1
|
Lin L, Zhao W, Li Z, Ratliff SM, Wang YZ, Mitchell C, Faul JD, Kardia SLR, Birditt KS, Smith JA. Poly-epigenetic scores for cardiometabolic risk factors interact with demographic factors and health behaviors in older US Adults. Epigenetics 2025; 20:2469205. [PMID: 39976511 PMCID: PMC11844928 DOI: 10.1080/15592294.2025.2469205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 02/13/2025] [Accepted: 02/14/2025] [Indexed: 02/23/2025] Open
Abstract
Poly-epigenetic scores (PEGS) are surrogate measures that help capture individual-level risk. Understanding how the associations between PEGS and cardiometabolic risk factors vary by demographics and health behaviors is crucial for lowering the burden of cardiometabolic diseases. We used results from established epigenome-wide association studies to construct trait-specific PEGS from whole blood DNA methylation for systolic and diastolic blood pressure (SBP, DBP), body mass index (BMI), C-reactive protein (CRP), high- and low-density lipoprotein cholesterol (HDL-C, LDL-C), triglycerides (TG), and fasting glucose. Overall and race-stratified associations between PEGS and corresponding traits were examined in adults >50 years from the Health and Retirement Study (n = 3,996, mean age = 79.5 years). We investigated how demographics (age, sex, educational attainment) and health behaviors (smoking, alcohol consumption, physical activity) modified these associations. All PEGS were positively associated with their corresponding cardiometabolic traits (p < 0.05), and most associations persisted across all racial/ethnic groups. Associations for BMI, HDL-C, and TG were stronger in younger participants, and BMI and HDL-C associations were stronger in females. The CRP association was stronger among those with a high school degree. Finally, the HDL-C association was stronger among current smokers. These findings support PEGS as robust surrogate measures and suggest the associations may differ among subgroups.
Collapse
Affiliation(s)
- Lisha Lin
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI, USA
| | - Wei Zhao
- Survey Research Center, Institute for Social Research, University of Michigan, Ann Arbor, MI, USA
| | - Zheng Li
- Department of Biostatistics, School of Public Health, University of Michigan, Ann Arbor, MI, USA
| | - Scott M. Ratliff
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI, USA
| | - Yi Zhe Wang
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI, USA
| | - Colter Mitchell
- Survey Research Center, Institute for Social Research, University of Michigan, Ann Arbor, MI, USA
| | - Jessica D. Faul
- Survey Research Center, Institute for Social Research, University of Michigan, Ann Arbor, MI, USA
| | - Sharon L. R. Kardia
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI, USA
| | - Kira S. Birditt
- Survey Research Center, Institute for Social Research, University of Michigan, Ann Arbor, MI, USA
| | - Jennifer A. Smith
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI, USA
- Survey Research Center, Institute for Social Research, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
2
|
Assari S, Pallera JA. Depression, Subjective Health, Obesity, and Multimorbidity are Associated with Epigenetic Age Acceleration. JOURNAL OF BIOMEDICAL AND LIFE SCIENCES 2025; 5:42-57. [PMID: 40235522 PMCID: PMC11999669 DOI: 10.31586/jbls.2025.6041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/17/2025]
Abstract
Background Epigenetic aging, measured through various DNA methylation-based clocks, may have implications for predicting disease risk. However, the sensitivity of different epigenetic clocks that have emerged as biomarkers for biological aging and in predicting physical and mental health outcomes remains uncertain. This study examines the age and sex-adjusted associations between multiple epigenetic age acceleration measures and three key health indicators, including self-rated health, depressive symptoms, and body mass index (BMI), in a nationally representative sample of U.S. middle-aged and older adults. Methods We analyzed data from 4,018 adults in the 2016 wave of the Health and Retirement Study (HRS), which included several epigenetic age acceleration measures: HORVATH, HANNUM, LEVINE, HORVATHSKIN, LIN, WEIDNER, VIDALBRALO, YANG, ZHANG, BOCKLANDT, GARAGNANI, and GRIMAGE. Linear regression models were used to assess the associations between epigenetic age acceleration and self-rated health (poor health), depressive symptoms, and BMI, adjusting for age and sex. Results We found significant positive associations between epigenetic age acceleration and worse self-rated health, higher depressive symptoms, and increased BMI. However, these associations varied across different epigenetic clocks, with some measures potentially having more consistent utility for specific health outcomes than others. Conclusion Epigenetic age acceleration is linked to poorer self-rated health, greater depressive symptoms, and higher BMI, but choosing which epigenetic clock(s) to use is also important. These findings underscore the need to consider multiple epigenetic aging markers when assessing health risks and highlight the potential for particular clocks to serve as more sensitive indicators of physical and mental health outcomes.
Collapse
Affiliation(s)
- Shervin Assari
- Department of Internal Medicine, Charles R. Drew University of Medicine and Science, Los Angeles, CA, United States
- Department of Psychiatry, Charles R. Drew University of Medicine and Science, Los Angeles, CA, United States
- Department of Family Medicine, Charles R. Drew University of Medicine and Science, Los Angeles, CA, United States
- Department of Urban Public Health, Charles R. Drew University of Medicine and Science, Los Angeles, CA, United States
| | - John Ashley Pallera
- College of Medicine, Charles R. Drew University of Medicine and Science, Los Angeles, CA, United States
| |
Collapse
|
3
|
Jiao P, Lu H, Hao L, Degen AA, Cheng J, Yin Z, Mao S, Xue Y. Nutrigenetic and Epigenetic Mechanisms of Maternal Nutrition-Induced Glucolipid Metabolism Changes in the Offspring. Nutr Rev 2025; 83:728-748. [PMID: 38781288 DOI: 10.1093/nutrit/nuae048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/25/2024] Open
Abstract
Maternal nutrition during pregnancy regulates the offspring's metabolic homeostasis, including insulin sensitivity and the metabolism of glucose and lipids. The fetus undergoes a crucial period of plasticity in the uterus; metabolic changes in the fetus during pregnancy caused by maternal nutrition not only influence fetal growth and development but also have a long-term or even life-long impact for the offspring. Epigenetic modifications, such as DNA methylation, histone modification, and non-coding RNAs, play important roles in intergenerational and transgenerational effects. In this context, this narrative review comprehensively summarizes and analyzes the molecular mechanisms underlying how maternal nutrition, including a high-fat diet, polyunsaturated fatty acid diet, methyl donor nutrient supplementation, feed restriction, and protein restriction during pregnancy, impacts the genes involved in glucolipid metabolism in the liver, adipose tissue, hypothalamus, muscle, and oocytes of the offspring in terms of the epigenetic modifications. This will provide a foundation for the further exploration of nutrigenetic and epigenetic mechanisms for integrative mother-child nutrition and promotion of the offspring's health through the regulation of maternal nutrition during pregnancy. Note: This paper is part of the Nutrition Reviews Special Collection on Precision Nutrition.
Collapse
Affiliation(s)
- Peng Jiao
- College of Animal Science and Technology, Anhui Agricultural University, Hefei, China
| | - Huizhen Lu
- Biotechnology Center, Anhui Agricultural University, Hefei, China
| | - Lizhuang Hao
- Key Laboratory of Plateau Grazing Animal Nutrition and Feed Science of Qinghai Province, Qinghai Plateau Yak Research Center, Qinghai Academy of Science and Veterinary Medicine of Qinghai University, Xining, China
| | - A Allan Degen
- Desert Animal Adaptations and Husbandry, Wyler Department of Dryland Agriculture, Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Jianbo Cheng
- College of Animal Science and Technology, Anhui Agricultural University, Hefei, China
| | - Zongjun Yin
- College of Animal Science and Technology, Anhui Agricultural University, Hefei, China
| | - Shengyong Mao
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Yanfeng Xue
- College of Animal Science and Technology, Anhui Agricultural University, Hefei, China
| |
Collapse
|
4
|
Gómez-Vilarrubla A, Niubó-Pallàs M, Mas-Parés B, Bonmatí-Santané A, Martínez-Calcerrada JM, López B, Peñas-Cruz A, de Zegher F, Ibáñez L, López-Bermejo A, Bassols J. Longitudinal Analysis of Placental IRS1 DNA Methylation and Childhood Obesity. Int J Mol Sci 2025; 26:3141. [PMID: 40243885 PMCID: PMC11988732 DOI: 10.3390/ijms26073141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2025] [Revised: 03/20/2025] [Accepted: 03/27/2025] [Indexed: 04/18/2025] Open
Abstract
Accumulating evidence suggests that the predisposition to metabolic diseases is established in utero through epigenomic modifications. However, it remains unclear whether childhood obesity results from preexisting epigenomic alterations or whether obesity itself induces changes in the epigenome. This study aimed to identify DNA methylation marks in the placenta associated with obesity-related outcomes in children at age 6 and to assess these marks in blood samples at age 6 and whether they correlate with obesity-related outcomes at that time. Using an epigenome-wide DNA methylation microarray on 24 placental samples, we identified differentially methylated CpGs (DMCs) associated with offspring BMI-SDS at 6 years. Individual DMCs were validated in 147 additional placental and leukocyte samples from children at 6 years of age. The methylation and/or gene expression of IRS1 in both placenta and offspring leukocytes were significantly associated with various metabolic risk parameters at age 6 (all p ≤ 0.05). Logistic regression models (LRM) and machine learning (ML) models indicated that IRS1 methylation in the placenta could strongly predict offspring obesity. Our results suggest that IRS1 may serve as a potential biomarker for the prediction of obesity and metabolic risk in children.
Collapse
Affiliation(s)
- Ariadna Gómez-Vilarrubla
- Maternal-Fetal Metabolic Research Group, Girona Institute for Biomedical Research (IDIBGI), 17190 Salt, Spain; (A.G.-V.); (M.N.-P.)
| | - Maria Niubó-Pallàs
- Maternal-Fetal Metabolic Research Group, Girona Institute for Biomedical Research (IDIBGI), 17190 Salt, Spain; (A.G.-V.); (M.N.-P.)
| | - Berta Mas-Parés
- Pediatric Endocrinology Research Group, Girona Institute for Biomedical Research (IDIBGI), 17190 Salt, Spain
| | - Alexandra Bonmatí-Santané
- Maternal-Fetal Metabolic Research Group, Girona Institute for Biomedical Research (IDIBGI), 17190 Salt, Spain; (A.G.-V.); (M.N.-P.)
- Department of Gynecology, Dr. Josep Trueta Hospital, 17007 Girona, Spain
| | - Jose-Maria Martínez-Calcerrada
- Maternal-Fetal Metabolic Research Group, Girona Institute for Biomedical Research (IDIBGI), 17190 Salt, Spain; (A.G.-V.); (M.N.-P.)
| | - Beatriz López
- Control Engineering and Intelligent Systems (eXiT), University of Girona, 17003 Girona, Spain
| | - Aaron Peñas-Cruz
- Pediatric Endocrinology Research Group, Girona Institute for Biomedical Research (IDIBGI), 17190 Salt, Spain
| | - Francis de Zegher
- Department of Development and Regeneration, University of Leuven, 3000 Leuven, Belgium
| | - Lourdes Ibáñez
- Endocrinology, Pediatric Research Institute, Sant Joan de Déu Children’s Hospital, 08950 Esplugues de Llobregat, Spain
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas, Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Abel López-Bermejo
- Pediatric Endocrinology Research Group, Girona Institute for Biomedical Research (IDIBGI), 17190 Salt, Spain
- Department of Pediatrics, Dr. Josep Trueta Hospital, 17007 Girona, Spain
- Department of Medical Sciences, University of Girona, 17003 Girona, Spain
| | - Judit Bassols
- Maternal-Fetal Metabolic Research Group, Girona Institute for Biomedical Research (IDIBGI), 17190 Salt, Spain; (A.G.-V.); (M.N.-P.)
| |
Collapse
|
5
|
Naselli F, Volpes S, Cardinale PS, Micheli S, Cicio A, Scoglio GD, Chiarelli R, Zizzo MG, Picone P, Caradonna F, Nuzzo D. First evidence of epigenetic modulation of human gene methylation by microalga Aphanizomenon flos-aquae (AFA) in inflammation-related pathways in intestinal cells. Clin Epigenetics 2025; 17:44. [PMID: 40050990 PMCID: PMC11887222 DOI: 10.1186/s13148-025-01849-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Accepted: 02/18/2025] [Indexed: 03/09/2025] Open
Abstract
The microalga Aphanizomenon flos-aquae (AFA) has garnered attention for its potential therapeutic benefits in various health conditions, primarily through its use in nutraceutical formulations. While biological effects of AFA have been extensively studied in preclinical models, including murine systems, its nutrigenomic and epigenetic impacts remain underexplored. This study investigates the potential epigenetic mechanisms of AFA, focusing on its ability to modulate DNA methylation, a key regulatory process in gene expression. Specifically, we examined the influence of AFA on the methylation status of genes encoding pro-inflammatory interleukins, as these cytokines play a crucial role in immune response modulation and inflammation. Given the known impact of AFA on inflammatory markers, we aimed to determine whether the effects of AFA involve direct or indirect modulation of DNA methylation patterns in genes associated with inflammation. Our findings, presented here for the first time, reveal the capacity of AFA to influence DNA methylation, with implications for its role in cellular regulatory processes. These results warrant further investigation into precise mechanisms of action of AFA and its potential in clinical applications targeting inflammation-related pathways.
Collapse
Affiliation(s)
- Flores Naselli
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Viale delle Scienze Building 16, 90128, Palermo, Italy.
- Institute for Biomedical Research and Innovation, National Research Council of Italy, Via U. La Malfa, 153, 90146, Palermo, Italy.
| | - Sara Volpes
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Viale delle Scienze Building 16, 90128, Palermo, Italy
| | - Paola Sofia Cardinale
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Viale delle Scienze Building 16, 90128, Palermo, Italy
| | - Sabrina Micheli
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Viale delle Scienze Building 16, 90128, Palermo, Italy
| | - Adele Cicio
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Viale delle Scienze Building 16, 90128, Palermo, Italy
| | - Gabriel Dylan Scoglio
- Department of Structural and Molecular Biology, University College London, Gower Street, London, WC1E 6BT, UK
| | - Roberto Chiarelli
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Viale delle Scienze Building 16, 90128, Palermo, Italy
| | - Maria Grazia Zizzo
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Viale delle Scienze Building 16, 90128, Palermo, Italy
| | - Pasquale Picone
- Institute for Biomedical Research and Innovation, National Research Council of Italy, Via U. La Malfa, 153, 90146, Palermo, Italy
| | - Fabio Caradonna
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Viale delle Scienze Building 16, 90128, Palermo, Italy
- Institute for Biomedical Research and Innovation, National Research Council of Italy, Via U. La Malfa, 153, 90146, Palermo, Italy
- NBFC, National Biodiversity Future Center, 90133, Palermo, Italy
| | - Domenico Nuzzo
- Institute for Biomedical Research and Innovation, National Research Council of Italy, Via U. La Malfa, 153, 90146, Palermo, Italy
| |
Collapse
|
6
|
Zhang W, Young JI, Gomez L, Schmidt MA, Lukacsovich D, Kunkle BW, Chen XS, Martin ER, Wang L. Blood DNA methylation signature for incident dementia: Evidence from longitudinal cohorts. Alzheimers Dement 2025; 21:e14496. [PMID: 40133250 PMCID: PMC11936765 DOI: 10.1002/alz.14496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 11/26/2024] [Accepted: 12/01/2024] [Indexed: 03/27/2025]
Abstract
INTRODUCTION Distinguishing between molecular changes that precede dementia onset and those resulting from the disease is challenging with cross-sectional studies. METHODS We studied blood DNA methylation (DNAm) differences and incident dementia in two large longitudinal cohorts: the Offspring cohort of the Framingham Heart Study (FHS) and the Alzheimer's Disease Neuroimaging Initiative (ADNI) study. We analyzed blood DNAm samples from > 1000 cognitively unimpaired subjects. RESULTS Meta-analysis identified 44 CpGs and 44 differentially methylated regions consistently associated with time to dementia in both cohorts. Our integrative analysis identified early processes in dementia, such as immune responses and metabolic dysfunction. Furthermore, we developed a methylation-based risk score, which successfully predicted future cognitive decline in an independent validation set, even after accounting for age, sex, apolipoprotein E ε4, years of education, baseline diagnosis, and baseline Mini-Mental State Examination score. DISCUSSION DNAm offers a promising source as a biomarker for dementia risk assessment. HIGHLIGHTS Blood DNA methylation (DNAm) differences at individual CpGs and differentially methylated regions are significantly associated with incident dementia. Pathway analysis revealed DNAm differences associated with incident dementia are significantly enriched in biological pathways involved in immune responses and metabolic processes. Out-of-sample validation analysis demonstrated that a methylation-based risk score successfully predicted future cognitive decline in an independent dataset, even after accounting for age, sex, apolipoprotein E ε4, years of education, baseline diagnosis, and baseline Mini-Mental State Examination score.
Collapse
Affiliation(s)
- Wei Zhang
- Division of BiostatisticsDepartment of Public Health SciencesMiller School of MedicineUniversity of MiamiMiamiFloridaUSA
| | - Juan I. Young
- Dr. John T. Macdonald Foundation Department of Human GeneticsMiller School of MedicineUniversity of MiamiMiamiFloridaUSA
- John P. Hussman Institute for Human GenomicsMiller School of MedicineUniversity of MiamiMiamiFloridaUSA
| | - Lissette Gomez
- John P. Hussman Institute for Human GenomicsMiller School of MedicineUniversity of MiamiMiamiFloridaUSA
| | - Michael A. Schmidt
- Dr. John T. Macdonald Foundation Department of Human GeneticsMiller School of MedicineUniversity of MiamiMiamiFloridaUSA
- John P. Hussman Institute for Human GenomicsMiller School of MedicineUniversity of MiamiMiamiFloridaUSA
| | - David Lukacsovich
- Division of BiostatisticsDepartment of Public Health SciencesMiller School of MedicineUniversity of MiamiMiamiFloridaUSA
| | - Brian W. Kunkle
- Dr. John T. Macdonald Foundation Department of Human GeneticsMiller School of MedicineUniversity of MiamiMiamiFloridaUSA
- John P. Hussman Institute for Human GenomicsMiller School of MedicineUniversity of MiamiMiamiFloridaUSA
| | - X. Steven Chen
- Division of BiostatisticsDepartment of Public Health SciencesMiller School of MedicineUniversity of MiamiMiamiFloridaUSA
- Sylvester Comprehensive Cancer CenterMiller School of MedicineUniversity of MiamiMiamiFloridaUSA
| | - Eden R. Martin
- Dr. John T. Macdonald Foundation Department of Human GeneticsMiller School of MedicineUniversity of MiamiMiamiFloridaUSA
- John P. Hussman Institute for Human GenomicsMiller School of MedicineUniversity of MiamiMiamiFloridaUSA
| | - Lily Wang
- Division of BiostatisticsDepartment of Public Health SciencesMiller School of MedicineUniversity of MiamiMiamiFloridaUSA
- Dr. John T. Macdonald Foundation Department of Human GeneticsMiller School of MedicineUniversity of MiamiMiamiFloridaUSA
- John P. Hussman Institute for Human GenomicsMiller School of MedicineUniversity of MiamiMiamiFloridaUSA
- Sylvester Comprehensive Cancer CenterMiller School of MedicineUniversity of MiamiMiamiFloridaUSA
| |
Collapse
|
7
|
Osman AAM, Laczkó D, Vágvölgyi M, Seres-Bokor A, Sztojkov-Ivanov A, Kemény KK, Hunyadi A, Ducza E. Investigation of calonysterone and 20-hydroxyecdysone effects in high-fat, high-sugar diet-induced obesity rat model. Heliyon 2025; 11:e42435. [PMID: 39991217 PMCID: PMC11847253 DOI: 10.1016/j.heliyon.2025.e42435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 01/31/2025] [Accepted: 01/31/2025] [Indexed: 02/25/2025] Open
Abstract
Globally, the incidence of obesity among adults has significantly risen since 1990, with a more than twofold rise in prevalence. Similarly, the incidence of obesity among adolescents has increased fourfold. Overweight constitutes a significant health and social issue in developed nations globally. Conventional therapies such as lifestyle modification (nutrition and physical activity) have limited weight reduction. Drug therapy is often not possible or cannot be afforded due to poor patient compliance or therapeutic side effects. 20-hydroxyecdysone (20E) is a worldwide used 'green anabolic' dietary supplement that has beneficial effects in some animal models of metabolic diseases. Our ongoing research examines the impacts of 20E and calonysterone (CAL) in an animal model with a diet high in fats and sugars (HFHSD). Glucose tolerance tests assessed prediabetic status and RT-PCR and Western blot analysis determined interleukin-6 (IL6) expression. The concertations of superoxide dismutase, catalase, adiponectin, leptin, and IL-6 were quantified by ELISA. Total antioxidant capacity was assessed using a colorimetric assay kit, and global DNA methylation was also measured. CAL entirely prevented HFHSD-induced obesity and decreased the inflammatory cytokine (IL6) level and antioxidant activity in our model. Both 20E and CAL normalized the changed plasma concentration of adiponectin and leptin after the HFHS diet. The administration of CAL and 20E in obese rats significantly increased the percent of total DNA methylation. This is the first in vivo study on this natural ecdysteroid, which may offer new alternatives for treating metabolic diseases. Based on our findings, we are supposed to show new preventive possibilities for overweight-induced chronic progressive diseases.
