1
|
Lodge J, Kajtar L, Duxbury R, Hall D, Burley GA, Cordy J, Yates JW, Rattray Z. Quantifying antibody binding: techniques and therapeutic implications. MAbs 2025; 17:2459795. [PMID: 39957177 PMCID: PMC11834528 DOI: 10.1080/19420862.2025.2459795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Revised: 01/22/2025] [Accepted: 01/23/2025] [Indexed: 02/18/2025] Open
Abstract
The binding kinetics of an antibody for its target antigen represent key determinants of its biological function and success as a novel biotherapeutic. Defining these interactions and kinetics is critical for understanding the pharmacological and pharmacodynamic profiles of antibodies in therapeutic applications, with line of sight to clinical translation. In this review, we discuss the latest developments in approaches to measure and modulate antibody-antigen interactions, including antibody engineering, novel antibody formats, current, and emerging technologies for measuring antibody-antigen binding interactions, and emerging perspectives within the field. We also explore how emerging computational methods are set to become powerful tools for modeling antibody-binding interactions under physiologically relevant conditions. Finally, we consider the therapeutic implications of modulating target engagement in terms of pharmacodynamics and pharmacokinetics.
Collapse
Affiliation(s)
- James Lodge
- Large Molecule Discovery, GSK, Stevenage, UK
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, UK
| | - Lewis Kajtar
- Large Molecule Discovery, GSK, Stevenage, UK
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, UK
| | - Rachel Duxbury
- Large Molecule Discovery, GSK, Stevenage, UK
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, UK
| | - David Hall
- Large Molecule Discovery, GSK, Stevenage, UK
| | - Glenn A. Burley
- Department of Pure and Applied Chemistry, University of Strathclyde, Glasgow, UK
| | | | | | - Zahra Rattray
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, UK
| |
Collapse
|
2
|
Csepregi L, Hoehn K, Neumeier D, Taft JM, Friedensohn S, Weber CR, Kummer A, Sesterhenn F, Correia BE, Reddy ST. The physiological landscape and specificity of antibody repertoires are consolidated by multiple immunizations. eLife 2024; 13:e92718. [PMID: 39693231 DOI: 10.7554/elife.92718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 10/30/2024] [Indexed: 12/20/2024] Open
Abstract
Diverse antibody repertoires spanning multiple lymphoid organs (i.e., bone marrow, spleen, lymph nodes) form the foundation of protective humoral immunity. Changes in their composition across lymphoid organs are a consequence of B-cell selection and migration events leading to a highly dynamic and unique physiological landscape of antibody repertoires upon antigenic challenge (e.g., vaccination). However, to what extent B cells encoding identical or similar antibody sequences (clones) are distributed across multiple lymphoid organs and how this is shaped by the strength of a humoral response remains largely unexplored. Here, we performed an in-depth systems analysis of antibody repertoires across multiple distinct lymphoid organs of immunized mice and discovered that organ-specific antibody repertoire features (i.e., germline V-gene usage and clonal expansion profiles) equilibrated upon a strong humoral response (multiple immunizations and high serum titers). This resulted in a surprisingly high degree of repertoire consolidation, characterized by highly connected and overlapping B-cell clones across multiple lymphoid organs. Finally, we revealed distinct physiological axes indicating clonal migrations and showed that antibody repertoire consolidation directly correlated with antigen specificity. Our study uncovered how a strong humoral response resulted in a more uniform but redundant physiological landscape of antibody repertoires, indicating that increases in antibody serum titers were a result of synergistic contributions from antigen-specific B-cell clones distributed across multiple lymphoid organs. Our findings provide valuable insights for the assessment and design of vaccine strategies.
Collapse
Affiliation(s)
- Lucia Csepregi
- Department of Biosystems Science and Engineering, ETH Zürich, Basel, Switzerland
| | - Kenneth Hoehn
- Department of Pathology, Yale University School of Medicine, New Haven, United States
| | - Daniel Neumeier
- Department of Biosystems Science and Engineering, ETH Zürich, Basel, Switzerland
| | - Joseph M Taft
- Department of Biosystems Science and Engineering, ETH Zürich, Basel, Switzerland
| | - Simon Friedensohn
- Department of Biosystems Science and Engineering, ETH Zürich, Basel, Switzerland
- Alloy Therapeutics AG, Basel, Switzerland
| | - Cédric R Weber
- Department of Biosystems Science and Engineering, ETH Zürich, Basel, Switzerland
- Alloy Therapeutics AG, Basel, Switzerland
| | - Arkadij Kummer
- Department of Biosystems Science and Engineering, ETH Zürich, Basel, Switzerland
| | - Fabian Sesterhenn
- Institute of Bioengineering, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Bruno E Correia
- Institute of Bioengineering, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
- SIB Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Sai T Reddy
- Department of Biosystems Science and Engineering, ETH Zürich, Basel, Switzerland
| |
Collapse
|
3
|
Nagarathinam K, Scheck A, Labuhn M, Ströh LJ, Herold E, Veselkova B, Tune S, Cramer JT, Rosset S, Vollers SS, Bankwitz D, Ballmaier M, Böning H, Roth E, Khera T, Ahsendorf-Abidi HP, Dittrich-Breiholz O, Obleser J, Nassal M, Jäck HM, Pietschmann T, Correia BE, Krey T. Epitope-focused immunogens targeting the hepatitis C virus glycoproteins induce broadly neutralizing antibodies. SCIENCE ADVANCES 2024; 10:eado2600. [PMID: 39642219 PMCID: PMC11623273 DOI: 10.1126/sciadv.ado2600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 11/04/2024] [Indexed: 12/08/2024]
Abstract
Hepatitis C virus (HCV) infection causes ~290,000 annual human deaths despite the highly effective antiviral treatment available. Several viral immune evasion mechanisms have hampered the development of an effective vaccine against HCV, among them the remarkable conformational flexibility within neutralization epitopes in the HCV antigens. Here, we report the design of epitope-focused immunogens displaying two distinct HCV cross-neutralization epitopes. We show that these immunogens induce a pronounced, broadly neutralizing antibody response in laboratory and transgenic human antibody mice. Monoclonal human antibodies isolated from immunized human antibody mice specifically recognized the grafted epitopes and neutralized four diverse HCV strains. Our results highlight a promising strategy for developing HCV immunogens and provide an encouraging paradigm for targeting structurally flexible epitopes to improve the induction of neutralizing antibodies.
Collapse
Affiliation(s)
- Kumar Nagarathinam
- Institute of Biochemistry, Center of Structural and Cell Biology in Medicine, University of Lübeck, 23562 Lübeck, Germany
| | - Andreas Scheck
- Institute of Bioengineering, École Polytechnique Fédérale de Lausanne, Lausanne CH-1015, Switzerland
- Swiss Institute of Bioinformatics (SIB), Lausanne CH-1015, Switzerland
| | - Maurice Labuhn
- Institute for Experimental Virology, TWINCORE, Centre for Experimental and Clinical Infection Research, a joint venture between the Helmholtz Centre for Infection Research and the Hannover Medical School, 30625 Hannover, Germany
| | - Luisa J. Ströh
- Institute of Virology, Hannover Medical School, 30625 Hannover, Germany
| | - Elisabeth Herold
- Institute of Biochemistry, Center of Structural and Cell Biology in Medicine, University of Lübeck, 23562 Lübeck, Germany
| | - Barbora Veselkova
- Institute of Biochemistry, Center of Structural and Cell Biology in Medicine, University of Lübeck, 23562 Lübeck, Germany
| | - Sarah Tune
- Department of Psychology, University of Lübeck, 23562 Lübeck, Germany
- Center of Brain, Behavior, and Metabolism, University of Lübeck, 23562 Lübeck, Germany
| | | | - Stéphane Rosset
- Institute of Bioengineering, École Polytechnique Fédérale de Lausanne, Lausanne CH-1015, Switzerland
- Swiss Institute of Bioinformatics (SIB), Lausanne CH-1015, Switzerland
| | - Sabrina S. Vollers
- Institute of Bioengineering, École Polytechnique Fédérale de Lausanne, Lausanne CH-1015, Switzerland
- Swiss Institute of Bioinformatics (SIB), Lausanne CH-1015, Switzerland
| | - Dorothea Bankwitz
- Institute for Experimental Virology, TWINCORE, Centre for Experimental and Clinical Infection Research, a joint venture between the Helmholtz Centre for Infection Research and the Hannover Medical School, 30625 Hannover, Germany
| | - Matthias Ballmaier
- Central Research Facility Cell Sorting, Hannover Medical School, 30625 Hannover, Germany
| | - Heike Böning
- Institute of Virology, Hannover Medical School, 30625 Hannover, Germany
| | - Edith Roth
- Division of Molecular Immunology, Department of Internal Medicine 3, Friedrich-Alexander University of Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - Tanvi Khera
- Institute for Experimental Virology, TWINCORE, Centre for Experimental and Clinical Infection Research, a joint venture between the Helmholtz Centre for Infection Research and the Hannover Medical School, 30625 Hannover, Germany
| | | | | | - Jonas Obleser
- Department of Psychology, University of Lübeck, 23562 Lübeck, Germany
- Center of Brain, Behavior, and Metabolism, University of Lübeck, 23562 Lübeck, Germany
| | - Michael Nassal
- Department of Internal Medicine 2/Molecular Biology, University Hospital Freiburg, 79106 Freiburg, Germany
| | - Hans-Martin Jäck
- Division of Molecular Immunology, Department of Internal Medicine 3, Friedrich-Alexander University of Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - Thomas Pietschmann
- Institute for Experimental Virology, TWINCORE, Centre for Experimental and Clinical Infection Research, a joint venture between the Helmholtz Centre for Infection Research and the Hannover Medical School, 30625 Hannover, Germany
- German Center for Infection Research (DZIF), partner site Hannover-Braunschweig, 30625 Hannover, Germany
- Excellence Cluster 2155 RESIST, Hannover Medical School, 30625 Hannover, Germany
| | - Bruno E. Correia
- Institute of Bioengineering, École Polytechnique Fédérale de Lausanne, Lausanne CH-1015, Switzerland
- Swiss Institute of Bioinformatics (SIB), Lausanne CH-1015, Switzerland
| | - Thomas Krey
- Institute of Biochemistry, Center of Structural and Cell Biology in Medicine, University of Lübeck, 23562 Lübeck, Germany
- Institute of Virology, Hannover Medical School, 30625 Hannover, Germany
- Excellence Cluster 2155 RESIST, Hannover Medical School, 30625 Hannover, Germany
- German Center for Infection Research (DZIF), partner site Hamburg-Lübeck-Borstel-Riems, 38124 Braunschweig, Germany
- Centre for Structural Systems Biology (CSSB), 22607 Hamburg, Germany
| |
Collapse
|
4
|
Stephens AD, Wilkinson T. Discovery of Therapeutic Antibodies Targeting Complex Multi-Spanning Membrane Proteins. BioDrugs 2024; 38:769-794. [PMID: 39453540 PMCID: PMC11530565 DOI: 10.1007/s40259-024-00682-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/04/2024] [Indexed: 10/26/2024]
Abstract
Complex integral membrane proteins, which are embedded in the cell surface lipid bilayer by multiple transmembrane spanning polypeptides, encompass families of proteins that are important target classes for drug discovery. These protein families include G protein-coupled receptors, ion channels, transporters, enzymes, and adhesion molecules. The high specificity of monoclonal antibodies and the ability to engineer their properties offers a significant opportunity to selectively bind these target proteins, allowing direct modulation of pharmacology or enabling other mechanisms of action such as cell killing. Isolation of antibodies that bind these types of membrane proteins and exhibit the desired pharmacological function has, however, remained challenging due to technical issues in preparing membrane protein antigens suitable for enabling and driving antibody drug discovery strategies. In this article, we review progress and emerging themes in defining discovery strategies for a generation of antibodies that target these complex membrane protein antigens. We also comment on how this field may develop with the emerging implementation of computational techniques, artificial intelligence, and machine learning.
