1
|
Martins AC, Oliveira-Paula GH, Tinkov AA, Skalny AV, Tizabi Y, Bowman AB, Aschner M. Role of manganese in brain health and disease: Focus on oxidative stress. Free Radic Biol Med 2025; 232:306-318. [PMID: 40086492 PMCID: PMC11985276 DOI: 10.1016/j.freeradbiomed.2025.03.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Revised: 02/28/2025] [Accepted: 03/11/2025] [Indexed: 03/16/2025]
Abstract
Manganese (Mn) is an essential trace element crucial for various physiological processes, but excessive exposure can lead to significant health concerns, particularly neurotoxicity. This review synthesizes current knowledge on Mn-induced oxidative stress and its role in cellular dysfunction and disease. We discuss how Mn promotes toxicity through multiple mechanisms, primarily through reactive oxygen species (ROS) generation, which leads to oxidative stress and disruption of cellular processes. The review examines key pathways affected by Mn toxicity, including mitochondrial dysfunction, endoplasmic reticulum stress, inflammasome activation, and epigenetic modifications. Recent studies have identified promising therapeutic compounds, including both synthetic and natural substances such as probucol, metformin, curcumin, resveratrol, and daidzein, which demonstrate protective effects through various mechanisms, including antioxidant enhancement, mitochondrial function preservation, and epigenetic pathway modulation. Understanding these mechanisms provides new insights into potential therapeutic strategies for Mn-induced disorders. This review also highlights future research directions, emphasizing the need for developing targeted therapies and investigating combination approaches to address multiple aspects of Mn toxicity simultaneously.
Collapse
Affiliation(s)
- Airton C Martins
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | - Gustavo H Oliveira-Paula
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | - Alexey A Tinkov
- Institute of Bioelementology, Orenburg State University, Orenburg, 460000, Russia; IM Sechenov First Moscow State Medical University (Sechenov University), Moscow, 119435, Russia; Laboratory of Ecobiomonitoring and Quality Control, Yaroslavl State University, Yaroslavl, 150003, Russia
| | - Anatoly V Skalny
- Institute of Bioelementology, Orenburg State University, Orenburg, 460000, Russia; IM Sechenov First Moscow State Medical University (Sechenov University), Moscow, 119435, Russia; Laboratory of Ecobiomonitoring and Quality Control, Yaroslavl State University, Yaroslavl, 150003, Russia
| | - Yousef Tizabi
- Department of Pharmacology, Howard University College of Medicine, Washington DC, 20059, USA
| | - Aaron B Bowman
- School of Health Sciences, Purdue University, West Lafayette, IN, 47907, USA
| | - Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, 10461, USA.
| |
Collapse
|
2
|
Qiu YH, Zhang YH, Wu ZC, Huang JY, Chen BC, Xiao J, Chen FF. 3,4-Dimethoxychalcone alleviates limb ischemia/reperfusion injury by TFEB-mediated autophagy enhancement and antioxidative response. FASEB J 2025; 39:e70496. [PMID: 40162605 DOI: 10.1096/fj.202402609rr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2024] [Revised: 03/12/2025] [Accepted: 03/19/2025] [Indexed: 04/02/2025]
Abstract
Caloric restriction mimetics (CRMs) replicate the positive effects of caloric restriction (CR) and have demonstrated therapeutic benefits in neuroinflammatory and cardiovascular diseases. However, it remains uncertain whether CRMs enhance functional recovery following ischemia/reperfusion (I/R) injury, as well as the specific mechanisms involved in this process. This study examines the therapeutic potential of the CRM 3,4-dimethoxychalcone (3,4-DC) in limb I/R injury. Histology, tissue swelling analysis, and laser doppler imaging (LDI) were used to assess the viability of the limbs. Western blotting and immunofluorescence were utilized to examine apoptosis levels, oxidative stress (OS), autophagy, transcription factor EB (TFEB) activity, and mucolipin 1 (MCOLN1)-calcineurin signaling pathway. The administration of 3,4-DC notably alleviated hypoperfusion, tissue swelling, skeletal muscle fiber damage, and cellular injury in the limb caused by I/R. The pharmacological blockade of autophagy negated the antioxidant and antiapoptotic effects of 3,4-DC. Moreover, RNA interference-mediated TFEB silencing eliminated the 3,4-DC-induced restoration of autophagy, antioxidant response, and antiapoptotic effects. Additionally, our findings revealed that 3,4-DC modulates TFEB activity via the MCOLN1-calcineurin signaling pathway. 3,4-DC facilitates functional recovery by enhancing TFEB-driven autophagy, while simultaneously suppressing oxidative stress and apoptosis following I/R injury, suggesting its potential value in clinical applications.
Collapse
Affiliation(s)
- Yi-Hui Qiu
- Department of Vascular Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Yin-He Zhang
- Molecular Pharmacology Research Center, School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, China
| | - Zi-Chang Wu
- Molecular Pharmacology Research Center, School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, China
| | - Jing-Yong Huang
- Department of Vascular Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Bi-Cheng Chen
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Jian Xiao
- Department of Vascular Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
- Molecular Pharmacology Research Center, School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, China
| | - Fan-Feng Chen
- Department of Vascular Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
3
|
Liu X, Zhang X, Li X, Zhang C, Cai H, Qi J, Wang K, Li X, Wu X, Ye Z, Chen G, Zhang X, Wu J. Dihydromyricetin restores lysosomal function in Schwann cells to alleviate bortezomib-induced peripheral neuropathy via ERK/TFEB signaling. Arch Toxicol 2025:10.1007/s00204-025-04030-2. [PMID: 40188411 DOI: 10.1007/s00204-025-04030-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2025] [Accepted: 03/19/2025] [Indexed: 04/08/2025]
Abstract
Bortezomib (BTZ) serves as a first-line drug for multiple myeloma (MM) treatment by reversibly inhibiting of the proteasomes. However, BTZ-induced peripheral neuropathy (BIPN) remains a significant toxicity concern, with its molecular mechanisms not fully elucidated, resulting in limited therapeutic options. Dihydromyricetin (DHM) has been shown to alleviate neuropathic pain, but its potential effect on BIPN has not been investigated. We found that oral administration of DHM (40 mg/kg/day, 200 mg/kg/day) for 2 weeks significantly improved mechanical allodynia, sciatic nerve conduction, and demyelination in a BIPN mouse model (BTZ 1.0 mg/kg, i.v.). BTZ (50 nmol/L) impaired lysosomal function and blocked autophagy flux in both primary cultured rat Schwann cells and RSC96 Schwann cells; these effects were reversed by DHM treatment (3 μmol/L, 10 μmol/L). Mechanistically, DHM facilitated the nuclear translocation of TFEB, a master regulator of lysosomal-related genes, and the protective effects of DHM on Schwann cells were abolished by Tfeb shRNA. Furthermore, BTZ treatment activated ERK signaling, leading to TFEB phosphorylation and impaired nuclear translocation. DHM treatment prevented the BTZ-induced ERK activation, and the protective effects of DHM were compromised by the ERK activator TBHQ. Importantly, DHM did not diminish the efficacy of BTZ against RPMI 8226 myeloma cells. This study demonstrates that DHM mitigates BTZ-induced toxicity on Schwann cells by restoring lysosome-autophagy activity through the ERK-TFEB pathway, highlighting DHM as a promising candidate for improving the adverse reaction of BTZ in the peripheral nervous system.
Collapse
Affiliation(s)
- Xiaoliang Liu
- Institute of Pharmacology and Toxicology, National Key Laboratory of Advanced Drug Delivery and Release Systems, Zhejiang Collaborative Innovation Center for the Brain Diseases with Integrative Medicine, Zhejiang Key Laboratory of Neuropsychopharmacology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Xingxian Zhang
- Institute of Pharmacology and Toxicology, National Key Laboratory of Advanced Drug Delivery and Release Systems, Zhejiang Collaborative Innovation Center for the Brain Diseases with Integrative Medicine, Zhejiang Key Laboratory of Neuropsychopharmacology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Xinhang Li
- Institute of Pharmacology and Toxicology, National Key Laboratory of Advanced Drug Delivery and Release Systems, Zhejiang Collaborative Innovation Center for the Brain Diseases with Integrative Medicine, Zhejiang Key Laboratory of Neuropsychopharmacology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Chen Zhang
- Institute of Pharmacology and Toxicology, National Key Laboratory of Advanced Drug Delivery and Release Systems, Zhejiang Collaborative Innovation Center for the Brain Diseases with Integrative Medicine, Zhejiang Key Laboratory of Neuropsychopharmacology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Huajing Cai
- Department of Anesthesiology, School of Medicine, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, 310058, China
| | - Jiayu Qi
- Institute of Pharmacology and Toxicology, National Key Laboratory of Advanced Drug Delivery and Release Systems, Zhejiang Collaborative Innovation Center for the Brain Diseases with Integrative Medicine, Zhejiang Key Laboratory of Neuropsychopharmacology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Ke Wang
- Institute of Pharmacology and Toxicology, National Key Laboratory of Advanced Drug Delivery and Release Systems, Zhejiang Collaborative Innovation Center for the Brain Diseases with Integrative Medicine, Zhejiang Key Laboratory of Neuropsychopharmacology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Xuyun Li
- Basic Medicine Experimental Teaching Center, Zhejiang University, Hangzhou, 310058, China
| | - Xiuhua Wu
- Department of Clinical Pharmacy, Zhejiang Provincial Key Laboratory for Drug Evaluation and Clinical Research, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310002, China
| | - Ziqi Ye
- Department of Clinical Pharmacy, Zhejiang Provincial Key Laboratory for Drug Evaluation and Clinical Research, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310002, China
| | - Gang Chen
- Department of Anesthesiology, School of Medicine, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, 310058, China
| | - Xiangnan Zhang
- Institute of Pharmacology and Toxicology, National Key Laboratory of Advanced Drug Delivery and Release Systems, Zhejiang Collaborative Innovation Center for the Brain Diseases with Integrative Medicine, Zhejiang Key Laboratory of Neuropsychopharmacology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China.
- Jinhua Institute of Zhejiang University, Jinhua, 321299, China.
| | - Jiaying Wu
- Department of Clinical Pharmacy, Zhejiang Provincial Key Laboratory for Drug Evaluation and Clinical Research, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310002, China.
| |
Collapse
|
4
|
Dagher DM, Zaghloul MS, Suddek GM. Modulation of AMPK/mTOR Autophagic Pathway Using Dapagliflozin Protects Against Cadmium-Induced Testicular and Renal Injury in Rats. J Biochem Mol Toxicol 2025; 39:e70257. [PMID: 40233265 DOI: 10.1002/jbt.70257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 02/03/2025] [Accepted: 03/31/2025] [Indexed: 04/17/2025]
Abstract
Cadmium is a widely distributed heavy metal found in the environment that poses serious hazards to human health. Dapagliflozin (DAPA), a sodium-glucose co-transporter 2 (SGLT-2) inhibitor, exhibited antioxidant, antiapoptotic, and anti-inflammatory properties. Our data assessed the effect of DAPA against Cd-triggered renal and testicular impairment in rats, as well as the underlying mechanisms. Cd (30 mg/kg) and DAPA (5 and 10 mg/kg) were administrated by oral gavage to rats and continued for 21 days. DAPA attenuated Cd-triggered renal and testicular injury as shown by diminishing serum creatinine, BUN, and urinary total protein concentration in addition to increasing creatinine clearance, urinary creatinine, and serum testosterone. Moreover, it diminished renal and testicular histopathological alterations induced by Cd. DAPA stimulated the impaired autophagy flux as seen by significantly elevating the p-AMPK/total AMPK, decreasing p-mTOR/total mTOR ratios, and diminishing p62 & LC3 protein levels. Additionally, DAPA significantly lowered MDA content, increased GSH level and SOD activity. Moreover, it augmented the cytoprotective Nrf2/HO-1 signaling pathway. Furthermore, it attenuated renal and testicular apoptotic cell death via decreasing caspase-3 expression. Conclusion: Boosting autophagic events and combating oxidative stress and apoptosis by DAPA were engaged in alleviating Cd-induced renal and testicular impairment. This was accomplished by modulating the AMPK/mTOR and enhancing the Nrf2/HO-1 pathways.
Collapse
Affiliation(s)
- Doha M Dagher
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt
| | - Marwa S Zaghloul
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura National University, Gamasa, Egypt
| | - Ghada M Suddek
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt
| |
Collapse
|
5
|
Das S, Murumulla L, Ghosh P, Challa S. Heavy metal-induced disruption of the autophagy-lysosomal pathway: implications for aging and neurodegenerative disorders. Biometals 2025; 38:371-417. [PMID: 39960543 DOI: 10.1007/s10534-025-00665-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Accepted: 01/19/2025] [Indexed: 04/03/2025]
Abstract
Heavy metals such as lead, mercury, cadmium, magnesium, manganese, arsenic, copper pose considerable threats to neuronal health and are increasingly recognized as factors contributing to aging-related neurodegeneration. Exposure to these environmental toxins disrupts cellular homeostasis, resulting in oxidative stress and compromising critical cellular processes, particularly the autophagy-lysosomal pathway. This pathway is vital for preserving cellular integrity by breaking down damaged proteins and organelles; however, toxicity from heavy metals can hinder this function, leading to the buildup of harmful substances, inflammation, and increased neuronal injury. As individuals age, the consequences of neurodegeneration become more significant, raising the likelihood of developing disorders like Alzheimer's and Parkinson's disease. This review explores the intricate relationship between heavy metal exposure, dysfunction of the autophagy-lysosomal pathway, and aging-related neurodegeneration, emphasizing the urgent need for a comprehensive understanding of these mechanisms. The insights gained from this analysis are crucial for creating targeted therapeutic approaches aimed at alleviating the harmful effects of heavy metals on neuronal health and improving cellular resilience in aging populations.
Collapse
Affiliation(s)
- Shrabani Das
- Cell Biology Division, National Institute of Nutrition, Indian Council of Medical Research (ICMR), Hyderabad, Hyderabad, Telangana, 500007, India
| | - Lokesh Murumulla
- Cell Biology Division, National Institute of Nutrition, Indian Council of Medical Research (ICMR), Hyderabad, Hyderabad, Telangana, 500007, India
| | - Pritha Ghosh
- Cell Biology Division, National Institute of Nutrition, Indian Council of Medical Research (ICMR), Hyderabad, Hyderabad, Telangana, 500007, India
| | - Suresh Challa
- Cell Biology Division, National Institute of Nutrition, Indian Council of Medical Research (ICMR), Hyderabad, Hyderabad, Telangana, 500007, India.
| |
Collapse
|
6
|
Liang X, Wang L, Xu L, Chi H, Lin W. Development of a novel NIR-II fluorescence probe for monitoring serum albumin fluctuation in cerebra neurotoxicity induced by manganese exposure. JOURNAL OF HAZARDOUS MATERIALS 2025; 485:136936. [PMID: 39709813 DOI: 10.1016/j.jhazmat.2024.136936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 12/06/2024] [Accepted: 12/17/2024] [Indexed: 12/24/2024]
Abstract
Manganese is essential for various biological functions; however, excessive exposure can lead to significant health risks, particularly brain neurotoxicity. Understanding manganese-induced alterations in brain serum protein levels and brain function is crucial for elucidating the mechanisms underlying manganese neurotoxicity. To address this, we developed a novel NIR-II fluorescent probe, RSM, characterized by robust binding to serum albumin and high sensitivity. Using RSM, we observed that heightened BSA uptake in cells exposed to elevated manganese concentrations relative to those exposed to lower levels. Furthermore, we successfully detected changes in serum albumin levels induced by manganese neurotoxicity in brain tissue through in situ NIR-II fluorescence imaging. Our findings establish an association between augmented manganese-induced neurotoxicity and elevated serum albumin content in the brain. This work provides a valuable tool for further investigating the mechanisms of toxic molecules.
Collapse
Affiliation(s)
- Xing Liang
- Institute of Optical Materials and Chemical Biology, Guangxi Key Laboratory of Electrochemical Energy Materials, School of Chemistry and Chemical Engineering, Guangxi University, Nanning, Guangxi 530004, China
| | - Luolin Wang
- Institute of Optical Materials and Chemical Biology, Guangxi Key Laboratory of Electrochemical Energy Materials, School of Chemistry and Chemical Engineering, Guangxi University, Nanning, Guangxi 530004, China
| | - Lizhen Xu
- Institute of Optical Materials and Chemical Biology, Guangxi Key Laboratory of Electrochemical Energy Materials, School of Chemistry and Chemical Engineering, Guangxi University, Nanning, Guangxi 530004, China
| | - Hanwen Chi
- Institute of Optical Materials and Chemical Biology, Guangxi Key Laboratory of Electrochemical Energy Materials, School of Chemistry and Chemical Engineering, Guangxi University, Nanning, Guangxi 530004, China
| | - Weiying Lin
- Institute of Optical Materials and Chemical Biology, Guangxi Key Laboratory of Electrochemical Energy Materials, School of Chemistry and Chemical Engineering, Guangxi University, Nanning, Guangxi 530004, China.
| |
Collapse
|
7
|
Zhang X, Liu J, Zhong S, Zhang Z, Zhou Q, Yang J, Chang X, Wang H. Exposure to Manganese Induces Autophagy-Lysosomal Pathway Dysfunction-Mediated Tauopathy by Activating the cGAS-STING Pathway in the Brain. ENVIRONMENT & HEALTH (WASHINGTON, D.C.) 2025; 3:199-212. [PMID: 40012869 PMCID: PMC11851216 DOI: 10.1021/envhealth.4c00176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 11/05/2024] [Accepted: 11/07/2024] [Indexed: 02/28/2025]
Abstract
Manganese (Mn) exposure leads to pathological accumulation of Tau-associated neurodegenerative disease and has become a major public health concern. However, the precise mechanism underlying this effect remains unclear. Here, the mechanism by which Mn induces dysfunction of autophagy-lysosomal pathway-mediated tauopathy by activating the cGAS-STING pathway was explored both in vitro and in vivo. Mn exposure induced tauopathy in microglia and in mice while activating the cGAS-STING pathway, inducing type I interferon production, and impairing the degradation function of the autophagy-lysosomal pathway. Importantly, inactivation of the cGAS-STING pathway rescued the degradation activity of the autophagy-lysosomal pathway, while tauopathy was markedly attenuated, as shown in both cGAS-knockout and STING-knockout BV2 microglia and in mice. Moreover, the autophagy inhibitor 3-methyladenine (3-MA) restored the impaired degradation activity of the autophagy-lysosomal pathway by inactivating the cGAS-STING pathway, thereby clearing Tau aggregation. Taken together, these results indicate that Mn exposure induces tauopathy by impairing the function of the autophagy-lysosomal pathway through the activation of the cGAS-STING pathway. Thus, this study identifies a novel mechanism by which Mn exposure induces Tau aggregation, which in turn triggers potential neurotoxicity, providing a foundation for future drug target research.
