1
|
Kilama J, Dahlen CR, Abbasi M, Shi X, Nagaraja TG, Crouse MS, Cushman RA, Snider AP, McCarthy KL, Caton JS, Amat S. Characterizing the prevalence of Fusobacterium necrophorum subsp. necrophorum, Fusobacterium necrophorum subsp. funduliforme, and Fusobacterium varium in bovine and ovine semen, bovine gut, and vagino-uterine and fetal microbiota using targeted culturing and qPCR. Microbiol Spectr 2025:e0314524. [PMID: 40126218 DOI: 10.1128/spectrum.03145-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Accepted: 01/31/2025] [Indexed: 03/25/2025] Open
Abstract
Fusobacterium necrophorum is an important pathogen associated with several infectious diseases in cattle. However, recent sequencing-based studies reported that F. necrophorum may be positively associated with pregnancy in beef cows and that Fusobacterium is highly abundant in bull seminal microbiota with potential involvement in reproductive health and fertility. Here, we performed a comprehensive screening to (i) determine the prevalence of Fusobacterium necrophorum (subspecies necrophorum [FNN] and funduliforme [FNF]) and Fusobacterium varium (FV) in the reproductive microbiota of cattle and sheep as well as bovine digestive tract ecosystems, and (ii) explore whether these Fusobacterium spp. colonize calf prenatally. For this, we screened 11 different sample types including bovine and ram semen, bovine vaginal and uterine swabs, and bull fecal samples, as well as samples from 180- and 260-day-old calf fetuses and their respective dams using both quantitative PCR (qPCR; 514 samples) and targeted culturing (499 samples). By qPCR, all the targeted Fusobacterium spp. were detected across all sample types with varying prevalence rates and viability. FNF was highly prevalent in the bull semen (66.7%) and maternal ruminal fluids (87.1%), and its viability was confirmed through culturing. All the targeted Fusobacterium spp. were identified in vaginal and uterine swab samples (3.1%-9.4%), caruncles, fetal fluids, rumen, and meconium samples (2.7%-26.3%) by qPCR but were not isolated by culture method. Overall, our results, for the first time, suggest that F. necrophorum is a commensal member of healthy male reproductive microbiota, and that FNF, FNN, and FV are present in bovine vagino-uterine microbiota and calf intestine prenatally.IMPORTANCERecent sequencing-based studies suggest that Fusobacterium, including F. necrophorum, a known primary etiological agent for several important infectious diseases in cattle, may be non-pathogenic members of the reproductive microbiota with pro-fertility effects. However, further information regarding the absolute abundance, viability, and higher taxonomic resolution of the Fusobacterium species and subspecies which cannot be achievable by the amplicon sequencing approach is needed to confirm the commensal and non-pathogenic status of the Fusobacterium spp. in cattle. Here, we performed a comprehensive screening of F. necrophorum subspecies necrophorum, F. necrophorum subspecies funduliforme, and Fusobacterium varium from over 500 samples from 11 different sample types using targeted culturing and qPCR. Overall, our results provide novel insights into the prevalence and viability of Fusobacterium spp. in bovine male and female reproductive tracts and their presence in calf fetuses, which will serve as the basis for further research into understanding the role of Fusobacterium in cattle fertility.
Collapse
Affiliation(s)
- Justine Kilama
- Department of Microbiological Sciences, North Dakota State University, Fargo, North Dakota, USA
| | - Carl R Dahlen
- Department of Animal Sciences, Center for Nutrition and Pregnancy, North Dakota State University, Fargo, North Dakota, USA
| | - Mina Abbasi
- Department of Diagnostic Medicine and Pathobiology, Kansas State University, Manhattan, Kansas, USA
| | - Xiaorong Shi
- Department of Diagnostic Medicine and Pathobiology, Kansas State University, Manhattan, Kansas, USA
| | - T G Nagaraja
- Department of Diagnostic Medicine and Pathobiology, Kansas State University, Manhattan, Kansas, USA
| | - Matthew S Crouse
- USDA, Agriculture Research Service, U.S. Meat Animal Research Center, Clay Center, Nebraska, USA
| | - Robert A Cushman
- USDA, Agriculture Research Service, U.S. Meat Animal Research Center, Clay Center, Nebraska, USA
| | - Alexandria P Snider
- USDA, Agriculture Research Service, U.S. Meat Animal Research Center, Clay Center, Nebraska, USA
| | - Kacie L McCarthy
- Department of Animal Sciences, Institute of Agriculture and Natural Resources, University of Nebraska-Lincoln, Lincoln, Nebraska, USA
| | - Joel S Caton
- Department of Animal Sciences, Center for Nutrition and Pregnancy, North Dakota State University, Fargo, North Dakota, USA
| | - Samat Amat
- Department of Microbiological Sciences, North Dakota State University, Fargo, North Dakota, USA
| |
Collapse
|
2
|
Xu W, Li L, Kang H, Wang M, Liu Y, Wang G, Yu P, Liang J, Liu Z. Amniotic fluid microbiota and metabolism with non-syndromic congenital heart defects: a multi-omics analysis. BMC Pregnancy Childbirth 2025; 25:130. [PMID: 39922995 PMCID: PMC11806881 DOI: 10.1186/s12884-025-07218-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Accepted: 01/22/2025] [Indexed: 02/10/2025] Open
Abstract
