1
|
Terrazas F, Kelley ST, DeMasi T, Giltvedt K, Tsang M, Nannini K, Kern M, Hooshmand S. Influence of menstrual cycle and oral contraception on taxonomic composition and gas production in the gut microbiome. J Med Microbiol 2025; 74:001987. [PMID: 40153295 PMCID: PMC11952661 DOI: 10.1099/jmm.0.001987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Accepted: 02/20/2025] [Indexed: 03/30/2025] Open
Abstract
Introduction. Oral contraceptives (OCs) are widely used for birth control and offer benefits such as menstrual cycle regulation and reduced menstrual pain. However, they have also been associated with an increased risk of cancer and reduced bone mass density.Gap Statement. While the gut microbiome is known to interact with endocrine factors, the impact of hormonal OCs on its composition and function remains underexplored. Additionally, we explore the relationship of OC use and the microbiome to gas production, which can cause symptoms and be indicative of poor health.Aim. This study investigates the effects of OCs on the diversity and composition of the gut microbiome and its association with breath hydrogen (H2) and methane (CH4) levels.Methodology. We utilized 16S rRNA gene sequencing to analyse faecal samples from 65 women, comparing OC users with non-users at two menstrual cycle time points. Breath tests measured hydrogen and CH4 production. Data were analysed for microbial diversity, community composition and correlation with gas production.Results. There were no differences in overall microbial diversity between OC users and non-users in samples collected on day 2 of the menstrual cycle. However, on day 21, we found a significant difference in microbial richness, suggesting a cycle-dependent effect of OCs on gut microbiota species richness but not composition. We found a strong correlation between H2 and CH4 concentrations and an interaction between OC use and the menstrual cycle on H2 and CH4 production. We also identified several taxa associated with both high levels of H2 and CH4 production and OC use.Conclusion. Our study highlights the intricate relationships among hormonal contraceptives, the gut microbiota and gas production and connects shifts in the microbiome composition to gastrointestinal symptoms (e.g. gas production) that can impact overall health. This underscores the need for further research on the long-term effects of OCs and for the development of precise therapeutic strategies to address potential adverse effects. Our findings offer new perspectives on the microbiome-hormone-gas production nexus, potentially broadening our understanding of the systemic implications of OCs.
Collapse
Affiliation(s)
| | - Scott T. Kelley
- Department of Biology, San Diego State University, San Diego, USA
| | - Taylor DeMasi
- School of Exercise and Nutritional Sciences, San Diego State University, San Diego, USA
| | - Kristine Giltvedt
- School of Exercise and Nutritional Sciences, San Diego State University, San Diego, USA
| | - Michelle Tsang
- School of Exercise and Nutritional Sciences, San Diego State University, San Diego, USA
| | - Kaelyn Nannini
- Department of Biology, San Diego State University, San Diego, USA
| | - Mark Kern
- School of Exercise and Nutritional Sciences, San Diego State University, San Diego, USA
| | - Shirin Hooshmand
- School of Exercise and Nutritional Sciences, San Diego State University, San Diego, USA
| |
Collapse
|
2
|
Otzen DE, Peña-Díaz S, Widmann J, Daugberg AOH, Zhang Z, Jiang Y, Mittal C, Dueholm MKD, Louros N, Wang H, Javed I. Interactions between pathological and functional amyloid: A match made in Heaven or Hell? Mol Aspects Med 2025; 103:101351. [PMID: 40024004 DOI: 10.1016/j.mam.2025.101351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2025] [Revised: 02/14/2025] [Accepted: 02/19/2025] [Indexed: 03/04/2025]
Abstract
The amyloid state of proteins occurs in many different contexts in Nature and in modern society, ranging from the pathological kind (neurodegenerative diseases and amyloidosis) via man-made forms (food processing and - to a much smaller extent - protein biologics) to functional versions (bacterial biofilm, peptide hormones and signal transmission). These classes all come together in the human body which endogenously produces amyloidogenic protein able to form pathological human amyloid (PaHA), hosts a microbiome which continuously makes functional bacterial amyloid (FuBA) and ingests food which can contain amyloid. This can have grave consequences, given that PaHA can spread throughout the body in a "hand-me-down" fashion from cell to cell through small amyloid fragments, which can kick-start growth of new amyloid wherever they encounter monomeric amyloid precursors. Amyloid proteins can also self- and cross-seed across dissimilar peptide sequences. While it is very unlikely that ingested amyloid plays a role in this crosstalk, FuBA-PaHA interactions are increasingly implicated in vivo amyloid propagation. We are now in a position to understand the structural and bioinformatic basis for this cross-talk, thanks to the very recently obtained atomic-level structures of the two major FuBAs CsgA (E. coli) and FapC (Pseudomonas). While there are many reports of homology-driven heterotypic interactions between different PaHA, the human proteome does not harbor significant homology to CsgA and FapC. Yet we and others have uncovered significant cross-stimulation (and in some cases inhibition) of FuBA and PaHA both in vitro and in vivo, which we here rationalize based on structure and sequence. These interactions have important consequences for the transmission and development of neurodegenerative diseases, not least because FuBA and PaHA can come into contact via the gut-brain interface, recurrent infections with microbes and potentially even through invasive biofilm in the brain. Whether FuBA and PaHA first interact in the gut or the brain, they can both stimulate and block each other's aggregation as well as trigger inflammatory responses. The microbiome may also affect amyloidogenesis in other ways, e.g. through their own chaperones which recognize and block growth of both PaHA and FuBA as we show both experimentally and computationally. Heterotypic interactions between and within PaHA and FuBA both in vitro and in vivo are a vital part of the amyloid phenomenon and constitute a vibrant and exciting frontier for future research.
Collapse
Affiliation(s)
- Daniel E Otzen
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Gustav Wieds Vej 14, 8000, Aarhus C, Denmark.
| | - Samuel Peña-Díaz
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Gustav Wieds Vej 14, 8000, Aarhus C, Denmark.
| | - Jeremias Widmann
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Gustav Wieds Vej 14, 8000, Aarhus C, Denmark
| | - Anders Ogechi Hostrup Daugberg
- Center for Microbial Communities, Department of Chemistry and Bioscience, Aalborg University, Fredrik Bajers Vej 7H, 9220, Aalborg OE, Denmark
| | - Zhefei Zhang
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Gustav Wieds Vej 14, 8000, Aarhus C, Denmark; Guangxi Key Laboratory of Enhanced Recovery after Surgery for Gastrointestinal Cancer, Clinical Laboratory Center, Department of Clinical Laboratory, The First Affiliated Hospital of Guangxi Medical University, Shuangyong Road 6, Guangxi Zhuang Autonomous Region, Nanning, 530021, China
| | - Yanting Jiang
- Guangxi Key Laboratory of Enhanced Recovery after Surgery for Gastrointestinal Cancer, Clinical Laboratory Center, Department of Clinical Laboratory, The First Affiliated Hospital of Guangxi Medical University, Shuangyong Road 6, Guangxi Zhuang Autonomous Region, Nanning, 530021, China
| | - Chandrika Mittal
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Gustav Wieds Vej 14, 8000, Aarhus C, Denmark; Guangxi Key Laboratory of Enhanced Recovery after Surgery for Gastrointestinal Cancer, Clinical Laboratory Center, Department of Clinical Laboratory, The First Affiliated Hospital of Guangxi Medical University, Shuangyong Road 6, Guangxi Zhuang Autonomous Region, Nanning, 530021, China
| | - Morten K D Dueholm
- Center for Microbial Communities, Department of Chemistry and Bioscience, Aalborg University, Fredrik Bajers Vej 7H, 9220, Aalborg OE, Denmark
| | - Nikolaos Louros
- Center for Alzheimer's and Neurodegenerative Diseases, Peter O'Donnell Jr. Brain Institute, UT Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, TX 75390, USA; Department of Biophysics, UT Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, TX, 75390, USA
| | - Huabing Wang
- Guangxi Key Laboratory of Enhanced Recovery after Surgery for Gastrointestinal Cancer, Clinical Laboratory Center, Department of Clinical Laboratory, The First Affiliated Hospital of Guangxi Medical University, Shuangyong Road 6, Guangxi Zhuang Autonomous Region, Nanning, 530021, China; Jiangsu Fuyuda Food Products Co., Ltd, Qinyou Road 88, Gaoyou City, Jiangsu Province, 225600, China.
| | - Ibrahim Javed
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, Qld, 4072, Australia.
| |
Collapse
|
3
|
Li X, Mu C, Wu H, Zoetendal EG, Huang R, Yu K, Zhu W. Superior ability of dietary fiber utilization in obese breed pigs linked to gut microbial hydrogenotrophy. ISME COMMUNICATIONS 2025; 5:ycaf043. [PMID: 40144402 PMCID: PMC11937827 DOI: 10.1093/ismeco/ycaf043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 01/21/2025] [Accepted: 03/03/2025] [Indexed: 03/28/2025]
Abstract
Dietary fiber is widely recognized for its benefits to human health. Individual variations in the ability to degrade dietary fiber are influenced by the gut microbiome that may be associated with the host's metabolic phenotype and genetic diversity. This is exemplified by the distinct fiber digestibility observed in obese (e.g. Meishan) and lean-breed (e.g. Yorkshire) pigs. However, the underlying mechanisms remain unclear. The present study found that with the same diet under the same environment, the obese-type Meishan pigs showed greater dietary fiber digestibility and harbored higher abundances of polysaccharide-degrading bacteria (Bacteroides, Treponema, and Paraprevotella) compared to lean-type Yorkshire pigs. Metatranscriptomic profiling revealed that the elevated presence of Bacteroides contributed to the enrichment of carbohydrate-active enzymes, particularly those degrading arabinoxylan, indicating a preference for arabinoxylan as a substrate in Meishan pigs. Further enzymatic-product measurements, combined with microbial enzyme profiles, validated greater microbial conversion of xylose into short-chain fatty acids (SCFAs) in Meishan pigs. Additionally, higher abundances of hydrogenotrophic microbes (Methanobrevibacter and Blautia) were detected in the Meishan gut, along with the enrichment of methanogenesis and acetogenesis pathways. To determine whether methanogenesis drives inter-breed variation in arabinoxylan degradation, an in vitro experiment using the methanogen inhibitor, 2-bromoethanesulfonate (BES) was performed. The results confirmed that Meishan gut microbiome effectively reduced hydrogen accumulation through methanogenesis, promoting arabinoxylan degradation. Conversely, inhibiting methanogenesis by BES led to hydrogen accumulation, reduced SCFAs, β-xylosidase activity, and Bacteroides abundances. These findings demonstrate that the Meishan pigs have a superior ability of dietary fiber utilization with greater microbial conversion to more SCFAs, which is linked to stronger hydrogenotrophic methanogenesis. This study reinforces the role of gut microbial hydrogenotrophy in dietary fiber utilization in pigs.
Collapse
Affiliation(s)
- Xuan Li
- Laboratory of Gastrointestinal Microbiology, Jiangsu Key Laboratory of Gastrointestinal Nutrition and Animal Health, College of Animal Science & Technology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
- National Center for International Research on Animal Gut Nutrition, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Chunlong Mu
- Department of Biochemistry and Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, Alberta T2N 1N4, Canada
| | - Haiqin Wu
- Laboratory of Gastrointestinal Microbiology, Jiangsu Key Laboratory of Gastrointestinal Nutrition and Animal Health, College of Animal Science & Technology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
- National Center for International Research on Animal Gut Nutrition, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Erwin G Zoetendal
- Laboratory of Gastrointestinal Microbiology, Jiangsu Key Laboratory of Gastrointestinal Nutrition and Animal Health, College of Animal Science & Technology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
- National Center for International Research on Animal Gut Nutrition, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
- Laboratory of Microbiology, Wageningen University & Research, Wageningen 6700 HB, The Netherlands
| | - Ruihua Huang
- Laboratory of Gastrointestinal Microbiology, Jiangsu Key Laboratory of Gastrointestinal Nutrition and Animal Health, College of Animal Science & Technology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
- National Center for International Research on Animal Gut Nutrition, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Kaifan Yu
- Laboratory of Gastrointestinal Microbiology, Jiangsu Key Laboratory of Gastrointestinal Nutrition and Animal Health, College of Animal Science & Technology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
- National Center for International Research on Animal Gut Nutrition, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Weiyun Zhu
- Laboratory of Gastrointestinal Microbiology, Jiangsu Key Laboratory of Gastrointestinal Nutrition and Animal Health, College of Animal Science & Technology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
- National Center for International Research on Animal Gut Nutrition, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| |
Collapse
|
4
|
Berkhout MD, Ioannou A, de Ram C, Boeren S, Plugge CM, Belzer C. Mucin-driven ecological interactions in an in vitro synthetic community of human gut microbes. Glycobiology 2024; 34:cwae085. [PMID: 39385462 PMCID: PMC11632381 DOI: 10.1093/glycob/cwae085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 09/27/2024] [Accepted: 10/07/2024] [Indexed: 10/12/2024] Open
Abstract
Specific human gut microbes inhabit the outer mucus layer of the gastrointestinal tract. Certain residents of this niche can degrade the large and complex mucin glycoproteins that constitute this layer and utilise the degradation products for their metabolism. In turn, this microbial mucin degradation drives specific microbiological ecological interactions in the human gut mucus layer. However, the exact nature of these interactions remains unknown. In this study, we designed and studied an in vitro mucin-degrading synthetic community that included mucin O-glycan degraders and cross-feeding microorganisms by monitoring community composition and dynamics through a combination of 16S rRNA gene amplicon sequencing and qPCR, mucin glycan degradation with PGC-LC-MS/MS, production of mucin-degrading enzymes and other proteins through metaproteomics, and metabolite production with HPLC. We demonstrated that specialist and generalist mucin O-glycan degraders stably co-exist and found evidence for cross-feeding relationships. Cross-feeding on the products of mucin degradation by other gut microbes resulted in butyrate production, hydrogenotrophic acetogenesis, sulfate reduction and methanogenesis. Metaproteomics analysis revealed that mucin glycan degraders Akkermansia muciniphila, Bacteroides spp. and Ruminococcus torques together contributed 92% of the total mucin O-glycan degrading enzyme pool of this community. Furthermore, comparative proteomics showed that in response to cultivation in a community compared to monoculture, mucin glycan degraders increased carbohydrate-active enzymes whereas we also found indications for niche differentiation. These results confirm the complexity of mucin-driven microbiological ecological interactions and the intricate role of carbohydrate-active enzymes in the human gut mucus layer.
Collapse
Affiliation(s)
- Maryse D Berkhout
- Laboratory of Microbiology, Wageningen University and Research, Stippeneng 4, Wageningen 6708 WE, The Netherlands
| | - Athanasia Ioannou
- Laboratory of Microbiology, Wageningen University and Research, Stippeneng 4, Wageningen 6708 WE, The Netherlands
| | - Carol de Ram
- Laboratory of Food Chemistry, Wageningen University and Research, Bornse Weilanden 9, Wageningen 6708 WG, The Netherlands
| | - Sjef Boeren
- Laboratory of Biochemistry, Wageningen University and Research, Stippeneng 4, Wageningen 6708 WE, The Netherlands
| | - Caroline M Plugge
- Laboratory of Microbiology, Wageningen University and Research, Stippeneng 4, Wageningen 6708 WE, The Netherlands
| | - Clara Belzer
- Laboratory of Microbiology, Wageningen University and Research, Stippeneng 4, Wageningen 6708 WE, The Netherlands
| |
Collapse
|
5
|
Feng M, Zou Z, Shou P, Peng W, Liu M, Li X. Gut microbiota and Parkinson's disease: potential links and the role of fecal microbiota transplantation. Front Aging Neurosci 2024; 16:1479343. [PMID: 39679259 PMCID: PMC11638248 DOI: 10.3389/fnagi.2024.1479343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Accepted: 11/14/2024] [Indexed: 12/17/2024] Open
Abstract
Parkinson's disease (PD) is the second most common neurodegenerative disease worldwide and seriously affects the quality of life of elderly patients. PD is characterized by the loss of dopaminergic neurons in the substantia nigra as well as abnormal accumulation of α-synuclein in neurons. Recent research has deepened our understanding of the gut microbiota, revealing that it participates in the pathological process of PD through the gut-brain axis, suggesting that the gut may be the source of PD. Therefore, studying the relationship between gut microbiota and PD is crucial for improving our understanding of the disease's prevention, diagnosis, and treatment. In this review, we first describe the bidirectional regulation of the gut-brain axis by the gut microbiota and the mechanisms underlying the involvement of gut microbiota and their metabolites in PD. We then summarize the different species of gut microbiota found in patients with PD and their correlations with clinical symptoms. Finally, we review the most comprehensive animal and human studies on treating PD through fecal microbiota transplantation (FMT), discussing the challenges and considerations associated with this treatment approach.