Collapse
Affiliation(s)
- Amberley D Stephens
- Department of Biologics Engineering, Oncology R&D, The Discovery Centre, AstraZeneca, 1 Francis Crick Avenue, Cambridge, CB2 0AA, UK
| | - Trevor Wilkinson
- Department of Biologics Engineering, Oncology R&D, The Discovery Centre, AstraZeneca, 1 Francis Crick Avenue, Cambridge, CB2 0AA, UK.
| |
Collapse
|
5
|
Chakravarty E, Dorak MT. Missed opportunities to increase efficiency of monoclonal antibody development using hybridoma technology and mice as the source animal. Front Immunol 2024; 15:1443726. [PMID: 39188720 PMCID: PMC11345191 DOI: 10.3389/fimmu.2024.1443726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 07/25/2024] [Indexed: 08/28/2024] Open
Affiliation(s)
- Esha Chakravarty
- School of Life Sciences, Pharmacy & Chemistry, Kingston University London, London, United Kingdom
| | | |
Collapse
|
6
|
Gallo E. Current advancements in B-cell receptor sequencing fast-track the development of synthetic antibodies. Mol Biol Rep 2024; 51:134. [PMID: 38236361 DOI: 10.1007/s11033-023-08941-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Accepted: 11/13/2023] [Indexed: 01/19/2024]
Abstract
Synthetic antibodies (Abs) are a class of engineered proteins designed to mimic the functions of natural Abs. These are produced entirely in vitro, eliminating the need for an immune response. As such, synthetic Abs have transformed the traditional methods of raising Abs. Likewise, deep sequencing technologies have revolutionized genomics and molecular biology. These enable the rapid and cost-effective sequencing of DNA and RNA molecules. They have allowed for accurate and inexpensive analysis of entire genomes and transcriptomes. Notably, via deep sequencing it is now possible to sequence a person's entire B-cell receptor immune repertoire, termed BCR sequencing. This procedure allows for big data explorations of natural Abs associated with an immune response. Importantly, the identified sequences have the ability to improve the design and engineering of synthetic Abs by offering an initial sequence framework for downstream optimizations. Additionally, machine learning algorithms can be introduced to leverage the vast amount of BCR sequencing datasets to rapidly identify patterns hidden in big data to effectively make in silico predictions of antigen selective synthetic Abs. Thus, the convergence of BCR sequencing, machine learning, and synthetic Ab development has effectively promoted a new era in Ab therapeutics. The combination of these technologies is driving rapid advances in precision medicine, diagnostics, and personalized treatments.
Collapse
Affiliation(s)
- Eugenio Gallo
- Avance Biologicals, Department of Medicinal Chemistry, 950 Dupont Street, Toronto, ON, M6H 1Z2, Canada.
- RevivAb, Department of Protein Engineering, Av. Ipiranga, 6681, Partenon, Porto Alegre, RS, 90619-900, Brazil.
| |
Collapse
|
7
|
Matsunaga R, Ujiie K, Inagaki M, Fernández Pérez J, Yasuda Y, Mimasu S, Soga S, Tsumoto K. High-throughput analysis system of interaction kinetics for data-driven antibody design. Sci Rep 2023; 13:19417. [PMID: 37990030 PMCID: PMC10663500 DOI: 10.1038/s41598-023-46756-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 11/04/2023] [Indexed: 11/23/2023] Open
Abstract
Surface plasmon resonance (SPR) is widely used for antigen-antibody interaction kinetics analysis. However, it has not been used in the screening phase because of the low throughput of measurement and analysis. Herein, we proposed a high-throughput SPR analysis system named "BreviA" using the Brevibacillus expression system. Brevibacillus was transformed using a plasmid library containing various antibody sequences, and single colonies were cultured in 96-well plates. Sequence analysis was performed using bacterial cells, and recombinant antibodies secreted in the supernatant were immobilized on a sensor chip to analyze their interactions with antigens using high-throughput SPR. Using this system, the process from the transformation to 384 interaction analyses can be performed within a week. This system utility was tested using an interspecies specificity design of an anti-human programmed cell death protein 1 (PD-1) antibody. A plasmid library containing alanine and tyrosine mutants of all complementarity-determining region residues was generated. A high-throughput SPR analysis was performed against human and mouse PD-1, showing that the mutation in the specific region enhanced the affinity for mouse PD-1. Furthermore, deep mutational scanning of the region revealed two mutants with > 100-fold increased affinity for mouse PD-1, demonstrating the potential efficacy of antibody design using data-driven approach.
Collapse
Affiliation(s)
- Ryo Matsunaga
- Department of Bioengineering, School of Engineering, The University of Tokyo, Tokyo, 113-8656, Japan
- Department of Chemistry and Biotechnology, School of Engineering, The University of Tokyo, Tokyo, 113-8656, Japan
| | - Kan Ujiie
- Department of Bioengineering, School of Engineering, The University of Tokyo, Tokyo, 113-8656, Japan
| | - Mayuko Inagaki
- Department of Bioengineering, School of Engineering, The University of Tokyo, Tokyo, 113-8656, Japan
| | - Jorge Fernández Pérez
- Department of Bioengineering, School of Engineering, The University of Tokyo, Tokyo, 113-8656, Japan
| | - Yoshiki Yasuda
- Department of Chemistry and Biotechnology, School of Engineering, The University of Tokyo, Tokyo, 113-8656, Japan
| | - Shinya Mimasu
- Biologics Engineering, Discovery Intelligence, Astellas Pharma Inc., 21, Miyukigaoka, Tsukuba-shi, Ibaraki, 305-8585, Japan
| | - Shinji Soga
- Biologics Engineering, Discovery Intelligence, Astellas Pharma Inc., 21, Miyukigaoka, Tsukuba-shi, Ibaraki, 305-8585, Japan
| | - Kouhei Tsumoto
- Department of Bioengineering, School of Engineering, The University of Tokyo, Tokyo, 113-8656, Japan.
- Department of Chemistry and Biotechnology, School of Engineering, The University of Tokyo, Tokyo, 113-8656, Japan.
- The Institute of Medical Science, The University of Tokyo, Tokyo, 108-8639, Japan.
| |
Collapse
|
8
|
Lim YW, Ramirez NJ, Asensio MA, Chiang Y, Müller G, Mrovecova P, Mitsuiki N, Krausz M, Camacho-Ordonez N, Warnatz K, Adler AS, Grimbacher B. Sequencing the B Cell Receptor Repertoires of Antibody-Deficient Individuals With and Without Infection Susceptibility. J Clin Immunol 2023; 43:940-950. [PMID: 36826743 PMCID: PMC10276080 DOI: 10.1007/s10875-023-01448-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 02/07/2023] [Indexed: 02/25/2023]
Abstract
PURPOSE Most individuals with antibody deficiency (hypogammaglobulinemia) need immunoglobulin replacement therapy (IgG-RT) from healthy plasma donors to stay clear of infections. However, a small subset of hypogammaglobulinemic patients do not require this substitution therapy. We set out to investigate this clinical conundrum by asking whether the peripheral B cell receptor repertoires differ between antibody-deficient patients who do and do not need IgG-RT. METHODS We sequenced and analyzed IgG and IgM heavy chain B cell receptor repertoires from peripheral blood mononuclear cells (PBMCs) isolated from patients with low serum IgG concentrations who did or did not require IgG-RT. RESULTS Compared to the patients who did not need IgG-RT, those who needed IgG-RT had higher numbers of IgG antibody clones, higher IgM diversity, and less oligoclonal IgG and IgM repertoires. The patient cohorts had different heavy chain variable gene usage, and the patients who needed IgG-RT had elevated frequencies of IgG clones with higher germline identity (i.e., fewer somatic hypermutations). CONCLUSION Antibody-deficient patients with infection susceptibility who needed IgG-RT had more diverse peripheral antibody repertoires that were less diverged from germline and thus may not be as optimal for targeting pathogens, possibly contributing to infection susceptibility.
