Y.L.); (S.G.); (G.L.); (Z.Q.); (J.W.); (D.Y.); (Z.Q.); (Z.M.)
- Key Laboratory of Biotechnology & Bioengineering of State Ethnic Affairs Commission, Biomedical Research Center, Northwest Minzu University, Lanzhou 730030, China
- Correspondence:
| |
Collapse
|
23
|
Saha C, Laha S, Chatterjee R, Bhattacharyya NP. Co-Regulation of Protein Coding Genes by Transcription Factor and Long Non-Coding RNA in SARS-CoV-2 Infected Cells: An In Silico Analysis. Noncoding RNA 2021; 7:74. [PMID: 34940755 PMCID: PMC8708613 DOI: 10.3390/ncrna7040074] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 11/15/2021] [Accepted: 11/19/2021] [Indexed: 12/14/2022] Open
Abstract
Altered expression of protein coding gene (PCG) and long non-coding RNA (lncRNA) have been identified in SARS-CoV-2 infected cells and tissues from COVID-19 patients. The functional role and mechanism (s) of transcriptional regulation of deregulated genes in COVID-19 remain largely unknown. In the present communication, reanalyzing publicly available gene expression data, we observed that 66 lncRNA and 5491 PCG were deregulated in more than one experimental condition. Combining our earlier published results and using different publicly available resources, it was observed that 72 deregulated lncRNA interacted with 3228 genes/proteins. Many targets of deregulated lncRNA could also interact with SARS-CoV-2 coded proteins, modulated by IFN treatment and identified in CRISPR screening to modulate SARS-CoV-2 infection. The majority of the deregulated lncRNA and PCG were targets of at least one of the transcription factors (TFs), interferon responsive factors (IRFs), signal transducer, and activator of transcription (STATs), NFκB, MYC, and RELA/p65. Deregulated 1069 PCG was joint targets of lncRNA and TF. These joint targets are significantly enriched with pathways relevant for SARS-CoV-2 infection indicating that joint regulation of PCG could be one of the mechanisms for deregulation. Over all this manuscript showed possible involvement of lncRNA and mechanisms of deregulation of PCG in the pathogenesis of COVID-19.
Collapse
Affiliation(s)
- Chinmay Saha
- Department of Genome Science, School of Interdisciplinary Studies, University of Kalyani, Nadia 741235, India;
| | - Sayantan Laha
- Human Genetics Unit, Indian Statistical Institute, 203 B. T. Road, Kolkata 700108, India; (S.L.); (R.C.)
| | - Raghunath Chatterjee
- Human Genetics Unit, Indian Statistical Institute, 203 B. T. Road, Kolkata 700108, India; (S.L.); (R.C.)
| | - Nitai P. Bhattacharyya
- Department of Endocrinology and Metabolism, Institute of Post Graduate Medical Education & Research and Seth Sukhlal Karnani Memorial Hospital, Kolkata 700020, India
| |
Collapse
|
24
|
Staller E, Barclay WS. Host Cell Factors That Interact with Influenza Virus Ribonucleoproteins. Cold Spring Harb Perspect Med 2021; 11:a038307. [PMID: 32988980 PMCID: PMC8559542 DOI: 10.1101/cshperspect.a038307] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Influenza viruses hijack host cell factors at each stage of the viral life cycle. After host cell entry and endosomal escape, the influenza viral ribonucleoproteins (vRNPs) are released into the cytoplasm where the classical cellular nuclear import pathway is usurped for nuclear translocation of the vRNPs. Transcription takes place inside the nucleus at active host transcription sites, and cellular mRNA export pathways are subverted for export of viral mRNAs. Newly synthesized RNP components cycle back into the nucleus using various cellular nuclear import pathways and host-encoded chaperones. Replication of the negative-sense viral RNA (vRNA) into complementary RNA (cRNA) and back into vRNA requires complex interplay between viral and host factors. Progeny vRNPs assemble at the host chromatin and subsequently exit from the nucleus-processes orchestrated by sets of host and viral proteins. Finally, several host pathways appear to play a role in vRNP trafficking from the nuclear envelope to the plasma membrane for egress.
Collapse
Affiliation(s)
- Ecco Staller
- Department of Infectious Disease, Faculty of Medicine, Imperial College London, St. Mary's Campus, London W2 1NY, United Kingdom
| | - Wendy S Barclay
- Department of Infectious Disease, Faculty of Medicine, Imperial College London, St. Mary's Campus, London W2 1NY, United Kingdom
| |
Collapse
|
25
|
Sajjad N, Wang S, Liu P, Chen JL, Chi X, Liu S, Ma S. Functional Roles of Non-coding RNAs in the Interaction Between Host and Influenza A Virus. Front Microbiol 2021; 12:742984. [PMID: 34745043 PMCID: PMC8569443 DOI: 10.3389/fmicb.2021.742984] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Accepted: 10/04/2021] [Indexed: 11/13/2022] Open
Abstract
Non-coding RNAs (ncRNAs) are extensively expressed in various cells and tissues, and studies have shown that ncRNAs play significant roles in cell regulation. However, in the past few decades, the knowledge of ncRNAs has been increased dramatically due to their transcriptional ability and multiple regulatory functions. Typically, regulatory ncRNAs include long ncRNAs (lncRNAs), miRNAs, piRNAs, Y RNAs, vault RNAs, and circular RNAs (circRNAs), etc. Previous studies have revealed that various ncRNAs are involved in the host responses to virus infection and play critical roles in the regulation of host-virus interactions. In this review, we discuss the conceptual framework and biological regulations of ncRNAs to elucidate their functions in response to viral infection, especially influenza A virus (IAV) infection. In addition, we summarize the ncRNAs that are associated with innate immunity and involvement of interferons and their stimulated genes (ISGs) during IAV infection.
Collapse
Affiliation(s)
- Nelam Sajjad
- Key Laboratory of Fujian-Taiwan Animal Pathogen Biology, College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Song Wang
- Key Laboratory of Fujian-Taiwan Animal Pathogen Biology, College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Ping Liu
- Key Laboratory of Fujian-Taiwan Animal Pathogen Biology, College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Ji-Long Chen
- Key Laboratory of Fujian-Taiwan Animal Pathogen Biology, College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Xiaojuan Chi
- Key Laboratory of Fujian-Taiwan Animal Pathogen Biology, College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Shasha Liu
- Key Laboratory of Fujian-Taiwan Animal Pathogen Biology, College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Shujie Ma
- Key Laboratory of Fujian-Taiwan Animal Pathogen Biology, College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| |
Collapse
|
26
|
Yan JM, Zhang WK, Li F, Zhou CM, Yu XJ. Integrated transcriptome profiling in THP-1 macrophages infected with bunyavirus SFTSV. Virus Res 2021; 306:198594. [PMID: 34637813 DOI: 10.1016/j.virusres.2021.198594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2021] [Revised: 09/10/2021] [Accepted: 10/06/2021] [Indexed: 10/20/2022]
Abstract
Severe fever with thrombocytopenia syndrome virus (SFTSV) is a tick-borne bunyavirus that causes an emerging hemorrhagic fever termed SFTS with high mortality. However, knowledge of SFTSV-host interactions is largely limited. Here, we performed a global transcriptome analysis of mRNAs and lncRNAs in THP-1 macrophages infected with SFTSV for 24 and 48 h. A total of 2,334 differentially expressed mRNAs and 154 differentially expressed lncRNAs were identified with 577 mRNAs and 31 lncRNAs commonly changed at both time points. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis revealed that differentially expressed mRNAs were mainly associated with innate immune, cytokine signaling, systemic lupus erythematosus, and alcoholism. Differentially expressed lncRNAs were enriched in systemic lupus erythematosus, alcoholism, and ribosome. Bioinformatic analysis also revealed hub regulatory mRNAs including IL6, TNF, UBA52, SRC, IL10, CXCL10, and CDK1 and core regulatory lncRNAs including XLOC_083027 and XLOC_113317. Transcription factor analysis of the differentially expressed mRNAs revealed that IRF1, SPI1, SPIB, ELF5, and FEV were enriched during SFTSV infection. Taken together, our studies illustrate the complex interaction between THP-1 macrophages and SFTSV.