Collapse
Affiliation(s)
- Xin Zhang
- Department of Toxicology, School of
Public Health, Lanzhou University, Gansu 730000, China
| | - Jingjing Liu
- Department of Toxicology, School of
Public Health, Lanzhou University, Gansu 730000, China
| | - Shiyin Zhong
- Department of Toxicology, School of
Public Health, Lanzhou University, Gansu 730000, China
| | - Zhimin Zhang
- Department of Toxicology, School of
Public Health, Lanzhou University, Gansu 730000, China
| | - Qiongli Zhou
- Department of Toxicology, School of
Public Health, Lanzhou University, Gansu 730000, China
| | - Jirui Yang
- Department of Toxicology, School of
Public Health, Lanzhou University, Gansu 730000, China
| | - Xuhong Chang
- Department of Toxicology, School of
Public Health, Lanzhou University, Gansu 730000, China
| | - Hui Wang
- Department of Toxicology, School of
Public Health, Lanzhou University, Gansu 730000, China
| |
Collapse
|
8
|
Hong H, Liu S, Yang T, Lin J, Luo K, Xu Y, Li T, Xi Y, Yang L, Lu YQ, Yuan W, Zhou Z. Manganese exposure induces parkinsonism-like symptoms by Serpina3n-TFEB-v/p-ATPase signaling mediated lysosomal dysfunction. Cell Biol Toxicol 2025; 41:34. [PMID: 39847159 PMCID: PMC11759460 DOI: 10.1007/s10565-025-09989-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Accepted: 01/03/2025] [Indexed: 01/30/2025]
Abstract
Manganese (Mn) is a neurotoxin that has been etiologically linked to the development of neurodegenerative diseases in the case of overexposure. It is widely accepted that overexposure to Mn leads to manganism, which has clinical symptoms similar to Parkinson's disease (PD), and is referred to as parkinsonism. Astrocytes have been reported to scavenge and degrade extracellular α-synuclein (α-Syn) in the brain. However, the mechanisms of Mn-induced neurotoxicity associated with PD remain unclear. Serpina3n is highly expressed in astrocytes and has been implicated in several neuropathologies. The role Serpina3n plays in Mn neurotoxicity and PD pathogenesis is still unknown. Here, we used wild-type and Serpina3n knockout (KO) C57BL/6 J mice with i.p. injection of 32.5 mg/kg MnCl2 once a day for 6 weeks to elucidate the role of Serpina3n in Mn-caused neurotoxicity regarding parkinsonism pathogenesis. We performed behavioral tests (open field, suspension and pole-climbing tests) to observe Mn-induced motor changes, immunohistochemistry to detect Mn-induced midbrain changes, and Western blot to detect Mn-induced changes of protein expression. It was found that Serpina3n KO markedly alleviated Mn neurotoxicity in mice by attenuating midbrain dopaminergic neuron damage and ameliorating motor deficits. Furthermore, using immunofluorescence colocalization analysis, Western blot and quantitative real-time PCR on Mn-treated C8-D1A cells, we found that Serpina3n KO significantly improved astrocytic α-Syn clearance by suppressing Mn-induced lysosomal dysfunction. Reduced transcription factor EB (TFEB)-v/p-ATPase signaling is responsible for the impairment of the lysosomal acidic environment. These novel findings highlight Serpina3n as a detrimental factor in Mn neurotoxicity associated with parkinsonism, capture the novel role of Serpina3n in regulating lysosomal function, and provide a potential target for antagonizing Mn neurotoxicity and curing parkinsonism in humans.
Collapse
Affiliation(s)
- Huihui Hong
- Department of Environmental Medicine, School of Medicine, Chongqing University, Chongqing, China
| | - Sicheng Liu
- Department of Environmental Medicine, School of Medicine, Chongqing University, Chongqing, China
| | - Ting Yang
- Department of Otolaryngology, Chongqing General Hospital, Chongqing University, Chongqing, China
| | - Jinxian Lin
- Department of Environmental Medicine, School of Medicine, Chongqing University, Chongqing, China
| | - Kun Luo
- Department of Environmental Medicine, School of Medicine, Chongqing University, Chongqing, China
| | - Yudong Xu
- Department of Environmental Medicine, Zhejiang University School of Medicine, Hangzhou, China
| | - Ting Li
- Department of Emergency Medicine, School of Medicine, The First Affiliated Hospital, Zhejiang University, Hangzhou, China
- Zhejiang Provincial Key Laboratory for Diagnosis and Treatment of Aging and Physic-Chemical Injury Diseases, Hangzhou, China
| | - Yu Xi
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, 100048, Beijing, China
| | - Lingling Yang
- Department of Occupational Health, Third Military Medical University, 400038, Chongqing, China
| | - Yuan-Qiang Lu
- Department of Emergency Medicine, School of Medicine, The First Affiliated Hospital, Zhejiang University, Hangzhou, China.
- Zhejiang Provincial Key Laboratory for Diagnosis and Treatment of Aging and Physic-Chemical Injury Diseases, Hangzhou, China.
| | - Wei Yuan
- Department of Otolaryngology, Chongqing General Hospital, Chongqing University, Chongqing, China.
| | - Zhou Zhou
- Department of Environmental Medicine, School of Medicine, Chongqing University, Chongqing, China.
| |
Collapse
|
9
|
Liu L, Liu H, Lu X, Yin Z, Zhang W, Ye J, Xu Y, Weng Z, Luo J, Wang X. Palladium-Based Nanocomposites Remodel Osteoporotic Microenvironment by Bone-Targeted Hydrogen Enrichment and Zincum Repletion. RESEARCH (WASHINGTON, D.C.) 2024; 7:0540. [PMID: 39691766 PMCID: PMC11651528 DOI: 10.34133/research.0540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 07/15/2024] [Accepted: 11/10/2024] [Indexed: 12/19/2024]
Abstract
Osteoporosis presents a marked global public health challenge, characterized by deficient osteogenesis and a deteriorating immune microenvironment. Conventional clinical interventions primarily target osteoclast-mediated bone damage, yet lack a comprehensive therapeutic approach that balances bone formation and resorption. Herein, we introduce a bone-targeted nanocomposite, A-Z@Pd(H), designed to address these challenges by integrating diverse functional components. The nanocomposite incorporates internal hydrogen-carrying nanozymes, which effectively scavenge multiple reactive oxygen species (ROS) and synergistically engage the autophagy-lysosome pathway to accelerate endogenous ROS degradation in macrophages. This mechanism disrupts the vicious cycle of autophagic dysfunction-ROS accumulation-macrophage inflammation. In addition, external metal-organic frameworks release zinc ions (Zn2+) in response to the acidic osteoporotic environment, thereby promoting osteogenesis. In a murine model of osteoporosis, intravenous administration of A-Z@Pd(H) leads to preferential accumulation in the femur, thereby remodeling the osteoporotic microenvironment through immune regulation, osteogenesis promotion, and osteoclast inhibition. These findings suggest that this system composed of hydrogen therapy and ion therapy may be a promising candidate for bone-targeted comprehensive therapy in osteoporosis.
Collapse
Affiliation(s)
- Lubing Liu
- The Department of Rehabilitation Medicine, the 2 Affiliated Hospital, Jiangxi Medical College,
Nanchang University, Nanchang 330006, China
- The Jiangxi Province Key Laboratory of Precision Cell Therapy, the 2 Affiliated Hospital, Jiangxi Medical College,
Nanchang University, Nanchang 330006, China
- The National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine,
Nanchang University, Nanchang 330088, China
| | - Huiying Liu
- The Department of Rehabilitation Medicine, the 2 Affiliated Hospital, Jiangxi Medical College,
Nanchang University, Nanchang 330006, China
- The Jiangxi Province Key Laboratory of Precision Cell Therapy, the 2 Affiliated Hospital, Jiangxi Medical College,
Nanchang University, Nanchang 330006, China
| | - Xiaoya Lu
- The National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine,
Nanchang University, Nanchang 330088, China
| | - Zhengshuai Yin
- The National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine,
Nanchang University, Nanchang 330088, China
| | - Wei Zhang
- The National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine,
Nanchang University, Nanchang 330088, China
| | - Jing Ye
- The Department of Rehabilitation Medicine, the 2 Affiliated Hospital, Jiangxi Medical College,
Nanchang University, Nanchang 330006, China
- The Jiangxi Province Key Laboratory of Precision Cell Therapy, the 2 Affiliated Hospital, Jiangxi Medical College,
Nanchang University, Nanchang 330006, China
- The National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine,
Nanchang University, Nanchang 330088, China
| | - Yingying Xu
- The National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine,
Nanchang University, Nanchang 330088, China
| | - Zhenzhen Weng
- The National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine,
Nanchang University, Nanchang 330088, China
| | - Jun Luo
- The Department of Rehabilitation Medicine, the 2 Affiliated Hospital, Jiangxi Medical College,
Nanchang University, Nanchang 330006, China
- The Jiangxi Province Key Laboratory of Precision Cell Therapy, the 2 Affiliated Hospital, Jiangxi Medical College,
Nanchang University, Nanchang 330006, China
| | - Xiaolei Wang
- The National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine,
Nanchang University, Nanchang 330088, China
| |
Collapse
|
10
|
Diniz LP, Araujo APB, Carvalho CF, Matias I, de Sá Hayashide L, Marques M, Pessoa B, Andrade CBV, Vargas G, Queiroz DD, de Carvalho JJ, Galina A, Gomes FCA. Accumulation of damaged mitochondria in aging astrocytes due to mitophagy dysfunction: Implications for susceptibility to mitochondrial stress. Biochim Biophys Acta Mol Basis Dis 2024; 1870:167470. [PMID: 39153665 DOI: 10.1016/j.bbadis.2024.167470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 08/01/2024] [Accepted: 08/12/2024] [Indexed: 08/19/2024]
Abstract
Aging disrupts brain function, leading to cognitive decline and neurodegenerative diseases. Senescent astrocytes, a hallmark of aging, contribute to this process through unknown mechanisms. This study investigates how senescence impacts astrocytic mitochondrial dynamics, which are critical for brain health. Our research, conducted using aged mouse brains, represents the first evidence of morphologically damaged mitochondria in astrocytes, along with functional alterations in mitochondrial respiration. In vitro experiments revealed that senescent astrocytes exhibit an increase in mitochondrial fragmentation and impaired mitophagy. Concurrently, there was an upregulation of mitochondrial biogenesis, indicating a compensatory response to mitochondrial damage. Importantly, these senescent astrocytes were more susceptible to mitochondrial stress, a vulnerability reversed by rapamycin treatment. These findings suggest a potential link between senescence, impaired mitochondrial quality control, and increased susceptibility to mitochondrial stress in astrocytes. Overall, our study highlights the importance of addressing mitochondrial dysfunction and senescence-related changes in astrocytes as a promising approach for developing therapies to counter age-related neurodegeneration and improve brain health.
Collapse
Affiliation(s)
- Luan Pereira Diniz
- Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.
| | - Ana Paula Bergamo Araujo
- Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Clara Fernandes Carvalho
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Isadora Matias
- Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Lívia de Sá Hayashide
- Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Mariana Marques
- Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Bruna Pessoa
- Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Cherley Borba Vieira Andrade
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil; Departamento de Histologia e Embriologia, Instituto de Biologia Roberto Alcântara Gomes, Universidade do Estado do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Gabriele Vargas
- Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Daniela Dias Queiroz
- Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Jorge José de Carvalho
- Departamento de Histologia e Embriologia, Instituto de Biologia Roberto Alcântara Gomes, Universidade do Estado do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Antonio Galina
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | | |
Collapse
|
11
|
Zuo M, Ye M, Lin H, Liao S, Xing X, Liu J, Wu D, Huang Z, Ren X. Mitochondrial Dysfunction in Environmental Toxicology: Mechanisms, Impacts, and Health Implications. Chem Res Toxicol 2024; 37:1794-1806. [PMID: 39485318 DOI: 10.1021/acs.chemrestox.4c00328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2024]
Abstract
Mitochondria, pivotal to cellular metabolism, serve as the primary sources of biological energy and are key regulators of intracellular calcium ion storage, crucial for maintaining cellular calcium homeostasis. Dysfunction in these organelles impairs ATP synthesis, diminishing cellular functionality. Emerging evidence implicates mitochondrial dysfunction in the etiology and progression of diverse diseases. Environmental factors that induce mitochondrial dysregulation raise significant public health concerns, necessitating a nuanced comprehension and classification of mitochondrial-related hazards. This review systematically adopts a toxicological perspective to illuminate the biological functions of mitochondria, offering a comprehensive exploration of how toxicants instigate mitochondrial dysfunction. It delves into the disruption of energy metabolism, the initiation of mitochondrial fragility and autophagy, and the induction of mutations in mitochondrial DNA by mutagens. The overarching objective is to enhance our understanding of the repercussions of mitochondrial damage on human health.
Collapse
Affiliation(s)
- Mingyang Zuo
- School of Public Health, Southern Medical University, No. 1023 Shatai Nan Road, Baiyun District, Guangzhou 510515, China
| | - Mingqi Ye
- School of Public Health, Southern Medical University, No. 1023 Shatai Nan Road, Baiyun District, Guangzhou 510515, China
| | - Haofeng Lin
- School of Public Health, Southern Medical University, No. 1023 Shatai Nan Road, Baiyun District, Guangzhou 510515, China
| | - Shicheng Liao
- Shenzhen Center for Disease Control and Prevention, Shenzhen 518055, China
| | - Xiumei Xing
- School of Public Health, Sun Yat-Sen University, No. 74 Zhongshan Road 2, Guangzhou 510080, China
| | - Jianjun Liu
- Shenzhen Key Laboratory of Modern Toxicology, Shenzhen Medical Key Discipline of Health Toxicology (2020-2024), Shenzhen Center for Disease Control and Prevention, No 8 Longyuan Road, Nanshan District, Shenzhen 518055, China
| | - Desheng Wu
- Shenzhen Key Laboratory of Modern Toxicology, Shenzhen Medical Key Discipline of Health Toxicology (2020-2024), Shenzhen Center for Disease Control and Prevention, No 8 Longyuan Road, Nanshan District, Shenzhen 518055, China
| | - Zhenlie Huang
- School of Public Health, Southern Medical University, No. 1023 Shatai Nan Road, Baiyun District, Guangzhou 510515, China
| | - Xiaohu Ren
- Shenzhen Key Laboratory of Modern Toxicology, Shenzhen Medical Key Discipline of Health Toxicology (2020-2024), Shenzhen Center for Disease Control and Prevention, No 8 Longyuan Road, Nanshan District, Shenzhen 518055, China
| |
Collapse
|
12
|
Sighencea MG, Popescu RȘ, Trifu SC. From Fundamentals to Innovation in Alzheimer's Disease: Molecular Findings and Revolutionary Therapies. Int J Mol Sci 2024; 25:12311. [PMID: 39596378 PMCID: PMC11594972 DOI: 10.3390/ijms252212311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 11/11/2024] [Accepted: 11/14/2024] [Indexed: 11/28/2024] Open
Abstract
Alzheimer's disease (AD) is a global health concern and the leading cause of dementia in the elderly. The prevalence of this neurodegenerative condition is projected to increase concomitantly with increased life expectancy, resulting in a significant economic burden. With very few FDA-approved disease-modifying drugs available for AD, there is an urgent need to develop new compounds capable of impeding the progression of the disease. Given the unclear etiopathogenesis of AD, this review emphasizes the underlying mechanisms of this condition. It explores not only well-studied aspects, such as the accumulation of Aβ plaques and neurofibrillary tangles, but also novel areas, including glymphatic and lymphatic pathways, microbiota and the gut-brain axis, serotoninergic and autophagy alterations, vascular dysfunction, the metal hypothesis, the olfactory pathway, and oral health. Furthermore, the potential molecular targets arising from all these mechanisms have been reviewed, along with novel promising approaches such as nanoparticle-based therapy, neural stem cell transplantation, vaccines, and CRISPR-Cas9-mediated genome editing techniques. Taking into account the overlap of these various mechanisms, individual and combination therapies emerge as the future direction in the AD strategy.
Collapse
Affiliation(s)
| | - Ramona Ștefania Popescu
- Department of Infectious Diseases, “Carol Davila” University of Medicine and Pharmacy Bucharest, 020021 Bucharest, Romania;
| | - Simona Corina Trifu
- Department of Psychiatry, “Carol Davila” University of Medicine and Pharmacy Bucharest, 020021 Bucharest, Romania
| |
Collapse
|
13
|
Li B, Liu T, Shen Y, Qin J, Chang X, Wu M, Guo J, Liu L, Wei C, Lyu Y, Tian F, Yin J, Wang T, Zhang W, Qiu Y. TFEB/LAMP2 contributes to PM 0.2-induced autophagy-lysosome dysfunction and alpha-synuclein dysregulation in astrocytes. J Environ Sci (China) 2024; 145:117-127. [PMID: 38844312 DOI: 10.1016/j.jes.2023.09.036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 09/26/2023] [Accepted: 09/28/2023] [Indexed: 06/15/2024]
Abstract
Atmospheric particulate matter (PM) exacerbates the risk factor for Alzheimer's and Parkinson's diseases (PD) by promoting the alpha-synuclein (α-syn) pathology in the brain. However, the molecular mechanisms of astrocytes involvement in α-syn pathology underlying the process remain unclear. This study investigated PM with particle size <200 nm (PM0.2) exposure-induced α-syn pathology in ICR mice and primary astrocytes, then assessed the effects of mammalian target of rapamycin inhibitor (PP242) in vitro studies. We observed the α-syn pathology in the brains of exposed mice. Meanwhile, PM0.2-exposed mice also exhibited the activation of glial cell and the inhibition of autophagy. In vitro study, PM0.2 (3, 10 and 30 µg/mL) induced inflammatory response and the disorders of α-syn degradation in primary astrocytes, and lysosomal-associated membrane protein 2 (LAMP2)-mediated autophagy underlies α-syn pathology. The abnormal function of autophagy-lysosome was specifically manifested as the expression of microtubule-associated protein light chain 3 (LC3II), cathepsin B (CTSB) and lysosomal abundance increased first and then decreased, which might both be a compensatory mechanism to toxic α-syn accumulation induced by PM0.2. Moreover, with the transcription factor EB (TFEB) subcellular localization and the increase in LC3II, LAMP2, CTSB, and cathepsin D proteins were identified, leading to the restoration of the degradation of α-syn after the intervention of PP242. Our results identified that PM0.2 exposure could promote the α-syn pathological dysregulation in astrocytes, providing mechanistic insights into how PM0.2 increases the risk of developing PD and highlighting TFEB/LAMP2 as a promising therapeutic target for antagonizing PM0.2 toxicity.
Collapse
Affiliation(s)
- Ben Li
- School of Public Health, Shanxi Medical University, Taiyuan 030000, China.
| | - Ting Liu
- School of Public Health, Shanxi Medical University, Taiyuan 030000, China
| | - Yongmei Shen
- Hainan Provincial Center for Disease Control and Prevention, Haikou 570100, China
| | - Jiangnan Qin
- School of Public Health, Shanxi Medical University, Taiyuan 030000, China
| | - Xiaohan Chang
- School of Public Health, Shanxi Medical University, Taiyuan 030000, China
| | - Meiqiong Wu
- School of Public Health, Shanxi Medical University, Taiyuan 030000, China
| | - Jianquan Guo
- School of Public Health, Shanxi Medical University, Taiyuan 030000, China
| | - Liangpo Liu
- School of Public Health, Shanxi Medical University, Taiyuan 030000, China
| | - Cailing Wei
- School of Public Health, Shanxi Medical University, Taiyuan 030000, China
| | - Yi Lyu
- School of Public Health, Shanxi Medical University, Taiyuan 030000, China
| | - Fengjie Tian
- School of Public Health, Shanxi Medical University, Taiyuan 030000, China
| | - Jinzhu Yin
- Department of Neurosurgery, Sinopharm Tongmei General Hospital, Datong 037003, China
| | - Tong Wang
- School of Public Health, Shanxi Medical University, Taiyuan 030000, China; Key Laboratory of Coal Environmental Pathogenicity and Prevention (Shanxi Medical University), Ministry of Education, Taiyuan 030000, China
| | - Wenping Zhang
- School of Public Health, Shanxi Medical University, Taiyuan 030000, China
| | - Yulan Qiu
- School of Public Health, Shanxi Medical University, Taiyuan 030000, China.
| |
Collapse
|
14
|
Yang X, Chen YH, Liu L, Gu Z, You Y, Hao JR, Sun N, Gao C. Regulation of glycolysis-derived L-lactate production in astrocytes rescues the memory deficits and Aβ burden in early Alzheimer's disease models. Pharmacol Res 2024; 208:107357. [PMID: 39159732 DOI: 10.1016/j.phrs.2024.107357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 07/17/2024] [Accepted: 08/15/2024] [Indexed: 08/21/2024]
Abstract
Aberrant energy metabolism in the brain is a common pathological feature in the preclinical Alzheimer's Disease (AD). Recent studies have reported the early elevations of glycolysis-involved enzymes in AD brain and cerebrospinal fluid according to a large-scale proteomic analysis. It's well-known that astrocytes exhibit strong glycolytic metabolic ability and play a key role in the regulation of brain homeostasis. However, its relationship with glycolytic changes and cognitive deficits in early AD patients is unclear. Here, we investigated the mechanisms by which astrocyte glycolysis is involved in early AD and its potential as a therapeutic target. Our results suggest that Aβ-activated microglia can induce glycolytic-enhanced astrocytes in vitro, and that these processes are dependent on the activation of the AKT-mTOR-HIF-1α pathway. In early AD models, the increase in L-lactate produced by enhanced glycolysis of astrocytes leads to spatial cognitive impairment by disrupting synaptic plasticity and accelerating Aβ aggregation. Furthermore, we find rapamycin, the mTOR inhibitor, can rescue the impaired spatial memory and Aβ burden by inhibiting the glycolysis-derived L-lactate in the early AD models. In conclusion, we highlight that astrocytic glycolysis plays a critical role in the early onset of AD and that the modulation of glycolysis-derived L-lactate by rapamycin provides a new strategy for the treatment of AD.
