1
|
Jhajj HS, Schardt JS, Khalasawi N, Yao EL, Lwo TS, Kwon NY, O'Meara RL, Desai AA, Tessier PM. Facile generation of biepitopic antibodies with intrinsic agonism for activating tumor necrosis factor receptors. Cell Chem Biol 2024; 31:944-954.e5. [PMID: 38653243 PMCID: PMC11142405 DOI: 10.1016/j.chembiol.2024.03.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 02/28/2024] [Accepted: 03/29/2024] [Indexed: 04/25/2024]
Abstract
Agonist antibodies are being pursued for therapeutic applications ranging from neurodegenerative diseases to cancer. For the tumor necrosis factor (TNF) receptor superfamily, higher-order clustering of three or more receptors is key to their activation, which can be achieved using antibodies that recognize two unique epitopes. However, the generation of biepitopic (i.e., biparatopic) antibodies typically requires animal immunization and is laborious and unpredictable. Here, we report a simple method for identifying biepitopic antibodies that potently activate TNF receptors without the need for additional animal immunization. Our approach uses existing, receptor-specific IgGs, which lack intrinsic agonist activity, to block their corresponding epitopes, then selects single-chain antibodies that bind accessible epitopes. The selected antibodies are fused to the light chains of IgGs to generate human tetravalent antibodies. We highlight the broad utility of this approach by converting several clinical-stage antibodies against OX40 and CD137 (4-1BB) into biepitopic antibodies with potent agonist activity.
Collapse
MESH Headings
- Humans
- Epitopes/immunology
- Epitopes/chemistry
- Animals
- Receptors, Tumor Necrosis Factor/agonists
- Receptors, Tumor Necrosis Factor/immunology
- Receptors, Tumor Necrosis Factor/metabolism
- Tumor Necrosis Factor Receptor Superfamily, Member 9/agonists
- Tumor Necrosis Factor Receptor Superfamily, Member 9/immunology
- Tumor Necrosis Factor Receptor Superfamily, Member 9/metabolism
- Tumor Necrosis Factor Receptor Superfamily, Member 9/antagonists & inhibitors
- Receptors, OX40/agonists
- Receptors, OX40/immunology
- Receptors, OX40/metabolism
- Receptors, OX40/antagonists & inhibitors
- Antibodies/immunology
- Single-Chain Antibodies/immunology
- Single-Chain Antibodies/chemistry
- Single-Chain Antibodies/pharmacology
- Mice
Collapse
Affiliation(s)
- Harkamal S Jhajj
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, USA; Biointerfaces Institute, University of Michigan, Ann Arbor, MI 48109, USA
| | - John S Schardt
- Department of Pharmaceutical Sciences, University of Michigan, Ann Arbor, MI 48109, USA; Department of Chemical Engineering, University of Michigan, Ann Arbor, MI 48109, USA; Biointerfaces Institute, University of Michigan, Ann Arbor, MI 48109, USA
| | - Namir Khalasawi
- Department of Pharmaceutical Sciences, University of Michigan, Ann Arbor, MI 48109, USA; Biointerfaces Institute, University of Michigan, Ann Arbor, MI 48109, USA
| | - Emily L Yao
- Department of Chemistry, University of Michigan, Ann Arbor, MI 48109, USA; Biointerfaces Institute, University of Michigan, Ann Arbor, MI 48109, USA
| | - Timon S Lwo
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, USA; Biointerfaces Institute, University of Michigan, Ann Arbor, MI 48109, USA
| | - Na-Young Kwon
- Department of Pharmaceutical Sciences, University of Michigan, Ann Arbor, MI 48109, USA; Department of Chemical Engineering, University of Michigan, Ann Arbor, MI 48109, USA; Biointerfaces Institute, University of Michigan, Ann Arbor, MI 48109, USA
| | - Ryen L O'Meara
- Department of Chemical Engineering, University of Michigan, Ann Arbor, MI 48109, USA; Biointerfaces Institute, University of Michigan, Ann Arbor, MI 48109, USA
| | - Alec A Desai
- Department of Chemical Engineering, University of Michigan, Ann Arbor, MI 48109, USA; Biointerfaces Institute, University of Michigan, Ann Arbor, MI 48109, USA
| | - Peter M Tessier
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, USA; Department of Pharmaceutical Sciences, University of Michigan, Ann Arbor, MI 48109, USA; Department of Chemical Engineering, University of Michigan, Ann Arbor, MI 48109, USA; Biointerfaces Institute, University of Michigan, Ann Arbor, MI 48109, USA.
| |
Collapse
|
2
|
Thisted T, Smith FD, Mukherjee A, Kleschenko Y, Feng F, Jiang ZG, Eitas T, Malhotra K, Biesova Z, Onumajuru A, Finley F, Cifuentes A, Zhang G, Martin GH, Takeuchi Y, Thiam K, Schreiber RD, van der Horst EH. VISTA checkpoint inhibition by pH-selective antibody SNS-101 with optimized safety and pharmacokinetic profiles enhances PD-1 response. Nat Commun 2024; 15:2917. [PMID: 38575562 PMCID: PMC10995192 DOI: 10.1038/s41467-024-47256-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 03/26/2024] [Indexed: 04/06/2024] Open
Abstract
VISTA, an inhibitory myeloid-T-cell checkpoint, holds promise as a target for cancer immunotherapy. However, its effective targeting has been impeded by issues such as rapid clearance and cytokine release syndrome observed with previous VISTA antibodies. Here we demonstrate that SNS-101, a newly developed pH-selective VISTA antibody, addresses these challenges. Structural and biochemical analyses confirmed the pH-selectivity and unique epitope targeted by SNS-101. These properties confer favorable pharmacokinetic and safety profiles on SNS-101. In syngeneic tumor models utilizing human VISTA knock-in mice, SNS-101 shows in vivo efficacy when combined with a PD-1 inhibitor, modulates cytokine and chemokine signaling, and alters the tumor microenvironment. In summary, SNS-101, currently in Phase I clinical trials, emerges as a promising therapeutic biologic for a wide range of patients whose cancer is refractory to current immunotherapy regimens.