Collapse
Affiliation(s)
- Jia-Min Yan
- State Key Laboratory of Virology, School of Health Sciences, Wuhan University, Wuhan, 430071, China
| | - Wen-Kang Zhang
- State Key Laboratory of Virology, School of Health Sciences, Wuhan University, Wuhan, 430071, China
| | - Fei Li
- School of Public Health, Shandong University, Jinan, Shandong 250012, China
| | - Chuan-Min Zhou
- State Key Laboratory of Virology, School of Health Sciences, Wuhan University, Wuhan, 430071, China; Zhongnan hospital of Wuhan University, Wuhan, 430071, China.
| | - Xue-Jie Yu
- State Key Laboratory of Virology, School of Health Sciences, Wuhan University, Wuhan, 430071, China.
| |
Collapse
|
27
|
Long Noncoding RNA FENDRR Inhibits Lung Fibroblast Proliferation via a Reduction of β-Catenin. Int J Mol Sci 2021; 22:ijms22168536. [PMID: 34445242 PMCID: PMC8395204 DOI: 10.3390/ijms22168536] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Revised: 07/30/2021] [Accepted: 08/01/2021] [Indexed: 02/06/2023] Open
Abstract
Idiopathic Pulmonary Fibrosis (IPF) is a chronic, progressive, and usually lethal lung disease and it has been widely accepted that fibroblast proliferation is one of the key characteristics of IPF. Long noncoding RNAs (lncRNAs) play vital roles in the pathogenesis of many diseases. In this study, we investigated the role of lncRNA FENDRR on fibroblast proliferation. Human lung fibroblasts stably overexpressing FENDRR showed a reduced cell proliferation compared to those expressing the control vector. On the other hand, FENDRR silencing increased fibroblast proliferation. FENDRR bound serine-arginine rich splicing factor 9 (SRSF9) and inhibited the phosphorylation of p70 ribosomal S6 kinase 1 (PS6K), a downstream protein of the mammalian target of rapamycin (mTOR) signaling. Silencing SRSF9 reduced fibroblast proliferation. FENDRR reduced β-catenin protein, but not mRNA levels. The reduction of β-catenin protein levels in lung fibroblasts by gene silencing or chemical inhibitor decreased fibroblast proliferation. Adenovirus-mediated FENDRR transfer to the lungs of mice reduced asbestos-induced fibrotic lesions and collagen deposition. RNA sequencing of lung tissues identified 7 cell proliferation-related genes that were up-regulated by asbestos but reversed by FENDRR. In conclusion, FENDRR inhibits fibroblast proliferation and functions as an anti-fibrotic lncRNA.
Collapse
|
28
|
FIP200 restricts RNA virus infection by facilitating RIG-I activation. Commun Biol 2021; 4:921. [PMID: 34326461 PMCID: PMC8322336 DOI: 10.1038/s42003-021-02450-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Accepted: 07/01/2021] [Indexed: 01/07/2023] Open
Abstract
Retinoic acid-inducible gene I (RIG-I) senses viral RNA and instigates an innate immune signaling cascade to induce type I interferon expression. Currently, the regulatory mechanisms controlling RIG-I activation remain to be fully elucidated. Here we show that the FAK family kinase-interacting protein of 200 kDa (FIP200) facilitates RIG-I activation. FIP200 deficiency impaired RIG-I signaling and increased host susceptibility to RNA virus infection. In vivo studies further demonstrated FIP200 knockout mice were more susceptible to RNA virus infection due to the reduced innate immune response. Mechanistic studies revealed that FIP200 competed with the helicase domain of RIG-I for interaction with the two tandem caspase activation and recruitment domains (2CARD), thereby facilitating the release of 2CARD from the suppression status. Furthermore, FIP200 formed a dimer and facilitated 2CARD oligomerization, thereby promoting RIG-I activation. Taken together, our study defines FIP200 as an innate immune signaling molecule that positively regulates RIG-I activation. Lingyan Wang et al. report that the autophagy-associated protein FIP200 interacts with the RNA sensor RIG-I to trigger activation of the type I interferon pathway.
Collapse
|
29
|
Kesheh MM, Mahmoudvand S, Shokri S. Long noncoding RNAs in respiratory viruses: A review. Rev Med Virol 2021; 32:e2275. [PMID: 34252234 PMCID: PMC8420315 DOI: 10.1002/rmv.2275] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 06/26/2021] [Accepted: 06/29/2021] [Indexed: 12/27/2022]
Abstract
Long noncoding RNAs (lncRNAs) are defined as RNA molecules longer than 200 nucleotides that can regulate gene expression at the transcriptional or post‐transcriptional levels. Both human lncRNAs and lncRNAs encoded by viruses can modulate the expression of host genes which are critical for viral replication, latency, activation of signalling pathways, cytokine and chemokine production, RNAi processing, expression of interferons (IFNs) and interferon‐stimulated genes (ISGs). Studies on lncRNAs as key regulators of host‐virus interactions may give new insights into therapeutic strategies for the treatment of related diseases. This current review focuses on the role of lncRNAs, and their interactions with respiratory viruses including influenza A virus (IAV), respiratory syncytial virus (RSV) and severe acute respiratory syndrome coronavirus 2 (SARS‐CoV‐2).