Collapse
Affiliation(s)
| | - Neftali Jose Ramirez
- Institute for Immunodeficiency, Medical Center, Faculty of Medicine, Albert-Ludwigs University, Freiburg, Germany
- Center for Chronic Immunodeficiency (CCI), Medical Center, Faculty of Medicine, Albert-Ludwigs University, Freiburg, Germany
| | | | - Yao Chiang
- GigaGen, Inc. (A Grifols Company), San Carlos, CA, USA
| | - Gabriele Müller
- Institute for Immunodeficiency, Medical Center, Faculty of Medicine, Albert-Ludwigs University, Freiburg, Germany
- Center for Chronic Immunodeficiency (CCI), Medical Center, Faculty of Medicine, Albert-Ludwigs University, Freiburg, Germany
| | - Pavla Mrovecova
- Institute for Immunodeficiency, Medical Center, Faculty of Medicine, Albert-Ludwigs University, Freiburg, Germany
- Center for Chronic Immunodeficiency (CCI), Medical Center, Faculty of Medicine, Albert-Ludwigs University, Freiburg, Germany
| | - Noriko Mitsuiki
- Institute for Immunodeficiency, Medical Center, Faculty of Medicine, Albert-Ludwigs University, Freiburg, Germany
- Center for Chronic Immunodeficiency (CCI), Medical Center, Faculty of Medicine, Albert-Ludwigs University, Freiburg, Germany
- Department of Pediatrics and Developmental Biology, Graduate School of Medical Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Máté Krausz
- Institute for Immunodeficiency, Medical Center, Faculty of Medicine, Albert-Ludwigs University, Freiburg, Germany
- Center for Chronic Immunodeficiency (CCI), Medical Center, Faculty of Medicine, Albert-Ludwigs University, Freiburg, Germany
- Department of Rheumatology and Clinical Immunology, Medical Center, Faculty of Medicine, Albert-Ludwigs University, Freiburg, Germany
| | - Nadezhda Camacho-Ordonez
- Institute for Immunodeficiency, Medical Center, Faculty of Medicine, Albert-Ludwigs University, Freiburg, Germany
- Center for Chronic Immunodeficiency (CCI), Medical Center, Faculty of Medicine, Albert-Ludwigs University, Freiburg, Germany
- Department of Rheumatology and Clinical Immunology, Medical Center, Faculty of Medicine, Albert-Ludwigs University, Freiburg, Germany
- Faculty of Biology, Albert-Ludwigs University, Freiburg, Germany
| | - Klaus Warnatz
- Center for Chronic Immunodeficiency (CCI), Medical Center, Faculty of Medicine, Albert-Ludwigs University, Freiburg, Germany
- Department of Rheumatology and Clinical Immunology, Medical Center, Faculty of Medicine, Albert-Ludwigs University, Freiburg, Germany
| | - Adam S Adler
- GigaGen, Inc. (A Grifols Company), San Carlos, CA, USA.
| | - Bodo Grimbacher
- Institute for Immunodeficiency, Medical Center, Faculty of Medicine, Albert-Ludwigs University, Freiburg, Germany.
- Center for Chronic Immunodeficiency (CCI), Medical Center, Faculty of Medicine, Albert-Ludwigs University, Freiburg, Germany.
- Department of Rheumatology and Clinical Immunology, Medical Center, Faculty of Medicine, Albert-Ludwigs University, Freiburg, Germany.
- DZIF - German Center for Infection Research, Satellite Center Freiburg, Freiburg im Breisgau, Germany.
- CIBSS - Centre for Integrative Biological Signalling Studies, Albert-Ludwigs University, Freiburg, Germany.
- RESIST - Cluster of Excellence 2155 to Hanover Medical School, Satellite Center, Freiburg, Germany.
| |
Collapse
|
9
|
Ramirez Valdez K, Nzau B, Dorey-Robinson D, Jarman M, Nyagwange J, Schwartz JC, Freimanis G, Steyn AW, Warimwe GM, Morrison LJ, Mwangi W, Charleston B, Bonnet-Di Placido M, Hammond JA. A Customizable Suite of Methods to Sequence and Annotate Cattle Antibodies. Vaccines (Basel) 2023; 11:1099. [PMID: 37376488 PMCID: PMC10302312 DOI: 10.3390/vaccines11061099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 06/07/2023] [Accepted: 06/09/2023] [Indexed: 06/29/2023] Open
Abstract
Studying the antibody response to infection or vaccination is essential for developing more effective vaccines and therapeutics. Advances in high-throughput antibody sequencing technologies and immunoinformatic tools now allow the fast and comprehensive analysis of antibody repertoires at high resolution in any species. Here, we detail a flexible and customizable suite of methods from flow cytometry, single cell sorting, heavy and light chain amplification to antibody sequencing in cattle. These methods were used successfully, including adaptation to the 10x Genomics platform, to isolate native heavy-light chain pairs. When combined with the Ig-Sequence Multi-Species Annotation Tool, this suite represents a powerful toolkit for studying the cattle antibody response with high resolution and precision. Using three workflows, we processed 84, 96, and 8313 cattle B cells from which we sequenced 24, 31, and 4756 antibody heavy-light chain pairs, respectively. Each method has strengths and limitations in terms of the throughput, timeline, specialist equipment, and cost that are each discussed. Moreover, the principles outlined here can be applied to study antibody responses in other mammalian species.
Collapse
Affiliation(s)
| | - Benjamin Nzau
- The Pirbright Institute, Pirbright GU24 0NF, UK
- Roslin Institute, Royal (Dick) School of Veterinary Studies, University of Edinburgh, Midlothian EH25 9RG, UK
| | | | | | - James Nyagwange
- The Pirbright Institute, Pirbright GU24 0NF, UK
- KEMRI-Wellcome Trust Research Programme CGMRC, Kilifi P.O. Box 230-80108, Kenya
| | | | | | | | - George M. Warimwe
- KEMRI-Wellcome Trust Research Programme CGMRC, Kilifi P.O. Box 230-80108, Kenya
| | - Liam J. Morrison
- Roslin Institute, Royal (Dick) School of Veterinary Studies, University of Edinburgh, Midlothian EH25 9RG, UK
| | | | | | | | | |
Collapse
|
10
|
Pan X, López Acevedo SN, Cuziol C, De Tavernier E, Fahad AS, Longjam PS, Rao SP, Aguilera-Rodríguez D, Rezé M, Bricault CA, Gutiérrez-González MF, de Souza MO, DiNapoli JM, Vigne E, Shahsavarian MA, DeKosky BJ. Large-scale antibody immune response mapping of splenic B cells and bone marrow plasma cells in a transgenic mouse model. Front Immunol 2023; 14:1137069. [PMID: 37346047 PMCID: PMC10280637 DOI: 10.3389/fimmu.2023.1137069] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Accepted: 03/30/2023] [Indexed: 06/23/2023] Open
Abstract
Molecular characterization of antibody immunity and human antibody discovery is mainly carried out using peripheral memory B cells, and occasionally plasmablasts, that express B cell receptors (BCRs) on their cell surface. Despite the importance of plasma cells (PCs) as the dominant source of circulating antibodies in serum, PCs are rarely utilized because they do not express surface BCRs and cannot be analyzed using antigen-based fluorescence-activated cell sorting. Here, we studied the antibodies encoded by the entire mature B cell populations, including PCs, and compared the antibody repertoires of bone marrow and spleen compartments elicited by immunization in a human immunoglobulin transgenic mouse strain. To circumvent prior technical limitations for analysis of plasma cells, we applied single-cell antibody heavy and light chain gene capture from the entire mature B cell repertoires followed by yeast display functional analysis using a cytokine as a model immunogen. We performed affinity-based sorting of antibody yeast display libraries and large-scale next-generation sequencing analyses to follow antibody lineage performance, with experimental validation of 76 monoclonal antibodies against the cytokine antigen that identified three antibodies with exquisite double-digit picomolar binding affinity. We observed that spleen B cell populations generated higher affinity antibodies compared to bone marrow PCs and that antigen-specific splenic B cells had higher average levels of somatic hypermutation. A degree of clonal overlap was also observed between bone marrow and spleen antibody repertoires, indicating common origins of certain clones across lymphoid compartments. These data demonstrate a new capacity to functionally analyze antigen-specific B cell populations of different lymphoid organs, including PCs, for high-affinity antibody discovery and detailed fundamental studies of antibody immunity.