Collapse
Affiliation(s)
- Xiu Yang
- NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Jiangsu Province Key Laboratory of Anesthesiology, Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China; Department of Anesthesiology, First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, China
| | - Yuan-Hao Chen
- NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Jiangsu Province Key Laboratory of Anesthesiology, Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
| | - Le Liu
- NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Jiangsu Province Key Laboratory of Anesthesiology, Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
| | - Zheng Gu
- NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Jiangsu Province Key Laboratory of Anesthesiology, Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
| | - Yue You
- NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Jiangsu Province Key Laboratory of Anesthesiology, Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
| | - Jing-Ru Hao
- NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Jiangsu Province Key Laboratory of Anesthesiology, Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
| | - Nan Sun
- NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Jiangsu Province Key Laboratory of Anesthesiology, Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
| | - Can Gao
- NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Jiangsu Province Key Laboratory of Anesthesiology, Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China.
| |
Collapse
|
15
|
Lu J, Su P, Zhao F, Yu K, Yang X, Lv H, Wang D, Zhang J. The role of TFEB-mediated autophagy-lysosome dysfunction in manganese neurotoxicity. Curr Res Toxicol 2024; 7:100193. [PMID: 39381497 PMCID: PMC11459403 DOI: 10.1016/j.crtox.2024.100193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 08/30/2024] [Accepted: 09/06/2024] [Indexed: 10/10/2024] Open
Abstract
Excessive long-term manganese intake can inflict irreversible damage to the nervous system, with a predominant effect on the substantia nigra-striatum pathway. Through a mouse model simulating manganese exposure, we delved into its implications on the central nervous motor system, uncovering autophagy-lysosome dysfunction as a pivotal factor in manganese-induced neurotoxicity. Our research illuminated the molecular mechanisms behind TFEB's role in manganese-triggered neuronal autophagy dysfunction, offering insights into the cellular and molecular mechanisms of manganese-induced abnormal protein accumulation. This study lays a significant theoretical foundation for future endeavors aimed at safeguarding against manganese neurotoxicity. Furthermore, TFEB emerges as a potential early molecular biomarker for manganese exposure, providing a solid basis for preemptive protection and clinical treatment for populations exposed to manganese.
Collapse
Affiliation(s)
- Jiaqiao Lu
- Department of Occupational and Environmental Health, the Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, School of Public Health, Fourth Military Medical University, No.169 Chang Le West Rd., Xi’an, Shaanxi 710032, China
| | - Peng Su
- Department of Occupational and Environmental Health, the Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, School of Public Health, Fourth Military Medical University, No.169 Chang Le West Rd., Xi’an, Shaanxi 710032, China
| | - Fang Zhao
- Department of Occupational and Environmental Health, the Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, School of Public Health, Fourth Military Medical University, No.169 Chang Le West Rd., Xi’an, Shaanxi 710032, China
| | - Kailun Yu
- Department of Occupational and Environmental Health, the Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, School of Public Health, Fourth Military Medical University, No.169 Chang Le West Rd., Xi’an, Shaanxi 710032, China
| | - Xunbo Yang
- Department of Occupational and Environmental Health, the Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, School of Public Health, Fourth Military Medical University, No.169 Chang Le West Rd., Xi’an, Shaanxi 710032, China
| | - Hui Lv
- Department of Health Service Teaching and Research, Dalian Health Service Training Center of Chinese PLA, Da Lian 116001, China
| | - Diya Wang
- Department of Occupational and Environmental Health, the Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, School of Public Health, Fourth Military Medical University, No.169 Chang Le West Rd., Xi’an, Shaanxi 710032, China
| | - Jianbin Zhang
- Department of Occupational and Environmental Health, the Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, School of Public Health, Fourth Military Medical University, No.169 Chang Le West Rd., Xi’an, Shaanxi 710032, China
| |
Collapse
|
16
|
Hu Q, Li C, Zhang T, Yi L, Shan Y, Ma X, Cai T, Ran L, Shen H, Li Y. Dihydromyricetin suppresses endothelial NLRP3 inflammasome activation and attenuates atherogenesis by promoting mitophagy. Lipids Health Dis 2024; 23:279. [PMID: 39227809 PMCID: PMC11370113 DOI: 10.1186/s12944-024-02263-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Accepted: 08/18/2024] [Indexed: 09/05/2024] Open
Abstract
BACKGROUND NOD-like receptor protein 3 (NLRP3) inflammasome activation is indispensable for atherogenesis. Mitophagy has emerged as a potential strategy to counteract NLRP3 inflammasome activation triggered by impaired mitochondria. Our previous research has indicated that dihydromyricetin, a natural flavonoid, can mitigate NLRP3-mediated endothelial inflammation, suggesting its potential to treat atherosclerosis. However, the precise underlying mechanisms remain elusive. This study sought to investigate whether dihydromyricetin modulates endothelial mitophagy and inhibits NLRP3 inflammasome activation to alleviate atherogenesis, along with the specific mechanisms involved. METHODS Apolipoprotein E-deficient mice on a high-fat diet were administered daily oral gavages of dihydromyricetin for 14 weeks. Blood samples were procured to determine the serum lipid profiles and quantify proinflammatory cytokine concentrations. Aortas were harvested to evaluate atherosclerotic plaque formation and NLRP3 inflammasome activation. Concurrently, in human umbilical vein endothelial cells, Western blotting, flow cytometry, and quantitative real-time PCR were employed to elucidate the mechanistic role of mitophagy in the modulation of NLRP3 inflammasome activation by dihydromyricetin. RESULTS Dihydromyricetin administration significantly attenuated NLRP3 inflammasome activation and vascular inflammation in mice on a high-fat diet, thereby exerting a pronounced inhibitory effect on atherogenesis. Both in vivo and in vitro, dihydromyricetin treatment markedly enhanced mitophagy. This enhancement in mitophagy ameliorated the mitochondrial damage instigated by saturated fatty acids, thereby inhibiting the activation and nuclear translocation of NF-κB. Consequently, concomitant reductions in the transcript levels of NLRP3 and interleukin-1β (IL-1β), alongside decreased activation of NLRP3 inflammasome and IL-1β secretion, were discerned. Notably, the inhibitory effects of dihydromyricetin on the activation of NF-κB and subsequently the NLRP3 inflammasome were determined to be, at least in part, contingent upon its capacity to promote mitophagy. CONCLUSION This study suggested that dihydromyricetin may function as a modulator to promote mitophagy, which in turn mitigates NF-κB activity and subsequent NLRP3 inflammasome activation, thereby conferring protection against atherosclerosis.
Collapse
Affiliation(s)
- Qin Hu
- Department of Epidemiology, Institute of Military Preventive Medicine, Army Medical University (Third Military Medical University), Chongqing, 400038, P. R. China
| | - Chengying Li
- Department of Epidemiology, Institute of Military Preventive Medicine, Army Medical University (Third Military Medical University), Chongqing, 400038, P. R. China
| | - Ting Zhang
- Research Center for Nutrition and Food Safety, Institute of Military Preventive Medicine, Army Medical University (Third Military Medical University), Chongqing, 400038, P. R. China
| | - Long Yi
- Research Center for Nutrition and Food Safety, Institute of Military Preventive Medicine, Army Medical University (Third Military Medical University), Chongqing, 400038, P. R. China
| | - Yifan Shan
- Department of Epidemiology, Institute of Military Preventive Medicine, Army Medical University (Third Military Medical University), Chongqing, 400038, P. R. China
| | - Xiangyu Ma
- Department of Epidemiology, Institute of Military Preventive Medicine, Army Medical University (Third Military Medical University), Chongqing, 400038, P. R. China
| | - Tongjian Cai
- Department of Epidemiology, Institute of Military Preventive Medicine, Army Medical University (Third Military Medical University), Chongqing, 400038, P. R. China
| | - Li Ran
- Research Center for Nutrition and Food Safety, Institute of Military Preventive Medicine, Army Medical University (Third Military Medical University), Chongqing, 400038, P. R. China
| | - Hui Shen
- Research Center for Nutrition and Food Safety, Institute of Military Preventive Medicine, Army Medical University (Third Military Medical University), Chongqing, 400038, P. R. China
| | - Yafei Li
- Department of Epidemiology, Institute of Military Preventive Medicine, Army Medical University (Third Military Medical University), Chongqing, 400038, P. R. China.
| |
Collapse
|
17
|
Zheng XW, Fang YY, Lin JJ, Luo JJ, Li SJ, Aschner M, Jiang YM. Signal Transduction Associated with Mn-induced Neurological Dysfunction. Biol Trace Elem Res 2024; 202:4158-4169. [PMID: 38155332 DOI: 10.1007/s12011-023-03999-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Accepted: 12/04/2023] [Indexed: 12/30/2023]
Abstract
Manganese (Mn) is a heavy metal that occurs widely in nature and has a vital physiological role in growth and development. However, excessive exposure to Mn can cause neurological damage, especially cognitive dysfunction, such as learning disability and memory loss. Numerous studies on the mechanisms of Mn-induced nervous system damage found that this metal targets a variety of metabolic pathways, for example, endoplasmic reticulum stress, apoptosis, neuroinflammation, cellular signaling pathway changes, and neurotransmitter metabolism interference. This article reviews the latest research progress on multiple signaling pathways related to Mn-induced neurological dysfunction.
Collapse
Affiliation(s)
- Xiao-Wei Zheng
- Toxicology Department, School of Public Health, Guangxi Medical University, 22 Shuang-Yong Rd., Nanning, 530021, Guangxi, China
- Key Laboratory of Prevention and Control of Highly Prevalent Diseases in Guangxi Colleges and Universities, Medical University of Guangxi, Nanning, 530021, China
| | - Yuan-Yuan Fang
- Toxicology Department, School of Public Health, Guangxi Medical University, 22 Shuang-Yong Rd., Nanning, 530021, Guangxi, China
- Key Laboratory of Prevention and Control of Highly Prevalent Diseases in Guangxi Colleges and Universities, Medical University of Guangxi, Nanning, 530021, China
| | - Jun-Jie Lin
- Toxicology Department, School of Public Health, Guangxi Medical University, 22 Shuang-Yong Rd., Nanning, 530021, Guangxi, China
- Key Laboratory of Prevention and Control of Highly Prevalent Diseases in Guangxi Colleges and Universities, Medical University of Guangxi, Nanning, 530021, China
| | - Jing-Jing Luo
- Toxicology Department, School of Public Health, Guangxi Medical University, 22 Shuang-Yong Rd., Nanning, 530021, Guangxi, China
- Key Laboratory of Prevention and Control of Highly Prevalent Diseases in Guangxi Colleges and Universities, Medical University of Guangxi, Nanning, 530021, China
| | - Shao-Jun Li
- Toxicology Department, School of Public Health, Guangxi Medical University, 22 Shuang-Yong Rd., Nanning, 530021, Guangxi, China.
- Key Laboratory of Prevention and Control of Highly Prevalent Diseases in Guangxi Colleges and Universities, Medical University of Guangxi, Nanning, 530021, China.
| | - Michael Aschner
- The Department of Molecular Pharmacology at Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | - Yue-Ming Jiang
- Toxicology Department, School of Public Health, Guangxi Medical University, 22 Shuang-Yong Rd., Nanning, 530021, Guangxi, China.
- Key Laboratory of Prevention and Control of Highly Prevalent Diseases in Guangxi Colleges and Universities, Medical University of Guangxi, Nanning, 530021, China.
| |
Collapse
|
18
|
Xing H, Xu P, Ma Y, Li T, Zhang Y, Ding X, Liu L, Keerman M, Niu Q. TFEB ameliorates DEHP-induced neurotoxicity by activating GAL3/TRIM16 axis dependent lysophagy and alleviating lysosomal dysfunction. ENVIRONMENTAL TOXICOLOGY 2024; 39:3779-3789. [PMID: 38488668 DOI: 10.1002/tox.24221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 02/17/2024] [Accepted: 03/04/2024] [Indexed: 06/12/2024]
Abstract
Di-(2-ethylhexyl) phthalate (DEHP) is a commonly used plasticizer with known neurotoxic effects. However, the specific mechanism underlying this neurotoxicity remains unclear. This study aimed to investigate the role of lysosomal function and lysophagy in DEHP-induced neurotoxicity, with a particular focus on the regulatory role of Transcription factor EB (TFEB). To achieve this, we utilized in vitro models of DEHP-exposed SH-SY5Y cells and HT22 cells. Our findings revealed that DEHP exposure led to lysosomal damage and dysfunction. Moreover, we observed impaired autophagic degradation, characterized by elevated levels of LC3II and p62. DEHP treatment downregulated the expression of TFEB, GAL3, and TRIM16, while upregulating the expression of PARP. This led to the inhibition of GAL3/TRIM16 axis dependent lysophagy and ultimately excessive apoptosis in neuronal cells. Importantly, TFEB overexpression alleviated lysosomal dysfunction, activated lysophagy, and mitigated DEHP-induced apoptosis. Overall, our results suggest that DEHP induces not only lysosomal dysfunction, but also inhibits lysophagy through the suppression of GAL3/TRIM16 axis. Consequently, impaired clearance of damaged lysosomes occurs, culminating in neuronal apoptosis. Taken together, our findings highlight the critical role of TFEB in regulating lysophagy and lysosomal function. Furthermore, TFEB may serve as a potential therapeutic target for mitigating DEHP-induced neuronal toxicity.
Collapse
Affiliation(s)
- Hengrui Xing
- Department of Preventive Medicine, School of Medicine, Shihezi University, Shihezi, People's Republic of China
- Key Laboratory for Prevention and Control of Emerging Infectious Diseases and Public Health Security, the Xinjiang Production and Construction Corps, Shihezi, People's Republic of China
- Key Laboratory of Xinjiang Endemic and Ethnic Diseases (Ministry of Education), School of Medicine, Shihezi University, Shihezi, People's Republic of China
- NHC Key Laboratory of Prevention and Treatment of Central Asia High Incidence Diseases (First Affiliated Hospital, School of Medicine, Shihezi University), Shihezi, People's Republic of China
| | - Panpan Xu
- Department of Preventive Medicine, School of Medicine, Shihezi University, Shihezi, People's Republic of China
- Key Laboratory for Prevention and Control of Emerging Infectious Diseases and Public Health Security, the Xinjiang Production and Construction Corps, Shihezi, People's Republic of China
- Key Laboratory of Xinjiang Endemic and Ethnic Diseases (Ministry of Education), School of Medicine, Shihezi University, Shihezi, People's Republic of China
- NHC Key Laboratory of Prevention and Treatment of Central Asia High Incidence Diseases (First Affiliated Hospital, School of Medicine, Shihezi University), Shihezi, People's Republic of China
| | - Yue Ma
- Department of Preventive Medicine, School of Medicine, Shihezi University, Shihezi, People's Republic of China
- Key Laboratory for Prevention and Control of Emerging Infectious Diseases and Public Health Security, the Xinjiang Production and Construction Corps, Shihezi, People's Republic of China
- Key Laboratory of Xinjiang Endemic and Ethnic Diseases (Ministry of Education), School of Medicine, Shihezi University, Shihezi, People's Republic of China
- NHC Key Laboratory of Prevention and Treatment of Central Asia High Incidence Diseases (First Affiliated Hospital, School of Medicine, Shihezi University), Shihezi, People's Republic of China
| | - Tingting Li
- Department of Preventive Medicine, School of Medicine, Shihezi University, Shihezi, People's Republic of China
- Key Laboratory for Prevention and Control of Emerging Infectious Diseases and Public Health Security, the Xinjiang Production and Construction Corps, Shihezi, People's Republic of China
- Key Laboratory of Xinjiang Endemic and Ethnic Diseases (Ministry of Education), School of Medicine, Shihezi University, Shihezi, People's Republic of China
- NHC Key Laboratory of Prevention and Treatment of Central Asia High Incidence Diseases (First Affiliated Hospital, School of Medicine, Shihezi University), Shihezi, People's Republic of China
| | - Yue Zhang
- Department of Preventive Medicine, School of Medicine, Shihezi University, Shihezi, People's Republic of China
- Key Laboratory for Prevention and Control of Emerging Infectious Diseases and Public Health Security, the Xinjiang Production and Construction Corps, Shihezi, People's Republic of China
- Key Laboratory of Xinjiang Endemic and Ethnic Diseases (Ministry of Education), School of Medicine, Shihezi University, Shihezi, People's Republic of China
- NHC Key Laboratory of Prevention and Treatment of Central Asia High Incidence Diseases (First Affiliated Hospital, School of Medicine, Shihezi University), Shihezi, People's Republic of China
| | - Xueman Ding
- Department of Preventive Medicine, School of Medicine, Shihezi University, Shihezi, People's Republic of China
- Key Laboratory for Prevention and Control of Emerging Infectious Diseases and Public Health Security, the Xinjiang Production and Construction Corps, Shihezi, People's Republic of China
- Key Laboratory of Xinjiang Endemic and Ethnic Diseases (Ministry of Education), School of Medicine, Shihezi University, Shihezi, People's Republic of China
- NHC Key Laboratory of Prevention and Treatment of Central Asia High Incidence Diseases (First Affiliated Hospital, School of Medicine, Shihezi University), Shihezi, People's Republic of China
| | - Li Liu
- Department of Preventive Medicine, School of Medicine, Shihezi University, Shihezi, People's Republic of China
- Key Laboratory for Prevention and Control of Emerging Infectious Diseases and Public Health Security, the Xinjiang Production and Construction Corps, Shihezi, People's Republic of China
- Key Laboratory of Xinjiang Endemic and Ethnic Diseases (Ministry of Education), School of Medicine, Shihezi University, Shihezi, People's Republic of China
- NHC Key Laboratory of Prevention and Treatment of Central Asia High Incidence Diseases (First Affiliated Hospital, School of Medicine, Shihezi University), Shihezi, People's Republic of China
| | - Mulatibieke Keerman
- Department of Preventive Medicine, School of Medicine, Shihezi University, Shihezi, People's Republic of China
- Key Laboratory for Prevention and Control of Emerging Infectious Diseases and Public Health Security, the Xinjiang Production and Construction Corps, Shihezi, People's Republic of China
- Key Laboratory of Xinjiang Endemic and Ethnic Diseases (Ministry of Education), School of Medicine, Shihezi University, Shihezi, People's Republic of China
- NHC Key Laboratory of Prevention and Treatment of Central Asia High Incidence Diseases (First Affiliated Hospital, School of Medicine, Shihezi University), Shihezi, People's Republic of China
| | - Qiang Niu
- Department of Preventive Medicine, School of Medicine, Shihezi University, Shihezi, People's Republic of China
- Key Laboratory for Prevention and Control of Emerging Infectious Diseases and Public Health Security, the Xinjiang Production and Construction Corps, Shihezi, People's Republic of China
- Key Laboratory of Xinjiang Endemic and Ethnic Diseases (Ministry of Education), School of Medicine, Shihezi University, Shihezi, People's Republic of China
- NHC Key Laboratory of Prevention and Treatment of Central Asia High Incidence Diseases (First Affiliated Hospital, School of Medicine, Shihezi University), Shihezi, People's Republic of China
| |
Collapse
|
19
|
Xu M, Zhu Z, Meng S, Li H, Wang A, Barkema HW, Cobo ER, Kastelic JP, Khan MA, Gao J, Han B. Heme oxygenase activates calcium release from the endoplasmic reticulum of bovine mammary epithelial cells to promote TFEB entry into the nucleus to reduce the intracellular load of Mycoplasma bovis. Microbiol Res 2024; 284:127727. [PMID: 38636241 DOI: 10.1016/j.micres.2024.127727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 04/13/2024] [Accepted: 04/14/2024] [Indexed: 04/20/2024]
Abstract
Heme oxygenase HO-1 (HMOX) regulates cellular inflammation and apoptosis, but its role in regulation of autophagy in Mycoplasma bovis infection is unknown. The objective was to determine how the HO-1/CO- Protein kinase RNA-like endoplasmic reticulum kinase (PERK)-Ca2+- transcription factor EB (TFEB) signaling axis induces autophagy and regulates clearance of M. bovis by bovine mammary epithelial cells (bMECs). M. bovis inhibited autophagy and lysosomal biogenesis in bMECs and suppressed HO-1 protein and expression of related proteins, namely nuclear factor erythroid 2-related factor 2 (Nrf2) and Kelch-like ECH-associated protein 1 (keap1). Activation of HO-1 and its production of carbon monoxide (CO) were required for induction of autophagy and clearance of intracellular M. bovis. Furthermore, when HO-1 was deficient, CO sustained cellular autophagy. HO-1 activation increased intracellular calcium (Ca2+) and cytosolic localization activity of TFEB via PERK. Knockdown of PERK or chelation of intracellular Ca2+ inhibited HO-1-induced M. bovis autophagy and clearance. M. bovis infection affected nuclear localization of lysosomal TFEB in the MiT/TFE transcription factor subfamily, whereas activation of HO-1 mediated dephosphorylation and intranuclear localization of TFEB, promoting autophagy, lysosomal biogenesis and autophagic clearance of M. bovis. Nuclear translocation of TFEB in HO-1 was critical to induce M. bovis transport and survival of infected bMECs. Furthermore, the HO-1/CO-PERK-Ca2+-TFEB signaling axis induced autophagy and M. bovis clearance, providing a viable approach to treat persistent M. bovis infections.
