1
|
Edgar JE, Bournazos S. Fc-FcγR interactions during infections: From neutralizing antibodies to antibody-dependent enhancement. Immunol Rev 2024; 328:221-242. [PMID: 39268652 PMCID: PMC11659939 DOI: 10.1111/imr.13393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/17/2024]
Abstract
Advances in antibody technologies have resulted in the development of potent antibody-based therapeutics with proven clinical efficacy against infectious diseases. Several monoclonal antibodies (mAbs), mainly against viruses such as SARS-CoV-2, HIV-1, Ebola virus, influenza virus, and hepatitis B virus, are currently undergoing clinical testing or are already in use. Although these mAbs exhibit potent neutralizing activity that effectively blocks host cell infection, their antiviral activity results not only from Fab-mediated virus neutralization, but also from the protective effector functions mediated through the interaction of their Fc domains with Fcγ receptors (FcγRs) on effector leukocytes. Fc-FcγR interactions confer pleiotropic protective activities, including the clearance of opsonized virions and infected cells, as well as the induction of antiviral T-cell responses. However, excessive or inappropriate activation of specific FcγR pathways can lead to disease enhancement and exacerbated pathology, as seen in the context of dengue virus infections. A comprehensive understanding of the diversity of Fc effector functions during infection has guided the development of engineered antiviral antibodies optimized for maximal effector activity, as well as the design of targeted therapeutic approaches to prevent antibody-dependent enhancement of disease.
Collapse
Affiliation(s)
- Julia E. Edgar
- The London School of Hygiene and Tropical MedicineLondonUK
| | - Stylianos Bournazos
- The Laboratory of Molecular Genetics and ImmunologyThe Rockefeller UniversityNew YorkNew YorkUSA
| |
Collapse
|
2
|
Webster E, Peck NE, Echeverri JD, Gholizadeh S, Tang WL, Woo R, Sharma A, Liu W, Rae CS, Sallets A, Adusumilli G, Gunasekaran K, Haabeth OAW, Leong M, Zuckermann RN, Deutsch S, McKinlay CJ. Discovery of a Peptoid-Based Nanoparticle Platform for Therapeutic mRNA Delivery via Diverse Library Clustering and Structural Parametrization. ACS NANO 2024; 18:22181-22193. [PMID: 39105751 PMCID: PMC11342374 DOI: 10.1021/acsnano.4c05513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 07/29/2024] [Accepted: 07/31/2024] [Indexed: 08/07/2024]
Abstract
Nanoparticle-mediated mRNA delivery has emerged as a promising therapeutic modality, but its growth is still limited by the discovery and optimization of effective and well-tolerated delivery strategies. Lipid nanoparticles containing charged or ionizable lipids are an emerging standard for in vivo mRNA delivery, so creating facile, tunable strategies to synthesize these key lipid-like molecules is essential to advance the field. Here, we generate a library of N-substituted glycine oligomers, peptoids, and undertake a multistage down-selection process to identify lead candidate peptoids as the ionizable component in our Nutshell nanoparticle platform. First, we identify a promising peptoid structural motif by clustering a library of >200 molecules based on predicted physical properties and evaluate members of each cluster for reporter gene expression in vivo. Then, the lead peptoid motif is optimized using design of experiments methodology to explore variations on the charged and lipophilic portions of the peptoid, facilitating the discovery of trends between structural elements and nanoparticle properties. We further demonstrate that peptoid-based Nutshells leads to expression of therapeutically relevant levels of an anti-respiratory syncytial virus antibody in mice with minimal tolerability concerns or induced immune responses compared to benchmark ionizable lipid, DLin-MC3-DMA. Through this work, we present peptoid-based nanoparticles as a tunable delivery platform that can be optimized toward a range of therapeutic programs.
Collapse
Affiliation(s)
- Elizabeth
R. Webster
- Nutcracker
Therapeutics, 5980 Horton Street Suite 350, Emeryville, California 94608, United States
| | - Nicole E. Peck
- Nutcracker
Therapeutics, 5980 Horton Street Suite 350, Emeryville, California 94608, United States
| | - Juan Diego Echeverri
- Nutcracker
Therapeutics, 5980 Horton Street Suite 350, Emeryville, California 94608, United States
| | - Shima Gholizadeh
- Nutcracker
Therapeutics, 5980 Horton Street Suite 350, Emeryville, California 94608, United States
| | - Wei-Lun Tang
- Nutcracker
Therapeutics, 5980 Horton Street Suite 350, Emeryville, California 94608, United States
| | - Rinette Woo
- Nutcracker
Therapeutics, 5980 Horton Street Suite 350, Emeryville, California 94608, United States
| | - Anushtha Sharma
- Nutcracker
Therapeutics, 5980 Horton Street Suite 350, Emeryville, California 94608, United States
| | - Weiqun Liu
- Nutcracker
Therapeutics, 5980 Horton Street Suite 350, Emeryville, California 94608, United States
| | - Chris S. Rae
- Nutcracker
Therapeutics, 5980 Horton Street Suite 350, Emeryville, California 94608, United States
| | - Adrienne Sallets
- Nutcracker
Therapeutics, 5980 Horton Street Suite 350, Emeryville, California 94608, United States
| | - Gowrisudha Adusumilli
- Nutcracker
Therapeutics, 5980 Horton Street Suite 350, Emeryville, California 94608, United States
| | - Kannan Gunasekaran
- Nutcracker
Therapeutics, 5980 Horton Street Suite 350, Emeryville, California 94608, United States
| | - Ole A. W. Haabeth
- Nutcracker
Therapeutics, 5980 Horton Street Suite 350, Emeryville, California 94608, United States
| | - Meredith Leong
- Nutcracker
Therapeutics, 5980 Horton Street Suite 350, Emeryville, California 94608, United States
| | - Ronald N. Zuckermann
- Molecular
Foundry, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Samuel Deutsch
- Nutcracker
Therapeutics, 5980 Horton Street Suite 350, Emeryville, California 94608, United States
| | - Colin J. McKinlay
- Nutcracker
Therapeutics, 5980 Horton Street Suite 350, Emeryville, California 94608, United States
| |
Collapse
|
3
|
Sinha D, Yaugel-Novoa M, Waeckel L, Paul S, Longet S. Unmasking the potential of secretory IgA and its pivotal role in protection from respiratory viruses. Antiviral Res 2024; 223:105823. [PMID: 38331200 DOI: 10.1016/j.antiviral.2024.105823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 01/22/2024] [Accepted: 01/25/2024] [Indexed: 02/10/2024]
Abstract
Mucosal immunity has regained its spotlight amidst the ongoing Coronavirus disease 19 (COVID-19) pandemic, with numerous studies highlighting the crucial role of mucosal secretory IgA (SIgA) in protection against Severe acute respiratory syndrome coronavirus-2 or SARS-CoV-2 infections. The observed limitations in the efficacy of currently authorized COVID-19 vaccines in inducing effective mucosal immune responses remind us of the limitations of systemic vaccination in promoting protective mucosal immunity. This resurgence of interest has motivated the development of vaccine platforms capable of enhancing mucosal responses, specifically the SIgA response, and the development of IgA-based therapeutics. Recognizing viral respiratory infections as a global threat, we would like to comprehensively review the existing knowledge on mucosal immunity, with a particular emphasis on SIgA, in the context of SARS-CoV-2, influenza, and Respiratory Syncytial Virus (RSV) infections. This review aims to describe the structural and functional specificities of SIgA, along with its nuanced role in combating influenza, RSV, and SARS-CoV-2 infections. Subsequent sections further elaborate promising vaccine strategies, including mucosal vaccines against Influenza, RSV, and SARS-CoV-2 respiratory viruses, currently undergoing preclinical and clinical development. Additionally, we address the challenges associated with mucosal vaccine development, concluding with a discussion on IgA-based therapeutics as a promising platform for the treatment of viral respiratory infections. This comprehensive review not only synthesizes current insights into mucosal immunity but also identifies critical knowledge gaps, strengthening the way for further advancements in our current understanding and approaches to combat respiratory viral threats.