Collapse
Affiliation(s)
- Xiaoli Pan
- Department of Pharmaceutical Chemistry, The University of Kansas, Lawrence, KS, United States
- Ragon Institute of Massachusetts General Hospital (MGH), Massachusetts Institute of Technology (MIT), and Harvard, Cambridge, MA, United States
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, United States
| | - Sheila N. López Acevedo
- Department of Pharmaceutical Chemistry, The University of Kansas, Lawrence, KS, United States
| | - Camille Cuziol
- Large Molecule Research, Sanofi, Vitry sur Seine, France
| | | | - Ahmed S. Fahad
- Ragon Institute of Massachusetts General Hospital (MGH), Massachusetts Institute of Technology (MIT), and Harvard, Cambridge, MA, United States
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, United States
| | | | | | | | - Mathilde Rezé
- Large Molecule Research, Sanofi, Vitry sur Seine, France
| | | | - Matías F. Gutiérrez-González
- Ragon Institute of Massachusetts General Hospital (MGH), Massachusetts Institute of Technology (MIT), and Harvard, Cambridge, MA, United States
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, United States
| | - Matheus Oliveira de Souza
- Department of Pharmaceutical Chemistry, The University of Kansas, Lawrence, KS, United States
- Ragon Institute of Massachusetts General Hospital (MGH), Massachusetts Institute of Technology (MIT), and Harvard, Cambridge, MA, United States
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, United States
| | | | | | | | - Brandon J. DeKosky
- Department of Pharmaceutical Chemistry, The University of Kansas, Lawrence, KS, United States
- Ragon Institute of Massachusetts General Hospital (MGH), Massachusetts Institute of Technology (MIT), and Harvard, Cambridge, MA, United States
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, United States
- Department of Chemical Engineering, The University of Kansas, Lawrence, KS, United States
| |
Collapse
|
11
|
Jiang J, Yang G, Ma F. Fluorescence coupling strategies in fluorescence-activated droplet sorting (FADS) for ultrahigh-throughput screening of enzymes, metabolites, and antibodies. Biotechnol Adv 2023; 66:108173. [PMID: 37169102 DOI: 10.1016/j.biotechadv.2023.108173] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 04/17/2023] [Accepted: 05/06/2023] [Indexed: 05/13/2023]
Abstract
Fluorescence-activated droplet sorting (FADS) has emerged as a powerful tool for ultrahigh-throughput screening of enzymes, metabolites, and antibodies. Fluorescence coupling strategies (FCSs) are key to the development of new FADS methods through their coupling of analyte properties such as concentration, activities, and affinity with fluorescence signals. Over the last decade, a series of FCSs have been developed, greatly expanding applications of FADS. Here, we review recent advances in FCS for different analyte types, providing a critical comparison of the available FCSs and further classification into four categories according to their principles. We also summarize successful FADS applications employing FCSs in enzymes, metabolites, and antibodies. Further, we outline possible future developments in this area.
Collapse
Affiliation(s)
- Jingjie Jiang
- Medical Enzyme Engineering Center, CAS Key Lab of Bio-Medical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, Jiangsu 215163, China
| | - Guangyu Yang
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Fuqiang Ma
- Medical Enzyme Engineering Center, CAS Key Lab of Bio-Medical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, Jiangsu 215163, China.
| |
Collapse
|
12
|
Generation of a single-cell B cell atlas of antibody repertoires and transcriptomes to identify signatures associated with antigen specificity. iScience 2023; 26:106055. [PMID: 36852274 PMCID: PMC9958373 DOI: 10.1016/j.isci.2023.106055] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 12/07/2022] [Accepted: 01/20/2023] [Indexed: 01/26/2023] Open
Abstract
Although new genomics-based pipelines have potential to augment antibody discovery, these methods remain in their infancy due to an incomplete understanding of the selection process that governs B cell clonal selection, expansion, and antigen specificity. Furthermore, it remains unknown how factors such as aging and reduction of tolerance influence B cell selection. Here we perform single-cell sequencing of antibody repertoires and transcriptomes of murine B cells following immunizations with a model therapeutic antigen target. We determine the relationship between antibody repertoires, gene expression signatures, and antigen specificity across 100,000 B cells. Recombinant expression and characterization of 227 monoclonal antibodies revealed the existence of clonally expanded and class-switched antigen-specific B cells that were more frequent in young mice. Although integrating multiple repertoire features such as germline gene usage and transcriptional signatures failed to distinguish antigen-specific from nonspecific B cells, other features such as immunoglobulin G (IgG) subtype and sequence composition correlated with antigen specificity.
Collapse
|
13
|
Gaa R, Ji Q, Doerner A. Antibody-Secreting Cell Isolation from Different Species for Microfluidic Antibody Hit Discovery. Methods Mol Biol 2023; 2681:313-325. [PMID: 37405655 DOI: 10.1007/978-1-0716-3279-6_17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/06/2023]
Abstract
The recent advent of microfluidic-assisted antibody hit discovery as standard methodology accelerated pharmaceutical research. While work on compatible recombinant antibody library approaches is ongoing, the major source of antibody-secreting cells (ASCs) remains to be primary B cells of mostly rodent origin. As fainting viability and secretion rates can lead to false-negative screening results, careful preparation of these cells is an essential prerequisite for successful hit discovery. We here describe procedures to enrich plasma cells from relevant tissues of mice and rats and plasmablasts from human blood donations. Although freshly prepared ASCs yield the most robust results, suitable freezing and thawing protocols to preserve the viability and antibody secretory function can circumvent extensive process time and allow transferring of samples between laboratories. An optimized procedure is described to yield similar secretion rates after prolonged storage when compared to freshly prepared cells. Finally, the identification of ASC-containing samples can increase the probability of success of droplet-based microfluidics-two methods for pre- or in-droplet staining are described. In summary, the preparative methods described herein can facilitate robust and successful microfluidic antibody hit discovery.
Collapse
Affiliation(s)
- Ramona Gaa
- Protein Engineering and Antibody Technologies, Merck Healthcare KGaA, Darmstadt, Germany
| | - Qingyong Ji
- Protein Engineering and Antibody Technologies, EMD Serono, Billerica, MA, USA
| | - Achim Doerner
- Protein Engineering and Antibody Technologies, Merck Healthcare KGaA, Darmstadt, Germany.
| |
Collapse
|
14
|
Raeisi H, Azimirad M, Nabavi-Rad A, Asadzadeh Aghdaei H, Yadegar A, Zali MR. Application of recombinant antibodies for treatment of Clostridioides difficile infection: Current status and future perspective. Front Immunol 2022; 13:972930. [PMID: 36081500 PMCID: PMC9445313 DOI: 10.3389/fimmu.2022.972930] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Accepted: 08/03/2022] [Indexed: 11/13/2022] Open
Abstract
Clostridioides difficile (C. difficile), known as the major cause of antibiotic-associated diarrhea, is regarded as one of the most common healthcare-associated bacterial infections worldwide. Due to the emergence of hypervirulent strains, development of new therapeutic methods for C. difficile infection (CDI) has become crucially important. In this context, antibodies have been introduced as valuable tools in the research and clinical environments, as far as the effectiveness of antibody therapy for CDI was reported in several clinical investigations. Hence, production of high-performance antibodies for treatment of CDI would be precious. Traditional approaches of antibody generation are based on hybridoma technology. Today, application of in vitro technologies for generating recombinant antibodies, like phage display, is considered as an appropriate alternative to hybridoma technology. These techniques can circumvent the limitations of the immune system and they can be exploited for production of antibodies against different types of biomolecules in particular active toxins. Additionally, DNA encoding antibodies is directly accessible in in vitro technologies, which enables the application of antibody engineering in order to increase their sensitivity and specificity. Here, we review the application of antibodies for CDI treatment with an emphasis on recombinant fragment antibodies. Also, this review highlights the current and future prospects of the aforementioned approaches for antibody-mediated therapy of CDI.
Collapse
Affiliation(s)
- Hamideh Raeisi
- Foodborne and Waterborne Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Masoumeh Azimirad
- Foodborne and Waterborne Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ali Nabavi-Rad
- Foodborne and Waterborne Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hamid Asadzadeh Aghdaei
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Abbas Yadegar
- Foodborne and Waterborne Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Reza Zali
- Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
15
|
Fu W, Lei C, Wang C, Ma Z, Li T, Lin F, Mao R, Zhao J, Hu S. Synthetic libraries of immune cells displaying a diverse repertoire of chimaeric antigen receptors as a potent cancer immunotherapy. Nat Biomed Eng 2022; 6:842-854. [PMID: 35668107 DOI: 10.1038/s41551-022-00895-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Accepted: 05/03/2022] [Indexed: 02/05/2023]
Abstract
Cancer immunotherapies rely on one or few specific tumour-associated antigens. However, the adaptive immune system relies on a large and diverse repertoire of antibodies for antigen recognition. Here we report the development and applicability of libraries of immune cells displaying diverse repertoires of chimaeric antigen receptors (CARs) that can recognize non-self antigens and display antigen-dependent clonal expansion, with the expanded population of tumour-specific effector cells leading to long-lasting antitumour responses in mouse models of epithelial tumours. The intravenous injection of synthetic libraries of murine CARs on TET2- T cells led to robust immunological memory and the recognition of mutated or evolved tumours, owing to the maintenance of CAR diversity. Off-the-shelf libraries of 106 murine or human CAR clones displayed on genetically modified human NK-92 cancer cells completely eliminated established tumours in mice with murine xenografts and patient-derived xenografts. Synthetically generated CAR libraries may aid the discovery of new CARs and the development of immunotherapies.