Collapse
Affiliation(s)
- Alaa AM. Osman
- Department of Pharmacodynamics and Biopharmacy, Faculty of Pharmacy, University of Szeged, H-6720, Szeged, Hungary
| | - Dávid Laczkó
- Institute of Pharmacognosy, Faculty of Pharmacy, University of Szeged, H-6720, Szeged, Hungary
- RotaChrom Technologies PLC, H-6000, Kecskemét, Hungary
| | - Máté Vágvölgyi
- Institute of Pharmacognosy, Faculty of Pharmacy, University of Szeged, H-6720, Szeged, Hungary
| | - Adrienn Seres-Bokor
- Department of Pharmacodynamics and Biopharmacy, Faculty of Pharmacy, University of Szeged, H-6720, Szeged, Hungary
| | - Anita Sztojkov-Ivanov
- Department of Pharmacodynamics and Biopharmacy, Faculty of Pharmacy, University of Szeged, H-6720, Szeged, Hungary
| | - Kata Kira Kemény
- Department of Pharmacodynamics and Biopharmacy, Faculty of Pharmacy, University of Szeged, H-6720, Szeged, Hungary
| | - Attila Hunyadi
- Institute of Pharmacognosy, Faculty of Pharmacy, University of Szeged, H-6720, Szeged, Hungary
- HUN-REN-SZTE, Biologically Active Natural Products Research Group, H-6720, Szeged, Hungary
| | - Eszter Ducza
- Department of Pharmacodynamics and Biopharmacy, Faculty of Pharmacy, University of Szeged, H-6720, Szeged, Hungary
| |
Collapse
|
8
|
Paz-López G, Linares-Pineda TM, González-Jiménez A, Sancho-Marín R, Ocaña-Wilhelmi L, Tinahones FJ, Morcillo S, Gutiérrez-Repiso C. Pre-operative DNA methylation marks as predictors of weight loss outcomes after sleeve gastrectomy. Mol Metab 2025; 92:102087. [PMID: 39724958 PMCID: PMC11780120 DOI: 10.1016/j.molmet.2024.102087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 12/17/2024] [Accepted: 12/19/2024] [Indexed: 12/28/2024] Open
Abstract
OBJECTIVE Although DNA methylation has been suggested to be a potential predictor of the progression of obesity and obesity-related diseases, little is known about its potential role as predictive marker of successful weight loss after bariatric surgery. METHODS 20 patients who underwent sleeve gastrectomy were classified according to the percentage of excess weight loss (%EWL) 1 year after bariatric surgery, using 60% as the cut-off point. Blood DNA methylation was analyzed prior to surgery using the Infinium Methylation EPIC Bead Chip array-based platform. RESULTS A total number of 76,559 differentially methylated positions (DMPs) (p < 0.05) were found between <60% EWL and >60% EWL groups. Of them, 59,308 DMPs were annotated to genes. KEGG enrichment analysis showed that pathways involved in the signalling of MAPK, Wnt, mTor, FoxO and AMPK, among others, were involved in weight loss trajectory. A stepwise logistic regression using the DMPs with an absolute Δβ >0.2 showed that higher methylation levels in the CpG sites cg02405213 (mapping to JAK2) (OR: 1.20098, [0.9586, 1.5044]) and cg01702330 (OR: 2.4426, [0.5761, 10.3567]), were shown to be associated with a higher probability of achieving >60 %EWL after sleeve gastrectomy, whereas higher methylation levels in the CpG site cg04863892 (mapping to HOXA5) were associated with lower probability of achieving >60 %EWL after sleeve gastrectomy (OR: 0.7966, [0.5637, 1.1259]). CONCLUSIONS Our results show a different pre-surgery methylation pattern according to %EWL. We identified three CpG sites (cg04863892, cg02405213, cg01702330) with potential value as predictor markers of weight loss response to bariatric surgery.
Collapse
Affiliation(s)
- Guillermo Paz-López
- Estructura Común de Apoyo a la Investigación de Bioinformática. Instituto de Investigación Biomédica de Málaga-Plataforma BIONAND (IBIMA-Plataforma Bionand), Málaga, Spain
| | - Teresa M Linares-Pineda
- Instituto de Investigación Biomédica de Málaga-Plataforma BIONAND (IBIMA-Plataforma Bionand), Málaga, Spain; Unidad de Gestión Clínica de Endocrinología y Nutrición, Hospital Universitario Virgen de la Victoria de Málaga, Málaga, Spain
| | - Andrés González-Jiménez
- Estructura Común de Apoyo a la Investigación de Bioinformática. Instituto de Investigación Biomédica de Málaga-Plataforma BIONAND (IBIMA-Plataforma Bionand), Málaga, Spain
| | - Raquel Sancho-Marín
- Instituto de Investigación Biomédica de Málaga-Plataforma BIONAND (IBIMA-Plataforma Bionand), Málaga, Spain; Unidad de Gestión Clínica de Endocrinología y Nutrición, Hospital Universitario Virgen de la Victoria de Málaga, Málaga, Spain
| | - Luis Ocaña-Wilhelmi
- Instituto de Investigación Biomédica de Málaga-Plataforma BIONAND (IBIMA-Plataforma Bionand), Málaga, Spain; Unidad de Gestión Clínica de Cirugía General, Digestiva y Trasplantes, Hospital Universitario Virgen de la Victoria, Málaga, Spain; Departamento de Especialidades Quirúrgicas, Bioquímica e Inmunología, Universidad de Málaga, Málaga, Spain
| | - Francisco J Tinahones
- Instituto de Investigación Biomédica de Málaga-Plataforma BIONAND (IBIMA-Plataforma Bionand), Málaga, Spain; Unidad de Gestión Clínica de Endocrinología y Nutrición, Hospital Universitario Virgen de la Victoria de Málaga, Málaga, Spain; Centro de Investigación Biomédica en Red de la Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain; Departamento de Medicina y Dermatología. Facultad de Medicina. Universidad de Málaga, Málaga, Spain.
| | - Sonsoles Morcillo
- Instituto de Investigación Biomédica de Málaga-Plataforma BIONAND (IBIMA-Plataforma Bionand), Málaga, Spain; Unidad de Gestión Clínica de Endocrinología y Nutrición, Hospital Universitario Virgen de la Victoria de Málaga, Málaga, Spain; Centro de Investigación Biomédica en Red de la Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain.
| | - Carolina Gutiérrez-Repiso
- Instituto de Investigación Biomédica de Málaga-Plataforma BIONAND (IBIMA-Plataforma Bionand), Málaga, Spain; Unidad de Gestión Clínica de Endocrinología y Nutrición, Hospital Universitario Virgen de la Victoria de Málaga, Málaga, Spain; Centro de Investigación Biomédica en Red de la Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
9
|
Cheng H, Wu J, Peng H, Li J, Liu Z, Wang X, Zhang K, Xie L. Epigenetic Modulation with 5-Aza-CdR Prevents Metabolic-Associated Fatty Liver Disease Promoted by Maternal Overnutrition. Nutrients 2024; 17:106. [PMID: 39796540 PMCID: PMC11722594 DOI: 10.3390/nu17010106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 12/03/2024] [Accepted: 12/12/2024] [Indexed: 01/13/2025] Open
Abstract
BACKGROUND/OBJECTIVES This study builds on previous findings from mouse models, which showed that maternal overnutrition induced by a high-fat diet (HFD) promotes metabolic-associated fatty liver disease (MAFLD) in offspring, linked to global DNA hypermethylation. We explored whether epigenetic modulation with 5-Aza-CdR, a DNA methylation inhibitor, could prevent MAFLD in offspring exposed to maternal overnutrition. METHODS The offspring mice from dams of maternal overnutrition were fed either a chow diet or a high-fat diet (HFD) for 10 weeks. These mice were randomly divided into two groups: HFD, and AZA + HFD. Mice assigned to the AZA group were given 5-Aza-CdR during the last three weeks. RESULTS Our findings show that 5-Aza-CdR treatment in HFD-fed offspring effectively countered weight gain, improved glucose regulation, and minimized hepatic fat buildup along with serum lipid imbalances. Additionally, it boosted AMPK signaling and raised PPAR-α expression, pointing to enhanced fatty acid oxidation. We also detected an increase in JNK signaling, affecting the gene expression associated with cell death and proliferation. Notably, treated mice displayed more hepatic inflammation than the HFD group alone, suggesting a complex, dual impact on MAFLD management. Significant apoptotic and inflammatory gene changes were identified, along with corresponding differentially methylated regions triggered by 5-Aza-CdR, marking potential therapeutic targets. CONCLUSIONS 5-Aza-CdR was shown to mitigate MAFLD features in offspring of maternal overnutrition by reversing DNA hypermethylation and improving metabolic pathways, though its dual impact on inflammation highlights the need for further research to optimize its therapeutic potential.
Collapse
Affiliation(s)
- Henghui Cheng
- Department of Nutrition, Texas A&M University, College Station, TX 77843, USA; (H.C.); (H.P.); (Z.L.); (X.W.)
| | - Jie Wu
- Center for Epigenetics & Disease Prevention, Institute of Biosciences & Technology, College of Medicine, Texas A&M University, Houston, TX 77030, USA; (J.W.); (J.L.)
| | - Hui Peng
- Department of Nutrition, Texas A&M University, College Station, TX 77843, USA; (H.C.); (H.P.); (Z.L.); (X.W.)
| | - Jiangyuan Li
- Center for Epigenetics & Disease Prevention, Institute of Biosciences & Technology, College of Medicine, Texas A&M University, Houston, TX 77030, USA; (J.W.); (J.L.)
- Department of Statistics, Texas A&M University, College Station, TX 77843, USA
| | - Zhimin Liu
- Department of Nutrition, Texas A&M University, College Station, TX 77843, USA; (H.C.); (H.P.); (Z.L.); (X.W.)
| | - Xian Wang
- Department of Nutrition, Texas A&M University, College Station, TX 77843, USA; (H.C.); (H.P.); (Z.L.); (X.W.)
| | - Ke Zhang
- Department of Nutrition, Texas A&M University, College Station, TX 77843, USA; (H.C.); (H.P.); (Z.L.); (X.W.)
- Center for Epigenetics & Disease Prevention, Institute of Biosciences & Technology, College of Medicine, Texas A&M University, Houston, TX 77030, USA; (J.W.); (J.L.)
| | - Linglin Xie
- Department of Nutrition, Texas A&M University, College Station, TX 77843, USA; (H.C.); (H.P.); (Z.L.); (X.W.)
| |
Collapse
|
10
|
Theodorakis N, Kreouzi M, Pappas A, Nikolaou M. Beyond Calories: Individual Metabolic and Hormonal Adaptations Driving Variability in Weight Management-A State-of-the-Art Narrative Review. Int J Mol Sci 2024; 25:13438. [PMID: 39769203 PMCID: PMC11676201 DOI: 10.3390/ijms252413438] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 12/11/2024] [Accepted: 12/14/2024] [Indexed: 01/11/2025] Open
Abstract
The global rise in obesity underscores the need for effective weight management strategies that address individual metabolic and hormonal variability, moving beyond the simplistic "calories in, calories out" model. Body types-ectomorph, mesomorph, and endomorph-provide a framework for understanding the differences in fat storage, muscle development, and energy expenditure, as each type responds uniquely to caloric intake and exercise. Variability in weight outcomes is influenced by factors such as genetic polymorphisms and epigenetic changes in hormonal signaling pathways and metabolic processes, as well as lifestyle factors, including nutrition, exercise, sleep, and stress. These factors impact the magnitude of lipogenesis and myofibrillar protein synthesis during overfeeding, as well as the extent of lipolysis and muscle proteolysis during caloric restriction, through complex mechanisms that involve changes in the resting metabolic rate, metabolic pathways, and hormonal profiles. Precision approaches, such as nutrigenomics, indirect calorimetry, and artificial-intelligence-based strategies, can potentially leverage these insights to create individualized weight management strategies aligned with each person's unique metabolic profile. By addressing these personalized factors, precision nutrition offers a promising pathway to sustainable and effective weight management outcomes. The main objective of this review is to examine the metabolic and hormonal adaptations driving variability in weight management outcomes and explore how precision nutrition can address these challenges through individualized strategies.
Collapse
Affiliation(s)
- Nikolaos Theodorakis
- NT-CardioMetabolics, Clinic for Metabolism and Athletic Performance, 47 Tirteou Str., 17564 Palaio Faliro, Greece;
- Department of Cardiology & Preventive Cardiology Outpatient Clinic, Amalia Fleming General Hospital, 14, 25th Martiou Str., 15127 Melissia, Greece
- School of Medicine, National and Kapodistrian University of Athens, 75 Mikras Asias, 11527 Athens, Greece
| | - Magdalini Kreouzi
- Department of Internal Medicine, Amalia Fleming General Hospital, 14, 25th Martiou Str., 15127 Melissia, Greece;
| | - Andreas Pappas
- Department of Informatics and Telecommunications, National and Kapodistrian University of Athens, Panepistimioupolis, Ilisia, 15784 Athens, Greece;
| | - Maria Nikolaou
- Department of Cardiology & Preventive Cardiology Outpatient Clinic, Amalia Fleming General Hospital, 14, 25th Martiou Str., 15127 Melissia, Greece
| |
Collapse
|
11
|
Miranda Furtado CL, Hansen M, Kogure GS, Ribeiro VB, Taylor N, Racy Soares M, Ferriani RA, Aston KI, Jenkins T, dos Reis RM. Resistance and aerobic training increases genome-wide DNA methylation in women with polycystic ovary syndrome. Epigenetics 2024; 19:2305082. [PMID: 38245873 PMCID: PMC10802204 DOI: 10.1080/15592294.2024.2305082] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 01/09/2024] [Indexed: 01/23/2024] Open
Abstract
Physical activity is a first-line treatment for polycystic ovary syndrome (PCOS). Resistance or aerobic exercise improves metabolic complications, reproductive outcomes, and quality of life in PCOS. DNA methylation reprogramming during exercise may be the major modifier behind these changes. We sought to evaluate genome-wide DNA methylation changes after supervised resistance and aerobic exercise in women with PCOS. Exercises were performed in 56 women with PCOS (resistance, n = 30; aerobic, n = 26), for 16 weeks (wks), three times per week, in 50-minute to one-hour sessions. Anthropometric indices and hormonal and metabolic parameters were measured before and after training. Genome-wide leukocyte DNA methylation was analysed by Infinium Human MethylationEPIC 850K BeadChip microarrays (Illumina). Both resistance and aerobic exercise improved anthropometric indices, metabolic dysfunction, and hyperandrogenism in PCOS after the training programme, but no differences were observed between the two exercises. Resistance and aerobic exercise increased genome-wide DNA methylation, although resistance changed every category in the CpG island context (islands, shores, shelve, and open sea), whereas aerobic exercise altered CpG shores and the open sea. Using a stringent FDR (>40), 6 significantly differentially methylated regions (DMRs) were observed in the resistance exercise cohort and 14 DRMs in the aerobic cohort, all of which were hypermethylated. The increase in genome-wide DNA methylation may be related to the metabolic and hormonal changes observed in PCOS after resistance and aerobic exercise. Since the mammalian genome is hypermethylated globally to prevent genomic instability and ageing, resistance and aerobic exercise may promote health and longevity through environmentally induced epigenetic changes.
Collapse
Affiliation(s)
- Cristiana Libardi Miranda Furtado
- Department of Gynecology and Obstetrics, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, Brazil
- Experimental Biology Center, Graduate Program in Medical Sciences, University of Fortaleza, Fortaleza, Ceará, Brazil
- Drug Research and Development Center, Postgraduate Program in Translational Medicine, Federal University of Ceará, Fortaleza, Brazil
| | - Megan Hansen
- Department of Cell Biology and Physiology, Brigham Young University, Provo, UT, USA
| | - Gislaine Satyko Kogure
- Department of Gynecology and Obstetrics, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, Brazil
| | - Victor Barbosa Ribeiro
- Department of Gynecology and Obstetrics, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, Brazil
| | - Nathanael Taylor
- Department of Cell Biology and Physiology, Brigham Young University, Provo, UT, USA
| | - Murilo Racy Soares
- Department of Gynecology and Obstetrics, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, Brazil
| | - Rui Alberto Ferriani
- Department of Gynecology and Obstetrics, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, Brazil
| | - Kenneth Ivan Aston
- Department of Surgery, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Timothy Jenkins
- Department of Cell Biology and Physiology, Brigham Young University, Provo, UT, USA
- Department of Surgery, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Rosana Maria dos Reis
- Department of Gynecology and Obstetrics, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, Brazil
| |
Collapse
|
12
|
Carvalho LM, Carvalho BG, Souza LL, da Mota JC, Ribeiro AA, Nicoletti CF. Obesity as an aggravating factor of systemic lupus erythematosus disease: What we already know and what we must explore. A rapid scoping review. Nutrition 2024; 128:112559. [PMID: 39244807 DOI: 10.1016/j.nut.2024.112559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 08/06/2024] [Accepted: 08/08/2024] [Indexed: 09/10/2024]
Abstract
Systemic lupus erythematosus (SLE) is a chronic autoimmune disease that can affect various organs and systems. Symptoms of SLE can vary widely from person to person and over time, including fatigue, joint pain, skin rashes, fever, and inflammation of multiple organs. The association between SLE and excess body weight has been the subject of study, with evidence suggesting that overweight and obesity can worsen the disease´s clinical presentation. Obesity is linked to a state of low-grade chronic inflammation, which can exacerbate the inflammation present in SLE. Additionally, obesity may negatively impact treatment response, disease progression, and patient prognosis. Patients with SLE and obesity may face additional challenges in managing the disease, such as increased symptom severity, higher risk of cardiovascular and renal complications, and a reduced response to conventional treatments. Obesity can also influence the quality of life of patients with SLE, making a holistic approach that considers the individual's nutritional status essential. Therefore, understanding the relationship between obesity and SLE is crucial for optimizing treatment, improving clinical outcomes, and enhancing patients' quality of life. Further research is needed to elucidate the underlying pathophysiological mechanisms, develop more precise and personalized management strategies, and identify biomarkers that can predict disease prognosis and treatment response.
Collapse
Affiliation(s)
- Lucas M Carvalho
- Applied Physiology and Nutrition Research Group - School of Physical Education and Sport and Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Sao Paulo, Brazil; Center of Lifestyle Medicine, Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Sao Paulo, Brazil
| | - Beatriz G Carvalho
- Applied Physiology and Nutrition Research Group - School of Physical Education and Sport and Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Sao Paulo, Brazil; Center of Lifestyle Medicine, Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Sao Paulo, Brazil
| | - Leticia L Souza
- Applied Physiology and Nutrition Research Group - School of Physical Education and Sport and Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Sao Paulo, Brazil; Center of Lifestyle Medicine, Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Sao Paulo, Brazil
| | - Jhulia Cnl da Mota
- Applied Physiology and Nutrition Research Group - School of Physical Education and Sport and Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Sao Paulo, Brazil; Center of Lifestyle Medicine, Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Sao Paulo, Brazil
| | - Amanda A Ribeiro
- Applied Physiology and Nutrition Research Group - School of Physical Education and Sport and Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Sao Paulo, Brazil; Center of Lifestyle Medicine, Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Sao Paulo, Brazil
| | - Carolina F Nicoletti
- Applied Physiology and Nutrition Research Group - School of Physical Education and Sport and Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Sao Paulo, Brazil; Center of Lifestyle Medicine, Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Sao Paulo, Brazil; Rheumatology Division, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de São Paulo, Sao Paulo, Brazil.
| |
Collapse
|
13
|
Zhang W, Young JI, Gomez L, Schmidt MA, Lukacsovich D, Kunkle BW, Chen X, Martin ER, Wang L. Blood DNA Methylation Signature for Incident Dementia: Evidence from Longitudinal Cohorts. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.11.03.24316667. [PMID: 39649611 PMCID: PMC11623760 DOI: 10.1101/2024.11.03.24316667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/11/2024]
Abstract
INTRODUCTION Distinguishing between molecular changes that precede dementia onset and those resulting from the disease is challenging with cross-sectional studies. METHODS We studied blood DNA methylation (DNAm) differences and incident dementia in two large longitudinal cohorts: the Offspring cohort of the Framingham Heart Study (FHS) and the Alzheimer's Disease Neuroimaging Initiative (ADNI) study. We analyzed blood DNAm samples from over 1,000 cognitively unimpaired subjects. RESULTS Meta-analysis identified 44 CpGs and 44 differentially methylated regions consistently associated with time to dementia in both cohorts. Our integrative analysis identified early processes in dementia, such as immune responses and metabolic dysfunction. Furthermore, we developed a Methylation-based Risk Score, which successfully predicted future cognitive decline in an independent validation set, even after accounting for age, sex, APOE ε4, years of education, baseline diagnosis, and baseline MMSE score. DISCUSSION DNA methylation offers a promising source of biomarker for early detection of dementia.
Collapse
Affiliation(s)
- Wei Zhang
- Division of Biostatistics, Department of Public Health Sciences, University of Miami, Miller School of Medicine, Miami, FL 33136, USA
| | - Juan I. Young
- Dr. John T Macdonald Foundation Department of Human Genetics, University of Miami, Miller School of Medicine, Miami, FL 33136, USA
- John P. Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Lissette Gomez
- John P. Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Michael A. Schmidt
- Dr. John T Macdonald Foundation Department of Human Genetics, University of Miami, Miller School of Medicine, Miami, FL 33136, USA
- John P. Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - David Lukacsovich
- Division of Biostatistics, Department of Public Health Sciences, University of Miami, Miller School of Medicine, Miami, FL 33136, USA
| | - Brian W. Kunkle
- Dr. John T Macdonald Foundation Department of Human Genetics, University of Miami, Miller School of Medicine, Miami, FL 33136, USA
- John P. Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Xi Chen
- Division of Biostatistics, Department of Public Health Sciences, University of Miami, Miller School of Medicine, Miami, FL 33136, USA
- Sylvester Comprehensive Cancer Center, University of Miami, Miller School of Medicine, Miami, FL 33136, USA
| | - Eden R. Martin
- Dr. John T Macdonald Foundation Department of Human Genetics, University of Miami, Miller School of Medicine, Miami, FL 33136, USA
- John P. Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Lily Wang
- Division of Biostatistics, Department of Public Health Sciences, University of Miami, Miller School of Medicine, Miami, FL 33136, USA
- Dr. John T Macdonald Foundation Department of Human Genetics, University of Miami, Miller School of Medicine, Miami, FL 33136, USA
- John P. Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, FL 33136, USA
- Sylvester Comprehensive Cancer Center, University of Miami, Miller School of Medicine, Miami, FL 33136, USA
| |
Collapse
|
14
|
Chen ZJ, Das SS, Kar A, Lee SHT, Abuhanna KD, Alvarez M, Sukhatme MG, Gelev KZ, Heffel MG, Zhang Y, Avram O, Rahmani E, Sankararaman S, Heinonen S, Peltoniemi H, Halperin E, Pietiläinen KH, Luo C, Pajukanta P. Single-cell DNA methylome and 3D genome atlas of the human subcutaneous adipose tissue. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.02.621694. [PMID: 39554055 PMCID: PMC11566006 DOI: 10.1101/2024.11.02.621694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/19/2024]
Abstract
Human subcutaneous adipose tissue (SAT) contains a diverse array of cell-types; however, the epigenomic landscape among the SAT cell-types has remained elusive. Our integrative analysis of single-cell resolution DNA methylation and chromatin conformation profiles (snm3C-seq), coupled with matching RNA expression (snRNA-seq), systematically cataloged the epigenomic, 3D topology, and transcriptomic dynamics across the SAT cell-types. We discovered that the SAT CG methylation (mCG) landscape is characterized by pronounced hyper-methylation in myeloid cells and hypo-methylation in adipocytes and adipose stem and progenitor cells (ASPCs), driving nearly half of the 705,063 detected differentially methylated regions (DMRs). In addition to the enriched cell-type-specific transcription factor binding motifs, we identified TET1 and DNMT3A as plausible candidates for regulating cell-type level mCG profiles. Furthermore, we observed that global mCG profiles closely correspond to SAT lineage, which is also reflected in cell-type-specific chromosome compartmentalization. Adipocytes, in particular, display significantly more short-range chromosomal interactions, facilitating the formation of complex local 3D genomic structures that regulate downstream transcriptomic activity, including those associated with adipogenesis. Finally, we discovered that variants in cell-type level DMRs and A compartments significantly predict and are enriched for variance explained in abdominal obesity. Together, our multimodal study characterizes human SAT epigenomic landscape at the cell-type resolution and links partitioned polygenic risk of abdominal obesity to SAT epigenome.