Collapse
Affiliation(s)
- Maolin Xu
- College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Zimeng Zhu
- College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Siyu Meng
- College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Haoxia Li
- College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Anrui Wang
- College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Herman W Barkema
- Faculty of Veterinary Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada
| | - Eduardo R Cobo
- Faculty of Veterinary Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada
| | - John P Kastelic
- Faculty of Veterinary Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada
| | | | - Jian Gao
- College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Bo Han
- College of Veterinary Medicine, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
20
|
Gu J, Guo C, Ruan J, Li K, Zhou Y, Gong X, Shi H. From ferroptosis to cuproptosis, and calcicoptosis, to find more novel metals-mediated distinct form of regulated cell death. Apoptosis 2024; 29:586-604. [PMID: 38324163 DOI: 10.1007/s10495-023-01927-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/01/2023] [Indexed: 02/08/2024]
Abstract
Regulated cell death (RCD), also known as programmed cell death (PCD), plays a critical role in various biological processes, such as tissue injury/repair, development, and homeostasis. Dysregulation of RCD pathways can lead to the development of many human diseases, such as cancer, neurodegenerative disorders, and cardiovascular diseases. Maintaining proper metal ion homeostasis is critical for human health. However, imbalances in metal levels within cells can result in cytotoxicity and cell death, leading to a variety of diseases and health problems. In recent years, new types of metal overload-induced cell death have been identified, including ferroptosis, cuproptosis, and calcicoptosis. This has prompted us to examine the three defined metal-dependent cell death types, and discuss other metals-induced ferroptosis, cuproptosis, and disrupted Ca2+ homeostasis, as well as the roles of Zn2+ in metals' homeostasis and related RCD. We have reviewed the connection between metals-induced RCD and various diseases, as well as the underlying mechanisms. We believe that further research in this area will lead to the discovery of novel types of metal-dependent RCD, a better understanding of the underlying mechanisms, and the development of new therapeutic strategies for human diseases.
Collapse
Affiliation(s)
- Jie Gu
- School of Life Sciences, Jiangsu University, Zhenjiang, 212013, China
| | - Chuanzhi Guo
- School of Life Sciences, Jiangsu University, Zhenjiang, 212013, China
| | - Jiacheng Ruan
- School of Life Sciences, Jiangsu University, Zhenjiang, 212013, China
| | - Kongdong Li
- School of Life Sciences, Jiangsu University, Zhenjiang, 212013, China
| | - Yang Zhou
- School of Life Sciences, Jiangsu University, Zhenjiang, 212013, China
| | - Xun Gong
- Department of Rheumatology & Immunology, Affiliated Hospital of Jiangsu University, Zhenjiang, 212013, China.
| | - Haifeng Shi
- School of Life Sciences, Jiangsu University, Zhenjiang, 212013, China.
| |
Collapse
|
21
|
Ye H, Cai T, Shen Y, Zhao L, Zhang H, Yang J, Li F, Chen J, Shui X. MST1 knockdown inhibits osteoarthritis progression through Parkin-mediated mitophagy and Nrf2/NF-κB signalling pathway. J Cell Mol Med 2024; 28:e18476. [PMID: 38842136 PMCID: PMC11154837 DOI: 10.1111/jcmm.18476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Revised: 05/15/2024] [Accepted: 05/22/2024] [Indexed: 06/07/2024] Open
Abstract
Osteoarthritis (OA) is a complicated disease that involves apoptosis and mitophagy. MST1 is a pro-apoptotic factor. Hence, decreasing its expression plays an anti-apoptotic effect. This study aims to investigate the protective effect of MST1 inhibition on OA and the underlying processes. Immunofluorescence (IF) was used to detect MST1 expression in cartilage tissue. Western Blot, ELISA and IF were used to analyse the expression of inflammation, extracellular matrix (ECM) degradation, apoptosis and mitophagy-associated proteins. MST1 expression in chondrocytes was inhibited using siRNA and shRNA in vitro and in vivo. Haematoxylin-Eosin, Safranin O-Fast Green and alcian blue staining were used to evaluate the therapeutic effect of inhibiting MST1. This study discovered that the expression of MST1 was higher in OA patients. Inhibition of MST1 reduced inflammation, ECM degradation and apoptosis and enhanced mitophagy in vitro. MST1 inhibition slows OA progression in vivo. Inhibiting MST1 suppressed apoptosis, inflammation and ECM degradation via promoting Parkin-mediated mitophagy and the Nrf2-NF-κB axis. The results suggest that MST1 is a possible therapeutic target for the treatment of osteoarthritis as its inhibition delays the progression of OA through the Nrf2-NF-κB axis and mitophagy.
Collapse
Affiliation(s)
- Hantao Ye
- Department of OrthopaedicsThe Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical UniversityWenzhouChina
- Key Laboratory of Orthopaedics of Zhejiang ProvinceWenzhouChina
- The Second School of MedicineWenzhou Medical UniversityWenzhouChina
| | - Tingwen Cai
- Department of OrthopaedicsThe Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical UniversityWenzhouChina
- Key Laboratory of Orthopaedics of Zhejiang ProvinceWenzhouChina
- The Second School of MedicineWenzhou Medical UniversityWenzhouChina
| | - Yang Shen
- Department of OrthopaedicsThe Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical UniversityWenzhouChina
- Key Laboratory of Orthopaedics of Zhejiang ProvinceWenzhouChina
- The Second School of MedicineWenzhou Medical UniversityWenzhouChina
| | - Lin Zhao
- The Second Affiliated Hospital of Zhejiang Chinese Medical UniversityHangzhouChina
| | - Haojie Zhang
- Department of OrthopaedicsThe Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical UniversityWenzhouChina
- Key Laboratory of Orthopaedics of Zhejiang ProvinceWenzhouChina
- The Second School of MedicineWenzhou Medical UniversityWenzhouChina
| | - Jianxin Yang
- Department of OrthopaedicsThe Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical UniversityWenzhouChina
- Key Laboratory of Orthopaedics of Zhejiang ProvinceWenzhouChina
- The Second School of MedicineWenzhou Medical UniversityWenzhouChina
| | - Feida Li
- Department of OrthopaedicsThe Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical UniversityWenzhouChina
- Key Laboratory of Orthopaedics of Zhejiang ProvinceWenzhouChina
- The Second School of MedicineWenzhou Medical UniversityWenzhouChina
| | - Jiaoxiang Chen
- Department of OrthopaedicsThe Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical UniversityWenzhouChina
- Key Laboratory of Orthopaedics of Zhejiang ProvinceWenzhouChina
- The Second School of MedicineWenzhou Medical UniversityWenzhouChina
| | - Xiaolong Shui
- Department of OrthopaedicsThe Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical UniversityWenzhouChina
- Key Laboratory of Orthopaedics of Zhejiang ProvinceWenzhouChina
- The Second School of MedicineWenzhou Medical UniversityWenzhouChina
| |
Collapse
|
22
|
Zhang G, Lin W, Gao N, Lan C, Ren M, Yan L, Pan B, Xu J, Han B, Hu L, Chen Y, Wu T, Zhuang L, Lu Q, Wang B, Fang M. Using Machine Learning to Construct the Blood-Follicle Distribution Models of Various Trace Elements and Explore the Transport-Related Pathways with Multiomics Data. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:7743-7757. [PMID: 38652822 DOI: 10.1021/acs.est.3c10904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/25/2024]
Abstract
Permeabilities of various trace elements (TEs) through the blood-follicle barrier (BFB) play an important role in oocyte development. However, it has not been comprehensively described as well as its involved biological pathways. Our study aimed to construct a blood-follicle distribution model of the concerned TEs and explore their related biological pathways. We finally included a total of 168 women from a cohort of in vitro fertilization-embryo transfer conducted in two reproductive centers in Beijing City and Shandong Province, China. The concentrations of 35 TEs in both serum and follicular fluid (FF) samples from the 168 women were measured, as well as the multiomics features of the metabolome, lipidome, and proteome in both plasma and FF samples. Multiomics features associated with the transfer efficiencies of TEs through the BFB were selected by using an elastic net model and further utilized for pathway analysis. Various machine learning (ML) models were built to predict the concentrations of TEs in FF. Overall, there are 21 TEs that exhibited three types of consistent BFB distribution characteristics between Beijing and Shandong centers. Among them, the concentrations of arsenic, manganese, nickel, tin, and bismuth in FF were higher than those in the serum with transfer efficiencies of 1.19-4.38, while a reverse trend was observed for the 15 TEs with transfer efficiencies of 0.076-0.905, e.g., mercury, germanium, selenium, antimony, and titanium. Lastly, cadmium was evenly distributed in the two compartments with transfer efficiencies of 0.998-1.056. Multiomics analysis showed that the enrichment of TEs was associated with the synthesis and action of steroid hormones and the glucose metabolism. Random forest model can provide the most accurate predictions of the concentrations of TEs in FF among the concerned ML models. In conclusion, the selective permeability through the BFB for various TEs may be significantly regulated by the steroid hormones and the glucose metabolism. Also, the concentrations of some TEs in FF can be well predicted by their serum levels with a random forest model.
Collapse
Affiliation(s)
- Guohuan Zhang
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing 100191, P. R. China
- Institute of Reproductive and Child Health, School of Public Health, Peking University, Beijing 100191, P. R. China
- Key Laboratory of Reproductive Health, National Health and Family Planning Commission of the People's Republic of China, Beijing 100191, P. R. China
- Key Laboratory of Epidemiology of Major Diseases (Peking University), Ministry of Education, Beijing 100191, P. R. China
| | - Weinan Lin
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing 100191, P. R. China
- Institute of Reproductive and Child Health, School of Public Health, Peking University, Beijing 100191, P. R. China
- Key Laboratory of Reproductive Health, National Health and Family Planning Commission of the People's Republic of China, Beijing 100191, P. R. China
- Key Laboratory of Epidemiology of Major Diseases (Peking University), Ministry of Education, Beijing 100191, P. R. China
| | - Ning Gao
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing 100191, P. R. China
- Institute of Reproductive and Child Health, School of Public Health, Peking University, Beijing 100191, P. R. China
- Key Laboratory of Reproductive Health, National Health and Family Planning Commission of the People's Republic of China, Beijing 100191, P. R. China
- Key Laboratory of Epidemiology of Major Diseases (Peking University), Ministry of Education, Beijing 100191, P. R. China
| | - Changxin Lan
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing 100191, P. R. China
- Institute of Reproductive and Child Health, School of Public Health, Peking University, Beijing 100191, P. R. China
- Key Laboratory of Reproductive Health, National Health and Family Planning Commission of the People's Republic of China, Beijing 100191, P. R. China
- Key Laboratory of Epidemiology of Major Diseases (Peking University), Ministry of Education, Beijing 100191, P. R. China
| | - Mengyuan Ren
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing 100191, P. R. China
- Institute of Reproductive and Child Health, School of Public Health, Peking University, Beijing 100191, P. R. China
- Key Laboratory of Reproductive Health, National Health and Family Planning Commission of the People's Republic of China, Beijing 100191, P. R. China
- Key Laboratory of Epidemiology of Major Diseases (Peking University), Ministry of Education, Beijing 100191, P. R. China
| | - Lailai Yan
- Department of Laboratorial Science and Technology, School of Public Health, Peking University, Beijing 100191, P. R. China
| | - Bo Pan
- Yunnan Provincial Key Lab of Soil Carbon Sequestration and Pollution Control, Faculty of Environmental Science & Engineering, Kunming University of Science & Technology, Kunming 650500, P. R. China
| | - Jia Xu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, P. R. China
| | - Bin Han
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, P. R. China
| | - Ligang Hu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Science, Chinese Academy of Sciences, Beijing 100085, P. R. China
| | - Yuanchen Chen
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, Zhejiang 310032, P. R. China
| | - Tianxiang Wu
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing 100191, P. R. China
- Institute of Reproductive and Child Health, School of Public Health, Peking University, Beijing 100191, P. R. China
- Key Laboratory of Reproductive Health, National Health and Family Planning Commission of the People's Republic of China, Beijing 100191, P. R. China
- Key Laboratory of Epidemiology of Major Diseases (Peking University), Ministry of Education, Beijing 100191, P. R. China
| | - Lili Zhuang
- Reproductive Medicine Centre, Yuhuangding Hospital of Yantai, Affiliated Hospital of Qingdao University, Yantai 264000, P. R. China
| | - Qun Lu
- Medical Center for Human Reproduction, Beijing Chao-Yang Hospital, Capital Medical University, Beijing 100020, P.R China
- Center of Reproductive Medicine, Peking University People's Hospital, Beijing 100044, P. R. China
| | - Bin Wang
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing 100191, P. R. China
- Institute of Reproductive and Child Health, School of Public Health, Peking University, Beijing 100191, P. R. China
- Key Laboratory of Reproductive Health, National Health and Family Planning Commission of the People's Republic of China, Beijing 100191, P. R. China
- Key Laboratory of Epidemiology of Major Diseases (Peking University), Ministry of Education, Beijing 100191, P. R. China
- Laboratory for Earth Surface Processes, College of Urban and Environmental Science, Peking University, Beijing 100871, China
| | - Mingliang Fang
- Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, P. R. China
| |
Collapse
|
23
|
Fang YY, Gan CL, Peng JC, Xie YH, Song HX, Mo YQ, Ou SY, Aschner M, Jiang YM. Effects of Manganese and Iron, Alone or in Combination, on Apoptosis in BV2 Cells. Biol Trace Elem Res 2024; 202:2241-2252. [PMID: 37500820 DOI: 10.1007/s12011-023-03792-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 07/21/2023] [Indexed: 07/29/2023]
Abstract
The aim of study was to address the effects of manganese and iron, alone and in combination, on apoptosis of BV2 microglia cells, and to determine if combined exposure to these metals augments their individual toxicity. We used a murine microglial BV2 cell line. Cell cytotoxicity was analyzed by propidium iodide (PI) exclusion assay. Cell ROS production was analyzed by 2', 7'-dichlorofluorescin diacetate (DCFH-DA) probe staining. Pro-inflammatory cytokine production was monitored by ELISA. Cell apoptosis was analyzed by PE Annexin V/7-AAD staining. Mitochondrial membrane integrity was analyzed by flow cytometry. We used immunoblotting to analyze the effect of manganese, iron alone, or their combined exposure on the activation of caspase9, P53, Bax, and Bcl2 apoptosis signaling pathways. Caspase3 activity was determined using a Colorimetric. Manganese, iron, and their combined exposure for 24 h induced the activation of BV2 microglia cells and increased ROS production and the expression of the inflammatory cytokines, IL-1β and TNF-α. And we also found that the apoptosis rate increased, mitochondrial membrane potential decreased, apoptosis-related proteins caspase9, P53, Bax, and Bcl2 expression increased, and caspase3 activity increased. Furthermore, we found that combined manganese-iron cytotoxicity was lower than that induced by manganese exposure alone. Manganese, iron alone, or their combination exposure can induce apoptosis in glial cells. Iron can reduce the toxicity of manganese, and there is an antagonistic effect between manganese and iron.
Collapse
Affiliation(s)
- Yuan-Yuan Fang
- Department of Toxicology, School of Public Health, Guangxi Medical University, 22 Shuang-Yong Rd., Nanning, 530021, Guangxi, China
- Key Laboratory of Prevention and Control of Highly Prevalent Diseases in Guangxi Colleges and Universities, Medical University of Guangxi, Nanning, 530021, China
| | - Cui-Liu Gan
- Department of Toxicology, School of Public Health, Guangxi Medical University, 22 Shuang-Yong Rd., Nanning, 530021, Guangxi, China
- Key Laboratory of Prevention and Control of Highly Prevalent Diseases in Guangxi Colleges and Universities, Medical University of Guangxi, Nanning, 530021, China
| | - Jian-Chao Peng
- Department of Toxicology, School of Public Health, Guangxi Medical University, 22 Shuang-Yong Rd., Nanning, 530021, Guangxi, China
- Key Laboratory of Prevention and Control of Highly Prevalent Diseases in Guangxi Colleges and Universities, Medical University of Guangxi, Nanning, 530021, China
| | - Yu-Han Xie
- Department of Toxicology, School of Public Health, Guangxi Medical University, 22 Shuang-Yong Rd., Nanning, 530021, Guangxi, China
- Key Laboratory of Prevention and Control of Highly Prevalent Diseases in Guangxi Colleges and Universities, Medical University of Guangxi, Nanning, 530021, China
| | - Han-Xiao Song
- Department of Toxicology, School of Public Health, Guangxi Medical University, 22 Shuang-Yong Rd., Nanning, 530021, Guangxi, China
- Key Laboratory of Prevention and Control of Highly Prevalent Diseases in Guangxi Colleges and Universities, Medical University of Guangxi, Nanning, 530021, China
| | - Ya-Qi Mo
- Department of Toxicology, School of Public Health, Guangxi Medical University, 22 Shuang-Yong Rd., Nanning, 530021, Guangxi, China
- Key Laboratory of Prevention and Control of Highly Prevalent Diseases in Guangxi Colleges and Universities, Medical University of Guangxi, Nanning, 530021, China
| | - Shi-Yan Ou
- Department of Toxicology, School of Public Health, Guangxi Medical University, 22 Shuang-Yong Rd., Nanning, 530021, Guangxi, China
- Key Laboratory of Prevention and Control of Highly Prevalent Diseases in Guangxi Colleges and Universities, Medical University of Guangxi, Nanning, 530021, China
| | - Michael Aschner
- Department of Molecular Pharmacology at Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | - Yue-Ming Jiang
- Department of Toxicology, School of Public Health, Guangxi Medical University, 22 Shuang-Yong Rd., Nanning, 530021, Guangxi, China.
- Key Laboratory of Prevention and Control of Highly Prevalent Diseases in Guangxi Colleges and Universities, Medical University of Guangxi, Nanning, 530021, China.
| |
Collapse
|
24
|
Zhang XY, Han PP, Zhao YN, Shen XY, Bi X. Crosstalk between autophagy and ferroptosis mediate injury in ischemic stroke by generating reactive oxygen species. Heliyon 2024; 10:e28959. [PMID: 38601542 PMCID: PMC11004216 DOI: 10.1016/j.heliyon.2024.e28959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 03/26/2024] [Accepted: 03/27/2024] [Indexed: 04/12/2024] Open
Abstract
Stroke represents a significant threat to global human health, characterized by high rates of morbidity, disability, and mortality. Predominantly, strokes are ischemic in nature. Ischemic stroke (IS) is influenced by various cell death pathways, notably autophagy and ferroptosis. Recent studies have increasingly highlighted the interplay between autophagy and ferroptosis, a process likely driven by the accumulation of reactive oxygen species (ROS). Post-IS, either the inhibition of autophagy or its excessive activation can escalate ROS levels. Concurrently, the interaction between ROS and lipids during ferroptosis further augments ROS accumulation. Elevated ROS levels can provoke endoplasmic reticulum stress-induced autophagy and, in conjunction with free iron (Fe2+), can trigger ferroptosis. Moreover, ROS contribute to protein and lipid oxidation, endothelial dysfunction, and an inflammatory response, all of which mediate secondary brain injury following IS. This review succinctly explores the mechanisms of ROS-mediated crosstalk between autophagy and ferroptosis and the detrimental impact of increased ROS on IS. It also offers novel perspectives for IS treatment strategies.