Collapse
Affiliation(s)
- Mina Mobini Kesheh
- Department of Virology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Shahab Mahmoudvand
- Student Research Committee, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.,Department of Virology, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Somayeh Shokri
- Student Research Committee, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.,Department of Virology, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| |
Collapse
|
30
|
Zhu Y, Lu Y, Yuan L, Ling W, Jiang X, Chen S, Hu B. LincRNA-Cox2 regulates IL6/JAK3/STAT3 and NF-κB P65 pathway activation in Listeria monocytogenes-infected RAW264.7 cells. Int J Med Microbiol 2021; 311:151515. [PMID: 34146956 DOI: 10.1016/j.ijmm.2021.151515] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2020] [Revised: 05/16/2021] [Accepted: 06/08/2021] [Indexed: 12/13/2022] Open
Abstract
Listeria monocytogenes (Lm) can lead to high mortality rates relative to other foodborne pathogens. Lm-induced inflammation is partly characterized by macrophage activation. Long non-coding RNAs (lncRNAs) have important roles in various biological processes. However, it is unknown how lncRNAs regulate the host response to Lm infection. To identify the role of lncRNA in Lm infection, we used in vitro and in vivo models. We found that lincRNA-Cox2 was highly expressed in Lm-infected RAW264.7 cells. LincRNA-Cox2 knockdown resulted in reduced proinflammatory cytokines, apoptosis, migration ability and enhanced phagocytosis of Lm. LincRNA-Cox2 knockdown also reduced the phosphorylation of Janus kinase 3 (JAK3) and signal transducer and activator of transcription (STAT3) and the nuclear translocation of nuclear factor (NF)-κB P65, which are known to be involved in inflammatory responses. Experimentally inhibiting the protein and phosphorylation levels of STAT3 resulted in reduced proinflammatory cytokines and enhanced phagocytosis of Lm by the RAW264.7 cells. Our research suggests that lincRNA-Cox2 plays important roles in inflammation, the phagocytic function and cell migration ability of RAW264.7 cells by activating interleukin (IL)-6/JAK3/STAT3 signaling, and lincRNA-Cox2 also regulates NF-κB P65 nuclear translocation. Our research provides new insights into the regulatory role of lincRNA-Cox2 in Lm infection.
Collapse
Affiliation(s)
- Yurong Zhu
- School of medicine, Jiangsu University, Zhenjiang, 212013, China; Department of Microbiology Laboratory, Linfen Central Hospital, Linfen, 041000, China
| | - Ye Lu
- School of medicine, Jiangsu University, Zhenjiang, 212013, China; Department of Clinical Laboratory, Yixing People's Hospital, Affiliated Jiangsu University, Wuxi, 214200, China
| | - Lin Yuan
- School of medicine, Jiangsu University, Zhenjiang, 212013, China
| | - Wei Ling
- School of medicine, Jiangsu University, Zhenjiang, 212013, China
| | - Xugan Jiang
- School of medicine, Jiangsu University, Zhenjiang, 212013, China
| | - Shengxia Chen
- School of medicine, Jiangsu University, Zhenjiang, 212013, China.
| | - Bing Hu
- Department of Clinical Laboratory, Northern Jiangsu People' s Hospital, Yangzhou, 225001, China.
| |
Collapse
|
31
|
Chen Y, Hu J, Liu S, Chen B, Xiao M, Li Y, Liao Y, Rai KR, Zhao Z, Ouyang J, Pan Q, Zhang L, Huang S, Chen JL. RDUR, a lncRNA, Promotes Innate Antiviral Responses and Provides Feedback Control of NF-κB Activation. Front Immunol 2021; 12:672165. [PMID: 34054851 PMCID: PMC8160526 DOI: 10.3389/fimmu.2021.672165] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Accepted: 05/04/2021] [Indexed: 12/15/2022] Open
Abstract
Influenza A virus (IAV), a highly infectious respiratory pathogen, remains a major threat to global public health. Numerous long non-coding RNAs (lncRNAs) have been shown to be implicated in various cellular processes. Here, we identified a new lncRNA termed RIG-I-dependent IAV-upregulated noncoding RNA (RDUR), which was induced by infections with IAV and several other viruses. Both in vitro and in vivo studies revealed that robust expression of host RDUR induced by IAV was dependent on the RIG-I/NF-κB pathway. Overexpression of RDUR suppressed IAV replication and downregulation of RDUR promoted the virus replication. Deficiency of mouse RDUR increased virus production in lungs, body weight loss, acute organ damage and consequently reduced survival rates of mice, in response to IAV infection. RDUR impaired the viral replication by upregulating the expression of several vital antiviral molecules including interferons (IFNs) and interferon-stimulated genes (ISGs). Further study showed that RDUR interacted with ILF2 and ILF3 that were required for the efficient expression of some ISGs such as IFITM3 and MX1. On the other hand, we found that while NF-κB positively regulated the expression of RDUR, increased expression of RDUR, in turn, inactivated NF-κB through a negative feedback mechanism to suppress excessive inflammatory response to viral infection. Together, the results demonstrate that RDUR is an important lncRNA acting as a critical regulator of innate immunity against the viral infection.
Collapse
Affiliation(s)
- Yuhai Chen
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Beijing, China
- Key Laboratory of Fujian-Taiwan Animal Pathogen Biology, College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Jiayue Hu
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Beijing, China
| | - Shasha Liu
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Beijing, China
- Key Laboratory of Fujian-Taiwan Animal Pathogen Biology, College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Biao Chen
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Beijing, China
- College of Life Sciences, University of the Chinese Academy of Sciences, Beijing, China
| | - Meng Xiao
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Beijing, China
- College of Life Sciences, University of the Chinese Academy of Sciences, Beijing, China
| | - Yingying Li
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Beijing, China
- College of Life Sciences, University of the Chinese Academy of Sciences, Beijing, China
| | - Yuan Liao
- Key Laboratory of Fujian-Taiwan Animal Pathogen Biology, College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Kul Raj Rai
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Beijing, China
- College of Life Sciences, University of the Chinese Academy of Sciences, Beijing, China
| | - Zhonghui Zhao
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Beijing, China
- College of Life Sciences, University of the Chinese Academy of Sciences, Beijing, China
| | - Jing Ouyang
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Beijing, China
| | - Qidong Pan
- Key Laboratory of Fujian-Taiwan Animal Pathogen Biology, College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Lianfeng Zhang
- Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences & Comparative Medical Center, Beijing, China
| | - Shile Huang
- Department of Biochemistry and Molecular Biology, Louisiana State University Health Sciences Center, Shreveport, LA, United States
| | - Ji-Long Chen
- Key Laboratory of Fujian-Taiwan Animal Pathogen Biology, College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| |
Collapse
|
32
|
Bamunuarachchi G, Pushparaj S, Liu L. Interplay between host non-coding RNAs and influenza viruses. RNA Biol 2021; 18:767-784. [PMID: 33404285 PMCID: PMC8078518 DOI: 10.1080/15476286.2021.1872170] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 12/28/2020] [Accepted: 01/01/2021] [Indexed: 01/20/2023] Open
Abstract
Influenza virus infection through seasonal epidemics and occasional pandemics has been a major public health concern for decades. Incomplete protection from vaccination and increased antiviral resistance due to frequent mutations of influenza viruses have led to a continuous need for new therapeutic options. The functional significance of host protein and influenza virus interactions has been established, but relatively less is known about the interaction of host noncoding RNAs, including microRNAs and long noncoding RNAs, with influenza viruses. In this review, we summarize host noncoding RNA profiles during influenza virus infection and the regulation of influenza virus infection by host noncoding RNAs. Influenza viral non-coding RNAs are briefly discussed. Increased understanding of the molecular regulation of influenza viral replication will be beneficial in identifying potential therapeutic targets against the influenza virus.