BACKGROUND AND AIMS Recent studies have indicated possible links between the microbiota and the fetal heart, while the relevant mechanism is still unknown. This study is aims to investigate whether analyzing the microbiota and metabolic profiles of amniotic fluid collected from pregnant women whose fetuses with or without non-syndromic congenital heart defects (CHDs), during the second and third trimester of pregnancy, could offer valuable insights into CHDs. METHODS AND RESULTS A case-control study was conducted with 17 cases diagnosed with non-syndromic CHDs (CHDs group) and 34 controls without congenital anomalies (control group) at a ratio of 1:2. The 16 S rDNA gene sequencing and metabolomics methods were employed to assess 51 amniotic fluid samples. The amniotic fluid microbiome from the CHDs group exhibited significantly higher Shannon and Simpson indices compared to the control group. At the genus level, 240 bacterial taxa were substantially enriched in the two groups, with 93 of those taxa being highly enriched in the case group. Compared to the control group, the case group exhibited 177 metabolites that were significantly increased and 480 metabolites that were down-regulated. The differential metabolites were primarily enriched in the steroid hormone biosynthesis, bile secretion and ovarian steroidogenesis, according to KEGG analysis. The observed variations in nine metabolites could attributed to fifty-eight distinct bacterial taxa. The nine differential metabolites were mainly associated with pathways involving steroid hormone biosynthesis, bile secretion, glycolysis, tricarboxylic acid (TCA) cycle, NADPH metabolism, and acyl transfer pathways. CONCLUSION The CHDs group has disturbed amniotic fluid microbiota and metabolites, and more research was required to elucidate the mechanism.
Collapse
Affiliation(s)
- Wenli Xu
- National Center for Birth Defect Monitoring, Key Laboratory of Birth Defects and Related Diseases of Women and Children, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China
- National Center for Birth Defects Monitoring, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Lu Li
- National Center for Birth Defect Monitoring, Key Laboratory of Birth Defects and Related Diseases of Women and Children, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Hong Kang
- National Center for Birth Defect Monitoring, Key Laboratory of Birth Defects and Related Diseases of Women and Children, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Meixian Wang
- National Center for Birth Defect Monitoring, Key Laboratory of Birth Defects and Related Diseases of Women and Children, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yanqun Liu
- Department of Obstetrics and Gynecology, Renshou County Maternity and Child Hospital, Meishan, Sichuan, China
| | - Guicun Wang
- Department of Obstetrics and Gynecology, Huize County Maternity and Child Hospital, Qujing, Yunnan, China
| | - Ping Yu
- National Center for Birth Defect Monitoring, Key Laboratory of Birth Defects and Related Diseases of Women and Children, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China
- National Center for Birth Defects Monitoring, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Juan Liang
- National Center for Birth Defect Monitoring, Key Laboratory of Birth Defects and Related Diseases of Women and Children, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China
- National Center for Birth Defects Monitoring, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Zhen Liu
- National Center for Birth Defect Monitoring, Key Laboratory of Birth Defects and Related Diseases of Women and Children, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China.
- National Center for Birth Defects Monitoring, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China.
| |
Collapse
|
3
|
Miyoshi J, Hisamatsu T. Effect of maternal exposure to antibiotics during pregnancy on the neonatal intestinal microbiome and health. Clin J Gastroenterol 2025; 18:1-10. [PMID: 39709577 DOI: 10.1007/s12328-024-02088-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Accepted: 12/12/2024] [Indexed: 12/23/2024]
Abstract
Antibiotics are widely used during pregnancy. Recent epidemiological studies suggest that maternal exposure to antibiotics during pregnancy is associated with increased risks of various diseases in offspring; host-microbiome interactions are considered to be involved in pathogenesis, as antibiotic-induced perturbations (dysbiosis) of the maternal microbiome can be transmitted to offspring. We reviewed the current status of antibiotic usage during pregnancy, transmission of maternal antibiotic-induced dysbiosis to offspring, and several diseases in offspring reported to be associated with maternal antibiotic exposure. Antibiotics must be properly used when necessary. While the adverse effect of maternal antibiotic exposure during pregnancy on the health of offspring has been demonstrated by several studies, more robust clinical evidence is necessary to define the best practice for antibiotic use during pregnancy. Epidemiologic studies have limitations in establishing causal links beyond associations; animal studies provide benefits in examining these links, however, microbiomes, gestation courses, and aging vary between host species. Understanding the underlying mechanisms of epidemiologic findings as well as the healthy microbiome during pregnancy and early life in humans would contribute to developing future microbial interventions for restoring antibiotic-induced dysbiosis during pregnancy.