Collapse
Affiliation(s)
- Maosen Feng
- NHC Key Laboratory of Nuclear Technology Medical Transformation, Mianyang Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Mianyang, China
- Department of Gastroenterology, National Clinical Key Specialty, Mianyang Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Mianyang, China
- School of Life Sciences and Engineering, Southwest University of Science and Technology, Mianyang, China
| | - Zhiyan Zou
- NHC Key Laboratory of Nuclear Technology Medical Transformation, Mianyang Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Mianyang, China
| | - Pingping Shou
- School of Life Sciences and Engineering, Southwest University of Science and Technology, Mianyang, China
| | - Wei Peng
- Department of Gastroenterology, National Clinical Key Specialty, Mianyang Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Mianyang, China
| | - Mingxue Liu
- School of Life Sciences and Engineering, Southwest University of Science and Technology, Mianyang, China
| | - Xiaoan Li
- NHC Key Laboratory of Nuclear Technology Medical Transformation, Mianyang Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Mianyang, China
- Department of Gastroenterology, National Clinical Key Specialty, Mianyang Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Mianyang, China
| |
Collapse
|
6
|
Yafarova AA, Dementeva EV, Zlobovskaya OA, Sheptulina AF, Lopatukhina EV, Timofeev YS, Glazunova EV, Lyundup AV, Doludin YV, Kiselev AR, Shipulin GA, Makarov VV, Drapkina OM, Yudin SM. Gut Microbiota and Metabolic Alterations Associated with Heart Failure and Coronary Artery Disease. Int J Mol Sci 2024; 25:11295. [PMID: 39457077 PMCID: PMC11508380 DOI: 10.3390/ijms252011295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 10/15/2024] [Accepted: 10/17/2024] [Indexed: 10/28/2024] Open
Abstract
This study investigates the role of gut microbiota in cardiovascular diseases, with an additional focus on pro-atherogenic metabolites. We use advanced network analysis and machine learning techniques to identify key microbial features linked to coronary artery disease (CAD) and heart failure with reduced ejection fraction (HFrEF). This cross-sectional study included 189 participants divided into three groups: coronary artery disease (n = 93), heart failure with reduced ejection fraction (n = 43), and controls (n = 53). Assessments included physical exams, echocardiography, dietary surveys, blood analysis, and fecal analysis. Gut microbiota composition was analyzed using next-generation sequencing (NGS) and quantitative polymerase chain reaction (qPCR). Statistical analysis methods for testing hypotheses and correlations, alpha and beta-diversity analyses, co-occurrence networks, and machine learning were conducted using Python libraries or R packages with multiple comparisons corrected using the Benjamini-Hochberg procedure. Significant gut microbiota alterations were observed, with higher Bacillota/Bacteroidota ratios in CAD and HFrEF groups compared to controls (p < 0.001). Significant differences were observed in α-diversity indices (Pielou, Chao1, Faith) between disease groups and controls (p < 0.001). β-diversity analyses also revealed distinct microbial profiles (p = 0.0015). Interestingly, trimethylamine N-oxide (TMAO) levels were lower in CAD and HFrEF groups compared to controls (p < 0.05), while indoxyl sulfate (IS) levels were comparable between the study groups. Co-occurrence network analysis and machine learning identified key microbial features linked to these conditions, highlighting complex interactions within the gut microbiota associated with cardiovascular disease.
Collapse
Affiliation(s)
- Adel A. Yafarova
- National Medical Research Center for Therapy and Preventive Medicine, Petroverigskyj Lane 10, Bld. 3, 101990 Moscow, Russia (A.R.K.)
| | - Elena V. Dementeva
- Federal State Budgetary Institution «Centre for Strategic Planning and Management of Biomedical Health Risks» of the Federal Medical and Biological Agency, Pogodinskaya Str., 10/1, 119121 Moscow, Russia
| | - Olga A. Zlobovskaya
- Federal State Budgetary Institution «Centre for Strategic Planning and Management of Biomedical Health Risks» of the Federal Medical and Biological Agency, Pogodinskaya Str., 10/1, 119121 Moscow, Russia
| | - Anna F. Sheptulina
- National Medical Research Center for Therapy and Preventive Medicine, Petroverigskyj Lane 10, Bld. 3, 101990 Moscow, Russia (A.R.K.)
| | - Elena V. Lopatukhina
- Federal State Budgetary Institution «Centre for Strategic Planning and Management of Biomedical Health Risks» of the Federal Medical and Biological Agency, Pogodinskaya Str., 10/1, 119121 Moscow, Russia
| | - Yuriy S. Timofeev
- National Medical Research Center for Therapy and Preventive Medicine, Petroverigskyj Lane 10, Bld. 3, 101990 Moscow, Russia (A.R.K.)
| | - Evgeniya V. Glazunova
- Federal State Budgetary Institution «Centre for Strategic Planning and Management of Biomedical Health Risks» of the Federal Medical and Biological Agency, Pogodinskaya Str., 10/1, 119121 Moscow, Russia
| | - Aleksey V. Lyundup
- Endocrinology Research Centre, Dmitry Ulyanov St. 19, 117036 Moscow, Russia
| | - Yuriy V. Doludin
- National Medical Research Center for Therapy and Preventive Medicine, Petroverigskyj Lane 10, Bld. 3, 101990 Moscow, Russia (A.R.K.)
| | - Anton R. Kiselev
- National Medical Research Center for Therapy and Preventive Medicine, Petroverigskyj Lane 10, Bld. 3, 101990 Moscow, Russia (A.R.K.)
| | - German A. Shipulin
- Federal State Budgetary Institution «Centre for Strategic Planning and Management of Biomedical Health Risks» of the Federal Medical and Biological Agency, Pogodinskaya Str., 10/1, 119121 Moscow, Russia
| | - Valentin V. Makarov
- Federal State Budgetary Institution «Centre for Strategic Planning and Management of Biomedical Health Risks» of the Federal Medical and Biological Agency, Pogodinskaya Str., 10/1, 119121 Moscow, Russia
| | - Oxana M. Drapkina
- National Medical Research Center for Therapy and Preventive Medicine, Petroverigskyj Lane 10, Bld. 3, 101990 Moscow, Russia (A.R.K.)
| | - Sergey M. Yudin
- Federal State Budgetary Institution «Centre for Strategic Planning and Management of Biomedical Health Risks» of the Federal Medical and Biological Agency, Pogodinskaya Str., 10/1, 119121 Moscow, Russia
| |
Collapse
|
7
|
Yüksel E, Voragen AGJ, Kort R. The pectin metabolizing capacity of the human gut microbiota. Crit Rev Food Sci Nutr 2024:1-23. [PMID: 39264366 DOI: 10.1080/10408398.2024.2400235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/13/2024]
Abstract
The human gastrointestinal microbiota, densely populated with a diverse array of microorganisms primarily from the bacterial phyla Bacteroidota, Bacillota, and Actinomycetota, is crucial for maintaining health and physiological functions. Dietary fibers, particularly pectin, significantly influence the composition and metabolic activity of the gut microbiome. Pectin is fermented by gut bacteria using carbohydrate-active enzymes (CAZymes), resulting in the production of short-chain fatty acids (SCFAs) such as acetate, propionate, and butyrate, which provide various health benefits. The gastrointestinal microbiota has evolved to produce CAZymes that target different pectin components, facilitating cross-feeding within the microbial community. This review explores the fermentation of pectin by various gut bacteria, focusing on the involved transport systems, CAZyme families, SCFA synthesis capacity, and effects on microbial ecology in the gut. It addresses the complexities of the gut microbiome's response to pectin and highlights the importance of microbial cross-feeding in maintaining a balanced and diverse gut ecosystem. Through a systematic analysis of pectinolytic CAZyme production, this review provides insights into the enzymatic mechanisms underlying pectin degradation and their broader implications for human health, paving the way for more targeted and personalized dietary strategies.
Collapse
Affiliation(s)
- Ecem Yüksel
- Amsterdam Institute for Life and Environment (A-LIFE), Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Alphons G J Voragen
- Keep Food Simple, Driebergen, The Netherlands
- Laboratory of Food Chemistry, Wageningen University & Research, Wageningen, The Netherlands
| | - Remco Kort
- Amsterdam Institute for Life and Environment (A-LIFE), Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
- ARTIS-Micropia, Amsterdam, The Netherlands
| |
Collapse
|
8
|
Herfindal AM, Nilsen M, Aspholm TE, Schultz GIG, Valeur J, Rudi K, Thoresen M, Lundin KEA, Henriksen C, Bøhn SK. Effects of fructan and gluten on gut microbiota in individuals with self-reported non-celiac gluten/wheat sensitivity-a randomised controlled crossover trial. BMC Med 2024; 22:358. [PMID: 39227818 PMCID: PMC11373345 DOI: 10.1186/s12916-024-03562-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Accepted: 08/14/2024] [Indexed: 09/05/2024] Open
Abstract
BACKGROUND Individuals with non-celiac gluten/wheat sensitivity (NCGWS) experience improvement in gastrointestinal symptoms following a gluten-free diet. Although previous results have indicated that fructo-oligosaccharides (FOS), a type of short-chain fructans, were more likely to induce symptoms than gluten in self-reported NCGWS patients, the underlying mechanisms are unresolved. METHODS Our main objective was therefore to investigate whether FOS-fructans and gluten affect the composition and diversity of the faecal microbiota (16S rRNA gene sequencing), faecal metabolites of microbial fermentation (short-chain fatty acids [SCFA]; gas chromatography with flame ionization detector), and a faecal biomarker of gut inflammation (neutrophil gelatinase-associated lipocalin, also known as lipocalin 2, NGAL/LCN2; ELISA). In the randomised double-blind placebo-controlled crossover study, 59 participants with self-reported NCGWS underwent three different 7-day diet challenges with gluten (5.7 g/day), FOS-fructans (2.1 g/day), and placebo separately (three periods, six challenge sequences). RESULTS The relative abundances of certain bacterial taxa were affected differently by the diet challenges. After the FOS-fructan challenge, Fusicatenibacter increased, while Eubacterium (E.) coprostanoligenes group, Anaerotruncus, and unknown Ruminococcaceae genera decreased. The gluten challenge was primarily characterized by increased abundance of Eubacterium xylanophilum group. However, no differences were found for bacterial diversity (α-diversity), overall bacterial community structure (β-diversity), faecal metabolites (SCFA), or NGAL/LCN2. Furthermore, gastrointestinal symptoms in response to FOS-fructans were generally not linked to substantial shifts in the gut bacterial community. However, the reduction in E. coprostanoligenes group following the FOS-fructan challenge was associated with increased gastrointestinal pain. Finally, correlation analysis revealed that changes in gastrointestinal symptoms following the FOS-fructan and gluten challenges were linked to varying bacterial abundances at baseline. CONCLUSIONS In conclusion, while FOS-fructans induced more gastrointestinal symptoms than gluten in the NCGWS patients, we did not find that substantial shifts in the composition nor function of the faecal microbiota could explain these differences in the current study. However, our results indicate that individual variations in baseline bacterial composition/function may influence the gastrointestinal symptom response to both FOS-fructans and gluten. Additionally, the change in E. coprostanoligenes group, which was associated with increased symptoms, implies that attention should be given to these bacteria in future trials investigating the impact of dietary treatments on gastrointestinal symptoms. TRIAL REGISTRATION Clinicaltrials.gov as NCT02464150.
Collapse
Affiliation(s)
- Anne Mari Herfindal
- Faculty of Chemistry, Biotechnology and Food Sciences, Norwegian University of Life Sciences, P. O. Box 5003, N-1432, Ås, Norway
| | - Morten Nilsen
- Faculty of Chemistry, Biotechnology and Food Sciences, Norwegian University of Life Sciences, P. O. Box 5003, N-1432, Ås, Norway
| | - Trude E Aspholm
- Faculty of Chemistry, Biotechnology and Food Sciences, Norwegian University of Life Sciences, P. O. Box 5003, N-1432, Ås, Norway
| | | | - Jørgen Valeur
- Unger-Vetlesen Institute, Lovisenberg Diaconal Hospital, Oslo, Norway
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Knut Rudi
- Faculty of Chemistry, Biotechnology and Food Sciences, Norwegian University of Life Sciences, P. O. Box 5003, N-1432, Ås, Norway
| | - Magne Thoresen
- Department of Biostatistics, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Knut E A Lundin
- Disease Research Centre, Norwegian Coeliac, University of Oslo, Oslo, Norway
- Department of Gastroenterology, Oslo University Hospital Rikshospitalet, Oslo, Norway
| | - Christine Henriksen
- Department of Nutrition, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Siv K Bøhn
- Faculty of Chemistry, Biotechnology and Food Sciences, Norwegian University of Life Sciences, P. O. Box 5003, N-1432, Ås, Norway.
| |
Collapse
|
9
|
Letourneau J, Neubert BC, Dayal D, Carrion VM, Durand HK, Dallow EP, Jiang S, Kirtley M, Ginsburg GS, Doraiswamy PM, David LA. Weight, habitual fibre intake, and microbiome composition predict tolerance to fructan supplementation. Int J Food Sci Nutr 2024; 75:571-581. [PMID: 38982571 PMCID: PMC11491164 DOI: 10.1080/09637486.2024.2372590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 05/30/2024] [Accepted: 06/21/2024] [Indexed: 07/11/2024]
Abstract
Fructans are commonly used as dietary fibre supplements for their ability to promote the growth of beneficial gut microbes. However, fructan consumption has been associated with various dosage-dependent side effects. We characterised side effects in an exploratory analysis of a randomised trial in healthy adults (n = 40) who consumed 18 g/day inulin or placebo. We found that individuals weighing more or habitually consuming higher fibre exhibited the best tolerance. Furthermore, we identified associations between gut microbiome composition and host tolerance. Specifically, higher levels of Christensenellaceae R-7 group were associated with gastrointestinal discomfort, and a machine-learning-based approach successfully predicted high levels of flatulence, with [Ruminococcus] torques group and (Oscillospiraceae) UCG-002 sp. identified as key predictive taxa. These data reveal trends that can help guide personalised recommendations for initial inulin dosage. Our results support prior ecological findings indicating that fibre supplementation has the greatest impact on individuals whose baseline fibre intake is lowest.
Collapse
Affiliation(s)
- Jeffrey Letourneau
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC 27710
| | - Benjamin C Neubert
- Program in Computational Biology and Bioinformatics, Duke University School of Medicine, Durham, NC 27710
| | - Diana Dayal
- School of Medicine, University of North Carolina, Chapel Hill, NC 27516
| | | | - Heather K Durand
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC 27710
| | - Eric P Dallow
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC 27710
| | - Sharon Jiang
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC 27710
| | - Michelle Kirtley
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC 27710
| | - Geoffrey S Ginsburg
- Duke Center for Applied Genomics and Precision Medicine, Duke University Health System, Durham, NC 27710
- Department of Medicine, Duke University School of Medicine, Durham, NC 27710
| | - P Murali Doraiswamy
- Duke Center for Applied Genomics and Precision Medicine, Duke University Health System, Durham, NC 27710
- Department of Medicine, Duke University School of Medicine, Durham, NC 27710
- Department of Psychiatry, Duke University School of Medicine, Durham, NC 27710
- Duke Microbiome Center, Duke University School of Medicine, Durham, NC 27710
| | - Lawrence A David
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC 27710
- Program in Computational Biology and Bioinformatics, Duke University School of Medicine, Durham, NC 27710
- Duke Microbiome Center, Duke University School of Medicine, Durham, NC 27710
| |
Collapse
|
10
|
Feng C, Gao G, Wu K, Weng X. Causal relationship between gut microbiota and constipation: a bidirectional Mendelian randomization study. Front Microbiol 2024; 15:1438778. [PMID: 39086647 PMCID: PMC11288903 DOI: 10.3389/fmicb.2024.1438778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Accepted: 07/03/2024] [Indexed: 08/02/2024] Open
Abstract
Background Constipation is a prevalent gastrointestinal disorder affecting approximately 15% of the global population, leading to significant healthcare burdens. Emerging evidence suggests that gut microbiota plays a pivotal role in the pathogenesis of constipation, although causality remains uncertain due to potential confounding factors in observational studies. This study aims to clarify the causal relationships between gut microbiota and constipation using a bidirectional Mendelian Randomization (MR) approach, which helps to overcome confounding issues and reverse causality. Methods Utilizing data from genome-wide association studies (GWAS) from the MiBioGen consortium and other sources, we identified genetic variants as instrumental variables (IVs) for 196 bacterial traits and constipation. These IVs were rigorously selected based on their association with the traits and absence of linkage with confounding factors. We applied several MR methods, including Inverse Variance Weighted (IVW), MR Egger, and MR-PRESSO, to examine the causal effects in both directions. Results Our analysis revealed a significant causal relationship where specific bacterial taxa such as Coprococcus1 (OR = 0.798, 95%CI: 0.711-0.896, p < 0.001), Coprococcus3 (OR = 0.851, 95%CI: 0.740-0.979, p = 0.024), Desulfovibrio (OR = 0.902, 95%CI: 0.817-0.996, p = 0.041), Flavonifractor (OR = 0.823, 95%CI: 0.708-0.957, p < 0.001), and Lachnospiraceae UCG004, whereas others including Ruminococcaceae UCG005 (OR = 1.127, 95%CI: 1.008-1.261, p = 0.036), Eubacterium nodatum group (OR = 1.080, 95%CI: 1.018-1.145, p = 0.025), Butyricimonas (OR = 1.118, 95%CI: 1.014-1.233, p = 0.002), and Bacteroidetes (OR = 1.274, 95%CI: 1.014-1.233, p < 0.001) increase constipation risk. In the reverse MR analysis, constipation was found to influence the abundance of certain taxa, including Family XIII, Porphyromonadaceae, Proteobacteria, Lentisphaeria, Veillonellaceae, Victivallaceae, Catenibacterium, Sellimonas, and Victivallales, indicating a bidirectional relationship. Sensitivity analyses confirmed the robustness of these findings, with no evidence of heterogeneity or horizontal pleiotropy. Conclusion The relationship between our study gut microbiota and constipation interacts at the genetic level, which gut microbiota can influence the onset of constipation, and constipation can alter the gut microbiota. Coprococcus1, Coprococcus3, Desulfovibrio, Flavonifractor and Lachnospiraceae UCG004 play a protective role against constipation, while Ruminococcaceae UCG005, Eubacterium nodatum group, Butyricimonas, and Bacteroidetes are associated with an increased risk. In addition, constipation correlates positively with the abundance of Family XIII, Porphyromonadaceae and Proteobacteria, while negatively with Lentisphaeria, Veillonellaceae, Victivallaceae, Catenibacterium, Sellimonas, and Victivallales.