Collapse
Affiliation(s)
- Thomas Thisted
- Sensei Biotherapeutics Inc., 1405 Research Blvd, Suite 125, Rockville, MD, 20850, USA
| | - F Donelson Smith
- Sensei Biotherapeutics Inc., 1405 Research Blvd, Suite 125, Rockville, MD, 20850, USA
| | - Arnab Mukherjee
- Sensei Biotherapeutics Inc., 1405 Research Blvd, Suite 125, Rockville, MD, 20850, USA
| | - Yuliya Kleschenko
- Sensei Biotherapeutics Inc., 1405 Research Blvd, Suite 125, Rockville, MD, 20850, USA
| | - Feng Feng
- Sensei Biotherapeutics Inc., 1405 Research Blvd, Suite 125, Rockville, MD, 20850, USA
| | - Zhi-Gang Jiang
- Sensei Biotherapeutics Inc., 1405 Research Blvd, Suite 125, Rockville, MD, 20850, USA
| | - Timothy Eitas
- Sensei Biotherapeutics Inc., 1405 Research Blvd, Suite 125, Rockville, MD, 20850, USA
| | - Kanam Malhotra
- Sensei Biotherapeutics Inc., 1405 Research Blvd, Suite 125, Rockville, MD, 20850, USA
| | - Zuzana Biesova
- Sensei Biotherapeutics Inc., 1405 Research Blvd, Suite 125, Rockville, MD, 20850, USA
| | - Adejumoke Onumajuru
- Sensei Biotherapeutics Inc., 1405 Research Blvd, Suite 125, Rockville, MD, 20850, USA
| | - Faith Finley
- Sensei Biotherapeutics Inc., 1405 Research Blvd, Suite 125, Rockville, MD, 20850, USA
| | - Anokhi Cifuentes
- Sensei Biotherapeutics Inc., 1405 Research Blvd, Suite 125, Rockville, MD, 20850, USA
| | - Guolin Zhang
- Sensei Biotherapeutics Inc., 1405 Research Blvd, Suite 125, Rockville, MD, 20850, USA
| | | | - Yoshiko Takeuchi
- Department of Pathology and Immunology, Washington Univ. School of Medicine, Mailstop 8118, 425 South Euclid Ave, St. Louis, MO, 63110, USA
| | - Kader Thiam
- genOway, Technopark Gerland, 69007, Lyon, France
| | - Robert D Schreiber
- Department of Pathology and Immunology, Washington Univ. School of Medicine, Mailstop 8118, 425 South Euclid Ave, St. Louis, MO, 63110, USA
| | | |
Collapse
|
3
|
Jhajj HS, Schardt JS, Khalasawi N, Yao EL, Lwo TS, Kwon NY, O’Meara RL, Desai AA, Tessier PM. Facile generation of biepitopic antibodies with intrinsic agonism for activating receptors in the tumor necrosis factor superfamily. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.11.571146. [PMID: 38168220 PMCID: PMC10760063 DOI: 10.1101/2023.12.11.571146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
Agonist antibodies that activate cellular receptors are being pursued for therapeutic applications ranging from neurodegenerative diseases to cancer. For the tumor necrosis factor (TNF) receptor superfamily, higher-order clustering of three or more receptors is key to their potent activation. This can be achieved using antibodies that recognize two unique epitopes on the same receptor and mediate receptor superclustering. However, identifying compatible pairs of antibodies to generate biepitopic antibodies (also known as biparatopic antibodies) for activating TNF receptors typically requires animal immunization and is a laborious and unpredictable process. Here, we report a simple method for systematically identifying biepitopic antibodies that potently activate TNF receptors without the need for additional animal immunization. Our approach uses off-the-shelf, receptor-specific IgG antibodies, which lack intrinsic (Fc-gamma receptor-independent) agonist activity, to first block their corresponding epitopes. Next, we perform selections for single-chain antibodies from human nonimmune libraries that bind accessible epitopes on the same ectodomains using yeast surface display and fluorescence-activated cell sorting. The selected single-chain antibodies are finally fused to the light chains of IgGs to generate human tetravalent antibodies that engage two different receptor epitopes and mediate potent receptor activation. We highlight the broad utility of this approach by converting several existing clinical-stage antibodies against TNF receptors, including ivuxolimab and pogalizumab against OX40 and utomilumab against CD137, into biepitopic antibodies with highly potent agonist activity. We expect that this widely accessible methodology can be used to systematically generate biepitopic antibodies for activating other receptors in the TNF receptor superfamily and many other receptors whose activation is dependent on strong receptor clustering.
Collapse
Affiliation(s)
- Harkamal S. Jhajj
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, USA
- Biointerfaces Institute, University of Michigan, Ann Arbor, MI 48109, USA
| | - John S. Schardt
- Department of Pharmaceutical Sciences, University of Michigan, Ann Arbor, MI 48109, USA
- Department of Chemical Engineering, University of Michigan, Ann Arbor, MI 48109, USA
- Biointerfaces Institute, University of Michigan, Ann Arbor, MI 48109, USA
| | - Namir Khalasawi
- Department of Pharmaceutical Sciences, University of Michigan, Ann Arbor, MI 48109, USA
- Biointerfaces Institute, University of Michigan, Ann Arbor, MI 48109, USA
| | - Emily L. Yao
- Department of Chemistry, University of Michigan, Ann Arbor, MI 48109, USA
- Biointerfaces Institute, University of Michigan, Ann Arbor, MI 48109, USA
| | - Timon S. Lwo
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, USA
- Biointerfaces Institute, University of Michigan, Ann Arbor, MI 48109, USA
| | - Na-Young Kwon
- Department of Pharmaceutical Sciences, University of Michigan, Ann Arbor, MI 48109, USA
- Department of Chemical Engineering, University of Michigan, Ann Arbor, MI 48109, USA
- Biointerfaces Institute, University of Michigan, Ann Arbor, MI 48109, USA
| | - Ryen L O’Meara
- Department of Chemical Engineering, University of Michigan, Ann Arbor, MI 48109, USA
- Biointerfaces Institute, University of Michigan, Ann Arbor, MI 48109, USA
| | - Alec A. Desai
- Department of Chemical Engineering, University of Michigan, Ann Arbor, MI 48109, USA
- Biointerfaces Institute, University of Michigan, Ann Arbor, MI 48109, USA
| | - Peter M. Tessier
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, USA
- Department of Pharmaceutical Sciences, University of Michigan, Ann Arbor, MI 48109, USA
- Department of Chemical Engineering, University of Michigan, Ann Arbor, MI 48109, USA
- Biointerfaces Institute, University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
4
|
Brooks BD, Beland A, Aguero G, Taylor N, Towne FD. Moving beyond Titers. Vaccines (Basel) 2022; 10:vaccines10050683. [PMID: 35632439 PMCID: PMC9144832 DOI: 10.3390/vaccines10050683] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 04/18/2022] [Accepted: 04/20/2022] [Indexed: 01/27/2023] Open
Abstract
Vaccination to prevent and even eliminate disease is amongst the greatest achievements of modern medicine. Opportunities remain in vaccine development to improve protection across the whole population. A next step in vaccine development is the detailed molecular characterization of individual humoral immune responses against a pathogen, especially the rapidly evolving pathogens. New technologies such as sequencing the immune repertoire in response to disease, immunogenomics/vaccinomics, particularly the individual HLA variants, and high-throughput epitope characterization offer new insights into disease protection. Here, we highlight the emerging technologies that could be used to identify variation within the human population, facilitate vaccine discovery, improve vaccine safety and efficacy, and identify mechanisms of generating immunological memory. In today’s vaccine-hesitant climate, these techniques used individually or especially together have the potential to improve vaccine effectiveness and safety and thus vaccine uptake rates. We highlight the importance of using these techniques in combination to understand the humoral immune response as a whole after vaccination to move beyond neutralizing titers as the standard for immunogenicity and vaccine efficacy, especially in clinical trials.
Collapse
Affiliation(s)
- Benjamin D. Brooks
- Department of Biomedical Sciences, Rocky Vista University, Ivins, UT 84738, USA
- Inovan Inc., Fargo, ND 58103, USA
- Correspondence: ; Tel.: +1-(435)-222-1304
| | - Alexander Beland
- College of Osteopathic Medicine, Rocky Vista University, Parker, CO 80112, USA; (A.B.); (G.A.); (N.T.); (F.D.T.)
| | - Gabriel Aguero
- College of Osteopathic Medicine, Rocky Vista University, Parker, CO 80112, USA; (A.B.); (G.A.); (N.T.); (F.D.T.)
| | - Nicholas Taylor
- College of Osteopathic Medicine, Rocky Vista University, Parker, CO 80112, USA; (A.B.); (G.A.); (N.T.); (F.D.T.)
| | - Francina D. Towne
- College of Osteopathic Medicine, Rocky Vista University, Parker, CO 80112, USA; (A.B.); (G.A.); (N.T.); (F.D.T.)
| |
Collapse
|
5
|
Mahita J, Kim DG, Son S, Choi Y, Kim HS, Bailey-Kellogg C. Computational epitope binning reveals functional equivalence of sequence-divergent paratopes. Comput Struct Biotechnol J 2022; 20:2169-2180. [PMID: 35615020 PMCID: PMC9118127 DOI: 10.1016/j.csbj.2022.04.036] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Revised: 04/27/2022] [Accepted: 04/27/2022] [Indexed: 11/26/2022] Open
Abstract
Epitope binning groups target-specific protein binders recognizing the same binding region. The “Epibin” method utilizes docking models to computationally predict competition and identify bins. Epibin recapitulated binding competition of repebody variants as determined by immunoassays. In addition, Epibin enabled identification of ‘paratope-equivalent’ residues in sequence-dissimilar variants. Computational epitope binning can scale to allow characterization of entire antigen-specific antibody repertoires.