Collapse
Affiliation(s)
- Xing-Yu Zhang
- Department of Rehabilitation Medicine, Shanghai University of Medicine and Health Sciences Affiliated Zhoupu Hospital, Shanghai, China
- Graduate School of Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Ping-Ping Han
- Department of Rehabilitation Medicine, Shanghai University of Medicine and Health Sciences Affiliated Zhoupu Hospital, Shanghai, China
- Department of Sport Rehabilitation, Shanghai University of Sport, Shanghai, China
| | - Yi-Ning Zhao
- Department of Rehabilitation Medicine, Shanghai University of Medicine and Health Sciences Affiliated Zhoupu Hospital, Shanghai, China
- Department of Sport Rehabilitation, Shanghai University of Sport, Shanghai, China
| | - Xin-Ya Shen
- Department of Rehabilitation Medicine, Shanghai University of Medicine and Health Sciences Affiliated Zhoupu Hospital, Shanghai, China
| | - Xia Bi
- Department of Rehabilitation Medicine, Shanghai University of Medicine and Health Sciences Affiliated Zhoupu Hospital, Shanghai, China
| |
Collapse
|
25
|
Li Y, Wu H, Zhang S, Zhou G, Zhang D, Yang Q, Liu Y, Huang X. Research Progress on the Mechanism of Lysosome in Myocardial Ischemia-Reperfusion Injury Based on Autophagy. Rev Cardiovasc Med 2024; 25:113. [PMID: 39076537 PMCID: PMC11263979 DOI: 10.31083/j.rcm2504113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 10/23/2023] [Accepted: 11/01/2023] [Indexed: 07/31/2024] Open
Abstract
In recent years, the interaction of intracellular organelles such as mitochondria and lysosomal functions has attracted increasing attention. Recent evidence suggests that mitochondrion-lysosomal contact plays a key role in regulating lysosomal biogenesis and maintaining cellular homeostasis. Myocardial ischemia and reperfusion will lead to corresponding changes in the autophagy flux in cardiomyocytes, and lysosomes are a key link in the process of autophagy, and the fusion of lysosomes and autophagosomes is an essential link in the occurrence of autophagy. Therefore, the function and homeostasis of lysosomes also undergo different changes during myocardial ischemia and reperfusion. Lysosomal-related biological factors and membrane proteins also play different roles. This article will review the mechanism of lysosomes in myocardial ischemia-reperfusion injury and the research progress of lysosomal-related proteins.
Collapse
Affiliation(s)
- Yi Li
- Institute of Cardiovascular disease, China Three Gorges University, 443003
Yichang, Hubei, China
- Department of Thoracic and Cardiac Surgery, Yichang Central People's
Hospital, 443003 Yichang, Hubei, China
- Clinical Research Center for Ischemic Cardiovascular Disease, 443003
Yichang, Hubei, China
| | - Hui Wu
- Institute of Cardiovascular disease, China Three Gorges University, 443003
Yichang, Hubei, China
- Clinical Research Center for Ischemic Cardiovascular Disease, 443003
Yichang, Hubei, China
- Department of Cardiology, Yichang Central People's Hospital, 443003
Yichang, Hubei, China
| | - Songlin Zhang
- Institute of Cardiovascular disease, China Three Gorges University, 443003
Yichang, Hubei, China
- Department of Thoracic and Cardiac Surgery, Yichang Central People's
Hospital, 443003 Yichang, Hubei, China
- Clinical Research Center for Ischemic Cardiovascular Disease, 443003
Yichang, Hubei, China
| | - Gang Zhou
- Institute of Cardiovascular disease, China Three Gorges University, 443003
Yichang, Hubei, China
- Clinical Research Center for Ischemic Cardiovascular Disease, 443003
Yichang, Hubei, China
- Department of Cardiology, Yichang Central People's Hospital, 443003
Yichang, Hubei, China
| | - Dong Zhang
- Institute of Cardiovascular disease, China Three Gorges University, 443003
Yichang, Hubei, China
- Clinical Research Center for Ischemic Cardiovascular Disease, 443003
Yichang, Hubei, China
- Department of Cardiology, Yichang Central People's Hospital, 443003
Yichang, Hubei, China
| | - Qingzhuo Yang
- Institute of Cardiovascular disease, China Three Gorges University, 443003
Yichang, Hubei, China
- Clinical Research Center for Ischemic Cardiovascular Disease, 443003
Yichang, Hubei, China
- Department of Cardiology, Yichang Central People's Hospital, 443003
Yichang, Hubei, China
| | - Yanfang Liu
- Institute of Cardiovascular disease, China Three Gorges University, 443003
Yichang, Hubei, China
- Clinical Research Center for Ischemic Cardiovascular Disease, 443003
Yichang, Hubei, China
- Department of Cardiology, Yichang Central People's Hospital, 443003
Yichang, Hubei, China
| | - Xiaoli Huang
- Institute of Cardiovascular disease, China Three Gorges University, 443003
Yichang, Hubei, China
- Department of Infectious Diseases, Yichang Central People's Hospital,
443003 Yichang, Hubei, China
| |
Collapse
|
26
|
Murumulla L, Bandaru LJM, Challa S. Heavy Metal Mediated Progressive Degeneration and Its Noxious Effects on Brain Microenvironment. Biol Trace Elem Res 2024; 202:1411-1427. [PMID: 37462849 DOI: 10.1007/s12011-023-03778-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 07/13/2023] [Indexed: 02/13/2024]
Abstract
Heavy metals, including lead (Pb), cadmium (Cd), arsenic (As), cobalt (Co), copper (Cu), manganese (Mn), zinc (Zn), and others, have a significant impact on the development and progression of neurodegenerative diseases in the human brain. This comprehensive review aims to consolidate the recent research on the harmful effects of different metals on specific brain cells such as neurons, microglia, astrocytes, and oligodendrocytes. Understanding the potential influence of these metals in neurodegeneration is crucial for effectively combating the ongoing advancement of these diseases. Metal-induced neurodegeneration involves molecular mechanisms such as apoptosis induction, dysregulation of metabolic and signaling pathways, metal imbalance, oxidative stress, loss of synaptic transmission, pathogenic peptide aggregation, and neuroinflammation. This review provides valuable insights by compiling the supportive evidence from recent research findings. Additionally, we briefly discuss the modes of action of natural neuroprotective compounds. While this comprehensive review aims to consolidate the recent research on the harmful effects of various metals on specific brain cells, it may not cover all studies and findings related to metal-induced neurodegeneration. Studies that are done using bioinformatics tools, microRNAs, long non-coding RNAs, emerging disease models, and studies based on the modes of exposure to toxic metals are a future prospect to be explored.
Collapse
Affiliation(s)
- Lokesh Murumulla
- Cell Biology Division, National Institute of Nutrition, Indian Council of Medical Research (ICMR), Hyderabad-500007, Hyderabad, Telangana, India
| | - Lakshmi Jaya Madhuri Bandaru
- Cell Biology Division, National Institute of Nutrition, Indian Council of Medical Research (ICMR), Hyderabad-500007, Hyderabad, Telangana, India
| | - Suresh Challa
- Cell Biology Division, National Institute of Nutrition, Indian Council of Medical Research (ICMR), Hyderabad-500007, Hyderabad, Telangana, India.
| |
Collapse
|
27
|
Fan RZ, Sportelli C, Lai Y, Salehe SS, Pinnell JR, Brown HJ, Richardson JR, Luo S, Tieu K. A partial Drp1 knockout improves autophagy flux independent of mitochondrial function. Mol Neurodegener 2024; 19:26. [PMID: 38504290 PMCID: PMC10953112 DOI: 10.1186/s13024-024-00708-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Accepted: 02/07/2024] [Indexed: 03/21/2024] Open
Abstract
BACKGROUND Dynamin-related protein 1 (Drp1) plays a critical role in mitochondrial dynamics. Partial inhibition of this protein is protective in experimental models of neurological disorders such as Parkinson's disease and Alzheimer's disease. The protective mechanism has been attributed primarily to improved mitochondrial function. However, the observations that Drp1 inhibition reduces protein aggregation in such neurological disorders suggest the involvement of autophagy. To investigate this potential novel protective mechanism of Drp1 inhibition, a model with impaired autophagy without mitochondrial involvement is needed. METHODS We characterized the effects of manganese (Mn), which causes parkinsonian-like symptoms in humans, on autophagy and mitochondria by performing dose-response studies in two cell culture models (stable autophagy HeLa reporter cells and N27 rat immortalized dopamine neuronal cells). Mitochondrial function was assessed using the Seahorse Flux Analyzer. Autophagy flux was monitored by quantifying the number of autophagosomes and autolysosomes, as well as the levels of other autophagy proteins. To strengthen the in vitro data, multiple mouse models (autophagy reporter mice and mutant Drp1+/- mice and their wild-type littermates) were orally treated with a low chronic Mn regimen that was previously reported to increase α-synuclein aggregation and transmission via exosomes. RNAseq, laser captured microdissection, immunofluorescence, immunoblotting, stereological cell counting, and behavioural studies were used. RESULTS IN VITRO: data demonstrate that at low non-toxic concentrations, Mn impaired autophagy flux but not mitochondrial function and morphology. In the mouse midbrain, RNAseq data further confirmed autophagy pathways were dysregulated but not mitochondrial related genes. Additionally, Mn selectively impaired autophagy in the nigral dopamine neurons but not the nearby nigral GABA neurons. In cells with a partial Drp1-knockdown and Drp1+/- mice, Mn induced autophagic impairment was significantly prevented. Consistent with these observations, Mn increased the levels of proteinase-K resistant α-synuclein and Drp1-knockdown protected against this pathology. CONCLUSIONS This study demonstrates that improved autophagy flux is a separate mechanism conferred by Drp1 inhibition independent of its role in mitochondrial fission. Given that impaired autophagy and mitochondrial dysfunction are two prominent features of neurodegenerative diseases, the combined protective mechanisms targeting these two pathways conferred by Drp1 inhibition make this protein an attractive therapeutic target.
Collapse
Affiliation(s)
- Rebecca Z Fan
- Department of Environmental Health Sciences, Florida International University, Miami, USA
| | - Carolina Sportelli
- Department of Environmental Health Sciences, Florida International University, Miami, USA
| | - Yanhao Lai
- Department of Environmental Health Sciences, Florida International University, Miami, USA
| | - Said S Salehe
- Department of Environmental Health Sciences, Florida International University, Miami, USA
| | - Jennifer R Pinnell
- Department of Environmental Health Sciences, Florida International University, Miami, USA
| | - Harry J Brown
- Department of Environmental Health Sciences, Florida International University, Miami, USA
- Biomolecular Sciences Institute, Florida International University, Miami, USA
| | - Jason R Richardson
- Department of Environmental Health Sciences, Florida International University, Miami, USA
| | - Shouqing Luo
- Peninsula Schools of Medicine and Dentistry, Plymouth University, Plymouth, UK
| | - Kim Tieu
- Department of Environmental Health Sciences, Florida International University, Miami, USA.
- Biomolecular Sciences Institute, Florida International University, Miami, USA.
| |
Collapse
|
28
|
Ren X, Wang J, Wei H, Li X, Tian Y, Wang Z, Yin Y, Guo Z, Qin Z, Wu M, Zeng X. Impaired TFEB-mediated autophagy-lysosome fusion promotes tubular cell cycle G2/M arrest and renal fibrosis by suppressing ATP6V0C expression and interacting with SNAREs. Int J Biol Sci 2024; 20:1905-1926. [PMID: 38481802 PMCID: PMC10929200 DOI: 10.7150/ijbs.91480] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 02/24/2024] [Indexed: 01/04/2025] Open
Abstract
Increasing evidence suggests that autophagy plays a major role during renal fibrosis. Transcription factor EB (TFEB) is a critical regulator of autophagy- and lysosome-related gene transcription. However, the pathophysiological roles of TFEB in renal fibrosis and fine-tuned mechanisms by which TFEB regulates fibrosis remain largely unknown. Here, we found that TFEB was downregulated in unilateral ureteral obstruction (UUO)-induced human and mouse fibrotic kidneys, and kidney-specific TFEB overexpression using recombinant AAV serotype 9 (rAAV9)-TFEB in UUO mice alleviated renal fibrosis pathogenesis. Mechanically, we found that TFEB's prevention of extracellular matrix (ECM) deposition depended on autophagic flux integrity and its subsequent blockade of G2/M arrest in tubular cells, rather than the autophagosome synthesis. In addition, we together RNA-seq with CUT&Tag analysis to determine the TFEB targeted gene ATP6V0C, and revealed that TFEB was directly bound to the ATP6V0C promoter only at specific site to promote its expression through CUT&Run-qPCR and luciferase reporter assay. Interestingly, TFEB induced autophagic flux integrity, mainly dependent on scaffold protein ATP6V0C-mediated autophagosome-lysosome fusion by bridging with STX17 and VAMP8 (major SNARE complex) by co-immunoprecipitation analysis, rather than its mediated lysosomal acidification and degradation function. Moreover, we further investigated the underlying mechanism behind the low expression of TEFB in UUO-induced renal fibrosis, and clearly revealed that TFEB suppression in fibrotic kidney was due to DNMT3a-associated TFEB promoter hypermethylation by utilizing methylation specific PCR (MSP) and bisulfite-sequencing PCR (BSP), which could be effectively recovered by 5-Aza-2'-deoxycytidine (5A-za) to alleviate renal fibrosis pathogenesis. These findings reveal for the first time that impaired TFEB-mediated autophagosome-lysosome fusion disorder, tubular cell G2/M arrest and renal fibrosis appear to be sequentially linked in UUO-induced renal fibrosis and suggest that DNMT3a/TFEB/ATP6V0C may serve as potential therapeutic targets to prevent renal fibrosis.
Collapse
Affiliation(s)
- Xiang Ren
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Provincial Institute of Urology, Wuhan, China
| | - Jing Wang
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Provincial Institute of Urology, Wuhan, China
| | - Huizhi Wei
- School of Pharmaceutical Science, Shanxi Medical University, Taiyuan, China
- Shanxi Key Laboratory of Innovative Drug for the Treatment of Serious Diseases Basing on the Chronic Inflammation, Taiyuan, China
| | - Xing Li
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Provincial Institute of Urology, Wuhan, China
| | - Yiqun Tian
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Provincial Institute of Urology, Wuhan, China
| | - Zhixian Wang
- Department of Urology, Wuhan Hospital of Traditional Chinese and Western Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yisheng Yin
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Provincial Institute of Urology, Wuhan, China
| | - Zihao Guo
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Provincial Institute of Urology, Wuhan, China
| | - Zhenliang Qin
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Provincial Institute of Urology, Wuhan, China
| | - Minglong Wu
- Department of Orthopaedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaoyong Zeng
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Provincial Institute of Urology, Wuhan, China
| |
Collapse
|
29
|
Lu W, He J, Wei S, Tang C, Ma X, Li D, Chen H, Zou Y. Circular RNA circRest regulates manganese induced cell apoptosis by targeting the mmu-miR-6914-5p/Ephb3 axis. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 344:123395. [PMID: 38266697 DOI: 10.1016/j.envpol.2024.123395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 11/23/2023] [Accepted: 01/17/2024] [Indexed: 01/26/2024]
Abstract
Overexposure to manganese (Mn) can lead to neurotoxicity, the underlying mechanisms remain incompletely understood. Circular RNAs (circRNAs) have emerged as important regulators in various biological processes. It is plausible that circRNAs may be involved in the biological mechanisms underlying Mn caused neurotoxicity. Here, circRest was downregulated in Mn-exposed mouse neuroblastoma cells (N2a cells) by RNA sequencing and quantitative real-time PCR. When circRest was overexpressed, it led to an increase in cell viability and a decrease in apoptosis following Mn exposure. Conversely, silencing circRest resulted in opposite effects in N2a cells. Further investigation revealed that circRest acts as a mmu-miR-6914-5p sponge, and mmu-miR-6914-5p could bind and inhibit Ephb3, thereby promoting apoptosis in N2a cells. This was confirmed through RNA antisense purification and dual luciferase reporter assays. Additionally, the circRest/mmu-miR-6914-5p/Ephb3 axis may influence memory and learning in mice following Mn exposure. In conclusion, our study uncovers a novel mechanism by which circRest may attenuate Mn caused neurotoxicity via the mmu-miR-6914-5p/Ephb3 axis.
Collapse
Affiliation(s)
- Wenmin Lu
- Department of Toxicology, School of Public Health, Guangxi Medical University, Nanning, 530021, Guangxi, China; Guangxi Colleges and Universities Key Laboratory of Prevention and Control of Highly Prevalent Diseases, Guangxi Medical University, Nanning, 530021, Guangxi, China; Guangxi Key Laboratory of Environment and Health Research, Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Jiacheng He
- Department of Toxicology, School of Public Health, Guangxi Medical University, Nanning, 530021, Guangxi, China; Guangxi Colleges and Universities Key Laboratory of Prevention and Control of Highly Prevalent Diseases, Guangxi Medical University, Nanning, 530021, Guangxi, China; Guangxi Key Laboratory of Environment and Health Research, Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Shengtao Wei
- Department of Toxicology, School of Public Health, Guangxi Medical University, Nanning, 530021, Guangxi, China; Guangxi Colleges and Universities Key Laboratory of Prevention and Control of Highly Prevalent Diseases, Guangxi Medical University, Nanning, 530021, Guangxi, China; Guangxi Key Laboratory of Environment and Health Research, Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Chuanqiao Tang
- Department of Toxicology, School of Public Health, Guangxi Medical University, Nanning, 530021, Guangxi, China; Guangxi Colleges and Universities Key Laboratory of Prevention and Control of Highly Prevalent Diseases, Guangxi Medical University, Nanning, 530021, Guangxi, China; Guangxi Key Laboratory of Environment and Health Research, Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Xiaoli Ma
- Department of Toxicology, School of Public Health, Guangxi Medical University, Nanning, 530021, Guangxi, China; Guangxi Colleges and Universities Key Laboratory of Prevention and Control of Highly Prevalent Diseases, Guangxi Medical University, Nanning, 530021, Guangxi, China; Guangxi Key Laboratory of Environment and Health Research, Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Danni Li
- Department of Toxicology, School of Public Health, Guangxi Medical University, Nanning, 530021, Guangxi, China; Guangxi Colleges and Universities Key Laboratory of Prevention and Control of Highly Prevalent Diseases, Guangxi Medical University, Nanning, 530021, Guangxi, China; Guangxi Key Laboratory of Environment and Health Research, Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Hao Chen
- Department of Occupational and Environmental Health, School of Public Health, Guangxi Medical University, Nanning, 530021, China
| | - Yunfeng Zou
- Department of Toxicology, School of Public Health, Guangxi Medical University, Nanning, 530021, Guangxi, China; Guangxi Colleges and Universities Key Laboratory of Prevention and Control of Highly Prevalent Diseases, Guangxi Medical University, Nanning, 530021, Guangxi, China; Guangxi Key Laboratory of Environment and Health Research, Guangxi Medical University, Nanning, 530021, Guangxi, China; Key Laboratory of Longevity and Aging-related Diseases of Chinese Ministry of Education, Nanning, 530021, Guangxi, China.
| |
Collapse
|
30
|
Wang Z, Zhao Y, Hou Y, Tang G, Zhang R, Yang Y, Yan X, Fan K. A Thrombin-Activated Peptide-Templated Nanozyme for Remedying Ischemic Stroke via Thrombolytic and Neuroprotective Actions. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2210144. [PMID: 36730098 DOI: 10.1002/adma.202210144] [Citation(s) in RCA: 52] [Impact Index Per Article: 52.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 12/29/2022] [Indexed: 06/18/2023]
Abstract
Ischemic stroke (IS) is one of the most common causes of disability and death. Thrombolysis and neuroprotection are two current major therapeutic strategies to overcome ischemic and reperfusion damage. In this work, a novel peptide-templated manganese dioxide nanozyme (PNzyme/MnO2 ) is designed that integrates the thrombolytic activity of functional peptides with the reactive oxygen species scavenging ability of nanozymes. Through self-assembled polypeptides that contain multiple functional motifs, the novel peptide-templated nanozyme is able to bind fibrin in the thrombus, cross the blood-brain barrier, and finally accumulate in the ischemic neuronal tissues, where the thrombolytic motif is "switched-on" by the action of thrombin. In mice and rat IS models, the PNzyme/MnO2 prolongs the blood-circulation time and exhibits strong thrombolytic action, and reduces the ischemic damages in brain tissues. Moreover, this peptide-templated nanozyme also effectively inhibits the activation of astrocytes and the secretion of proinflammatory cytokines. These data indicate that the rationally designed PNzyme/MnO2 nanozyme exerts both thrombolytic and neuroprotective actions. Giving its long half-life in the blood and ability to target brain thrombi, the biocompatible nanozyme may serve as a novel therapeutic agent to improve the efficacy and prevent secondary thrombosis during the treatment of IS.