Collapse
Affiliation(s)
- Divya Sinha
- CIRI - Centre International de Recherche en Infectiologie, Team GIMAP, Univ Lyon, Université Claude Bernard Lyon 1, Inserm, U1111, CNRS, UMR5308, CIC 1408 Vaccinology, F42023, Saint-Etienne, France
| | - Melyssa Yaugel-Novoa
- CIRI - Centre International de Recherche en Infectiologie, Team GIMAP, Univ Lyon, Université Claude Bernard Lyon 1, Inserm, U1111, CNRS, UMR5308, CIC 1408 Vaccinology, F42023, Saint-Etienne, France
| | - Louis Waeckel
- CIRI - Centre International de Recherche en Infectiologie, Team GIMAP, Univ Lyon, Université Claude Bernard Lyon 1, Inserm, U1111, CNRS, UMR5308, CIC 1408 Vaccinology, F42023, Saint-Etienne, France; Immunology Department, University Hospital of Saint-Etienne, F42055, Saint-Etienne, France
| | - Stéphane Paul
- CIRI - Centre International de Recherche en Infectiologie, Team GIMAP, Univ Lyon, Université Claude Bernard Lyon 1, Inserm, U1111, CNRS, UMR5308, CIC 1408 Vaccinology, F42023, Saint-Etienne, France; Immunology Department, University Hospital of Saint-Etienne, F42055, Saint-Etienne, France; CIC 1408 Inserm Vaccinology, University Hospital of Saint-Etienne, F42055, Saint-Etienne, France.
| | - Stéphanie Longet
- CIRI - Centre International de Recherche en Infectiologie, Team GIMAP, Univ Lyon, Université Claude Bernard Lyon 1, Inserm, U1111, CNRS, UMR5308, CIC 1408 Vaccinology, F42023, Saint-Etienne, France.
| |
Collapse
|
4
|
Lakerveld AJ, Gelderloos AT, Schepp RM, de Haan CAM, van Binnendijk RS, Rots NY, van Beek J, van Els CACM, van Kasteren PB. Difference in respiratory syncytial virus-specific Fc-mediated antibody effector functions between children and adults. Clin Exp Immunol 2023; 214:79-93. [PMID: 37605554 PMCID: PMC10711356 DOI: 10.1093/cei/uxad101] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 07/28/2023] [Accepted: 08/17/2023] [Indexed: 08/23/2023] Open
Abstract
Respiratory syncytial virus (RSV) infections are a major cause of bronchiolitis and pneumonia in infants and older adults, for which there is no known correlate of protection. Increasing evidence suggests that Fc-mediated antibody effector functions have an important role, but little is known about the development, heterogeneity, and durability of these functional responses. In light of future vaccine strategies, a clear view of the immunological background and differences between various target populations is of crucial importance. In this study, we have assessed both quantitative and qualitative aspects of RSV-specific serum antibodies, including IgG/IgA levels, IgG subclasses, antibody-dependent complement deposition, cellular phagocytosis, and NK cell activation (ADNKA). Samples were collected cross-sectionally in different age groups (11-, 24-, and 46-month-old children, adults, and older adults; n = 31-35 per group) and longitudinally following natural RSV infection in (older) adults (2-36 months post-infection; n = 10). We found that serum of 24-month-old children induces significantly lower ADNKA than the serum of adults (P < 0.01), which is not explained by antibody levels. Furthermore, in (older) adults we observed boosting of antibody levels and functionality at 2-3 months after RSV infection, except for ADNKA. The strongest decrease was subsequently observed within the first 9 months, after which levels remained relatively stable up to three years post-infection. Together, these data provide a comprehensive overview of the functional landscape of RSV-specific serum antibodies in the human population, highlighting that while antibodies reach adult levels already at a young age, ADNKA requires more time to fully develop.
Collapse
Affiliation(s)
- Anke J Lakerveld
- Center for Immunology of Infectious Diseases and Vaccines, Center for Infectious Disease Control, National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands
- Department of Medical Microbiology, Leiden University Medical Center, The Netherlands
| | - Anne T Gelderloos
- Center for Immunology of Infectious Diseases and Vaccines, Center for Infectious Disease Control, National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands
| | - Rutger M Schepp
- Center for Immunology of Infectious Diseases and Vaccines, Center for Infectious Disease Control, National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands
| | - Cornelis A M de Haan
- Section Virology, Department Biomolecular Health Sciences, Faculty Veterinary Medicine, Utrecht University, The Netherlands
| | - Robert S van Binnendijk
- Center for Immunology of Infectious Diseases and Vaccines, Center for Infectious Disease Control, National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands
| | - Nynke Y Rots
- Center for Immunology of Infectious Diseases and Vaccines, Center for Infectious Disease Control, National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands
| | - Josine van Beek
- Center for Immunology of Infectious Diseases and Vaccines, Center for Infectious Disease Control, National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands
| | - Cécile A C M van Els
- Center for Immunology of Infectious Diseases and Vaccines, Center for Infectious Disease Control, National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands
- Section Immunology, Department Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, The Netherlands
| | - Puck B van Kasteren
- Center for Immunology of Infectious Diseases and Vaccines, Center for Infectious Disease Control, National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands
| |
Collapse
|
5
|
Mazur NI, Löwensteyn YN, Terstappen J, Leusen J, Schobben F, Cianci D, van de Ven PM, Nierkens S, Bont LJ. Daily intranasal palivizumab to prevent respiratory syncytial virus infection in healthy preterm infants: a phase 1/2b randomized placebo-controlled trial. EClinicalMedicine 2023; 66:102324. [PMID: 38192587 PMCID: PMC10772232 DOI: 10.1016/j.eclinm.2023.102324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 11/02/2023] [Accepted: 11/02/2023] [Indexed: 01/10/2024] Open
Abstract
Background Mucosal administration of monoclonal antibodies (mAbs) against respiratory pathogens is a promising alternative for systemic administration because lower doses are required for protection. Clinical development of mucosal mAbs is a highly active field yet clinical proof-of-concept is lacking. Methods In this investigator-initiated, double-blind, randomized placebo-controlled trial, we evaluated intranasal palivizumab for the prevention of RSV infection in preterm infants (Dutch Trial Register NTR7378 and NTR7403). We randomized infants 1:1 to receive intranasal palivizumab (1 mg/mL) or placebo once daily during the RSV season. Any RSV infection was the primary outcome and RSV hospitalization was the key secondary outcome. The primary outcome was analyzed with a mixed effect logistic regression on the modified intention-to-treat population. Findings We recruited 268 infants between Jan 14, 2019 and Jan 28, 2021, after which the trial was stopped for futility following the planned interim analysis. Adverse events were similar in both groups (22/134 (16.4%) palivizumab arm versus 26/134 (19.4%) placebo arm). There were 6 dropouts and 168 infants were excluded from the efficacy analyses due to absent RSV circulation during the SARS-CoV-2 pandemic. Any RSV infection was similar in infants in both groups (18/47 (38.3%) palivizumab arm versus 11/47 (23.4%) placebo arm; aOR 2.2, 95% CI 0.7-6.5). Interpretation Daily intranasal palivizumab did not prevent RSV infection in late preterm infants. Our findings have important implications for the clinical development of mucosal mAbs, namely the necessity of timely interim analyses and further research to understand mucosal antibody half-life. Funding Funded by the Department of Pediatrics, University Medical Centre Utrecht, the Netherlands.