The therapeutic efficacy of a protein binder largely depends on two factors: its binding site and its binding affinity. Advances in in vitro library display screening and next-generation sequencing have enabled accelerated development of strong binders, yet identifying their binding sites still remains a major challenge. The differentiation, or “binning”, of binders into different groups that recognize distinct binding sites on their target is a promising approach that facilitates high-throughput screening of binders that may show different biological activity. Here we study the extent to which the information contained in the amino acid sequences comprising a set of target-specific binders can be leveraged to bin them, inferring functional equivalence of their binding regions, or paratopes, based directly on comparison of the sequences, their modeled structures, or their modeled interactions. Using a leucine-rich repeat binding scaffold known as a “repebody” as the source of diversity in recognition against interleukin-6 (IL-6), we show that the “Epibin” approach introduced here effectively utilized structural modelling and docking to extract specificity information encoded in the repebody amino acid sequences and thereby successfully recapitulate IL-6 binding competition observed in immunoassays. Furthermore, our computational binning provided a basis for designing in vitro mutagenesis experiments to pinpoint specificity-determining residues. Finally, we demonstrate that the Epibin approach can extend to antibodies, retrospectively comparing its predictions to results from antigen-specific antibody competition studies. The study thus demonstrates the utility of modeling structure and binding from the amino acid sequences of different binders against the same target, and paves the way for larger-scale binning and analysis of entire repertoires.
Collapse
|
6
|
Linciano S, Wong EL, Mazzocato Y, Chinellato M, Scaravetti T, Caregnato A, Cacco V, Romanyuk Z, Angelini A. Guidelines, Strategies, and Principles for the Directed Evolution of Cross-Reactive Antibodies Using Yeast Surface Display Technology. Methods Mol Biol 2022; 2491:251-262. [PMID: 35482195 DOI: 10.1007/978-1-0716-2285-8_14] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The ability of cross-reactive antibodies to bind multiple related or unrelated targets derived from different species provides not only superior therapeutic efficacy but also a better assessment of treatment toxicity, thereby facilitating the transition from preclinical models to human clinical studies. This chapter provides some guidelines for the directed evolution of cross-reactive antibodies using yeast surface display technology. Cross-reactive antibodies are initially isolated from a naïve library by combining highly avid magnetic bead separations followed by multiple cycles of flow cytometry sorting. Once initial cross-reactive clones are identified, sequential rounds of mutagenesis and two-pressure selection strategies are applied to engineer cross-reactive antibodies with improved affinity and yet retained or superior cross-reactivity.
Collapse
Affiliation(s)
- Sara Linciano
- Department of Molecular Sciences and Nanosystems, Ca' Foscari University of Venice, Mestre, Italy
| | - Ee Lin Wong
- Department of Molecular Sciences and Nanosystems, Ca' Foscari University of Venice, Mestre, Italy
| | - Ylenia Mazzocato
- Department of Molecular Sciences and Nanosystems, Ca' Foscari University of Venice, Mestre, Italy
| | - Monica Chinellato
- Department of Molecular Sciences and Nanosystems, Ca' Foscari University of Venice, Mestre, Italy
- Department of Medicine (DIMED), University of Padua, Padua, Italy
| | - Tiziano Scaravetti
- Department of Molecular Sciences and Nanosystems, Ca' Foscari University of Venice, Mestre, Italy
| | - Alberto Caregnato
- Department of Molecular Sciences and Nanosystems, Ca' Foscari University of Venice, Mestre, Italy
| | - Veronica Cacco
- Department of Molecular Sciences and Nanosystems, Ca' Foscari University of Venice, Mestre, Italy
| | - Zhanna Romanyuk
- Department of Molecular Sciences and Nanosystems, Ca' Foscari University of Venice, Mestre, Italy
| | - Alessandro Angelini
- Department of Molecular Sciences and Nanosystems, Ca' Foscari University of Venice, Mestre, Italy.
- European Centre for Living Technology (ECLT), Ca' Bottacin, Venice, Italy.
| |
Collapse
|
7
|
Corless E, Hao Y, Jia H, Kongsuphol P, Tay DMY, Ng SY, Sikes HD. Generation of Thermally Stable Affinity Pairs for Sensitive, Specific Immunoassays. Methods Mol Biol 2022; 2491:417-469. [PMID: 35482202 DOI: 10.1007/978-1-0716-2285-8_21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Many point-of-care diagnostic tests rely on a pair of monoclonal antibodies that bind to two distinct epitopes of a molecule of interest. This protocol describes the identification and generation of such affinity pairs based on an easily produced small protein scaffold rcSso7d which can substitute monoclonal antibodies. These strong binding variants are identified from a large yeast display library. The approach described can be significantly faster than antibody generation and epitope binning, yielding affinity pairs synthesized in common bacterial protein synthesis strains, enabling the rapid generation of novel diagnostic tools.
Collapse
Affiliation(s)
- Elliot Corless
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Yining Hao
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Huan Jia
- Antimicrobial Resistance Interdisciplinary Research Group (AMR-IRG), Singapore-MIT Alliance in Research and Technology (SMART), Singapore, Singapore
| | - Patthara Kongsuphol
- Antimicrobial Resistance Interdisciplinary Research Group (AMR-IRG), Singapore-MIT Alliance in Research and Technology (SMART), Singapore, Singapore
| | - Dousabel M Y Tay
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Say Yong Ng
- Antimicrobial Resistance Interdisciplinary Research Group (AMR-IRG), Singapore-MIT Alliance in Research and Technology (SMART), Singapore, Singapore
| | - Hadley D Sikes
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA.
- Antimicrobial Resistance Interdisciplinary Research Group (AMR-IRG), Singapore-MIT Alliance in Research and Technology (SMART), Singapore, Singapore.