Collapse
|
15
|
Huang K, Li S, Yang M, Teng Z, Xu B, Wang B, Chen J, Zhao L, Wu H. The epigenetic mechanism of metabolic risk in bipolar disorder. Obes Rev 2024; 25:e13816. [PMID: 39188090 DOI: 10.1111/obr.13816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 05/31/2024] [Accepted: 08/02/2024] [Indexed: 08/28/2024]
Abstract
Bipolar disorder (BD) is a complex and severe mental illness that causes significant suffering to patients. In addition to the burden of depressive and manic symptoms, patients with BD are at an increased risk for metabolic syndrome (MetS). MetS includes factors associated with an increased risk of atherosclerotic cardiovascular disease (CVD) and type 2 diabetes mellitus (T2DM), which may increase the mortality rate of patients with BD. Several studies have suggested a link between BD and MetS, which may be explained at an epigenetic level. We have focused on epigenetic mechanisms to review the causes of metabolic risk in BD.
Collapse
Affiliation(s)
- Kexin Huang
- National Clinical Research Center for Mental Disorders, Department of Psychiatry, China National Technology Institute on Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Sujuan Li
- National Clinical Research Center for Mental Disorders, Department of Psychiatry, China National Technology Institute on Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Min Yang
- National Clinical Research Center for Mental Disorders, Department of Psychiatry, China National Technology Institute on Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Ziwei Teng
- National Clinical Research Center for Mental Disorders, Department of Psychiatry, China National Technology Institute on Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Baoyan Xu
- National Clinical Research Center for Mental Disorders, Department of Psychiatry, China National Technology Institute on Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
- Department of Psychiatry, Hebei Provincial Mental Health Center, Hebei Key Laboratory of Major Mental and Behavioral Disorders, The Sixth Clinical Medical College of Hebei University, Baoding, Hebei, China
| | - Bolun Wang
- Department of Radiology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Jindong Chen
- National Clinical Research Center for Mental Disorders, Department of Psychiatry, China National Technology Institute on Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Liping Zhao
- Clinical Nursing Teaching and Research Section, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Haishan Wu
- National Clinical Research Center for Mental Disorders, Department of Psychiatry, China National Technology Institute on Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| |
Collapse
|
16
|
Cantarero-Cuenca A, Gonzalez-Jimenez A, Martínez-Núñez GM, Garrido-Sánchez L, Ranea JAG, Tinahones FJ. Epigenetic profiles in blood and adipose tissue: identifying strong correlations in morbidly obese and non-obese patients. J Mol Med (Berl) 2024; 102:1315-1325. [PMID: 39225820 DOI: 10.1007/s00109-024-02475-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 07/02/2024] [Accepted: 08/05/2024] [Indexed: 09/04/2024]
Abstract
Epigenetic alterations play a pivotal role in conditions influenced by environmental factors such as overweight and obesity. Many of these changes are tissue-specific, which entails a problem in its study since obtaining human tissue is a complex and invasive practice. While blood is widely used as a surrogate biomarker, it cannot directly extrapolate the evidence found in blood to tissue. Moreover, the intricacies of metabolic diseases add a new layer of complexity, as obesity leads to significant alterations in adipose tissue, potentially causing associated pathologies that can disrupt existing correlations seen in healthy individuals. Here, our objective was to determine which epigenetic markers exhibit correlations between blood and adipose tissue, regardless of the metabolic status. We collected paired blood and adipose tissue samples from 64 patients with morbidity obesity and non-obese and employed the MethylationEPIC 850 K array for analysis. We found that only a small fraction, specifically 4.3% (corresponding to 34,825 CpG sites), of the sites showed statistically significant correlations (R ≥ 0.6) between blood and adipose tissue. Within this subset, 5327 CpG sites exhibited a strong correlation (R ≥ 0.8) between blood and adipose tissue. Our findings suggest that the majority of epigenetic markers in peripheral blood do not reliably reflect changes occurring in visceral adipose tissues. However, it is important to note that there exists a distinct set of epigenetic markers that can indeed mirror changes in adipose tissue within blood samples. KEY MESSAGES: More than 8% of methylation sites exhibit similarity between blood and adipose tissues, regardless of BMI The correlation percentage between blood and adipose tissue is strongly influenced by gender The principal genes implicated in this correlation are related to metabolism or the immunological system.
Collapse
Affiliation(s)
- Antonio Cantarero-Cuenca
- Bioinformatic Platform, Instituto de Investigación Biomédica de Málaga (IBIMA - Plataforma Bionand), 29590, Málaga, Spain
| | - Andres Gonzalez-Jimenez
- Bioinformatic Platform, Instituto de Investigación Biomédica de Málaga (IBIMA - Plataforma Bionand), 29590, Málaga, Spain.
| | - Gracia M Martínez-Núñez
- Instituto de Investigación Biomédica de Málaga (IBIMA - Plataforma Bionand), Málaga, Spain
- Centro de Investigación Biomédica en Red de La Fisiopatología de La Obesidad y La Nutrición (CIBERObn), ISCIII, Madrid, Spain
| | - Lourdes Garrido-Sánchez
- Department of Endocrinology and Nutrition, Virgen de La Victoria University Hospital, Instituto de Investigación Biomédica de Málaga (IBIMA - Plataforma Bionand), 29010, Málaga, Spain.
- Instituto de Investigación Biomédica de Málaga (IBIMA - Plataforma Bionand), Málaga, Spain.
- Centro de Investigación Biomédica en Red de La Fisiopatología de La Obesidad y La Nutrición (CIBERObn), ISCIII, Madrid, Spain.
| | - Juan A G Ranea
- Bioinformatic Platform, Instituto de Investigación Biomédica de Málaga (IBIMA - Plataforma Bionand), 29590, Málaga, Spain
- Department of Biochemistry and Molecular Biology, University of Málaga, Málaga, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, Madrid, Spain
- Spanish National Bioinformatics Institute (INB/ELIXIR-ES), 08034, Barcelona, Spain
| | - Francisco J Tinahones
- Department of Endocrinology and Nutrition, Virgen de La Victoria University Hospital, Instituto de Investigación Biomédica de Málaga (IBIMA - Plataforma Bionand), 29010, Málaga, Spain
- Instituto de Investigación Biomédica de Málaga (IBIMA - Plataforma Bionand), Málaga, Spain
- Faculty of Medicine, University of Málaga, Málaga, Spain
- Centro de Investigación Biomédica en Red de La Fisiopatología de La Obesidad y La Nutrición (CIBERObn), ISCIII, Madrid, Spain
| |
Collapse
|
17
|
Nicoletti CF, Assmann TS, Souza LL, Martinez JA. DNA Methylation and Non-Coding RNAs in Metabolic Disorders: Epigenetic Role of Nutrients, Dietary Patterns, and Weight Loss Interventions for Precision Nutrition. Lifestyle Genom 2024; 17:151-165. [PMID: 39481358 DOI: 10.1159/000541000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 08/14/2024] [Indexed: 11/02/2024] Open
Abstract
BACKGROUND Dysregulation of epigenetic processes and abnormal epigenetic profiles are associated with various metabolic disorders. Nutrition, as an environmental factor, can induce epigenetic changes through both direct exposure and transgenerational inheritance, continuously altering gene expression and shaping the phenotype. Nutrients consumed through food or supplementation, such as vitamin B12, folate, vitamin B6, and choline, play a pivotal role in DNA methylation, a critical process for gene regulation. Additionally, there is mounting evidence that the expression of non-coding RNAs (ncRNAs) can be modulated by the intake of specific nutrients and natural compounds, thereby influencing processes involved in the onset and progression of metabolic diseases. SUMMARY Evidence suggests that dietary patterns, weight loss interventions, nutrients and nutritional bioactive compounds can modulate the expression of various microRNA (miRNAs) and DNA methylation levels, contributing to the development of metabolic disorders such as obesity and type 2 diabetes. Furthermore, several studies have proposed that DNA methylation and miRNA expression could serve as biomarkers for the effects of weight loss programs. KEY MESSAGE Despite ongoing debate regarding the effects of nutrient supplementation on DNA methylation levels and the expression of ncRNAs, certain DNA methylation marks and ncRNA expressions might predict the risk of metabolic disorders and act as biomarkers for forecasting the success of therapies within the framework of precision medicine and nutrition. The role of DNA methylation and miRNA expression as potential mediators of the effects of weight loss underscores their potential as biomarkers for the outcomes of weight loss programs. This highlights the influence of dietary patterns and weight loss interventions on the regulation of miRNA expression and DNA methylation levels, suggesting an interaction between these epigenetic factors and the body's response to weight loss.
Collapse
Affiliation(s)
- Carolina F Nicoletti
- Applied Physiology and Nutrition Research Group - Center of Lifestyle Medicine, Faculdade de Medicina FMUSP, Universidade de São Paulo, São Paulo, Brazil
| | - Taís S Assmann
- Postgraduate Program in Medical Sciences: Endocrinology, Faculdade de Medicina, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Leticia L Souza
- Applied Physiology and Nutrition Research Group - Center of Lifestyle Medicine, Faculdade de Medicina FMUSP, Universidade de São Paulo, São Paulo, Brazil
| | - José Alfredo Martinez
- Precision Nutrition and Cardiometabolic Health, IMDEA-Food Institute (Madrid Institute for Advanced Studies), Campus of International Excellence (CEI) UAM+CSIC, Madrid, Spain
| |
Collapse
|
18
|
Bui H, Keshawarz A, Wang M, Lee M, Ratliff SM, Lin L, Birditt KS, Faul JD, Peters A, Gieger C, Delerue T, Kardia SLR, Zhao W, Guo X, Yao J, Rotter JI, Li Y, Liu X, Liu D, Tavares JF, Pehlivan G, Breteler MMB, Karabegovic I, Ochoa-Rosales C, Voortman T, Ghanbari M, van Meurs JBJ, Nasr MK, Dörr M, Grabe HJ, London SJ, Teumer A, Waldenberger M, Weir DR, Smith JA, Levy D, Ma J, Liu C. Association analysis between an epigenetic alcohol risk score and blood pressure. Clin Epigenetics 2024; 16:149. [PMID: 39468603 PMCID: PMC11520477 DOI: 10.1186/s13148-024-01753-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 09/26/2024] [Indexed: 10/30/2024] Open
Abstract
BACKGROUND Epigenome-wide association studies have identified multiple DNA methylation sites (CpGs) associated with alcohol consumption, an important lifestyle risk factor for cardiovascular diseases. This study aimed to test the hypothesis that an alcohol consumption epigenetic risk score (ERS) is associated with blood pressure (BP) traits. RESULTS We implemented an ERS based on a previously reported epigenetic signature of 144 alcohol-associated CpGs in meta-analysis of participants of European ancestry. We found a one-unit increment of ERS was associated with eleven drinks of alcohol consumed per day, on average, across several cohorts (p < 0.0001). We examined the association of the ERS with systolic blood pressure (SBP), diastolic blood pressure (DBP), and hypertension (HTN) in 3,898 Framingham Heart Study (FHS) participants. Cross-sectional analyses in FHS revealed that a one-unit increment of the ERS was associated with 1.93 mm Hg higher SBP (p = 4.64E-07), 0.68 mm Hg higher DBP (p = 0.006), and an odds ratio of 1.78 for HTN (p < 2E-16). Meta-analysis of the cross-sectional association of the ERS with BP traits in eight independent external cohorts (n = 11,544) showed similar relationships with BP levels, i.e., a one-unit increase in ERS was associated with 0.74 mm Hg (p = 0.002) higher SBP and 0.50 mm Hg (p = 0.0006) higher DBP, but not with HTN. Longitudinal analyses in FHS (n = 3260) and five independent external cohorts (n = 4021) showed that the baseline ERS was not associated with a change in BP over time or with incident HTN. CONCLUSIONS Our findings demonstrate that the ERS has potential clinical utility in assessing lifestyle factors related to cardiovascular risk, especially when self-reported behavioral data (e.g., alcohol consumption) are unreliable or unavailable.
Collapse
Affiliation(s)
- Helena Bui
- Population Sciences Branch, Division of Intramural Research, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
- Framingham Heart Study, 73 Mt. Wayte Avenue, Framingham, MA, 01702, USA
| | - Amena Keshawarz
- Population Sciences Branch, Division of Intramural Research, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
- Framingham Heart Study, 73 Mt. Wayte Avenue, Framingham, MA, 01702, USA
| | - Mengyao Wang
- Department of Biostatistics, Boston University School of Public Health, Boston University, 715 Albany Street, Boston, MA, 02118, USA
| | - Mikyeong Lee
- Epidemiology Branch, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, NC, USA
| | - Scott M Ratliff
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI, USA
| | - Lisha Lin
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI, USA
| | - Kira S Birditt
- Survey Research Center, Institute for Social Research, University of Michigan, Ann Arbor, MI, USA
| | - Jessica D Faul
- Survey Research Center, Institute for Social Research, University of Michigan, Ann Arbor, MI, USA
| | - Annette Peters
- Institute of Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
- Institute for Medical Informatics, Biometrics and Epidemiology, Ludwig-Maximilians-Universität München, Munich, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Munich Heart Alliance, Munich, Germany
| | - Christian Gieger
- German Center for Cardiovascular Research (DZHK), Partner Site Munich Heart Alliance, Munich, Germany
- Research Unit Molecular Epidemiology, Institute of Epidemiology, Helmholtz Munich, Neuherberg, Germany
| | - Thomas Delerue
- Research Unit Molecular Epidemiology, Institute of Epidemiology, Helmholtz Munich, Neuherberg, Germany
| | - Sharon L R Kardia
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI, USA
| | - Wei Zhao
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI, USA
| | - Xiuqing Guo
- The Institute for Translational Genomics and Population Sciences, Department of Pediatrics, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, USA
| | - Jie Yao
- The Institute for Translational Genomics and Population Sciences, Department of Pediatrics, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, USA
| | - Jerome I Rotter
- The Institute for Translational Genomics and Population Sciences, Department of Pediatrics, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, USA
| | - Yi Li
- Department of Biostatistics, Boston University School of Public Health, Boston University, 715 Albany Street, Boston, MA, 02118, USA
| | - Xue Liu
- Department of Biostatistics, Boston University School of Public Health, Boston University, 715 Albany Street, Boston, MA, 02118, USA
| | - Dan Liu
- Population Health Sciences, German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
| | - Juliana F Tavares
- Population Health Sciences, German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
| | - Gökhan Pehlivan
- Population Health Sciences, German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
| | - Monique M B Breteler
- Population Health Sciences, German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
- Institute for Medical Biometry, Informatics and Epidemiology (IMBIE), Faculty of Medicine, University of Bonn, Bonn, Germany
| | - Irma Karabegovic
- Department of Epidemiology, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - Carolina Ochoa-Rosales
- Department of Epidemiology, Erasmus MC University Medical Center, Rotterdam, The Netherlands
- Centro de Vida Saludable de La Universidad de Concepción, Concepción, Chile
| | - Trudy Voortman
- Department of Epidemiology, Erasmus MC University Medical Center, Rotterdam, The Netherlands
- Division of Human Nutrition and Health, Wageningen University and Research, Wageningen, The Netherlands
| | - Mohsen Ghanbari
- Department of Epidemiology, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - Joyce B J van Meurs
- Department of Internal Medicine, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - Mohamed Kamal Nasr
- Institute for Community Medicine, University Medicine Greifswald, Greifswald, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Greifswald, Greifswald, Germany
| | - Marcus Dörr
- German Center for Cardiovascular Research (DZHK), Partner Site Greifswald, Greifswald, Germany
- Department of Internal Medicine B, University Medicine Greifswald, Greifswald, Germany
| | - Hans J Grabe
- Department of Psychiatry and Psychotherapy, University Medicine, Greifswald, Germany
- German Center of Neurodegenerative Diseases (DZNE), Rostock/Greifswald, Germany
| | - Stephanie J London
- Epidemiology Branch, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, NC, USA
| | - Alexander Teumer
- Institute for Community Medicine, University Medicine Greifswald, Greifswald, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Greifswald, Greifswald, Germany
- Department of Population Medicine and Lifestyle Diseases Prevention, Medical University of Bialystok, Bialystok, Poland
| | - Melanie Waldenberger
- German Center for Cardiovascular Research (DZHK), Partner Site Munich Heart Alliance, Munich, Germany
- Research Unit Molecular Epidemiology, Institute of Epidemiology, Helmholtz Munich, Neuherberg, Germany
| | - David R Weir
- Survey Research Center, Institute for Social Research, University of Michigan, Ann Arbor, MI, USA
| | - Jennifer A Smith
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI, USA
- Survey Research Center, Institute for Social Research, University of Michigan, Ann Arbor, MI, USA
| | - Daniel Levy
- Population Sciences Branch, Division of Intramural Research, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA.
- Framingham Heart Study, 73 Mt. Wayte Avenue, Framingham, MA, 01702, USA.
| | - Jiantao Ma
- Gerald J. and Dorothy R. Friedman School of Nutrition Science and Policy, Tufts University, Boston, MA, USA.
| | - Chunyu Liu
- Framingham Heart Study, 73 Mt. Wayte Avenue, Framingham, MA, 01702, USA.
- Department of Biostatistics, Boston University School of Public Health, Boston University, 715 Albany Street, Boston, MA, 02118, USA.
| |
Collapse
|
19
|
Shekhar Patil M, Richter E, Fanning L, Hendrix J, Wyns A, Barrero Santiago L, Nijs J, Godderis L, Polli A. Epigenetic changes in patients with post-acute COVID-19 symptoms (PACS) and long-COVID: A systematic review. Expert Rev Mol Med 2024; 26:e29. [PMID: 39435694 PMCID: PMC11505605 DOI: 10.1017/erm.2024.32] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 08/28/2024] [Accepted: 09/11/2024] [Indexed: 10/23/2024]
Abstract
BACKGROUND Up to 30% of people infected with SARS-CoV-2 report disabling symptoms 2 years after the infection. Over 100 persistent symptoms have been associated with Post-Acute COVID-19 Symptoms (PACS) and/or long-COVID, showing a significant clinical heterogeneity. To develop effective, patient-targeted treatment, a better understanding of underlying mechanisms is needed. Epigenetics has helped elucidating the pathophysiology of several health conditions and it might help unravelling inter-individual differences in patients with PACS and long-COVID. As accumulating research is exploring epigenetic mechanisms in PACS and long-COVID, we systematically summarized the available literature on the topic. METHODS We interrogated five databases (Medline, Embase, Web of Science, Scopus and medXriv/bioXriv) and followed PRISMA and SWiM guidelines to report our results. RESULTS Eight studies were included in our review. Six studies explored DNA methylation in PACS and/or long-COVID, while two studies explored miRNA expression in long-COVID associated with lung complications. Sample sizes were mostly small and study quality was low or fair. The main limitation of the included studies was a poor characterization of the patient population that made a homogeneous synthesis of the literature challenging. However, studies on DNA methylation showed that mechanisms related to the immune and the autonomic nervous system, and cell metabolism might be implicated in the pathophysiology of PACS and long-COVID. CONCLUSION Epigenetic changes might help elucidating PACS and long-COVID underlying mechanisms, aid subgrouping, and point towards tailored treatments. Preliminary evidence is promising but scarce. Biological and epigenetic research on long-COVID will benefit millions of people suffering from long-COVID and has the potential to be transferable and benefit other conditions as well, such as Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS). We urge future research to employ longitudinal designs and provide a better characterization of included patients.