Collapse
Affiliation(s)
- Zhuoran Wang
- CAS Engineering Laboratory for Nanozyme, Key Laboratory of Protein and Peptide Pharmaceutical, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, P. R. China
| | - Yue Zhao
- CAS Engineering Laboratory for Nanozyme, Key Laboratory of Protein and Peptide Pharmaceutical, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, P. R. China
- University of Chinese Academy of Sciences, Beijing, 101408, P. R. China
| | - Yaxin Hou
- CAS Engineering Laboratory for Nanozyme, Key Laboratory of Protein and Peptide Pharmaceutical, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, P. R. China
- University of Chinese Academy of Sciences, Beijing, 101408, P. R. China
| | - Guoheng Tang
- CAS Engineering Laboratory for Nanozyme, Key Laboratory of Protein and Peptide Pharmaceutical, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, P. R. China
- University of Chinese Academy of Sciences, Beijing, 101408, P. R. China
| | - Ruofei Zhang
- CAS Engineering Laboratory for Nanozyme, Key Laboratory of Protein and Peptide Pharmaceutical, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, P. R. China
| | - Yili Yang
- China Regional Research Centre, International Centre of Genetic Engineering and Biotechnology, Taizhou, 212200, P. R. China
| | - Xiyun Yan
- CAS Engineering Laboratory for Nanozyme, Key Laboratory of Protein and Peptide Pharmaceutical, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, P. R. China
- University of Chinese Academy of Sciences, Beijing, 101408, P. R. China
- Nanozyme Medical Center, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450001, P. R. China
| | - Kelong Fan
- CAS Engineering Laboratory for Nanozyme, Key Laboratory of Protein and Peptide Pharmaceutical, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, P. R. China
- University of Chinese Academy of Sciences, Beijing, 101408, P. R. China
- Nanozyme Medical Center, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450001, P. R. China
| |
Collapse
|
31
|
Bai I, Keyser C, Zhang Z, Rosolia B, Hwang JY, Zukin RS, Yan J. Epigenetic regulation of autophagy in neuroinflammation and synaptic plasticity. Front Immunol 2024; 15:1322842. [PMID: 38455054 PMCID: PMC10918468 DOI: 10.3389/fimmu.2024.1322842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 02/02/2024] [Indexed: 03/09/2024] Open
Abstract
Autophagy is a conserved cellular mechanism that enables the degradation and recycling of cellular organelles and proteins via the lysosomal pathway. In neurodevelopment and maintenance of neuronal homeostasis, autophagy is required to regulate presynaptic functions, synapse remodeling, and synaptic plasticity. Deficiency of autophagy has been shown to underlie the synaptic and behavioral deficits of many neurological diseases such as autism, psychiatric diseases, and neurodegenerative disorders. Recent evidence reveals that dysregulated autophagy plays an important role in the initiation and progression of neuroinflammation, a common pathological feature in many neurological disorders leading to defective synaptic morphology and plasticity. In this review, we will discuss the regulation of autophagy and its effects on synapses and neuroinflammation, with emphasis on how autophagy is regulated by epigenetic mechanisms under healthy and diseased conditions.
Collapse
Affiliation(s)
- Isaac Bai
- Center for Gene Regulation in Health and Disease, Department of Biological, Geological, and Environmental Sciences, Cleveland State University, Cleveland, OH, United States
| | - Cameron Keyser
- Center for Gene Regulation in Health and Disease, Department of Biological, Geological, and Environmental Sciences, Cleveland State University, Cleveland, OH, United States
| | - Ziyan Zhang
- Center for Gene Regulation in Health and Disease, Department of Biological, Geological, and Environmental Sciences, Cleveland State University, Cleveland, OH, United States
| | - Breandan Rosolia
- Center for Gene Regulation in Health and Disease, Department of Biological, Geological, and Environmental Sciences, Cleveland State University, Cleveland, OH, United States
| | - Jee-Yeon Hwang
- Department of Pharmacology and Neuroscience, Creighton University School of Medicine, Omaha, NE, United States
| | - R. Suzanne Zukin
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, New York, NY, United States
| | - Jingqi Yan
- Center for Gene Regulation in Health and Disease, Department of Biological, Geological, and Environmental Sciences, Cleveland State University, Cleveland, OH, United States
| |
Collapse
|
32
|
Zhang R, Guan S, Meng Z, Zhang D, Lu J. Ginsenoside Rb1 alleviates 3-MCPD-induced renal cell pyroptosis by activating mitophagy. Food Chem Toxicol 2024; 186:114522. [PMID: 38373586 DOI: 10.1016/j.fct.2024.114522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 02/04/2024] [Accepted: 02/16/2024] [Indexed: 02/21/2024]
Abstract
Ginsenoside Rb1 (Gs-Rb1) is among the most significant effective pharmacological components in ginseng. 3-monochloropropane-1,2-diol (3-MCPD), a chloropropanol-like contaminant, is produced in the production of refined oils and thermal processing of food. Pyroptosis is a type of programmed cell death triggered by inflammasomes. Excessive pyroptosis causes kidney injury and inflammation. Previous studies have revealed that 3-MCPD induced pyroptosis in mice and NRK-52E cells. In the present study, we find that Gs-Rb1 attenuates 3-MCPD-induced renal cell pyroptosis by assaying GSDMD-N, caspase-1, IL-18, and IL-1β in mice and NRK-52E cells. In further mechanistic studies, we show that Gs-Rb1 removes damaged mitochondria via mitophagy and reduces intracellular reactive oxygen species (ROS) generation, therefore alleviating 3-MCPD-induced NOD-like receptor family pyrin domain containing 3 (NLRP3) activation and pyroptosis. The above results are further validated by the addition of autophagy inhibitor Chloroquine (CQ) and mitophagy inhibitor Cyclosporin A (CsA). Afterward, we explore how Gs-Rb1 activated mitophagy in vitro. We determine that Gs-Rb1 enhances the protein expression and nuclear translocation of Transcription factor EB (TFEB). However, silencing of the TFEB gene by small interfering RNA technology reverses the role of Gs-Rb1 in activating mitophagy. Therefore, we conclude that 3-MCPD damages mitochondria and leads to ROS accumulation, which causes NLRP3 activation and pyroptosis in ICR mice and NRK-52E cells, while Gs-Rb1 mitigates this phenomenon via the TFEB-mitophagy pathway. Our findings may provide new insights for understanding the molecular mechanisms by which Gs-Rb1 mitigates renal injury.
Collapse
Affiliation(s)
- Ranran Zhang
- College of Food Science and Engineering, Jilin University, Changchun, Jilin, 130062, People's Republic of China
| | - Shuang Guan
- College of Food Science and Engineering, Jilin University, Changchun, Jilin, 130062, People's Republic of China; Key Laboratory of Zoonosis, Ministry of Education College of Veterinary Medicine, Jilin University, Changchun, Jilin, 130062, People's Republic of China
| | - Zhuoqun Meng
- College of Food Science and Engineering, Jilin University, Changchun, Jilin, 130062, People's Republic of China
| | - Duoduo Zhang
- Department of Thoracic Surgery, The First Hospital of Jilin University, Changchun, Jilin, 130021, People's Republic of China.
| | - Jing Lu
- College of Food Science and Engineering, Jilin University, Changchun, Jilin, 130062, People's Republic of China; Key Laboratory of Zoonosis, Ministry of Education College of Veterinary Medicine, Jilin University, Changchun, Jilin, 130062, People's Republic of China.
| |
Collapse
|
33
|
He J, Ma X, Zhang J, Yang YP, Qin H, Chen H, Wei S, Li F, Wang J, Liang G, Zou Y. Manganese-induced neurological pyroptosis: Unveiling the mechanism through the ROS activaed Caspase-3/GSDME signaling pathway. Food Chem Toxicol 2024; 184:114322. [PMID: 38056821 DOI: 10.1016/j.fct.2023.114322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Revised: 11/22/2023] [Accepted: 11/29/2023] [Indexed: 12/08/2023]
Abstract
Manganese (Mn) is an essential micronutrient in maintaining homeostasis in the human body, while excessive Mn exposure can lead to neurological disorders. To investigate whether there is an association between elevated ROS and pyroptosis caused by Mn exposure using both in vitro and in vivo models. We exposed BV2 and N2a, which represent microglial cells and Neuroblastoma cells in the brain, respectively, to different concentrations of Mn for 24 h. Following Mn exposure, we assessed cell morphology, levels of lactate dehydrogenase, and cellular ROS levels. C57BL/6 male mice were exposed to 0-100 mg/kg MnCl2·4H2O for 12 weeks through gavage. The expression level of pyroptosis proteins including caspase3 and GSDME in the hippocampus was examined. We found that Mn exposure resulted in elevated levels of cellular ROS and protein expression of Caspase3 and GSDME in both N2a and BV2 cells. The pyroptosis levels were blunted by either inhibiting Caspase3 expression or ROS production. In the in vivo model, protein levels of Caspase3 and GSDME also increased dependent of Mn concentrations. These findings suggested that neuronal pyroptosis induced by Mn exposure may occur through the ROS-stimulated Caspase3-GSDME pathway. Moreover, utilizing inhibitors targeting Caspase3 or ROS may provide protection against Mn-induced toxicity.
Collapse
Affiliation(s)
- Jiacheng He
- Department of Toxicology, School of Public Health, Guangxi Medical University, Nanning, 530021, China; Guangxi Colleges and Universities Key Laboratory of Prevention and Control of Highly Prevalent Diseases, Guangxi Medical University, Nanning, 530021, China; Guangxi Key Laboratory of Environment and Health Research, Guangxi Medical University, Nanning, 530021, China
| | - Xiaoli Ma
- Department of Toxicology, School of Public Health, Guangxi Medical University, Nanning, 530021, China; Guangxi Colleges and Universities Key Laboratory of Prevention and Control of Highly Prevalent Diseases, Guangxi Medical University, Nanning, 530021, China; Guangxi Key Laboratory of Environment and Health Research, Guangxi Medical University, Nanning, 530021, China
| | - Jie Zhang
- Department of Toxicology, School of Public Health, Guangxi Medical University, Nanning, 530021, China; Emergency Response Office, Nanning Center for Disease Prevention and Control, Nanning, 530021, China
| | - Yi-Ping Yang
- Department of Research, Guangxi Medical University Cancer Hospital, Nanning, 530021, China
| | - Huiyan Qin
- Institute of Hygiene Toxicology and Functional Testing, Guangxi Zhuang Autonomous Region Center for Disease Control and Prevention, Nanning, 530000, China
| | - Hao Chen
- Department of Occupational and Environmental Health, School of Public Health, Guangxi Medical University, Nanning, 530021, China
| | - Shengtao Wei
- Department of Toxicology, School of Public Health, Guangxi Medical University, Nanning, 530021, China
| | - Fangfei Li
- Department of Toxicology, School of Public Health, Guangxi Medical University, Nanning, 530021, China
| | - Jian Wang
- Department of Occupational and Environmental Health, School of Public Health, Guangxi Medical University, Nanning, 530021, China
| | - Guiqiang Liang
- Department of Toxicology, School of Public Health, Guangxi Medical University, Nanning, 530021, China
| | - Yunfeng Zou
- Department of Toxicology, School of Public Health, Guangxi Medical University, Nanning, 530021, China; Guangxi Colleges and Universities Key Laboratory of Prevention and Control of Highly Prevalent Diseases, Guangxi Medical University, Nanning, 530021, China; Guangxi Key Laboratory of Environment and Health Research, Guangxi Medical University, Nanning, 530021, China.
| |
Collapse
|
34
|
Zhang M, Li J, Ji N, Bao Q, Sun N, Rong H, Peng X, Yang L, Xie M, He S, Lin Q, Zhang Z, Li L, Zhang L. Reducing Cholesterol Level in Live Macrophages Improves Delivery Performance by Enhancing Blood Shear Stress Adaptation. NANO LETTERS 2024; 24:607-616. [PMID: 38095305 DOI: 10.1021/acs.nanolett.3c03569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2024]
Abstract
In recent years, live-cell-based drug delivery systems have gained considerable attention. However, shear stress, which accompanies blood flow, may cause cell death and weaken the delivery performance. In this study, we found that reducing cholesterol in macrophage plasma membranes enhanced their tumor targeting ability by more than 2-fold. Our study demonstrates that the reduced cholesterol level deactivated the mammalian target of rapamycin (mTOR) and consequently promoted the nuclear translocation of transcription factor EB (TFEB), which in turn enhanced the expression of superoxide dismutase (SOD) to reduce reactive oxygen species (ROS) induced by shear stress. A proof-of-concept system using low cholesterol macrophages attached to MXene (e.g., l-RX) was fabricated. In a melanoma mouse model, l-RX and laser irradiation treatments eliminated tumors with no recurrences observed in mice. Therefore, cholesterol reduction is a simple and effective way to enhance the targeting performance of macrophage-based drug delivery systems.
Collapse
Affiliation(s)
- Mengxing Zhang
- Med-X center for Materials, College of Polymer Science and Engineering, Sichuan University, Chengdu 610065, China
| | - Jing Li
- Institute of Systems Epidemiology, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu 610041, China
| | - Na Ji
- Institute of Systems Epidemiology, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu 610041, China
| | - Qixue Bao
- Institute of Systems Epidemiology, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu 610041, China
| | - Ningyun Sun
- Institute of Systems Epidemiology, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu 610041, China
| | - Hongding Rong
- Institute of Systems Epidemiology, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu 610041, China
| | - Xu Peng
- Institute of Systems Epidemiology, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu 610041, China
| | - Lan Yang
- Med-X center for Materials, College of Polymer Science and Engineering, Sichuan University, Chengdu 610065, China
| | - Mingxin Xie
- Institute of Systems Epidemiology, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu 610041, China
| | - Shanshan He
- Key Laboratory of Drug Targeting and Drug Delivery Systems of Ministry of Education, West China School of Pharmacy, Sichuan University, Chengdu 610065, China
| | - Qing Lin
- Key Laboratory of Drug Targeting and Drug Delivery Systems of Ministry of Education, West China School of Pharmacy, Sichuan University, Chengdu 610065, China
| | - Zhirong Zhang
- Key Laboratory of Drug Targeting and Drug Delivery Systems of Ministry of Education, West China School of Pharmacy, Sichuan University, Chengdu 610065, China
| | - Lin Li
- Institute of Systems Epidemiology, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu 610041, China
| | - Ling Zhang
- Med-X center for Materials, College of Polymer Science and Engineering, Sichuan University, Chengdu 610065, China
| |
Collapse
|
35
|
Lu Y, Liu Q, Huang C, Tang X, Wei Y, Mo X, Huang S, Lin Y, Luo T, Gou R, Zhang Z, Qin J, Cai J. Association between plasma and dietary trace elements and obesity in a rural Chinese population. Br J Nutr 2024; 131:123-133. [PMID: 37439087 DOI: 10.1017/s0007114523001435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/14/2023]
Abstract
Trace elements may play an important role in obesity. This study aimed to assess the plasma and dietary intake levels of four trace elements, Mn, Cu, Zn and Se in a rural Chinese population, and analyse the relationship between trace elements and obesity. A cross-sectional study involving 2587 participants was conducted. Logistic regression models were used to analyse the association between trace elements and obesity; restricted cubic spline (RCS) models were used to assess the dose-response relationship between trace elements and obesity; the weighted quantile sum (WQS) model was used to examine the potential interaction of four plasma trace elements on obesity. Logistic regression analysis showed that plasma Se concentrations in the fourth quartile (Q4) exhibited a lower risk of developing obesity than the first quartile (Q1) (central obesity: OR = 0·634, P = 0·002; general obesity: OR = 0·525, P = 0·005). Plasma Zn concentration in the third quartile (Q3) showed a lower risk of developing obesity in general obesity compared with the first quartile (Q1) (OR = 0·625, P = 0·036). In general obesity, the risk of morbidity was 1·727 and 1·923 times higher for the second and third (Q2, Q3) quartiles of dietary Mn intake than for Q1, respectively. RCS indicated an inverse U-shaped correlation between plasma Se and obesity. WQS revealed the combined effects of four trace elements were negatively associated with central obesity. Plasma Zn and Se were negatively associated with obesity, and dietary Mn was positively associated with obesity. The combined action of the four plasma trace elements had a negative effect on obesity.
Collapse
Affiliation(s)
- Yufu Lu
- School of Public Health, Guangxi Medical University, Shuangyong Road No.22, Nanning530021, Guangxi, People's Republic of China
| | - Qiumei Liu
- School of Public Health, Guangxi Medical University, Shuangyong Road No.22, Nanning530021, Guangxi, People's Republic of China
| | - Chuwu Huang
- School of Public Health, Guangxi Medical University, Shuangyong Road No.22, Nanning530021, Guangxi, People's Republic of China
| | - Xu Tang
- School of Public Health, Guangxi Medical University, Shuangyong Road No.22, Nanning530021, Guangxi, People's Republic of China
| | - Yanfei Wei
- School of Public Health, Guangxi Medical University, Shuangyong Road No.22, Nanning530021, Guangxi, People's Republic of China
| | - Xiaoting Mo
- School of Public Health, Guangxi Medical University, Shuangyong Road No.22, Nanning530021, Guangxi, People's Republic of China
| | - Shenxiang Huang
- School of Public Health, Guangxi Medical University, Shuangyong Road No.22, Nanning530021, Guangxi, People's Republic of China
| | - Yinxia Lin
- School of Public Health, Guangxi Medical University, Shuangyong Road No.22, Nanning530021, Guangxi, People's Republic of China
| | - Tingyu Luo
- School of Public Health, Guilin Medical University, 20 Lequn Road, Guilin, Guangxi, People's Republic of China
| | - Ruoyu Gou
- School of Public Health, Guilin Medical University, 20 Lequn Road, Guilin, Guangxi, People's Republic of China
| | - Zhiyong Zhang
- Guangxi Key Laboratory of Environmental Exposomics and Entire Lifecycle Health, Guilin Medical University, Guilin, Guangxi, People's Republic of China
| | - Jian Qin
- Key Laboratory of Longevity and Aging-related Diseases of Chinese Ministry of Education, Guangxi Medical University, Nanning530021, People's Republic of China
- Guangxi Colleges and Universities Key Laboratory of Prevention and Control of Highly Prevalent Diseases, School of Public Health, Guangxi Medical University, Nanning530021, People's Republic of China
- Guangxi Key Laboratory of Environment and Health Research, Guangxi Medical University, Nanning530021, People's Republic of China
| | - Jiansheng Cai
- School of Public Health, Guilin Medical University, 20 Lequn Road, Guilin, Guangxi, People's Republic of China
- Guangxi Key Laboratory of Tumor Immunology and Microenvironmental Regulation, Guilin Medical University, Guilin, Guangxi, People's Republic of China
| |
Collapse
|
36
|
Cai J, Xie D, Kong F, Zhai Z, Zhu Z, Zhao Y, Xu Y, Sun T. Effect and Mechanism of Rapamycin on Cognitive Deficits in Animal Models of Alzheimer's Disease: A Systematic Review and Meta-analysis of Preclinical Studies. J Alzheimers Dis 2024; 99:53-84. [PMID: 38640155 DOI: 10.3233/jad-231249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/21/2024]
Abstract
Background Alzheimer's disease (AD), the most common form of dementia, remains long-term and challenging to diagnose. Furthermore, there is currently no medication to completely cure AD patients. Rapamycin has been clinically demonstrated to postpone the aging process in mice and improve learning and memory abilities in animal models of AD. Therefore, rapamycin has the potential to be significant in the discovery and development of drugs for AD patients. Objective The main objective of this systematic review and meta-analysis was to investigate the effects and mechanisms of rapamycin on animal models of AD by examining behavioral indicators and pathological features. Methods Six databases were searched and 4,277 articles were retrieved. In conclusion, 13 studies were included according to predefined criteria. Three authors independently judged the selected literature and methodological quality. Use of subgroup analyses to explore potential mechanistic effects of rapamycin interventions: animal models of AD, specific types of transgenic animal models, dosage, and periodicity of administration. Results The results of Morris Water Maze (MWM) behavioral test showed that escape latency was shortened by 15.60 seconds with rapamycin therapy, indicating that learning ability was enhanced in AD mice; and the number of traversed platforms was increased by 1.53 times, indicating that the improved memory ability significantly corrected the memory deficits. CONCLUSIONS Rapamycin therapy reduced age-related plaque deposition by decreasing AβPP production and down-regulating β-secretase and γ-secretase activities, furthermore increased amyloid-β clearance by promoting autophagy, as well as reduced tau hyperphosphorylation by up-regulating insulin-degrading enzyme levels.