Collapse
Affiliation(s)
- Wenyan Fu
- Department of Assisted Reproduction, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Changhai Lei
- Department of Biophysics, College of Basic Medical Sciences, Naval Medical University (Second Military Medical University), Shanghai, China.,Team NMU-China of the International Genetically Engineered Machine Competition, Department of Biophysics, Naval Medical University (Second Military Medical University), Shanghai, China
| | - Chuqi Wang
- Department of Biophysics, College of Basic Medical Sciences, Naval Medical University (Second Military Medical University), Shanghai, China.,Team NMU-China of the International Genetically Engineered Machine Competition, Department of Biophysics, Naval Medical University (Second Military Medical University), Shanghai, China
| | - Zetong Ma
- Department of Biophysics, College of Basic Medical Sciences, Naval Medical University (Second Military Medical University), Shanghai, China.,Team NMU-China of the International Genetically Engineered Machine Competition, Department of Biophysics, Naval Medical University (Second Military Medical University), Shanghai, China
| | - Tian Li
- Department of Biophysics, College of Basic Medical Sciences, Naval Medical University (Second Military Medical University), Shanghai, China.,Team NMU-China of the International Genetically Engineered Machine Competition, Department of Biophysics, Naval Medical University (Second Military Medical University), Shanghai, China
| | - Fangxing Lin
- Department of Biophysics, College of Basic Medical Sciences, Naval Medical University (Second Military Medical University), Shanghai, China.,Team NMU-China of the International Genetically Engineered Machine Competition, Department of Biophysics, Naval Medical University (Second Military Medical University), Shanghai, China
| | - Ruixue Mao
- Team NMU-China of the International Genetically Engineered Machine Competition, Department of Biophysics, Naval Medical University (Second Military Medical University), Shanghai, China
| | - Jian Zhao
- KOCHKOR Biotech, Inc., Shanghai, China
| | - Shi Hu
- Department of Biophysics, College of Basic Medical Sciences, Naval Medical University (Second Military Medical University), Shanghai, China. .,Team NMU-China of the International Genetically Engineered Machine Competition, Department of Biophysics, Naval Medical University (Second Military Medical University), Shanghai, China.
| |
Collapse
|
16
|
Peter AS, Roth E, Schulz SR, Fraedrich K, Steinmetz T, Damm D, Hauke M, Richel E, Mueller‐Schmucker S, Habenicht K, Eberlein V, Issmail L, Uhlig N, Dolles S, Grüner E, Peterhoff D, Ciesek S, Hoffmann M, Pöhlmann S, McKay PF, Shattock RJ, Wölfel R, Socher E, Wagner R, Eichler J, Sticht H, Schuh W, Neipel F, Ensser A, Mielenz D, Tenbusch M, Winkler TH, Grunwald T, Überla K, Jäck H. A pair of noncompeting neutralizing human monoclonal antibodies protecting from disease in a SARS-CoV-2 infection model. Eur J Immunol 2022; 52:770-783. [PMID: 34355795 PMCID: PMC8420377 DOI: 10.1002/eji.202149374] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 07/05/2021] [Accepted: 08/03/2021] [Indexed: 11/18/2022]
Abstract
TRIANNI mice carry an entire set of human immunoglobulin V region gene segments and are a powerful tool to rapidly isolate human monoclonal antibodies. After immunizing these mice with DNA encoding the spike protein of SARS-CoV-2 and boosting with spike protein, we identified 29 hybridoma antibodies that reacted with the SARS-CoV-2 spike protein. Nine antibodies neutralize SARS-CoV-2 infection at IC50 values in the subnanomolar range. ELISA-binding studies and DNA sequence analyses revealed one cluster of three clonally related neutralizing antibodies that target the receptor-binding domain and compete with the cellular receptor hACE2. A second cluster of six clonally related neutralizing antibodies bind to the N-terminal domain of the spike protein without competing with the binding of hACE2 or cluster 1 antibodies. SARS-CoV-2 mutants selected for resistance to an antibody from one cluster are still neutralized by an antibody from the other cluster. Antibodies from both clusters markedly reduced viral spread in mice transgenic for human ACE2 and protected the animals from SARS-CoV-2-induced weight loss. The two clusters of potent noncompeting SARS-CoV-2 neutralizing antibodies provide potential candidates for therapy and prophylaxis of COVID-19. The study further supports transgenic animals with a human immunoglobulin gene repertoire as a powerful platform in pandemic preparedness initiatives.
Collapse
|
17
|
Sun H, Hu N, Wang J. Application of Microfluidic Technology in Antibody Screening. Biotechnol J 2022; 17:e2100623. [PMID: 35481726 DOI: 10.1002/biot.202100623] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 04/13/2022] [Accepted: 04/23/2022] [Indexed: 11/07/2022]
Abstract
Specific antibodies are widely used in the biomedical field. Current screening methods for specific antibodies mainly involve hybridoma technology and antibody engineering techniques. However, these technologies suffer from tedious screening processes, long preparation periods, high costs, low efficiency, and a degree of automation, which have become a bottleneck for the screening of specific antibodies. To overcome these difficulties, microfluidics has been developed as a promising technology for high-throughput screening and high purity of antibody. In this review, we provide an overview of the recent advances in microfluidic applications for specific antibody screening. In particular, hybridoma technology and four antibody engineering techniques (including phage display, single B cell antibody screening, antibody expression, and cell-free protein synthesis) based on microfluidics have been introduced, challenges, and the future outlook of these technologies are also discussed. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Heng Sun
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400044, China
| | - Ning Hu
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400044, China
| | - Jianhua Wang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400044, China
| |
Collapse
|
18
|
Boettcher M, Joechner A, Li Z, Yang SF, Schlegel P. Development of CAR T Cell Therapy in Children-A Comprehensive Overview. J Clin Med 2022; 11:2158. [PMID: 35456250 PMCID: PMC9024694 DOI: 10.3390/jcm11082158] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 04/08/2022] [Accepted: 04/11/2022] [Indexed: 01/27/2023] Open
Abstract
CAR T cell therapy has revolutionized immunotherapy in the last decade with the successful establishment of chimeric antigen receptor (CAR)-expressing cellular therapies as an alternative treatment in relapsed and refractory CD19-positive leukemias and lymphomas. There are fundamental reasons why CAR T cell therapy has been approved by the Food and Drug administration and the European Medicines Agency for pediatric and young adult patients first. Commonly, novel therapies are developed for adult patients and then adapted for pediatric use, due to regulatory and commercial reasons. Both strategic and biological factors have supported the success of CAR T cell therapy in children. Since there is an urgent need for more potent and specific therapies in childhood malignancies, efforts should also include the development of CAR therapeutics and expand applicability by introducing new technologies. Basic aspects, the evolution and the drawbacks of childhood CAR T cell therapy are discussed as along with the latest clinically relevant information.
Collapse
Affiliation(s)
- Michael Boettcher
- Department of Pediatric Surgery, University Medical Centre Mannheim, University of Heidelberg, 69117 Heidelberg, Germany;
| | - Alexander Joechner
- School of Medical Sciences, Faculty of Medicine and Health, University of Sydney, Sydney 2006, Australia;
- Cellular Cancer Therapeutics Unit, Children’s Medical Research Institute, Sydney 2145, Australia; (Z.L.); (S.F.Y.)
| | - Ziduo Li
- Cellular Cancer Therapeutics Unit, Children’s Medical Research Institute, Sydney 2145, Australia; (Z.L.); (S.F.Y.)
| | - Sile Fiona Yang
- Cellular Cancer Therapeutics Unit, Children’s Medical Research Institute, Sydney 2145, Australia; (Z.L.); (S.F.Y.)
| | - Patrick Schlegel
- School of Medical Sciences, Faculty of Medicine and Health, University of Sydney, Sydney 2006, Australia;
- Cellular Cancer Therapeutics Unit, Children’s Medical Research Institute, Sydney 2145, Australia; (Z.L.); (S.F.Y.)
- Department of Pediatric Hematology and Oncology, Westmead Children’s Hospital, Sydney 2145, Australia
| |
Collapse
|
19
|
Efficient human-like antibody repertoire and hybridoma production in trans-chromosomic mice carrying megabase-sized human immunoglobulin loci. Nat Commun 2022; 13:1841. [PMID: 35383174 PMCID: PMC8983744 DOI: 10.1038/s41467-022-29421-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Accepted: 03/15/2022] [Indexed: 11/15/2022] Open
Abstract
Trans-chromosomic (Tc) mice carrying mini-chromosomes with megabase-sized human immunoglobulin (Ig) loci have contributed to the development of fully human therapeutic monoclonal antibodies, but mitotic instability of human mini-chromosomes in mice may limit the efficiency of hybridoma production. Here, we establish human antibody-producing Tc mice (TC-mAb mice) that stably maintain a mouse-derived, engineered chromosome containing the entire human Ig heavy and kappa chain loci in a mouse Ig-knockout background. Comprehensive, high-throughput DNA sequencing shows that the human Ig repertoire, including variable gene usage, is well recapitulated in TC-mAb mice. Despite slightly altered B cell development and a delayed immune response, TC-mAb mice have more subsets of antigen-specific plasmablast and plasma cells than wild-type mice, leading to efficient hybridoma production. Our results thus suggest that TC-mAb mice offer a valuable platform for obtaining fully human therapeutic antibodies, and a useful model for elucidating the regulation of human Ig repertoire formation. Trans-chromosomic (Tc) mice have helped the development of therapeutic antibodies, but chromosome instability limits its application. Here the authors develop a new line of Tc mice with full human Ig heavy and kappa loci integrated into the mouse artificial chromosome for stable passage, and confirm efficient generation of B cell responses and specific antibodies.