Collapse
Affiliation(s)
- Madhura Shekhar Patil
- Centre for Environment and Health, Department of Public Health and Primary Care, KU Leuven, Leuven, Belgium
| | - Emma Richter
- Centre for Environment and Health, Department of Public Health and Primary Care, KU Leuven, Leuven, Belgium
| | - Lara Fanning
- Centre for Environment and Health, Department of Public Health and Primary Care, KU Leuven, Leuven, Belgium
| | - Jolien Hendrix
- Centre for Environment and Health, Department of Public Health and Primary Care, KU Leuven, Leuven, Belgium
- Pain in Motion (PAIN) Research Group, Department of Physiotherapy, Human Physiology, and Anatomy, Vrije Universiteit Brussel, Brussels, Belgium
- Research Foundation, Flanders (FWO)
| | - Arne Wyns
- Pain in Motion (PAIN) Research Group, Department of Physiotherapy, Human Physiology, and Anatomy, Vrije Universiteit Brussel, Brussels, Belgium
| | - Laura Barrero Santiago
- Department of Cell Biology, Genetics, Pharmacology and Histology – University of Valladolid, Spain
| | - Jo Nijs
- Pain in Motion (PAIN) Research Group, Department of Physiotherapy, Human Physiology, and Anatomy, Vrije Universiteit Brussel, Brussels, Belgium
- Department of Health and Rehabilitation, Institute of Neuroscience and Physiology, University of Gothenburg, Gothenburg, Sweden
| | - Lode Godderis
- Centre for Environment and Health, Department of Public Health and Primary Care, KU Leuven, Leuven, Belgium
- External Service for Prevention and Protection at Work (IDEWE), Leuven, Belgium
| | - Andrea Polli
- Centre for Environment and Health, Department of Public Health and Primary Care, KU Leuven, Leuven, Belgium
- Pain in Motion (PAIN) Research Group, Department of Physiotherapy, Human Physiology, and Anatomy, Vrije Universiteit Brussel, Brussels, Belgium
- Research Foundation, Flanders (FWO)
| |
Collapse
|
20
|
Koetsier J, Cavill R, Reijnders R, Harvey J, Homann J, Kouhsar M, Deckers K, Köhler S, Eijssen LMT, van den Hove DLA, Demuth I, Düzel S, Smith RG, Smith AR, Burrage J, Walker EM, Shireby G, Hannon E, Dempster E, Frayling T, Mill J, Dobricic V, Johannsen P, Wittig M, Franke A, Vandenberghe R, Schaeverbeke J, Freund‐Levi Y, Frölich L, Scheltens P, Teunissen CE, Frisoni G, Blin O, Richardson JC, Bordet R, Engelborghs S, de Roeck E, Martinez‐Lage P, Tainta M, Lleó A, Sala I, Popp J, Peyratout G, Verhey F, Tsolaki M, Andreasson U, Blennow K, Zetterberg H, Streffer J, Vos SJB, Lovestone S, Visser P, Lill CM, Bertram L, Lunnon K, Pishva E. Blood-based multivariate methylation risk score for cognitive impairment and dementia. Alzheimers Dement 2024; 20:6682-6698. [PMID: 39193899 PMCID: PMC11633365 DOI: 10.1002/alz.14061] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 05/03/2024] [Accepted: 05/06/2024] [Indexed: 08/29/2024]
Abstract
INTRODUCTION The established link between DNA methylation and pathophysiology of dementia, along with its potential role as a molecular mediator of lifestyle and environmental influences, positions blood-derived DNA methylation as a promising tool for early dementia risk detection. METHODS In conjunction with an extensive array of machine learning techniques, we employed whole blood genome-wide DNA methylation data as a surrogate for 14 modifiable and non-modifiable factors in the assessment of dementia risk in independent dementia cohorts. RESULTS We established a multivariate methylation risk score (MMRS) for identifying mild cognitive impairment cross-sectionally, independent of age and sex (P = 2.0 × 10-3). This score significantly predicted the prospective development of cognitive impairments in independent studies of Alzheimer's disease (hazard ratio for Rey's Auditory Verbal Learning Test (RAVLT)-Learning = 2.47) and Parkinson's disease (hazard ratio for MCI/dementia = 2.59). DISCUSSION Our work shows the potential of employing blood-derived DNA methylation data in the assessment of dementia risk. HIGHLIGHTS We used whole blood DNA methylation as a surrogate for 14 dementia risk factors. Created a multivariate methylation risk score for predicting cognitive impairment. Emphasized the role of machine learning and omics data in predicting dementia. The score predicts cognitive impairment development at the population level.
Collapse
Affiliation(s)
- Jarno Koetsier
- Department of Psychiatry and NeuropsychologySchool for Mental Health and Neuroscience (MHeNs), Faculty of Health, Medicine and Life Sciences (FHML), Maastricht UniversityMaastrichtThe Netherlands
- Department of BiochemistryCardiovascular Research Institute Maastricht (CARIM), Faculty of Health, Medicine and Life Sciences (FHML), Maastricht UniversityMaastrichtThe Netherlands
| | - Rachel Cavill
- Department of Advanced Computing Sciences (DACS)Faculty of Science and Engineering (FSE)Maastricht UniversityMaastrichtThe Netherlands
| | - Rick Reijnders
- Department of Psychiatry and NeuropsychologySchool for Mental Health and Neuroscience (MHeNs), Faculty of Health, Medicine and Life Sciences (FHML), Maastricht UniversityMaastrichtThe Netherlands
| | - Joshua Harvey
- Medical SchoolFaculty of Health and Life SciencesUniversity of ExeterExeterUK
| | - Jan Homann
- Institute of Epidemiology and Social MedicineUniversity of MünsterMünsterGermany
| | - Morteza Kouhsar
- Medical SchoolFaculty of Health and Life SciencesUniversity of ExeterExeterUK
| | - Kay Deckers
- Department of Psychiatry and NeuropsychologySchool for Mental Health and Neuroscience (MHeNs), Faculty of Health, Medicine and Life Sciences (FHML), Maastricht UniversityMaastrichtThe Netherlands
| | - Sebastian Köhler
- Department of Psychiatry and NeuropsychologySchool for Mental Health and Neuroscience (MHeNs), Faculty of Health, Medicine and Life Sciences (FHML), Maastricht UniversityMaastrichtThe Netherlands
| | - Lars M. T. Eijssen
- Department of Psychiatry and NeuropsychologySchool for Mental Health and Neuroscience (MHeNs), Faculty of Health, Medicine and Life Sciences (FHML), Maastricht UniversityMaastrichtThe Netherlands
- Department of Bioinformatics ‐ BiGCaTResearch Institute of Nutrition and Translational Research in Metabolism (NUTRIM)Faculty of HealthMedicine and Life Sciences (FHML), Maastricht UniversityMaastrichtThe Netherlands
| | - Daniel L. A. van den Hove
- Department of Psychiatry and NeuropsychologySchool for Mental Health and Neuroscience (MHeNs), Faculty of Health, Medicine and Life Sciences (FHML), Maastricht UniversityMaastrichtThe Netherlands
- Department of PsychiatryPsychosomatics and Psychotherapy, University of Wuerzburg, Dr. Manuel NagelWürzburgGermany
| | - Ilja Demuth
- Department of Endocrinology and Metabolic Diseases (including Division of Lipid Metabolism)Charité – Universitätsmedizin Berlincorporate member of Freie Universität Berlin and Humboldt‐Universität zu BerlinBerlinGermany
- BCRT ‐ Berlin Institute of Health Center for Regenerative TherapiesBerlin Institute of Health at Charité – Universitätsmedizin BerlinBerlinGermany
| | - Sandra Düzel
- Center for Lifespan Psychology, Max Planck Institute for Human DevelopmentBerlinGermany
| | | | - Rebecca G. Smith
- Medical SchoolFaculty of Health and Life SciencesUniversity of ExeterExeterUK
| | - Adam R. Smith
- Medical SchoolFaculty of Health and Life SciencesUniversity of ExeterExeterUK
| | - Joe Burrage
- Medical SchoolFaculty of Health and Life SciencesUniversity of ExeterExeterUK
| | - Emma M. Walker
- Medical SchoolFaculty of Health and Life SciencesUniversity of ExeterExeterUK
| | - Gemma Shireby
- Medical SchoolFaculty of Health and Life SciencesUniversity of ExeterExeterUK
| | - Eilis Hannon
- Medical SchoolFaculty of Health and Life SciencesUniversity of ExeterExeterUK
| | - Emma Dempster
- Medical SchoolFaculty of Health and Life SciencesUniversity of ExeterExeterUK
| | - Tim Frayling
- Medical SchoolFaculty of Health and Life SciencesUniversity of ExeterExeterUK
| | - Jonathan Mill
- Medical SchoolFaculty of Health and Life SciencesUniversity of ExeterExeterUK
| | - Valerija Dobricic
- Lübeck Interdisciplinary Platform for Genome Analytics (LIGA), University of LübeckLübeckGermany
| | - Peter Johannsen
- Danish Dementia Research Centre, RigshospitaletCopenhagenDenmark
| | - Michael Wittig
- Institute of Clinical Molecular Biology, Christian‐Albrechts‐University of KielKielGermany
| | - Andre Franke
- Institute of Clinical Molecular Biology, Christian‐Albrechts‐University of KielKielGermany
| | | | | | - Yvonne Freund‐Levi
- Department of Clinical Science and EducationSödersjukhuset, Karolinska InstitutetStockholmSweden
- School of Medical SciencesÖrebro UniversityÖrebroSweden
- Department of GeriatricsSödertälje HospitalSödertäljeSweden
| | - Lutz Frölich
- Department of Geriatric PsychiatryCentral Institute of Mental Health; Medical Faculty Mannheim/Heidelberg UniversityMannheimGermany
| | - Philip Scheltens
- Department of NeurologyAlzheimer Center AmsterdamAmsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMCAmsterdamThe Netherlands
| | - Charlotte E. Teunissen
- Neurochemistry LaboratoryDepartment of Laboratory MedicineAmsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMCAmsterdamThe Netherlands
| | - Giovanni Frisoni
- Memory CenterGeneva University and University Hospitals; on behalf of the AMYPAD ConsortiumGenèveSwitzerland
| | | | - Jill C. Richardson
- Neuroscience Therapeutic Area, GlaxoSmithKline R&DStevenageHertfordshireUK
| | | | - Sebastiaan Engelborghs
- Department of Biomedical SciencesUniversity of AntwerpAntwerpenBelgium
- Neuroprotection & Neuromodulation (NEUR) Research Group, Center for Neurosciences (C4N), Vrije Universiteit Brussel (VUB)Jette, BrusselsBelgium
| | - Ellen de Roeck
- Department of Biomedical SciencesUniversity of AntwerpAntwerpenBelgium
| | - Pablo Martinez‐Lage
- Center for Research and Advanced TherapiesCITA‐Alzheimer FoundationGipuzkoaSpain
| | - Mikel Tainta
- Center for Research and Advanced TherapiesCITA‐Alzheimer FoundationGipuzkoaSpain
| | - Alberto Lleó
- Neurology DepartmentCentro de Investigación en Red en enfermedades neurodegenerativas (CIBERNED), Hospital Sant Pau, Sant Antoni Maria ClaretBarcelonaSpain
| | - Isabel Sala
- Neurology DepartmentCentro de Investigación en Red en enfermedades neurodegenerativas (CIBERNED), Hospital Sant Pau, Sant Antoni Maria ClaretBarcelonaSpain
| | - Julius Popp
- University Hospital of Psychiatry ZürichUniversity of ZürichZürichSwitzerland
| | - Gwendoline Peyratout
- Department of PsychiatryUniversity Hospital of Lausanne (CHUV)LausanneSwitzerland
| | - Frans Verhey
- Department of Psychiatry and NeuropsychologySchool for Mental Health and Neuroscience (MHeNs), Faculty of Health, Medicine and Life Sciences (FHML), Maastricht UniversityMaastrichtThe Netherlands
| | - Magda Tsolaki
- 1st Department of NeurologySchool of Medicine`Laboratory of Neurodegenerative DiseasesCenter for Interdisciplinary Research and InnovationAristotle University of Thessaloniki, and Alzheimer Hellas, Macedonia, Balkan CenterThessalonikiGreece
| | - Ulf Andreasson
- Institute of Neuroscience and PhysiologyDepartment of Psychiatry and NeurochemistryThe Sahlgrenska Academy at University of GothenburgGöteborgSweden
| | - Kaj Blennow
- Institute of Neuroscience and PhysiologyDepartment of Psychiatry and NeurochemistryThe Sahlgrenska Academy at University of GothenburgGöteborgSweden
- Clinical Neurochemistry LabSahlgrenska University HospitalGöteborgSweden
- Paris Brain InstituteICM, Pitié‐Salpêtrière HospitalSorbonne UniversityParisFrance
- Neurodegenerative Disorder Research CenterDivision of Life Sciences and Medicineand Department of NeurologyInstitute on Aging and Brain DisordersUniversity of Science and Technology of China and First Affiliated Hospital of USTCHefeiP.R. China
| | - Henrik Zetterberg
- Institute of Neuroscience and PhysiologyDepartment of Psychiatry and NeurochemistryThe Sahlgrenska Academy at University of GothenburgGöteborgSweden
- Department of Neurodegenerative DiseaseUCL Institute of Neurology, Queen SquareLondonUK
- UK Dementia Research Institute at UCL, Maple HouseLondonUK
- Hong Kong Center for Neurodegenerative DiseasesClear Water BayShatin, N.T.Hong KongChina
- Wisconsin Alzheimer's Disease Research CenterUniversity of Wisconsin School of Medicine and Public HealthUniversity of Wisconsin‐MadisonMadisonWisconsinUSA
| | - Johannes Streffer
- AC Immune SA, formerly Janssen R&D, LLC. Beerse, Belgium at the time of study conductLausanneSwitzerland
| | - Stephanie J. B. Vos
- Department of Psychiatry and NeuropsychologySchool for Mental Health and Neuroscience (MHeNs), Faculty of Health, Medicine and Life Sciences (FHML), Maastricht UniversityMaastrichtThe Netherlands
| | - Simon Lovestone
- University of OxfordOxford, United Kingdom; Currently at Johnson & Johnson Innovative MedicinesBeerseBelgium
| | - Pieter‐Jelle Visser
- Department of Psychiatry and NeuropsychologySchool for Mental Health and Neuroscience (MHeNs), Faculty of Health, Medicine and Life Sciences (FHML), Maastricht UniversityMaastrichtThe Netherlands
- Department of GeriatricsSödertälje HospitalSödertäljeSweden
| | - Christina M. Lill
- Institute of Epidemiology and Social MedicineUniversity of MünsterMünsterGermany
- Ageing Epidemiology Research Unit, School of Public Health, Imperial College, South Kensington CampusLondonUK
| | - Lars Bertram
- Lübeck Interdisciplinary Platform for Genome Analytics (LIGA), University of LübeckLübeckGermany
| | - Katie Lunnon
- Medical SchoolFaculty of Health and Life SciencesUniversity of ExeterExeterUK
| | - Ehsan Pishva
- Department of Psychiatry and NeuropsychologySchool for Mental Health and Neuroscience (MHeNs), Faculty of Health, Medicine and Life Sciences (FHML), Maastricht UniversityMaastrichtThe Netherlands
- Medical SchoolFaculty of Health and Life SciencesUniversity of ExeterExeterUK
| |
Collapse
|
21
|
Harvanek ZM, Kudinova AY, Wong SA, Xu K, Brick L, Daniels TE, Marsit C, Burt A, Sinha R, Tyrka AR. Childhood adversity, accelerated GrimAge, and associated health consequences. J Behav Med 2024; 47:913-926. [PMID: 38762606 PMCID: PMC11365810 DOI: 10.1007/s10865-024-00496-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 05/01/2024] [Indexed: 05/20/2024]
Abstract
Childhood adversity is linked to psychological, behavioral, and physical health problems, including obesity and cardiometabolic disease. Epigenetic alterations are one pathway through which the effects of early life stress and adversity might persist into adulthood. Epigenetic mechanisms have also been proposed to explain why cardiometabolic health can vary greatly between individuals with similar Body Mass Index (BMIs). We evaluated two independent cross-sectional cohorts of adults without known medical illness, one of which explicitly recruited individuals with early life stress (ELS) and control participants (n = 195), and the other a general community sample (n = 477). In these cohorts, we examine associations between childhood adversity, epigenetic aging, and metabolic health. Childhood adversity was associated with increased GrimAge Acceleration (GAA) in both cohorts, both utilizing a dichotomous yes/no classification (both p < 0.01) as well as a continuous measure using the Childhood Trauma Questionnaire (CTQ) (both p < 0.05). Further investigation demonstrated that CTQ subscales for physical and sexual abuse (both p < 0.05) were associated with increased GAA in both cohorts, whereas physical and emotional neglect were not. In both cohorts, higher CTQ was also associated with higher BMI and increased insulin resistance (both p < 0.05). Finally, we demonstrate a moderating effect of BMI on the relationship between GAA and insulin resistance where GAA correlated with insulin resistance specifically at higher BMIs. These results, which were largely replicated between two independent cohorts, suggest that interactions between epigenetics, obesity, and metabolic health may be important mechanisms through which childhood adversity contributes to long-term physical and metabolic health effects.
Collapse
Affiliation(s)
- Zachary M Harvanek
- Department of Psychiatry, Yale University, New Haven, CT, USA.
- Yale Stress Center, Yale University, New Haven, CT, USA.
| | - Anastacia Y Kudinova
- Department of Psychiatry and Human Behavior, Alpert Medical School of Brown University, Providence, RI, USA
- Bradley Hospital, Providence, RI, USA
| | - Samantha A Wong
- New York University Grossman School of Medicine, New York, USA
| | - Ke Xu
- Department of Psychiatry, Yale University, New Haven, CT, USA
- Department of Psychiatry, Connecticut Veteran Healthcare System, West Haven, CT, USA
| | - Leslie Brick
- Department of Psychiatry and Human Behavior, Alpert Medical School of Brown University, Providence, RI, USA
| | - Teresa E Daniels
- Department of Psychiatry and Human Behavior, Alpert Medical School of Brown University, Providence, RI, USA
- Bradley Hospital, Providence, RI, USA
- Initiative for Stress, Trauma, and Resilience, Alpert Medical School of Brown University, Providence, RI, USA
- Laboratory for Clinical and Translational Neuroscience, Butler Hospital, Providence, RI, USA
| | - Carmen Marsit
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA, USA
| | - Amber Burt
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA, USA
| | - Rajita Sinha
- Department of Psychiatry, Yale University, New Haven, CT, USA
- Yale Stress Center, Yale University, New Haven, CT, USA
- Department of Neuroscience, Yale University, New Haven, CT, USA
- Child Study Center, Yale University, New Haven, CT, USA
| | - Audrey R Tyrka
- Department of Psychiatry and Human Behavior, Alpert Medical School of Brown University, Providence, RI, USA
- Initiative for Stress, Trauma, and Resilience, Alpert Medical School of Brown University, Providence, RI, USA
- Laboratory for Clinical and Translational Neuroscience, Butler Hospital, Providence, RI, USA
| |
Collapse
|
22
|
Waldrop SW, Sauder KA, Niemiec SS, Kechris KJ, Yang IV, Starling AP, Perng W, Dabelea D, Borengasser SJ. Differentially methylated regions interrogated for metastable epialleles associate with offspring adiposity. Epigenomics 2024; 16:1215-1230. [PMID: 39263873 PMCID: PMC11486027 DOI: 10.1080/17501911.2024.2359365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Accepted: 05/21/2024] [Indexed: 09/13/2024] Open
Abstract
Aim: Assess if cord blood differentially methylated regions (DMRs) representing human metastable epialleles (MEs) associate with offspring adiposity in 588 maternal-infant dyads from the Colorado Health Start Study.Materials & methods: DNA methylation was assessed via the Illumina 450K array (~439,500 CpG sites). Offspring adiposity was obtained via air displacement plethysmography. Linear regression modeled the association of DMRs potentially representing MEs with adiposity.Results & conclusion: We identified two potential MEs, ZFP57, which associated with infant adiposity change and B4GALNT4, which associated with infancy and childhood adiposity change. Nine DMRs annotating to genes that annotated to MEs associated with change in offspring adiposity (false discovery rate <0.05). Methylation of approximately 80% of DMRs identified associated with decreased change in adiposity.
Collapse
Affiliation(s)
- Stephanie W Waldrop
- Section on Nutrition, Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Katherine A Sauder
- Section on Nutrition, Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
- Lifecourse Epidemiology of Adiposity and Diabetes (LEAD) Center, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Sierra S Niemiec
- Center for Innovative Design and Analysis, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Katerina J Kechris
- Center for Innovative Design and Analysis, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Ivana V Yang
- Department of Biomedical Informatics, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Anne P Starling
- Lifecourse Epidemiology of Adiposity and Diabetes (LEAD) Center, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Wei Perng
- Lifecourse Epidemiology of Adiposity and Diabetes (LEAD) Center, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Dana Dabelea
- Lifecourse Epidemiology of Adiposity and Diabetes (LEAD) Center, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Sarah J Borengasser
- Section on Nutrition, Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| |
Collapse
|
23
|
Katsanou A, Kostoulas C, Liberopoulos E, Tsatsoulis A, Georgiou I, Tigas S. Retrotransposons and Diabetes Mellitus. EPIGENOMES 2024; 8:35. [PMID: 39311137 PMCID: PMC11417941 DOI: 10.3390/epigenomes8030035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Revised: 08/01/2024] [Accepted: 09/04/2024] [Indexed: 09/26/2024] Open
Abstract
Retrotransposons are invasive genetic elements, which replicate by copying and pasting themselves throughout the genome in a process called retrotransposition. The most abundant retrotransposons by number in the human genome are Alu and LINE-1 elements, which comprise approximately 40% of the human genome. The ability of retrotransposons to expand and colonize eukaryotic genomes has rendered them evolutionarily successful and is responsible for creating genetic alterations leading to significant impacts on their hosts. Previous research suggested that hypomethylation of Alu and LINE-1 elements is associated with global hypomethylation and genomic instability in several types of cancer and diseases, such as neurodegenerative diseases, obesity, osteoporosis, and diabetes mellitus (DM). With the advancement of sequencing technologies and computational tools, the study of the retrotransposon's association with physiology and diseases is becoming a hot topic among researchers. Quantifying Alu and LINE-1 methylation is thought to serve as a surrogate measurement of global DNA methylation level. Although Alu and LINE-1 hypomethylation appears to serve as a cellular senescence biomarker promoting genomic instability, there is sparse information available regarding their potential functional and biological significance in DM. This review article summarizes the current knowledge on the involvement of the main epigenetic alterations in the methylation status of Alu and LINE-1 retrotransposons and their potential role as epigenetic markers of global DNA methylation in the pathogenesis of DM.
Collapse
Affiliation(s)
- Andromachi Katsanou
- Department of Endocrinology, University of Ioannina, 45110 Ioannina, Greece; (A.K.); (A.T.)