Collapse
Affiliation(s)
- Gayan Bamunuarachchi
- Oklahoma Center for Respiratory and Infectious Diseases, Oklahoma State University, Stillwater, Oklahoma, USA
- Lundberg-Kienlen Lung Biology and Toxicology Laboratory, Department of Physiological Sciences, Oklahoma State University, Stillwater, USA
- Department of Physiological Sciences, Oklahoma State University, Stillwater, USA
| | - Samuel Pushparaj
- Oklahoma Center for Respiratory and Infectious Diseases, Oklahoma State University, Stillwater, Oklahoma, USA
- Lundberg-Kienlen Lung Biology and Toxicology Laboratory, Department of Physiological Sciences, Oklahoma State University, Stillwater, USA
- Department of Physiological Sciences, Oklahoma State University, Stillwater, USA
| | - Lin Liu
- Oklahoma Center for Respiratory and Infectious Diseases, Oklahoma State University, Stillwater, Oklahoma, USA
- Lundberg-Kienlen Lung Biology and Toxicology Laboratory, Department of Physiological Sciences, Oklahoma State University, Stillwater, USA
| |
Collapse
|
33
|
Servaas NH, Mariotti B, van der Kroef M, Wichers CGK, Pandit A, Bazzoni F, Radstake TRDJ, Rossato M. Characterization of Long Non-Coding RNAs in Systemic Sclerosis Monocytes: A Potential Role for PSMB8-AS1 in Altered Cytokine Secretion. Int J Mol Sci 2021; 22:4365. [PMID: 33922041 PMCID: PMC8122435 DOI: 10.3390/ijms22094365] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 04/16/2021] [Accepted: 04/20/2021] [Indexed: 12/14/2022] Open
Abstract
Systemic sclerosis (SSc) is a chronic autoimmune disease mainly affecting the connective tissue. In SSc patients, monocytes are increased in circulation, infiltrate affected tissues, and show a pro-inflammatory activation status, including the so-called interferon (IFN) signature. We previously demonstrated that the dysregulation of the IFN response in SSc monocytes is sustained by altered epigenetic factors as well as by upregulation of the long non-coding RNA (lncRNA) NRIR. Considering the enormously diverse molecular functions of lncRNAs in immune regulation, the present study investigated the genome-wide profile of lncRNAs in SSc monocytes, with the aim to further unravel their possible role in monocyte dysregulation and disease pathogenesis. Transcriptomic data from two independent cohorts of SSc patients identified 886 lncRNAs with an altered expression in SSc monocytes. Differentially expressed lncRNAs were correlated with neighboring protein coding genes implicated in the regulation of IFN responses and apoptotic signaling in SSc monocytes. In parallel, gene co-expression network analysis identified the lncRNA PSMB8-AS1 as a top-ranking hub gene in co-expression modules implicated in cell activation and response to viral and external stimuli. Functional characterization of PSMB8-AS1 in monocytes demonstrated that this lncRNA is involved in the secretion of IL-6 and TNFα, two pivotal pro-inflammatory cytokines altered in the circulation of SSc patients and associated with fibrosis and disease severity. Collectively, our data showed that lncRNAs are linked to monocyte dysregulation in SSc, and highlight their potential contribution to disease pathogenesis.
Collapse
Affiliation(s)
- Nila H. Servaas
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht University, 3584 CX Utrecht, The Netherlands; (N.H.S.); (M.v.d.K.); (C.G.K.W.); (A.P.); (T.R.D.J.R.)
- University Medical Center Utrecht, Department of Rheumatology and Clinical Immunology, Utrecht University, 3584 CX Utrecht, The Netherlands
| | - Barbara Mariotti
- Division of General Pathology, Department of Medicine, University of Verona, 37134 Verona, Italy; (B.M.); (F.B.)
| | - Maarten van der Kroef
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht University, 3584 CX Utrecht, The Netherlands; (N.H.S.); (M.v.d.K.); (C.G.K.W.); (A.P.); (T.R.D.J.R.)
- University Medical Center Utrecht, Department of Rheumatology and Clinical Immunology, Utrecht University, 3584 CX Utrecht, The Netherlands
| | - Catharina G. K. Wichers
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht University, 3584 CX Utrecht, The Netherlands; (N.H.S.); (M.v.d.K.); (C.G.K.W.); (A.P.); (T.R.D.J.R.)
- University Medical Center Utrecht, Department of Rheumatology and Clinical Immunology, Utrecht University, 3584 CX Utrecht, The Netherlands
| | - Aridaman Pandit
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht University, 3584 CX Utrecht, The Netherlands; (N.H.S.); (M.v.d.K.); (C.G.K.W.); (A.P.); (T.R.D.J.R.)
- University Medical Center Utrecht, Department of Rheumatology and Clinical Immunology, Utrecht University, 3584 CX Utrecht, The Netherlands
| | - Flavia Bazzoni
- Division of General Pathology, Department of Medicine, University of Verona, 37134 Verona, Italy; (B.M.); (F.B.)
| | - Timothy R. D. J. Radstake
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht University, 3584 CX Utrecht, The Netherlands; (N.H.S.); (M.v.d.K.); (C.G.K.W.); (A.P.); (T.R.D.J.R.)
- University Medical Center Utrecht, Department of Rheumatology and Clinical Immunology, Utrecht University, 3584 CX Utrecht, The Netherlands
| | - Marzia Rossato
- Department of Biotechnology, University of Verona, 37134 Verona, Italy
| |
Collapse
|
34
|
Fang L, Gao Y, Liu X, Bai J, Jiang P, Wang X. Long non-coding RNA LNC_000641 regulates pseudorabies virus replication. Vet Res 2021; 52:52. [PMID: 33766129 PMCID: PMC7992786 DOI: 10.1186/s13567-021-00922-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Accepted: 03/01/2021] [Indexed: 01/06/2023] Open
Abstract
Long non-coding RNAs (lncRNAs) are a new arm of gene regulatory mechanism as discovered by sequencing techniques and follow-up functional studies. The lncRNAs regulation of pseudorabies virus (PRV) infection has rarely been reported so far. Using RNA sequencing analysis, 225 lncRNAs with significant altered expressions in 3D4/21 cells infected with PRV (ZJ01) were identified. Five lncRNAs upregulated in PRV-infected cells were verified in cells infected with different PRV strains by qRT-PCR. By down- and up-regulation of lnc641, the accelerating effect of lnc641 on PRV replication was confirmed. Furthermore, we found that lnc641 regulated PRV replication by inhibiting the JAK-STAT1 pathway. This study suggests that lnc641 could be a new host factor target for developing antiviral therapies against PRV infection.
Collapse
Affiliation(s)
- Linlin Fang
- Key Laboratory of Animal Diseases Diagnostic and Immunology, Ministry of Agriculture, MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yanni Gao
- Key Laboratory of Animal Diseases Diagnostic and Immunology, Ministry of Agriculture, MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China.,Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, 225009, China
| | - Xing Liu
- Key Laboratory of Animal Diseases Diagnostic and Immunology, Ministry of Agriculture, MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China.,Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, 225009, China
| | - Juan Bai
- Key Laboratory of Animal Diseases Diagnostic and Immunology, Ministry of Agriculture, MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China.,Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, 225009, China
| | - Ping Jiang
- Key Laboratory of Animal Diseases Diagnostic and Immunology, Ministry of Agriculture, MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China.,Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, 225009, China
| | - XianWei Wang
- Key Laboratory of Animal Diseases Diagnostic and Immunology, Ministry of Agriculture, MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China. .,Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, 225009, China.