Collapse
Affiliation(s)
- Jun Miyoshi
- Department of Gastroenterology and Hepatology, Kyorin University School of Medicine, 6-20-2 Shinkawa, Mitaka-shi, Tokyo, 181-8611, Japan.
| | - Tadakazu Hisamatsu
- Department of Gastroenterology and Hepatology, Kyorin University School of Medicine, 6-20-2 Shinkawa, Mitaka-shi, Tokyo, 181-8611, Japan
| |
Collapse
|
4
|
Zhu J, He M, Li S, Lei Y, Xiang X, Guo Z, Wang Q. Shaping oral and intestinal microbiota and the immune system during the first 1,000 days of life. Front Pediatr 2025; 13:1471743. [PMID: 39906673 PMCID: PMC11790674 DOI: 10.3389/fped.2025.1471743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Accepted: 01/10/2025] [Indexed: 02/06/2025] Open
Abstract
The first 1, 000 days of life, from the fetal stage of a woman's pregnancy to 2 years of age after the baby is born, is a critical period for microbial colonization of the body and development of the immune system. The immune system and microbiota exhibit great plasticity at this stage and play a crucial role in subsequent development and future health. Two-way communication and interaction between immune system and microbiota is helpful to maintain human microecological balance and immune homeostasis. Currently, there is a growing interest in the important role of the microbiota in the newborn, and it is believed that the absence or dysbiosis of human commensal microbiota early in life can have lasting health consequences. Thus, this paper summarizes research advances in the establishment of the oral and intestinal microbiome and immune system in early life, emphasizing the substantial impact of microbiota diversity in the prenatal and early postnatal periods, and summarizes that maternal microbes, mode of delivery, feeding practices, antibiotics, probiotics, and the environment shape the oral and intestinal microbiota of infants in the first 1, 000 days of life and their association with the immune system.
Collapse
Affiliation(s)
- Jie Zhu
- Institute of Infection, Immunology and Tumor Microenvironment, Wuchang Hospital Affiliated to Wuhan University of Science and Technology, Medical College, Wuhan University of Science and Technology, Wuhan, China
| | - Mingxin He
- Department of Hematology, Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen, China
| | - Simin Li
- Institute of Infection, Immunology and Tumor Microenvironment, Wuchang Hospital Affiliated to Wuhan University of Science and Technology, Medical College, Wuhan University of Science and Technology, Wuhan, China
| | - Yumeng Lei
- Institute of Infection, Immunology and Tumor Microenvironment, Wuchang Hospital Affiliated to Wuhan University of Science and Technology, Medical College, Wuhan University of Science and Technology, Wuhan, China
| | - Xiaochen Xiang
- Institute of Infection, Immunology and Tumor Microenvironment, Wuchang Hospital Affiliated to Wuhan University of Science and Technology, Medical College, Wuhan University of Science and Technology, Wuhan, China
| | - Zhi Guo
- Department of Hematology, Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen, China
| | - Qiang Wang
- Institute of Infection, Immunology and Tumor Microenvironment, Wuchang Hospital Affiliated to Wuhan University of Science and Technology, Medical College, Wuhan University of Science and Technology, Wuhan, China
| |
Collapse
|
5
|
Li S, Lu T, Lin Z, Zhang Y, Zhou X, Li M, Miao H, Yang Z, Han X. Supplementation with probiotics co-cultivation improves the reproductive performance in a sow-piglet model by mother-infant microbiota transmission and placental mTOR signaling. World J Microbiol Biotechnol 2024; 41:13. [PMID: 39704872 DOI: 10.1007/s11274-024-04222-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Accepted: 12/03/2024] [Indexed: 12/21/2024]
Abstract
Maternal nutritional supplementation has a profound effect on the growth and development of offspring. FAM® is produced by co-cultivation of Lactobacillus acidophilus and Bacillus subtilis and has been demonstrated to potentially alleviate diarrhea, improve growth performance and the intestinal barrier integrity of weaned piglets. This study aimed to explore how maternal FAM improves the reproductive performance through mother-infant microbiota, colostrum and placenta. A total of 40 pregnant sows (Landrace × Large White) on d 85 of gestation with a similar parity were randomly divided into two groups (n = 20): the control group (Con, basal diet) and the FAM group (FAM, basal diet supplemented with 0.2% FAM). The experimental period was from d 85 of gestation to d 21 of lactation. The results revealed that maternal supplementation with FAM significantly decreased the number of weak-born litters and the incidence of diarrhea, as well as increasing birth weight and average weaning weight, accompanied by increased levels of colostrum nutrient composition and immunoglobulins. In addition, FAM modulated the structure of mother-infant microbiota and promoted the vertical transmission of beneficial bacteria, such as Verrucomicrobiota and Akkermansia. Furthermore, FAM contributed to improving the expression of GLU and AA transporters in the placenta, and increasing the activity of the mTOR signaling pathway. Collectively, maternal supplementation with FAM during late pregnancy and lactation could improve reproductive performance through the transmission of beneficial mother-infant microbiota and placental mTOR signaling pathway and promote fetal development.