| |
Collapse
|
8
|
Tahir S, Bourquard T, Musnier A, Jullian Y, Corde Y, Omahdi Z, Mathias L, Reiter E, Crépieux P, Bruneau G, Poupon A. Accurate determination of epitope for antibodies with unknown 3D structures. MAbs 2021; 13:1961349. [PMID: 34432559 PMCID: PMC8405158 DOI: 10.1080/19420862.2021.1961349] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
MAbTope is a docking-based method for the determination of epitopes. It has been used to successfully determine the epitopes of antibodies with known 3D structures. However, during the antibody discovery process, this structural information is rarely available. Although we already have evidence that homology models of antibodies could be used instead of their 3D structure, the choice of the template, the methodology for homology modeling and the resulting performance still have to be clarified. Here, we show that MAbTope has the same performance when working with homology models of the antibodies as compared to crystallographic structures. Moreover, we show that even low-quality models can be used. We applied MAbTope to determine the epitope of dupilumab, an anti- interleukin 4 receptor alpha subunit therapeutic antibody of unknown 3D structure, that we validated experimentally. Finally, we show how the MAbTope-determined epitopes for a series of antibodies targeting the same protein can be used to predict competitions, and demonstrate the accuracy with an experimentally validated example. 3D: three-dimensionalRMSD: root mean square deviationCDR: complementary-determining regionCPU: central processing unitsVH: heavy chain variable regionVL: light chain variable regionscFv: single-chain variable fragmentsVHH: single-chain antibody variable regionIL4Rα: Interleukin 4 receptor alpha chainSPR: surface plasmon resonancePDB: protein data bankHEK293: Human embryonic kidney 293 cellsEDTA: Ethylenediaminetetraacetic acidFBS: Fetal bovine serumANOVA: Analysis of varianceEGFR: Epidermal growth factor receptorPE: PhycoerythrinAPC: AllophycocyaninFSC: forward scatterSSC: side scatterWT: wild type Keywords: MAbTope, Epitope Mapping, Molecular docking, Antibody modeling, Antibody-antigen docking
Collapse
Affiliation(s)
- Shifa Tahir
- PRC, INRAE, CNRS, Université De Tours, Nouzilly, France
| | - Thomas Bourquard
- PRC, INRAE, CNRS, Université De Tours, Nouzilly, France.,MAbSilico SAS, 1 Impasse Du Palais
| | - Astrid Musnier
- PRC, INRAE, CNRS, Université De Tours, Nouzilly, France.,MAbSilico SAS, 1 Impasse Du Palais
| | - Yann Jullian
- MAbSilico SAS, 1 Impasse Du Palais.,CaSciModOT, UFR De Sciences Et Techniques, Université De Tours
| | | | | | | | - Eric Reiter
- PRC, INRAE, CNRS, Université De Tours, Nouzilly, France.,France Inria, Inria Saclay-Île-de-France, Palaiseau, France.,Université Paris-Saclay, INRAE, MaIAGE, Jouy-en-Josas, France
| | - Pascale Crépieux
- PRC, INRAE, CNRS, Université De Tours, Nouzilly, France.,France Inria, Inria Saclay-Île-de-France, Palaiseau, France.,Université Paris-Saclay, INRAE, MaIAGE, Jouy-en-Josas, France
| | | | - Anne Poupon
- PRC, INRAE, CNRS, Université De Tours, Nouzilly, France.,MAbSilico SAS, 1 Impasse Du Palais.,France Inria, Inria Saclay-Île-de-France, Palaiseau, France.,Université Paris-Saclay, INRAE, MaIAGE, Jouy-en-Josas, France
| |
Collapse
|
9
|
Kim S, Yee E, Miller EA, Hao Y, Tay DMY, Sung KJ, Jia H, Johnson JM, Saeed M, Mace CR, Yüksel Yurt D, Sikes HD. Developing a SARS-CoV-2 Antigen Test Using Engineered Affinity Proteins. ACS APPLIED MATERIALS & INTERFACES 2021; 13:38990-39002. [PMID: 34379400 DOI: 10.1021/acsami.1c08174] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
The ongoing COVID-19 pandemic has clearly established how vital rapid, widely accessible diagnostic tests are in controlling infectious diseases and how difficult and slow it is to scale existing technologies. Here, we demonstrate the use of the rapid affinity pair identification via directed selection (RAPIDS) method to discover multiple affinity pairs for SARS-CoV-2 nucleocapsid protein (N-protein), a biomarker of COVID-19, from in vitro libraries in 10 weeks. The pair with the highest biomarker sensitivity was then integrated into a 10 min, vertical-flow cellulose paper test. Notably, the as-identified affinity proteins were compatible with a roll-to-roll printing process for large-scale manufacturing of tests. The test achieved 40 and 80 pM limits of detection in 1× phosphate-buffered saline (mock swab) and saliva matrices spiked with cell-culture-generated SARS-CoV-2 viruses and is also capable of detection of N-protein from characterized clinical swab samples. Hence, this work paves the way toward the mass production of cellulose paper-based assays which can address the shortages faced due to dependence on nitrocellulose and current manufacturing techniques. Further, the results reported herein indicate the promise of RAPIDS and engineered binder proteins for the timely and flexible development of clinically relevant diagnostic tests in response to emerging infectious diseases.
Collapse
Affiliation(s)
- Seunghyeon Kim
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Emma Yee
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Eric A Miller
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Yining Hao
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Dousabel M Y Tay
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Ki-Joo Sung
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Huan Jia
- Antimicrobial Resistance Integrated Research Group, Singapore-MIT Alliance for Research and Technology, 1 CREATE Way, Singapore 138602, Singapore
| | - Joseph M Johnson
- Quanterix Corporation, Billerica, Massachusetts 01821, United States
| | - Mohsan Saeed
- Department of Biochemistry, Boston University School of Medicine, Boston, Massachusetts 02118, United States
- National Emerging Infectious Diseases Laboratories (NEIDL), Boston, Massachusetts 02188, United States
| | - Charles R Mace
- Department of Chemistry, Tufts University, Medford, Massachusetts 02155, United States
| | | | - Hadley D Sikes
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
- Antimicrobial Resistance Integrated Research Group, Singapore-MIT Alliance for Research and Technology, 1 CREATE Way, Singapore 138602, Singapore
| |
Collapse
|
10
|
Palte RL, Juan V, Gomez-Llorente Y, Bailly MA, Chakravarthy K, Chen X, Cipriano D, Fayad GN, Fayadat-Dilman L, Gathiaka S, Greb H, Hall B, Handa M, Hsieh M, Kofman E, Lin H, Miller JR, Nguyen N, O'Neil J, Shaheen H, Sterner E, Strickland C, Sun A, Taremi S, Scapin G. Cryo-EM structures of inhibitory antibodies complexed with arginase 1 provide insight into mechanism of action. Commun Biol 2021; 4:927. [PMID: 34326456 PMCID: PMC8322407 DOI: 10.1038/s42003-021-02444-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Accepted: 06/18/2021] [Indexed: 11/09/2022] Open
Abstract
Human Arginase 1 (hArg1) is a metalloenzyme that catalyzes the hydrolysis of L-arginine to L-ornithine and urea, and modulates T-cell-mediated immune response. Arginase-targeted therapies have been pursued across several disease areas including immunology, oncology, nervous system dysfunction, and cardiovascular dysfunction and diseases. Currently, all published hArg1 inhibitors are small molecules usually less than 350 Da in size. Here we report the cryo-electron microscopy structures of potent and inhibitory anti-hArg antibodies bound to hArg1 which form distinct macromolecular complexes that are greater than 650 kDa. With local resolutions of 3.5 Å or better we unambiguously mapped epitopes and paratopes for all five antibodies and determined that the antibodies act through orthosteric and allosteric mechanisms. These hArg1:antibody complexes present an alternative mechanism to inhibit hArg1 activity and highlight the ability to utilize antibodies as probes in the discovery and development of peptide and small molecule inhibitors for enzymes in general.
Collapse
Affiliation(s)
- Rachel L Palte
- Department of Discovery Chemistry, Merck & Co., Inc., Boston, MA, USA.