| |
Collapse
|
35
|
Laha S, Saha C, Dutta S, Basu M, Chatterjee R, Ghosh S, Bhattacharyya NP. In silico analysis of altered expression of long non-coding RNA in SARS-CoV-2 infected cells and their possible regulation by STAT1, STAT3 and interferon regulatory factors. Heliyon 2021; 7:e06395. [PMID: 33688586 PMCID: PMC7914022 DOI: 10.1016/j.heliyon.2021.e06395] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 11/20/2020] [Accepted: 02/25/2021] [Indexed: 01/22/2023] Open
Abstract
Altered expression of long noncoding RNA (lncRNA), longer than 200 nucleotides without potential for coding protein, has been observed in diverse human diseases including viral diseases. It is largely unknown whether lncRNA would deregulate in SARS-CoV-2 infection, causing ongoing pandemic COVID-19. To identify, if lncRNA was deregulated in SARS-CoV-2 infected cells, we analyzed in silico the data in GSE147507. It was revealed that expression of 20 lncRNA like MALAT1, NEAT1 was increased and 4 lncRNA like PART1, TP53TG1 was decreased in at least two independent cell lines infected with SARS-CoV-2. Expression of NEAT1 was also increased in lungs tissue of COVID-19 patients. The deregulated lncRNA could interact with more than 2800 genes/proteins and 422 microRNAs as revealed from the database that catalogs experimentally determined interactions. Analysis with the interacting gene/protein partners of deregulated lncRNAs revealed that these genes/proteins were associated with many pathways related to viral infection, inflammation and immune functions. To find out whether these lncRNAs could be regulated by STATs and interferon regulatory factors (IRFs), we used ChIPBase v2.0 that catalogs experimentally determined binding from ChIP-seq data. It was revealed that any one of the transcription factors IRF1, IRF4, STAT1, STAT3 and STAT5A had experimentally determined binding at regions within -5kb to +1kb of the deregulated lncRNAs in at least 2 independent cell lines/conditions. Our analysis revealed that several lncRNAs could be regulated by IRF1, IRF4 STAT1 and STAT3 in response to SARS-CoV-2 infection and lncRNAs might be involved in antiviral response. However, these in silico observations are necessary to be validated experimentally.
Collapse
Affiliation(s)
- Sayantan Laha
- Human Genetics Unit, Indian Statistical Institute, 203 B. T. Road, Kolkata 700108, India
| | - Chinmay Saha
- Department of Genome Science, School of Interdisciplinary Studies, University of Kalyani, Nadia 741235, India
| | - Susmita Dutta
- Department of Endocrinology and Metabolism, Institute of Post Graduate Medical Education & Research and Seth Sukhlal Karnani Memorial Hospital, Kolkata 700020, India
| | - Madhurima Basu
- Department of Endocrinology and Metabolism, Institute of Post Graduate Medical Education & Research and Seth Sukhlal Karnani Memorial Hospital, Kolkata 700020, India
| | - Raghunath Chatterjee
- Human Genetics Unit, Indian Statistical Institute, 203 B. T. Road, Kolkata 700108, India
| | - Sujoy Ghosh
- Department of Endocrinology and Metabolism, Institute of Post Graduate Medical Education & Research and Seth Sukhlal Karnani Memorial Hospital, Kolkata 700020, India
| | - Nitai P Bhattacharyya
- Department of Endocrinology and Metabolism, Institute of Post Graduate Medical Education & Research and Seth Sukhlal Karnani Memorial Hospital, Kolkata 700020, India
| |
Collapse
|
36
|
Wang Y, Huo Z, Lin Q, Lin Y, Chen C, Huang Y, Huang C, Zhang J, He J, Liu C, Zhang P. Positive Feedback Loop of Long Noncoding RNA OASL-IT1 and Innate Immune Response Restricts the Replication of Zika Virus in Epithelial A549 Cells. J Innate Immun 2021; 13:179-193. [PMID: 33626545 PMCID: PMC8138224 DOI: 10.1159/000513606] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Accepted: 11/04/2020] [Indexed: 12/19/2022] Open
Abstract
Expression of host noncoding RNAs and coding mRNAs is significantly altered by viral infection. In the current study, we screened the transcriptional profile of human lung epithelial A549 cells infected with Zika virus (ZIKV) by microarray assay. Seventy-nine long noncoding RNAs (lncRNAs) and 140 mRNAs were differentially expressed (DE). The bioinformatics analysis revealed that the mRNAs adjacent to the DE lncRNAs were closely related to the host responses to viral infection. We selected 7 lncRNAs from the top 50 hits for validation. The quantitative real-time PCR data confirmed that expression of selected lncRNAs was induced by ZIKV infection. Moreover, the expression of 7 lncRNAs was induced by infection of dengue virus, Japanese encephalitis virus, or vesicular stomatitis virus, or by treatment of poly(I:C) and IFN-β. Furthermore, loss of innate immune adaptor IPS-1 or receptor IFNAR1 resulted in lower induction levels of several lncRNAs by ZIKV. Overexpression of 3 lncRNAs (RPL27-OT1, OASL-IT1, and REC8-OT3) reduced the virus yields of ZIKV. Knockout of OASL-IT1 significantly enhanced ZIKV replication. In OASL-IT1 knockout cells, the levels of interferons (IFNs) and the activation of 3 innate immune signaling pathways triggered by ZIKV were dramatically reduced. Collectively, our work found a positive feedback loop in the IFN system, in which IFNs and OASL-IT1 regulate each other, thereby promoting establishment of antiviral defense.
Collapse
Affiliation(s)
- Yi Wang
- Key Laboratory of Tropical Disease Control, Ministry of Education, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
- Department of Immunology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Zhiting Huo
- Key Laboratory of Tropical Disease Control, Ministry of Education, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
- Department of Immunology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Quanshi Lin
- Key Laboratory of Tropical Disease Control, Ministry of Education, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
- Department of Immunology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Yuxia Lin
- Key Laboratory of Tropical Disease Control, Ministry of Education, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
- Department of Immunology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Cancan Chen
- Department of Pathology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Yanxia Huang
- Key Laboratory of Tropical Disease Control, Ministry of Education, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
- Department of Immunology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Changbai Huang
- Key Laboratory of Tropical Disease Control, Ministry of Education, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
- Department of Immunology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Junsong Zhang
- Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Junfang He
- Key Laboratory of Tropical Disease Control, Ministry of Education, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
- Department of Immunology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Chao Liu
- Key Laboratory of Tropical Disease Control, Ministry of Education, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
- Department of Microbiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Ping Zhang
- Key Laboratory of Tropical Disease Control, Ministry of Education, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
- Department of Immunology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
37
|
Abstract
Recent studies have identified host long noncoding RNAs (lncRNAs) as key regulators of
host-virus interactions during viral infection. The influenza A virus (IAV) remains a
serious threat to public health and economic stability. It is well known that thousands of
lncRNAs are differentially expressed upon IAV infection, some of which regulate IAV
infection by modulating the host innate immune response, affecting cellular metabolism, or
directly interacting with viral proteins. Some of these lncRNAs appear to be required for
IAV infection, but the molecular mechanisms are not completely elucidated. In this review,
we summarize the roles of host lncRNAs in regulating IAV infection and provide an overview
of the lncRNA-mediated regulatory network. The goal of this review is to stimulate further
research on the function of both well-established and newly discovered lncRNAs in IAV
infection.