Collapse
|
20
|
Lim YW, Adler AS, Johnson DS. Predicting antibody binders and generating synthetic antibodies using deep learning. MAbs 2022; 14:2069075. [PMID: 35482911 PMCID: PMC9067455 DOI: 10.1080/19420862.2022.2069075] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Accepted: 04/19/2022] [Indexed: 11/30/2022] Open
Abstract
The antibody drug field has continually sought improvements to methods for candidate discovery and engineering. Historically, most such methods have been laboratory-based, but informatics methods have recently started to make an impact. Deep learning, a subfield of machine learning, is rapidly gaining prominence in the biomedical research. Recent advances in microfluidics technologies and next-generation sequencing have not only revolutionized therapeutic antibody discovery, but also contributed to a vast amount of antibody repertoire sequencing data, providing opportunities for deep learning-based applications. Previously, we used microfluidics, yeast display, and deep sequencing to generate a panel of binder and non-binder antibody sequences to the cancer immunotherapy targets PD-1 and CTLA-4. Here we encoded the antibody light and heavy chain complementarity-determining regions (CDR3s) into antibody images, then built and trained convolutional neural network models to classify binders and non-binders. To improve model interpretability, we performed in silico mutagenesis to identify CDR3 residues that were important for binder classification. We further built generative deep learning models using generative adversarial network models to produce synthetic antibodies against PD-1 and CTLA-4. Our models generated variable length CDR3 sequences that resemble real sequences. Overall, our study demonstrates that deep learning methods can be leveraged to mine and learn patterns in antibody sequences, offering insights into antibody engineering, optimization, and discovery.
Collapse
Affiliation(s)
- Yoong Wearn Lim
- GigaGen Inc. (A Grifols Company), South San Francisco, CA, USA
| | - Adam S. Adler
- GigaGen Inc. (A Grifols Company), South San Francisco, CA, USA
| | | |
Collapse
|
21
|
Burnett DL, Jackson KJL, Langley DB, Aggrawal A, Stella AO, Johansen MD, Balachandran H, Lenthall H, Rouet R, Walker G, Saunders BM, Singh M, Li H, Henry JY, Jackson J, Stewart AG, Witthauer F, Spence MA, Hansbro NG, Jackson C, Schofield P, Milthorpe C, Martinello M, Schulz SR, Roth E, Kelleher A, Emery S, Britton WJ, Rawlinson WD, Karl R, Schäfer S, Winkler TH, Brink R, Bull RA, Hansbro PM, Jäck HM, Turville S, Christ D, Goodnow CC. Immunizations with diverse sarbecovirus receptor-binding domains elicit SARS-CoV-2 neutralizing antibodies against a conserved site of vulnerability. Immunity 2021; 54:2908-2921.e6. [PMID: 34788600 PMCID: PMC8554075 DOI: 10.1016/j.immuni.2021.10.019] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 08/24/2021] [Accepted: 10/22/2021] [Indexed: 12/15/2022]
Abstract
Viral mutations are an emerging concern in reducing SARS-CoV-2 vaccination efficacy. Second-generation vaccines will need to elicit neutralizing antibodies against sites that are evolutionarily conserved across the sarbecovirus subgenus. Here, we immunized mice containing a human antibody repertoire with diverse sarbecovirus receptor-binding domains (RBDs) to identify antibodies targeting conserved sites of vulnerability. Antibodies with broad reactivity against diverse clade B RBDs targeting the conserved class 4 epitope, with recurring IGHV/IGKV pairs, were readily elicited but were non-neutralizing. However, rare class 4 antibodies binding this conserved RBD supersite showed potent neutralization of SARS-CoV-2 and all variants of concern. Structural analysis revealed that the neutralizing ability of cross-reactive antibodies was reserved only for those with an elongated CDRH3 that extends the antiparallel beta-sheet RBD core and orients the antibody light chain to obstruct ACE2-RBD interactions. These results identify a structurally defined pathway for vaccine strategies eliciting escape-resistant SARS-CoV-2 neutralizing antibodies.
Collapse
Affiliation(s)
- Deborah L Burnett
- Garvan Institute of Medical Research, Sydney, NSW 2010, Australia; UNSW Sydney, Faculty of Medicine, Sydney, NSW 2010, Australia.
| | | | - David B Langley
- Garvan Institute of Medical Research, Sydney, NSW 2010, Australia
| | | | | | - Matt D Johansen
- Center for Inflammation, Centenary Institute and University of Technology Sydney, Faculty of Science, School of Life Sciences, Sydney, NSW 2006, Australia
| | | | - Helen Lenthall
- Garvan Institute of Medical Research, Sydney, NSW 2010, Australia
| | - Romain Rouet
- Garvan Institute of Medical Research, Sydney, NSW 2010, Australia; UNSW Sydney, Faculty of Medicine, Sydney, NSW 2010, Australia
| | - Gregory Walker
- UNSW Sydney, Faculty of Medicine, Sydney, NSW 2010, Australia
| | - Bernadette M Saunders
- Center for Inflammation, Centenary Institute and University of Technology Sydney, Faculty of Science, School of Life Sciences, Sydney, NSW 2006, Australia
| | - Mandeep Singh
- Garvan Institute of Medical Research, Sydney, NSW 2010, Australia; UNSW Sydney, Faculty of Medicine, Sydney, NSW 2010, Australia
| | - Hui Li
- Kirby Institute, UNSW, Sydney, NSW 2052, Australia
| | - Jake Y Henry
- Garvan Institute of Medical Research, Sydney, NSW 2010, Australia
| | - Jennifer Jackson
- Garvan Institute of Medical Research, Sydney, NSW 2010, Australia
| | - Alastair G Stewart
- UNSW Sydney, Faculty of Medicine, Sydney, NSW 2010, Australia; Victor Chang Cardiac Research Institute, Sydney, NSW 2010, Australia
| | - Franka Witthauer
- Division of Molecular Immunology, University Hospital Erlangen, University of Erlangen-Nürnberg, Erlangen 91054, Germany
| | - Matthew A Spence
- Research School of Chemistry, Australian National University, Canberra, ACT 2601, Australia
| | - Nicole G Hansbro
- Center for Inflammation, Centenary Institute and University of Technology Sydney, Faculty of Science, School of Life Sciences, Sydney, NSW 2006, Australia
| | - Colin Jackson
- Research School of Chemistry, Australian National University, Canberra, ACT 2601, Australia
| | - Peter Schofield
- Garvan Institute of Medical Research, Sydney, NSW 2010, Australia; UNSW Sydney, Faculty of Medicine, Sydney, NSW 2010, Australia
| | - Claire Milthorpe
- Garvan Institute of Medical Research, Sydney, NSW 2010, Australia
| | | | - Sebastian R Schulz
- Division of Molecular Immunology, University Hospital Erlangen, University of Erlangen-Nürnberg, Erlangen 91054, Germany
| | - Edith Roth
- Division of Molecular Immunology, University Hospital Erlangen, University of Erlangen-Nürnberg, Erlangen 91054, Germany
| | | | - Sean Emery
- Kirby Institute, UNSW, Sydney, NSW 2052, Australia
| | - Warwick J Britton
- Centenary Institute, The University of Sydney, Sydney, NSW 2006, Australia
| | - William D Rawlinson
- UNSW Sydney, Faculty of Medicine, Sydney, NSW 2010, Australia; Serology and Virology Division (SAViD), NSW Health Pathology, SEALS Randwick, Sydney, NSW 2031, Australia
| | - Rudolfo Karl
- Division of Genetics, Department Biology, Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Erlangen 91054, Germany
| | - Simon Schäfer
- Division of Genetics, Department Biology, Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Erlangen 91054, Germany
| | - Thomas H Winkler
- Division of Genetics, Department Biology, Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Erlangen 91054, Germany
| | - Robert Brink
- Garvan Institute of Medical Research, Sydney, NSW 2010, Australia; UNSW Sydney, Faculty of Medicine, Sydney, NSW 2010, Australia
| | - Rowena A Bull
- UNSW Sydney, Faculty of Medicine, Sydney, NSW 2010, Australia; Kirby Institute, UNSW, Sydney, NSW 2052, Australia
| | - Philip M Hansbro
- Center for Inflammation, Centenary Institute and University of Technology Sydney, Faculty of Science, School of Life Sciences, Sydney, NSW 2006, Australia
| | - Hans-Martin Jäck
- Division of Molecular Immunology, University Hospital Erlangen, University of Erlangen-Nürnberg, Erlangen 91054, Germany
| | - Stuart Turville
- UNSW Sydney, Faculty of Medicine, Sydney, NSW 2010, Australia; Kirby Institute, UNSW, Sydney, NSW 2052, Australia
| | - Daniel Christ
- Garvan Institute of Medical Research, Sydney, NSW 2010, Australia; UNSW Sydney, Faculty of Medicine, Sydney, NSW 2010, Australia
| | - Christopher C Goodnow
- Garvan Institute of Medical Research, Sydney, NSW 2010, Australia; Cellular Genomics Futures Institute, UNSW Sydney, Sydney, NSW 2052, Australia
| |
Collapse
|
22
|
Mullen TE, Abdullah R, Boucher J, Brousseau AS, Dasuri NK, Ditto NT, Doucette AM, Emery C, Gabriel J, Greamo B, Patil KS, Rothenberger K, Stolte J, Souders CA. Accelerated antibody discovery targeting the SARS-CoV-2 spike protein for COVID-19 therapeutic potential. Antib Ther 2021; 4:185-196. [PMID: 34541454 PMCID: PMC8444149 DOI: 10.1093/abt/tbab018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 08/18/2021] [Accepted: 08/20/2021] [Indexed: 11/13/2022] Open
Abstract
Background Rapid deployment of technologies capable of high-throughput and high-resolution screening is imperative for timely response to viral outbreaks. Risk mitigation in the form of leveraging multiple advanced technologies further increases the likelihood of identifying efficacious treatments in aggressive timelines. Methods In this study, we describe two parallel, yet distinct, in vivo approaches for accelerated discovery of antibodies targeting the severe acute respiratory syndrome coronavirus-2 spike protein. Working with human transgenic Alloy-GK mice, we detail a single B-cell discovery workflow to directly interrogate antibodies secreted from plasma cells for binding specificity and ACE2 receptor blocking activity. Additionally, we describe a concurrent accelerated hybridoma-based workflow utilizing a DiversimAb™ mouse model for increased diversity. Results The panel of antibodies isolated from both workflows revealed binding to distinct epitopes with both blocking and non-blocking profiles. Sequence analysis of the resulting lead candidates uncovered additional diversity with the opportunity for straightforward engineering and affinity maturation. Conclusions By combining in vivo models with advanced integration of screening and selection platforms, lead antibody candidates can be sequenced and fully characterized within one to three months.