| | - Veronica Juan
- Department of Discovery Biologics, Merck & Co., Inc., South San Francisco, CA, USA
| | | | - Marc Andre Bailly
- Department of Discovery Biologics, Merck & Co., Inc., South San Francisco, CA, USA
| | - Kalyan Chakravarthy
- Department of Discovery Biology, Merck & Co., Inc., Boston, MA, USA
- Ipsen Bioscience Inc., Cambridge, MA, USA
| | - Xun Chen
- Department of Discovery Chemistry, Merck & Co., Inc., Kenilworth, NJ, USA
| | - Daniel Cipriano
- Department of Discovery Biologics, Merck & Co., Inc., South San Francisco, CA, USA
| | - Ghassan N Fayad
- Department of Preclinical Development, Merck & Co., Inc., Boston, MA, USA
| | | | - Symon Gathiaka
- Department of Discovery Chemistry, Merck & Co., Inc., Boston, MA, USA
| | - Heiko Greb
- Department of Discovery Biologics, Merck & Co., Inc., South San Francisco, CA, USA
- Synthekine Inc., Menlo Park, CA, USA
| | - Brian Hall
- Department of Discovery Biologics, Merck & Co., Inc., Boston, MA, USA
| | - Mas Handa
- Department of Discovery Biologics, Merck & Co., Inc., South San Francisco, CA, USA
| | - Mark Hsieh
- Department of Discovery Biologics, Merck & Co., Inc., South San Francisco, CA, USA
| | - Esther Kofman
- Department of Discovery Biologics, Merck & Co., Inc., South San Francisco, CA, USA
| | - Heping Lin
- Department of Discovery Biologics, Merck & Co., Inc., Boston, MA, USA
| | - J Richard Miller
- Department of Discovery Biology, Merck & Co., Inc., Boston, MA, USA
| | - Nhung Nguyen
- Department of Discovery Biologics, Merck & Co., Inc., South San Francisco, CA, USA
| | - Jennifer O'Neil
- Department of Discovery Oncology, Merck & Co., Inc., Boston, MA, USA
- Xilio Therapeutics, Waltham, MA, USA
| | - Hussam Shaheen
- Department of Discovery Biologics, Merck & Co., Inc., Boston, MA, USA
- Pandion Therapeutics, Cambridge, MA, USA
| | - Eric Sterner
- Department of Discovery Biologics, Merck & Co., Inc., Boston, MA, USA
| | - Corey Strickland
- Department of Discovery Chemistry, Merck & Co., Inc., Kenilworth, NJ, USA
| | - Angie Sun
- Department of Discovery Biologics, Merck & Co., Inc., Boston, MA, USA
| | - Shane Taremi
- Department of Discovery Biologics, Merck & Co., Inc., Boston, MA, USA
| | - Giovanna Scapin
- Department of Discovery Chemistry, Merck & Co., Inc., Kenilworth, NJ, USA
- NanoImaging Services, Woburn, MA, USA
| |
Collapse
|
11
|
Wec AZ, Lin KS, Kwasnieski JC, Sinai S, Gerold J, Kelsic ED. Overcoming Immunological Challenges Limiting Capsid-Mediated Gene Therapy With Machine Learning. Front Immunol 2021; 12:674021. [PMID: 33986759 PMCID: PMC8112259 DOI: 10.3389/fimmu.2021.674021] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Accepted: 04/09/2021] [Indexed: 12/11/2022] Open
Abstract
A key hurdle to making adeno-associated virus (AAV) capsid mediated gene therapy broadly beneficial to all patients is overcoming pre-existing and therapy-induced immune responses to these vectors. Recent advances in high-throughput DNA synthesis, multiplexing and sequencing technologies have accelerated engineering of improved capsid properties such as production yield, packaging efficiency, biodistribution and transduction efficiency. Here we outline how machine learning, advances in viral immunology, and high-throughput measurements can enable engineering of a new generation of de-immunized capsids beyond the antigenic landscape of natural AAVs, towards expanding the therapeutic reach of gene therapy.
Collapse
Affiliation(s)
- Anna Z. Wec
- Applied Biology, Dyno Therapeutics Inc, Cambridge, MA, United States
| | - Kathy S. Lin
- Data Science, Dyno Therapeutics Inc, Cambridge, MA, United States
| | | | - Sam Sinai
- Data Science, Dyno Therapeutics Inc, Cambridge, MA, United States
| | - Jeff Gerold
- Data Science, Dyno Therapeutics Inc, Cambridge, MA, United States
| | - Eric D. Kelsic
- Applied Biology, Dyno Therapeutics Inc, Cambridge, MA, United States
- Data Science, Dyno Therapeutics Inc, Cambridge, MA, United States
| |
Collapse
|
12
|
Kim S, Yee E, Miller EA, Hao Y, Tay DMY, Sung KJ, Jia H, Johnson JM, Saeed M, Mace CR, Yurt DY, Sikes HD. Developing a SARS-CoV-2 Antigen Test Using Engineered Affinity Proteins. CHEMRXIV : THE PREPRINT SERVER FOR CHEMISTRY 2021:14442785. [PMID: 34013166 PMCID: PMC8132241 DOI: 10.26434/chemrxiv.14442785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Revised: 04/19/2021] [Indexed: 11/09/2022]
Abstract
The ongoing COVID-19 pandemic has clearly established how vital rapid, widely accessible diagnostic tests are in controlling infectious diseases and how difficult and slow it is to scale existing technologies. Here, we demonstrate the use of the rapid affinity pair identification via directed selection (RAPIDS) method to discover multiple affinity pairs for SARS-CoV-2 nucleocapsid protein (N-protein), a biomarker of COVID-19, from in vitro libraries in 10 weeks. The pair with the highest biomarker sensitivity was then integrated into a 10-minute, vertical-flow cellulose paper test. Notably, the as-identified affinity proteins were compatible with a roll-to-roll printing process for large-scale manufacturing of tests. The test achieved 40 pM and 80 pM limits of detection in 1×PBS (mock swab) and saliva matrices spiked with cell-culture generated SARS-CoV-2 viruses and is also capable of detection of N-protein from characterized clinical swab samples. Hence, this work paves the way towards the mass production of cellulose paper-based assays which can address the shortages faced due to dependence on nitrocellulose and current manufacturing techniques. Further, the results reported herein indicate the promise of RAPIDS and engineered binder proteins for the timely and flexible development of clinically relevant diagnostic tests in response to emerging infectious diseases.
Collapse
Affiliation(s)
- Seunghyeon Kim
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Emma Yee
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Eric A. Miller
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Yining Hao
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Dousabel M. Y. Tay
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Ki-Joo Sung
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Huan Jia
- Antimicrobial Resistance Integrated Research Group, Singapore-MIT Alliance for Research and Technology, 1 CREATE Way, Singapore 138602, Singapore
| | | | - Mohsan Saeed
- Department of Biochemistry, Boston University School of Medicine, Boston, MA 02118, USA
- National Emerging Infectious Diseases Laboratories (NEIDL), Boston, MA 02188, USA
| | - Charles R. Mace
- Department of Chemistry, Tufts University, Medford, MA 02155, USA
| | | | - Hadley D. Sikes
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Antimicrobial Resistance Integrated Research Group, Singapore-MIT Alliance for Research and Technology, 1 CREATE Way, Singapore 138602, Singapore
| |
Collapse
|
13
|
Hsiao YC, Chen YJJ, Goldstein LD, Wu J, Lin Z, Schneider K, Chaudhuri S, Antony A, Bajaj Pahuja K, Modrusan Z, Seshasayee D, Seshagiri S, Hötzel I. Restricted epitope specificity determined by variable region germline segment pairing in rodent antibody repertoires. MAbs 2021; 12:1722541. [PMID: 32041466 PMCID: PMC7039645 DOI: 10.1080/19420862.2020.1722541] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Antibodies from B-cell clonal lineages share sequence and structural properties as well as epitope specificity. Clonally unrelated antibodies can similarly share sequence and specificity properties and are said to be convergent. Convergent antibody responses against several antigens have been described in humans and mice and include different classes of shared sequence features. In particular, some antigens and epitopes can induce convergent responses of clonally unrelated antibodies with restricted heavy (VH) and light (VL) chain variable region germline segment usage without similarity in the heavy chain third complementarity-determining region (CDR H3), a critical specificity determinant. Whether these V germline segment-restricted responses reflect a general epitope specificity restriction of antibodies with shared VH/VL pairing is not known. Here, we investigated this question by determining patterns of antigen binding competition between clonally unrelated antigen-specific rat antibodies from paired-chain deep sequencing datasets selected based solely on VH/VL pairing. We found that antibodies with shared VH/VL germline segment pairings but divergent CDR H3 sequences almost invariably have restricted epitope specificity indicated by shared binding competition patterns. This epitope restriction included 82 of 85 clonally unrelated antibodies with 13 different VH/VL pairings binding in 8 epitope groups in 2 antigens. The corollary that antibodies with shared VH/VL pairing and epitope-restricted binding can accommodate widely divergent CDR H3 sequences was confirmed by in vitro selection of variants of anti-human epidermal growth factor receptor 2 antibodies known to mediate critical antigen interactions through CDR H3. Our results show that restricted epitope specificity determined by VH/VL germline segment pairing is a general property of rodent antigen-specific antibodies.