Collapse
Affiliation(s)
- Jing Wang
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical School, Beijing, People's Repbulic of People's Republic of China
| | - Shan Cen
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical School, Beijing, People's Repbulic of People's Republic of China.,CAMS Key Laboratory of Antiviral Drug Research, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, People's Repbulic of People's Republic of China.,Beijing Friendship Hospital, Capital Medical University, Beijing, People's Repbulic of People's Republic of China
| |
Collapse
|
38
|
Zhang YH, Li H, Zeng T, Chen L, Li Z, Huang T, Cai YD. Identifying Transcriptomic Signatures and Rules for SARS-CoV-2 Infection. Front Cell Dev Biol 2021; 8:627302. [PMID: 33505977 PMCID: PMC7829664 DOI: 10.3389/fcell.2020.627302] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Accepted: 12/14/2020] [Indexed: 12/26/2022] Open
Abstract
The world-wide Coronavirus Disease 2019 (COVID-19) pandemic was triggered by the widespread of a new strain of coronavirus named as severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Multiple studies on the pathogenesis of SARS-CoV-2 have been conducted immediately after the spread of the disease. However, the molecular pathogenesis of the virus and related diseases has still not been fully revealed. In this study, we attempted to identify new transcriptomic signatures as candidate diagnostic models for clinical testing or as therapeutic targets for vaccine design. Using the recently reported transcriptomics data of upper airway tissue with acute respiratory illnesses, we integrated multiple machine learning methods to identify effective qualitative biomarkers and quantitative rules for the distinction of SARS-CoV-2 infection from other infectious diseases. The transcriptomics data was first analyzed by Boruta so that important features were selected, which were further evaluated by the minimum redundancy maximum relevance method. A feature list was produced. This list was fed into the incremental feature selection, incorporating some classification algorithms, to extract qualitative biomarker genes and construct quantitative rules. Also, an efficient classifier was built to identify patients infected with SARS-COV-2. The findings reported in this study may help in revealing the potential pathogenic mechanisms of COVID-19 and finding new targets for vaccine design.
Collapse
Affiliation(s)
- Yu-Hang Zhang
- School of Life Sciences, Shanghai University, Shanghai, China
- Channing Division of Network Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, United States
| | - Hao Li
- College of Food Engineering, Jilin Engineering Normal University, Changchun, China
| | - Tao Zeng
- Bio-Med Big Data Center, CAS Key Laboratory of Computational Biology, CAS-MPG Partner Institute for Computational Biology, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai, China
| | - Lei Chen
- College of Information Engineering, Shanghai Maritime University, Shanghai, China
| | - Zhandong Li
- College of Food Engineering, Jilin Engineering Normal University, Changchun, China
| | - Tao Huang
- Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Yu-Dong Cai
- School of Life Sciences, Shanghai University, Shanghai, China
| |
Collapse
|
39
|
Affiliation(s)
- Lucy Ginn
- Transcriptional Networks in Lung Cancer Group Cancer Research UK Manchester Institute University of Manchester Manchester UK
- Cancer Research UK Lung Cancer Centre of Excellence At Manchester and University College London England UK
| | - Manuela La Montagna
- Transcriptional Networks in Lung Cancer Group Cancer Research UK Manchester Institute University of Manchester Manchester UK
- Cancer Research UK Lung Cancer Centre of Excellence At Manchester and University College London England UK
| | - Qinghua Wu
- College of Life Science Yangtze University Jingzhou Hubei China
- Department of Chemistry Faculty of Science University of Hradec Kralove Hradec Kralove East Bohemia Czech Republic
| | - Lei Shi
- Transcriptional Networks in Lung Cancer Group Cancer Research UK Manchester Institute University of Manchester Manchester UK
- Cancer Research UK Lung Cancer Centre of Excellence At Manchester and University College London England UK
| |
Collapse
|
40
|
Liu Z, Guo Y, Zhao L, Liu Q, Tian M, Huang N, Fan M, Yu M, Xia H, Ping J. Analysis of the circRNAs expression profile in mouse lung with H7N9 influenza A virus infection. Genomics 2020; 113:716-727. [PMID: 33049361 DOI: 10.1016/j.ygeno.2020.10.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2020] [Revised: 09/06/2020] [Accepted: 10/08/2020] [Indexed: 02/08/2023]
Abstract
Influenza A virus is a single-stranded RNA virus that can cause great mortality and economic loss worldwide. Circular RNAs (circRNAs) are non-coding RNAs that have been shown to have important functions in the regulation of biological processes. However, their functions during the influenza A virus infection process remain unclear. Herein, RNA sequencing technology was used to identify circRNAs expressed in mouse lungs during infection with H7N9/PB2-627 K/701D (H7N9/Wild-type) virus and PB2 mutant viruses (H7N9/PB2-627E/701D and H7N9/PB2-627E/701 N). We identified 7126 circRNAs at different genomic locations during H7N9 influenza virus and its mutant virus infections, of which 186 were differentially expressed. Enrichment analysis revealed that the differentially expressed circRNAs were associated with the viral infection process. Our study shows that circRNA expression profiles were altered following H7N9 influenza A virus infection and the differentially expressed circRNAs may have an important immune-regulating function during viral infection.
Collapse
Affiliation(s)
- Zhiyuan Liu
- MOE International Joint Collaborative Research Laboratory for Animal Health and Food Safety & Jiangsu Engineering Laboratory of Animal Immunology, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Yanna Guo
- MOE International Joint Collaborative Research Laboratory for Animal Health and Food Safety & Jiangsu Engineering Laboratory of Animal Immunology, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Lingcai Zhao
- MOE International Joint Collaborative Research Laboratory for Animal Health and Food Safety & Jiangsu Engineering Laboratory of Animal Immunology, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Qingzheng Liu
- MOE International Joint Collaborative Research Laboratory for Animal Health and Food Safety & Jiangsu Engineering Laboratory of Animal Immunology, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Miao Tian
- MOE International Joint Collaborative Research Laboratory for Animal Health and Food Safety & Jiangsu Engineering Laboratory of Animal Immunology, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Nan Huang
- MOE International Joint Collaborative Research Laboratory for Animal Health and Food Safety & Jiangsu Engineering Laboratory of Animal Immunology, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Menglu Fan
- MOE International Joint Collaborative Research Laboratory for Animal Health and Food Safety & Jiangsu Engineering Laboratory of Animal Immunology, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Mengqi Yu
- MOE International Joint Collaborative Research Laboratory for Animal Health and Food Safety & Jiangsu Engineering Laboratory of Animal Immunology, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Huizhi Xia
- MOE International Joint Collaborative Research Laboratory for Animal Health and Food Safety & Jiangsu Engineering Laboratory of Animal Immunology, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Jihui Ping
- MOE International Joint Collaborative Research Laboratory for Animal Health and Food Safety & Jiangsu Engineering Laboratory of Animal Immunology, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China.