Collapse
Affiliation(s)
- Natalie I. Mazur
- Department of Pediatric Infectious Diseases and Immunology, Wilhelmina Children's Hospital, University Medical Centre Utrecht, Lundlaan 6, 3584 EA, Utrecht, the Netherlands
- Department of Pediatrics, St. Antonius Hospital, 3543 AZ, Utrecht, the Netherlands
| | - Yvette N. Löwensteyn
- Department of Pediatric Infectious Diseases and Immunology, Wilhelmina Children's Hospital, University Medical Centre Utrecht, Lundlaan 6, 3584 EA, Utrecht, the Netherlands
| | - Jonne Terstappen
- Department of Pediatric Infectious Diseases and Immunology, Wilhelmina Children's Hospital, University Medical Centre Utrecht, Lundlaan 6, 3584 EA, Utrecht, the Netherlands
| | - Jeanette Leusen
- Center for Translational Immunology, University Medical Centre Utrecht, Heidelberglaan 100, 3584 CX, Utrecht, the Netherlands
| | - Fred Schobben
- Department of Pharmacy, University Medical Centre Utrecht, Heidelberglaan 100, 3584 CX, Utrecht, the Netherlands
| | - Daniela Cianci
- Department of Pediatric Infectious Diseases and Immunology, Wilhelmina Children's Hospital, University Medical Centre Utrecht, Lundlaan 6, 3584 EA, Utrecht, the Netherlands
- Julius Center for Health Sciences and Primary Care, Department of Data Science & Biostatistics, University Medical Center Utrecht, Utrecht University, Heidelberglaan 100, 3584 CX, Utrecht, the Netherlands
| | - Peter M. van de Ven
- Department of Pediatric Infectious Diseases and Immunology, Wilhelmina Children's Hospital, University Medical Centre Utrecht, Lundlaan 6, 3584 EA, Utrecht, the Netherlands
- Julius Center for Health Sciences and Primary Care, Department of Data Science & Biostatistics, University Medical Center Utrecht, Utrecht University, Heidelberglaan 100, 3584 CX, Utrecht, the Netherlands
| | - Stefan Nierkens
- Center for Translational Immunology, University Medical Centre Utrecht, Heidelberglaan 100, 3584 CX, Utrecht, the Netherlands
| | - Louis J. Bont
- Department of Pediatric Infectious Diseases and Immunology, Wilhelmina Children's Hospital, University Medical Centre Utrecht, Lundlaan 6, 3584 EA, Utrecht, the Netherlands
| |
Collapse
|
6
|
Nakanishi K, Takase T, Ohira Y, Ida R, Mogi N, Kikuchi Y, Matsuda M, Kurohane K, Akimoto Y, Hayakawa J, Kawakami H, Niwa Y, Kobayashi H, Umemoto E, Imai Y. Prevention of Shiga toxin 1-caused colon injury by plant-derived recombinant IgA. Sci Rep 2022; 12:17999. [PMID: 36289440 PMCID: PMC9606113 DOI: 10.1038/s41598-022-22851-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 10/20/2022] [Indexed: 01/24/2023] Open
Abstract
Immunoglobulin A (IgA) is a candidate antibody for oral passive immunization against mucosal pathogens like Shiga toxin-producing Escherichia coli (STEC). We previously established a mouse IgG monoclonal antibody (mAb) neutralizing Shiga toxin 1 (Stx1), a bacterial toxin secreted by STEC. We designed cDNA encoding an anti-Stx1 antibody, in which variable regions were from the IgG mAb and all domains of the heavy chain constant region from a mouse IgA mAb. Considering oral administration, we expressed the cDNA in a plant expression system aiming at the production of enough IgA at low cost. The recombinant-IgA expressed in Arabidopsis thaliana formed the dimeric IgA, bound to the B subunit of Stx1, and neutralized Stx1 toxicity to Vero cells. Colon injury was examined by exposing BALB/c mice to Stx1 via the intrarectal route. Epithelial cell death, loss of crypt and goblet cells from the distal colon were observed by electron microscopy. A loss of secretory granules containing MUC2 mucin and activation of caspase-3 were observed by immunohistochemical methods. Pretreatment of Stx1 with the plant-based recombinant IgA completely suppressed caspase-3 activation and loss of secretory granules. The results indicate that a plant-based recombinant IgA prevented colon damage caused by Stx1 in vivo.
Collapse
Affiliation(s)
- Katsuhiro Nakanishi
- grid.469280.10000 0000 9209 9298Laboratory of Microbiology and Immunology, School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka City, Shizuoka 422-8526 Japan
| | - Taichi Takase
- grid.469280.10000 0000 9209 9298Laboratory of Microbiology and Immunology, School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka City, Shizuoka 422-8526 Japan
| | - Yuya Ohira
- grid.469280.10000 0000 9209 9298Laboratory of Microbiology and Immunology, School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka City, Shizuoka 422-8526 Japan
| | - Ryota Ida
- grid.469280.10000 0000 9209 9298Laboratory of Microbiology and Immunology, School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka City, Shizuoka 422-8526 Japan
| | - Noriko Mogi
- grid.469280.10000 0000 9209 9298Laboratory of Microbiology and Immunology, School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka City, Shizuoka 422-8526 Japan
| | - Yuki Kikuchi
- grid.469280.10000 0000 9209 9298Laboratory of Microbiology and Immunology, School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka City, Shizuoka 422-8526 Japan
| | - Minami Matsuda
- grid.469280.10000 0000 9209 9298Laboratory of Microbiology and Immunology, School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka City, Shizuoka 422-8526 Japan
| | - Kohta Kurohane
- grid.469280.10000 0000 9209 9298Laboratory of Microbiology and Immunology, School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka City, Shizuoka 422-8526 Japan
| | - Yoshihiro Akimoto
- grid.411205.30000 0000 9340 2869Department of Anatomy, Kyorin University School of Medicine, Mitaka, Tokyo, 181-8611 Japan
| | - Junri Hayakawa
- grid.411205.30000 0000 9340 2869Laboratory for Electron Microscopy, Kyorin University School of Medicine, Mitaka, Tokyo, 181-8611 Japan
| | - Hayato Kawakami
- grid.411205.30000 0000 9340 2869Department of Anatomy, Kyorin University School of Medicine, Mitaka, Tokyo, 181-8611 Japan
| | - Yasuo Niwa
- grid.469280.10000 0000 9209 9298Laboratory of Plant Molecular Improvement, Graduate Division of Nutritional and Environmental Sciences, University of Shizuoka, Shizuoka City, Shizuoka 422-8526 Japan
| | - Hirokazu Kobayashi
- grid.469280.10000 0000 9209 9298Laboratory of Plant Molecular Improvement, Graduate Division of Nutritional and Environmental Sciences, University of Shizuoka, Shizuoka City, Shizuoka 422-8526 Japan
| | - Eiji Umemoto
- grid.469280.10000 0000 9209 9298Laboratory of Microbiology and Immunology, School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka City, Shizuoka 422-8526 Japan
| | - Yasuyuki Imai
- grid.469280.10000 0000 9209 9298Laboratory of Microbiology and Immunology, School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka City, Shizuoka 422-8526 Japan
| |
Collapse
|
7
|
Atwell JE, Lutz CS, Sparrow EG, Feikin DR. Biological factors that may impair transplacental transfer of RSV antibodies: Implications for maternal immunization policy and research priorities for low- and middle-income countries. Vaccine 2022; 40:4361-4370. [PMID: 35725783 PMCID: PMC9348036 DOI: 10.1016/j.vaccine.2022.06.034] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Revised: 04/19/2022] [Accepted: 06/01/2022] [Indexed: 11/26/2022]
Abstract
Respiratory syncytial virus (RSV) is the leading viral cause of acute lower respiratory tract infection (ALRI), including bronchiolitis and pneumonia, in infants and children worldwide. Protection against RSV is primarily antibody mediated and passively acquired RSV neutralizing antibody can protect infants from RSV ALRI. Maternal immunization is an attractive strategy for the prevention of RSV in early infancy when immune responses to active immunization may be suboptimal and most severe RSV disease and death occur. However, several biologic factors have been shown to potentially attenuate or interfere with the transfer of protective naturally acquired antibodies from mother to fetus and could therefore also reduce vaccine effectiveness through impairment of transfer of vaccine-induced antibodies. Many of these factors are prevalent in low- and middle-income countries (LMIC) which experience the greatest burden of RSV-associated mortality; more data are needed to understand these mechanisms in the context of RSV maternal immunization. This review will focus on what is currently known about biologic conditions that may impair RSV antibody transfer, including preterm delivery, low birthweight, maternal HIV infection, placental malaria, and hypergammaglobulinemia (high levels of maternal total IgG). Key data gaps and priority areas for research are highlighted and include improved understanding of the epidemiology of hypergammaglobulinemia and the mechanisms by which it may impair antibody transfer. Key considerations for ensuring optimal vaccine effectiveness in LMICs are also discussed.