Collapse
Affiliation(s)
- Tracey E Mullen
- Antibody Discovery, Abveris Inc., 480 Neponset St, Ste 10B, Canton, MA 02021, USA
| | - Rashed Abdullah
- Antibody Discovery, Abveris Inc., 480 Neponset St, Ste 10B, Canton, MA 02021, USA
| | - Jacqueline Boucher
- Antibody Discovery, Abveris Inc., 480 Neponset St, Ste 10B, Canton, MA 02021, USA
| | - Anna Susi Brousseau
- Antibody Discovery, Abveris Inc., 480 Neponset St, Ste 10B, Canton, MA 02021, USA
| | - Narayan K Dasuri
- Antibody Discovery, Abveris Inc., 480 Neponset St, Ste 10B, Canton, MA 02021, USA
| | - Noah T Ditto
- Product Development, Carterra, 825 N 300 W c309, Salt Lake City, UT 84103, USA
| | - Andrew M Doucette
- Antibody Discovery, Abveris Inc., 480 Neponset St, Ste 10B, Canton, MA 02021, USA
| | - Chloe Emery
- Antibody Discovery, Abveris Inc., 480 Neponset St, Ste 10B, Canton, MA 02021, USA
| | - Justin Gabriel
- Antibody Discovery, Abveris Inc., 480 Neponset St, Ste 10B, Canton, MA 02021, USA
| | - Brendan Greamo
- Antibody Discovery, Abveris Inc., 480 Neponset St, Ste 10B, Canton, MA 02021, USA
| | - Ketan S Patil
- Antibody Discovery, Abveris Inc., 480 Neponset St, Ste 10B, Canton, MA 02021, USA
| | - Kelly Rothenberger
- Antibody Discovery, Abveris Inc., 480 Neponset St, Ste 10B, Canton, MA 02021, USA
| | - Justin Stolte
- Antibody Discovery, Abveris Inc., 480 Neponset St, Ste 10B, Canton, MA 02021, USA
| | - Colby A Souders
- Antibody Discovery, Abveris Inc., 480 Neponset St, Ste 10B, Canton, MA 02021, USA
| |
Collapse
|
23
|
Valldorf B, Hinz SC, Russo G, Pekar L, Mohr L, Klemm J, Doerner A, Krah S, Hust M, Zielonka S. Antibody display technologies: selecting the cream of the crop. Biol Chem 2021; 403:455-477. [PMID: 33759431 DOI: 10.1515/hsz-2020-0377] [Citation(s) in RCA: 77] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Accepted: 03/05/2021] [Indexed: 02/07/2023]
Abstract
Antibody display technologies enable the successful isolation of antigen-specific antibodies with therapeutic potential. The key feature that facilitates the selection of an antibody with prescribed properties is the coupling of the protein variant to its genetic information and is referred to as genotype phenotype coupling. There are several different platform technologies based on prokaryotic organisms as well as strategies employing higher eukaryotes. Among those, phage display is the most established system with more than a dozen of therapeutic antibodies approved for therapy that have been discovered or engineered using this approach. In recent years several other technologies gained a certain level of maturity, most strikingly mammalian display. In this review, we delineate the most important selection systems with respect to antibody generation with an emphasis on recent developments.
Collapse
Affiliation(s)
- Bernhard Valldorf
- Chemical and Pharmaceutical Development, Merck KGaA, Frankfurter Strasse 250, D-64293Darmstadt, Germany
| | - Steffen C Hinz
- Institute for Organic Chemistry and Biochemistry, Technische Universität Darmstadt, Alarich-Weiss-Strasse 4, D-64287Darmstadt, Germany
| | - Giulio Russo
- Abcalis GmbH, Inhoffenstrasse 7, D-38124Braunschweig, Germany.,Institut für Biochemie, Biotechnologie und Bioinformatik, Technische Universität Braunschweig, Spielmannstrasse 7, D-38106Braunschweig, Germany
| | - Lukas Pekar
- Protein Engineering and Antibody Technologies, Merck KGaA, Frankfurter Strasse 250, D-64293Darmstadt, Germany
| | - Laura Mohr
- Institute of Cell Biology and Neuroscience and Buchmann Institute for Molecular Life Sciences, University of Frankfurt, Max-von-Laue-Strasse 13, D-60438Frankfurt am Main, Germany
| | - Janina Klemm
- Institute for Organic Chemistry and Biochemistry, Technische Universität Darmstadt, Alarich-Weiss-Strasse 4, D-64287Darmstadt, Germany
| | - Achim Doerner
- Protein Engineering and Antibody Technologies, Merck KGaA, Frankfurter Strasse 250, D-64293Darmstadt, Germany
| | - Simon Krah
- Protein Engineering and Antibody Technologies, Merck KGaA, Frankfurter Strasse 250, D-64293Darmstadt, Germany
| | - Michael Hust
- Institut für Biochemie, Biotechnologie und Bioinformatik, Technische Universität Braunschweig, Spielmannstrasse 7, D-38106Braunschweig, Germany
| | - Stefan Zielonka
- Protein Engineering and Antibody Technologies, Merck KGaA, Frankfurter Strasse 250, D-64293Darmstadt, Germany
| |
Collapse
|
24
|
Kohler H, Kaveri S. How IvIg Can Mitigate Covid-19 Disease: A Symmetrical Immune Network Model. Monoclon Antib Immunodiagn Immunother 2021; 40:17-20. [PMID: 33513050 DOI: 10.1089/mab.2020.0041] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
In this report we provide a hypothesis of how intravenous immunoglobulin (IvIg) (pooled therapeutic normal IgG) mitigates the severe disease after infection with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) virus. The disease is caused by an overreaction of the innate immune system producing a cytokine storm and inflicting multiple organ damage. Our interpretation of IvIg therapy hinges on a recent analysis of the immune dysregulation in Covid-19 infection. Previous infections with common cold coronavirus induce suppressor memory B cells that inhibit an immune response to Covid-19. The repertoire of natural antibodies (IvIg) contains suppressing antibodies in a symmetrically balanced network structure. When this repertoire interacts with the imbalanced network in the infected patient, it can neutralize the suppression of an antibody response against Covid-19. The described scenario for IvIg in Covid-19 infection may also apply in the therapy of autoimmune diseases.
Collapse
Affiliation(s)
- Heinz Kohler
- Department of Microbiology and Immunology, University of Kentucky, Lexington, Kentucky, USA
| | | |
Collapse
|
25
|
Gaa R, Menang-Ndi E, Pratapa S, Nguyen C, Kumar S, Doerner A. Versatile and rapid microfluidics-assisted antibody discovery. MAbs 2021; 13:1978130. [PMID: 34586015 PMCID: PMC8489958 DOI: 10.1080/19420862.2021.1978130] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 09/02/2021] [Accepted: 09/03/2021] [Indexed: 12/05/2022] Open
Abstract
Recent years have seen unparalleled development of microfluidic applications for antibody discovery in both academic and pharmaceutical research. Microfluidics can support native chain-paired library generation as well as direct screening of antibody secreting cells obtained by rodent immunization or from the human peripheral blood. While broad diversities of neutralizing antibodies against infectious diseases such as HIV, Ebola, or COVID-19 have been identified from convalescent individuals, microfluidics can expedite therapeutic antibody discovery for cancer or immunological disease indications. In this study, a commercially available microfluidic device, Cyto-Mine, was used for the rapid identification of natively paired antibodies from rodents or human donors screened for specific binding to recombinant antigens, for direct screening with cells expressing the target of interest, and, to our knowledge for the first time, for direct broad functional IgG antibody screening in droplets. The process time from cell preparation to confirmed recombinant antibodies was four weeks. Application of this or similar microfluidic devices and methodologies can accelerate and enhance pharmaceutical antibody hit discovery.
Collapse
Affiliation(s)
- Ramona Gaa
- Protein Engineering and Antibody Technologies, Merck Healthcare KGaA, Darmstadt, Germany
| | - Emmanuel Menang-Ndi
- Institute for Molecular Biotechnology, University of Bodenkultur, Vienna, Austria
| | - Shruti Pratapa
- Protein Engineering and Antibody Technologies, EMD Serono, Billerica, MA, USA
| | - Christine Nguyen
- Protein Engineering and Antibody Technologies, EMD Serono, Billerica, MA, USA
| | - Satyendra Kumar
- Protein Engineering and Antibody Technologies, EMD Serono, Billerica, MA, USA
| | - Achim Doerner
- Protein Engineering and Antibody Technologies, Merck Healthcare KGaA, Darmstadt, Germany
| |
Collapse
|
26
|
Raybould MIJ, Rees AR, Deane CM. Current strategies for detecting functional convergence across B-cell receptor repertoires. MAbs 2021; 13:1996732. [PMID: 34781829 PMCID: PMC8604390 DOI: 10.1080/19420862.2021.1996732] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 10/10/2021] [Accepted: 10/12/2021] [Indexed: 12/11/2022] Open
Abstract
Convergence across B-cell receptor (BCR) and antibody repertoires has become instrumental in prioritizing candidates in recent rapid therapeutic antibody discovery campaigns. It has also increased our understanding of the immune system, providing evidence for the preferential selection of BCRs to particular (immunodominant) epitopes post vaccination/infection. These important implications for both drug discovery and immunology mean that it is essential to consider the optimal way to combine experimental and computational technology when probing BCR repertoires for convergence signatures. Here, we discuss the theoretical basis for observing BCR repertoire functional convergence and explore factors of study design that can impact functional signal. We also review the computational arsenal available to detect antibodies with similar functional properties, highlighting opportunities enabled by recent clustering algorithms that exploit structural similarities between BCRs. Finally, we suggest future areas of development that should increase the power of BCR repertoire functional clustering.