Collapse
Affiliation(s)
- Cuncheng Feng
- Department of Gastrointestinal Surgery, The Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical University, Changzhou, China
| | - Guanzhuang Gao
- Department of Gastrointestinal Surgery, The Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical University, Changzhou, China
| | - Kai Wu
- Department of Gastrointestinal Surgery, The Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical University, Changzhou, China
| | - Xiaoqi Weng
- Department of Gastrointestinal Surgery, Tongxiang First People's Hospital, Tongxiang, China
| |
Collapse
|
11
|
Martínez-Álvaro M, Zubiri-Gaitán A, Hernández P, Casto-Rebollo C, Ibáñez-Escriche N, Santacreu MA, Artacho A, Pérez-Brocal V, Blasco A. Correlated Responses to Selection for Intramuscular Fat on the Gut Microbiome in Rabbits. Animals (Basel) 2024; 14:2078. [PMID: 39061540 PMCID: PMC11273372 DOI: 10.3390/ani14142078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 07/11/2024] [Accepted: 07/12/2024] [Indexed: 07/28/2024] Open
Abstract
Intramuscular fat (IMF) content is important for meat production and human health, where the host genetics and its microbiome greatly contribute to its variation. The aim of this study is to describe the consequences of the genetic modification of IMF by selecting the taxonomic composition of the microbiome, using rabbits from the 10th generation of a divergent selection experiment for IMF (high (H) and low (L) lines differ by 3.8 standard deviations). The selection altered the composition of the gut microbiota. Correlated responses were better distinguished at the genus level (51 genera) than at the phylum level (10 phyla). The H-line was enriched in Hungateiclostridium, Limosilactobacillus, Legionella, Lysinibacillus, Phorphyromonas, Methanosphaera, Desulfovibrio, and Akkermansia, while the L-line was enriched in Escherichia, Methanobrevibacter, Fonticella, Candidatus Amulumruptor, Methanobrevibacter, Exiguobacterium, Flintibacter, and Coprococcus, among other genera with smaller line differences. A microbial biomarker generated from the abundance of four of these genera classified the lines with 78% accuracy in a logit regression. Our results demonstrate different gut microbiome compositions in hosts with divergent IMF genotypes. Furthermore, we provide a microbial biomarker to be used as an indicator of hosts genetically predisposed to accumulate muscle lipids, which opens up the opportunity for research to develop probiotics or microbiome-based breeding strategies targeting IMF.
Collapse
Affiliation(s)
- Marina Martínez-Álvaro
- Institute for Animal Science and Technology, Universitat Politècnica de València, 46022 Valencia, Spain
| | - Agostina Zubiri-Gaitán
- Institute for Animal Science and Technology, Universitat Politècnica de València, 46022 Valencia, Spain
| | - Pilar Hernández
- Institute for Animal Science and Technology, Universitat Politècnica de València, 46022 Valencia, Spain
| | - Cristina Casto-Rebollo
- Institute for Animal Science and Technology, Universitat Politècnica de València, 46022 Valencia, Spain
| | - Noelia Ibáñez-Escriche
- Institute for Animal Science and Technology, Universitat Politècnica de València, 46022 Valencia, Spain
| | - Maria Antonia Santacreu
- Institute for Animal Science and Technology, Universitat Politècnica de València, 46022 Valencia, Spain
| | - Alejandro Artacho
- Area of Genomics and Health, Foundation for the Promotion of Sanitary and Biomedical Research of Valencia Region (FISABIO-Public Health), 46022 Valencia, Spain
| | - Vicente Pérez-Brocal
- Area of Genomics and Health, Foundation for the Promotion of Sanitary and Biomedical Research of Valencia Region (FISABIO-Public Health), 46022 Valencia, Spain
- Biomedical Research Networking Center for Epidemiology and Public Health (CIBERESP), 28029 Madrid, Spain
| | - Agustín Blasco
- Institute for Animal Science and Technology, Universitat Politècnica de València, 46022 Valencia, Spain
| |
Collapse
|
12
|
Wielgosz-Grochowska JP, Domanski N, Drywień ME. Identification of SIBO Subtypes along with Nutritional Status and Diet as Key Elements of SIBO Therapy. Int J Mol Sci 2024; 25:7341. [PMID: 39000446 PMCID: PMC11242202 DOI: 10.3390/ijms25137341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 06/28/2024] [Accepted: 07/01/2024] [Indexed: 07/16/2024] Open
Abstract
Small intestinal bacterial overgrowth (SIBO) is a pathology of the small intestine and may predispose individuals to various nutritional deficiencies. Little is known about whether specific subtypes of SIBO, such as the hydrogen-dominant (H+), methane-dominant (M+), or hydrogen/methane-dominant (H+/M+), impact nutritional status and dietary intake in SIBO patients. The aim of this study was to investigate possible correlations between biochemical parameters, dietary nutrient intake, and distinct SIBO subtypes. This observational study included 67 patients who were newly diagnosed with SIBO. Biochemical parameters and diet were studied utilizing laboratory tests and food records, respectively. The H+/M+ group was associated with low serum vitamin D (p < 0.001), low serum ferritin (p = 0.001) and low fiber intake (p = 0.001). The M+ group was correlated with high serum folic acid (p = 0.002) and low intakes of fiber (p = 0.001) and lactose (p = 0.002). The H+ group was associated with low lactose intake (p = 0.027). These results suggest that the subtype of SIBO may have varying effects on dietary intake, leading to a range of biochemical deficiencies. Conversely, specific dietary patterns may predispose one to the development of a SIBO subtype. The assessment of nutritional status and diet, along with the diagnosis of SIBO subtypes, are believed to be key components of SIBO therapy.
Collapse
Affiliation(s)
| | - Nicole Domanski
- Faculty of Pharmaceutical Sciences, University of British Columbia, Vancouver, BC V6T 1Z3, Canada;
| | - Małgorzata Ewa Drywień
- Department of Human Nutrition, Institute of Human Nutrition Sciences, Warsaw University of Life Sciences, 02-776 Warsaw, Poland;
| |
Collapse
|
13
|
Basuray N, Deehan EC, Vieira FT, Avedzi HM, Duke RL, Colín-Ramírez E, Tun HM, Zhang Z, Wine E, Madsen KL, Field CJ, Haqq AM. Dichotomous effect of dietary fiber in pediatrics: a narrative review of the health benefits and tolerance of fiber. Eur J Clin Nutr 2024; 78:557-568. [PMID: 38480843 DOI: 10.1038/s41430-024-01429-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Revised: 02/27/2024] [Accepted: 03/01/2024] [Indexed: 03/18/2024]
Abstract
Dietary fibers are associated with favorable gastrointestinal, immune, and metabolic health outcomes when consumed at sufficient levels. Despite the well-described benefits of dietary fibers, children and adolescents continue to fall short of daily recommended levels. This gap in fiber intake (i.e., "fiber gap") might increase the risk of developing early-onset pediatric obesity and obesity-related comorbidities such as type 2 diabetes mellitus into adulthood. The structure-dependent physicochemical properties of dietary fiber are diverse. Differences in solubility, viscosity, water-holding capacity, binding capability, bulking effect, and fermentability influence the physiological effects of dietary fibers that aid in regulating appetite, glycemic and lipidemic responses, and inflammation. Of growing interest is the fermentation of fibers by the gut microbiota, which yields both beneficial and less favorable end-products such as short-chain fatty acids (e.g., acetate, propionate, and butyrate) that impart metabolic and immunomodulatory properties, and gases (e.g., hydrogen, carbon dioxide, and methane) that cause gastrointestinal symptoms, respectively. This narrative review summarizes (1) the implications of fibers on the gut microbiota and the pathophysiology of pediatric obesity, (2) some factors that potentially contribute to the fiber gap with an emphasis on undesirable gastrointestinal symptoms, (3) some methods to alleviate fiber-induced symptoms, and (4) the therapeutic potential of whole foods and commonly marketed fiber supplements for improved health in pediatric obesity.
Collapse
Affiliation(s)
- Nandini Basuray
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB, Canada
| | - Edward C Deehan
- Department of Food Science and Technology, University of Nebraska, Lincoln, NE, USA
- Nebraska Food for Health Center, Lincoln, NE, USA
| | - Flávio T Vieira
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB, Canada
- Department of Pediatrics, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| | - Hayford M Avedzi
- Department of Pediatrics, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| | - Reena L Duke
- Department of Pediatrics, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| | | | - Hein M Tun
- JC School of Public Health and Primary Care, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, SAR, China
| | - Zhengxiao Zhang
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen, Fujian, China
| | - Eytan Wine
- Department of Pediatrics, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| | - Karen L Madsen
- Department of Medicine, University of Alberta, Edmonton, AB, Canada
| | - Catherine J Field
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB, Canada
| | - Andrea M Haqq
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB, Canada.
- Department of Pediatrics, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada.
| |
Collapse
|
14
|
Chatterjee P, Dassama LMK. Unveiling of a messenger: Gut microbes make a neuroactive signal. Cell 2024; 187:2903-2904. [PMID: 38848674 PMCID: PMC11890971 DOI: 10.1016/j.cell.2024.05.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 05/06/2024] [Accepted: 05/06/2024] [Indexed: 06/09/2024]
Abstract
Gut microbes are known to impact host physiology in several ways. However, key molecular players in host-commensal interactions remain to be uncovered. In this issue of Cell, McCurry et al. reveal that gut bacteria perform 21-dehydroxylation to convert abundant biliary corticoids to neurosteroids using readily available H2 in their environment.
Collapse
Affiliation(s)
- Poulami Chatterjee
- Department of Chemistry, Stanford University, Stanford, CA, USA; Sarafan ChEM-H Institute, Stanford University, Stanford, CA, USA
| | - Laura M K Dassama
- Department of Chemistry, Stanford University, Stanford, CA, USA; Sarafan ChEM-H Institute, Stanford University, Stanford, CA, USA; Department of Microbiology and Immunology, Stanford School of Medicine, Stanford, CA, USA.
| |
Collapse
|
15
|
McCurry MD, D'Agostino GD, Walsh JT, Bisanz JE, Zalosnik I, Dong X, Morris DJ, Korzenik JR, Edlow AG, Balskus EP, Turnbaugh PJ, Huh JR, Devlin AS. Gut bacteria convert glucocorticoids into progestins in the presence of hydrogen gas. Cell 2024; 187:2952-2968.e13. [PMID: 38795705 PMCID: PMC11179439 DOI: 10.1016/j.cell.2024.05.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 02/03/2024] [Accepted: 05/02/2024] [Indexed: 05/28/2024]
Abstract
Recent studies suggest that human-associated bacteria interact with host-produced steroids, but the mechanisms and physiological impact of such interactions remain unclear. Here, we show that the human gut bacteria Gordonibacter pamelaeae and Eggerthella lenta convert abundant biliary corticoids into progestins through 21-dehydroxylation, thereby transforming a class of immuno- and metabo-regulatory steroids into a class of sex hormones and neurosteroids. Using comparative genomics, homologous expression, and heterologous expression, we identify a bacterial gene cluster that performs 21-dehydroxylation. We also uncover an unexpected role for hydrogen gas production by gut commensals in promoting 21-dehydroxylation, suggesting that hydrogen modulates secondary metabolism in the gut. Levels of certain bacterial progestins, including allopregnanolone, better known as brexanolone, an FDA-approved drug for postpartum depression, are substantially increased in feces from pregnant humans. Thus, bacterial conversion of corticoids into progestins may affect host physiology, particularly in the context of pregnancy and women's health.
Collapse
Affiliation(s)
- Megan D McCurry
- Department of Biological Chemistry & Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Gabriel D D'Agostino
- Department of Biological Chemistry & Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Jasmine T Walsh
- Department of Biological Chemistry & Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Jordan E Bisanz
- Department of Biochemistry & Molecular Biology, Pennsylvania State University, State College, PA 16802, USA
| | - Ines Zalosnik
- Department of Immunology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Xueyang Dong
- Department of Chemistry & Chemical Biology, Harvard University, Cambridge, MA 02138, USA
| | - David J Morris
- Emeritus Professor of Pathology and Laboratory Medicine, Brown University Alpert School of Medicine, Providence, RI 02903, USA
| | - Joshua R Korzenik
- Division of Gastroenterology, Hepatology and Endoscopy, Brigham & Women's Hospital, Boston, MA 02115, USA
| | - Andrea G Edlow
- Department of Obstetrics & Gynecology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Emily P Balskus
- Department of Chemistry & Chemical Biology, Harvard University, Cambridge, MA 02138, USA; Howard Hughes Medical Institute, Harvard University, Cambridge, MA 02138, USA
| | - Peter J Turnbaugh
- Department of Microbiology & Immunology, University of California, San Francisco, San Francisco, CA 94143, USA; Chan Zuckerberg Biohub-San Francisco, San Francisco, CA 94158, USA
| | - Jun R Huh
- Department of Immunology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
| | - A Sloan Devlin
- Department of Biological Chemistry & Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
16
|
Li J, Huang G, Wang J, Wang S, Yu Y. Hydrogen Regulates Ulcerative Colitis by Affecting the Intestinal Redox Environment. J Inflamm Res 2024; 17:933-945. [PMID: 38370464 PMCID: PMC10871146 DOI: 10.2147/jir.s445152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 01/23/2024] [Indexed: 02/20/2024] Open
Abstract
The redox balance in the intestine plays an important role in maintaining intestinal homeostasis, and it is closely related to the intestinal mucosal barrier, intestinal inflammation, and the gut microbiota. Current research on the treatment of ulcerative colitis has focused on immune disorders, excessive inflammation, and oxidative stress. However, an imbalance in intestinal redox reaction plays a particularly critical role. Hydrogen is produced by some anaerobic bacteria via hydrogenases in the intestine. Increasing evidence suggests that hydrogen, as an inert gas, is crucial for immunity, inflammation, and oxidative stress and plays a protective role in ulcerative colitis. Hydrogen maintains the redox state balance in the intestine in ulcerative colitis and reduces damage to intestinal epithelial cells by exerting its selective antioxidant ability. Hydrogen also regulates the intestinal flora, reduces the harmful effects of bacteria on the intestinal epithelial barrier, promotes the restoration of normal anaerobic bacteria in the intestines, and ultimately improves the integrity of the intestinal epithelial barrier. The present review focuses on the therapeutic mechanisms of hydrogen-targeting ulcerative colitis.
Collapse
Affiliation(s)
- Jiayi Li
- Department of Gastroenterology, Qilu Hospital, Shandong University, Jinan, Shandong, People’s Republic of China
| | - Gang Huang
- Department of Gastroenterology, Qilu Hospital, Shandong University, Jinan, Shandong, People’s Republic of China
| | - Juexin Wang
- Department of Gastroenterology, Qilu Hospital, Shandong University, Jinan, Shandong, People’s Republic of China
| | - Sui Wang
- Department of Gastroenterology, Qilu Hospital, Shandong University, Jinan, Shandong, People’s Republic of China
| | - Yanbo Yu
- Department of Gastroenterology, Qilu Hospital, Shandong University, Jinan, Shandong, People’s Republic of China
- Shandong Provincial Clinical Research Center for Digestive Disease, Qilu Hospital of Shandong University, Jinan, Shandong, People’s Republic of China
| |
Collapse
|
17
|
Villanueva-Millan MJ, Leite G, Morales W, Sanchez M, Parodi G, Weitsman S, Celly S, Cohrs D, Do H, Barlow GM, Mathur R, Rezaie A, Pimentel M. Hydrogen Sulfide Producers Drive a Diarrhea-Like Phenotype and a Methane Producer Drives a Constipation-Like Phenotype in Animal Models. Dig Dis Sci 2024; 69:426-436. [PMID: 38060167 PMCID: PMC10861391 DOI: 10.1007/s10620-023-08197-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 08/23/2023] [Indexed: 12/08/2023]
Abstract
BACKGROUND We recently demonstrated that diarrhea-predominant irritable bowel syndrome (IBS-D) subjects have higher relative abundance (RA) of hydrogen sulfide (H2S)-producing Fusobacterium and Desulfovibrio species, and constipation-predominant IBS (IBS-C) subjects have higher RA of methanogen Methanobrevibacter smithii. AIMS In this study, we investigate the effects of increased methanogens or H2S producers on stool phenotypes in rat models. METHODS Adult Sprague-Dawley rats were fed high-fat diet (HFD) for 60 days to increase M. smithii levels, then gavaged for 10 days with water (controls) or methanogenesis inhibitors. To increase H2S producers, rats were gavaged with F. varium or D. piger. Stool consistency (stool wet weight (SWW)) and gas production were measured. 16S rRNA gene sequencing was performed on stool samples. RESULTS In HFD diet-fed rats (N = 30), stool M. smithii levels were increased (P < 0.001) after 52 days, correlating with significantly decreased SWW (P < 0.0001) at 59 days (R = - 0.38, P = 0.037). Small bowel M. smithii levels decreased significantly in lovastatin lactone-treated rats (P < 0.0006), and SWW increased (normalized) in lovastatin hydroxyacid-treated rats (P = 0.0246), vs. controls (N = 10/group). SWW increased significantly in D. piger-gavaged rats (N = 16) on day 10 (P < 0.0001), and in F. varium-gavaged rats (N = 16) at all timepoints, vs. controls, with increased stool H2S production. 16S sequencing revealed stool microbiota alterations in rats gavaged with H2S producers, with higher relative abundance (RA) of other H2S producers, particularly Lachnospiraceae and Bilophila in F. varium-gavaged rats, and Sutterella in D. piger-gavaged rats. CONCLUSIONS These findings suggest that increased M. smithii levels result in a constipation-like phenotype in a rat model that is partly reversible with methanogenesis inhibitors, whereas gavage with H2S producers D. piger or F. varium results in increased colonization with other H2S producers and diarrhea-like phenotypes. This supports roles for the increased RA of methanogens and H2S producers identified in IBS-C and IBS-D subjects, respectively, in contributing to stool phenotypes.