Collapse
Affiliation(s)
- Jessica E Atwell
- Johns Hopkins Bloomberg School of Public Health, Department of International Health, Global Disease Epidemiology and Control, Baltimore, MD, USA
| | - Chelsea S Lutz
- Johns Hopkins Bloomberg School of Public Health, Department of International Health, Global Disease Epidemiology and Control, Baltimore, MD, USA
| | - Erin G Sparrow
- The World Health Organization, Department of Immunization, Vaccines and Biologicals, Geneva, Switzerland
| | - Daniel R Feikin
- The World Health Organization, Department of Immunization, Vaccines and Biologicals, Geneva, Switzerland
| |
Collapse
|
8
|
Garegnani L, Styrmisdóttir L, Roson Rodriguez P, Escobar Liquitay CM, Esteban I, Franco JV. Palivizumab for preventing severe respiratory syncytial virus (RSV) infection in children. Cochrane Database Syst Rev 2021; 11:CD013757. [PMID: 34783356 PMCID: PMC8594174 DOI: 10.1002/14651858.cd013757.pub2] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
BACKGROUND Respiratory viruses are the leading cause of lower respiratory tract infection (LRTI) and hospitalisation in infants and young children. Respiratory syncytial virus (RSV) is the main infectious agent in this population. Palivizumab is administered intramuscularly every month during five months in the first RSV season to prevent serious RSV LRTI in children. Given its high cost, it is essential to know if palivizumab continues to be effective in preventing severe RSV disease in children. OBJECTIVES To assess the effects of palivizumab for preventing severe RSV infection in children. SEARCH METHODS We searched CENTRAL, MEDLINE, three other databases and two trials registers to 14 October 2021, together with reference checking, citation searching and contact with study authors to identify additional studies. We searched Embase to October 2020, as we did not have access to this database for 2021. SELECTION CRITERIA We included randomised controlled trials (RCTs), including cluster-RCTs, comparing palivizumab given at a dose of 15 mg/kg once a month (maximum five doses) with placebo, no intervention or standard care in children 0 to 24 months of age from both genders, regardless of RSV infection history. DATA COLLECTION AND ANALYSIS: We used Cochrane's Screen4Me workflow to help assess the search results. Two review authors screened studies for selection, assessed risk of bias and extracted data. We used standard Cochrane methods. We used GRADE to assess the certainty of the evidence. The primary outcomes were hospitalisation due to RSV infection, all-cause mortality and adverse events. Secondary outcomes were hospitalisation due to respiratory-related illness, length of hospital stay, RSV infection, number of wheezing days, days of supplemental oxygen, intensive care unit length of stay and mechanical ventilation days. MAIN RESULTS We included five studies with a total of 3343 participants. All studies were parallel RCTs, assessing the effects of 15 mg/kg of palivizumab every month up to five months compared to placebo or no intervention in an outpatient setting, although one study also included hospitalised infants. Most of the included studies were conducted in children with a high risk of RSV infection due to comorbidities like bronchopulmonary dysplasia and congenital heart disease. The risk of bias of outcomes across all studies was similar and predominately low. Palivizumab reduces hospitalisation due to RSV infection at two years' follow-up (risk ratio (RR) 0.44, 95% confidence interval (CI) 0.30 to 0.64; 5 studies, 3343 participants; high certainty evidence). Based on 98 hospitalisations per 1000 participants in the placebo group, this corresponds to 43 (29 to 62) per 1000 participants in the palivizumab group. Palivizumab probably results in little to no difference in mortality at two years' follow-up (RR 0.69, 95% CI 0.42 to 1.15; 5 studies, 3343 participants; moderate certainty evidence). Based on 23 deaths per 1000 participants in the placebo group, this corresponds to 16 (10 to 27) per 1000 participants in the palivizumab group. Palivizumab probably results in little to no difference in adverse events at 150 days' follow-up (RR 1.09, 95% CI 0.85 to 1.39; 3 studies, 2831 participants; moderate certainty evidence). Based on 84 cases per 1000 participants in the placebo group, this corresponds to 91 (71 to 117) per 1000 participants in the palivizumab group. Palivizumab probably results in a slight reduction in hospitalisation due to respiratory-related illness at two years' follow-up (RR 0.78, 95% CI 0.62 to 0.97; 5 studies, 3343 participants; moderate certainty evidence). Palivizumab may result in a large reduction in RSV infection at two years' follow-up (RR 0.33, 95% CI 0.20 to 0.55; 3 studies, 554 participants; low certainty evidence). Based on 195 cases of RSV infection per 1000 participants in the placebo group, this corresponds to 64 (39 to 107) per 1000 participants in the palivizumab group. Palivizumab also reduces the number of wheezing days at one year's follow-up (RR 0.39, 95% CI 0.35 to 0.44; 1 study, 429 participants; high certainty evidence). AUTHORS' CONCLUSIONS The available evidence suggests that prophylaxis with palivizumab reduces hospitalisation due to RSV infection and results in little to no difference in mortality or adverse events. Moreover, palivizumab results in a slight reduction in hospitalisation due to respiratory-related illness and may result in a large reduction in RSV infections. Palivizumab also reduces the number of wheezing days. These results may be applicable to children with a high risk of RSV infection due to comorbidities. Further research is needed to establish the effect of palivizumab on children with other comorbidities known as risk factors for severe RSV disease (e.g. immune deficiencies) and other social determinants of the disease, including children living in low- and middle-income countries, tropical regions, children lacking breastfeeding, living in poverty, or members of families in overcrowded situations.
Collapse
Affiliation(s)
- Luis Garegnani
- Associate Cochrane Centre, Instituto Universitario Hospital Italiano de Buenos Aires, Buenos Aires, Argentina
| | | | - Pablo Roson Rodriguez
- Research Department, Instituto Universitario Hospital Italiano, Buenos Aires, Argentina
| | | | - Ignacio Esteban
- Fundación INFANT, Buenos Aires, Argentina
- Pediatric Stepdown Unit, Hospital Italiano de Buenos Aires, Buenos Aires, Argentina
| | - Juan Va Franco
- Associate Cochrane Centre, Instituto Universitario Hospital Italiano de Buenos Aires, Buenos Aires, Argentina
| |
Collapse
|
9
|
Parray HA, Shukla S, Perween R, Khatri R, Shrivastava T, Singh V, Murugavelu P, Ahmed S, Samal S, Sharma C, Sinha S, Luthra K, Kumar R. Inhalation monoclonal antibody therapy: a new way to treat and manage respiratory infections. Appl Microbiol Biotechnol 2021; 105:6315-6332. [PMID: 34423407 PMCID: PMC8380517 DOI: 10.1007/s00253-021-11488-4] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 07/14/2021] [Accepted: 07/30/2021] [Indexed: 12/23/2022]
Abstract
The route of administration of a therapeutic agent has a substantial impact on its success. Therapeutic antibodies are usually administered systemically, either directly by intravenous route, or indirectly by intramuscular or subcutaneous injection. However, treatment of diseases contained within a specific tissue necessitates a better alternate route of administration for targeting localised infections. Inhalation is a promising non-invasive strategy for antibody delivery to treat respiratory maladies because it provides higher concentrations of antibody in the respiratory airways overcoming the constraints of entry through systemic circulation and uncertainity in the amount reaching the target tissue. The nasal drug delivery route is one of the extensively researched modes of administration, and nasal sprays for molecular drugs are deemed successful and are presently commercially marketed. This review highlights the current state and future prospects of inhaled therapies, with an emphasis on the use of monoclonal antibodies for the treatment of respiratory infections, as well as an overview of their importance, practical challenges, and clinical trial outcomes.Key points• Immunologic strategies for preventing mucosal transmission of respiratory pathogens.• Mucosal-mediated immunoprophylaxis could play a major role in COVID-19 prevention.• Applications of monoclonal antibodies in passive immunisation.