Collapse
Affiliation(s)
- Yi-Chun Hsiao
- Department of Antibody Engineering, Genentech, South San Francisco, CA, USA
| | - Ying-Jiun J Chen
- Department of Molecular Biology, Genentech, South San Francisco, CA, USA
| | - Leonard D Goldstein
- Department of Molecular Biology, Genentech, South San Francisco, CA, USA.,Department of Bioinformatics and Computational Biology, Genentech, South San Francisco, CA, USA
| | - Jia Wu
- Department of Antibody Engineering, Genentech, South San Francisco, CA, USA
| | - Zhonghua Lin
- Department of Antibody Engineering, Genentech, South San Francisco, CA, USA
| | - Kellen Schneider
- Department of Antibody Engineering, Genentech, South San Francisco, CA, USA
| | - Subhra Chaudhuri
- Department of Molecular Biology, Genentech, South San Francisco, CA, USA
| | - Aju Antony
- Department of Molecular Biology, SciGenom Labs, Cochin, India
| | | | - Zora Modrusan
- Department of Molecular Biology, Genentech, South San Francisco, CA, USA
| | - Dhaya Seshasayee
- Department of Antibody Engineering, Genentech, South San Francisco, CA, USA
| | | | - Isidro Hötzel
- Department of Antibody Engineering, Genentech, South San Francisco, CA, USA
| |
Collapse
|
14
|
Zhang J, Wang T, Saigal A, Johnson J, Morrisson J, Tabrizifard S, Hollingsworth SA, Eddins MJ, Mao W, O'Neill K, Garcia-Calvo M, Carballo-Jane E, Liu D, Ham T, Zhou Q, Dong W, Meng HW, Hicks J, Cai TQ, Akiyama T, Pinto S, Cheng AC, Greshock T, Marquis JC, Ren Z, Talukdar S, Shaheen HH, Handa M. Discovery of a new class of integrin antibodies for fibrosis. Sci Rep 2021; 11:2118. [PMID: 33483531 PMCID: PMC7822819 DOI: 10.1038/s41598-021-81253-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Accepted: 01/05/2021] [Indexed: 12/14/2022] Open
Abstract
Lung fibrosis, or the scarring of the lung, is a devastating disease with huge unmet medical need. There are limited treatment options and its prognosis is worse than most types of cancer. We previously discovered that MK-0429 is an equipotent pan-inhibitor of αv integrins that reduces proteinuria and kidney fibrosis in a preclinical model. In the present study, we further demonstrated that MK-0429 significantly inhibits fibrosis progression in a bleomycin-induced lung injury model. In search of newer integrin inhibitors for fibrosis, we characterized monoclonal antibodies discovered using Adimab's yeast display platform. We identified several potent neutralizing integrin antibodies with unique human and mouse cross-reactivity. Among these, Ab-31 blocked the binding of multiple αv integrins to their ligands with IC50s comparable to those of MK-0429. Furthermore, both MK-0429 and Ab-31 suppressed integrin-mediated cell adhesion and latent TGFβ activation. In IPF patient lung fibroblasts, TGFβ treatment induced profound αSMA expression in phenotypic imaging assays and Ab-31 demonstrated potent in vitro activity at inhibiting αSMA expression, suggesting that the integrin antibody is able to modulate TGFβ action though mechanisms beyond the inhibition of latent TGFβ activation. Together, our results highlight the potential to develop newer integrin therapeutics for the treatment of fibrotic lung diseases.
Collapse
Affiliation(s)
- Ji Zhang
- Departments of Cardiometabolic Diseases, MRL, Merck & Co., Inc., 2000 Galloping Hill Road, Kenilworth, NJ, 07033, USA.
| | - Tao Wang
- Discovery Biologics, MRL, Merck & Co., Inc., 2000 Galloping Hill Road, Kenilworth, NJ, 07033, USA
| | - Ashmita Saigal
- Departments of Cardiometabolic Diseases, MRL, Merck & Co., Inc., 2000 Galloping Hill Road, Kenilworth, NJ, 07033, USA
| | - Josephine Johnson
- Quantitative Biosciences, MRL, Merck & Co., Inc., 2000 Galloping Hill Road, Kenilworth, NJ, 07033, USA
| | - Jennifer Morrisson
- Discovery Biologics, MRL, Merck & Co., Inc., 2000 Galloping Hill Road, Kenilworth, NJ, 07033, USA
| | - Sahba Tabrizifard
- Discovery Biologics, MRL, Merck & Co., Inc., 2000 Galloping Hill Road, Kenilworth, NJ, 07033, USA
| | - Scott A Hollingsworth
- Computational & Structural Chemistry, MRL, Merck & Co., Inc., 2000 Galloping Hill Road, Kenilworth, NJ, 07033, USA
| | - Michael J Eddins
- Computational & Structural Chemistry, MRL, Merck & Co., Inc., 2000 Galloping Hill Road, Kenilworth, NJ, 07033, USA
| | - Wenxian Mao
- Quantitative Biosciences, MRL, Merck & Co., Inc., 2000 Galloping Hill Road, Kenilworth, NJ, 07033, USA
| | - Kim O'Neill
- In Vitro Pharmacology, MRL, Merck & Co., Inc., 2000 Galloping Hill Road, Kenilworth, NJ, 07033, USA
| | - Margarita Garcia-Calvo
- In Vitro Pharmacology, MRL, Merck & Co., Inc., 2000 Galloping Hill Road, Kenilworth, NJ, 07033, USA
| | - Ester Carballo-Jane
- Quantitative Biosciences, MRL, Merck & Co., Inc., 2000 Galloping Hill Road, Kenilworth, NJ, 07033, USA
| | - DingGang Liu
- SALAR, MRL, Merck & Co., Inc., 2000 Galloping Hill Road, Kenilworth, NJ, 07033, USA
| | - Taewon Ham
- SALAR, MRL, Merck & Co., Inc., 2000 Galloping Hill Road, Kenilworth, NJ, 07033, USA
| | - Qiong Zhou
- SALAR, MRL, Merck & Co., Inc., 2000 Galloping Hill Road, Kenilworth, NJ, 07033, USA
| | - Weifeng Dong
- SALAR, MRL, Merck & Co., Inc., 2000 Galloping Hill Road, Kenilworth, NJ, 07033, USA
| | - Hsien-Wei Meng
- Discovery Biologics, MRL, Merck & Co., Inc., 2000 Galloping Hill Road, Kenilworth, NJ, 07033, USA
| | - Jacqueline Hicks
- Discovery Chemistry, MRL, Merck & Co., Inc., 2000 Galloping Hill Road, Kenilworth, NJ, 07033, USA
| | - Tian-Quan Cai
- In Vivo Pharmacology, MRL, Merck & Co., Inc., 2000 Galloping Hill Road, Kenilworth, NJ, 07033, USA
| | - Taro Akiyama
- Departments of Cardiometabolic Diseases, MRL, Merck & Co., Inc., 2000 Galloping Hill Road, Kenilworth, NJ, 07033, USA
| | - Shirly Pinto
- Departments of Cardiometabolic Diseases, MRL, Merck & Co., Inc., 2000 Galloping Hill Road, Kenilworth, NJ, 07033, USA
| | - Alan C Cheng
- Computational & Structural Chemistry, MRL, Merck & Co., Inc., 2000 Galloping Hill Road, Kenilworth, NJ, 07033, USA
| | - Thomas Greshock
- Discovery Chemistry, MRL, Merck & Co., Inc., 2000 Galloping Hill Road, Kenilworth, NJ, 07033, USA
| | - John C Marquis
- Discovery Biologics, MRL, Merck & Co., Inc., 2000 Galloping Hill Road, Kenilworth, NJ, 07033, USA
| | - Zhao Ren
- Quantitative Biosciences, MRL, Merck & Co., Inc., 2000 Galloping Hill Road, Kenilworth, NJ, 07033, USA
| | - Saswata Talukdar
- Departments of Cardiometabolic Diseases, MRL, Merck & Co., Inc., 2000 Galloping Hill Road, Kenilworth, NJ, 07033, USA
| | - Hussam Hisham Shaheen
- Discovery Biologics, MRL, Merck & Co., Inc., 2000 Galloping Hill Road, Kenilworth, NJ, 07033, USA
| | - Masahisa Handa
- Discovery Biologics, MRL, Merck & Co., Inc., 2000 Galloping Hill Road, Kenilworth, NJ, 07033, USA.