Collapse
Affiliation(s)
- Maria J Villanueva-Millan
- Medically Associated Science and Technology (MAST) Program, Cedars-Sinai, 770 N. San Vicente Blvd, Suite G271, West Hollywood, CA, 90069, USA
| | - Gabriela Leite
- Medically Associated Science and Technology (MAST) Program, Cedars-Sinai, 770 N. San Vicente Blvd, Suite G271, West Hollywood, CA, 90069, USA
| | - Walter Morales
- Medically Associated Science and Technology (MAST) Program, Cedars-Sinai, 770 N. San Vicente Blvd, Suite G271, West Hollywood, CA, 90069, USA
| | - Maritza Sanchez
- Medically Associated Science and Technology (MAST) Program, Cedars-Sinai, 770 N. San Vicente Blvd, Suite G271, West Hollywood, CA, 90069, USA
| | - Gonzalo Parodi
- Medically Associated Science and Technology (MAST) Program, Cedars-Sinai, 770 N. San Vicente Blvd, Suite G271, West Hollywood, CA, 90069, USA
| | - Stacy Weitsman
- Medically Associated Science and Technology (MAST) Program, Cedars-Sinai, 770 N. San Vicente Blvd, Suite G271, West Hollywood, CA, 90069, USA
| | - Shreya Celly
- Medically Associated Science and Technology (MAST) Program, Cedars-Sinai, 770 N. San Vicente Blvd, Suite G271, West Hollywood, CA, 90069, USA
| | - Daniel Cohrs
- Medically Associated Science and Technology (MAST) Program, Cedars-Sinai, 770 N. San Vicente Blvd, Suite G271, West Hollywood, CA, 90069, USA
| | - Huongly Do
- Medically Associated Science and Technology (MAST) Program, Cedars-Sinai, 770 N. San Vicente Blvd, Suite G271, West Hollywood, CA, 90069, USA
| | - Gillian M Barlow
- Medically Associated Science and Technology (MAST) Program, Cedars-Sinai, 770 N. San Vicente Blvd, Suite G271, West Hollywood, CA, 90069, USA
| | - Ruchi Mathur
- Medically Associated Science and Technology (MAST) Program, Cedars-Sinai, 770 N. San Vicente Blvd, Suite G271, West Hollywood, CA, 90069, USA
- Division of Endocrinology, Diabetes and Metabolism, Cedars-Sinai, Los Angeles, CA, USA
| | - Ali Rezaie
- Medically Associated Science and Technology (MAST) Program, Cedars-Sinai, 770 N. San Vicente Blvd, Suite G271, West Hollywood, CA, 90069, USA
- Karsh Division of Gastroenterology and Hepatology, Cedars-Sinai, Los Angeles, CA, USA
| | - Mark Pimentel
- Medically Associated Science and Technology (MAST) Program, Cedars-Sinai, 770 N. San Vicente Blvd, Suite G271, West Hollywood, CA, 90069, USA.
- Karsh Division of Gastroenterology and Hepatology, Cedars-Sinai, Los Angeles, CA, USA.
| |
Collapse
|
18
|
Singh RB, Sumbalova Z, Fatima G, Mojto V, Fedacko J, Tarnava A, Pokotylo O, Gvozdjakova A, Ferenczyova K, Vlkovicova J, Kura B, Kalocayova B, Zenuch P, Slezak J. Effects of Molecular Hydrogen in the Pathophysiology and Management of Cardiovascular and Metabolic Diseases. Rev Cardiovasc Med 2024; 25:33. [PMID: 39077646 PMCID: PMC11262389 DOI: 10.31083/j.rcm2501033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 08/08/2023] [Accepted: 08/23/2023] [Indexed: 07/31/2024] Open
Abstract
Diet and lifestyle choices, notably the Western-type diet, are implicated in oxidative stress and inflammation, factors that elevate the risk of cardiovascular diseases (CVDs) and type 2 diabetes mellitus (T2DM). In contrast, the Mediterranean of diet, rich in antioxidants, appears to have protective effects against these risks. This article highlights the dual role of diet in generating molecular hydrogen ( H 2 ) in the gut, and H 2 's subsequent influence on the pathophysiology and prevention of CVD and T2DM. Dietary fiber, flavonoids, and probiotics contribute to the production of liters of H 2 in the gut, functioning as antioxidants to neutralize free radicals and dampen inflammation. In the last two decades, mounting evidence has demonstrated that both endogenously produced and exogenously administered H 2 , whether via inhalation or H 2 -rich water (HRW), have potent anti-inflammatory effects across a wide range of biochemical and pathophysiological processes. Recent studies indicate that H 2 can neutralize hydroxyl and nitrosyl radicals, acting as a cellular antioxidant, thereby reducing oxidative stress and inflammation-leading to a significant decline in CVDs and metabolic diseases. Clinical and experimental research support the therapeutic potential of H 2 interventions such as HRW in managing CVDs and metabolic diseases. However, larger studies are necessary to verify the role of H 2 therapy in the management of these chronic diseases.
Collapse
Affiliation(s)
- Ram B. Singh
- Halberg Hospital and Research Institute, 244001 Moradabad, India
| | - Zuzana Sumbalova
- Pharmacobiochemical Laboratory of 3rd Department of Internal Medicine, Faculty of Medicine, Comenius University in Bratislava, 811 08 Bratislava, Slovakia
| | - Ghizal Fatima
- Era Medical College, Era University, 226003 Lucknow, India
| | - Viliam Mojto
- 3rd Department of Internal Medicine, Faculty of Medicine, Comenius University in Bratislava, 833 05 Bratislava, Slovakia
| | - Jan Fedacko
- Department of Gerontology and Geriatric, PJ Safarik University, 040 86 Kosice, Slovakia
| | | | - Oleg Pokotylo
- Department of Food Biotechnology and Chemistry, Ternopil Ivan Puluj National Technical University, 46001 Ternopil, Ukraine
| | - Anna Gvozdjakova
- Pharmacobiochemical Laboratory of 3rd Department of Internal Medicine, Faculty of Medicine, Comenius University in Bratislava, 811 08 Bratislava, Slovakia
| | - Kristina Ferenczyova
- Center of Experimental Medicine, Institute for Heart Research, Slovak Academy of Sciences, 841 04 Bratislava, Slovakia
| | - Jana Vlkovicova
- Center of Experimental Medicine, Institute for Heart Research, Slovak Academy of Sciences, 841 04 Bratislava, Slovakia
| | - Branislav Kura
- Center of Experimental Medicine, Institute for Heart Research, Slovak Academy of Sciences, 841 04 Bratislava, Slovakia
| | - Barbora Kalocayova
- Center of Experimental Medicine, Institute for Heart Research, Slovak Academy of Sciences, 841 04 Bratislava, Slovakia
| | - Pavol Zenuch
- Department of Gerontology and Geriatric, PJ Safarik University, 040 86 Kosice, Slovakia
| | - Jan Slezak
- Center of Experimental Medicine, Institute for Heart Research, Slovak Academy of Sciences, 841 04 Bratislava, Slovakia
| |
Collapse
|
19
|
Deehan EC, Zhang Z, Nguyen NK, Perez-Muñoz ME, Cole J, Riva A, Berry D, Prado CM, Walter J. Adaptation to tolerate high doses of arabinoxylan is associated with fecal levels of Bifidobacterium longum. Gut Microbes 2024; 16:2363021. [PMID: 38860973 PMCID: PMC11174067 DOI: 10.1080/19490976.2024.2363021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 05/29/2024] [Indexed: 06/12/2024] Open
Abstract
Dietary fiber supplements are a strategy to close the 'fiber gap' and induce targeted modulations of the gut microbiota. However, higher doses of fiber supplements cause gastrointestinal (GI) symptoms that differ among individuals. What determines these inter-individual differences is insufficiently understood. Here we analyzed findings from a six-week randomized controlled trial that evaluated GI symptoms to corn bran arabinoxylan (AX; n = 15) relative to non-fermentable microcrystalline cellulose (MCC; n = 16) at efficacious supplement doses of 25 g/day (females) or 35 g/day (males) in adults with excess weight. Self-reported flatulence, bloating, and stomach aches were evaluated weekly. Bacterial taxa involved in AX fermentation were identified by bioorthogonal non-canonical amino acid tagging. Associations between GI symptoms, fecal microbiota features, and diet history were systematically investigated. AX supplementation increased symptoms during the first three weeks relative to MCC (p < 0.05, Mann-Whitney tests), but subjects 'adapted' with symptoms reverting to baseline levels toward the end of treatment. Symptom adaptations were individualized and correlated with the relative abundance of Bifidobacterium longum at baseline (rs = 0.74, p = 0.002), within the bacterial community that utilized AX (rs = 0.69, p = 0.006), and AX-induced shifts in acetate (rs = 0.54, p = 0.039). Lower baseline consumption of animal-based foods and higher whole grains associated with less severity and better adaptation. These findings suggest that humans do 'adapt' to tolerate efficacious fiber doses, and this process is linked to their microbiome and dietary factors known to interact with gut microbes, providing a basis for the development of strategies for improved tolerance of dietary fibers.
Collapse
Affiliation(s)
- Edward C. Deehan
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Canada
- Department of Food Science and Technology, University of Nebraska, Lincoln, NE, USA
- Nebraska Food for Health Center, University of Nebraska, Lincoln, NE, USA
| | - Zhengxiao Zhang
- Department of Medicine, University of Alberta, Edmonton, Canada
- College of Food and Biological Engineering, Jimei University, Xiamen, China
| | - Nguyen K. Nguyen
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Canada
- Metabolism and Nutrition Research Group (MNUT), Louvain Drug Research Institute (LDRI), UCLouvain, Université catholique de Louvain, Brussels, Belgium
- Walloon Excellence in Life Sciences and Biotechnology (WELBIO), WEL Research Institute, Wavre, Belgium
| | - Maria Elisa Perez-Muñoz
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Canada
| | - Janis Cole
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Canada
| | - Alessandra Riva
- Centre for Microbiology and Environmental Systems Science, Department of Microbiology and Ecosystem Science, Division of Microbial Ecology, University of Vienna, Vienna, Austria
- Chair of Nutrition and Immunology, School of Life Sciences, Technical University of Munich, Freising-Weihenstephan, Germany
| | - David Berry
- Centre for Microbiology and Environmental Systems Science, Department of Microbiology and Ecosystem Science, Division of Microbial Ecology, University of Vienna, Vienna, Austria
- Joint Microbiome Facility of the Medical University of Vienna, University of Vienna, Vienna, Austria
| | - Carla M. Prado
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Canada
| | - Jens Walter
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Canada
- Department of Biological Sciences, University of Alberta, Edmonton, Canada
- APC Microbiome Ireland, School of Microbiology, and Department of Medicine, University College Cork – National University of Ireland, Cork, Ireland
| |
Collapse
|
20
|
Zünd JN, Plüss S, Mujezinovic D, Menzi C, von Bieberstein PR, de Wouters T, Lacroix C, Leventhal GE, Pugin B. A flexible high-throughput cultivation protocol to assess the response of individuals' gut microbiota to diet-, drug-, and host-related factors. ISME COMMUNICATIONS 2024; 4:ycae035. [PMID: 38562261 PMCID: PMC10982853 DOI: 10.1093/ismeco/ycae035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 11/13/2023] [Accepted: 03/08/2024] [Indexed: 04/04/2024]
Abstract
The anaerobic cultivation of fecal microbiota is a promising approach to investigating how gut microbial communities respond to specific intestinal conditions and perturbations. Here, we describe a flexible protocol using 96-deepwell plates to cultivate stool-derived gut microbiota. Our protocol aims to address gaps in high-throughput culturing in an anaerobic chamber. We characterized the influence of the gas phase on the medium chemistry and microbial physiology and introduced a modular medium preparation process to enable the testing of several conditions simultaneously. Furthermore, we identified a medium formulation that maximized the compositional similarity of ex vivo cultures and donor microbiota while limiting the bloom of Enterobacteriaceae. Lastly, we validated the protocol by demonstrating that cultivated fecal microbiota responded similarly to dietary fibers (resistant dextrin, soluble starch) and drugs (ciprofloxacin, 5-fluorouracil) as reported in vivo. This high-throughput cultivation protocol has the potential to facilitate culture-dependent studies, accelerate the discovery of gut microbiota-diet-drug-host interactions, and pave the way to personalized microbiota-centered interventions.
Collapse
Affiliation(s)
- Janina N Zünd
- Laboratory of Food Biotechnology, Institute of Food, Nutrition and Health, Department of Health Sciences and Technology, ETH Zürich, 8092 Zürich, Switzerland
| | - Serafina Plüss
- Laboratory of Food Biotechnology, Institute of Food, Nutrition and Health, Department of Health Sciences and Technology, ETH Zürich, 8092 Zürich, Switzerland
| | - Denisa Mujezinovic
- Laboratory of Food Biotechnology, Institute of Food, Nutrition and Health, Department of Health Sciences and Technology, ETH Zürich, 8092 Zürich, Switzerland
| | - Carmen Menzi
- Laboratory of Food Biotechnology, Institute of Food, Nutrition and Health, Department of Health Sciences and Technology, ETH Zürich, 8092 Zürich, Switzerland
- PharmaBiome AG, 8952 Schlieren, Switzerland
| | - Philipp R von Bieberstein
- Laboratory of Food Biotechnology, Institute of Food, Nutrition and Health, Department of Health Sciences and Technology, ETH Zürich, 8092 Zürich, Switzerland
- PharmaBiome AG, 8952 Schlieren, Switzerland
| | | | - Christophe Lacroix
- Laboratory of Food Biotechnology, Institute of Food, Nutrition and Health, Department of Health Sciences and Technology, ETH Zürich, 8092 Zürich, Switzerland
| | | | - Benoit Pugin
- Laboratory of Food Biotechnology, Institute of Food, Nutrition and Health, Department of Health Sciences and Technology, ETH Zürich, 8092 Zürich, Switzerland
| |
Collapse
|
21
|
Avellaneda-Franco L, Xie L, Nakai M, Barr JJ, Marques FZ. Dietary fiber intake impacts gut bacterial and viral populations in a hypertensive mouse model. Gut Microbes 2024; 16:2407047. [PMID: 39340212 PMCID: PMC11567275 DOI: 10.1080/19490976.2024.2407047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 08/19/2024] [Accepted: 09/16/2024] [Indexed: 09/30/2024] Open
Abstract
The gut microbiome is an emerging factor in preventing hypertension, yet the influence of gut bacteriophages, viruses infecting bacteria, on this condition remains unclear. Bacteriophage-bacteria interactions, which impact the gut microbiome, are influenced differentially by temperate and virulent bacteriophages. However, the standard technique for studying viral populations, viral-like particles (VLPs)-metagenomes, often overlook prophages, the intracellular stage of temperate bacteriophages, creating a knowledge gap. To address this, we investigated alterations in extracellular and intracellular bacteriophages, alongside bacterial populations, in the angiotensin II-hypertension model. We sequenced VLPs and bulk DNA from cecal-colonic samples collected from male C57BL/6J mice implanted with minipumps containing saline or angiotensin II. We assembled 106 bacterial and 816 viral genomes and found that gut viral and bacterial populations remained stable between hypertensive and normotensive mice. A higher number of temperate viruses were observed across all treatments. Although temperate viruses outnumbered virulent viruses, sequencing of both VLPs and bulk revealed that virions from virulent viruses were more abundant in the murine gut. We then evaluated the impact of low- and high-fiber intake on gut microbiome composition in the angiotensin II model. Fiber intake significantly influenced the gut microbiome composition and hypertension development. Mice receiving high-fiber had lower blood pressure, a higher bacterial-encoded carbohydrate-associated enzyme, and a higher total relative abundance of temperate viruses than those receiving low-fiber. Our findings suggest that phages are not associated with hypertension development in the angiotensin II model. However, they support a complex diet-bacteria/phage interaction that may be involved in blood pressure regulation.
Collapse
Affiliation(s)
| | - Liang Xie
- School of Biological Sciences, Monash University, Melbourne, Australia
- Precision Medicine Translational Research Programme, Department of Obstetrics & Gynaecology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Michael Nakai
- School of Biological Sciences, Monash University, Melbourne, Australia
| | - Jeremy J. Barr
- School of Biological Sciences, Monash University, Melbourne, Australia
| | - Francine Z. Marques
- School of Biological Sciences, Monash University, Melbourne, Australia
- Heart Failure Research Group, Baker Heart and Diabetes Institute, Melbourne, Australia
- Victorian Heart Institute, Monash University, Melbourne, Australia
| |
Collapse
|
22
|
Little AS, Younker IT, Schechter MS, Bernardino PN, Méheust R, Stemczynski J, Scorza K, Mullowney MW, Sharan D, Waligurski E, Smith R, Ramanswamy R, Leiter W, Moran D, McMillin M, Odenwald MA, Iavarone AT, Sidebottom AM, Sundararajan A, Pamer EG, Eren AM, Light SH. Dietary- and host-derived metabolites are used by diverse gut bacteria for anaerobic respiration. Nat Microbiol 2024; 9:55-69. [PMID: 38177297 PMCID: PMC11055453 DOI: 10.1038/s41564-023-01560-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 11/14/2023] [Indexed: 01/06/2024]
Abstract
Respiratory reductases enable microorganisms to use molecules present in anaerobic ecosystems as energy-generating respiratory electron acceptors. Here we identify three taxonomically distinct families of human gut bacteria (Burkholderiaceae, Eggerthellaceae and Erysipelotrichaceae) that encode large arsenals of tens to hundreds of respiratory-like reductases per genome. Screening species from each family (Sutterella wadsworthensis, Eggerthella lenta and Holdemania filiformis), we discover 22 metabolites used as respiratory electron acceptors in a species-specific manner. Identified reactions transform multiple classes of dietary- and host-derived metabolites, including bioactive molecules resveratrol and itaconate. Products of identified respiratory metabolisms highlight poorly characterized compounds, such as the itaconate-derived 2-methylsuccinate. Reductase substrate profiling defines enzyme-substrate pairs and reveals a complex picture of reductase evolution, providing evidence that reductases with specificities for related cinnamate substrates independently emerged at least four times. These studies thus establish an exceptionally versatile form of anaerobic respiration that directly links microbial energy metabolism to the gut metabolome.