- Department of Internal Medicine, Hatzikosta General Hospital, 45445 Ioannina, Greece
| | - Charilaos Kostoulas
- Laboratory of Medical Genetics, Faculty of Medicine, School of Health Sciences, University of Ioannina, 45110 Ioannina, Greece; (C.K.); (I.G.)
| | - Evangelos Liberopoulos
- First Department of Propaedeutic Internal Medicine, Medical School, National and Kapodistrian University of Athens, Laiko General Hospital, 11527 Athens, Greece;
| | - Agathocles Tsatsoulis
- Department of Endocrinology, University of Ioannina, 45110 Ioannina, Greece; (A.K.); (A.T.)
| | - Ioannis Georgiou
- Laboratory of Medical Genetics, Faculty of Medicine, School of Health Sciences, University of Ioannina, 45110 Ioannina, Greece; (C.K.); (I.G.)
| | - Stelios Tigas
- Department of Endocrinology, University of Ioannina, 45110 Ioannina, Greece; (A.K.); (A.T.)
| |
Collapse
|
24
|
Danaie M, Yeganegi M, Dastgheib SA, Bahrami R, Jayervand F, Rahmani A, Aghasipour M, Golshan-Tafti M, Azizi S, Marzbanrad Z, Masoudi A, Shiri A, Lookzadeh MH, Noorishadkam M, Neamatzadeh H. The interaction of breastfeeding and genetic factors on childhood obesity. Eur J Obstet Gynecol Reprod Biol X 2024; 23:100334. [PMID: 39224127 PMCID: PMC11367475 DOI: 10.1016/j.eurox.2024.100334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Accepted: 08/07/2024] [Indexed: 09/04/2024] Open
Abstract
Childhood obesity represents a pressing global public health concern due to its widespread prevalence and its close connection to early-life exposure to risk factors. The onset of obesity is contingent upon the interplay of genetic composition, lifestyle choices, and environmental as well as nutritional elements encountered during both fetal development and early childhood. This paper critically examines research discoveries in this area and concisely outlines the influence of breastfeeding on genetic predispositions associated with childhood obesity. Studies have demonstrated that breastfeeding has the potential to reduce childhood obesity by impacting anthropometric indicators. Moreover, the duration of breastfeeding is directly correlated with the degree to which it alters the risk of childhood obesity. Current explorations into the link between genetic factors transmitted through breast milk and childhood obesity predominantly focus on genes like FTO, Leptin, RXRα, PPAR-γ, and others. Numerous research endeavors have suggested that an extended period of exclusive breastfeeding is tied to a diminished likelihood of childhood obesity, particularly if sustained during the initial six months. The duration of breastfeeding also correlates with gene methylation, which could serve as the epigenetic mechanism underpinning breastfeeding's preventative influence against obesity. In summary, the thorough evaluation presented in this review underscores the intricate nature of the association between breastfeeding, genetic factors, and childhood obesity, providing valuable insights for future research efforts and policy formulation.
Collapse
Affiliation(s)
- Mahsa Danaie
- Department of Obstetrics and Gynecology, Iran University of Medical Sciences, Tehran, Iran
| | - Maryam Yeganegi
- Department of Obstetrics and Gynecology, Iranshahr University of Medical Sciences, Iranshahr, Iran
| | - Seyed Alireza Dastgheib
- Department of Medical Genetics, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Reza Bahrami
- Neonatal Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Fatemeh Jayervand
- Department of Obstetrics and Gynecology, Iran University of Medical Sciences, Tehran, Iran
| | - Amirhossein Rahmani
- Department of Plastic Surgery, Iranshahr University of Medical Sciences, Iranshahr, Iran
| | - Maryam Aghasipour
- Department of Cancer Biology, College of Medicine, University of Cincinnati, Cincinnati, OH, USA
| | | | - Sepideh Azizi
- Shahid Akbarabadi Clinical Research Development Unit, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Zahra Marzbanrad
- Department of Obstetrics and Gynecology, Firoozgar Hospital, Firoozgar Clinical Research Development Center, Iran University of Medical Sciences, Tehran, Iran
| | - Ali Masoudi
- General Practitioner, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Amirmasoud Shiri
- General Practitioner, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mohamad Hosein Lookzadeh
- Mother and Newborn Health Research Center, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Mahmood Noorishadkam
- Mother and Newborn Health Research Center, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Hossein Neamatzadeh
- Mother and Newborn Health Research Center, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| |
Collapse
|
25
|
Shelp GV, Dong J, Orlov NO, Malysheva OV, Bender E, Shoveller AK, Bakovic M, Cho CE. Exposure to prenatal excess or imbalanced micronutrients leads to long-term perturbations in one-carbon metabolism, trimethylamine-N-oxide and DNA methylation in Wistar rat offspring. FASEB J 2024; 38:e70032. [PMID: 39212230 DOI: 10.1096/fj.202401018rr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 08/05/2024] [Accepted: 08/21/2024] [Indexed: 09/04/2024]
Abstract
Prenatal multivitamins, including folic acid, are commonly consumed in excess, whereas choline, an essential nutrient and an important source of labile methyl groups, is underconsumed. Here, we characterized profiles of one-carbon metabolism and related pathways and patterns of DNA methylation in offspring exposed to excess or imbalanced micronutrients prenatally. Pregnant Wistar rats were fed either recommended 1× vitamins (RV), high 10× vitamins (HV), high 10× folic acid with recommended choline (HFolRC), or high 10× folic acid with no choline (HFolNC). Offspring were weaned to a high-fat diet for 12 weeks. Circulating metabolites were analyzed with a focus on the hypothalamus, an area known to be under epigenetic regulation. HV, HFolRC, and HFolNC males had higher body weight (BW) and lower plasma choline and methionine consistent with lower hypothalamic S-adenosylmethionine (SAM):S-adenosylhomocysteine (SAH) and global DNA methylation compared with RV. HV and HFolNC females had higher BW and lower plasma 5-methyltetrahydrofolate and methionine consistent with lower hypothalamic global DNA methylation compared with RV. Plasma dimethylglycine (DMG) and methionine were higher as with hypothalamic SAM:SAH and global DNA methylation in HFolRC females without changes in BW compared with RV. Plasma trimethylamine and trimethylamine-N-oxide were higher in males but lower in females from HFolRC compared with RV. Network modeling revealed a link between the folate-dependent pathway and SAH, with most connections through DMG. Final BW was negatively correlated with choline, DMG, and global DNA methylation. In conclusion, prenatal intake of excess or imbalanced micronutrients induces distinct metabolic and epigenetic perturbations in offspring that reflect long-term nutritional programming of health.
Collapse
Affiliation(s)
- Gia V Shelp
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, Ontario, Canada
| | - Jianzhang Dong
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, Ontario, Canada
| | - Nikolai O Orlov
- Department of Chemistry, University of Guelph, Guelph, Ontario, Canada
| | - Olga V Malysheva
- Division of Nutritional Sciences, Human Metabolic Research Unit, Cornell University, Ithaca, New York, USA
| | - Erica Bender
- Division of Nutritional Sciences, Human Metabolic Research Unit, Cornell University, Ithaca, New York, USA
| | - Anna K Shoveller
- Department of Animal Biosciences, University of Guelph, Guelph, Ontario, Canada
| | - Marica Bakovic
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, Ontario, Canada
| | - Clara E Cho
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, Ontario, Canada
| |
Collapse
|
26
|
Lahnsteiner A, Ellmer V, Oberlercher A, Liutkeviciute Z, Schönauer E, Paulweber B, Aigner E, Risch A. G-quadruplex forming regions in GCK and TM6SF2 are targets for differential DNA methylation in metabolic disease and hepatocellular carcinoma patients. Sci Rep 2024; 14:20215. [PMID: 39215018 PMCID: PMC11364803 DOI: 10.1038/s41598-024-70749-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Accepted: 08/20/2024] [Indexed: 09/04/2024] Open
Abstract
The alarming increase in global rates of metabolic diseases (MetDs) and their association with cancer risk renders them a considerable burden on our society. The interplay of environmental and genetic factors in causing MetDs may be reflected in DNA methylation patterns, particularly at non-canonical (non-B) DNA structures, such as G-quadruplexes (G4s) or R-loops. To gain insight into the mechanisms of MetD progression, we focused on DNA methylation and functional analyses on intragenic regions of two MetD risk genes, the glucokinase (GCK) exon 7 and the transmembrane 6 superfamily 2 (TM6SF2) intron 2-exon 3 boundary, which harbor non-B DNA motifs for G4s and R-loops.Pyrosequencing of 148 blood samples from a nested cohort study revealed significant differential methylation in GCK and TM6SF2 in MetD patients versus healthy controls. Furthermore, these regions harbor hypervariable and differentially methylated CpGs also in hepatocellular carcinoma versus normal tissue samples from The Cancer Genome Atlas (TCGA). Permanganate/S1 nuclease footprinting with direct adapter ligation (PDAL-Seq), native polyacrylamide DNA gel electrophoresis and circular dichroism (CD) spectroscopy revealed the formation of G4 structures in these regions and demonstrated that their topology and stability is affected by DNA methylation. Detailed analyses including histone marks, chromatin conformation capture data, and luciferase reporter assays, highlighted the cell-type specific regulatory function of the target regions. Based on our analyses, we hypothesize that changes in DNA methylation lead to topological changes, especially in GCK exon 7, and cause the activation of alternative regulatory elements or potentially play a role in alternative splicing.Our analyses provide a new view on the mechanisms underlying the progression of MetDs and their link to hepatocellular carcinomas, unveiling non-B DNA structures as important key players already in early disease stages.
Collapse
Affiliation(s)
- Angelika Lahnsteiner
- Division of Cancer (Epi-)Genetics, Department of Biosciences and Medical Biology, Center for Tumor Biology and Immunology (CTBI), Paris Lodron University Salzburg, Hellbrunnerstraße 34, 5020, Salzburg, Austria.
- Cancer Cluster Salzburg, Salzburg, Austria.
| | - Victoria Ellmer
- Division of Cancer (Epi-)Genetics, Department of Biosciences and Medical Biology, Center for Tumor Biology and Immunology (CTBI), Paris Lodron University Salzburg, Hellbrunnerstraße 34, 5020, Salzburg, Austria
| | - Anna Oberlercher
- Division of Cancer (Epi-)Genetics, Department of Biosciences and Medical Biology, Center for Tumor Biology and Immunology (CTBI), Paris Lodron University Salzburg, Hellbrunnerstraße 34, 5020, Salzburg, Austria
| | - Zita Liutkeviciute
- Division of Cancer (Epi-)Genetics, Department of Biosciences and Medical Biology, Center for Tumor Biology and Immunology (CTBI), Paris Lodron University Salzburg, Hellbrunnerstraße 34, 5020, Salzburg, Austria
| | - Esther Schönauer
- Division of Structural Biology, Department of Biosciences and Medical Biology, Center for Tumor Biology and Immunology (CTBI), Paris Lodron University Salzburg, Salzburg, Austria
| | - Bernhard Paulweber
- First Department of Medicine, University Clinic Salzburg, Salzburg, Austria
| | - Elmar Aigner
- First Department of Medicine, University Clinic Salzburg, Salzburg, Austria
- Paracelsus Medical University Salzburg, Salzburg, Austria
| | - Angela Risch
- Division of Cancer (Epi-)Genetics, Department of Biosciences and Medical Biology, Center for Tumor Biology and Immunology (CTBI), Paris Lodron University Salzburg, Hellbrunnerstraße 34, 5020, Salzburg, Austria
- Cancer Cluster Salzburg, Salzburg, Austria
| |
Collapse
|
27
|
Li K, Xiao X, Li Y, Lu S, Zi J, Sun X, Xu J, Liu HY, Li X, Song T, Cai D. Insights into the interplay between gut microbiota and lipid metabolism in the obesity management of canines and felines. J Anim Sci Biotechnol 2024; 15:114. [PMID: 39118186 PMCID: PMC11308499 DOI: 10.1186/s40104-024-01073-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Accepted: 07/01/2024] [Indexed: 08/10/2024] Open
Abstract
Obesity is a prevalent chronic disease that has significant negative impacts on humans and our companion animals, including dogs and cats. Obesity occurs with multiple comorbidities, such as diabetes, hypertension, heart disease and osteoarthritis in dogs and cats. A direct link between lipid metabolism dysregulation and obesity-associated diseases has been implicated. However, the understanding of such pathophysiology in companion animals is limited. This review aims to address the role of lipid metabolism in various metabolic disorders associated with obesity, emphasizing the involvement of the gut microbiota. Furthermore, we also discuss the management of obesity, including approaches like nutritional interventions, thus providing novel insights into obesity prevention and treatment for canines and felines.
Collapse
Affiliation(s)
- Kaiqi Li
- Laboratory of Animal Physiology and Molecular Nutrition, Jiangsu Key Laboratory of Animal Genetic Breeding and Molecular Design, College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, China
| | - Xiangyu Xiao
- College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yuling Li
- School of Life Science and Engineering, Foshan University, Foshan, 528231, China
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Food Science, Zhejiang Academy of Agricultural Sciences, Hangzhou, Zhejiang, 310021, People's Republic of China
| | - Sichen Lu
- Laboratory of Animal Physiology and Molecular Nutrition, Jiangsu Key Laboratory of Animal Genetic Breeding and Molecular Design, College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, China
| | - Jianghang Zi
- College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Xiaoqiang Sun
- College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Jia Xu
- College of Agriculture, Jinhua Polytechnic, Jinhua, 321017, China
| | - Hao-Yu Liu
- Laboratory of Animal Physiology and Molecular Nutrition, Jiangsu Key Laboratory of Animal Genetic Breeding and Molecular Design, College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, China
| | - Xiaoqiong Li
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Food Science, Zhejiang Academy of Agricultural Sciences, Hangzhou, Zhejiang, 310021, People's Republic of China.
| | - Tongxing Song
- College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China.
| | - Demin Cai
- Laboratory of Animal Physiology and Molecular Nutrition, Jiangsu Key Laboratory of Animal Genetic Breeding and Molecular Design, College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, China.
| |
Collapse
|
28
|
Bozdemir N, Kablan T, Altintas MO, Sukur G, Cinar O, Uysal F. Altered DNA methylation and Dnmt expression in obese uterus may cause implantation failure. J Mol Histol 2024; 55:427-436. [PMID: 38850446 DOI: 10.1007/s10735-024-10212-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Accepted: 06/03/2024] [Indexed: 06/10/2024]
Abstract
Obesity is defined by increased adipose tissue volume and has become a major risk factor for reproduction. Recent studies have revealed a substantial link between obesity and epigenetics. The epigenome is dynamically regulated mainly by DNA methylation. DNA methylation, which is controlled by DNA methyltransferases (Dnmts), has been widely studied because it is essential for imprinting and regulation of gene expression. In our previous study, we showed that the levels of Dnmt1, Dnmt3a and global DNA methylation was dramatically altered in the testis and ovary of high-fat diet (HFD)-induced obese mice. However, the effect of HFD on Dnmts and global DNA methylation in mouse uterus has not yet been demonstrated. Therefore, in the present study, we aimed to evaluate the effect of HFD on the level of Dnmt1, Dnmt3a, Dnmt3b, Dnmt3l and global DNA methylation in uterus. Our results showed that HFD significantly altered the levels of Dnmts and global DNA methylation in the uterus. The total expression of Dnmt1, Dnmt3a and Dnmt3b was significantly upregulated, while level of Dnmt3l and global DNA methylation were dramatically decreased (p < 0.05). Furthermore, we observed that the expression of Dnmt3b and Dnmt3l was significantly increased in endometrium including gland and epithelium (p < 0.05). Although Dnmt3b was the only protein whose expression significantly increased, the level of global DNA methylation and Dnmt3l significantly decreased in stroma and myometrium (p < 0.05). In conclusion, our results show for the first time that obesity dramatically alters global DNA methylation and expression of Dnmts, and decreased DNA methylation and Dnmt expression may cause abnormal gene expression, especially in the endometrium.
Collapse
Affiliation(s)
- Nazlican Bozdemir
- Department of Histology and Embryology, Ankara Medipol University School of Medicine, Ankara, 06050, Turkey
| | - Tuba Kablan
- Department of Histology and Embryology, Ankara Medipol University School of Medicine, Ankara, 06050, Turkey
| | - Mehmet Ozgen Altintas
- Department of Physiology, Ankara Medipol University School of Medicine, Ankara, Turkey
- Department of Physiology, Istanbul Medipol University Institute of Health Sciences, Istanbul, Turkey
| | - Gozde Sukur
- Department of Histology and Embryology, Ankara University School of Medicine, Ankara, Turkey
| | - Ozgur Cinar
- Department of Histology and Embryology, Ankara University School of Medicine, Ankara, Turkey
| | - Fatma Uysal
- Department of Histology and Embryology, Ankara Medipol University School of Medicine, Ankara, 06050, Turkey.
| |
Collapse
|
29
|
Adjei NK, Samkange-Zeeb F, Boakye D, Saleem M, Christianson L, Kebede MM, Heise TL, Brand T, Esan OB, Taylor-Robinson DC, Agyemang C, Zeeb H. Ethnic differences in metabolic syndrome in high-income countries: A systematic review and meta-analysis. Rev Endocr Metab Disord 2024; 25:727-750. [PMID: 38598068 PMCID: PMC11294386 DOI: 10.1007/s11154-024-09879-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/23/2024] [Indexed: 04/11/2024]
Abstract
This review aimed to systematically quantify the differences in Metabolic Syndrome (MetS) prevalence across various ethnic groups in high-income countries by sex, and to evaluate the overall prevalence trends from 1996 to 2022. We conducted a systematic literature review using MEDLINE, Web of Science Core Collection, CINAHL, and the Cochrane Library, focusing on studies about MetS prevalence among ethnic groups in high-income countries. We pooled 23 studies that used NCEP-ATP III criteria and included 147,756 healthy participants aged 18 and above. We calculated pooled prevalence estimates and 95% confidence intervals (CI) using both fixed-effect and random-effect intercept logistic regression models. Data were analysed for 3 periods: 1996-2005, 2006-2009, and 2010-2021. The pooled prevalence of MetS in high-income countries, based on the NCEP-ATP III criteria, was 27.4% over the studied period, showing an increase from 24.2% in 1996-2005 to 31.9% in 2010-2021, with men and women having similar rates. When stratified by ethnicity and sex, ethnic minority women experienced the highest prevalence at 31.7%, while ethnic majority women had the lowest at 22.7%. Notably, MetS was more prevalent in ethnic minority women than men. Among ethnic minorities, women had a higher prevalence of MetS than men, and the difference was highest in Asians (about 15 percentage points). Among women, the prevalence of MetS was highest in Asians (41.2%) and lowest in Blacks/Africans (26.7%). Among men, it was highest in indigenous minority groups (34.3%) and lowest among in Blacks/Africans (19.8%). MetS is increasing at an alarming rate in high-income countries, particularly among ethnic minority women. The burden of MetS could be effectively reduced by tailoring interventions according to ethnic variations and risk profiles.
Collapse
Affiliation(s)
- Nicholas Kofi Adjei
- Department of Public Health, Policy and Systems, University of Liverpool, Waterhouse Building 2nd Floor Block F, Liverpool, L69 3GL, UK.
- Leibniz Institute for Prevention Research and Epidemiology - BIPS, Bremen, Germany.
- Health Sciences Bremen, University of Bremen, Bremen, Germany.
| | | | - Daniel Boakye
- Leibniz Institute for Prevention Research and Epidemiology - BIPS, Bremen, Germany
| | - Maham Saleem
- Leibniz Institute for Prevention Research and Epidemiology - BIPS, Bremen, Germany
| | - Lara Christianson
- Leibniz Institute for Prevention Research and Epidemiology - BIPS, Bremen, Germany
| | | | - Thomas L Heise
- Leibniz Institute for Prevention Research and Epidemiology - BIPS, Bremen, Germany
| | - Tilman Brand
- Leibniz Institute for Prevention Research and Epidemiology - BIPS, Bremen, Germany
| | - Oluwaseun B Esan
- Department of Public Health, Policy and Systems, University of Liverpool, Waterhouse Building 2nd Floor Block F, Liverpool, L69 3GL, UK
| | - David C Taylor-Robinson
- Department of Public Health, Policy and Systems, University of Liverpool, Waterhouse Building 2nd Floor Block F, Liverpool, L69 3GL, UK
| | - Charles Agyemang
- Department of Public Health, Amsterdam Public Health Research Institute, Academic Medical Center, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Hajo Zeeb
- Leibniz Institute for Prevention Research and Epidemiology - BIPS, Bremen, Germany
- Health Sciences Bremen, University of Bremen, Bremen, Germany
| |
Collapse
|
30
|
Ren Y, Huang P, Zhang L, Tang YF, Luo SL, She Z, Peng H, Chen YQ, Luo JW, Duan WX, Liu LJ, Liu LQ. Dual Regulation Mechanism of Obesity: DNA Methylation and Intestinal Flora. Biomedicines 2024; 12:1633. [PMID: 39200098 PMCID: PMC11351752 DOI: 10.3390/biomedicines12081633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 07/15/2024] [Accepted: 07/18/2024] [Indexed: 09/01/2024] Open
Abstract
Obesity is a multifactorial chronic inflammatory metabolic disorder, with pathogenesis influenced by genetic and non-genetic factors such as environment and diet. Intestinal microbes and their metabolites play significant roles in the occurrence and development of obesity by regulating energy metabolism, inducing chronic inflammation, and impacting intestinal hormone secretion. Epigenetics, which involves the regulation of host gene expression without changing the nucleotide sequence, provides an exact direction for us to understand how the environment, lifestyle factors, and other risk factors contribute to obesity. DNA methylation, as the most common epigenetic modification, is involved in the pathogenesis of various metabolic diseases. The epigenetic modification of the host is induced or regulated by the intestinal microbiota and their metabolites, linking the dynamic interaction between the microbiota and the host genome. In this review, we examined recent advancements in research, focusing on the involvement of intestinal microbiota and DNA methylation in the etiology and progression of obesity, as well as potential interactions between the two factors, providing novel perspectives and avenues for further elucidating the pathogenesis, prevention, and treatment of obesity.