Collapse
Affiliation(s)
- Suchen Li
- Hainan Institute, College of Animal Science, Zhejiang University, Hangzhou, 310058, China
| | - Tingting Lu
- Hainan Institute, College of Animal Science, Zhejiang University, Hangzhou, 310058, China
| | - Zhixin Lin
- Hainan Institute, College of Animal Science, Zhejiang University, Hangzhou, 310058, China
| | - Yuanyuan Zhang
- Hainan Institute, College of Animal Science, Zhejiang University, Hangzhou, 310058, China
| | - Xinchen Zhou
- Hainan Institute, College of Animal Science, Zhejiang University, Hangzhou, 310058, China
| | - Meng Li
- Hainan Institute, College of Animal Science, Zhejiang University, Hangzhou, 310058, China
| | - Hui Miao
- Hainan Institute, College of Animal Science, Zhejiang University, Hangzhou, 310058, China
| | - Zhiren Yang
- Hainan Institute, College of Animal Science, Zhejiang University, Hangzhou, 310058, China
| | - Xinyan Han
- Hainan Institute, College of Animal Science, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
6
|
Kapoor B, Biswas P, Gulati M, Rani P, Gupta R. Gut microbiome and Alzheimer's disease: What we know and what remains to be explored. Ageing Res Rev 2024; 102:102570. [PMID: 39486524 DOI: 10.1016/j.arr.2024.102570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 10/26/2024] [Accepted: 10/26/2024] [Indexed: 11/04/2024]
Abstract
With advancement in human microbiome research, an increasing number of scientific evidences have endorsed the key role of gut microbiota in the pathogenesis of Alzheimer disease. Microbiome dysbiosis, characterized by altered diversity and composition, as well as rise of pathobionts influence not only various gut disorder but also central nervous system disorders such as AD. On the basis of accumulated evidences of past few years now it is quite clear that the gut microbiota can control the functions of the central nervous system (CNS) through the gut-brain axis, which provides a new prospective into the interactions between the gut and brain. The main focus of this review is on the molecular mechanism of the crosstalk between the gut microbiota and the brain through the gut-brain axis, and on the onset and development of neurological disorders triggered by the dysbiosis of gut microbiota. Due to microbiota dysbiosis the permeability of the gut and blood brain barrier is increased which may mediate or affect AD. Along with this, bacterial population of the gut microbiota can secrete amyloid proteins and lipopolysaccharides in a large quantity which may create a disturbance in the signaling pathways and the formation of proinflammatory cytokines associated with the pathogenesis of AD. These topics are followed by a critical analysis of potential intervention strategies targeting gut microbiota dysbiosis, including the use of probiotics, prebiotics, metabolites, diets and fecal microbiota transplantation. The main purpose of this review includes the summarization and discussion on the recent finding that may explain the role of the gut microbiota in the development of AD. Understanding of these fundamental mechanisms may provide a new insight into the novel therapeutic strategies for AD.
Collapse
Affiliation(s)
- Bhupinder Kapoor
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, India.
| | - Pratim Biswas
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, India
| | - Monica Gulati
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, India; Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, NSW 2007, Australia
| | - Pooja Rani
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, India
| | - Reena Gupta
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, India
| |
Collapse
|
7
|
Ma G, Chen Z, Li Z, Xiao X. Unveiling the neonatal gut microbiota: exploring the influence of delivery mode on early microbial colonization and intervention strategies. Arch Gynecol Obstet 2024; 310:2853-2861. [PMID: 39589476 DOI: 10.1007/s00404-024-07843-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 11/14/2024] [Indexed: 11/27/2024]
Abstract
Recent research has emphasized the critical importance of establishing the neonatal gut microbiota for overall health and immune system development, prompting deeper studies about the early formation of neonatal gut microbiota and its influencing factors. Various factors, including maternal and environmental factors, affect the early formation of neonatal gut microbiota, in which delivery mode has been considered as one of the most crucial influencing factors. In recent years, the increasing trend of cesarean section during childbirth has become a serious challenge for global public health. This review thoroughly analyzes the effects of vaginal delivery and cesarean section on the establishment of neonatal gut microbiota and the potential long-term impacts. In addition, we analyze and discuss interventions such as probiotics, prebiotics, vaginal seeding, fecal microbiota transplantation, and breastfeeding to address the colonization defects of the neonatal gut microbiota caused by cesarean section, aiming to provide theoretical basis for the prevention and treatment of colonization defects and related diseases in infants caused by cesarean section in clinical practice and to provide a theoretical foundation for optimizing the development of neonatal gut microbiota.