Collapse
Affiliation(s)
- Alexander S Little
- Duchossois Family Institute, University of Chicago, Chicago, IL, USA
- Department of Microbiology, University of Chicago, Chicago, IL, USA
| | - Isaac T Younker
- Duchossois Family Institute, University of Chicago, Chicago, IL, USA
- Department of Microbiology, University of Chicago, Chicago, IL, USA
| | - Matthew S Schechter
- Duchossois Family Institute, University of Chicago, Chicago, IL, USA
- Department of Microbiology, University of Chicago, Chicago, IL, USA
| | - Paola Nol Bernardino
- Duchossois Family Institute, University of Chicago, Chicago, IL, USA
- Department of Microbiology, University of Chicago, Chicago, IL, USA
| | - Raphaël Méheust
- Génomique Métabolique, CEA, Genoscope, Institut François Jacob, Université d'Évry, Université Paris-Saclay, CNRS, Evry, France
| | - Joshua Stemczynski
- Duchossois Family Institute, University of Chicago, Chicago, IL, USA
- Department of Microbiology, University of Chicago, Chicago, IL, USA
| | - Kaylie Scorza
- Duchossois Family Institute, University of Chicago, Chicago, IL, USA
- Department of Microbiology, University of Chicago, Chicago, IL, USA
| | | | - Deepti Sharan
- Duchossois Family Institute, University of Chicago, Chicago, IL, USA
- Department of Microbiology, University of Chicago, Chicago, IL, USA
| | - Emily Waligurski
- Duchossois Family Institute, University of Chicago, Chicago, IL, USA
| | - Rita Smith
- Duchossois Family Institute, University of Chicago, Chicago, IL, USA
| | | | - William Leiter
- Duchossois Family Institute, University of Chicago, Chicago, IL, USA
| | - David Moran
- Duchossois Family Institute, University of Chicago, Chicago, IL, USA
| | - Mary McMillin
- Duchossois Family Institute, University of Chicago, Chicago, IL, USA
| | - Matthew A Odenwald
- Duchossois Family Institute, University of Chicago, Chicago, IL, USA
- Section of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, University of Chicago, Chicago, IL, USA
| | - Anthony T Iavarone
- QB3/Chemistry Mass Spectrometry Facility, University of California, Berkeley, Berkeley, CA, USA
| | | | | | - Eric G Pamer
- Duchossois Family Institute, University of Chicago, Chicago, IL, USA
- Department of Microbiology, University of Chicago, Chicago, IL, USA
- Section of Infectious Diseases & Global Health, Department of Medicine, University of Chicago, Chicago, IL, USA
| | - A Murat Eren
- Helmholtz Institute for Functional Marine Biodiversity, Oldenburg, Germany
- Institute for Chemistry and Biology of the Marine Environment, University of Oldenburg, Oldenbug, Germany
| | - Samuel H Light
- Duchossois Family Institute, University of Chicago, Chicago, IL, USA.
- Department of Microbiology, University of Chicago, Chicago, IL, USA.
| |
Collapse
|
23
|
Wang T, Leibrock N, Plugge CM, Smidt H, Zoetendal EG. In vitro interactions between Blautia hydrogenotrophica, Desulfovibrio piger and Methanobrevibacter smithii under hydrogenotrophic conditions. Gut Microbes 2023; 15:2261784. [PMID: 37753963 PMCID: PMC10538451 DOI: 10.1080/19490976.2023.2261784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Accepted: 09/15/2023] [Indexed: 09/28/2023] Open
Abstract
Methanogens, reductive acetogens and sulfate-reducing bacteria play an important role in disposing of hydrogen in gut ecosystems. However, how they interact with each other remains largely unknown. This in vitro study cocultured Blautia hydrogenotrophica (reductive acetogen), Desulfovibrio piger (sulfate reducer) and Methanobrevibacter smithii (methanogen). Results revealed that these three species coexisted and did not compete for hydrogen in the early phase of incubations. Sulfate reduction was not affected by B. hydrogenotrophica and M. smithii. D. piger inhibited the growth of B. hydrogenotrophica and M. smithii after 10 h incubations, and the inhibition on M. smithii was associated with increased sulfide concentration. Remarkably, M. smithii growth lag phase was shortened by coculturing with B. hydrogenotrophica and D. piger. Formate was rapidly used by M. smithii under high acetate concentration. Overall, these findings indicated that the interactions of the hydrogenotrophic microbes are condition-dependent, suggesting their interactions may vary in gut ecosystems.
Collapse
Affiliation(s)
- Taojun Wang
- Laboratory of Microbiology, Wageningen University & Research, Wageningen, The Netherlands
- Department of Animal Sciences, University of Illinois Urbana-Champaign, Urbana, IL, USA
| | - Nils Leibrock
- Laboratory of Microbiology, Wageningen University & Research, Wageningen, The Netherlands
| | - Caroline M. Plugge
- Laboratory of Microbiology, Wageningen University & Research, Wageningen, The Netherlands
- Wetsus European Centre of Excellence for Sustainable Water Technology, Leeuwarden, The Netherlands
| | - Hauke Smidt
- Laboratory of Microbiology, Wageningen University & Research, Wageningen, The Netherlands
| | - Erwin G. Zoetendal
- Laboratory of Microbiology, Wageningen University & Research, Wageningen, The Netherlands
| |
Collapse
|
24
|
Nie S, Ge Y. The link between the gut microbiome, inflammation, and Parkinson's disease. Appl Microbiol Biotechnol 2023; 107:6737-6749. [PMID: 37736791 DOI: 10.1007/s00253-023-12789-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 09/04/2023] [Accepted: 09/11/2023] [Indexed: 09/23/2023]
Abstract
As our society ages, the growing number of people with Parkinson's disease (PD) puts tremendous pressure on our society. Currently, there is no effective treatment for PD, so there is an urgent need to find new treatment options. In recent years, increasing studies have shown a strong link between gut microbes and PD. In this review, recent advances in research on gut microbes in PD patients were summarized. Increased potential pro-inflammatory microbes and decreased potential anti-inflammatory microbes are prominent features of gut microbiota in PD patients. These changes may lead to an increase in pro-inflammatory substances (such as lipopolysaccharide and H2S) and a decrease in anti-inflammatory substances (such as short-chain fatty acids) to promote inflammation in the gut. This gut microbiota-mediated inflammation will lead to pathological α-synuclein accumulation in the gut, and the inflammation and α-synuclein can spread to the brain via the microbiota-gut-brain axis, thereby promoting neuroinflammation, apoptosis of dopaminergic neurons, and ultimately the development of PD. This review also showed that therapies based on gut microbiota may have a bright future for PD. However, more research and new approaches are still needed to clarify the causal relationship between gut microbes and PD and to determine whether therapies based on gut microbiota are effective in PD patients. KEY POINTS: • There is a strong association between gut microbes and PD. • Inflammation mediated by gut microbes may promote the development of PD. • Therapies based on the gut microbiome provide a promising strategy for PD prevention.
Collapse
Affiliation(s)
- Shiqing Nie
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 18 Shuangqing Road, Beijing, 100085, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yuan Ge
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 18 Shuangqing Road, Beijing, 100085, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
25
|
Wielgosz-Grochowska JP, Domanski N, Drywień ME. Influence of Body Composition and Specific Anthropometric Parameters on SIBO Type. Nutrients 2023; 15:4035. [PMID: 37764818 PMCID: PMC10535553 DOI: 10.3390/nu15184035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 09/04/2023] [Accepted: 09/16/2023] [Indexed: 09/29/2023] Open
Abstract
Recent observations have shown that Small Intestinal Bacterial Overgrowth (SIBO)affects the host through various mechanisms. While both weight loss and obesity have been reported in the SIBO population due to alterations in the gut microbiome, very little is known about the influence of SIBO type on body composition. This study aimed to evaluate whether there is a link between the three types of SIBO: methane dominant (M+), hydrogen dominant (H+), and methane-hydrogen dominant (H+/M+) and specific anthropometric parameters. This observational study included 67 participants (W = 53, M = 14) with gastrointestinal symptoms and SIBO confirmed by lactulose hydrogen-methane breath tests (LHMBTs) using the QuinTron device. Participants underwent a body composition assessment by Bioelectrical Impedance Analysis (BIA) using the InBody Analyzer. In the H+/M+ group, body weight (p = 0.010), BMI (p = 0.001), body fat in kg (p = 0.009), body fat in % (p = 0.040), visceral fat (p = 0.002), and mineral bone content (p = 0.049) showed an inverse correlation with hydrogen (H2) gas production. These findings suggest that body weight, BMI, body fat, and mineral bone content may be inversely linked to the production of hydrogen and the risk of hydrogen-methane SIBO.
Collapse
Affiliation(s)
| | - Nicole Domanski
- Faculty of Pharmaceutical Sciences, University of British Columbia, Vancouver, BC V6T 1Z3, Canada;
| | - Małgorzata Ewa Drywień
- Department of Human Nutrition, Institute of Human Nutrition Sciences, Warsaw University of Life Sciences, 02-776 Warsaw, Poland;
| |
Collapse
|
26
|
Meiller L, Sauvinet V, Breyton AE, Ranaivo H, Machon C, Mialon A, Meynier A, Bischoff SC, Walter J, Neyrinck AM, Laville M, Delzenne NM, Vinoy S, Nazare JA. Metabolic signature of 13C-labeled wheat bran consumption related to gut fermentation in humans: a pilot study. Eur J Nutr 2023; 62:2633-2648. [PMID: 37222787 DOI: 10.1007/s00394-023-03161-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 04/18/2023] [Indexed: 05/25/2023]
Abstract
PURPOSE The aim of this pilot study was to analyze concomitantly the kinetics of production of 13C-labeled gut-derived metabolites from 13C-labeled wheat bran in three biological matrices (breath, plasma, stools), in order to assess differential fermentation profiles among subjects. METHODS Six healthy women consumed a controlled breakfast containing 13C-labeled wheat bran biscuits. H2, CH4 and 13CO2, 13CH4 24 h-concentrations in breath were measured, respectively, by gas chromatography (GC) and GC-isotope ratio mass spectrometry (GC-IRMS). Plasma and fecal concentrations of 13C-short-chain fatty acids (linear SCFAs: acetate, propionate, butyrate, valerate; branched SCFAs: isobutyrate, isovalerate) were quantified using GC-combustion-IRMS. Gut microbiota composition was assessed by16S rRNA gene sequencing analysis. RESULTS H2 and CH4 24 h-kinetics distinguished two groups in terms of fermentation-related gas excretion: high-CH4 producers vs low-CH4 producers (fasting concentrations: 45.3 ± 13.6 ppm vs 6.5 ± 3.6 ppm). Expired 13CH4 was enhanced and prolonged in high-CH4 producers compared to low-CH4 producers. The proportion of plasma and stool 13C-butyrate tended to be higher in low-CH4 producers, and inversely for 13C-acetate. Plasma branched SCFAs revealed different kinetics of apparition compared to linear SCFAs. CONCLUSION This pilot study allowed to consider novel procedures for the development of biomarkers revealing dietary fiber-gut microbiota interactions. The non-invasive assessment of exhaled gas following 13C-labeled fibers ingestion enabled to decipher distinct fermentation profiles: high-CH4 producers vs low-CH4 producers. The isotope labeling permits a specific in vivo characterisation of the dietary fiber impact consumption on microbiota metabolite production. CLINICAL TRIAL REGISTRATION The study has been registered under the number NCT03717311 at ClinicalTrials.gov on October 24, 2018.
Collapse
Affiliation(s)
- Laure Meiller
- Centre de Recherche en Nutrition Humaine Rhône-Alpes, Univ-Lyon, INSERM, INRAe, Claude Bernard Lyon1 University, Centre Hospitalier Lyon Sud, Hospices Civils de Lyon, Pierre Bénite, France
| | - Valérie Sauvinet
- Centre de Recherche en Nutrition Humaine Rhône-Alpes, Univ-Lyon, INSERM, INRAe, Claude Bernard Lyon1 University, Centre Hospitalier Lyon Sud, Hospices Civils de Lyon, Pierre Bénite, France
| | - Anne-Esther Breyton
- Centre de Recherche en Nutrition Humaine Rhône-Alpes, Univ-Lyon, INSERM, INRAe, Claude Bernard Lyon1 University, Centre Hospitalier Lyon Sud, Hospices Civils de Lyon, Pierre Bénite, France
- CarMeN Laboratory, INSERM, INRAe, Claude Bernard Lyon1 University, Pierre Bénite, France
| | - Harimalala Ranaivo
- Centre de Recherche en Nutrition Humaine Rhône-Alpes, Univ-Lyon, INSERM, INRAe, Claude Bernard Lyon1 University, Centre Hospitalier Lyon Sud, Hospices Civils de Lyon, Pierre Bénite, France
- CarMeN Laboratory, INSERM, INRAe, Claude Bernard Lyon1 University, Pierre Bénite, France
| | - Christelle Machon
- Service de Biochimie et Biologie Moléculaire, Hospices Civils de Lyon, Pierre Bénite, France
| | - Anne Mialon
- Service de Biochimie et Biologie Moléculaire, Hospices Civils de Lyon, Pierre Bénite, France
| | | | - Stephan C Bischoff
- Institute of Nutritional Medicine, University of Hohenheim, Stuttgart, Germany
| | - Jens Walter
- Department of Medicine, School of Microbiology, APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Audrey M Neyrinck
- Metabolism and Nutrition Research Group, UCLouvain, Brussels, Belgium
| | - Martine Laville
- Centre de Recherche en Nutrition Humaine Rhône-Alpes, Univ-Lyon, INSERM, INRAe, Claude Bernard Lyon1 University, Centre Hospitalier Lyon Sud, Hospices Civils de Lyon, Pierre Bénite, France
- CarMeN Laboratory, INSERM, INRAe, Claude Bernard Lyon1 University, Pierre Bénite, France
- Service d'Endocrinologie Diabète Nutrition, Hospices Civils de Lyon, Pierre Bénite, France
| | | | - Sophie Vinoy
- Nutrition Research, Mondelez International, Saclay, France
| | - Julie-Anne Nazare
- Centre de Recherche en Nutrition Humaine Rhône-Alpes, Univ-Lyon, INSERM, INRAe, Claude Bernard Lyon1 University, Centre Hospitalier Lyon Sud, Hospices Civils de Lyon, Pierre Bénite, France.
- CarMeN Laboratory, INSERM, INRAe, Claude Bernard Lyon1 University, Pierre Bénite, France.
| |
Collapse
|
27
|
Katagiri S, Ohsugi Y, Shiba T, Yoshimi K, Nakagawa K, Nagasawa Y, Uchida A, Liu A, Lin P, Tsukahara Y, Iwata T, Tohara H. Homemade blenderized tube feeding improves gut microbiome communities in children with enteral nutrition. Front Microbiol 2023; 14:1215236. [PMID: 37680532 PMCID: PMC10482415 DOI: 10.3389/fmicb.2023.1215236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Accepted: 08/09/2023] [Indexed: 09/09/2023] Open
Abstract
Enteral nutrition for children is supplied through nasogastric or gastrostomy tubes. Diet not only influences nutritional intake but also interacts with the composition and function of the gut microbiota. Homemade blenderized tube feeding has been administered to children receiving enteral nutrition, in addition to ready-made tube feeding. The purpose of this study was to evaluate the oral/gut microbial communities in children receiving enteral nutrition with or without homemade blenderized tube feeding. Among a total of 30 children, 6 receiving mainly ready-made tube feeding (RTF) and 5 receiving mainly homemade blenderized tube feeding (HBTF) were analyzed in this study. Oral and gut microbiota community profiles were evaluated through 16S rRNA sequencing of saliva and fecal samples. The α-diversity representing the number of observed features, Shannon index, and Chao1 in the gut were significantly increased in HBTF only in the gut microbiome but not in the oral microbiome. In addition, the relative abundances of the phylum Proteobacteria, class Gammaproteobacteria, and genus Escherichia-Shigella were significantly low, whereas that of the genus Ruminococcus was significantly high in the gut of children with HBTF, indicating HBTF altered the gut microbial composition and reducing health risks. Metagenome prediction showed enrichment of carbon fixation pathways in prokaryotes at oral and gut microbiomes in children receiving HBTF. In addition, more complex network structures were observed in the oral cavity and gut in the HBTF group than in the RTF group. In conclusion, HBTF not only provides satisfaction and enjoyment during meals with the family but also alters the gut microbial composition to a healthy state.