Collapse
Affiliation(s)
- Hilal Ahmad Parray
- Translational Health Science & Technology Institute, NCR Biotech Science Cluster, 3rd Milestone, Faridabad - Gurgaon Expressway, PO Box # 04, Faridabad, Haryana, 121001, India
| | - Shivangi Shukla
- Translational Health Science & Technology Institute, NCR Biotech Science Cluster, 3rd Milestone, Faridabad - Gurgaon Expressway, PO Box # 04, Faridabad, Haryana, 121001, India
| | - Reshma Perween
- Translational Health Science & Technology Institute, NCR Biotech Science Cluster, 3rd Milestone, Faridabad - Gurgaon Expressway, PO Box # 04, Faridabad, Haryana, 121001, India
| | - Ritika Khatri
- Translational Health Science & Technology Institute, NCR Biotech Science Cluster, 3rd Milestone, Faridabad - Gurgaon Expressway, PO Box # 04, Faridabad, Haryana, 121001, India
| | - Tripti Shrivastava
- Translational Health Science & Technology Institute, NCR Biotech Science Cluster, 3rd Milestone, Faridabad - Gurgaon Expressway, PO Box # 04, Faridabad, Haryana, 121001, India
| | - Vanshika Singh
- Translational Health Science & Technology Institute, NCR Biotech Science Cluster, 3rd Milestone, Faridabad - Gurgaon Expressway, PO Box # 04, Faridabad, Haryana, 121001, India
| | - Praveenkumar Murugavelu
- Translational Health Science & Technology Institute, NCR Biotech Science Cluster, 3rd Milestone, Faridabad - Gurgaon Expressway, PO Box # 04, Faridabad, Haryana, 121001, India
| | - Shubbir Ahmed
- Translational Health Science & Technology Institute, NCR Biotech Science Cluster, 3rd Milestone, Faridabad - Gurgaon Expressway, PO Box # 04, Faridabad, Haryana, 121001, India
| | - Sweety Samal
- Translational Health Science & Technology Institute, NCR Biotech Science Cluster, 3rd Milestone, Faridabad - Gurgaon Expressway, PO Box # 04, Faridabad, Haryana, 121001, India
| | - Chandresh Sharma
- Translational Health Science & Technology Institute, NCR Biotech Science Cluster, 3rd Milestone, Faridabad - Gurgaon Expressway, PO Box # 04, Faridabad, Haryana, 121001, India
| | - Subrata Sinha
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi, India
| | - Kalpana Luthra
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi, India
| | - Rajesh Kumar
- Translational Health Science & Technology Institute, NCR Biotech Science Cluster, 3rd Milestone, Faridabad - Gurgaon Expressway, PO Box # 04, Faridabad, Haryana, 121001, India.
| |
Collapse
|
10
|
Ye X, Iwuchukwu OP, Avadhanula V, Aideyan LO, McBride TJ, Henke DM, Patel KD, Piedra FA, Angelo LS, Shah DP, Chemaly RF, Piedra PA. Humoral and Mucosal Antibody Response to RSV Structural Proteins in RSV-Infected Adult Hematopoietic Cell Transplant (HCT) Recipients. Viruses 2021; 13:v13060991. [PMID: 34073490 PMCID: PMC8228396 DOI: 10.3390/v13060991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Revised: 05/06/2021] [Accepted: 05/24/2021] [Indexed: 11/16/2022] Open
Abstract
Respiratory syncytial virus (RSV) is an important cause of lower respiratory tract infection in infants, the elderly, and immunocompromised patients. RSV antibodies play a role in preventing reinfection and in clearance of RSV, but data regarding the levels of viral protein-specific antibodies elicited and their contribution to patient recovery from RSV-induced disease are limited. We prospectively enrolled a cohort of RSV-infected adult hematopoietic cell transplant (HCT) recipients (n = 40). Serum and nasal-wash samples were obtained at enrollment (acute samples) and convalescence (convalescent samples). We measured (1) humoral IgG and mucosal IgA binding antibody levels to multiple RSV proteins (F, G, N, P, and M2-1) by Western blot (WB); (2) neutralizing antibody (Nt Ab) titers by microneutralization assay; and (3) palivizumab-like antibody (PLA) concentrations by an ELISA-based competitive binding assay developed in the lab. Finally, we tested for correlations between protein-specific antibody levels and duration of viral shedding (normal: cleared in <14 days and delayed: cleared ≥14 days), as well as RSV/A and RSV/B subtypes. Convalescent sera from HCT recipients had significantly higher levels of anti-RSV antibodies to all 5 RSV structural proteins assayed (G, F, N, P, M2-1), higher Nt Abs to both RSV subtypes, and higher serum PLAs than at enrollment. Significantly higher levels of mucosal antibodies to 3 RSV structural proteins (G, N, and M2-1) were observed in the convalescent nasal wash versus acute nasal wash. Normal viral clearance group had significantly higher levels of serum IgG antibodies to F, N, and P viral proteins, higher Nt Ab to both RSV subtypes, and higher PLA, as well as higher levels of mucosal IgA antibodies to G and M2-1 viral proteins, and higher Nt Ab to both RSV subtypes compared to delayed viral clearance group. Normal RSV clearance was associated with higher IgG serum antibody levels to F and P viral proteins, and PLAs in convalescent serum (p < 0.05). Finally, overall antibody levels in RSV/A- and/B-infected HCT recipients were not significantly different. In summary, specific humoral and mucosal RSV antibodies are associated with viral clearance in HCT recipients naturally infected with RSV. In contrast to the humoral response, the F surface glycoprotein was not a major target of mucosal immunity. Our findings have implications for antigen selection in the development of RSV vaccines.
Collapse
Affiliation(s)
- Xunyan Ye
- Department of Molecular Virology & Microbiology, Baylor College of Medicine, Houston, TX 77030, USA; (X.Y.); (O.P.I.); (V.A.); (L.O.A.); (T.J.M.); (D.M.H.); (K.D.P.); (F.-A.P.); (L.S.A.)
| | - Obinna P. Iwuchukwu
- Department of Molecular Virology & Microbiology, Baylor College of Medicine, Houston, TX 77030, USA; (X.Y.); (O.P.I.); (V.A.); (L.O.A.); (T.J.M.); (D.M.H.); (K.D.P.); (F.-A.P.); (L.S.A.)
| | - Vasanthi Avadhanula
- Department of Molecular Virology & Microbiology, Baylor College of Medicine, Houston, TX 77030, USA; (X.Y.); (O.P.I.); (V.A.); (L.O.A.); (T.J.M.); (D.M.H.); (K.D.P.); (F.-A.P.); (L.S.A.)
| | - Letisha O. Aideyan
- Department of Molecular Virology & Microbiology, Baylor College of Medicine, Houston, TX 77030, USA; (X.Y.); (O.P.I.); (V.A.); (L.O.A.); (T.J.M.); (D.M.H.); (K.D.P.); (F.-A.P.); (L.S.A.)
| | - Trevor J. McBride
- Department of Molecular Virology & Microbiology, Baylor College of Medicine, Houston, TX 77030, USA; (X.Y.); (O.P.I.); (V.A.); (L.O.A.); (T.J.M.); (D.M.H.); (K.D.P.); (F.-A.P.); (L.S.A.)
| | - David M. Henke
- Department of Molecular Virology & Microbiology, Baylor College of Medicine, Houston, TX 77030, USA; (X.Y.); (O.P.I.); (V.A.); (L.O.A.); (T.J.M.); (D.M.H.); (K.D.P.); (F.-A.P.); (L.S.A.)
| | - Kirtida D. Patel
- Department of Molecular Virology & Microbiology, Baylor College of Medicine, Houston, TX 77030, USA; (X.Y.); (O.P.I.); (V.A.); (L.O.A.); (T.J.M.); (D.M.H.); (K.D.P.); (F.-A.P.); (L.S.A.)
| | - Felipe-Andres Piedra
- Department of Molecular Virology & Microbiology, Baylor College of Medicine, Houston, TX 77030, USA; (X.Y.); (O.P.I.); (V.A.); (L.O.A.); (T.J.M.); (D.M.H.); (K.D.P.); (F.-A.P.); (L.S.A.)
| | - Laura S. Angelo
- Department of Molecular Virology & Microbiology, Baylor College of Medicine, Houston, TX 77030, USA; (X.Y.); (O.P.I.); (V.A.); (L.O.A.); (T.J.M.); (D.M.H.); (K.D.P.); (F.-A.P.); (L.S.A.)
| | - Dimpy P. Shah
- Department of Epidemiology and Biostatistics, The University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA;
| | - Roy F. Chemaly
- Departments of Infectious Diseases, Infection Control and Employee Health, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA;
| | - Pedro A. Piedra
- Department of Molecular Virology & Microbiology, Baylor College of Medicine, Houston, TX 77030, USA; (X.Y.); (O.P.I.); (V.A.); (L.O.A.); (T.J.M.); (D.M.H.); (K.D.P.); (F.-A.P.); (L.S.A.)
- Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030, USA
- Correspondence:
| |
Collapse
|
11
|
Gao J, Zhu X, Wu M, Jiang L, Wang F, He S. IFI27 may predict and evaluate the severity of respiratory syncytial virus infection in preterm infants. Hereditas 2021; 158:3. [PMID: 33388093 PMCID: PMC7778825 DOI: 10.1186/s41065-020-00167-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 12/06/2020] [Indexed: 02/06/2023] Open
Abstract
Background Preterm infants are a special population that vulnerable to respiratory syncytial virus (RSV) infection and the lower respiratory tract infections (LRTIs) caused by RSV could be severe and even life-threating. The purpose of the present study was to identify candidate genes of preterm infants who are susceptible to RSV infection and provide a new insight into the pathogenesis of RSV infection. Methods Three datasets (GSE77087, GSE69606 and GSE41374) containing 183 blood samples of RSV infected patients and 33 blood samples of healthy controls from Gene Expression Omnibus (GEO) database were downloaded and the differentially expressed genes (DEGs) were screened out. The function and pathway enrichments were analyzed through Database for Annotation, Visualization and Integrated Discovery (DAVID) website. The protein-protein interaction (PPI) network for DEGs was constructed through Search Tool for the Retrieval of Interacting Genes (STRING). The module analysis was performed by Cytoscape software and hub genes were identified. Clinical verification was employed to verify the expression level of top five hub genes among 72 infants including 50 RSV infected patients and 22 non-RSV-infected patients hospitalized in our center. Further, the RSV infected infants with high-expression IFI27 and those with low-expression IFI27 were compared (defined as higher or lower than the median mRNA level). Finally, the gene set enrichment analysis (GSEA) focusing on IFI27 was carried out. Results Totally, 4028 DEGs were screened out and among which, 131 most significant DEGs were selected. Subsequently, 13 hub genes were identified, and function and pathway enrichments of hub genes mainly were: response to virus, defense response to virus, regulation of viral genome replication and regulation of viral life cycle. Furthermore, IFI27 was confirmed to be the most significantly expressed in clinical verification. Gene sets associated with calcium signaling pathway, arachidonic acid metabolism, extracellular matrix receptor interaction and so on were significantly enriched when IFI27 was highly expressed. Moreover, high-expression IFI27 was associated with more severe cases (p = 0.041), more requirements of mechanical ventilation (p = 0.034), more frequent hospitalization (p < 0.001) and longer cumulative hospital stay (p = 0.012). Conclusion IFI27 might serve to predict RSV infection and evaluate the severity of RSV infection in preterm infants. Supplementary Information The online version contains supplementary material available at 10.1186/s41065-020-00167-5.
Collapse
Affiliation(s)
- Junyan Gao
- Department of Pediatrics, Affiliated Hospital of Yangzhou University, NO.368 Hanjiang Middle Road, Yangzhou, 225000, Jiangsu, China
| | - Xueping Zhu
- Department of Neonatology, Children's Hospital of Soochow University, NO.92 Zhongnan Street, Industrial Park, Suzhou, 215025, Jiangsu, China
| | - Mingfu Wu
- Department of Pediatrics, Affiliated Hospital of Yangzhou University, NO.368 Hanjiang Middle Road, Yangzhou, 225000, Jiangsu, China
| | - Lijun Jiang
- Department of Pediatrics, Affiliated Hospital of Yangzhou University, NO.368 Hanjiang Middle Road, Yangzhou, 225000, Jiangsu, China
| | - Fudong Wang
- Department of Pediatrics, Affiliated Hospital of Yangzhou University, NO.368 Hanjiang Middle Road, Yangzhou, 225000, Jiangsu, China
| | - Shan He
- Department of Neonatology, Children's Hospital of Soochow University, NO.92 Zhongnan Street, Industrial Park, Suzhou, 215025, Jiangsu, China. .,Department of Pediatrics, The First People's Hospital of Yunnan Province, NO.152 Jinbi Road, Kunming, 650031, Yunnan, China.
| |
Collapse
|
12
|
Palivizumab for preventing respiratory syncytial virus (RSV) infection in children. Hippokratia 2020. [DOI: 10.1002/14651858.cd013757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
13
|
Sah BNP, Lueangsakulthai J, Hauser BR, Demers-Mathieu V, Scottoline B, Pastey MK, Dallas DC. Purification of Antibodies From Human Milk and Infant Digestates for Viral Inhibition Assays. Front Nutr 2020; 7:136. [PMID: 32984396 PMCID: PMC7477105 DOI: 10.3389/fnut.2020.00136] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Accepted: 07/15/2020] [Indexed: 12/02/2022] Open
Abstract
Oral administration of enteric pathogen-specific immunoglobulins may be an ideal approach for preventing infectious diarrhea in infants and children. For oral administration to be effective, antibodies must survive functionally intact within the highly proteolytic digestive tract. As an initial step toward assessing the viability of this approach, we examined the survival of palivizumab, a recombinant monoclonal antibody (IgG1κ), across infant digestion and its ability to neutralize respiratory syncytial virus (RSV). Human milk and infant digestive samples contain substances known to interfere with the RSV neutralization assay (our selected functional test for antibody survival through digestion), therefore, antibody extraction from the matrix was required prior to performing the assay. The efficacy of various approaches for palivizumab purification from human milk, infant's gastric and intestinal digestates, including casein precipitation, salting out, molecular weight cut-off, and affinity chromatography (protein A and G) were compared. Affinity chromatography using protein G with high-salt elution followed by 30-kDa molecular weight cut-off centrifugal filtration was the most effective technique for purifying palivizumab from human milk and infant digestates with a high yield and reduced background interference for the viral neutralization assay. This work is broadly applicable to the optimal isolation of antibodies from human milk and infant digesta for viral neutralization assays, enables the examination of how digestion affects the viral neutralization capacity of antibodies within milk and digestive samples, and paves the way for assessment of the viability of oral administration of recombinant antibodies as a therapeutic approach to prevent enteric pathogen-induced infectious diarrhea in infants.