Collapse
Affiliation(s)
- Guangyu Ma
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Zhongsheng Chen
- Department of Colorectal Cancer Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Zhe Li
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China.
| | - Xiaomin Xiao
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Jinan University, Guangzhou, China.
| |
Collapse
|
8
|
Heczko PB, Giemza M, Ponikiewska W, Strus M. Importance of Lactobacilli for Human Health. Microorganisms 2024; 12:2382. [PMID: 39770585 PMCID: PMC11676770 DOI: 10.3390/microorganisms12122382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Revised: 11/10/2024] [Accepted: 11/18/2024] [Indexed: 01/11/2025] Open
Abstract
As an extraordinarily diverse group of bacteria, lactobacilli are now classified into several genera, many of which still include "Lactobacillus" in their names. Despite their names, this group of lactic acid bacteria comprises microorganisms that are crucial for human health, especially during the early development of the human microbiota and immune system. The interactions between lactobacilli and components of the mucosal immunity lead to its shaping and development, which is possibly considered a prime mover in the advancement of the human immune system. Although much of the evidence backing the pivotal role of lactobacilli in maintaining human health comes from studies on probiotics aiming to elucidate the mechanisms of their functional activities and studies on mucosal immunity in germ-free mice, it is justifiable to extend observations on the properties of the individual probiotic Lactobacillus that are related to health benefits onto other strains sharing common characteristics of the species. In this review, we will discuss the acquisition, presence, and functions of lactobacilli in different human microbiota throughout their whole life, including those arising in the amnion and their interactions with mucosal and immune cells. Examples of immune system modulation by probiotic lactobacilli include their colonic competition for available nutrients, interference with colonization sites, competition for binding sites on gut epithelial cells, bacteriocin production, reduction of colonic pH, and nonspecific stimulation of the immune system.
Collapse
Affiliation(s)
- Piotr B. Heczko
- Department of Bacteriology, Microbial Ecology and Parasitology, Jagiellonian University Medical College, 31-121 Cracow, Poland;
| | | | | | - Magdalena Strus
- Department of Bacteriology, Microbial Ecology and Parasitology, Jagiellonian University Medical College, 31-121 Cracow, Poland;
| |
Collapse
|
9
|
Druszczynska M, Sadowska B, Kulesza J, Gąsienica-Gliwa N, Kulesza E, Fol M. The Intriguing Connection Between the Gut and Lung Microbiomes. Pathogens 2024; 13:1005. [PMID: 39599558 PMCID: PMC11597816 DOI: 10.3390/pathogens13111005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Revised: 11/07/2024] [Accepted: 11/14/2024] [Indexed: 11/29/2024] Open
Abstract
Recent advances in microbiome research have uncovered a dynamic and complex connection between the gut and lungs, known as the gut-lung axis. This bidirectional communication network plays a critical role in modulating immune responses and maintaining respiratory health. Mediated by immune interactions, metabolic byproducts, and microbial communities in both organs, this axis demonstrates how gut-derived signals, such as metabolites and immune modulators, can reach the lung tissue via systemic circulation, influencing respiratory function and disease susceptibility. To explore the implications of this connection, we conducted a systematic review of studies published between 2001 and 2024 (with as much as nearly 60% covering the period 2020-2024), using keywords such as "gut-lung axis", "microbiome", "respiratory disease", and "immune signaling". Studies were selected based on their relevance to gut-lung communication mechanisms, the impact of dysbiosis, and the role of the gut microbiota in respiratory diseases. This review provides a comprehensive overview of the gut-lung microbiome axis, emphasizing its importance in regulating inflammatory and immune responses linked to respiratory health. Understanding this intricate pathway opens new avenues for microbiota-targeted therapeutic strategies, which could offer promising interventions for respiratory diseases like asthma, chronic obstructive pulmonary disease, and even infections. The insights gained through this research underscore the potential of the gut-lung axis as a novel target for preventative and therapeutic approaches in respiratory medicine, with implications for enhancing both gut and lung health.