| |
Collapse
|
41
|
Zhang H, Zhu C, He Z, Chen S, Li L, Sun C. LncRNA PSMB8-AS1 contributes to pancreatic cancer progression via modulating miR-382-3p/STAT1/PD-L1 axis. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2020; 39:179. [PMID: 32891166 PMCID: PMC7487636 DOI: 10.1186/s13046-020-01687-8] [Citation(s) in RCA: 110] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Accepted: 08/23/2020] [Indexed: 12/19/2022]
Abstract
Background Accumulating evidence demonstrates the essential role of long non-coding RNA (lncRNA) in various types of cancers, including pancreatic cancer. However, the functions and regulation mechanism of lncRNA PMSB8-AS1 in pancreatic cancer are largely unclear. Methods Quantitative reverse transcription PCR (qRT-PCR) is used to examine the expression of PMSB8-AS1 in PC tissues and PC cell lines. The effect of PMSB8-AS1 on the proliferation of PC cells was detected using CCK8 assay, colony assay, and flow cytometry. The effect of PMSB8-AS1 on the migration and invasion of pancreatic cancer cells was detected using a wound-healing assay and transwell migration assay. Bioinformatic analysis, double luciferase reporting assay, western blot, and rescue experiments were used to detect the regulatory relationship between PMSB8-AS1, miR-382–3p, STAT1, and PD-L1. Results PMSB8-AS1 expression was upregulated in PC tissues and cell lines and positively associated with the worst survival in patients with PC. The in vitro and in vivo assays demonstrated that overexpression of PMSB8-AS1 significantly promoted pancreatic cancer cell proliferation, migration, and invasion, whereas knockdown of PMSB8-AS1 suppressed cell proliferation, migration, invasion, and EMT, and decreased apoptosis of PC cells. Besides, PMSB8-AS1 directly bound to miR-382–3p downregulated its expression. Besides, PMSB8-AS1 reversed the effect of miR-382–3p on the growth and metastasis of PC cells, which might be targeted on STAT1. Furthermore, STAT1 is the transcriptional factor that activates the expression of PD-L1. Conclusion lncRNA PMSB8-AS1 promotes pancreatic cancer progression via STAT1 by sponging miR-382–3p involving regulation PD-L1.
Collapse
Affiliation(s)
- Hao Zhang
- College of Basic Medicine, Guizhou Medical University, Guiyang, China.,College of Clinical Medicine, Guizhou Medical University, Guiyang, China.,Department of Hepatic-Biliary-Pancreatic Surgery, the Affiliated Hospital of Guizhou Medical University, No.9, Beijing Road, Guiyang, 550000, Guizhou Province, China
| | - Changhao Zhu
- College of Basic Medicine, Guizhou Medical University, Guiyang, China.,College of Clinical Medicine, Guizhou Medical University, Guiyang, China.,Department of Hepatic-Biliary-Pancreatic Surgery, the Affiliated Hospital of Guizhou Medical University, No.9, Beijing Road, Guiyang, 550000, Guizhou Province, China
| | - Zhiwei He
- College of Basic Medicine, Guizhou Medical University, Guiyang, China.,College of Clinical Medicine, Guizhou Medical University, Guiyang, China.,Department of Hepatic-Biliary-Pancreatic Surgery, the Affiliated Hospital of Guizhou Medical University, No.9, Beijing Road, Guiyang, 550000, Guizhou Province, China
| | - Shiyu Chen
- College of Basic Medicine, Guizhou Medical University, Guiyang, China.,College of Clinical Medicine, Guizhou Medical University, Guiyang, China
| | - Lin Li
- College of Basic Medicine, Guizhou Medical University, Guiyang, China.,College of Clinical Medicine, Guizhou Medical University, Guiyang, China
| | - Chengyi Sun
- College of Basic Medicine, Guizhou Medical University, Guiyang, China. .,College of Clinical Medicine, Guizhou Medical University, Guiyang, China. .,Department of Hepatic-Biliary-Pancreatic Surgery, the Affiliated Hospital of Guizhou Medical University, No.9, Beijing Road, Guiyang, 550000, Guizhou Province, China.
| |
Collapse
|
42
|
Suarez B, Prats-Mari L, Unfried JP, Fortes P. LncRNAs in the Type I Interferon Antiviral Response. Int J Mol Sci 2020; 21:E6447. [PMID: 32899429 PMCID: PMC7503479 DOI: 10.3390/ijms21176447] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 08/31/2020] [Accepted: 08/31/2020] [Indexed: 12/12/2022] Open
Abstract
The proper functioning of the immune system requires a robust control over a delicate equilibrium between an ineffective response and immune overactivation. Poor responses to viral insults may lead to chronic or overwhelming infection, whereas unrestrained activation can cause autoimmune diseases and cancer. Control over the magnitude and duration of the antiviral immune response is exerted by a finely tuned positive or negative regulation at the DNA, RNA, and protein level of members of the type I interferon (IFN) signaling pathways and on the expression and activity of antiviral and proinflammatory factors. As summarized in this review, committed research during the last decade has shown that several of these processes are exquisitely regulated by long non-coding RNAs (lncRNAs), transcripts with poor coding capacity, but highly versatile functions. After infection, viruses, and the antiviral response they trigger, deregulate the expression of a subset of specific lncRNAs that function to promote or repress viral replication by inactivating or potentiating the antiviral response, respectively. These IFN-related lncRNAs are also highly tissue- and cell-type-specific, rendering them as promising biomarkers or therapeutic candidates to modulate specific stages of the antiviral immune response with fewer adverse effects.
Collapse
Affiliation(s)
- Beatriz Suarez
- Program of Gene Therapy and Hepatology, Center for Applied Medical Research (CIMA), University of Navarra (UNAV), 31008 Pamplona, Spain; (B.S.); (L.P.-M.)
| | - Laura Prats-Mari
- Program of Gene Therapy and Hepatology, Center for Applied Medical Research (CIMA), University of Navarra (UNAV), 31008 Pamplona, Spain; (B.S.); (L.P.-M.)
| | - Juan P. Unfried
- Program of Gene Therapy and Hepatology, Center for Applied Medical Research (CIMA), University of Navarra (UNAV), 31008 Pamplona, Spain; (B.S.); (L.P.-M.)
| | - Puri Fortes
- Program of Gene Therapy and Hepatology, Center for Applied Medical Research (CIMA), University of Navarra (UNAV), 31008 Pamplona, Spain; (B.S.); (L.P.-M.)
- Navarra Institute for Health Research (IdiSNA), 31008 Pamplona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), 28029 Madrid, Spain
| |
Collapse
|
43
|
Senavirathna LK, Huang C, Pushparaj S, Xu D, Liu L. Hypoxia and transforming growth factor β1 regulation of long non-coding RNA transcriptomes in human pulmonary fibroblasts. Physiol Rep 2020; 8:e14343. [PMID: 31925944 PMCID: PMC6954122 DOI: 10.14814/phy2.14343] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
One of the key characteristics of idiopathic pulmonary fibrosis (IPF) is accumulation of excess fibrous tissue in the lung, which leads to hypoxic conditions. Transforming growth factor (TGF) β is a major mediator that promotes the differentiation of fibroblasts to myofibroblasts. However, how hypoxia and TGFβ together contribute the pathogenesis of IPF is poorly understood. Long non-coding RNAs (lncRNAs) have regulatory effects on certain genes and are involved in many diseases. In this study, we determined the effects of hypoxia and/or TGFβ on mRNA and lncRNA transcriptomes in pulmonary fibroblasts. Hypoxia and TGFβ1 synergistically increased myofibroblast marker expression. RNA sequencing revealed that hypoxia and TGFβ1 treatment resulted in significant changes in 669 lncRNAs and 2,676 mRNAs compared to 150 lncRNAs and 858 mRNAs in TGFβ1 alone group and 222 lncRNAs and 785 mRNAs in hypoxia alone group. TGFβ1 induced the protein expression of HIF-1α, but not HIF-2α. On the other hand, hypoxia enhanced the TGFβ1-induced phosphorylation of Smad3, suggesting a cross-talk between these two signaling pathways. In all, 10 selected lncRNAs (five-up and five-down) in RNA sequencing data were validated using real-time PCR. Two lncRNAs were primarily located in cytoplasm, three in nuclei and five in both nuclei and cytoplasm. The silencing of HIF-1α and Smad3, but not Smad2 and HIF-2α rescued the downregulation of FENDRR by hypoxia and TGFβ1. In conclusion, hypoxia and TGFβ1 synergistically regulate mRNAs and lncRNAs involved in several cellular processes, which may contribute to the pathogenesis of IPF.