Collapse
Affiliation(s)
- Sayaka Katagiri
- Department of Periodontology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Yujin Ohsugi
- Department of Periodontology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Takahiko Shiba
- Department of Periodontology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
- Department of Oral Medicine, Infection, and Immunity, Harvard School of Dental Medicine, Boston, MA, United States
| | - Kanako Yoshimi
- Department of Dysphagia Rehabilitation, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Kazuharu Nakagawa
- Department of Dysphagia Rehabilitation, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Yuki Nagasawa
- Department of Dysphagia Rehabilitation, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Aritoshi Uchida
- Department of Dysphagia Rehabilitation, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Anhao Liu
- Department of Periodontology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Peiya Lin
- Department of Periodontology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Yuta Tsukahara
- Department of Periodontology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Takanori Iwata
- Department of Periodontology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Haruka Tohara
- Department of Dysphagia Rehabilitation, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| |
Collapse
|
28
|
Hu H, Zhu H, Yang H, Yao W, Zheng W. In vitro fermentation properties of magnesium hydride and related modulation effects on broiler cecal microbiome and metabolome. Front Microbiol 2023; 14:1175858. [PMID: 37621394 PMCID: PMC10445219 DOI: 10.3389/fmicb.2023.1175858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 07/24/2023] [Indexed: 08/26/2023] Open
Abstract
Magnesium hydride (MGH), a highly promising hydrogen-producing substance/additive for hydrogen production through its hydrolysis reaction, has the potential to enhance broiler production. However, before incorporating MGH as a hydrogen-producing additive in broiler feed, it is crucial to fully understand its impact on microbiota and metabolites. In vitro fermentation models provide a fast, reproducible, and direct assessment tool for microbiota metabolism and composition. This study aims to investigate the effects of MGH and coated-magnesium hydride (CMG) on fermentation characteristics, as well as the microbiota and metabolome in the culture of in vitro fermentation using cecal inocula from broilers. After 48 h of incubation, it was observed that the presence of MGH had a significant impact on various factors. Specifically, the content of N-NH3 decreased, while the total hydrogen gas and total SCFAs increased. Furthermore, the presence of MGH promoted the abundance of SCFA-producing bacteria such as Ruminococcus, Blautia, Coprobacillus, and Dysgonomonas. On the other hand, the presence of CMG led to an increase in the concentration of lactic acid, acetic acid, and valeric acid. Additionally, CMG affected the diversity of microbiota in the culture, resulting in an enrichment of the relative abundance of Firmicutes, as well as genera of Lactobacillus, Coprococcus, and Eubacterium. Conversely, the relative abundance of the phylum Proteobacteria and pathogenic bacteria Shigella decreased. Metabolome analysis revealed that MGH and CMG treatment caused significant changes in 21 co-regulated metabolites, primarily associated with lipid, amino acid, benzenoids, and organooxygen compounds. Importantly, joint correlation analysis revealed that MGH or CMG treatments had a direct impact on the microbiota, which in turn indirectly influenced metabolites in the culture. In summary, the results of this study suggested that both MGH and coated-MGH have similar yet distinct positive effects on the microbiota and metabolites of the broiler cecal in an in vitro fermentation model.
Collapse
Affiliation(s)
- Heng Hu
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - He Zhu
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Haiyan Yang
- Center of Hydrogen Science, Shanghai Jiao Tong University, Shanghai, China
| | - Wen Yao
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu, China
- Key Lab of Animal Physiology and Biochemistry, Ministry of Agriculture, Nanjing, Jiangsu, China
| | - Weijiang Zheng
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu, China
| |
Collapse
|
29
|
Weiss AS, Niedermeier LS, von Strempel A, Burrichter AG, Ring D, Meng C, Kleigrewe K, Lincetto C, Hübner J, Stecher B. Nutritional and host environments determine community ecology and keystone species in a synthetic gut bacterial community. Nat Commun 2023; 14:4780. [PMID: 37553336 PMCID: PMC10409746 DOI: 10.1038/s41467-023-40372-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 07/24/2023] [Indexed: 08/10/2023] Open
Abstract
A challenging task to understand health and disease-related microbiome signatures is to move beyond descriptive community-level profiling towards disentangling microbial interaction networks. Using a synthetic gut bacterial community, we aimed to study the role of individual members in community assembly, identify putative keystone species and test their influence across different environments. Single-species dropout experiments reveal that bacterial strain relationships strongly vary not only in different regions of the murine gut, but also across several standard culture media. Mechanisms involved in environment-dependent keystone functions in vitro include exclusive access to polysaccharides as well as bacteriocin production. Further, Bacteroides caecimuris and Blautia coccoides are found to play keystone roles in gnotobiotic mice by impacting community composition, the metabolic landscape and inflammatory responses. In summary, the presented study highlights the strong interdependency between bacterial community ecology and the biotic and abiotic environment. These results question the concept of universally valid keystone species in the gastrointestinal ecosystem and underline the context-dependency of both, keystone functions and bacterial interaction networks.
Collapse
Affiliation(s)
- Anna S Weiss
- Max von Pettenkofer Institute of Hygiene and Medical Microbiology, Faculty of Medicine, LMU Munich, Munich, Germany
| | - Lisa S Niedermeier
- Max von Pettenkofer Institute of Hygiene and Medical Microbiology, Faculty of Medicine, LMU Munich, Munich, Germany
| | - Alexandra von Strempel
- Max von Pettenkofer Institute of Hygiene and Medical Microbiology, Faculty of Medicine, LMU Munich, Munich, Germany
| | - Anna G Burrichter
- Max von Pettenkofer Institute of Hygiene and Medical Microbiology, Faculty of Medicine, LMU Munich, Munich, Germany
| | - Diana Ring
- Max von Pettenkofer Institute of Hygiene and Medical Microbiology, Faculty of Medicine, LMU Munich, Munich, Germany
| | - Chen Meng
- Bavarian Center for Biomolecular Mass Spectrometry, TUM School of Life Sciences, Technical University of Munich, Freising, Germany
| | - Karin Kleigrewe
- Bavarian Center for Biomolecular Mass Spectrometry, TUM School of Life Sciences, Technical University of Munich, Freising, Germany
| | - Chiara Lincetto
- Division of Paediatric Infectious Diseases, Dr. von Hauner Children's Hospital, Ludwig Maximilians University, Munich, Germany
| | - Johannes Hübner
- Division of Paediatric Infectious Diseases, Dr. von Hauner Children's Hospital, Ludwig Maximilians University, Munich, Germany
| | - Bärbel Stecher
- Max von Pettenkofer Institute of Hygiene and Medical Microbiology, Faculty of Medicine, LMU Munich, Munich, Germany.
- German Center for Infection Research (DZIF), partner site LMU Munich, Munich, Germany.
| |
Collapse
|
30
|
Khan MT, Dwibedi C, Sundh D, Pradhan M, Kraft JD, Caesar R, Tremaroli V, Lorentzon M, Bäckhed F. Synergy and oxygen adaptation for development of next-generation probiotics. Nature 2023; 620:381-385. [PMID: 37532933 PMCID: PMC10412450 DOI: 10.1038/s41586-023-06378-w] [Citation(s) in RCA: 67] [Impact Index Per Article: 33.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 06/27/2023] [Indexed: 08/04/2023]
Abstract
The human gut microbiota has gained interest as an environmental factor that may contribute to health or disease1. The development of next-generation probiotics is a promising strategy to modulate the gut microbiota and improve human health; however, several key candidate next-generation probiotics are strictly anaerobic2 and may require synergy with other bacteria for optimal growth. Faecalibacterium prausnitzii is a highly prevalent and abundant human gut bacterium associated with human health, but it has not yet been developed into probiotic formulations2. Here we describe the co-isolation of F. prausnitzii and Desulfovibrio piger, a sulfate-reducing bacterium, and their cross-feeding for growth and butyrate production. To produce a next-generation probiotic formulation, we adapted F. prausnitzii to tolerate oxygen exposure, and, in proof-of-concept studies, we demonstrate that the symbiotic product is tolerated by mice and humans (ClinicalTrials.gov identifier: NCT03728868 ) and is detected in the human gut in a subset of study participants. Our study describes a technology for the production of next-generation probiotics based on the adaptation of strictly anaerobic bacteria to tolerate oxygen exposures without a reduction in potential beneficial properties. Our technology may be used for the development of other strictly anaerobic strains as next-generation probiotics.
Collapse
Affiliation(s)
- Muhammad Tanweer Khan
- Wallenberg Laboratory, Department of Molecular and Clinical Medicine, Institute of Medicine, University of Gothenburg, Gothenburg, Sweden
- Metabogen, Mölndal, Sweden
| | - Chinmay Dwibedi
- Wallenberg Laboratory, Department of Molecular and Clinical Medicine, Institute of Medicine, University of Gothenburg, Gothenburg, Sweden
- Institute of Neuroscience and Physiology, University of Gothenburg, Gothenburg, Sweden
| | - Daniel Sundh
- Sahlgrenska Osteoporosis Centre, Department of Internal Medicine and Clinical Nutrition, Institute of Medicine, University of Gothenburg, Gothenburg, Sweden
| | - Meenakshi Pradhan
- Wallenberg Laboratory, Department of Molecular and Clinical Medicine, Institute of Medicine, University of Gothenburg, Gothenburg, Sweden
| | - Jamie D Kraft
- Wallenberg Laboratory, Department of Molecular and Clinical Medicine, Institute of Medicine, University of Gothenburg, Gothenburg, Sweden
| | - Robert Caesar
- Wallenberg Laboratory, Department of Molecular and Clinical Medicine, Institute of Medicine, University of Gothenburg, Gothenburg, Sweden
| | - Valentina Tremaroli
- Wallenberg Laboratory, Department of Molecular and Clinical Medicine, Institute of Medicine, University of Gothenburg, Gothenburg, Sweden
| | - Mattias Lorentzon
- Sahlgrenska Osteoporosis Centre, Department of Internal Medicine and Clinical Nutrition, Institute of Medicine, University of Gothenburg, Gothenburg, Sweden
- Region Västra Götaland, Geriatric Medicine Clinic, Sahlgrenska University Hospital Mölndal, Mölndal, Sweden
- Mary MacKillop Institute for Health Research, Australian Catholic University, Melbourne, Victoria, Australia
| | - Fredrik Bäckhed
- Wallenberg Laboratory, Department of Molecular and Clinical Medicine, Institute of Medicine, University of Gothenburg, Gothenburg, Sweden.
- Department of Clinical Physiology, Sahlgrenska University Hospital, Gothenburg, Sweden.
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
31
|
Campbell A, Gdanetz K, Schmidt AW, Schmidt TM. H 2 generated by fermentation in the human gut microbiome influences metabolism and competitive fitness of gut butyrate producers. MICROBIOME 2023; 11:133. [PMID: 37322527 PMCID: PMC10268494 DOI: 10.1186/s40168-023-01565-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 05/03/2023] [Indexed: 06/17/2023]
Abstract
BACKGROUND Hydrogen gas (H2) is a common product of carbohydrate fermentation in the human gut microbiome and its accumulation can modulate fermentation. Concentrations of colonic H2 vary between individuals, raising the possibility that H2 concentration may be an important factor differentiating individual microbiomes and their metabolites. Butyrate-producing bacteria (butyrogens) in the human gut usually produce some combination of butyrate, lactate, formate, acetate, and H2 in branched fermentation pathways to manage reducing power generated during the oxidation of glucose to acetate and carbon dioxide. We predicted that a high concentration of intestinal H2 would favor the production of butyrate, lactate, and formate by the butyrogens at the expense of acetate, H2, and CO2. Regulation of butyrate production in the human gut is of particular interest due to its role as a mediator of colonic health through anti-inflammatory and anti-carcinogenic properties. RESULTS For butyrogens that contained a hydrogenase, growth under a high H2 atmosphere or in the presence of the hydrogenase inhibitor CO stimulated production of organic fermentation products that accommodate reducing power generated during glycolysis, specifically butyrate, lactate, and formate. Also as expected, production of fermentation products in cultures of Faecalibacterium prausnitzii strain A2-165, which does not contain a hydrogenase, was unaffected by H2 or CO. In a synthetic gut microbial community, addition of the H2-consuming human gut methanogen Methanobrevibacter smithii decreased butyrate production alongside H2 concentration. Consistent with this observation, M. smithii metabolic activity in a large human cohort was associated with decreased fecal butyrate, but only during consumption of a resistant starch dietary supplement, suggesting the effect may be most prominent when H2 production in the gut is especially high. Addition of M. smithii to the synthetic communities also facilitated the growth of E. rectale, resulting in decreased relative competitive fitness of F. prausnitzii. CONCLUSIONS H2 is a regulator of fermentation in the human gut microbiome. In particular, high H2 concentration stimulates production of the anti-inflammatory metabolite butyrate. By consuming H2, gut methanogenesis can decrease butyrate production. These shifts in butyrate production may also impact the competitive fitness of butyrate producers in the gut microbiome. Video Abstract.
Collapse
Affiliation(s)
- Austin Campbell
- Department of Microbiology and Immunology, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Kristi Gdanetz
- Department of Plant, Soil, and Microbial Sciences, Michigan State University, East Lansing, MI, 48824, USA
| | - Alexander W Schmidt
- Department of Internal Medicine, Division of Infectious Diseases, University of Michigan, MI, 48109, Ann Arbor, USA
| | - Thomas M Schmidt
- Department of Microbiology and Immunology, University of Michigan, Ann Arbor, MI, 48109, USA.
- Department of Ecology & Evolutionary Biology, University of Michigan, MI, 48109, Ann Arbor, USA.
- Department of Internal Medicine, Division of Infectious Diseases, University of Michigan, MI, 48109, Ann Arbor, USA.
| |
Collapse
|
32
|
García Mendez D, Sanabria J, Wist J, Holmes E. Effect of Operational Parameters on the Cultivation of the Gut Microbiome in Continuous Bioreactors Inoculated with Feces: A Systematic Review. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:6213-6225. [PMID: 37070710 PMCID: PMC10143624 DOI: 10.1021/acs.jafc.2c08146] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Revised: 01/27/2023] [Accepted: 01/27/2023] [Indexed: 05/03/2023]
Abstract
Since the early 1980s, multiple researchers have contributed to the development of in vitro models of the human gastrointestinal system for the mechanistic interrogation of the gut microbiome ecology. Using a bioreactor for simulating all the features and conditions of the gastrointestinal system is a massive challenge. Some conditions, such as temperature and pH, are readily controlled, but a more challenging feature to simulate is that both may vary in different regions of the gastrointestinal tract. Promising solutions have been developed for simulating other functionalities, such as dialysis capabilities, peristaltic movements, and biofilm growth. This research field is under constant development, and further efforts are needed to drive these models closer to in vivo conditions, thereby increasing their usefulness for studying the gut microbiome impact on human health. Therefore, understanding the influence of key operational parameters is fundamental for the refinement of the current bioreactors and for guiding the development of more complex models. In this review, we performed a systematic search for operational parameters in 229 papers that used continuous bioreactors seeded with human feces. Despite the reporting of operational parameters for the various bioreactor models being variable, as a result of a lack of standardization, the impact of specific operational parameters on gut microbial ecology is discussed, highlighting the advantages and limitations of the current bioreactor systems.
Collapse
Affiliation(s)
- David
Felipe García Mendez
- Australian
National Phenome Centre and Computational and Systems Medicine, Health
Futures Institute, Murdoch University, Harry Perkins Building, Perth, Australia WA6150
| | - Janeth Sanabria
- Australian
National Phenome Centre and Computational and Systems Medicine, Health
Futures Institute, Murdoch University, Harry Perkins Building, Perth, Australia WA6150
- Environmental
Microbiology and Biotechnology Laboratory, Engineering School of Environmental
& Natural Resources, Engineering Faculty, Universidad del Valle—Sede Meléndez, Cali, Colombia 76001
| | - Julien Wist
- Australian
National Phenome Centre and Computational and Systems Medicine, Health
Futures Institute, Murdoch University, Harry Perkins Building, Perth, Australia WA6150
- Chemistry
Department, Universidad del Valle, 76001, Cali, Colombia
| | - Elaine Holmes
- Australian
National Phenome Centre and Computational and Systems Medicine, Health
Futures Institute, Murdoch University, Harry Perkins Building, Perth, Australia WA6150
| |
Collapse
|
33
|
Ramires T, Wilson R, Padilha da Silva W, Bowman JP. Identification of pH-specific protein expression responses by Campylobacter jejuni strain NCTC 11168. Res Microbiol 2023:104061. [PMID: 37055003 DOI: 10.1016/j.resmic.2023.104061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 03/21/2023] [Accepted: 04/06/2023] [Indexed: 04/15/2023]
Abstract
In this study a data dependent acquisition label-free based proteomics approach was used to identify pH-dependent proteins that respond in a growth phase independent manner in C. jejuni reference strain NCTC 11168. NCTC 11168 was grown within its pH physiological normal growth range (pH 5.8, 7.0 and 8.0, μ = ∼0.5 h-1) and exposed to pH 4.0 shock for 2 hours. It was discovered that gluconate 2-dehydrogenase GdhAB, NssR-regulated globins Cgb and Ctb, cupin domain protein Cj0761, cytochrome c protein CccC (Cj0037c), and phosphate-binding transporter protein PstB all show acidic pH dependent abundance increases but are not activated by sub-lethal acid shock. Glutamate synthase (GLtBD) and the MfrABC and NapAGL respiratory complexes were induced in cells grown at pH 8.0. The response to pH stress by C. jejuni is to bolster microaerobic respiration and at pH 8.0 this is assisted by accumulation of glutamate the conversion of which could bolster fumarate respiration. The pH dependent proteins linked to growth in C. jejuni NCTC 11168 aids cellular energy conservation maximising growth rate and thus competitiveness and fitness.
Collapse
Affiliation(s)
- Tassiana Ramires
- Departamento de Ciência e Tecnologia Agroindustrial, Universidade Federal de Pelotas, Pelotas, RS, Brazil
| | - Richard Wilson
- Central Science Laboratory, University of Tasmania, Hobart, Tasmania, Australia
| | - Wladimir Padilha da Silva
- Departamento de Ciência e Tecnologia Agroindustrial, Universidade Federal de Pelotas, Pelotas, RS, Brazil
| | - John P Bowman
- Tasmanian Institute of Agriculture, University of Tasmania, Hobart, Tasmania, Australia.
| |
Collapse
|
34
|
Cisek AA, Dolka B, Bąk I, Cukrowska B. Microorganisms Involved in Hydrogen Sink in the Gastrointestinal Tract of Chickens. Int J Mol Sci 2023; 24:ijms24076674. [PMID: 37047647 PMCID: PMC10095559 DOI: 10.3390/ijms24076674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 03/17/2023] [Accepted: 03/31/2023] [Indexed: 04/14/2023] Open
Abstract
Hydrogen sink is a beneficial process, which has never been properly examined in chickens. Therefore, the aim of this study was to assess the quantity and quality of microbiota involved in hydrogen uptake with the use of real-time PCR and metagenome sequencing. Analyses were carried out in 50 free-range chickens, 50 commercial broilers, and 54 experimental chickens isolated from external factors. The median values of acetogens, methanogens, sulfate-reducing bacteria (SRB), and [NiFe]-hydrogenase utilizers measured in the cecum were approx. 7.6, 0, 0, and 3.2 log10/gram of wet weight, respectively. For the excreta samples, these values were 5.9, 4.8, 4, and 3 log10/gram of wet weight, respectively. Our results showed that the acetogens were dominant over the other tested groups of hydrogen consumers. The quantities of methanogens, SRB, and the [NiFe]-hydrogenase utilizers were dependent on the overall rearing conditions, being the result of diet, environment, agrotechnical measures, and other factors combined. By sequencing of the 16S rRNA gene, archaea of the genus Methanomassiliicoccus (Candidatus Methanomassiliicoccus) were discovered in chickens for the first time. This study provides some indication that in chickens, acetogenesis may be the main metabolic pathway responsible for hydrogen sink.