Collapse
Affiliation(s)
- Magdalena Druszczynska
- Department of Immunology and Infectious Biology, Faculty of Biology and Environmental Protection, Institute of Microbiology, Biotechnology and Immunology, University of Lodz, 90-237 Lodz, Poland; (B.S.); (N.G.-G.); (M.F.)
| | - Beata Sadowska
- Department of Immunology and Infectious Biology, Faculty of Biology and Environmental Protection, Institute of Microbiology, Biotechnology and Immunology, University of Lodz, 90-237 Lodz, Poland; (B.S.); (N.G.-G.); (M.F.)
| | - Jakub Kulesza
- Department of Internal Diseases and Clinical Pharmacology, Medical University of Lodz, 91-347 Lodz, Poland;
| | - Nikodem Gąsienica-Gliwa
- Department of Immunology and Infectious Biology, Faculty of Biology and Environmental Protection, Institute of Microbiology, Biotechnology and Immunology, University of Lodz, 90-237 Lodz, Poland; (B.S.); (N.G.-G.); (M.F.)
| | - Ewelina Kulesza
- Department of Rheumatology and Internal Diseases, Medical University of Lodz, 90-549 Lodz, Poland;
| | - Marek Fol
- Department of Immunology and Infectious Biology, Faculty of Biology and Environmental Protection, Institute of Microbiology, Biotechnology and Immunology, University of Lodz, 90-237 Lodz, Poland; (B.S.); (N.G.-G.); (M.F.)
| |
Collapse
|
10
|
Zeng Q, Shu H, Pan H, Zhang Y, Fan L, Huang Y, Ling L. Associations of vaginal microbiota with the onset, severity, and type of symptoms of genitourinary syndrome of menopause in women. Front Cell Infect Microbiol 2024; 14:1402389. [PMID: 39380726 PMCID: PMC11458563 DOI: 10.3389/fcimb.2024.1402389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Accepted: 08/26/2024] [Indexed: 10/10/2024] Open
Abstract
Introduction Genitourinary syndrome of menopause (GSM) describes the symptoms and signs resulting from the effect of estrogen deficiency on the female genitourinary tract, including genital, urinary, and sexual symptoms. However, besides estrogen deficiency, little is known about the etiology of GSM. The objective of this study was to investigate the effects of vaginal microbiota dysbiosis on the occurrence and development of GSM in perimenopausal and postmenopausal women. Methods In total, 96 women were enrolled in this cross-sectional study and clinical data were collected. GSM symptoms were divided into three types: genital, urological, and sexual symptoms. Full-length 16S rRNA gene sequencing using the third-generation PacBio sequencing technology was performed to analyze the vaginal microbiome using vaginal swabs of non-GSM and GSM women with different types of GSM symptoms. Live Lactobacillus Capsule for Vaginal Use (LLCVU) treatment was used to verify the effects of Lactobacillus on GSM symptoms. Results We found that 83.58% (56/67) of women experienced GSM symptoms in the perimenopausal and postmenopausal stages. Among these women with GSM, 23.21% (13/56), 23.21% (13/56), and 53.57% (30/56) had one type, two types, and three types of GSM symptoms, respectively. The richness and diversity of vaginal microbiota gradually increased from reproductive to postmenopausal women. There were significant differences in vaginal microbial community among non-GSM women and GSM women with different types of symptoms. Lactobacillus was found to be negatively associated with the onset, severity, and type of GSM while some bacteria, such as Escherichia-shigella, Anaerococcus, Finegoldia, Enterococcus, Peptoniphilus_harei, and Streptococcus, were found to be positively associated with these aspects of GSM, and these bacteria were especially associated with the types of genital and sexual symptoms in GSM women. LLCVU significantly relieved genital symptoms and improved the sexual life of GSM women in shortterm observation. Conclusions The onset, severity, and type of GSM symptoms may be associated with changes in vaginal microbiota in perimenopausal and postmenopausal women. Vaginal microbiota dysbiosis probably contributes to the occurrence and development of GSMsymptoms, especially vaginal and sexual symptoms. Lactobacillus used in the vagina may be a possible option for non-hormonal treatment of GSM women with genital and sexual symptoms. Clinical Trial Registration https://www.chictr.org.cn/indexEN.html, identifier ChiCTR2100044237.
Collapse
Affiliation(s)
- Qianru Zeng
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Han Shu
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Heng Pan
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Yonghong Zhang
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Ling Fan
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yubin Huang
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Li Ling
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
11
|
Miller C, Luu K, Mikami B, Riel J, Qin Y, Khadka V, Lee MJ. Temporal Investigation of the Maternal Origins of Fetal Gut Microbiota. Microorganisms 2024; 12:1865. [PMID: 39338539 PMCID: PMC11434507 DOI: 10.3390/microorganisms12091865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 09/04/2024] [Accepted: 09/06/2024] [Indexed: 09/30/2024] Open
Abstract
In utero colonization or deposition of beneficial microorganisms and their by-products likely occurs through various mechanisms, such as hematogenous spread or ascension from the reproductive tract. With high-throughput sequencing techniques, the identification of microbial components in first-pass neonatal meconium has been achieved. While these components are low-biomass and often not abundant enough to culture, the presence of microbial DNA signatures may promote fetal immune tolerance or epigenetic regulation prior to birth. The aim of this study was to investigate the maternal source of the neonatal first-pass meconium microbiome. Maternal vaginal and anal samples collected from twenty-one maternal-infant dyad pairs were compared via principal component analysis to first-pass neonatal meconium microbial compositions. Results demonstrated the greatest degree of similarity between the maternal gut microbiome in the second and third trimesters and vaginal microbiome samples across pregnancy, suggesting that the maternal gut microbiota may translocate to the fetal gut during pregnancy. This study sheds light on the origin and timing of the potential transfer of maternal microbial species to offspring in utero.