Collapse
Affiliation(s)
- Lakmini K. Senavirathna
- Oklahoma Center for Respiratory and Infectious DiseasesOklahoma State UniversityStillwaterOKUSA
- Lundberg‐Kienlen Lung Biology and Toxicology LaboratoryDepartment of Physiological SciencesOklahoma State UniversityStillwaterOKUSA
| | - Chaoqun Huang
- Oklahoma Center for Respiratory and Infectious DiseasesOklahoma State UniversityStillwaterOKUSA
- Lundberg‐Kienlen Lung Biology and Toxicology LaboratoryDepartment of Physiological SciencesOklahoma State UniversityStillwaterOKUSA
| | - Samuel Pushparaj
- Oklahoma Center for Respiratory and Infectious DiseasesOklahoma State UniversityStillwaterOKUSA
- Lundberg‐Kienlen Lung Biology and Toxicology LaboratoryDepartment of Physiological SciencesOklahoma State UniversityStillwaterOKUSA
| | - Dao Xu
- Oklahoma Center for Respiratory and Infectious DiseasesOklahoma State UniversityStillwaterOKUSA
- Lundberg‐Kienlen Lung Biology and Toxicology LaboratoryDepartment of Physiological SciencesOklahoma State UniversityStillwaterOKUSA
| | - Lin Liu
- Oklahoma Center for Respiratory and Infectious DiseasesOklahoma State UniversityStillwaterOKUSA
- Lundberg‐Kienlen Lung Biology and Toxicology LaboratoryDepartment of Physiological SciencesOklahoma State UniversityStillwaterOKUSA
| |
Collapse
|
44
|
Goraya MU, Zaighum F, Sajjad N, Anjum FR, Sakhawat I, Rahman SU. Web of interferon stimulated antiviral factors to control the influenza A viruses replication. Microb Pathog 2019; 139:103919. [PMID: 31830579 DOI: 10.1016/j.micpath.2019.103919] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 11/25/2019] [Accepted: 12/09/2019] [Indexed: 01/20/2023]
Abstract
Influenza viruses cause mild to severe infections in animals and humans worldwide with significant morbidity and mortality. Infection of eukaryotic cells with influenza A viruses triggers the induction of innate immune system through the interaction between pattern recognition receptors (PRRs) and pathogen associated molecular patterns (PAMPs), which culminate in the induction of interferons (IFNs). Consequently, IFNs bind to their cognate receptors on the cellular membrane and activate the signaling pathway for transcriptional regulation of interferon-stimulated genes (ISGs) through Janus kinase-signal transducer and activator of transcription (JAK-STAT) pathway. Cumulative actions of these ISGs establish an antiviral state of the host. Several ISGs have been described, which play critical roles to inhibit the infection and replication of influenza A viruses at multiple steps of virus life cycle. In this review, the dynamics and redundancy of these ISGs against influenza A viruses are discussed. Additionally, current understanding and molecular mechanisms that are underlying the roles of ISGs in pathogenesis of influenza virus are critically reviewed.
Collapse
Affiliation(s)
- Mohsan Ullah Goraya
- Institute of Microbiology, University of Agriculture Faisalabad, 38000, Pakistan.
| | | | - Nelam Sajjad
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Faisal Rasheed Anjum
- Institute of Microbiology, University of Agriculture Faisalabad, 38000, Pakistan
| | - Irfan Sakhawat
- School of Science and Technology, Orebro University, SE-70182, Orebro, Sweden
| | - Sajjad Ur Rahman
- Institute of Microbiology, University of Agriculture Faisalabad, 38000, Pakistan.
| |
Collapse
|
45
|
Pan Q, Zhao Z, Liao Y, Chiu SH, Wang S, Chen B, Chen N, Chen Y, Chen JL. Identification of an Interferon-Stimulated Long Noncoding RNA (LncRNA ISR) Involved in Regulation of Influenza A Virus Replication. Int J Mol Sci 2019; 20:ijms20205118. [PMID: 31623059 PMCID: PMC6829313 DOI: 10.3390/ijms20205118] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Revised: 10/03/2019] [Accepted: 10/06/2019] [Indexed: 01/05/2023] Open
Abstract
Long noncoding RNAs (lncRNAs) are involved in a diversity of biological processes. It is known that differential expression of thousands of lncRNAs occurs in host during influenza A virus (IAV) infection. However, only few of them have been well characterized. Here, we identified a lncRNA, named as interferon (IFN)-stimulated lncRNA (ISR), which can be significantly upregulated in response to IAV infection in a mouse model. A sequence alignment revealed that lncRNA ISR is present in mice and human beings, and indeed, we found that it was expressed in several human and mouse cell lines and tissues. Silencing lncRNA ISR in A549 cells resulted in a significant increase in IAV replication, whereas ectopic expression of lncRNA ISR reduced the viral replication. Interestingly, interferon-β (IFN-β) treatment was able to induce lncRNA ISR expression, and induction of lncRNA ISR by viral infection was nearly abolished in host deficient of IFNAR1, a type I IFN receptor. Furthermore, the level of IAV-induced lncRNA ISR expression was decreased either in retinoic acid-inducible gene I (RIG-I) knockout A549 cells and mice or by nuclear factor κ-light-chain-enhancer of activated B cells (NF-κB) inhibitor treatment. Together, these data elucidate that lncRNA ISR is regulated by RIG-I-dependent signaling that governs IFN-β production during IAV infection, and has an inhibitory capacity in viral replication.
Collapse
Affiliation(s)
- Qidong Pan
- Key Laboratory of Fujian-Taiwan Animal Pathogen Biology, College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| | - Zhonghui Zhao
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China.
| | - Yuan Liao
- Key Laboratory of Fujian-Taiwan Animal Pathogen Biology, College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| | - Shih-Hsin Chiu
- Key Laboratory of Fujian-Taiwan Animal Pathogen Biology, College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| | - Song Wang
- Key Laboratory of Fujian-Taiwan Animal Pathogen Biology, College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| | - Biao Chen
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China.
| | - Na Chen
- Key Laboratory of Fujian-Taiwan Animal Pathogen Biology, College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| | - Yuhai Chen
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China.
| | - Ji-Long Chen
- Key Laboratory of Fujian-Taiwan Animal Pathogen Biology, College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China.
| |
Collapse
|