| |
Collapse
|
15
|
Wec AZ, Haslwanter D, Abdiche YN, Shehata L, Pedreño-Lopez N, Moyer CL, Bornholdt ZA, Lilov A, Nett JH, Jangra RK, Brown M, Watkins DI, Ahlm C, Forsell MN, Rey FA, Barba-Spaeth G, Chandran K, Walker LM. Longitudinal dynamics of the human B cell response to the yellow fever 17D vaccine. Proc Natl Acad Sci U S A 2020; 117:6675-6685. [PMID: 32152119 PMCID: PMC7104296 DOI: 10.1073/pnas.1921388117] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
A comprehensive understanding of the development and evolution of human B cell responses induced by pathogen exposure will facilitate the design of next-generation vaccines. Here, we utilized a high-throughput single B cell cloning technology to longitudinally track the human B cell response to the yellow fever virus 17D (YFV-17D) vaccine. The early memory B cell (MBC) response was mediated by both classical immunoglobulin M (IgM) (IgM+CD27+) and switched immunoglobulin (swIg+) MBC populations; however, classical IgM MBCs waned rapidly, whereas swIg+ and atypical IgM+ and IgD+ MBCs were stable over time. Affinity maturation continued for 6 to 9 mo following vaccination, providing evidence for the persistence of germinal center activity long after the period of active viral replication in peripheral blood. Finally, a substantial fraction of the neutralizing antibody response was mediated by public clones that recognize a fusion loop-proximal antigenic site within domain II of the viral envelope glycoprotein. Overall, our findings provide a framework for understanding the dynamics and complexity of human B cell responses elicited by infection and vaccination.
Collapse
Affiliation(s)
| | - Denise Haslwanter
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY 10461
| | | | | | | | | | | | | | | | - Rohit K Jangra
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY 10461
| | | | - David I Watkins
- Department of Pathology, University of Miami, Miami, FL 33146
| | - Clas Ahlm
- Division of Infection & Immunology, Department of Clinical Microbiology, Umeå University, 90187 Umeå, Sweden
| | - Mattias N Forsell
- Division of Infection & Immunology, Department of Clinical Microbiology, Umeå University, 90187 Umeå, Sweden
| | - Félix A Rey
- Structural Virology Unit, CNRS UMR 3569, Virology Department, Institut Pasteur, 75015 Paris, France
| | - Giovanna Barba-Spaeth
- Structural Virology Unit, CNRS UMR 3569, Virology Department, Institut Pasteur, 75015 Paris, France
| | - Kartik Chandran
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY 10461
| | | |
Collapse
|
16
|
Miller EA, Sung KJ, Kongsuphol P, Baniya S, Aw-Yong HQ, Tay V, Tan Y, Kabir FM, Pang-Yeo K, Kaspriskie IG, Sikes HD. Beyond Epitope Binning: Directed in Vitro Selection of Complementary Pairs of Binding Proteins. ACS COMBINATORIAL SCIENCE 2020; 22:49-60. [PMID: 31769955 DOI: 10.1021/acscombsci.9b00176] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Many biotechnological applications require the simultaneous binding of affinity reagents to nonoverlapping target epitopes, the most prominent example being sandwich immunoassays. Typically, affinity pairs are identified via post facto functional analysis of clones that were not selected for complementarity. Here, we developed the Rapid Affinity Pair Identification via Directed Selection (RAPIDS) process, which enables the efficient identification of affinity reagents that function together as complementary pairs, from in vitro libraries of ∼109 variants. We used RAPIDS to develop highly specific affinity pairs against biomarkers of tuberculosis, Zika virus, and sepsis. Without additional trial-and-error screening, these affinity pairs exhibited utility in multiple assay formats. The RAPIDS process applies selective pressure to hundreds of thousands of potential affinity pairs to efficiently identify complementary pairs that bind to separate epitopes without binding to one another or nontargets, yielding diagnostic assays that are sensitive and specific by design.
Collapse
Affiliation(s)
- Eric A. Miller
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Ki-Joo Sung
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Patthara Kongsuphol
- Singapore-MIT Alliance for Research and Technology (SMART) Centre, 1 CREATE Way, Singapore 138602
| | - Subha Baniya
- Department of Biochemistry, Wellesley College, Wellesley, Massachusetts 02481, United States
| | - Hui Qi Aw-Yong
- Singapore-MIT Alliance for Research and Technology (SMART) Centre, 1 CREATE Way, Singapore 138602
| | - Vivian Tay
- Singapore-MIT Alliance for Research and Technology (SMART) Centre, 1 CREATE Way, Singapore 138602
| | - Yuxuan Tan
- Singapore-MIT Alliance for Research and Technology (SMART) Centre, 1 CREATE Way, Singapore 138602
| | - Farah M. Kabir
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Karl Pang-Yeo
- Singapore-MIT Alliance for Research and Technology (SMART) Centre, 1 CREATE Way, Singapore 138602
| | - Isabel G. Kaspriskie
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Hadley D. Sikes
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
- Singapore-MIT Alliance for Research and Technology (SMART) Centre, 1 CREATE Way, Singapore 138602
| |
Collapse
|
17
|
Ørstrup LH, Slaaby R, Rasch MG, Rasmussen N, Lund S, Brandt J, Schluckebier G, Wang Z, Lützen A, Pedersen TÅ, Hvid H, Hansen BF, Blume N. Cross-species reactive monoclonal antibodies against the extracellular domains of the insulin receptor and IGF1 receptor. J Immunol Methods 2018; 465:20-26. [PMID: 30500329 DOI: 10.1016/j.jim.2018.11.014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Revised: 11/21/2018] [Accepted: 11/26/2018] [Indexed: 12/23/2022]
Abstract
Translation across species of immunoassay results is often challenging due to the lack of cross-species reactivity of antibodies. In order to investigate the biology of insulin and IGF1 receptors, we generated new versatile monoclonal assay antibodies using the extracellular domain of the insulin/IGF1 hybrid receptor as the bait protein in the Adimab yeast antibody discovery platform and as the antigen in a rabbit monoclonal antibody platform. The resulting antibody clones were screened for receptor specificity as well as cross-species reactivity to both tissue and cell line derived samples. Using these strategies, we were able to identify highly specific insulin receptor monoclonal antibodies that lack cross-reactivity to the IGF1 receptor using the Adimab platform and a highly specific IGF1 receptor monoclonal antibody that lacks cross-reactivity to the insulin receptor using the rabbit antibody platform. Unlike earlier monoclonal antibodies reported in the literature, these antibodies show cross-species reactivity to the extracellular domains of mouse, rat, pig, and human receptors, indicating that they bind conserved epitopes. Furthermore, the antibodies work well in several different assay formats, including ELISA, flow cytometry, and immunoprecipitation, and therefore provide new tools to study insulin and IGF1 receptor biology with translation across several species and experimental model systems.