Collapse
Affiliation(s)
- Yi Ren
- Department of Pediatrics, The Second Xiangya Hospital of Central South University, Changsha 410011, China; (Y.R.); (P.H.); (L.Z.); (Y.-F.T.); (S.-L.L.); (Z.S.); (H.P.); (Y.-Q.C.); (J.-W.L.); (W.-X.D.); (L.-J.L.)
- Children’s Brain Development and Brain Injury Research Office, The Second Xiangya Hospital of Central South University, Changsha 410011, China
- Department of Pediatrics, Haikou Hospital of the Maternal and Child Health, Haikou 570100, China
- Department of Children’s Healthcare, Hainan Modern Women and Children’s Medical, Haikou 570100, China
| | - Peng Huang
- Department of Pediatrics, The Second Xiangya Hospital of Central South University, Changsha 410011, China; (Y.R.); (P.H.); (L.Z.); (Y.-F.T.); (S.-L.L.); (Z.S.); (H.P.); (Y.-Q.C.); (J.-W.L.); (W.-X.D.); (L.-J.L.)
- Children’s Brain Development and Brain Injury Research Office, The Second Xiangya Hospital of Central South University, Changsha 410011, China
| | - Lu Zhang
- Department of Pediatrics, The Second Xiangya Hospital of Central South University, Changsha 410011, China; (Y.R.); (P.H.); (L.Z.); (Y.-F.T.); (S.-L.L.); (Z.S.); (H.P.); (Y.-Q.C.); (J.-W.L.); (W.-X.D.); (L.-J.L.)
- Children’s Brain Development and Brain Injury Research Office, The Second Xiangya Hospital of Central South University, Changsha 410011, China
| | - Yu-Fen Tang
- Department of Pediatrics, The Second Xiangya Hospital of Central South University, Changsha 410011, China; (Y.R.); (P.H.); (L.Z.); (Y.-F.T.); (S.-L.L.); (Z.S.); (H.P.); (Y.-Q.C.); (J.-W.L.); (W.-X.D.); (L.-J.L.)
- Children’s Brain Development and Brain Injury Research Office, The Second Xiangya Hospital of Central South University, Changsha 410011, China
| | - Sen-Lin Luo
- Department of Pediatrics, The Second Xiangya Hospital of Central South University, Changsha 410011, China; (Y.R.); (P.H.); (L.Z.); (Y.-F.T.); (S.-L.L.); (Z.S.); (H.P.); (Y.-Q.C.); (J.-W.L.); (W.-X.D.); (L.-J.L.)
- Children’s Brain Development and Brain Injury Research Office, The Second Xiangya Hospital of Central South University, Changsha 410011, China
| | - Zhou She
- Department of Pediatrics, The Second Xiangya Hospital of Central South University, Changsha 410011, China; (Y.R.); (P.H.); (L.Z.); (Y.-F.T.); (S.-L.L.); (Z.S.); (H.P.); (Y.-Q.C.); (J.-W.L.); (W.-X.D.); (L.-J.L.)
- Children’s Brain Development and Brain Injury Research Office, The Second Xiangya Hospital of Central South University, Changsha 410011, China
| | - Hong Peng
- Department of Pediatrics, The Second Xiangya Hospital of Central South University, Changsha 410011, China; (Y.R.); (P.H.); (L.Z.); (Y.-F.T.); (S.-L.L.); (Z.S.); (H.P.); (Y.-Q.C.); (J.-W.L.); (W.-X.D.); (L.-J.L.)
- Children’s Brain Development and Brain Injury Research Office, The Second Xiangya Hospital of Central South University, Changsha 410011, China
| | - Yu-Qiong Chen
- Department of Pediatrics, The Second Xiangya Hospital of Central South University, Changsha 410011, China; (Y.R.); (P.H.); (L.Z.); (Y.-F.T.); (S.-L.L.); (Z.S.); (H.P.); (Y.-Q.C.); (J.-W.L.); (W.-X.D.); (L.-J.L.)
- Children’s Brain Development and Brain Injury Research Office, The Second Xiangya Hospital of Central South University, Changsha 410011, China
| | - Jin-Wen Luo
- Department of Pediatrics, The Second Xiangya Hospital of Central South University, Changsha 410011, China; (Y.R.); (P.H.); (L.Z.); (Y.-F.T.); (S.-L.L.); (Z.S.); (H.P.); (Y.-Q.C.); (J.-W.L.); (W.-X.D.); (L.-J.L.)
- Children’s Brain Development and Brain Injury Research Office, The Second Xiangya Hospital of Central South University, Changsha 410011, China
| | - Wang-Xin Duan
- Department of Pediatrics, The Second Xiangya Hospital of Central South University, Changsha 410011, China; (Y.R.); (P.H.); (L.Z.); (Y.-F.T.); (S.-L.L.); (Z.S.); (H.P.); (Y.-Q.C.); (J.-W.L.); (W.-X.D.); (L.-J.L.)
- Children’s Brain Development and Brain Injury Research Office, The Second Xiangya Hospital of Central South University, Changsha 410011, China
| | - Ling-Juan Liu
- Department of Pediatrics, The Second Xiangya Hospital of Central South University, Changsha 410011, China; (Y.R.); (P.H.); (L.Z.); (Y.-F.T.); (S.-L.L.); (Z.S.); (H.P.); (Y.-Q.C.); (J.-W.L.); (W.-X.D.); (L.-J.L.)
- Children’s Brain Development and Brain Injury Research Office, The Second Xiangya Hospital of Central South University, Changsha 410011, China
| | - Li-Qun Liu
- Department of Pediatrics, The Second Xiangya Hospital of Central South University, Changsha 410011, China; (Y.R.); (P.H.); (L.Z.); (Y.-F.T.); (S.-L.L.); (Z.S.); (H.P.); (Y.-Q.C.); (J.-W.L.); (W.-X.D.); (L.-J.L.)
- Children’s Brain Development and Brain Injury Research Office, The Second Xiangya Hospital of Central South University, Changsha 410011, China
| |
Collapse
|
31
|
Hung CY, Lee HJ, Tsai ZT, Huang SJ, Huang HY, Tsai HJ, Yao TC. Maternal folic acid supplementation during pregnancy in association with childhood overweight or obesity. Obesity (Silver Spring) 2024; 32:1179-1186. [PMID: 38572577 DOI: 10.1002/oby.24012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 01/31/2024] [Accepted: 01/31/2024] [Indexed: 04/05/2024]
Abstract
OBJECTIVE This study aimed to examine associations of maternal folic acid supplementation (FAS) during pregnancy with childhood overweight or obesity (OWO) or adiposity. METHODS In a population-based cohort of 1479 children, maternal FAS during pregnancy was assessed retrospectively by questionnaires. BMI and body fat percentages were measured at a mean age of 6.4 years. Pertinent factors were accounted for in data analyses. RESULTS Maternal FAS during pregnancy was negatively associated with OWO (adjusted odds ratio: 0.70; 95% CI: 0.50 to 0.99). There were inverse associations of maternal FAS during pregnancy with BMI z score (β: -0.22; 95% CI: -0.39 to -0.05), whole body fat percentage (β: -1.28; 95% CI: -2.27 to -0.30), trunk fat percentage (β: -1.41; 95% CI: -2.78 to -0.04), and limb fat percentage (β: -1.31; 95% CI: -2.32 to -0.30). Stratified analyses found inverse associations of FAS during pregnancy with OWO, BMI z score, and body fat percentages predominantly among children without breastfeeding and whose parents had a below-tertiary educational level. CONCLUSIONS This study provides novel evidence that maternal FAS during pregnancy was significantly associated with a decreased risk of childhood OWO and adiposity, particularly among children with no breastfeeding and lower parental educational level.
Collapse
Affiliation(s)
- Chi-Yen Hung
- Division of Allergy, Asthma, and Rheumatology, Department of Pediatrics, Chang Gung Memorial Hospital, Taoyuan, Taiwan
- Department of Traditional Chinese Medicine, Chang Gung Memorial Hospital, Taipei, Taiwan
| | - Hsin-Ju Lee
- Division of Allergy, Asthma, and Rheumatology, Department of Pediatrics, Chang Gung Memorial Hospital, Taoyuan, Taiwan
- Department of Pediatrics, Chang Gung Memorial Hospital, Taipei, Taiwan
| | - Zhao-Ting Tsai
- Department of Physical Medicine and Rehabilitation, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Shu-Jung Huang
- Department of Pediatrics, Jen-Ai Hospital, Taichung, Taiwan
| | - Hsin-Yi Huang
- Division of Allergy, Asthma, and Rheumatology, Department of Pediatrics, Chang Gung Memorial Hospital, Taoyuan, Taiwan
- Institute of Environmental and Occupational Health Sciences, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Hui-Ju Tsai
- Institute of Population Health Sciences, National Health Research Institutes, Zhunan, Taiwan
| | - Tsung-Chieh Yao
- Division of Allergy, Asthma, and Rheumatology, Department of Pediatrics, Chang Gung Memorial Hospital, Taoyuan, Taiwan
- Department of Medicine, Chang Gung University College of Medicine, Taoyuan, Taiwan
| |
Collapse
|
32
|
Ariyanto EF, Wijaya I, Pradian ZA, Bhaskara APM, Rahman PHA, Oktavia N. Recent Updates on Epigenetic-Based Pharmacotherapy for Atherosclerosis. Diabetes Metab Syndr Obes 2024; 17:1867-1878. [PMID: 38706808 PMCID: PMC11068051 DOI: 10.2147/dmso.s463221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 04/19/2024] [Indexed: 05/07/2024] Open
Abstract
Atherosclerosis is one of the most dominant pathological processes responsible in cardiovascular diseases (CVD) caused by cholesterol accumulation accompanied by inflammation in the arteries which will subsequently lead to further complications, including myocardial infarction and stroke. Although the incidence of atherosclerosis is decreasing in some countries, it is still considered the leading cause of death worldwide. Atherosclerosis is a vascular pathological process that is chronically inflammatory and is characterized by the invasion of inflammatory cells and cytokines. Many reports have unraveled the pivotal roles of epigenetics such as DNA methylation, post-translational histone modifications, and non-coding RNAs (ncRNAs) in atherogenesis, which regulate the expression of numerous genes related to various responsible pathways. Many studies have been conducted to develop new therapeutical approaches based on epigenetic changes for combating atherosclerosis. This review elaborates on recent updates on the development of new atherosclerosis drugs whose mechanism of action is associated with the modulation of DNA methylation, posttranslational histone modifications, and ncRNA-based gene regulation.
Collapse
Affiliation(s)
- Eko Fuji Ariyanto
- Department of Biomedical Sciences, Faculty of Medicine, Universitas Padjadjaran, Sumedang, Indonesia
| | - Ibnu Wijaya
- Faculty of Medicine, Universitas Padjadjaran, Sumedang, Indonesia
| | | | | | | | - Nandina Oktavia
- Department of Biomedical Sciences, Faculty of Medicine, Universitas Padjadjaran, Sumedang, Indonesia
| |
Collapse
|
33
|
Bui H, Keshawarz A, Wang M, Lee M, Ratliff SM, Lin L, Birditt KS, Faul JD, Peters A, Gieger C, Delerue T, Kardia SLR, Zhao W, Guo X, Yao J, Rotter JI, Li Y, Liu X, Liu D, Tavares JF, Pehlivan G, Breteler MMB, Karabegovic I, Ochoa-Rosales C, Voortman T, Ghanbari M, van Meurs JBJ, Nasr MK, Dörr M, Grabe HJ, London SJ, Teumer A, Waldenberger M, Weir DR, Smith JA, Levy D, Ma J, Liu C. Association analysis between an epigenetic risk score and blood pressure. RESEARCH SQUARE 2024:rs.3.rs-4243866. [PMID: 38699335 PMCID: PMC11065078 DOI: 10.21203/rs.3.rs-4243866/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2024]
Abstract
Background Epigenome-wide association studies have revealed multiple DNA methylation sites (CpGs) associated with alcohol consumption, an important lifestyle risk factor for cardiovascular diseases. Results We generated an alcohol consumption epigenetic risk score (ERS) based on previously reported 144 alcohol-associated CpGs and examined the association of the ERS with systolic blood pressure (SBP), diastolic blood pressure (DBP), and hypertension (HTN) in 3,898 Framingham Heart Study (FHS) participants. We found an association of alcohol intake with the ERS in the meta-analysis with 0.09 units higher ERS per drink consumed per day (p < 0.0001). Cross-sectional analyses in FHS revealed that a one-unit increment of the ERS was associated with 1.93 mm Hg higher SBP (p = 4.64E-07), 0.68 mm Hg higher DBP (p = 0.006), and an odds ratio of 1.78 for HTN (p < 2E-16). Meta-analysis of the cross-sectional association of the ERS with BP traits in eight independent external cohorts (n = 11,544) showed similar relationships with blood pressure levels, i.e., a one-unit increase in ERS was associated with 0.74 (p = 0.002) and 0.50 (p = 0.0006) mm Hg higher SBP and DBP, but could not confirm the association with hypertension. Longitudinal analyses in FHS (n = 3,260) and five independent external cohorts (n = 4,021) showed that the baseline ERS was not associated with a change in blood pressure over time or with incident HTN. Conclusions Our findings provide proof-of-concept that utilizing an ERS is a useful approach to capture the recent health consequences of lifestyle behaviors such as alcohol consumption.
Collapse
Affiliation(s)
| | | | | | - Mikyeong Lee
- National Institute of Environmental Health Sciences
| | | | | | | | | | - Annette Peters
- Helmholtz Munich, German Research Center for Environmental Health
| | - Christian Gieger
- German Center for Cardiovascular Research (DZHK), Partner Site Munich Heart Alliance
| | - Thomas Delerue
- Helmholtz Munich, German Research Center for Environmental Health
| | | | | | - Xiuqing Guo
- Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center
| | - Jie Yao
- Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center
| | - Jerome I Rotter
- Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center
| | - Yi Li
- Boston University School of Public Health
| | - Xue Liu
- Boston University School of Public Health
| | - Dan Liu
- German Center for Neurodegenerative Diseases
| | | | | | | | | | | | | | | | | | | | - Marcus Dörr
- German Center for Cardiovascular Research (DZHK), Partner Site Greifswald
| | | | | | | | - Melanie Waldenberger
- German Center for Cardiovascular Research (DZHK), Partner Site Munich Heart Alliance
| | | | | | | | | | | |
Collapse
|
34
|
Bui H, Keshawarz A, Wang M, Lee M, Ratliff SM, Lin L, Birditt KS, Faul JD, Peters A, Gieger C, Delerue T, Kardia SLR, Zhao W, Guo X, Yao J, Rotter JI, Li Y, Liu X, Liu D, Tavares JF, Pehlivan G, Breteler MM, Karabegovic I, Ochoa-Rosales C, Voortman T, Ghanbari M, van Meurs JB, Nasr MK, Dörr M, Grabe HJ, London SJ, Teumer A, Waldenberger M, Weir DR, Smith JA, Levy D, Ma J, Liu C. Association analysis between an epigenetic alcohol risk score and blood pressure. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.02.29.24303545. [PMID: 38464320 PMCID: PMC10925472 DOI: 10.1101/2024.02.29.24303545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/12/2024]
Abstract
Background Epigenome-wide association studies have revealed multiple DNA methylation sites (CpGs) associated with alcohol consumption, an important lifestyle risk factor for cardiovascular diseases. Results We generated an alcohol consumption epigenetic risk score (ERS) based on previously reported 144 alcohol-associated CpGs and examined the association of the ERS with systolic blood pressure (SBP), diastolic blood pressure (DBP), and hypertension (HTN) in 3,898 Framingham Heart Study (FHS) participants. We found an association of alcohol intake with the ERS in the meta-analysis with 0.09 units higher ERS per drink consumed per day (p < 0.0001). Cross-sectional analyses in FHS revealed that a one-unit increment of the ERS was associated with 1.93 mm Hg higher SBP (p = 4.64E-07), 0.68 mm Hg higher DBP (p = 0.006), and an odds ratio of 1.78 for HTN (p < 2E-16). Meta-analysis of the cross-sectional association of the ERS with BP traits in eight independent external cohorts (n = 11,544) showed similar relationships with blood pressure levels, i.e., a one-unit increase in ERS was associated with 0.74 (p = 0.002) and 0.50 (p = 0.0006) mm Hg higher SBP and DBP, but could not confirm the association with hypertension. Longitudinal analyses in FHS (n = 3,260) and five independent external cohorts (n = 4,021) showed that the baseline ERS was not associated with a change in blood pressure over time or with incident HTN. Conclusions Our findings provide proof-of-concept that utilizing an ERS is a useful approach to capture the recent health consequences of lifestyle behaviors such as alcohol consumption.
Collapse
Affiliation(s)
- Helena Bui
- Population Sciences Branch, Division of Intramural Research, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
- Framingham Heart Study, Framingham, MA, USA
| | - Amena Keshawarz
- Population Sciences Branch, Division of Intramural Research, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
- Framingham Heart Study, Framingham, MA, USA
| | - Mengyao Wang
- Department of Biostatistics, Boston University School of Public Health, Boston, MA
| | - Mikyeong Lee
- Epidemiology Branch, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, NC, USA
| | - Scott M. Ratliff
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI
| | - Lisha Lin
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI
| | - Kira S. Birditt
- Survey Research Center, Institute for Social Research, University of Michigan, Ann Arbor, MI
| | - Jessica D. Faul
- Survey Research Center, Institute for Social Research, University of Michigan, Ann Arbor, MI
| | - Annette Peters
- Institute of Epidemiology, Helmholtz Munich, German Research Center for Environmental Health, German
- Institute for Medical Informatics, Biometrics and Epidemiology, Ludwig-Maximilians-Universität München, Munich, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Munich Heart Alliance, Munich, Germany
| | - Christian Gieger
- German Center for Cardiovascular Research (DZHK), Partner Site Munich Heart Alliance, Munich, Germany
- Research Unit Molecular Epidemiology, Institute of Epidemiology, Helmholtz Munich, German Research Center for Environmental Health, Bavaria, Germany
| | - Thomas Delerue
- Research Unit Molecular Epidemiology, Institute of Epidemiology, Helmholtz Munich, German Research Center for Environmental Health, Bavaria, Germany
| | - Sharon L. R. Kardia
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI
| | - Wei Zhao
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI
| | - Xiuqing Guo
- The Institute for Translational Genomics and Populations, Department of Pediatrics, Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA 90502, USA
| | - Jie Yao
- The Institute for Translational Genomics and Populations, Department of Pediatrics, Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA 90502, USA
| | - Jerome I. Rotter
- The Institute for Translational Genomics and Populations, Department of Pediatrics, Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA 90502, USA
| | - Yi Li
- Department of Biostatistics, Boston University School of Public Health, Boston, MA
| | - Xue Liu
- Department of Biostatistics, Boston University School of Public Health, Boston, MA
| | - Dan Liu
- Population Health Sciences, German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
| | - Juliana F. Tavares
- Population Health Sciences, German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
| | - Gökhan Pehlivan
- Population Health Sciences, German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
| | - Monique M.B. Breteler
- Population Health Sciences, German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
- Institute for Medical Biometry, Informatics and Epidemiology (IMBIE), Faculty of Medicine, University of Bonn, Bonn, Germany
| | - Irma Karabegovic
- Department of Epidemiology, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - Carolina Ochoa-Rosales
- Department of Epidemiology, Erasmus MC University Medical Center, Rotterdam, The Netherlands
- Centro de Vida Saludable de la Universidad de Concepción, Concepción, Chile
| | - Trudy Voortman
- Department of Epidemiology, Erasmus MC University Medical Center, Rotterdam, The Netherlands
- Division of Human Nutrition and Health, Wageningen University and Research, Wageningen, The Netherlands
| | - Mohsen Ghanbari
- Department of Epidemiology, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - Joyce B.J. van Meurs
- Department of Internal Medicine, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - Mohamed Kamal Nasr
- Institute for Community Medicine, University Medicine Greifswald, Greifswald, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Greifswald, Greifswald, Germany
| | - Marcus Dörr
- German Center for Cardiovascular Research (DZHK), Partner Site Greifswald, Greifswald, Germany
- Department of Internal Medicine B, University Medicine Greifswald, Greifswald, Germany
| | - Hans J. Grabe
- Department of Psychiatry and Psychotherapy, University Medicine, Greifswald, Germany
- German Center of Neurodegenerative Diseases (DZNE), Rostock/Greifswald, site Greifswald, Germany
| | - Stephanie J. London
- Epidemiology Branch, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, NC, USA
| | - Alexander Teumer
- Institute for Community Medicine, University Medicine Greifswald, Greifswald, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Greifswald, Greifswald, Germany
- Department of Population Medicine and Lifestyle Diseases Prevention, Medical University of Bialystok, Bialystok, Poland
| | - Melanie Waldenberger
- German Center for Cardiovascular Research (DZHK), Partner Site Munich Heart Alliance, Munich, Germany
- Research Unit Molecular Epidemiology, Institute of Epidemiology, Helmholtz Munich, German Research Center for Environmental Health, Bavaria, Germany
| | - David R. Weir
- Survey Research Center, Institute for Social Research, University of Michigan, Ann Arbor, MI
| | - Jennifer A. Smith
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI
- Survey Research Center, Institute for Social Research, University of Michigan, Ann Arbor, MI
| | - Daniel Levy
- Population Sciences Branch, Division of Intramural Research, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
- Framingham Heart Study, Framingham, MA, USA
| | - Jiantao Ma
- Gerald J. and Dorothy R. Friedman School of Nutrition Science and Policy, Tufts University, Boston, MA, USA
| | - Chunyu Liu
- Framingham Heart Study, Framingham, MA, USA
- Department of Biostatistics, Boston University School of Public Health, Boston, MA
| |
Collapse
|
35
|
Ariyanto EF. The efficacy of botanical drugs in orchestrating epigenetic modifications for ameliorating metabolic disorders. Front Pharmacol 2024; 15:1366551. [PMID: 38645564 PMCID: PMC11026643 DOI: 10.3389/fphar.2024.1366551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Accepted: 03/22/2024] [Indexed: 04/23/2024] Open
Affiliation(s)
- Eko Fuji Ariyanto
- Department of Biomedical Sciences, Faculty of Medicine, Universitas Padjadjaran, Bandung, Indonesia
| |
Collapse
|
36
|
Lossi L, Castagna C, Merighi A. An Overview of the Epigenetic Modifications in the Brain under Normal and Pathological Conditions. Int J Mol Sci 2024; 25:3881. [PMID: 38612690 PMCID: PMC11011998 DOI: 10.3390/ijms25073881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 03/27/2024] [Accepted: 03/28/2024] [Indexed: 04/14/2024] Open
Abstract
Epigenetic changes are changes in gene expression that do not involve alterations to the DNA sequence. These changes lead to establishing a so-called epigenetic code that dictates which and when genes are activated, thus orchestrating gene regulation and playing a central role in development, health, and disease. The brain, being mostly formed by cells that do not undergo a renewal process throughout life, is highly prone to the risk of alterations leading to neuronal death and neurodegenerative disorders, mainly at a late age. Here, we review the main epigenetic modifications that have been described in the brain, with particular attention on those related to the onset of developmental anomalies or neurodegenerative conditions and/or occurring in old age. DNA methylation and several types of histone modifications (acetylation, methylation, phosphorylation, ubiquitination, sumoylation, lactylation, and crotonylation) are major players in these processes. They are directly or indirectly involved in the onset of neurodegeneration in Alzheimer's or Parkinson's disease. Therefore, this review briefly describes the roles of these epigenetic changes in the mechanisms of brain development, maturation, and aging and some of the most important factors dynamically regulating or contributing to these changes, such as oxidative stress, inflammation, and mitochondrial dysfunction.