Collapse
Affiliation(s)
- Agata Anna Cisek
- Department of Pathology, The Children's Memorial Health Institute, Av. Dzieci Polskich 20, 04-730 Warsaw, Poland
| | - Beata Dolka
- Department of Pathology and Veterinary Diagnostics, Institute of Veterinary Medicine, Warsaw University of Life Sciences, St. Ciszewskiego 8, 02-786 Warsaw, Poland
| | - Iwona Bąk
- Department of Preclinical Sciences, Institute of Veterinary Medicine, Warsaw University of Life Sciences, St. Ciszewskiego 8, 02-786 Warsaw, Poland
| | - Bożena Cukrowska
- Department of Pathology, The Children's Memorial Health Institute, Av. Dzieci Polskich 20, 04-730 Warsaw, Poland
| |
Collapse
|
35
|
Kim JE, Tun HM, Bennett DC, Leung FC, Cheng KM. Microbial diversity and metabolic function in duodenum, jejunum and ileum of emu (Dromaius novaehollandiae). Sci Rep 2023; 13:4488. [PMID: 36934111 PMCID: PMC10024708 DOI: 10.1038/s41598-023-31684-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 03/15/2023] [Indexed: 03/20/2023] Open
Abstract
Emus (Dromaius novaehollandiae), a large flightless omnivorous ratite, are farmed for their fat and meat. Emu fat can be rendered into oil for therapeutic and cosmetic use. They are capable of gaining a significant portion of its daily energy requirement from the digestion of plant fibre. Despite of its large body size and low metabolic rate, emus have a relatively simple gastroinstetinal (GI) tract with a short mean digesta retention time. However, little is known about the GI microbial diversity of emus. The objective of this study was to characterize the intraluminal intestinal bacterial community in the different segments of small intestine (duodenum, jejunum, and ileum) using pyrotag sequencing and compare that with the ceca. Gut content samples were collected from each of four adult emus (2 males, 2 females; 5-6 years old) that were free ranged but supplemented with a barley-alfalfa-canola based diet. We amplified the V3-V5 region of 16S rRNA gene to identify the bacterial community using Roche 454 Junior system. After quality trimming, a total of 165,585 sequence reads were obtained from different segments of the small intestine (SI). A total of 701 operational taxonomic units (OTUs) were identified in the different segments of small intestine. Firmicutes (14-99%) and Proteobacteria (0.5-76%) were the most predominant bacterial phyla in the small intestine. Based on species richness estimation (Chao1 index), the average number of estimated OTUs in the small intestinal compartments were 148 in Duodenum, 167 in Jejunum, and 85 in Ileum, respectively. Low number of core OTUs identified in each compartment of small intestine across individual birds (Duodenum: 13 OTUs, Jejunum: 2 OTUs, Ileum: 14 OTUs) indicated unique bacterial community in each bird. Moreover, only 2 OTUs (Escherichia and Sinobacteraceae) were identified as core bacteria along the whole small intestine. PICRUSt analysis has indicated that the detoxification of plant material and environmental chemicals seem to be performed by SI microbiota, especially those in the jejunum. The emu cecal microbiome has more genes than SI segments involving in protective or immune response to enteric pathogens. Microbial digestion and fermentation is mostly in the jejunum and ceca. This is the first study to characterize the microbiota of different compartments of the emu intestines via gut samples and not fecal samples. Results from this study allow us to further investigate the influence of the seasonal and physiological changes of intestinal microbiota on the nutrition of emus and indirectly influence the fatty acid composition of emu fat.
Collapse
Affiliation(s)
- Ji Eun Kim
- Avian Research Centre, Faculty of Land and Food Systems, University of British Columbia, 2357 Main Mall, Vancouver, BC, V6T 1Z4, Canada
| | - Hein M Tun
- School of Public Health, Li Ka Shing, Faculty of Medicine, HKU-Pasteur Research Pole, University of Hong Kong, Pok Fu Lam, Hong Kong SAR, China
- JC School of Public Health and Primary Care, Faculty of Medicine, Chinese University of Hong Kong, Sha Tin, Hong Kong SAR, China
| | - Darin C Bennett
- Avian Research Centre, Faculty of Land and Food Systems, University of British Columbia, 2357 Main Mall, Vancouver, BC, V6T 1Z4, Canada
- Animal Science Department, California Polytechnic State University, San Luis Obispo, CA, 93407, USA
| | - Frederick C Leung
- School of Biological Sciences, Faculty of Science, University of Hong Kong, Pok Fu Lam, Hong Kong SAR, China
| | - Kimberly M Cheng
- Avian Research Centre, Faculty of Land and Food Systems, University of British Columbia, 2357 Main Mall, Vancouver, BC, V6T 1Z4, Canada.
| |
Collapse
|
36
|
Lim J, Rezaie A. Pros and Cons of Breath Testing for Small Intestinal Bacterial Overgrowth and Intestinal Methanogen Overgrowth. Gastroenterol Hepatol (N Y) 2023; 19:140-146. [PMID: 37706108 PMCID: PMC10496284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/15/2023]
Abstract
Breath testing is the most widely utilized modality to diagnose small intestinal bacterial overgrowth (SIBO) and/or intestinal methanogen overgrowth (IMO). Although SIBO can be diagnosed with small bowel aspiration and breath testing, IMO can only be diagnosed with breath testing in clinical practice. Breath testing can tailor antibiotic therapy and predict response to treatment; however, the test is limited by its indirect method of measurement and concerns about the variability of orocecal transit time. Like any clinical test, breath testing has inherent strengths and limitations, and results must be interpreted with consideration of the clinical context and influencing factors. Recent studies have demonstrated the expanding clinical utility of breath testing in the diagnosis, management, and prediction of treatment response in SIBO and particularly in IMO along with the identification of distinct breath test patterns such as flat-line and high baseline hydrogen. This article reviews the strengths and limitations of breath testing in diagnosing SIBO and IMO as well as its expanding utility in clinical practice.
Collapse
Affiliation(s)
- Jane Lim
- GI Motility Program, Karsh Division of Gastroenterology and Hepatology, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California
| | - Ali Rezaie
- GI Motility Program, Karsh Division of Gastroenterology and Hepatology, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California
| |
Collapse
|
37
|
Abstract
Abnormalities in gut microbiota have been suggested to be involved in the pathophysiology and progression of Parkinson's disease (PD). Gastrointestinal nonmotor symptoms often precede the onset of motor features in PD, suggesting a role for gut dysbiosis in neuroinflammation and α-synuclein (α-syn) aggregation. In the first part of this chapter, we analyze critical features of healthy gut microbiota and factors (environmental and genetic) that modify its composition. In the second part, we focus on the mechanisms underlying the gut dysbiosis and how it alters anatomically and functionally the mucosal barrier, triggering neuroinflammation and subsequently α-syn aggregation. In the third part, we describe the most common alterations in the gut microbiota of PD patients, dividing the gastrointestinal system in higher and lower tract to examine the association between microbiota abnormalities and clinical features. In the final section, we report on current and future therapeutic approaches to gut dysbiosis aiming to either reduce the risk for PD, modify the disease course, or improve the pharmacokinetic profile of dopaminergic therapies. We also suggest that further studies will be needed to clarify the role of the microbiome in PD subtyping and of pharmacological and nonpharmacological interventions in modifying specific microbiota profiles in individualizing disease-modifying treatments in PD.
Collapse
Affiliation(s)
- Salvatore Bonvegna
- Fondazione IRCCS Istituto Neurologico Carlo Besta, Department of Clinical Neurosciences, Parkinson and Movement Disorders Unit, Milan, Italy
| | - Roberto Cilia
- Fondazione IRCCS Istituto Neurologico Carlo Besta, Department of Clinical Neurosciences, Parkinson and Movement Disorders Unit, Milan, Italy.
| |
Collapse
|
38
|
Qusa MH, Abdelwahed KS, Hill RA, El Sayed KA. S-(-)-Oleocanthal Ex Vivo Modulatory Effects on Gut Microbiota. Nutrients 2023; 15:618. [PMID: 36771326 PMCID: PMC9920009 DOI: 10.3390/nu15030618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 01/18/2023] [Accepted: 01/19/2023] [Indexed: 01/27/2023] Open
Abstract
Compelling evidence points to the critical role of bioactive extra-virgin olive oil (EVOO) phenolics and gut microbiota (GM) interplay, but reliable models for studying the consequences thereof remain to be developed. Herein, we report an optimized ex vivo fecal anaerobic fermentation model to study the modulation of GM by the most bioactive EVOO phenolic S-(-)-oleocanthal (OC), and impacts therefrom, focusing on OC biotransformation in the gut. This model will also be applicable for characterization of GM interactions with other EVOO phenolics, and moreover, for a broadly diverse range of bioactive natural products. The fecal fermentation media and time, and mouse type and gender, were the major factors varied and optimized to provide better understanding of GM-OC interplay. A novel resin entrapment technique (solid-phase extraction) served to selectively entrap OC metabolites, degradation products, and any remaining fraction of OC while excluding interfering complex fecal medium constituents. The effects of OC on GM compositions were investigated via shallow shotgun DNA sequencing. Robust metabolome analyses identified GM bacterial species selectively altered (population numbers/fraction) by OC. Finally, the topmost OC-affected gut bacterial species of the studied mice were compared with those known to be extant in humans and distributions of these bacteria at different human body sites. OC intake caused significant quantitative and qualitative changes to mice GM, which was also comparable with human GM. Results clearly highlight the potential positive health outcomes of OC as a prospective nutraceutical.
Collapse
Affiliation(s)
| | | | | | - Khalid A. El Sayed
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana at Monroe, 1800 Bienville Drive, Monroe, LA 71201, USA
| |
Collapse
|
39
|
The Association of the Oral Microbiota with the Effects of Acid Stress Induced by an Increase of Brain Lactate in Schizophrenia Patients. Biomedicines 2023; 11:biomedicines11020240. [PMID: 36830777 PMCID: PMC9953675 DOI: 10.3390/biomedicines11020240] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 12/28/2022] [Accepted: 01/13/2023] [Indexed: 01/19/2023] Open
Abstract
The altered cerebral energy metabolism central to schizophrenia can be linked to lactate accumulation. Lactic acid is produced by gastrointestinal bacteria, among others, and readily crosses the blood-brain barrier, leading to the brain acidity. This study aimed to examine the association of the oral microbiota with the effects of acid stress induced by an increase of brain lactate in schizophrenia patients. The study included patients with a diagnosis of acute polyphasic psychotic disorder meeting criteria for schizophrenia at 3-month follow-up. Results: Individuals with a significantly higher total score on the Positive and Negative Syndrome Scale had statistically significantly lower lactate concentrations compared to those with a lower total score and higher brain lactate. We observed a positive correlation between Actinomyces and lactate levels in the anterior cingulate cap and a negative correlation between bacteria associated with lactate metabolism and some clinical assessment scales. Conclusions: Shifts in the oral microbiota in favour of lactate-utilising bacterial genera may represent a compensatory mechanism in response to increased lactate production in the brain. Assessment of neuronal function mediated by ALA-LAC-dependent NMDA regulatory mechanisms may, thus, support new therapies for schizophrenia, for which acidosis has become a differentiating feature of individuals with schizophrenia endophenotypes.
Collapse
|
40
|
Yao H, Flanagan BM, Williams BA, Mikkelsen D, Gidley MJ. Lactate and buyrate proportions, methanogen growth and gas production during in vitro dietary fibre fermentation all depend on fibre concentration. Food Hydrocoll 2023. [DOI: 10.1016/j.foodhyd.2022.108061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
41
|
Kurt F, Leventhal GE, Spalinger MR, Anthamatten L, Rogalla von Bieberstein P, Menzi C, Reichlin M, Meola M, Rosenthal F, Rogler G, Lacroix C, de Wouters T. Co-cultivation is a powerful approach to produce a robust functionally designed synthetic consortium as a live biotherapeutic product (LBP). Gut Microbes 2023; 15:2177486. [PMID: 36794804 PMCID: PMC9980632 DOI: 10.1080/19490976.2023.2177486] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 01/31/2023] [Indexed: 02/17/2023] Open
Abstract
The success of fecal microbiota transplants (FMT) has provided the necessary proof-of-concept for microbiome therapeutics. Yet, feces-based therapies have many associated risks and uncertainties, and hence defined microbial consortia that modify the microbiome in a targeted manner have emerged as a promising safer alternative to FMT. The development of such live biotherapeutic products has important challenges, including the selection of appropriate strains and the controlled production of the consortia at scale. Here, we report on an ecology- and biotechnology-based approach to microbial consortium construction that overcomes these issues. We selected nine strains that form a consortium to emulate the central metabolic pathways of carbohydrate fermentation in the healthy human gut microbiota. Continuous co-culturing of the bacteria produces a stable and reproducible consortium whose growth and metabolic activity are distinct from an equivalent mix of individually cultured strains. Further, we showed that our function-based consortium is as effective as FMT in counteracting dysbiosis in a dextran sodium sulfate mouse model of acute colitis, while an equivalent mix of strains failed to match FMT. Finally, we showed robustness and general applicability of our approach by designing and producing additional stable consortia of controlled composition. We propose that combining a bottom-up functional design with continuous co-cultivation is a powerful strategy to produce robust functionally designed synthetic consortia for therapeutic use.
Collapse
Affiliation(s)
- Fabienne Kurt
- PharmaBiome AG, Schlieren, Switzerland
- Laboratory of Food Biotechnology, Institute of Food, Nutrition and Health, ETH Zurich, Zurich, Switzerland
| | | | - Marianne Rebecca Spalinger
- Department of Gastroenterology and Hepatology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Laura Anthamatten
- PharmaBiome AG, Schlieren, Switzerland
- Laboratory of Food Biotechnology, Institute of Food, Nutrition and Health, ETH Zurich, Zurich, Switzerland
| | | | | | | | | | | | - Gerhard Rogler
- Department of Gastroenterology and Hepatology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Christophe Lacroix
- Laboratory of Food Biotechnology, Institute of Food, Nutrition and Health, ETH Zurich, Zurich, Switzerland
| | | |
Collapse
|
42
|
Intestinal gas production by the gut microbiota: A review. J Funct Foods 2023. [DOI: 10.1016/j.jff.2022.105367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
|
43
|
Holscher HD, Chumpitazi BP, Dahl WJ, Fahey GC, Liska DJ, Slavin JL, Verbeke K. Perspective: Assessing Tolerance to Nondigestible Carbohydrate Consumption. Adv Nutr 2022; 13:2084-2097. [PMID: 36041178 PMCID: PMC9776727 DOI: 10.1093/advances/nmac091] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 08/02/2022] [Accepted: 08/25/2022] [Indexed: 01/28/2023] Open
Abstract
Human intestinal enzymes do not hydrolyze nondigestible carbohydrates (NDCs), and thus, they are not digested and absorbed in the small intestine. Instead, NDCs are partially to completely fermented by the intestinal microbiota. Select NDCs are associated with health benefits such as laxation and lowering of blood cholesterol and glucose. NDCs provide functional attributes to processed foods, including sugar or fat replacers, thickening agents, and bulking agents. Additionally, NDCs are incorporated into processed foods to increase their fiber content. Although consumption of NDCs can benefit health and contribute functional characteristics to foods, they can cause gastrointestinal symptoms, such as flatulence and bloating. As gastrointestinal symptoms negatively affect consumer well-being and their acceptance of foods containing NDC ingredients, it is crucial to consider tolerance when designing food products and testing their physiological health benefits in clinical trials. This perspective provides recommendations for the approach to assess gastrointestinal tolerance to NDCs, with a focus on study design, population criteria, intervention, comparator, and outcome. Special issues related to studies in children and implications for stakeholders are also discussed. It is recommended that the evaluation of gastrointestinal tolerance to NDCs be conducted in randomized, blinded, controlled crossover studies using standard gastrointestinal questionnaires, with attention to study participant background diets, health status, lifestyle, and medications.