Collapse
Affiliation(s)
- Baidya Nath P. Sah
- Nutrition Program, School of Biological and Population Health Sciences, College of Public Health and Human Sciences, Oregon State University, Corvallis, OR, United States
| | - Jiraporn Lueangsakulthai
- Nutrition Program, School of Biological and Population Health Sciences, College of Public Health and Human Sciences, Oregon State University, Corvallis, OR, United States
| | - Benjamin R. Hauser
- Nutrition Program, School of Biological and Population Health Sciences, College of Public Health and Human Sciences, Oregon State University, Corvallis, OR, United States
| | - Veronique Demers-Mathieu
- Nutrition Program, School of Biological and Population Health Sciences, College of Public Health and Human Sciences, Oregon State University, Corvallis, OR, United States
| | - Brian Scottoline
- Division of Neonatology, Department of Pediatrics, School of Medicine, Oregon Health & Science University, Portland, OR, United States
| | - Manoj K. Pastey
- Carlson College of Veterinary Medicine, Oregon State University, Corvallis, OR, United States
| | - David C. Dallas
- Nutrition Program, School of Biological and Population Health Sciences, College of Public Health and Human Sciences, Oregon State University, Corvallis, OR, United States
| |
Collapse
|
14
|
Bournazos S, Gupta A, Ravetch JV. The role of IgG Fc receptors in antibody-dependent enhancement. Nat Rev Immunol 2020; 20:633-643. [PMID: 32782358 PMCID: PMC7418887 DOI: 10.1038/s41577-020-00410-0] [Citation(s) in RCA: 376] [Impact Index Per Article: 75.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/22/2020] [Indexed: 02/07/2023]
Abstract
Antibody-dependent enhancement (ADE) is a mechanism by which the pathogenesis of certain viral infections is enhanced in the presence of sub-neutralizing or cross-reactive non-neutralizing antiviral antibodies. In vitro modelling of ADE has attributed enhanced pathogenesis to Fcγ receptor (FcγR)-mediated viral entry, rather than canonical viral receptor-mediated entry. However, the putative FcγR-dependent mechanisms of ADE overlap with the role of these receptors in mediating antiviral protection in various viral infections, necessitating a detailed understanding of how this diverse family of receptors functions in protection and pathogenesis. Here, we discuss the diversity of immune responses mediated upon FcγR engagement and review the available experimental evidence supporting the role of FcγRs in antiviral protection and pathogenesis through ADE. We explore FcγR engagement in the context of a range of different viral infections, including dengue virus and SARS-CoV, and consider ADE in the context of the ongoing SARS-CoV-2 pandemic. Antibody-dependent enhancement (ADE) has been described as a mechanism that contributes to the pathogenesis of dengue virus infection. Limited evidence also suggests that it can also occur in other viral infections. Here, the authors explore the history of the ADE phenomenon, discuss the diversity of Fc effector functions and consider its potential relevance in the context of SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Stylianos Bournazos
- Laboratory of Molecular Genetics and Immunology, The Rockefeller University, New York, NY, USA
| | - Aaron Gupta
- Laboratory of Molecular Genetics and Immunology, The Rockefeller University, New York, NY, USA
| | - Jeffrey V Ravetch
- Laboratory of Molecular Genetics and Immunology, The Rockefeller University, New York, NY, USA.
| |
Collapse
|
15
|
Soto JA, Gálvez NMS, Pacheco GA, Bueno SM, Kalergis AM. Antibody development for preventing the human respiratory syncytial virus pathology. Mol Med 2020; 26:35. [PMID: 32303184 PMCID: PMC7164255 DOI: 10.1186/s10020-020-00162-6] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Accepted: 03/30/2020] [Indexed: 02/07/2023] Open
Abstract
Human respiratory syncytial virus (hRSV) is the most important etiological agent causing hospitalizations associated with respiratory diseases in children under 5 years of age as well as the elderly, newborns and premature children are the most affected populations. This viral infection can be associated with various symptoms, such as fever, coughing, wheezing, and even pneumonia and bronchiolitis. Due to its severe symptoms, the need for mechanical ventilation is not uncommon in clinical practice. Additionally, alterations in the central nervous system -such as seizures, encephalopathy and encephalitis- have been associated with cases of hRSV-infections. Furthermore, the absence of effective vaccines or therapies against hRSV leads to elevated expenditures by the public health system and increased mortality rates for the high-risk population. Along these lines, vaccines and therapies can elicit different responses to this virus. While hRSV vaccine candidates seek to promote an active immune response associated with the achievement of immunological memory, other therapies -such as the administration of antibodies- provide a protective environment, although they do not trigger the activation of the immune system and therefore do not promote an immunological memory. An interesting approach to vaccination is the use of virus-neutralizing antibodies, which inhibit the entry of the pathogen into the host cells, therefore impairing the capacity of the virus to replicate. Currently, the most common molecule targeted for antibody design against hRSV is the F protein of this virus. However, other molecular components of the virus -such as the G or the N hRSV proteins- have also been explored as potential targets for the control of this disease. Currently, palivizumab is the only monoclonal antibody approved for human use. However, studies in humans have shown a protective effect only after the administration of at least 3 to 5 doses, due to the stability of this vaccine. Furthermore, other studies suggest that palivizumab only has an effectiveness close to 50% in high-risk infants. In this work, we will review different strategies addressed for the use of antibodies in a prophylactic or therapeutic context and their ability to prevent the symptoms caused by hRSV infection of the airways, as well as in other tissues such as the CNS.
Collapse
Affiliation(s)
- Jorge A Soto
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Avenida Libertador Bernardo O'Higgins #340, 8331010, Santiago, Chile
| | - Nicolás M S Gálvez
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Avenida Libertador Bernardo O'Higgins #340, 8331010, Santiago, Chile
| | - Gaspar A Pacheco
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Avenida Libertador Bernardo O'Higgins #340, 8331010, Santiago, Chile
| | - Susan M Bueno
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Avenida Libertador Bernardo O'Higgins #340, 8331010, Santiago, Chile
| | - Alexis M Kalergis
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Avenida Libertador Bernardo O'Higgins #340, 8331010, Santiago, Chile.
- Departamento de Endocrinología, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile.
| |
Collapse
|
16
|
Bergeron HC, Tripp RA. Emerging small and large molecule therapeutics for respiratory syncytial virus. Expert Opin Investig Drugs 2020; 29:285-294. [PMID: 32096420 DOI: 10.1080/13543784.2020.1735349] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Introduction: Respiratory syncytial virus (RSV) causes lower respiratory tract infections and can lead to morbidity and mortality in the infant, elderly and immunocompromised. There is no vaccine and therapeutic interventions are limited. RSV disease research has yielded the development of several prophylactic and therapeutic treatments. Several promising candidates are currently under investigation.Areas covered: Small and large molecule approaches to RSV treatment were examined and categorized by their mechanism of action using data from PubMed, clinicaltrials.gov, and from the sponsoring organizations publicly available pipeline information. These results are prefaced by an overview of RSV to provide the context for rational therapy development.Expert opinion: While small molecule drugs show promise for RSV treatment, we believe that large molecule therapy using anti-RSV G and F protein monoclonal antibodies (mAbs) will most efficaciously and safely ameliorate RSV disease.
Collapse
Affiliation(s)
- Harrison C Bergeron
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA, USA
| | - Ralph A Tripp
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA, USA
| |
Collapse
|
17
|
Mazur NI, Horsley NM, Englund JA, Nederend M, Magaret A, Kumar A, Jacobino SR, de Haan CAM, Khatry SK, LeClerq SC, Steinhoff MC, Tielsch JM, Katz J, Graham BS, Bont LJ, Leusen JHW, Chu HY. Breast Milk Prefusion F Immunoglobulin G as a Correlate of Protection Against Respiratory Syncytial Virus Acute Respiratory Illness. J Infect Dis 2019; 219:59-67. [PMID: 30107412 PMCID: PMC6284547 DOI: 10.1093/infdis/jiy477] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Accepted: 08/01/2018] [Indexed: 01/03/2023] Open
Abstract
Background Transplacental respiratory syncytial virus (RSV) antibody transfer has been characterized, but little is known about the protective effect of breast milk RSV-specific antibodies. Serum antibodies against the prefusion RSV fusion protein (pre-F) exhibit high neutralizing activity. We investigate protection of breast milk pre-F antibodies against RSV acute respiratory infection (ARI). Methods Breast milk at 1, 3, and 6 months postpartum and midnasal swabs during infant illness episodes were collected in mother-infant pairs in Nepal. One hundred seventy-four infants with and without RSV ARI were matched 1:1 by risk factors for RSV ARI. Pre-F immunoglobulin A (IgA) and immunoglobulin G (IgG) antibody levels were measured in breast milk. Results The median breast milk pre-F IgG antibody concentration before illness was lower in mothers of infants with RSV ARI (1.4 [interquartile range {IQR}, 1.1-1.6] log10 ng/mL) than without RSV ARI (1.5 [IQR, 1.3-1.8] log10 ng/mL) (P = .001). There was no difference in median maternal pre-F IgA antibody concentrations in cases vs controls (1.7 [IQR, 0.0-2.2] log10 ng/mL vs 1.7 [IQR, 1.2-2.2] log10 ng/mL, respectively; P = .58). Conclusions Low breast milk pre-F IgG antibodies before RSV ARI support a potential role for pre-F IgG as a correlate of protection against RSV ARI. Induction of breast milk pre-F IgG may be a mechanism of protection for maternal RSV vaccines.