Collapse
Affiliation(s)
| | | | - Adalberto Merighi
- Department of Veterinary Sciences, University of Turin, Largo Paolo Braccini 2, 10095 Grugliasco, Italy; (L.L.); (C.C.)
| |
Collapse
|
37
|
Güçlü D, Işıksaçan N, Seyit H, Gedikbaşı A, Karabulut M, Erdil İ, Taşçı TS, Yaman M. Effect of Diet before Bariatric Surgery on Ghrelin Level through DNA Methylation. ANNALS OF NUTRITION & METABOLISM 2024; 80:153-160. [PMID: 38498987 PMCID: PMC11151985 DOI: 10.1159/000538406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 03/14/2024] [Indexed: 03/20/2024]
Abstract
INTRODUCTION The ghrelin system, which generates the appetite hormone, is harmed by obesity, a problem of worldwide public health. An efficient way to cure obesity is through bariatric surgery. This randomized controlled study's objective was to assess preoperative diet-related DNA methylation of Ghrelin (GHRL) levels in patients undergoing bariatric surgery. METHODS The 50 patients who volunteered to participate in the trial were randomly divided into two groups. The study group followed the very low-calorie diet for 2 weeks. The control group did not follow any diet. The physiological parameters, weight, and DNA methylation levels of the patients were assessed. RESULTS The percentage of excess weight loss (EWL) in the control and study groups was determined as 47.1% and 51.5%, respectively. The study group's GHRL percentage of methylated reference was 76.8%, whereas the control group's was 67.3%. It was concluded that the EWL and GHRL gene DNA methylation of the diet-treated study group were significantly higher than the control group (p < 0.05). CONCLUSION According to the findings, the pre-op diet had a favorable effect on the patient's behavior modification. It has also been shown to increase postoperative weight loss and DNA methylation of the Ghrelin gene. The ghrelin gene has been muted by methylation, making hunger regulation more manageable.
Collapse
Affiliation(s)
- Duygu Güçlü
- Faculty of Health Sciences, Department of Nutrition and Dietetics, Bezmialem Vakıf University, Istanbul, Turkey
| | - Nilgün Işıksaçan
- Department of Biochemistry, Bakırköy Dr. Sadi Konuk Training and Research Hospital, Istanbul, Turkey
| | - Hakan Seyit
- Department of General Surgery, Bakırköy Dr. Sadi Konuk Training and Research Hospital, Istanbul, Turkey
| | - Asuman Gedikbaşı
- Department of Internal Medical Sciences, Institute of Child Health, Istanbul University, Istanbul, Turkey
| | - Mehmet Karabulut
- Department of General Surgery, Bakırköy Dr. Sadi Konuk Training and Research Hospital, Istanbul, Turkey
| | - İrem Erdil
- Department of Radiology, Bakırköy Dr. Sadi Konuk Training and Research Hospital, Istanbul, Turkey
| | - Tamay Seda Taşçı
- Department of Biochemistry, Bakırköy Dr. Sadi Konuk Training and Research Hospital, Istanbul, Turkey
| | - Mustafa Yaman
- Faculty of Health Sciences, Department of Moleculer Biology and Genetics, Istanbul Sabahattin Zaim University, Istanbul, Turkey
| |
Collapse
|
38
|
Kunte P, Barberio M, Tiwari P, Sukla K, Harmon B, Epstein S, Bhat D, Authelet K, Goldberg M, Rao S, Damle H, Freishtat RJ, Yajnik C. Neonatal adiposity is associated with microRNAs in adipocyte-derived extracellular vesicles in maternal and cord blood, a discovery analysis. Int J Obes (Lond) 2024; 48:403-413. [PMID: 38092957 DOI: 10.1038/s41366-023-01432-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Revised: 11/10/2023] [Accepted: 11/24/2023] [Indexed: 12/26/2023]
Abstract
BACKGROUND Maternal body size, nutrition, and hyperglycemia contribute to neonatal body size and composition. There is little information on maternal-fetal transmission of messages which influence fetal growth. We analyzed adipocyte-derived small extracellular vesicular (ADsEV) microRNAs in maternal and cord blood to explore their adipogenic potential. METHODS There were 279 mother-neonate pairs with all phenotypic data (normal glucose tolerant NGT = 148, gestational diabetes mellitus GDM = 131). Neonates with adiposity were those in the highest tertile (T3) of sex-specific sum of skinfolds and those without adiposity (lean) in the lowest tertile T1 of NGT pregnancies. We studied ADsEV miRNAs in 76 and 51 neonates with and without adiposity respectively and their mothers based on power calculations (68 NGT and 59 GDM pregnancies). ADsEV miRNAs from maternal and cord blood plasma samples were profiled on Agilent 8*60 K microarray. Differential expression (DE) of ADsEV miRNAs in adipose vs. lean groups was studied before and after adjustment for maternal GDM, adiposity, and vitamin B12-folate status. RESULTS Multiple miRNAs were common in maternal and cord blood and positively correlated. We identified 24 maternal and 5 cord blood miRNAs differentially expressed (discovery p ≤ 0.1) in the adipose group in unadjusted, and 19 and 26, respectively, in the adjusted analyses. Even though DE miRNAs were different in maternal and cord blood, they targeted similar adipogenic pathways (e.g., the forkhead box O (FOXO) family of transcription factors, mitogen‑activated protein kinase (MAPK) pathway, transforming growth factor beta (TGF-β) pathway). Maternal GDM and adiposity were associated with many DE ADsEV miRNAs. CONCLUSION Our results suggest that the ADsEV miRNAs in mothers are potential regulators of fetal adiposity. The expression and functionality of miRNAs appear to be influenced by maternal adiposity, hyperglycemia, and micronutrient status during pregnancy.
Collapse
Affiliation(s)
- Pooja Kunte
- Diabetes Unit, KEM Hospital Research Centre, Pune, India
- Diabetes and Islet Biology Group, School of Medicine, Western Sydney University, Sydney, NSW, Australia
| | - Matthew Barberio
- Department of Exercise and Nutrition Sciences, The Milken Institute School of Public Health, George Washington University, Washington, D.C, USA
| | - Pradeep Tiwari
- Diabetes Unit, KEM Hospital Research Centre, Pune, India
- Hubert Department of Global Health, Rollins School of Public Health, Emory University, Atlanta, Georgia, USA
| | - Krishna Sukla
- Diabetes Unit, KEM Hospital Research Centre, Pune, India
- Tata Consultancy Services, Life Sciences Research, Tata Research Development and Design Centre, Pune, India
| | - Brennan Harmon
- Center for Genetic Medicine Research, Children's National Hospital, Washington, D.C., USA
| | - Samuel Epstein
- Center for Genetic Medicine Research, Children's National Hospital, Washington, D.C., USA
| | - Dattatray Bhat
- Diabetes Unit, KEM Hospital Research Centre, Pune, India
| | - Kayla Authelet
- Center for Genetic Medicine Research, Children's National Hospital, Washington, D.C., USA
| | - Madeleine Goldberg
- Center for Genetic Medicine Research, Children's National Hospital, Washington, D.C., USA
| | - Sudha Rao
- Genotypic Technology Pvt. Ltd., Bangalore, India
| | | | - Robert J Freishtat
- Center for Genetic Medicine Research, Children's National Hospital, Washington, D.C., USA.
- Uncommon cures, 5550 Friendship Blvd., Suite 580, Chevy Chase, MD, 2081, USA.
| | | |
Collapse
|
39
|
Lagarde CB, Kavalakatt J, Benz MC, Hawes ML, Arbogast CA, Cullen NM, McConnell EC, Rinderle C, Hebert KL, Khosla M, Belgodere JA, Hoang VT, Collins-Burow BM, Bunnell BA, Burow ME, Alahari SK. Obesity-associated epigenetic alterations and the obesity-breast cancer axis. Oncogene 2024; 43:763-775. [PMID: 38310162 DOI: 10.1038/s41388-024-02954-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 01/18/2024] [Accepted: 01/22/2024] [Indexed: 02/05/2024]
Abstract
Both breast cancer and obesity can regulate epigenetic changes or be regulated by epigenetic changes. Due to the well-established link between obesity and an increased risk of developing breast cancer, understanding how obesity-mediated epigenetic changes affect breast cancer pathogenesis is critical. Researchers have described how obesity and breast cancer modulate the epigenome individually and synergistically. In this review, the epigenetic alterations that occur in obesity, including DNA methylation, histone, and chromatin modification, accelerated epigenetic age, carcinogenesis, metastasis, and tumor microenvironment modulation, are discussed. Delineating the relationship between obesity and epigenetic regulation is vital to furthering our understanding of breast cancer pathogenesis.
Collapse
Affiliation(s)
- Courtney B Lagarde
- Department of Medicine, Section of Hematology and Oncology, Tulane University School of Medicine, New Orleans, LA, 70112, USA
| | - Joachim Kavalakatt
- Department of Microbiology, Immunology and Genetics, University of North Texas Health Science Center, Fort Worth, TX, 76107, USA
| | - Megan C Benz
- Department of Medicine, Section of Hematology and Oncology, Tulane University School of Medicine, New Orleans, LA, 70112, USA
| | - Mackenzie L Hawes
- Department of Medicine, Section of Hematology and Oncology, Tulane University School of Medicine, New Orleans, LA, 70112, USA
| | - Carter A Arbogast
- Department of Medicine, Section of Hematology and Oncology, Tulane University School of Medicine, New Orleans, LA, 70112, USA
| | - Nicole M Cullen
- Department of Medicine, Section of Hematology and Oncology, Tulane University School of Medicine, New Orleans, LA, 70112, USA
| | - Emily C McConnell
- Department of Medicine, Section of Hematology and Oncology, Tulane University School of Medicine, New Orleans, LA, 70112, USA
| | - Caroline Rinderle
- Department of Microbiology, Immunology and Genetics, University of North Texas Health Science Center, Fort Worth, TX, 76107, USA
| | - Katherine L Hebert
- Department of Medicine, Section of Hematology and Oncology, Tulane University School of Medicine, New Orleans, LA, 70112, USA
| | - Maninder Khosla
- Department of Biochemistry and Molecular Biology, LSU Health Science Center School of Medicine, New Orleans, LA, 70112, USA
| | - Jorge A Belgodere
- Department of Medicine, Section of Hematology and Oncology, Tulane University School of Medicine, New Orleans, LA, 70112, USA
- Department of Biological and Agricultural Engineering, Louisiana State University and Agricultural Center, Baton Rouge, LA, 70803, USA
| | - Van T Hoang
- Department of Medicine, Section of Hematology and Oncology, Tulane University School of Medicine, New Orleans, LA, 70112, USA
| | - Bridgette M Collins-Burow
- Department of Medicine, Section of Hematology and Oncology, Tulane University School of Medicine, New Orleans, LA, 70112, USA
| | - Bruce A Bunnell
- Department of Microbiology, Immunology and Genetics, University of North Texas Health Science Center, Fort Worth, TX, 76107, USA
| | - Matthew E Burow
- Department of Medicine, Section of Hematology and Oncology, Tulane University School of Medicine, New Orleans, LA, 70112, USA.
| | - Suresh K Alahari
- Department of Biochemistry and Molecular Biology, LSU Health Science Center School of Medicine, New Orleans, LA, 70112, USA.
- Stanley S. Scott Cancer Center, LSU Health Science Center School of Medicine, New Orleans, LA, 70112, USA.
| |
Collapse
|
40
|
Almohtasib Y, Fancher AJ, Sawalha K. Emerging Trends in Atherosclerosis: Time to Address Atherosclerosis From a Younger Age. Cureus 2024; 16:e56635. [PMID: 38646335 PMCID: PMC11032087 DOI: 10.7759/cureus.56635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/21/2024] [Indexed: 04/23/2024] Open
Abstract
Over the past two decades, research efforts into cardiovascular disease (CVD) have uncovered findings that fundamentally challenge our understanding of CVD, particularly atherosclerosis. Atherosclerosis was primarily attributed to the well-described abnormal lipid accumulation theory, involving plaque growth with subsequent plaque hemorrhage resulting in acute vessel thrombosis that may or may not rupture. This perspective has now evolved to encompass more complex pathways, wherein the accumulation of abnormal products of oxidation and inflammation is the most likely factor mediating atherosclerotic plaque growth. Furthermore, atherosclerosis was traditionally thought of as a disease in patients aged 40 and older. However, mounting evidence has demonstrated that significant atherosclerosis and CVD events are more prevalent in younger patients than previously realized and accelerating in incidence. With this alarming trend among younger individuals, our review sought to explore why this trend may be happening and what can be done about this developing problem.
Collapse
Affiliation(s)
- Yazan Almohtasib
- Internal Medicine, University of Missouri Kansas City School of Medicine, Kansas City, USA
| | - Andrew J Fancher
- Internal Medicine, University of Kansas School of Medicine-Wichita, Wichita, USA
| | - Khalid Sawalha
- Cardiometabolic Medicine, University of Missouri Kansas City School of Medicine, Kansas City, USA
| |
Collapse
|
41
|
Collins NJ, Campbell TS, Bozeman AL, Martes AC, Ross SE, Doherty TS, Brumley MR, Roth TL. Epigenetic processes associated with neonatal spinal transection. Dev Psychobiol 2024; 66:e22466. [PMID: 38388192 DOI: 10.1002/dev.22466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 12/29/2023] [Accepted: 01/18/2024] [Indexed: 02/24/2024]
Abstract
In early development, the spinal cord in healthy or disease states displays remarkable activity-dependent changes in plasticity, which may be in part due to the increased activity of brain derived neurotrophic factor (BDNF). Indeed, BDNF delivery has been efficacious in partially ameliorating many of the neurobiological and behavioral consequences of spinal cord injury (SCI), making elucidating the role of BDNF in the normative developing and injured spinal cord a critical research focus. Recent work in our laboratory provided evidence for aberrant global and locus-specific epigenetic changes in methylation of the Bdnf gene as a consequence of SCI. In the present study, animals underwent thoracic lesions on P1, with cervical and lumbar tissue being later collected on P7, P14, and P21. Levels of Bdnf expression and methylation (exon IX and exon IV), in addition to global methylation levels were quantified at each timepoint. Results indicated locus-specific reductions of Bdnf expression that was accompanied by a parallel increase in methylation caudal to the injury site, with animals displaying increased Bdnf expression at the P14 timepoint. Together, these findings suggest that epigenetic activity of the Bdnf gene may act as biomarker in the etiology and intervention effort efficacy following SCI.
Collapse
Affiliation(s)
- Nicholas J Collins
- Department of Psychological and Brain Sciences, University of Delaware, Newark, Delaware, USA
| | - Taylor S Campbell
- Department of Psychological and Brain Sciences, University of Delaware, Newark, Delaware, USA
| | - Aimee L Bozeman
- Department of Psychology, Idaho State University, Pocatello, Idaho, USA
| | - Alleyna C Martes
- Department of Psychology, Idaho State University, Pocatello, Idaho, USA
| | - Sydney E Ross
- Department of Psychological and Brain Sciences, University of Delaware, Newark, Delaware, USA
| | - Tiffany S Doherty
- Department of Psychological and Brain Sciences, University of Delaware, Newark, Delaware, USA
| | - Michele R Brumley
- Department of Psychology, Idaho State University, Pocatello, Idaho, USA
| | - Tania L Roth
- Department of Psychological and Brain Sciences, University of Delaware, Newark, Delaware, USA
| |
Collapse
|
42
|
Ruggiero-Ruff RE, Le BH, Villa PA, Lainez NM, Athul SW, Das P, Ellsworth BS, Coss D. Single-Cell Transcriptomics Identifies Pituitary Gland Changes in Diet-Induced Obesity in Male Mice. Endocrinology 2024; 165:bqad196. [PMID: 38146776 PMCID: PMC10791142 DOI: 10.1210/endocr/bqad196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 12/15/2023] [Accepted: 12/22/2023] [Indexed: 12/27/2023]
Abstract
Obesity is a chronic disease with increasing prevalence worldwide. Obesity leads to an increased risk of heart disease, stroke, and diabetes, as well as endocrine alterations, reproductive disorders, changes in basal metabolism, and stress hormone production, all of which are regulated by the pituitary. In this study, we performed single-cell RNA sequencing of pituitary glands from male mice fed control and high-fat diet (HFD) to determine obesity-mediated changes in pituitary cell populations and gene expression. We determined that HFD exposure is associated with dramatic changes in somatotrope and lactotrope populations, by increasing the proportion of somatotropes and decreasing the proportion of lactotropes. Fractions of other hormone-producing cell populations remained unaffected. Gene expression changes demonstrated that in HFD, somatotropes became more metabolically active, with increased expression of genes associated with cellular respiration, and downregulation of genes and pathways associated with cholesterol biosynthesis. Despite a lack of changes in gonadotrope fraction, genes important in the regulation of gonadotropin hormone production were significantly downregulated. Corticotropes and thyrotropes were the least affected in HFD, while melanotropes exhibited reduced proportion. Lastly, we determined that changes in plasticity and gene expression were associated with changes in hormone levels. Serum prolactin was decreased corresponding to reduced lactotrope fraction, while lower luteinizing hormone and follicle-stimulating hormone in the serum corresponded to a decrease in transcription and translation. Taken together, our study highlights diet-mediated changes in pituitary gland populations and gene expression that play a role in altered hormone levels in obesity.
Collapse
Affiliation(s)
- Rebecca E Ruggiero-Ruff
- Division of Biomedical Sciences; School of Medicine, University of California, Riverside, CA 92521, USA
| | - Brandon H Le
- Institute for Integrative Genome Biology Bioinformatics Core Facility, University of California, Riverside, CA 92521, USA
| | - Pedro A Villa
- Division of Biomedical Sciences; School of Medicine, University of California, Riverside, CA 92521, USA
| | - Nancy M Lainez
- Division of Biomedical Sciences; School of Medicine, University of California, Riverside, CA 92521, USA
| | - Sandria W Athul
- Department of Physiology, School of Medicine, Southern Illinois University, Carbondale, IL 62901, USA
| | - Pratyusa Das
- Department of Physiology, School of Medicine, Southern Illinois University, Carbondale, IL 62901, USA
| | - Buffy S Ellsworth
- Department of Physiology, School of Medicine, Southern Illinois University, Carbondale, IL 62901, USA
| | - Djurdjica Coss
- Division of Biomedical Sciences; School of Medicine, University of California, Riverside, CA 92521, USA
| |
Collapse
|
43
|
Geiger M, Gorica E, Mohammed SA, Mongelli A, Mengozi A, Delfine V, Ruschitzka F, Costantino S, Paneni F. Epigenetic Network in Immunometabolic Disease. Adv Biol (Weinh) 2024; 8:e2300211. [PMID: 37794610 DOI: 10.1002/adbi.202300211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 09/08/2023] [Indexed: 10/06/2023]
Abstract
Although a large amount of data consistently shows that genes affect immunometabolic characteristics and outcomes, epigenetic mechanisms are also heavily implicated. Epigenetic changes, including DNA methylation, histone modification, and noncoding RNA, determine gene activity by altering the accessibility of chromatin to transcription factors. Various factors influence these alterations, including genetics, lifestyle, and environmental cues. Moreover, acquired epigenetic signals can be transmitted across generations, thus contributing to early disease traits in the offspring. A closer investigation is critical in this aspect as it can help to understand the underlying molecular mechanisms further and gain insights into potential therapeutic targets for preventing and treating diseases arising from immuno-metabolic dysregulation. In this review, the role of chromatin alterations in the transcriptional modulation of genes involved in insulin resistance, systemic inflammation, macrophage polarization, endothelial dysfunction, metabolic cardiomyopathy, and nonalcoholic fatty liver disease (NAFLD), is discussed. An overview of emerging chromatin-modifying drugs and the importance of the individual epigenetic profile for personalized therapeutic approaches in patients with immuno-metabolic disorders is also presented.