Collapse
Affiliation(s)
- Hannah D Holscher
- Department of Food Science and Human Nutrition, University of Illinois, Urbana, IL, USA
| | - Bruno P Chumpitazi
- Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA; Children's Nutrition Research Center, United States Department of Agriculture, Houston, TX, USA
| | - Wendy J Dahl
- Department of Food Science and Human Nutrition, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, FL, USA
| | - George C Fahey
- Department of Animal Sciences, University of Illinois, Urbana, IL USA
| | | | - Joanne L Slavin
- Department of Food Science and Nutrition, University of Minnesota, Twin Cities, MN USA
| | - Kristin Verbeke
- Translational Research in Gastrointestinal Disorders, KU Leuven, Targid, Leuven, Belgium; and Leuven Food Science and Nutrition Research Centre, Leuven, Belgium
| |
Collapse
|
44
|
Wang T, van Dijk L, Rijnaarts I, Hermes GDA, de Roos NM, Witteman BJM, de Wit NJW, Govers C, Smidt H, Zoetendal EG. Methanogen Levels Are Significantly Associated with Fecal Microbiota Composition and Alpha Diversity in Healthy Adults and Irritable Bowel Syndrome Patients. Microbiol Spectr 2022; 10:e0165322. [PMID: 36321894 PMCID: PMC9769613 DOI: 10.1128/spectrum.01653-22] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 10/14/2022] [Indexed: 11/07/2022] Open
Abstract
Hydrogenotrophic microbes, primarily including the three functional groups methanogens, sulfate-reducing bacteria, and reductive acetogens, use hydrogen as an energy source and play an important role in maintaining the hydrogen balance in gut ecosystems. A distorted hydrogen balance has been associated with irritable bowel syndrome (IBS). However, the role of hydrogenotrophic microbes in overall microbiota composition and function remains largely unknown. This study aims to assess the distribution and stability of hydrogenotrophic functional groups in healthy adults (HAs) and IBS patients and their association with overall microbiota composition and IBS symptoms. A two-time-point study with 4 weeks in between was performed with 27 HAs and 55 IBS patients included. Our observations revealed that methanogens showed a bimodal distribution across samples. A high-level methanogen microbiota was consistently associated with higher alpha diversity, and its composition was significantly different from that of individuals with a low-level methanogen microbiota. In general, these associations were more pronounced in IBS patients than in HAs. The differences in the copy numbers of genes indicative of total bacteria and acetogens between HAs and IBS patients and their correlations with IBS symptom severity, anxiety, depression, and quality of life (QoL) were sampling time dependent. Hydrogenotrophic functional groups did not show negative abundance correlations with each other in HAs and IBS patients. These findings suggest that methanogen levels in the gut have a pronounced association with microbiota alpha diversity and composition, and the interactions between hydrogenotrophic functional groups are complex in gut ecosystems. IMPORTANCE Hydrogenotrophic microbes play an essential role in the disposal of hydrogen and the maintenance of the hydrogen balance in gut ecosystems. Their abundances vary between individuals and have been reported to be associated with human gut disorders such as irritable bowel disease. This study confirms that methanogen levels show a bimodal distribution. Moreover, a high-level methanogen microbiota was associated with higher alpha diversity, and its composition was different from that of individuals with a low-level methanogen microbiota. These associations are more pronounced in IBS patients than in healthy subjects. In addition, associations between hydrogenotrophic microbes and IBS symptom scores vary over time, which argues for the use of longitudinal study designs. Last but not least, this study suggests that the different hydrogenotrophic microbes coexist with each other and do not necessarily compete for hydrogen in the gut. The findings in this study highlight the impact of methanogens on overall microbiota composition and function.
Collapse
Affiliation(s)
- Taojun Wang
- Laboratory of Microbiology, Wageningen University and Research, Wageningen, the Netherlands
| | - Leander van Dijk
- Laboratory of Microbiology, Wageningen University and Research, Wageningen, the Netherlands
| | - Iris Rijnaarts
- Laboratory of Microbiology, Wageningen University and Research, Wageningen, the Netherlands
- Division of Human Nutrition and Health, Wageningen University and Research, Wageningen, the Netherlands
- Wageningen Food and Biobased Research, Wageningen University and Research, Wageningen, the Netherlands
| | - Gerben D. A. Hermes
- Laboratory of Microbiology, Wageningen University and Research, Wageningen, the Netherlands
| | - Nicole M. de Roos
- Division of Human Nutrition and Health, Wageningen University and Research, Wageningen, the Netherlands
| | - Ben J. M. Witteman
- Division of Human Nutrition and Health, Wageningen University and Research, Wageningen, the Netherlands
- Department of Gastroenterology and Hepatology, Hospital Gelderse Vallei, Ede, the Netherlands
| | - Nicole J. W. de Wit
- Wageningen Food and Biobased Research, Wageningen University and Research, Wageningen, the Netherlands
| | - Coen Govers
- Wageningen Food and Biobased Research, Wageningen University and Research, Wageningen, the Netherlands
- Cell Biology and Immunology, Wageningen University and Research, Wageningen, the Netherlands
| | - Hauke Smidt
- Laboratory of Microbiology, Wageningen University and Research, Wageningen, the Netherlands
| | - Erwin G. Zoetendal
- Laboratory of Microbiology, Wageningen University and Research, Wageningen, the Netherlands
| |
Collapse
|
45
|
Interpreting tree ensemble machine learning models with endoR. PLoS Comput Biol 2022; 18:e1010714. [PMID: 36516158 PMCID: PMC9797088 DOI: 10.1371/journal.pcbi.1010714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 12/28/2022] [Accepted: 11/07/2022] [Indexed: 12/15/2022] Open
Abstract
Tree ensemble machine learning models are increasingly used in microbiome science as they are compatible with the compositional, high-dimensional, and sparse structure of sequence-based microbiome data. While such models are often good at predicting phenotypes based on microbiome data, they only yield limited insights into how microbial taxa may be associated. We developed endoR, a method to interpret tree ensemble models. First, endoR simplifies the fitted model into a decision ensemble. Then, it extracts information on the importance of individual features and their pairwise interactions, displaying them as an interpretable network. Both the endoR network and importance scores provide insights into how features, and interactions between them, contribute to the predictive performance of the fitted model. Adjustable regularization and bootstrapping help reduce the complexity and ensure that only essential parts of the model are retained. We assessed endoR on both simulated and real metagenomic data. We found endoR to have comparable accuracy to other common approaches while easing and enhancing model interpretation. Using endoR, we also confirmed published results on gut microbiome differences between cirrhotic and healthy individuals. Finally, we utilized endoR to explore associations between human gut methanogens and microbiome components. Indeed, these hydrogen consumers are expected to interact with fermenting bacteria in a complex syntrophic network. Specifically, we analyzed a global metagenome dataset of 2203 individuals and confirmed the previously reported association between Methanobacteriaceae and Christensenellales. Additionally, we observed that Methanobacteriaceae are associated with a network of hydrogen-producing bacteria. Our method accurately captures how tree ensembles use features and interactions between them to predict a response. As demonstrated by our applications, the resultant visualizations and summary outputs facilitate model interpretation and enable the generation of novel hypotheses about complex systems.
Collapse
|
46
|
Han Q, Bai Y, Zhou C, Dong B, Li Y, Luo N, Chen H, Yu Y. Effect of molecular hydrogen treatment on Sepsis-Associated encephalopathy in mice based on gut microbiota. CNS Neurosci Ther 2022; 29:633-645. [PMID: 36468415 PMCID: PMC9873526 DOI: 10.1111/cns.14043] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 11/14/2022] [Accepted: 11/16/2022] [Indexed: 12/09/2022] Open
Abstract
INTRODUCTION In our experiments, male wild-type mice were randomly divided into four groups: the sham, SAE, SAE + 2% hydrogen gas inhalation (H2 ), and SAE + hydrogen-rich water (HW) groups. The feces of the mice were collected for 16 S rDNA analysis 24 h after the models were established, and the serum and brain tissue of the mice were collected for nontargeted metabolomics analysis. AIM Destruction of the intestinal microbiota is a risk factor for sepsis and subsequent organ dysfunction, and up to 70% of severely ill patients with sepsis exhibit varying degrees of sepsis-associated encephalopathy (SAE). The pathogenesis of SAE remains unclear. We aimed to explore the changes in gut microbiota in SAE and the regulatory mechanism of molecular hydrogen. RESULTS Molecular hydrogen treatment significantly improved the functional outcome of SAE and downregulated inflammatory reactions in both the brain and the gut. In addition, molecular hydrogen treatment improved gut microbiota dysbiosis and partially amended metabolic disorder after SAE. CONCLUSIONS Molecular hydrogen treatment promotes functional outcomes after SAE in mice, which may be attributable to increasing beneficial bacteria, repressing harmful bacteria, and metabolic disorder, and reducing inflammation.
Collapse
Affiliation(s)
- Qingqing Han
- Department of AnaesthesiologyTianjin Medical University General Hospital, Tianjin Research Institute of AnaesthesiologyTianjinChina
| | - Yuanyuan Bai
- Department of AnesthesiologyTianjin Baodi Hospital, Baodi Clinical College of Tianjin Medical UniversityTianjinChina
| | - Chunjing Zhou
- Department of AnaesthesiologyTianjin 4 center hospitalTianjinChina
| | - Beibei Dong
- Department of AnaesthesiologyTianjin Medical University General Hospital, Tianjin Research Institute of AnaesthesiologyTianjinChina
| | - Yingning Li
- Department of AnaesthesiologyTianjin Medical University General Hospital, Tianjin Research Institute of AnaesthesiologyTianjinChina
| | - Ning Luo
- Department of AnaesthesiologyTianjin Medical University General Hospital, Tianjin Research Institute of AnaesthesiologyTianjinChina
| | - Hongguang Chen
- Department of AnaesthesiologyTianjin Medical University General Hospital, Tianjin Research Institute of AnaesthesiologyTianjinChina
| | - Yonghao Yu
- Department of AnaesthesiologyTianjin Medical University General Hospital, Tianjin Research Institute of AnaesthesiologyTianjinChina
| |
Collapse
|
47
|
Methanogens and Hydrogen Sulfide Producing Bacteria Guide Distinct Gut Microbe Profiles and Irritable Bowel Syndrome Subtypes. Am J Gastroenterol 2022; 117:2055-2066. [PMID: 36114762 PMCID: PMC9722381 DOI: 10.14309/ajg.0000000000001997] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 08/16/2022] [Indexed: 01/30/2023]
Abstract
INTRODUCTION Irritable bowel syndrome (IBS) includes diarrhea-predominant (IBS-D) and constipation-predominant (IBS-C) subtypes. We combined breath testing and stool microbiome sequencing to identify potential microbial drivers of IBS subtypes. METHODS IBS-C and IBS-D subjects from 2 randomized controlled trials (NCT03763175 and NCT04557215) were included. Baseline breath carbon dioxide, hydrogen (H 2 ), methane (CH 4 ), and hydrogen sulfide (H 2 S) levels were measured by gas chromatography, and baseline stool microbiome composition was analyzed by 16S rRNA sequencing. Microbial metabolic pathways were analyzed using Kyoto Encyclopedia of Genes and Genomes collection databases. RESULTS IBS-C subjects had higher breath CH 4 that correlated with higher gut microbial diversity and higher relative abundance (RA) of stool methanogens, predominantly Methanobrevibacter , as well as higher absolute abundance of Methanobrevibacter smithii in stool. IBS-D subjects had higher breath H 2 that correlated with lower microbial diversity and higher breath H 2 S that correlated with higher RA of H 2 S-producing bacteria, including Fusobacterium and Desulfovibrio spp. The predominant H 2 producers were different in these distinct microtypes, with higher RA of Ruminococcaceae and Christensenellaceae in IBS-C/CH 4 + (which correlated with Methanobacteriaceae RA) and higher Enterobacteriaceae RA in IBS-D. Finally, microbial metabolic pathway analysis revealed enrichment of Kyoto Encyclopedia of Genes and Genomes modules associated with methanogenesis and biosynthesis of methanogenesis cofactor F420 in IBS-C/CH 4 + subjects, whereas modules associated with H 2 S production, including sulfate reduction pathways, were enriched in IBS-D. DISCUSSION Our findings identify distinct gut microtypes linked to breath gas patterns in IBS-C and IBS-D subjects, driven by methanogens such as M. smithii and H 2 S producers such as Fusobacterium and Desulfovibrio spp, respectively.
Collapse
|
48
|
Emerging insights between gut microbiome dysbiosis and Parkinson's disease: Pathogenic and clinical relevance. Ageing Res Rev 2022; 82:101759. [PMID: 36243356 DOI: 10.1016/j.arr.2022.101759] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 08/28/2022] [Accepted: 10/09/2022] [Indexed: 01/31/2023]
Abstract
Parkinson's disease (PD) is a complicated neurodegenerative disease, of which gastrointestinal disturbance appears prior to motor symptoms. Numerous studies have shed light on the roles of gastrointestinal tract and its neural connection to brain in PD pathology. In the past decades, the fields of microbiology and neuroscience have become ever more entwined. The emergence of gut microbiome has been considered as one of the key regulators of gut-brain function. With the advent of multi-omics sequencing techniques, gut microbiome of PD patients has been shown unique characteristics. The resident gut microbiota can exert considerable effects in PD and there are suggestions of a link between gut microbiome dysbiosis and PD progression. In this review, we summarize the latest progresses of gut microbiome dysbiosis in PD pathogenesis, further highlight the clinical relevance of gut microbiota and its metabolites in both the non-motor and motor symptoms of PD. Furthermore, we draw attention to the complex interplay between gut microbiota and PD drugs, with the purpose of improving drug efficacy and prescription accordingly. Further studies at specific strain level and longitudinal prospective clinical trials using optimized methods are still needed for the development of diagnostic markers and novel therapeutic regimens for PD.
Collapse
|
49
|
Diet-driven microbial ecology underpins associations between cancer immunotherapy outcomes and the gut microbiome. Nat Med 2022; 28:2344-2352. [PMID: 36138151 DOI: 10.1038/s41591-022-01965-2] [Citation(s) in RCA: 118] [Impact Index Per Article: 39.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Accepted: 07/22/2022] [Indexed: 01/14/2023]
Abstract
The gut microbiota shapes the response to immune checkpoint inhibitors (ICIs) in cancer, however dietary and geographic influences have not been well-studied in prospective trials. To address this, we prospectively profiled baseline gut (fecal) microbiota signatures and dietary patterns of 103 trial patients from Australia and the Netherlands treated with neoadjuvant ICIs for high risk resectable metastatic melanoma and performed an integrated analysis with data from 115 patients with melanoma treated with ICIs in the United States. We observed geographically distinct microbial signatures of response and immune-related adverse events (irAEs). Overall, response rates were higher in Ruminococcaceae-dominated microbiomes than in Bacteroidaceae-dominated microbiomes. Poor response was associated with lower fiber and omega 3 fatty acid consumption and elevated levels of C-reactive protein in the peripheral circulation at baseline. Together, these data provide insight into the relevance of native gut microbiota signatures, dietary intake and systemic inflammation in shaping the response to and toxicity from ICIs, prompting the need for further studies in this area.
Collapse
|
50
|
Aalam SMM, Crasta DN, Roy P, Miller AL, Gamb SI, Johnson S, Till LM, Chen J, Kashyap P, Kannan N. Genesis of fecal floatation is causally linked to gut microbial colonization in mice. Sci Rep 2022; 12:18109. [PMID: 36302811 PMCID: PMC9613883 DOI: 10.1038/s41598-022-22626-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Accepted: 10/18/2022] [Indexed: 12/30/2022] Open
Abstract
The origin of fecal floatation phenomenon remains poorly understood. Following our serendipitous discovery of differences in buoyancy of feces from germ-free and conventional mice, we characterized microbial and physical properties of feces from germ-free and gut-colonized (conventional and conventionalized) mice. The gut-colonization associated differences were assessed in feces using DNA, bacterial-PCR, scanning electron microscopy, FACS, thermogravimetry and pycnometry. Based on the differences in buoyancy of feces, we developed levô in fimo test (LIFT) to distinguish sinking feces (sinkers) of germ-free mice from floating feces (floaters) of gut-colonized mice. By simultaneous tracking of microbiota densities and gut colonization kinetics in fecal transplanted mice, we provide first direct evidence of causal relationship between gut microbial colonization and fecal floatation. Rare discordance in LIFT and microbiota density indicated that enrichment of gasogenic gut colonizers may be necessary for fecal floatation. Finally, fecal metagenomics analysis of 'floaters' from conventional and syngeneic fecal transplanted mice identified colonization of > 10 gasogenic bacterial species including highly prevalent B. ovatus, an anaerobic commensal bacteria linked with flatulence and intestinal bowel diseases. The findings reported here will improve our understanding of food microbial biotransformation and gut microbial regulators of fecal floatation in human health and disease.
Collapse
Affiliation(s)
- Syed Mohammed Musheer Aalam
- grid.66875.3a0000 0004 0459 167XDivision of Experimental Pathology, Department of Laboratory Medicine and Pathology, Mayo Clinic, 200 First St SW, Rochester, MN 55905 USA
| | - Daphne Norma Crasta
- grid.66875.3a0000 0004 0459 167XDivision of Experimental Pathology, Department of Laboratory Medicine and Pathology, Mayo Clinic, 200 First St SW, Rochester, MN 55905 USA
| | - Pooja Roy
- grid.66875.3a0000 0004 0459 167XDivision of Experimental Pathology, Department of Laboratory Medicine and Pathology, Mayo Clinic, 200 First St SW, Rochester, MN 55905 USA
| | - A. Lee Miller
- grid.66875.3a0000 0004 0459 167XDepartment of Orthopedic Surgery, Mayo Clinic, Rochester, MN 55905 USA
| | - Scott I. Gamb
- grid.66875.3a0000 0004 0459 167XMicroscopy and Cell Analysis Core, Mayo Clinic, Rochester, MN 55905 USA
| | - Stephen Johnson
- grid.66875.3a0000 0004 0459 167XDivision of Computational Biology, Department of Quantitative Health Sciences, Mayo Clinic, Rochester, MN 55905 USA
| | - Lisa M. Till
- grid.66875.3a0000 0004 0459 167XDepartment of Gastroenterology, Mayo Clinic, Rochester, MN 55905 USA
| | - Jun Chen
- grid.66875.3a0000 0004 0459 167XDivision of Computational Biology, Department of Quantitative Health Sciences, Mayo Clinic, Rochester, MN 55905 USA
| | - Purna Kashyap
- grid.66875.3a0000 0004 0459 167XDepartment of Gastroenterology, Mayo Clinic, Rochester, MN 55905 USA
| | - Nagarajan Kannan
- grid.66875.3a0000 0004 0459 167XDivision of Experimental Pathology, Department of Laboratory Medicine and Pathology, Mayo Clinic, 200 First St SW, Rochester, MN 55905 USA ,grid.66875.3a0000 0004 0459 167XCenter for Regenerative Biotherapeutics, Mayo Clinic, Rochester, MN 55905 USA ,grid.66875.3a0000 0004 0459 167XMayo Clinic Cancer Center, Mayo Clinic, Rochester, MN 55905 USA
| |
Collapse
|