Collapse
Affiliation(s)
- Corrie Miller
- Department of Obstetrics, Gynecology and Women’s Health, Division of Maternal Fetal Medicine, John A. Burns School of Medicine, University of Hawaii at Manoa, Honolulu, HI 96813, USA; (C.M.); (K.L.); (B.M.); (J.R.)
| | - Kayti Luu
- Department of Obstetrics, Gynecology and Women’s Health, Division of Maternal Fetal Medicine, John A. Burns School of Medicine, University of Hawaii at Manoa, Honolulu, HI 96813, USA; (C.M.); (K.L.); (B.M.); (J.R.)
| | - Brandi Mikami
- Department of Obstetrics, Gynecology and Women’s Health, Division of Maternal Fetal Medicine, John A. Burns School of Medicine, University of Hawaii at Manoa, Honolulu, HI 96813, USA; (C.M.); (K.L.); (B.M.); (J.R.)
| | - Jonathan Riel
- Department of Obstetrics, Gynecology and Women’s Health, Division of Maternal Fetal Medicine, John A. Burns School of Medicine, University of Hawaii at Manoa, Honolulu, HI 96813, USA; (C.M.); (K.L.); (B.M.); (J.R.)
| | - Yujia Qin
- Department of Quantitative Health Sciences, John A. Burns School of Medicine, University of Hawaii at Manoa, Honolulu, HI 96813, USA; (Y.Q.); (V.K.)
| | - Vedbar Khadka
- Department of Quantitative Health Sciences, John A. Burns School of Medicine, University of Hawaii at Manoa, Honolulu, HI 96813, USA; (Y.Q.); (V.K.)
| | - Men-Jean Lee
- Department of Obstetrics, Gynecology and Women’s Health, Division of Maternal Fetal Medicine, John A. Burns School of Medicine, University of Hawaii at Manoa, Honolulu, HI 96813, USA; (C.M.); (K.L.); (B.M.); (J.R.)
| |
Collapse
|
12
|
Shi X, Liu Y, Ma T, Jin H, Zhao F, Sun Z. Delivery mode and maternal gestational diabetes are important factors in shaping the neonatal initial gut microbiota. Front Cell Infect Microbiol 2024; 14:1397675. [PMID: 39268487 PMCID: PMC11390658 DOI: 10.3389/fcimb.2024.1397675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 08/06/2024] [Indexed: 09/15/2024] Open
Abstract
Background The infant gut microbiome's establishment is pivotal for health and immune development. Understanding it unveils insights into growth, development, and maternal microbial interactions. Research often emphasizes gut bacteria, neglecting the phageome. Methods To investigate the influence of geographic or maternal factors (mode of delivery, mode of breastfeeding, gestational diabetes mellitus) on the gut microbiota and phages of newborns, we collected fecal samples from 34 pairs of mothers and their infants within 24 hours of delivery from three regions (9 pairs from Enshi, 7 pairs from Hohhot, and 18 pairs from Hulunbuir) using sterile containers. Gut microbiota analysis by Shotgun sequencing was subsequently performed. Results Our results showed that geographic location affects maternal gut microbiology (P < 0.05), while the effect on infant gut microbiology was not significant (P = 0.184). Among the maternal factors, mode of delivery had a significant (P < 0.05) effect on the newborn. Specific bacteria (e.g., Bacteroides, Escherichia spp., Phocaeicola vulgatus, Escherichia coli, Staphylococcus hominis, Veillonella spp.), predicted active metabolites, and bacteriophage vOTUs varied with delivery mode. Phocaeicola vulgatus significantly correlated with some metabolites and bacteriophages in the early infant gut (P < 0.05). In the GD group, a strong negative correlation of phage diversity between mother and infants was observed (R = -0.58, P=0.04). Conclusion In conclusion, neonatal early gut microbiome (including bacteria and bacteriophages) colonization is profoundly affected by the mode of delivery, and maternal gestational diabetes mellitus. The key bacteria may interact with bacteriophages to influence the levels of specific metabolites. Our study provides new evidence for the study of the infant microbiome, fills a gap in the analysis of the infant gut microbiota regarding the virome, and emphasizes the importance of maternal health for the infant initial gut virome.