Collapse
Affiliation(s)
- Martin Geiger
- Center for Translational and Experimental Cardiology, University Hospital Zürich and University of Zürich, Wagistrasse 12, Schlieren, Zurich, 8952, Switzerland
| | - Era Gorica
- Center for Translational and Experimental Cardiology, University Hospital Zürich and University of Zürich, Wagistrasse 12, Schlieren, Zurich, 8952, Switzerland
| | - Shafeeq Ahmed Mohammed
- Center for Translational and Experimental Cardiology, University Hospital Zürich and University of Zürich, Wagistrasse 12, Schlieren, Zurich, 8952, Switzerland
| | - Alessia Mongelli
- Center for Translational and Experimental Cardiology, University Hospital Zürich and University of Zürich, Wagistrasse 12, Schlieren, Zurich, 8952, Switzerland
| | - Alessandro Mengozi
- Center for Translational and Experimental Cardiology, University Hospital Zürich and University of Zürich, Wagistrasse 12, Schlieren, Zurich, 8952, Switzerland
| | - Valentina Delfine
- Center for Translational and Experimental Cardiology, University Hospital Zürich and University of Zürich, Wagistrasse 12, Schlieren, Zurich, 8952, Switzerland
| | - Frank Ruschitzka
- Center for Translational and Experimental Cardiology, University Hospital Zürich and University of Zürich, Wagistrasse 12, Schlieren, Zurich, 8952, Switzerland
| | - Sarah Costantino
- Center for Translational and Experimental Cardiology, University Hospital Zürich and University of Zürich, Wagistrasse 12, Schlieren, Zurich, 8952, Switzerland
- University Heart Center, University Hospital Zurich and University of Zürich, Wagistrasse 12, Schlieren, Zurich, 8952, Switzerland
| | - Francesco Paneni
- Center for Translational and Experimental Cardiology, University Hospital Zürich and University of Zürich, Wagistrasse 12, Schlieren, Zurich, 8952, Switzerland
- University Heart Center, University Hospital Zurich and University of Zürich, Wagistrasse 12, Schlieren, Zurich, 8952, Switzerland
- Department of Research and Education, University Hospital Zurich and University of Zürich, Wagistrasse 12, Schlieren, Zurich, 8952, Switzerland
| |
Collapse
|
44
|
García-Álvarez NC, Riezu-Boj JI, Martínez JA, García-Calzón S, Milagro FI. A Predictive Tool Based on DNA Methylation Data for Personalized Weight Loss through Different Dietary Strategies: A Pilot Study. Nutrients 2023; 15:5023. [PMID: 38140282 PMCID: PMC10746100 DOI: 10.3390/nu15245023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 11/28/2023] [Accepted: 12/02/2023] [Indexed: 12/24/2023] Open
Abstract
BACKGROUND AND AIMS Obesity is a public health problem. The usual treatment is a reduction in calorie intake and an increase in energy expenditure, but not all individuals respond equally to these treatments. Epigenetics could be a factor that contributes to this heterogeneity. The aim of this research was to determine the association between DNA methylation at baseline and the percentage of BMI loss (%BMIL) after two dietary interventions, in order to design a prediction model to evaluate %BMIL based on methylation data. METHODS AND RESULTS Spanish participants with overweight or obesity (n = 306) were randomly assigned to two lifestyle interventions with hypocaloric diets: one moderately high in protein (MHP) and the other low in fat (LF) for 4 months (Obekit study; ClinicalTrials.gov ID: NCT02737267). Basal DNA methylation was analyzed in white blood cells using the Infinium MethylationEPIC array. After identifying those methylation sites associated with %BMIL (p < 0.05 and SD > 0.1), two weighted methylation sub-scores were constructed for each diet: 15 CpGs were used for the MHP diet and 11 CpGs for the LF diet. Afterwards, a total methylation score was made by subtracting the previous sub-scores. These data were used to design a prediction model for %BMIL through a linear mixed effect model with the interaction between diet and total score. CONCLUSION Overall, DNA methylation predicts the %BMIL of two 4-month hypocaloric diets and was able to determine which type of diet is the most appropriate for each individual. The results of this pioneer study confirm that epigenetic biomarkers may be further used for precision nutrition and the design of personalized dietary strategies against obesity.
Collapse
Affiliation(s)
- Nereyda Carolina García-Álvarez
- Center for Nutrition Research, Department of Nutrition, Food Science and Physiology, Faculty of Pharmacy and Nutrition, University of Navarra, 31008 Pamplona, Spain; (N.C.G.-Á.); (J.I.R.-B.); (J.A.M.); (S.G.-C.)
| | - José Ignacio Riezu-Boj
- Center for Nutrition Research, Department of Nutrition, Food Science and Physiology, Faculty of Pharmacy and Nutrition, University of Navarra, 31008 Pamplona, Spain; (N.C.G.-Á.); (J.I.R.-B.); (J.A.M.); (S.G.-C.)
- Navarra Institute for Health Research (IdiSNA), 31008 Pamplona, Spain
| | - J. Alfredo Martínez
- Center for Nutrition Research, Department of Nutrition, Food Science and Physiology, Faculty of Pharmacy and Nutrition, University of Navarra, 31008 Pamplona, Spain; (N.C.G.-Á.); (J.I.R.-B.); (J.A.M.); (S.G.-C.)
| | - Sonia García-Calzón
- Center for Nutrition Research, Department of Nutrition, Food Science and Physiology, Faculty of Pharmacy and Nutrition, University of Navarra, 31008 Pamplona, Spain; (N.C.G.-Á.); (J.I.R.-B.); (J.A.M.); (S.G.-C.)
- Navarra Institute for Health Research (IdiSNA), 31008 Pamplona, Spain
| | - Fermín I. Milagro
- Center for Nutrition Research, Department of Nutrition, Food Science and Physiology, Faculty of Pharmacy and Nutrition, University of Navarra, 31008 Pamplona, Spain; (N.C.G.-Á.); (J.I.R.-B.); (J.A.M.); (S.G.-C.)
- Navarra Institute for Health Research (IdiSNA), 31008 Pamplona, Spain
- Centro de Investigación Biomédica en Red de la Fisiopatología de la Obesidad y la Nutrición (CIBERobn), Carlos III Health Institute, 28029 Madrid, Spain
| |
Collapse
|
45
|
Sarić A, Rajić J, Tolić A, Dučić T, Vidaković M. Synchrotron-based FTIR microspectroscopy reveals DNA methylation profile in DNA-HALO structure. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 302:123090. [PMID: 37413921 DOI: 10.1016/j.saa.2023.123090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 06/24/2023] [Accepted: 06/27/2023] [Indexed: 07/08/2023]
Abstract
Fourier transform infrared (FTIR) spectroscopy is a rapid, non-destructive and label-free technique for identifying subtle changes in all bio-macromolecules, and has been used as a method of choice for studying DNA conformation, secondary DNA structure transition and DNA damage. In addition, the specific level of chromatin complexity is introduced via epigenetic modifications forcing the technological upgrade in the analysis of such an intricacy. As the most studied epigenetic mechanism, DNA methylation is a major regulator of transcriptional activity, involved in the suppression of a broad spectrum of genes and its deregulation is involved in all non-communicable diseases. The present study was designed to explore the use of synchrotron-based FTIR analysis to monitor the subtle changes in molecule bases regarding the DNA methylation status of cytosine in the whole genome. In order to reveal the conformation-related best sample for FTIR-based DNA methylation analysis in situ, we used methodology for nuclear HALO preparations and slightly modified it to isolated DNA in HALO formations. Nuclear DNA-HALOs represent samples with preserved higher-order chromatin structure liberated of any protein residues that are closer to native DNA conformation than genomic DNA (gDNA) isolated by the standard batch procedure. Using FTIR spectroscopy we analyzed the DNA methylation profile of isolated gDNA and compared it with the DNA-HALOs. This study demonstrated the potential of FTIR microspectroscopy to detect DNA methylation marks in analyzed DNA-HALO specimens more precisely in comparison with classical DNA extraction procedures that yield unstructured whole genomic DNA. In addition, we used different cell types to assess their global DNA methylation profile, as well as defined specific infrared peaks that can be used for screening DNA methylation.
Collapse
Affiliation(s)
- Ana Sarić
- Department of Molecular Biology, Institute for Biological Research "Siniša Stanković" - National Institute of the Republic of Serbia, University of Belgrade, Bulevar despota Stefana 142, Belgrade, Serbia.
| | - Jovana Rajić
- Department of Molecular Biology, Institute for Biological Research "Siniša Stanković" - National Institute of the Republic of Serbia, University of Belgrade, Bulevar despota Stefana 142, Belgrade, Serbia.
| | - Anja Tolić
- Department of Molecular Biology, Institute for Biological Research "Siniša Stanković" - National Institute of the Republic of Serbia, University of Belgrade, Bulevar despota Stefana 142, Belgrade, Serbia.
| | - Tanja Dučić
- ALBA CELLS Synchrotron, Carrer de la Llum 2-26, Cerdanyola del Valles, 08290 Barcelona, Spain.
| | - Melita Vidaković
- Department of Molecular Biology, Institute for Biological Research "Siniša Stanković" - National Institute of the Republic of Serbia, University of Belgrade, Bulevar despota Stefana 142, Belgrade, Serbia.
| |
Collapse
|
46
|
Ponce D, Rodríguez F, Miranda JP, Binder AM, Santos JL, Michels KB, Cutler GB, Pereira A, Iñiguez G, Mericq V. Differential methylation pattern in pubertal girls associated with biochemical premature adrenarche. Epigenetics 2023; 18:2200366. [PMID: 37053179 PMCID: PMC10114989 DOI: 10.1080/15592294.2023.2200366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/14/2023] Open
Abstract
Biochemical premature adrenarche is defined by elevated serum DHEAS [≥40 μg/dL] before age 8 y in girls. This condition is receiving more attention due to its association with obesity, hyperinsulinemia, dyslipidemia, and polycystic ovary syndrome. Nevertheless, the link between early androgen excess and these risk factors remains unknown. Epigenetic modifications, and specifically DNA methylation, have been associated with the initiation and progression of numerous disorders, including obesity and insulin resistance. The aim of this study was to determine if prepubertal androgen exposure is associated with a different methylation profile in pubertal girls. Eighty-six healthy girls were studied. At age 7 y, anthropometric measurements were begun and DHEAS levels were determined. Girls were classified into Low DHEAS (LD) [<42 μg/dL] and High DHEAS (HD) [≥42 μg/dL] groups. At Tanner stages 2 and 4 a DNA methylation microarray was performed to identify differentially methylated CpG positions (DMPs) between HD and LD groups. We observed a differential methylation pattern between pubertal girls with and without biochemical PA. Moreover, a set of DNA methylation markers, selected by the LASSO method, successfully distinguished between HD and LD girls regardless of Tanner stage. Additionally, a subset of these markers were significantly associated with glucose-related measures such as insulin level, HOMA-IR, and glycaemia. This pilot study provides evidence consistent with the hypothesis that high DHEAS concentration, or its hormonally active metabolites, may induce a unique blood methylation signature in pubertal girls, and that this methylation pattern is associated with altered glucose metabolism.
Collapse
Affiliation(s)
- Diana Ponce
- Institute of Maternal and Child Research, School of Medicine, Universidad de Chile, Santiago, Chile
| | - Fernando Rodríguez
- Institute of Maternal and Child Research, School of Medicine, Universidad de Chile, Santiago, Chile
| | - José P Miranda
- Department of Nutrition, Diabetes, and Metabolism, School of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
- Advanced Center for Chronic Diseases (ACCDiS), Pontificia Universidad Católica de Chile & Universidad de Chile, Santiago, Chile
| | - Alexandra M Binder
- Department of Epidemiology, Fielding School of Public Health, University of California, Los Angeles, CA, USA
- Population Sciences in the Pacific Program (Cancer Epidemiology), University of Hawaii Cancer Center, University of Hawaii, Honolulu, HI, USA
| | - José L Santos
- Department of Nutrition, Diabetes, and Metabolism, School of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Karin B Michels
- Department of Epidemiology, Fielding School of Public Health, University of California, Los Angeles, CA, USA
| | | | - Ana Pereira
- Institute of Nutrition and Food Technology (INTA), University of Chile, Santiago, Chile
| | - Germán Iñiguez
- Institute of Maternal and Child Research, School of Medicine, Universidad de Chile, Santiago, Chile
| | - Verónica Mericq
- Institute of Maternal and Child Research, School of Medicine, Universidad de Chile, Santiago, Chile
| |
Collapse
|
47
|
Santos-Pereira M, Pereira SC, Rebelo I, Spadella MA, Oliveira PF, Alves MG. Decoding the Influence of Obesity on Prostate Cancer and Its Transgenerational Impact. Nutrients 2023; 15:4858. [PMID: 38068717 PMCID: PMC10707940 DOI: 10.3390/nu15234858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 11/12/2023] [Accepted: 11/16/2023] [Indexed: 12/18/2023] Open
Abstract
In recent decades, the escalating prevalence of metabolic disorders, notably obesity and being overweight, has emerged as a pressing concern in public health. Projections for the future indicate a continual upward trajectory in obesity rates, primarily attributable to unhealthy dietary patterns and sedentary lifestyles. The ramifications of obesity extend beyond its visible manifestations, intricately weaving a web of hormonal dysregulation, chronic inflammation, and oxidative stress. This nexus of factors holds particular significance in the context of carcinogenesis, notably in the case of prostate cancer (PCa), which is a pervasive malignancy and a leading cause of mortality among men. A compelling hypothesis arises from the perspective of transgenerational inheritance, wherein genetic and epigenetic imprints associated with obesity may wield influence over the development of PCa. This review proposes a comprehensive exploration of the nuanced mechanisms through which obesity disrupts prostate homeostasis and serves as a catalyst for PCa initiation. Additionally, it delves into the intriguing interplay between the transgenerational transmission of both obesity-related traits and the predisposition to PCa. Drawing insights from a spectrum of sources, ranging from in vitro and animal model research to human studies, this review endeavors to discuss the intricate connections between obesity and PCa. However, the landscape remains partially obscured as the current state of knowledge unveils only fragments of the complex mechanisms linking these phenomena. As research advances, unraveling the associated factors and underlying mechanisms promises to unveil novel avenues for understanding and potentially mitigating the nexus between obesity and the development of PCa.
Collapse
Affiliation(s)
- Mariana Santos-Pereira
- iBiMED-Institute of Biomedicine and Department of Medical Science, University of Aveiro, 3810-193 Aveiro, Portugal;
- Endocrine and Metabolic Research, Unit for Multidisciplinary Research in Biomedicine (UMIB), School of Medicine and Biomedical Sciences (ICBAS), University of Porto, 4050-313 Porto, Portugal;
- Laboratory for Integrative and Translational Research in Population Health (ITR), University of Porto, 4099-002 Porto, Portugal
| | - Sara C. Pereira
- Endocrine and Metabolic Research, Unit for Multidisciplinary Research in Biomedicine (UMIB), School of Medicine and Biomedical Sciences (ICBAS), University of Porto, 4050-313 Porto, Portugal;
- Laboratory for Integrative and Translational Research in Population Health (ITR), University of Porto, 4099-002 Porto, Portugal
- LAQV-REQUIMTE and Department of Chemistry, Campus Universitario de Santiago, University of Aveiro, 3810-193 Aveiro, Portugal;
- Department of Pathology, Faculty of Medicine, University of Porto, 4200-319 Porto, Portugal
| | - Irene Rebelo
- UCIBIO-REQUIMTE, Laboratory of Biochemistry, Department of Biologic Sciences, Pharmaceutical Faculty, University of Porto, 4050-313 Porto, Portugal;
| | - Maria A. Spadella
- Human Embryology Laboratory, Marília Medical School, Marília 17519-030, SP, Brazil;
| | - Pedro F. Oliveira
- LAQV-REQUIMTE and Department of Chemistry, Campus Universitario de Santiago, University of Aveiro, 3810-193 Aveiro, Portugal;
| | - Marco G. Alves
- iBiMED-Institute of Biomedicine and Department of Medical Science, University of Aveiro, 3810-193 Aveiro, Portugal;
| |
Collapse
|
48
|
Rabkin SW, Wong CN. Epigenetics in Heart Failure: Role of DNA Methylation in Potential Pathways Leading to Heart Failure with Preserved Ejection Fraction. Biomedicines 2023; 11:2815. [PMID: 37893188 PMCID: PMC10604152 DOI: 10.3390/biomedicines11102815] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 09/21/2023] [Accepted: 09/26/2023] [Indexed: 10/29/2023] Open
Abstract
This review will focus on epigenetic modifications utilizing the DNA methylation mechanism, which is potentially involved in the pathogenesis of heart failure with preserved ejection fraction (HFpEF). The putative pathways of HFpEF will be discussed, specifically myocardial fibrosis, myocardial inflammation, sarcoplasmic reticulum Ca2+-ATPase, oxidative-nitrosative stress, mitochondrial and metabolic defects, as well as obesity. The relationship of HFpEF to aging and atrial fibrillation will be examined from the perspective of DNA methylation.
Collapse
Affiliation(s)
- Simon W. Rabkin
- Department of Medicine, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
- Division of Cardiology, University of British Columbia, Vancouver, BC V5Z 1M9, Canada
| | - Chenille N. Wong
- Department of Medicine, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| |
Collapse
|
49
|
Pérez-Beltrán YE, González-Becerra K, Rivera-Iñiguez I, Martínez-López E, Ramos-Lopez O, Alcaraz-Mejía M, Rodríguez-Echevarría R, Sáyago-Ayerdi SG, Mendivil EJ. A Nutrigenetic Strategy for Reducing Blood Lipids and Low-Grade Inflammation in Adults with Obesity and Overweight. Nutrients 2023; 15:4324. [PMID: 37892400 PMCID: PMC10609523 DOI: 10.3390/nu15204324] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 10/06/2023] [Accepted: 10/08/2023] [Indexed: 10/29/2023] Open
Abstract
The pathogenesis of obesity and dyslipidemia involves genetic factors, such as polymorphisms related to lipid metabolism alterations predisposing their development. This study aimed to evaluate the effect of a nutrigenetic intervention on the blood lipid levels, body composition, and inflammation markers of adults with obesity and overweight. Eleven genetic variants associated with dyslipidemias in Mexicans were selected, and specific nutrigenetic recommendations for these polymorphisms were found. One hundred and one adults were recruited and assigned to follow either a standard or nutrigenetic diet for eight weeks. Anthropometric, biochemical, body composition, and inflammation markers were evaluated through standardized methods. Weighted genetic risk scores (wGRSs) were computed using the study polymorphisms. After intervention, both diets significantly decreased the anthropometric parameters and body composition (p < 0.05). Only the nutrigenetic diet group showed significant reductions in VLDL-c (p = 0.001), triglycerides (p = 0.002), TG:HDL (p = 0.002), IL-6 (p = 0.002), and TNF-α (p = 0.04). wGRSs had a high impact on the ΔTGs and ΔVLDL-c of both groups (standard diet: ΔTGs: Adj R2 = 0.69, p = 0.03; ΔVLDL-c: Adj R2 = 0.71, p = 0.02; nutrigenetic diet: ΔTGs: Adj R2 = 0.49, p = 0.03 and ΔVLDL-c: R2 = 0.29, p = 0.04). This nutrigenetic intervention improved lipid abnormalities in patients with excessive body weight. Hence, nutrigenetic strategies could be coadjuvant tools and enhance the standard dietary treatment for cardiometabolic diseases.
Collapse
Affiliation(s)
- Yolanda E. Pérez-Beltrán
- Laboratorio Integral de Investigación en Alimentos, Tecnológico Nacional de México/Instituto Tecnológico de Tepic, Tepic 63175, Nayarit, Mexico;
| | - Karina González-Becerra
- Departamento de Ciencias Médicas y de la Vida, Centro Universitario de la Ciénega, Instituto de Investigación en Genética Molecular, Universidad de Guadalajara, Ocotlán 47820, Jalisco, Mexico;
| | - Ingrid Rivera-Iñiguez
- Department of Pediatrics, University of California, UCSD Center for Healthy Eating and Activity Research (CHEAR), San Diego, CA 92037, USA;
| | - Erika Martínez-López
- Instituto de Nutrigenética y Nutrigenómica Traslacional, Departamento de Biología Molecular y Genómica, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara 44340, Jalisco, Mexico; (E.M.-L.); (R.R.-E.)
| | - Omar Ramos-Lopez
- Facultad de Medicina y Psicología, Universidad Autónoma de Baja California, Tijuana 22390, Baja California, Mexico;
| | - Mildreth Alcaraz-Mejía
- Departamento de Electrónica, Sistemas e Informática, ITESO, Unioversidad Jesuita de Guadalajara, Tlaquepaque 45604, Jalisco, Mexico;
| | - Roberto Rodríguez-Echevarría
- Instituto de Nutrigenética y Nutrigenómica Traslacional, Departamento de Biología Molecular y Genómica, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara 44340, Jalisco, Mexico; (E.M.-L.); (R.R.-E.)
| | - Sonia G. Sáyago-Ayerdi
- Laboratorio Integral de Investigación en Alimentos, Tecnológico Nacional de México/Instituto Tecnológico de Tepic, Tepic 63175, Nayarit, Mexico;
| | - Edgar J. Mendivil
- Departamento de Salud, Universidad Iberoamericana, Ciudad de Mexico 01219, Mexico
| |
Collapse
|
50
|
Ramos-Lopez O. Epigenetic Biomarkers of Metabolic Responses to Lifestyle Interventions. Nutrients 2023; 15:4251. [PMID: 37836535 PMCID: PMC10574040 DOI: 10.3390/nu15194251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 09/26/2023] [Accepted: 10/01/2023] [Indexed: 10/15/2023] Open
Abstract
Studies have examined the possible utility of epigenetic phenomena (DNA methylation changes, covalent histone modifications, and miRNA expression patterns) in predicting individual responses to different lifestyle programs. Nonetheless, most available evidence is focused on identifying epigenetic marks eventually associated with body composition and adiposity outcomes, whereas their roles in metabolic endings remain less explored. This document comprehensively reviewed the evidence regarding the use of epigenetic signatures as putative biomarkers of metabolic outcomes (glycemic, lipid, blood pressure, and inflammatory/oxidative stress features) in response to different lifestyle interventions in humans. Although more investigation is still necessary in order to translate this knowledge in clinical practice, these scientific insights are contributing to the design of advanced strategies for the precise management of cardiometabolic risk, gaining understanding on metabolic heterogeneity, allowing for the prediction of metabolic outcomes, and facilitating the design of epigenome-based nutritional strategies for a more customized approach for metabolic alterations treatment under the scope of precision nutrition.
Collapse
Affiliation(s)
- Omar Ramos-Lopez
- Medicine and Psychology School, Autonomous University of Baja California, Tijuana 22390, Mexico
| |
Collapse
|