Collapse
Affiliation(s)
- Jie Cai
- School of Intelligent Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Danni Xie
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Fanjing Kong
- School of Intelligent Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Zhenwei Zhai
- School of Acupuncture and Tuina, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Zhishan Zhu
- School of Intelligent Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Yanru Zhao
- School of Intelligent Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Ying Xu
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Tao Sun
- School of Intelligent Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| |
Collapse
|
37
|
Cheng H, Villahoz BF, Ponzio RD, Aschner M, Chen P. Signaling Pathways Involved in Manganese-Induced Neurotoxicity. Cells 2023; 12:2842. [PMID: 38132161 PMCID: PMC10742340 DOI: 10.3390/cells12242842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 12/07/2023] [Accepted: 12/08/2023] [Indexed: 12/23/2023] Open
Abstract
Manganese (Mn) is an essential trace element, but insufficient or excessive bodily amounts can induce neurotoxicity. Mn can directly increase neuronal insulin and activate insulin-like growth factor (IGF) receptors. As an important cofactor, Mn regulates signaling pathways involved in various enzymes. The IGF signaling pathway plays a protective role in the neurotoxicity of Mn, reducing apoptosis in neurons and motor deficits by regulating its downstream protein kinase B (Akt), mitogen-activated protein kinase (MAPK), and mammalian target of rapamycin (mTOR). In recent years, some new mechanisms related to neuroinflammation have been shown to also play an important role in Mn-induced neurotoxicity. For example, DNA-sensing receptor cyclic GMP-AMP synthase (cCAS) and its downstream signal efficient interferon gene stimulator (STING), NOD-like receptor family pyrin domain containing 3(NLRP3)-pro-caspase1, cleaves to the active form capase1 (CASP1), nuclear factor κB (NF-κB), sirtuin (SIRT), and Janus kinase (JAK) and signal transducers and activators of the transcription (STAT) signaling pathway. Moreover, autophagy, as an important downstream protein degradation pathway, determines the fate of neurons and is regulated by these upstream signals. Interestingly, the role of autophagy in Mn-induced neurotoxicity is bidirectional. This review summarizes the molecular signaling pathways of Mn-induced neurotoxicity, providing insight for further understanding of the mechanisms of Mn.
Collapse
Affiliation(s)
| | | | | | | | - Pan Chen
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY 10461, USA; (H.C.); (B.F.V.); (R.D.P.); (M.A.)
| |
Collapse
|
38
|
Deng J, Liao Y, Chen J, Chen A, Wu S, Huang Y, Qian H, Gao F, Wu G, Chen Y, Chen X, Zheng X. N6-methyladenosine demethylase FTO regulates synaptic and cognitive impairment by destabilizing PTEN mRNA in hypoxic-ischemic neonatal rats. Cell Death Dis 2023; 14:820. [PMID: 38092760 PMCID: PMC10719319 DOI: 10.1038/s41419-023-06343-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 11/13/2023] [Accepted: 11/27/2023] [Indexed: 12/17/2023]
Abstract
Hypoxic-ischemic brain damage (HIBD) can result in significant global rates of neonatal death or permanent neurological disability. N6-methyladenosine (m6A) modification of RNA influences fundamental aspects of RNA metabolism, and m6A dysregulation is implicated in various neurological diseases. However, the biological roles and clinical significance of m6A in HIBD remain unclear. We currently evaluated the effect of HIBD on cerebral m6A methylation in RNAs in neonatal rats. The m6A dot blot assay showed a global augmentation in RNA m6A methylation post-HI. Herein, we also report on demethylase FTO, which is markedly downregulated in the hippocampus and is the main factor involved with aberrant m6A modification following HI. By conducting a comprehensive analysis of RNA-seq data and m6A microarray results, we found that transcripts with m6A modifications were more highly expressed overall than transcripts without m6A modifications. The overexpression of FTO resulted in the promotion of Akt/mTOR pathway hyperactivation, while simultaneously inhibiting autophagic function. This is carried out by the demethylation activity of FTO, which selectively demethylates transcripts of phosphatase and tensin homolog (PTEN), thus promoting its degradation and reduced protein expression after HI. Moreover, the synaptic and neurocognitive disorders induced by HI were effectively reversed through the overexpression of FTO in the hippocampus. Cumulatively, these findings demonstrate the functional importance of FTO-dependent hippocampal m6A methylome in cognitive function and provides novel mechanistic insights into the therapeutic potentials of FTO in neonatal HIBD.
Collapse
Affiliation(s)
- Jianhui Deng
- Department of Anesthesiology, Shengli Clinical Medical College of Fujian Medical University Fujian Provincial Hospital, Fuzhou, China
| | - Yanling Liao
- Department of Anesthesiology, Shengli Clinical Medical College of Fujian Medical University Fujian Provincial Hospital, Fuzhou, China
| | - Jianghu Chen
- Department of Anesthesiology, Shengli Clinical Medical College of Fujian Medical University Fujian Provincial Hospital, Fuzhou, China
| | - Andi Chen
- Department of Anesthesiology, Shengli Clinical Medical College of Fujian Medical University Fujian Provincial Hospital, Fuzhou, China
| | - Shuyan Wu
- Department of Anesthesiology, Shengli Clinical Medical College of Fujian Medical University Fujian Provincial Hospital, Fuzhou, China
| | - Yongxin Huang
- Department of Anesthesiology, Shengli Clinical Medical College of Fujian Medical University Fujian Provincial Hospital, Fuzhou, China
| | - Haitao Qian
- Department of Anesthesiology, Shengli Clinical Medical College of Fujian Medical University Fujian Provincial Hospital, Fuzhou, China
| | - Fei Gao
- Department of Anesthesiology, Shengli Clinical Medical College of Fujian Medical University Fujian Provincial Hospital, Fuzhou, China
| | - Guixi Wu
- Department of Anesthesiology, Shengli Clinical Medical College of Fujian Medical University Fujian Provincial Hospital, Fuzhou, China
| | - Yisheng Chen
- Center for Experimental Research in Clinical Medicine, Fujian Provincial Hospital, 350001, Fuzhou, China
| | - Xiaohui Chen
- Department of Anesthesiology, Shengli Clinical Medical College of Fujian Medical University Fujian Provincial Hospital, Fuzhou, China.
| | - Xiaochun Zheng
- Department of Anesthesiology, Shengli Clinical Medical College of Fujian Medical University Fujian Provincial Hospital, Fuzhou, China.
- Fujian Emergency Medical Center, Fujian Provincial Key Laboratory of Critical Care Medicine, Fujian Provincial Co-Constructed Laboratory of Belt and Road, Fuzhou, China.
| |
Collapse
|
39
|
Wei X, Chen G, Xu Y, Zhang D, Lv W, Zheng H, Luo Z. Zinc attenuates sulfamethoxazole-induced lipotoxicity by reversing sulfamethoxazole-induced mitochondrial dysfunction and lysosome impairment in a freshwater teleost. CHEMOSPHERE 2023; 345:140247. [PMID: 37742764 DOI: 10.1016/j.chemosphere.2023.140247] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 09/10/2023] [Accepted: 09/20/2023] [Indexed: 09/26/2023]
Abstract
Sulfamethoxazole (SMZ) and zinc (Zn) are widespread harmful materials in aquatic ecosystems and cause toxic effects to aquatic animals under their individual exposure. Although they often co-exist in aquatic environments, little is known about their joint effects and mechanism influencing aquatic animals. Herein, SMZ induced mitochondrial and lysosomal dysfunction, inhibited autophagy flux, and induced lipotoxicity. However, SMZ-induced changes of these physiological and metabolic processes above were reversed by Zn exposure, indicating the antagonism between Zn and SMZ. SOD1-knockdown abrogated the reversing effects of Zn on mitochondria dysfunction and autophagy flux blockage induced by SMZ, suggesting that SOD1 was essential for Zn to reverse SMZ-induced mitochondria dysfunction and autophagy impairment. Our further investigation found that Zn regulated STAT3 translocation to lysosomes and mitochondria to attenuate SMZ-induced lipotoxicity, and SOD1 was required for these processes. Mechanistically, STAT3 was associated with ATP6V1 A in a coiled-coil domain-dependent manner, and pS710-STAT3-and pY753-STAT3-independent manners. Moreover, SMZ suppressed autophagic degradation of damaged mitochondria via inhibiting interaction between STAT3 and ATP6V1 A and increasing pS710-STAT3 level; SMZ impaired mitochondrial β-oxidation via decreasing pY753-STAT3 level and STAT3 mitochondrial localization. Zn reversed these SMZ-induced effects to alleviate SMZ-induced lipotoxicity. Taken together, our data showed that SMZ impaired mitochondrial β-oxidation and lysosomal acidification via the downregulation of SOD1, leading to lipotoxicity, and that Zn reversed SMZ-induced changes of these important biological processes and attenuated SMZ-induced lipotoxicity. Thus, our study identified previously unidentified mechanisms for the antagonistic mechanisms of Zn and SMZ on aquatic animals, which provided novel insights into the environmental risk assessments of the joint exposure between heavy metals and antibiotics in the aquatic organisms.
Collapse
Affiliation(s)
- Xiaolei Wei
- Hubei Hongshan Laboratory, Fishery College, Huazhong Agricultural University, Wuhan, 430070, China
| | - Guanghui Chen
- Hubei Hongshan Laboratory, Fishery College, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yichuang Xu
- Hubei Hongshan Laboratory, Fishery College, Huazhong Agricultural University, Wuhan, 430070, China
| | - Dianguang Zhang
- Hubei Hongshan Laboratory, Fishery College, Huazhong Agricultural University, Wuhan, 430070, China
| | - Wuhong Lv
- Hubei Hongshan Laboratory, Fishery College, Huazhong Agricultural University, Wuhan, 430070, China
| | - Hua Zheng
- Hubei Hongshan Laboratory, Fishery College, Huazhong Agricultural University, Wuhan, 430070, China
| | - Zhi Luo
- Hubei Hongshan Laboratory, Fishery College, Huazhong Agricultural University, Wuhan, 430070, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China.
| |
Collapse
|
40
|
Wang L, Lou W, Zhang Y, Chen Z, Huang Y, Jin H. HO-1-Mediated Autophagic Restoration Protects Lens Epithelial Cells Against Oxidative Stress and Cellular Senescence. Invest Ophthalmol Vis Sci 2023; 64:6. [PMID: 38051262 DOI: 10.1167/iovs.64.15.6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2023] Open
Abstract
Purpose Oxidative stress and cellular senescence are risk factors for age-related cataract. Heme oxygenase 1 (HO-1) is a critical antioxidant enzyme and related to autophagy. Here, we investigate the crosstalk among HO-1, oxidative stress, and cellular senescence in mouse lens epithelial cells (LECs). Methods The gene expression of HO-1, p21, LC3, and p62 was measured in human samples. The protective properties of HO-1 were examined in hydrogen peroxide (H2O2)-damaged LECs. Autophagic flux was examined by Western blot and mRFP-GFP-LC3 assay. Western blotting and lysotracker staining were used to analyze lysosomal function. Flow cytometry was used to detect intracellular reactive oxygen species and analyze cell cycle. Senescence-associated β-galactosidase assay was used to determine cellular senescence. The crosstalk between HO-1 and transcription factor EB (TFEB) was further observed in TFEB-knockdown cells. The TFEB binding site in the promoter region of Hmox1 was predicted by the Jasper website and was confirmed by chromatin immunoprecipitation assay. Results HO-1 gene expression decreased in LECs of patients with age-related nuclear cataract, whereas mRNA expression levels of p21, LC3, and p62 increased. Upon H2O2-induced oxidative stress, LECs showed the characteristics of autophagic flux blockade, lysosomal dysfunction, and premature senescence. Interestingly, HO-1 significantly restored the impaired autophagic flux and lysosomal function and delayed cellular senescence. TFEB gene silencing greatly reduced the HO-1-mediated autophagic restoration, leading to a failure to prevent LECs from oxidative stress and premature senescence. Conclusions We demonstrated HO-1 effects on restoring autophagic flux and delaying cellular senescence under oxidative stress in LECs, which are dependent on TFEB.
Collapse
Affiliation(s)
- Lijun Wang
- Department of Ophthalmology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Wei Lou
- Department of Ophthalmology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Yao Zhang
- Department of Ophthalmology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Ziang Chen
- Department of Ophthalmology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Yang Huang
- Department of Ophthalmology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Haiying Jin
- Department of Ophthalmology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
| |
Collapse
|
41
|
Del Rio Naiz SC, Varela KG, de Carvalho D, Remor AP. Probucol neuroprotection against manganese-induced damage in adult Wistar rat brain slices. Toxicol Ind Health 2023; 39:638-650. [PMID: 37705340 DOI: 10.1177/07482337231201565] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/15/2023]
Abstract
Manganese (Mn) is an abundant element used for commercial purposes and is essential for the proper function of biological systems. Chronic exposure to high Mn concentrations causes Manganism, a Parkinson's-like neurological disorder. The pathophysiological mechanism of Manganism remains unknown; however, it involves mitochondrial dysfunction and oxidative stress. This study assessed the neuroprotective effect of probucol, a hypolipidemic agent with anti-inflammatory and antioxidant properties, on cell viability and oxidative stress in slices of the cerebral cortex and striatum from adult male Wistar rats. Brain structure slices were kept separately and incubated with manganese chloride (MnCl2) and probucol to evaluate the cell viability and oxidative parameters. Probucol prevented Mn toxicity in the cerebral cortex and striatum, as evidenced by the preservation of cell viability observed with probucol (10 and 30 μM) pre-treatment, as well as the prevention of mitochondrial complex I inhibition in the striatum (30 μM). These findings support the protective antioxidant action of probucol, attributed to its ability to prevent cell death and mitigate Mn-induced mitochondrial dysfunction.
Collapse
Affiliation(s)
| | - Karina Giacomini Varela
- Programa de Pós-Graduação em Biociências e Saúde (PPGBS), Área de Ciências da Vida e Saúde, Universidade do Oeste de Santa Catarina (UNOESC), Joaçaba, Brazil
| | - Diego de Carvalho
- Programa de Pós-Graduação em Biociências e Saúde (PPGBS), Área de Ciências da Vida e Saúde, Universidade do Oeste de Santa Catarina (UNOESC), Joaçaba, Brazil
| | - Aline Pertile Remor
- Programa de Pós-Graduação em Biociências e Saúde (PPGBS), Área de Ciências da Vida e Saúde, Universidade do Oeste de Santa Catarina (UNOESC), Joaçaba, Brazil
| |
Collapse
|
42
|
Li XL, Liu XW, Liu WL, Lin YQ, Liu J, Peng YS, Cheng LM, Du YH. Inhibition of TMEM16A improves cisplatin-induced acute kidney injury via preventing DRP1-mediated mitochondrial fission. Acta Pharmacol Sin 2023; 44:2230-2242. [PMID: 37402998 PMCID: PMC10618163 DOI: 10.1038/s41401-023-01122-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 03/29/2023] [Indexed: 07/06/2023]
Abstract
Acute kidney injury (AKI) is associated with high morbidity and mortality. Our previous study has demonstrated that TMEM16A, a Ca2+-activated chloride channel, contributes to renal fibrosis progression in chronic kidney disease. However, whether TMEM16A is involved in AKI is still unknown. In this study, we established cisplatin AKI mice model and found that TMEM16A expression was upregulated in the injured kidney. In vivo knockdown of TMEM16A effectively prevented cisplatin-induced tubular cell apoptosis, inflammation and kidney function loss. Western blot and transmission electron microscopy (TEM) revealed that TMEM16A knockdown inhibited Drp1 translocation from the cytoplasm to mitochondria and prevented mitochondrial fission in tubular cells. Consistently, in cultured HK2 cells, knockdown or inhibition of TMEM16A by shRNA or its specific inhibitor suppressed cisplatin-induced mitochondrial fission and its associated energy dysfunction, ROS accumulation, and cell apoptosis via inhibiting Drp1 activation. Further investigation showed that genetic knockdown or pharmacological inhibition of TMEM16A inhibited cisplatin-induced Drp1 Ser-616 site phosphorylation through ERK1/2 signaling pathway, whereas overexpression of TMEM16A promoted this effect. Treatment with Drp1 or ERK1/2 inhibitor could efficiently prevent cisplatin-induced mitochondrial fission. Collectively, our data suggest that TMEM16A inhibition alleviated cisplatin-induced AKI by preventing tubular cell mitochondrial fission through the ERK1/2 / Drp1 pathway. Inhibition of TMEM16A may be a novel therapeutic strategy for AKI.
Collapse
Affiliation(s)
- Xiao-Long Li
- Department of Pharmacology, Cardiac & Cerebral Vascular Research Center, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, 510080, China
- State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Xue-Wu Liu
- Department of Pharmacology, Cardiac & Cerebral Vascular Research Center, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, 510080, China
| | - Wei-Ling Liu
- Department of Pharmacology, Cardiac & Cerebral Vascular Research Center, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, 510080, China
| | - Yu-Quan Lin
- Department of Pharmacology, Cardiac & Cerebral Vascular Research Center, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, 510080, China
| | - Jing Liu
- Zhujiang Hospital, Southern Medical University, Guangzhou, 510280, China
| | - Yu-Sheng Peng
- Department of Pharmacology, Cardiac & Cerebral Vascular Research Center, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, 510080, China
| | - Li-Min Cheng
- Department of Pharmacology, Cardiac & Cerebral Vascular Research Center, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, 510080, China.
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China.
| | - Yan-Hua Du
- Department of Pharmacology, Cardiac & Cerebral Vascular Research Center, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, 510080, China.
| |
Collapse
|
43
|
Hou SJ, Zhang SX, Li Y, Xu SY. Rapamycin Responds to Alzheimer's Disease: A Potential Translational Therapy. Clin Interv Aging 2023; 18:1629-1639. [PMID: 37810956 PMCID: PMC10557994 DOI: 10.2147/cia.s429440] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 09/25/2023] [Indexed: 10/10/2023] Open
Abstract
Alzheimer's disease (AD) is a sporadic or familial neurodegenerative disease of insidious onset with progressive cognitive decline. Although numerous studies have been conducted or are underway on AD, there are still no effective drugs to reverse the pathological features and clinical manifestations of AD. Rapamycin is a macrolide antibiotic produced by Streptomyces hygroscopicus. As a classical mechanistic target of rapamycin (mTOR) inhibitor, rapamycin has been shown to be beneficial in a variety of AD mouse and cells models, both before the onset of disease symptoms and the early stage of disease. Although many basic studies have demonstrated the therapeutic effects of rapamycin in AD, many questions and controversies remain. This may be due to the variability of experimental models, different modes of administration, dose, timing, frequency, and the availability of drug-targeting vehicles. Rapamycin may delay the development of AD by reducing β-amyloid (Aβ) deposition, inhibiting tau protein hyperphosphorylation, maintaining brain function in APOE ε4 gene carriers, clearing chronic inflammation, and improving cognitive dysfunction. It is thus expected to be one of the candidates for the treatment of Alzheimer's disease.