Collapse
Affiliation(s)
- Matthew I. J. Raybould
- Oxford Protein Informatics Group, Department of Statistics, University of Oxford, Oxford, UK
| | | | - Charlotte M. Deane
- Oxford Protein Informatics Group, Department of Statistics, University of Oxford, Oxford, UK
| |
Collapse
|
27
|
Eyer K, Castrillon C, Chenon G, Bibette J, Bruhns P, Griffiths AD, Baudry J. The Quantitative Assessment of the Secreted IgG Repertoire after Recall to Evaluate the Quality of Immunizations. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2020; 205:1176-1184. [PMID: 32669311 PMCID: PMC7416324 DOI: 10.4049/jimmunol.2000112] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Accepted: 06/15/2020] [Indexed: 01/03/2023]
Abstract
One of the major goals of vaccination is to prepare the body to rapidly secrete specific Abs during an infection. Assessment of the vaccine quality is often difficult to perform, as simple measurements like Ab titer only partly correlate with protection. Similarly, these simple measurements are not always sensitive to changes in the preceding immunization scheme. Therefore, we introduce in this paper a new, to our knowledge, method to assay the quality of immunization schemes for mice: shortly after a recall with pure Ag, we analyze the frequencies of IgG-secreting cells (IgG-SCs) in the spleen, as well as for each cells, the Ag affinity of the secreted Abs. We observed that after recall, appearance of the IgG-SCs within the spleen of immunized mice was fast (<24 h) and this early response was free of naive IgG-SCs. We further confirmed that our phenotypic analysis of IgG-SCs after recall strongly correlated with the different employed immunization schemes. Additionally, a phenotypic comparison of IgG-SCs presented in the spleen during immunization or after recall revealed similarities but also significant differences. The developed approach introduced a novel (to our knowledge), quantitative, and functional highly resolved alternative to study the quality of immunizations.
Collapse
Affiliation(s)
- Klaus Eyer
- Laboratoire Colloïdes et Matériaux Divisés, Institut Chimie, Biologie, Innovation, UMR8231, ESPCI Paris, CNRS, Université Paris Sciences et Lettres, 75005 Paris, France;
- Laboratory for Functional Immune Repertoire Analysis, Institute of Pharmaceutical Sciences, Department of Chemistry and Applied Biology, ETH Zürich, 8093 Zurich, Switzerland
| | - Carlos Castrillon
- Unit of Antibodies in Therapy and Pathology, Pasteur Institute, UMR1222 INSERM, 75015 Paris, France
- Laboratoire de Biochimie, Institut Chimie, Biologie, Innovation, UMR8231, ESPCI Paris, CNRS, Université Paris Sciences et Lettres, 75005 Paris, France; and
- Sorbonne Université, Collège Doctoral, F-75005 Paris, France
| | - Guilhem Chenon
- Laboratoire Colloïdes et Matériaux Divisés, Institut Chimie, Biologie, Innovation, UMR8231, ESPCI Paris, CNRS, Université Paris Sciences et Lettres, 75005 Paris, France
| | - Jérôme Bibette
- Laboratoire Colloïdes et Matériaux Divisés, Institut Chimie, Biologie, Innovation, UMR8231, ESPCI Paris, CNRS, Université Paris Sciences et Lettres, 75005 Paris, France
| | - Pierre Bruhns
- Unit of Antibodies in Therapy and Pathology, Pasteur Institute, UMR1222 INSERM, 75015 Paris, France
| | - Andrew D Griffiths
- Laboratoire de Biochimie, Institut Chimie, Biologie, Innovation, UMR8231, ESPCI Paris, CNRS, Université Paris Sciences et Lettres, 75005 Paris, France; and
| | - Jean Baudry
- Laboratoire Colloïdes et Matériaux Divisés, Institut Chimie, Biologie, Innovation, UMR8231, ESPCI Paris, CNRS, Université Paris Sciences et Lettres, 75005 Paris, France
| |
Collapse
|
28
|
Molari M, Eyer K, Baudry J, Cocco S, Monasson R. Quantitative modeling of the effect of antigen dosage on B-cell affinity distributions in maturating germinal centers. eLife 2020; 9:e55678. [PMID: 32538783 PMCID: PMC7360369 DOI: 10.7554/elife.55678] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2020] [Accepted: 06/12/2020] [Indexed: 12/11/2022] Open
Abstract
Affinity maturation is a complex dynamical process allowing the immune system to generate antibodies capable of recognizing antigens. We introduce a model for the evolution of the distribution of affinities across the antibody population in germinal centers. The model is amenable to detailed mathematical analysis and gives insight on the mechanisms through which antigen availability controls the rate of maturation and the expansion of the antibody population. It is also capable, upon maximum-likelihood inference of the parameters, to reproduce accurately the distributions of affinities of IgG-secreting cells we measure in mice immunized against Tetanus Toxoid under largely varying conditions (antigen dosage, delay between injections). Both model and experiments show that the average population affinity depends non-monotonically on the antigen dosage. We show that combining quantitative modeling and statistical inference is a concrete way to investigate biological processes underlying affinity maturation (such as selection permissiveness), hardly accessible through measurements.
Collapse
Affiliation(s)
- Marco Molari
- Laboratoire de Physique de l’École Normale Supérieure, ENS, PSL University, CNRS UMR8023, Sorbonne Université, Université Paris-Diderot, Sorbonne Paris CitéParisFrance
| | - Klaus Eyer
- Laboratory for Functional Immune Repertoire Analysis, Institute of Pharmaceutical Sciences, ETH ZurichZurichSwitzerland
| | - Jean Baudry
- Laboratoire Colloides et Materiaux Divises (LCMD), Chemistry, Biology and Innovation (CBI), ESPCI, PSL Research and CNRSParisFrance
| | - Simona Cocco
- Laboratoire de Physique de l’École Normale Supérieure, ENS, PSL University, CNRS UMR8023, Sorbonne Université, Université Paris-Diderot, Sorbonne Paris CitéParisFrance
| | - Rémi Monasson
- Laboratoire de Physique de l’École Normale Supérieure, ENS, PSL University, CNRS UMR8023, Sorbonne Université, Université Paris-Diderot, Sorbonne Paris CitéParisFrance
| |
Collapse
|
29
|
Generating therapeutic monoclonal antibodies to complex multi-spanning membrane targets: Overcoming the antigen challenge and enabling discovery strategies. Methods 2020; 180:111-126. [PMID: 32422249 DOI: 10.1016/j.ymeth.2020.05.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 04/21/2020] [Accepted: 05/13/2020] [Indexed: 12/17/2022] Open
Abstract
Complex integral membrane proteins, which are embedded in the cell surface lipid bilayer by multiple transmembrane spanning helices, encompass families of proteins which are important target classes for drug discovery. These protein families include G protein-coupled receptors, ion channels and transporters. Although these proteins have typically been targeted by small molecule drugs and peptides, the high specificity of monoclonal antibodies offers a significant opportunity to selectively modulate these target proteins. However, it remains the case that isolation of antibodies with desired pharmacological function(s) has proven difficult due to technical challenges in preparing membrane protein antigens suitable to support antibody drug discovery. In this review recent progress in defining strategies for generation of membrane protein antigens is outlined. We also highlight antibody isolation strategies which have generated antibodies which bind the membrane protein and modulate the protein function.
Collapse
|
30
|
Simons JF, Lim YW, Carter KP, Wagner EK, Wayham N, Adler AS, Johnson DS. Affinity maturation of antibodies by combinatorial codon mutagenesis versus error-prone PCR. MAbs 2020; 12:1803646. [PMID: 32744131 PMCID: PMC7531523 DOI: 10.1080/19420862.2020.1803646] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Revised: 06/22/2020] [Accepted: 07/27/2020] [Indexed: 01/08/2023] Open
Abstract
IN VITRO affinity maturation of therapeutic monoclonal antibodies is commonly applied to achieve desired properties, such as improved binding kinetics and affinity. Currently there are no universally accepted protocols for generation of variegated antibody libraries or selection thereof. Here, we performed affinity maturation using a yeast-based single-chain variable fragment (scFv) expression system to compare two mutagenesis methods: random mutagenesis across the entire V(D)J region by error-prone PCR, and a novel combinatorial mutagenesis process limited to the complementarity-determining regions (CDRs). We applied both methods of mutagenesis to four human antibodies against well-known immuno-oncology target proteins. Detailed sequence analysis showed an even mutational distribution across the entire length of the scFv for the error-prone PCR method and an almost exclusive targeting of the CDRs for the combinatorial method. Though there were distinct mutagenesis profiles for each target antibody and mutagenesis method, we found that both methods improved scFv affinity with similar efficiency. When a subset of the affinity-matured antibodies was expressed as full-length immunoglobulin, the measured affinity constants were mostly comparable to those of the respective scFv, but the full-length antibodies were inferior to their scFv counterparts for one of the targets. Furthermore, we found that improved affinity for the full-length antibody did not always translate into enhanced binding to cell-surface expressed antigen or improved immune checkpoint blocking ability, suggesting that screening with full-length antibody or antigen-binding fragment formats might be advantageous and the subject of a future study.
Collapse
|