Collapse
Affiliation(s)
- Laura Hvidsten Ørstrup
- Experimental Animal Models, Department of Veterinary and Animal Sciences, University of Copenhagen, Denmark
| | - Rita Slaaby
- Global Drug Discovery, Novo Nordisk, Måløv, Denmark
| | | | | | - Søren Lund
- Global Research Technologies, Novo Nordisk, Måløv, Denmark
| | - Jakob Brandt
- Global Research Technologies, Novo Nordisk, Måløv, Denmark
| | | | - Zhe Wang
- Discovery Technology China, Novo Nordisk Research Centre, Beijing, China
| | - Anne Lützen
- Global Drug Discovery, Novo Nordisk, Måløv, Denmark
| | | | - Henning Hvid
- Global Drug Discovery, Novo Nordisk, Måløv, Denmark
| | | | - Niels Blume
- Global Drug Discovery, Novo Nordisk, Måløv, Denmark.
| |
Collapse
|
18
|
Iezzi ME, Policastro L, Werbajh S, Podhajcer O, Canziani GA. Single-Domain Antibodies and the Promise of Modular Targeting in Cancer Imaging and Treatment. Front Immunol 2018. [PMID: 29520274 PMCID: PMC5827546 DOI: 10.3389/fimmu.2018.00273] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Monoclonal antibodies and their fragments have significantly changed the outcome of cancer in the clinic, effectively inhibiting tumor cell proliferation, triggering antibody-dependent immune effector cell activation and complement mediated cell death. Along with a continued expansion in number, diversity, and complexity of validated tumor targets there is an increasing focus on engineering recombinant antibody fragments for lead development. Single-domain antibodies (sdAbs), in particular those engineered from the variable heavy-chain fragment (VHH gene) found in Camelidae heavy-chain antibodies (or IgG2 and IgG3), are the smallest fragments that retain the full antigen-binding capacity of the antibody with advantageous properties as drugs. For similar reasons, growing attention is being paid to the yet smaller variable heavy chain new antigen receptor (VNAR) fragments found in Squalidae. sdAbs have been selected, mostly from immune VHH libraries, to inhibit or modulate enzyme activity, bind soluble factors, internalize cell membrane receptors, or block cytoplasmic targets. This succinct review is a compilation of recent data documenting the application of engineered, recombinant sdAb in the clinic as epitope recognition “modules” to build monomeric, dimeric and multimeric ligands that target, tag and stall solid tumor growth in vivo. Size, affinity, specificity, and the development profile of sdAbs drugs are seemingly consistent with desirable clinical efficacy and safety requirements. But the hepatotoxicity of the tetrameric anti-DR5-VHH drug in patients with pre-existing anti-drug antibodies halted the phase I clinical trial and called for a thorough pre-screening of the immune and poly-specific reactivities of the sdAb leads.
Collapse
Affiliation(s)
- María Elena Iezzi
- Laboratorio de Terapia Molecular y Celular, Fundación Instituto Leloir, Instituto de Investigaciones Bioquímicas de Buenos Aires (IIBBA-CONICET), Ciudad Autónoma de Buenos Aires, Argentina
| | - Lucía Policastro
- Laboratorio de Terapia Molecular y Celular, Fundación Instituto Leloir, Instituto de Investigaciones Bioquímicas de Buenos Aires (IIBBA-CONICET), Ciudad Autónoma de Buenos Aires, Argentina.,Laboratorio Nanomedicina, Gerencia de Desarrollo Tecnológico y Proyectos Especiales, Comisión Nacional de Energía Atómica, Ciudad Autónoma de Buenos Aires, Argentina
| | - Santiago Werbajh
- Laboratorio de Terapia Molecular y Celular, Fundación Instituto Leloir, Instituto de Investigaciones Bioquímicas de Buenos Aires (IIBBA-CONICET), Ciudad Autónoma de Buenos Aires, Argentina
| | - Osvaldo Podhajcer
- Laboratorio de Terapia Molecular y Celular, Fundación Instituto Leloir, Instituto de Investigaciones Bioquímicas de Buenos Aires (IIBBA-CONICET), Ciudad Autónoma de Buenos Aires, Argentina
| | - Gabriela Alicia Canziani
- Laboratorio de Terapia Molecular y Celular, Fundación Instituto Leloir, Instituto de Investigaciones Bioquímicas de Buenos Aires (IIBBA-CONICET), Ciudad Autónoma de Buenos Aires, Argentina
| |
Collapse
|
19
|
Abdiche YN, Yeung AY, Ni I, Stone D, Miles A, Morishige W, Rossi A, Strop P. Antibodies Targeting Closely Adjacent or Minimally Overlapping Epitopes Can Displace One Another. PLoS One 2017; 12:e0169535. [PMID: 28060885 PMCID: PMC5218414 DOI: 10.1371/journal.pone.0169535] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2016] [Accepted: 12/18/2016] [Indexed: 12/13/2022] Open
Abstract
Here we describe how real-time label-free biosensors can be used to identify antibodies that compete for closely adjacent or minimally overlapping epitopes on their specific antigen via a mechanism of antibody displacement. By kinetically perturbing one another’s binding towards their antigen via the formation of a transient trimolecular complex, antibodies can displace one another in a fully reversible and dose-dependent manner. Displacements can be readily identified when epitope binning assays are performed in a classical sandwich assay format whereby a solution antibody (analyte) is tested for binding to its antigen that is first captured via an immobilized antibody (ligand) because an inverted sandwiching response is observed when an analyte displaces a ligand, signifying the antigen’s unusually rapid dissociation from its ligand. In addition to classifying antibodies within a panel in terms of their ability to block or sandwich pair with one another, displacement provides a hybrid mechanism of competition. Using high-throughput epitope binning studies we demonstrate that displacements can be observed on any target, if the antibody panel contains appropriate epitope diversity. Unidirectional displacements occurring between disparate-affinity antibodies can generate apparent asymmetries in a cross-blocking experiment, confounding their interpretation. However, examining competition across a wide enough concentration range will often reveal that these displacements are reversible. Displacement provides a gentle and efficient way of eluting antigen from an otherwise high affinity binding partner which can be leveraged in designing reagents or therapeutic antibodies with unique properties.
Collapse
Affiliation(s)
- Yasmina Noubia Abdiche
- Department of Protein Engineering, Rinat, Oncology Research and Development, Pfizer Inc., South San Francisco, California, United States of America
- * E-mail:
| | - Andy Yik Yeung
- Department of Protein Engineering, Rinat, Oncology Research and Development, Pfizer Inc., South San Francisco, California, United States of America
| | - Irene Ni
- Department of Protein Engineering, Rinat, Oncology Research and Development, Pfizer Inc., South San Francisco, California, United States of America
| | - Donna Stone
- Department of Protein Engineering, Rinat, Oncology Research and Development, Pfizer Inc., South San Francisco, California, United States of America
| | - Adam Miles
- Wasatch Microfluidics, Salt Lake City, Utah, United States of America
| | - Winse Morishige
- Department of Protein Engineering, Bristol-Myers Squibb, Redwood City, California, United States of America
| | - Andrea Rossi
- Compugen USA Inc., South San Francisco, California, United States of America
| | - Pavel Strop
- Department of Protein Engineering, Bristol-Myers Squibb, Redwood City, California, United States of America
| |
Collapse
|