Collapse
Affiliation(s)
- Si-Jia Hou
- Department of Neurology, Headache Center, The First Hospital of Shanxi Medical University, Taiyuan, Shanxi Province, 030001, People’s Republic of China
| | - Sheng-Xiao Zhang
- Department of Rheumatology, The Second Hospital of Shanxi Medical University, Taiyuan, Shanxi Province, 030009, People’s Republic of China
| | - Yang Li
- Department of Neurology, Headache Center, The First Hospital of Shanxi Medical University, Taiyuan, Shanxi Province, 030001, People’s Republic of China
| | - Sui-Yi Xu
- Department of Neurology, Headache Center, The First Hospital of Shanxi Medical University, Taiyuan, Shanxi Province, 030001, People’s Republic of China
| |
Collapse
|
44
|
Tang X, Balachandran RC, Aschner M, Bowman AB. IGF/mTORC1/S6 Signaling Is Potentiated and Prolonged by Acute Loading of Subtoxicological Manganese Ion. Biomolecules 2023; 13:1229. [PMID: 37627294 PMCID: PMC10452562 DOI: 10.3390/biom13081229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Revised: 08/01/2023] [Accepted: 08/04/2023] [Indexed: 08/27/2023] Open
Abstract
The insulin-like growth factor (IGF)/insulin signaling (IIS) pathway is involved in cellular responses against intracellular divalent manganese ion (Mn2+) accumulation. As a pathway where multiple nodes utilize Mn2+ as a metallic co-factor, how the IIS signaling patterns are affected by Mn2+ overload is unresolved. In our prior studies, acute Mn2+ exposure potentiated IIS kinase activity upon physiological-level stimulation, indicated by elevated phosphorylation of protein kinase B (PKB, also known as AKT). AKT phosphorylation is associated with IIS activity; and provides direct signaling transduction input for the mammalian target of rapamycin complex 1 (mTORC1) and its downstream target ribosomal protein S6 (S6). Here, to better define the impact of Mn2+ exposure on IIS function, Mn2+-induced IIS activation was evaluated with serial concentrations and temporal endpoints. In the wild-type murine striatal neuronal line STHdh, the acute treatment of Mn2+ with IGF induced a Mn2+ concentration-sensitive phosphorylation of S6 at Ser235/236 to as low as 5 μM extracellular Mn2+. This effect required both the essential amino acids and insulin receptor (IR)/IGF receptor (IGFR) signaling input. Similar to simultaneous stimulation of Mn2+ and IGF, when a steady-state elevation of Mn2+ was established via a 24-h pre-exposure, phosphorylation of S6 also displayed higher sensitivity to sub-cytotoxic Mn2+ when compared to AKT phosphorylation at Ser473. This indicates a synergistic effect of sub-cytotoxic Mn2+ on IIS and mTORC1 signaling. Furthermore, elevated intracellular Mn2+, with both durations, led to a prolonged activation in AKT and S6 upon stimulation. Our data demonstrate that the downstream regulator S6 is a highly sensitive target of elevated Mn2+ and is well below the established acute cytotoxicity thresholds (<50 μM). These findings indicate that the IIS/mTORC1 pathways, in which Mn2+ normally serves as an essential co-factor, are dually responsible for the cellular changes in exposures to real-world Mn2+ concentrations.
Collapse
Affiliation(s)
- Xueqi Tang
- School of Health Sciences, Purdue University, West Lafayette, IN 47907, USA; (X.T.)
| | - Rekha C. Balachandran
- School of Health Sciences, Purdue University, West Lafayette, IN 47907, USA; (X.T.)
- Exponent Inc., Alexandria, VA 22314, USA
| | - Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Aaron B. Bowman
- School of Health Sciences, Purdue University, West Lafayette, IN 47907, USA; (X.T.)
| |
Collapse
|
45
|
Chen F, Zhan J, Al Mamun A, Tao Y, Huang S, Zhao J, Zhang Y, Xu Y, Du S, Lu W, Li X, Chen Z, Xiao J. Sulforaphane protects microvascular endothelial cells in lower limb ischemia/reperfusion injury mice. Food Funct 2023; 14:7176-7194. [PMID: 37462424 DOI: 10.1039/d3fo01801f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/01/2023]
Abstract
Background: Microvascular damage is a key pathological factor in acute lower limb ischemia/reperfusion (I/R) injury. Current evidence suggests that sulforaphane (SFN) protects tissue from I/R injury. However, the role of SFN in acute lower limb I/R injury remains elusive. This study aimed to investigate the role and potential mechanism of SFN in I/R-related microvascular damage in the limb. Methods: Limb viability was evaluated by laser Doppler imaging, tissue edema analysis and histological analysis. Western blotting and immunofluorescence were applied to analyze the levels of apoptosis, oxidative stress, autophagy, transcription factor EB (TFEB) activity and mucolipin 1 (MCOLN1)-calcineurin signaling pathway. Results: SFN administration significantly ameliorated I/R-induced hypoperfusion, tissue edema, skeletal muscle fiber injury and endothelial cell (EC) damage in the limb. Pharmacological inhibition of NFE2L2 (nuclear factor, erythroid 2 like 2) reversed the anti-oxidation and anti-apoptosis effects of SFN on ECs. Additionally, silencing of TFEB by interfering RNA abolished the SFN-induced autophagy restoration, anti-oxidant response and anti-apoptosis effects on ECs. Furthermore, silencing of MCOLN1 by interfering RNA and pharmacological inhibition of calcineurin inhibited the activity of TFEB induced by SFN, demonstrating that SFN regulates the activity of TFEB through the MCOLN1-calcineurin signaling pathway. Conclusion: SFN protects microvascular ECs against I/R injury by TFEB-mediated autophagy restoration and anti-oxidant response.
Collapse
Affiliation(s)
- Fanfeng Chen
- Department of Wound Healing, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325015, China.
- The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou, China
- Molecular Pharmacology Research Center, School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou 325000, China
| | - Jiayu Zhan
- Molecular Pharmacology Research Center, School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou 325000, China
| | - Abdullah Al Mamun
- Molecular Pharmacology Research Center, School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou 325000, China
| | - Yibing Tao
- Molecular Pharmacology Research Center, School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou 325000, China
| | - Shanshan Huang
- Molecular Pharmacology Research Center, School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou 325000, China
| | - Jiaxin Zhao
- Molecular Pharmacology Research Center, School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou 325000, China
| | - Yu Zhang
- Molecular Pharmacology Research Center, School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou 325000, China
| | - Yitie Xu
- Molecular Pharmacology Research Center, School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou 325000, China
| | - Shenghu Du
- Department of Wound Healing, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325015, China.
- The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou, China
- Molecular Pharmacology Research Center, School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou 325000, China
| | - Wei Lu
- The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou, China
| | - Xiaokun Li
- Department of Wound Healing, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325015, China.
- The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou, China
- Molecular Pharmacology Research Center, School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou 325000, China
| | - Zimiao Chen
- Department of Wound Healing, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325015, China.
| | - Jian Xiao
- Department of Wound Healing, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325015, China.
- The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou, China
- Molecular Pharmacology Research Center, School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou 325000, China
| |
Collapse
|
46
|
Zhang S, Zhang J, Wu L, Chen L, Niu P, Li J. Glutamine supplementation reverses manganese neurotoxicity by eliciting the mitochondrial unfolded protein response. iScience 2023; 26:107136. [PMID: 37408687 PMCID: PMC10318524 DOI: 10.1016/j.isci.2023.107136] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 05/24/2023] [Accepted: 06/12/2023] [Indexed: 07/07/2023] Open
Abstract
Excessive exposure to manganese (Mn) can cause neurological abnormalities, but the mechanism of Mn neurotoxicity remains unclear. Previous studies have shown that abnormal mitochondrial metabolism is a crucial mechanism underlying Mn neurotoxicity. Therefore, improving neurometabolic in neuronal mitochondria may be a potential therapy for Mn neurotoxicity. Here, single-cell sequencing revealed that Mn affected mitochondrial neurometabolic pathways and unfolded protein response in zebrafish dopaminergic neurons. Metabolomic analysis indicated that Mn inhibited the glutathione metabolic pathway in human neuroblastoma (SH-SY5Y) cells. Mechanistically, Mn exposure inhibited glutathione (GSH) and mitochondrial unfolded protein response (UPRmt). Furthermore, supplementation with glutamine (Gln) can effectively increase the concentration of GSH and triggered UPRmt which can alleviate mitochondrial dysfunction and counteract the neurotoxicity of Mn. Our findings highlight that UPRmt is involved in Mn-induced neurotoxicity and glutathione metabolic pathway affects UPRmt to reverse Mn neurotoxicity. In addition, Gln supplementation may have potential therapeutic benefits for Mn-related neurological disorders.
Collapse
Affiliation(s)
- Shixuan Zhang
- Department of Occupational and Environmental Health, School of Public Health, Capital Medical University, Beijing 100069, China
- Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China
- Department of Nutrition, Beijing Chaoyang Hospital, Capital Medical University, Beijing 100020, China
| | - Junrou Zhang
- Department of Occupational and Environmental Health, School of Public Health, Capital Medical University, Beijing 100069, China
- Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China
| | - Luli Wu
- Department of Occupational and Environmental Health, School of Public Health, Capital Medical University, Beijing 100069, China
- Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China
| | - Li Chen
- Department of Occupational and Environmental Health, School of Public Health, Capital Medical University, Beijing 100069, China
- Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China
| | - Piye Niu
- Department of Occupational and Environmental Health, School of Public Health, Capital Medical University, Beijing 100069, China
- Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China
| | - Jie Li
- Department of Occupational and Environmental Health, School of Public Health, Capital Medical University, Beijing 100069, China
- Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China
| |
Collapse
|
47
|
Fan RZ, Sportelli C, Lai Y, Salehe S, Pinnell JR, Richardson JR, Luo S, Tieu K. A partial Drp1 knockout improves autophagy flux independent of mitochondrial function. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.29.547095. [PMID: 37425803 PMCID: PMC10327068 DOI: 10.1101/2023.06.29.547095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/11/2023]
Abstract
Dynamin-related protein 1 (Drp1) is typically known for its role in mitochondrial fission. A partial inhibition of this protein has been reported to be protective in experimental models of neurodegenerative diseases. The protective mechanism has been attributed primarily to improved mitochondrial function. Herein, we provide evidence showing that a partial Drp1-knockout improves autophagy flux independent of mitochondria. First, we characterized in cell and animal models that at low non-toxic concentrations, manganese (Mn), which causes parkinsonian-like symptoms in humans, impaired autophagy flux but not mitochondrial function and morphology. Furthermore, nigral dopaminergic neurons were more sensitive than their neighbouring GABAergic counterparts. Second, in cells with a partial Drp1-knockdown and Drp1 +/- mice, autophagy impairment induced by Mn was significantly attenuated. This study demonstrates that autophagy is a more vulnerable target than mitochondria to Mn toxicity. Furthermore, improving autophagy flux is a separate mechanism conferred by Drp1 inhibition independent of mitochondrial fission.
Collapse
|
48
|
Wu J, Deng F, Tang X, Chen W, Zhou R, Zhao T, Mao X, Shu F. Long-term effect of PBDE-99 prenatal exposure on spermatogenic injuries via the dysregulation of autophagy. JOURNAL OF HAZARDOUS MATERIALS 2023; 452:131234. [PMID: 36963198 DOI: 10.1016/j.jhazmat.2023.131234] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Revised: 02/22/2023] [Accepted: 03/15/2023] [Indexed: 05/03/2023]
Abstract
Although it has been reported that perinatal, especially prenatal exposure to polybrominated diphenyl ethers (PBDEs) alters offspring's fertility, but little is known regarding their longitudinal effects over time. In the current study, we determined the associations between prenatal exposure to 2,2',4,4',5-pentabromodiphenyl ether (PBDE-99) of environmentally relevant levels in pregnant ICR mice and spermatogenic impairments in male offspring on postnatal day 70. Then, we monitored functional injuries in spermatogenic cells (GC-1 spg) exposed to PBDE-99 in vitro. Furthermore, transcriptome sequencing and bioinformatic analysis were used to investigate the underlying mechanism of PBDE-99 exposure to GC-1 spg. Additionally, the expression levels of key genes in the relevant pathways were quantified. Our findings indicated that exposure to PBDE-99 caused significantly spermatogenic injuries, which partly owing to the accumulation of reactive oxygen species, dysregulation of autophagy, and finally induced spermatogenic cell apoptosis. Rescue validation experiments showed that stimulating autophagy could alleviate spermatogenic cell injury induced by PBDE-99. In conclusion, our findings indicated that the dysfunction of autophagy played a significant role in long-term reproductive toxicity following prenatal exposure to environmental concentrations of PBDE-99.
Collapse
Affiliation(s)
- Jun Wu
- Department of Urology, Guangzhou Women and Children's Medical Center, National Children's Medical Center for South Central Region, Guangzhou Medical University, Guangzhou, Guangdong, China; Department of Urology, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China
| | - Fuming Deng
- Department of Urology, Guangzhou Women and Children's Medical Center, National Children's Medical Center for South Central Region, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Xiangliang Tang
- Department of Urology, Guangzhou Women and Children's Medical Center, National Children's Medical Center for South Central Region, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Wenbin Chen
- Department of Urology, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China
| | - Rui Zhou
- Department of Urology, Guangzhou Women and Children's Medical Center, National Children's Medical Center for South Central Region, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Tianxin Zhao
- Department of Urology, Guangzhou Women and Children's Medical Center, National Children's Medical Center for South Central Region, Guangzhou Medical University, Guangzhou, Guangdong, China.
| | - Xiangming Mao
- Department of Urology, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China.
| | - Fangpeng Shu
- Department of Urology, Guangzhou Women and Children's Medical Center, National Children's Medical Center for South Central Region, Guangzhou Medical University, Guangzhou, Guangdong, China.
| |
Collapse
|
49
|
Chang P, Zhang X, Zhang J, Wang J, Wang X, Li M, Wang R, Yu J, Fu F. BNP protects against diabetic cardiomyopathy by promoting Opa1-mediated mitochondrial fusion via activating the PKG-STAT3 pathway. Redox Biol 2023; 62:102702. [PMID: 37116257 PMCID: PMC10165144 DOI: 10.1016/j.redox.2023.102702] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 03/25/2023] [Accepted: 04/14/2023] [Indexed: 04/30/2023] Open
Abstract
Brain natriuretic peptide (BNP) belongs to the family of natriuretic peptides, which are responsible for a wide range of actions. Diabetic cardiomyopathy (DCM) is often associated with increased BNP levels. This present research intends to explore the role of BNP in the development of DCM and the underlying mechanisms. Diabetes was induced in mice using streptozotocin (STZ). Primary neonatal cardiomyocytes were treated with high glucose. It was found that the levels of plasma BNP started to increase at 8 weeks after diabetes, which preceded the development of DCM. Addition of exogenous BNP promoted Opa1-mediated mitochondrial fusion, inhibited mitochondrial oxidative stress, preserved mitochondrial respiratory capacity and prevented the development of DCM, while knockdown of endogenous BNP exacerbated mitochondrial dysfunction and accelerated DCM. Opa1 knockdown attenuated the aforementioned protective action of BNP both in vivo and in vitro. BNP-induced mitochondrial fusion requires the activation of STAT3, which facilitated Opa1 transcription by binding to its promoter regions. PKG, a crucial signaling biomolecule in the BNP signaling pathway, interacted with STAT3 and induced its activation. Knockdown of NPRA (the receptor of BNP) or PKG blunted the promoting effect of BNP on STAT3 phosphorylation and Opa1-mediated mitochondrial fusion. The results of this study demonstrate for the first time that there is a rise in BNP during the early stages of DCM as a compensatory protection mechanism. BNP is a novel mitochondrial fusion activator in protecting against hyperglycemia-induced mitochondrial oxidative injury and DCM through the activation of NPRA-PKG-STAT3-Opa1 signaling pathway.
Collapse
Affiliation(s)
- Pan Chang
- Department of Cardiology, The Second Affiliated Hospital, Xi'an Medical University, Xi'an, Shaanxi, 710038, China; Clinical Experimental Center, The Affiliated Xi'an International Medical Center Hospital, Northwest University, Xi'an, 710100, China
| | - Xiaomeng Zhang
- Department of Cardiology, Xijing Hospital, Air Force Medical University, 169 Changle West Road, Xi'an, 710032, China
| | - Jing Zhang
- Department of Cardiology, The Second Affiliated Hospital, Xi'an Medical University, Xi'an, Shaanxi, 710038, China
| | - Jianbang Wang
- Department of Cardiology, The Second Affiliated Hospital, Xi'an Medical University, Xi'an, Shaanxi, 710038, China
| | - Xihui Wang
- Department of Cardiology, The Second Affiliated Hospital, Xi'an Medical University, Xi'an, Shaanxi, 710038, China
| | - Man Li
- Department of Cardiology, The Second Affiliated Hospital, Xi'an Medical University, Xi'an, Shaanxi, 710038, China; Department of Physiology and Pathophysiology, National Key Discipline of Cell Biology, Air Force Medical University, Xi'an, 710032, China
| | - Rui Wang
- Department of Cardiology, The Second Affiliated Hospital, Xi'an Medical University, Xi'an, Shaanxi, 710038, China
| | - Jun Yu
- Clinical Experimental Center, The Affiliated Xi'an International Medical Center Hospital, Northwest University, Xi'an, 710100, China.
| | - Feng Fu
- Department of Physiology and Pathophysiology, National Key Discipline of Cell Biology, Air Force Medical University, Xi'an, 710032, China; Department of Cardiology, Tangdu Hospital, Airforce Medical University, Xi'an, 710038, China.
| |
Collapse
|
50
|
Jiang S, Sun M, Zhou X, Xu Y, Ullah H, Niu X, Feng C, Gao Q. Association between blood manganese levels and depressive symptoms among US adults: A nationally representative cross-sectional study. J Affect Disord 2023; 333:65-71. [PMID: 37084963 DOI: 10.1016/j.jad.2023.04.032] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 03/22/2023] [Accepted: 04/14/2023] [Indexed: 04/23/2023]
Abstract
BACKGROUND Recent studies indicated that manganese (Mn) levels were inconsistently associated with the prevalence of depression. We aimed to evaluate whether blood Mn concentrations were associated with the risk of depression among US adults. METHODS Using the NHANES 2011-2019 datasets, we conducted a cross-sectional study in 16,572 eligible participants with complete data on blood Mn concentrations and depression diagnosis. A weighted multivariable logistic model and restricted cubic spline model were applied to explore the association and dose-response relationship of blood Mn concentrations with depression risk in the total population and subgroups. RESULTS In the total population, compared with the lowest reference group of blood Mn, participants in the second, third, and fourth quartile had an OR of 0.84 (95%CI: 0.66, 1.07), 0.93 (95%CI: 0.73, 1.19) and 0.91 (95%CI: 0.71, 1.15) for depression (ptrend = 0.640). In subgroup analyses, doubling of blood Mn concentrations was associated with a 0.83-fold (95%CI: 0.67, 1.02), 0.30 -fold (0.14, 0.65) decreased risk of depression in females and other ethnic groups, respectively. Significant modification effects of ethnicity on the association of blood Mn concentrations with depression risk were observed. LIMITATIONS cross-sectional study design and self-reported depressive symptoms. CONCLUSIONS Elevated blood Mn concentrations were associated with decreased depression risk in females and other specific subgroups. Mn supplementation could be a potential pathway for intervention and prevention of depression.
Collapse
Affiliation(s)
- Shunli Jiang
- Institute of Occupational Health and Environmental Medicine, Department of Public Health, Jining Medical University, Jining 272000, Shandong, China.
| | - Mingjia Sun
- Institute of Occupational Health and Environmental Medicine, Department of Public Health, Jining Medical University, Jining 272000, Shandong, China
| | - Xinyong Zhou
- Luqiao Township Health Center, Weishan, Jining 272000, Shandong, China
| | - Yaru Xu
- Jining Center for Disease Control and Prevention, Shandong 272000, China
| | - Habib Ullah
- Department of International Education, Jining Medical University, Jining 272000, Shandong, China
| | - Xinpeng Niu
- Institute of Occupational Health and Environmental Medicine, Department of Public Health, Jining Medical University, Jining 272000, Shandong, China
| | - Chen Feng
- Institute of Occupational Health and Environmental Medicine, Department of Public Health, Jining Medical University, Jining 272000, Shandong, China
| | - Qin Gao
- Institute of Occupational Health and Environmental Medicine, Department of Public Health, Jining Medical University, Jining 272000, Shandong, China.
| |
Collapse
|