Collapse
Affiliation(s)
- Natalie I Mazur
- Department of Pediatric Infectious Diseases and Immunology, Wilhelmina Children's Hospital, Utrecht, The Netherlands.,Department of Medicine, University of Washington, Seattle.,Immunotherapy Laboratory, Laboratory for Translational Immunology, University Medical Center Utrecht, The Netherlands
| | | | - Janet A Englund
- Department of Pediatrics, University of Washington, Seattle Children's Research Institute
| | - Maaike Nederend
- Immunotherapy Laboratory, Laboratory for Translational Immunology, University Medical Center Utrecht, The Netherlands
| | - Amalia Magaret
- Department of Laboratory Medicine, University of Washington, Seattle.,Department of Biostatistics, University of Washington, Seattle
| | - Azad Kumar
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland
| | - Shamir R Jacobino
- Immunotherapy Laboratory, Laboratory for Translational Immunology, University Medical Center Utrecht, The Netherlands
| | - Cornelis A M de Haan
- Virology Division, Department of Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | | | - Steven C LeClerq
- Department of International Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland
| | | | - James M Tielsch
- Department of Global Health, George Washington University, Washington, District of Columbia
| | - Joanne Katz
- Department of International Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland
| | - Barney S Graham
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland
| | - Louis J Bont
- Department of Pediatric Infectious Diseases and Immunology, Wilhelmina Children's Hospital, Utrecht, The Netherlands.,Laboratory of Translational Immunology, University Medical Center Utrecht, The Netherlands
| | - Jeanette H W Leusen
- Immunotherapy Laboratory, Laboratory for Translational Immunology, University Medical Center Utrecht, The Netherlands
| | - Helen Y Chu
- Department of Medicine, University of Washington, Seattle
| |
Collapse
|
18
|
van Erp EA, Luytjes W, Ferwerda G, van Kasteren PB. Fc-Mediated Antibody Effector Functions During Respiratory Syncytial Virus Infection and Disease. Front Immunol 2019; 10:548. [PMID: 30967872 PMCID: PMC6438959 DOI: 10.3389/fimmu.2019.00548] [Citation(s) in RCA: 179] [Impact Index Per Article: 29.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Accepted: 02/28/2019] [Indexed: 12/20/2022] Open
Abstract
Respiratory syncytial virus (RSV) is a major cause of severe lower respiratory tract infections and hospitalization in infants under 1 year of age and there is currently no market-approved vaccine available. For protection against infection, young children mainly depend on their innate immune system and maternal antibodies. Traditionally, antibody-mediated protection against viral infections is thought to be mediated by direct binding of antibodies to viral particles, resulting in virus neutralization. However, in the case of RSV, virus neutralization titers do not provide an adequate correlate of protection. The current lack of understanding of the mechanisms by which antibodies can protect against RSV infection and disease or, alternatively, contribute to disease severity, hampers the design of safe and effective vaccines against this virus. Importantly, neutralization is only one of many mechanisms by which antibodies can interfere with viral infection. Antibodies consist of two structural regions: a variable fragment (Fab) that mediates antigen binding and a constant fragment (Fc) that mediates downstream effector functions via its interaction with Fc-receptors on (innate) immune cells or with C1q, the recognition molecule of the complement system. The interaction with Fc-receptors can lead to killing of virus-infected cells through a variety of immune effector mechanisms, including antibody-dependent cell-mediated cytotoxicity (ADCC) and antibody-dependent cellular phagocytosis (ADCP). Antibody-mediated complement activation may lead to complement-dependent cytotoxicity (CDC). In addition, both Fc-receptor interactions and complement activation can exert a broad range of immunomodulatory functions. Recent studies have emphasized the importance of Fc-mediated antibody effector functions in both protection and pathogenesis for various infectious agents. In this review article, we aim to provide a comprehensive overview of the current knowledge on Fc-mediated antibody effector functions in the context of RSV infection, discuss their potential role in establishing the balance between protection and pathogenesis, and point out important gaps in our understanding of these processes. Furthermore, we elaborate on the regulation of these effector functions on both the cellular and humoral side. Finally, we discuss the implications of Fc-mediated antibody effector functions for the rational design of safe and effective vaccines and monoclonal antibody therapies against RSV.
Collapse
Affiliation(s)
- Elisabeth A. van Erp
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment (RIVM), Bilthoven, Netherlands
- Section Pediatric Infectious Diseases, Laboratory of Medical Immunology, Radboud Institute for Molecular Life Sciences, Nijmegen, Netherlands
- Radboud Center for Infectious Diseases, Nijmegen, Netherlands
| | - Willem Luytjes
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment (RIVM), Bilthoven, Netherlands
| | - Gerben Ferwerda
- Section Pediatric Infectious Diseases, Laboratory of Medical Immunology, Radboud Institute for Molecular Life Sciences, Nijmegen, Netherlands
- Radboud Center for Infectious Diseases, Nijmegen, Netherlands
| | - Puck B. van Kasteren
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment (RIVM), Bilthoven, Netherlands
| |
Collapse
|
19
|
Bakshi S, Depicker A, Schepens B, Saelens X, Juarez P. A two-amino acid mutation in murine IgA enables downstream processing and purification on staphylococcal superantigen-like protein 7. J Biotechnol 2019; 294:26-29. [PMID: 30771443 DOI: 10.1016/j.jbiotec.2019.01.020] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Revised: 01/11/2019] [Accepted: 01/22/2019] [Indexed: 11/20/2022]
Abstract
With few exceptions, all currently marketed antibody therapeutics are IgG molecules. One of the reasons that other antibody isotypes are less developed are the difficulties associated with their purification. While commercial chromatography affinity resins, like staphylococcal superantigen-like 7 (SSL7) protein-containing resin, allow purification of IgAs from many animal species, these are not useful for murine IgAs. Because the mouse model is predominantly used for preclinical evaluation of IgA-based therapeutics, there is a need to develop an effective purification method for mouse IgA. Here, we adapted the sequence of a mouse IgA by mutating two amino acid residues in the fragment crystallizable (Fc) sequence to facilitate its purification on SSL7 resin. The mutated IgA Fc (hereafter referred to as IgA*) was then genetically fused to the variable domain of a llama heavy chain-only antibody (VHH) directed against the fusion protein of human respiratory syncytial virus (HRSV), resulting in VHH-IgA*, and transiently produced in infiltrated Nicotiana benthamiana leaves. These plant-produced mouse VHH-IgA* fusions were enriched by SSL7 affinity chromatography and were found to be functional in ELISA and could neutralize RSV in vitro, suggesting no detrimental effect of the mutation on their antigen-binding properties. This approach for the purification of murine IgA will facilitate downstream processing steps when designing innovative murine IgA-based fusions.
Collapse
Affiliation(s)
- Shruti Bakshi
- Ghent University, Department of Plant Biotechnology and Bioinformatics, and VIB Center for Plant Systems Biology, 9052 Ghent, Belgium
| | - Ann Depicker
- Ghent University, Department of Plant Biotechnology and Bioinformatics, and VIB Center for Plant Systems Biology, 9052 Ghent, Belgium
| | - Bert Schepens
- Ghent University, Department of Biomedical Molecular Biology, and VIB Center for Medical Biotechnology, 9052, Ghent, Belgium
| | - Xavier Saelens
- Ghent University, Department of Biomedical Molecular Biology, and VIB Center for Medical Biotechnology, 9052, Ghent, Belgium; Ghent University, Department of Biochemistry and Microbiology, 9052 Ghent, Belgium
| | - Paloma Juarez
- Ghent University, Department of Plant Biotechnology and Bioinformatics, and VIB Center for Plant Systems Biology, 9052 Ghent, Belgium; Instituto de Biología Molecular y Celular de Plantas (IBMCP), Consejo Superior de Investigaciones Científicas (CSIC), Universidad Politécnica de Valencia, Camino de Vera s/n, 46022 Valencia, Spain.
| |
Collapse
|