Collapse
Affiliation(s)
- Xuan Shi
- Inner Mongolia Key Laboratory of Dairy Biotechnology and Engineering, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, China
- Key Laboratory of Dairy Processing, Ministry of Agriculture and Rural Affairs, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, China
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, China
- Collaborative Innovation Center of Lactic Acid Bacteria and Fermented Dairy Products, Ministry of Education, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, China
| | - Yanfang Liu
- Inner Mongolia Key Laboratory of Dairy Biotechnology and Engineering, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, China
- Key Laboratory of Dairy Processing, Ministry of Agriculture and Rural Affairs, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, China
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, China
- Collaborative Innovation Center of Lactic Acid Bacteria and Fermented Dairy Products, Ministry of Education, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, China
| | - Teng Ma
- Inner Mongolia Key Laboratory of Dairy Biotechnology and Engineering, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, China
- Key Laboratory of Dairy Processing, Ministry of Agriculture and Rural Affairs, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, China
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, China
- Collaborative Innovation Center of Lactic Acid Bacteria and Fermented Dairy Products, Ministry of Education, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, China
| | - Hao Jin
- Inner Mongolia Key Laboratory of Dairy Biotechnology and Engineering, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, China
- Key Laboratory of Dairy Processing, Ministry of Agriculture and Rural Affairs, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, China
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, China
- Collaborative Innovation Center of Lactic Acid Bacteria and Fermented Dairy Products, Ministry of Education, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, China
| | - Feiyan Zhao
- Inner Mongolia Key Laboratory of Dairy Biotechnology and Engineering, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, China
- Key Laboratory of Dairy Processing, Ministry of Agriculture and Rural Affairs, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, China
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, China
- Collaborative Innovation Center of Lactic Acid Bacteria and Fermented Dairy Products, Ministry of Education, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, China
| | - Zhihong Sun
- Inner Mongolia Key Laboratory of Dairy Biotechnology and Engineering, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, China
- Key Laboratory of Dairy Processing, Ministry of Agriculture and Rural Affairs, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, China
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, China
- Collaborative Innovation Center of Lactic Acid Bacteria and Fermented Dairy Products, Ministry of Education, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, China
| |
Collapse
|
13
|
Bertero A, Banchi P, Del Carro A, Corrò M, Colitti B, Van Soom A, Bertolotti L, Rota A. Meconium microbiota in naturally delivered canine puppies. BMC Vet Res 2024; 20:363. [PMID: 39135043 PMCID: PMC11318152 DOI: 10.1186/s12917-024-04225-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 08/06/2024] [Indexed: 08/16/2024] Open
Abstract
BACKGROUND Microbial colonization during early life has a pivotal impact on the host health, shaping immune and metabolic functions, but little is known about timing and features of this process in dogs. The objectives of this study were to characterize the first step of intestinal microbiota development in naturally delivered canine puppies and to investigate its relationship with the maternal bacterial flora, using traditional culture and molecular analyses. Sixty puppies of two breeds, Appenzeller Cattle Dog (n = 3 dams) and Lagotto Romagnolo (n = 6), housed in the same breeding kennel, were included in the study. Swabs were collected in duplicate (for culture and for molecular analysis) from the dams' vagina and rectum at the end of parturition, from puppies' rectum, before maternal care, and from the environment (floor of the nursery and parturition box). RESULTS 93.3% meconium samples showed bacterial growth, limited to a few colonies in 57.0% of cases. High growth was detected for Enterococcus faecalis, which was the most frequently isolated bacterium. The genus Enterococcus was one of the most represented in the dams' rectum and vagina (88.9% and 55.6%, respectively). The genera Staphylococcus, Enterococcus, Escherichia and Proteus were also often isolated in meconium but were usually present in maternal samples as well, together with ubiquitous bacteria (Acinetobacter, Psychrobacter). In the environmental samples, just a few bacterial species were found, all with low microbial load. Additionally, bacteria of the phyla Proteobacteria, Firmicutes, and Actinobacteria were identified in meconium through molecular analysis, confirming the culture results and the early colonization of the newborn gut. Maternal, meconium and environmental samples had similar alpha diversity, while beta-diversity showed differences among families (i.e. a dam and her litter), and association indexes revealed a significant correlation between family members and between sample origin, suggesting a strong contribution of the maternal flora to the initial seeding of the canine neonatal gut and a strong individual dam imprint. CONCLUSION This study showed that the meconium of vaginally delivered puppies has its own microbiota immediately after birth, and that it is shaped by the dam, which gives a specific imprint to her litter.
Collapse
Affiliation(s)
- Alessia Bertero
- Department of Veterinary Sciences, University of Turin, 10095, Grugliasco (TO), Italy.
| | - Penelope Banchi
- Department of Veterinary Sciences, University of Turin, 10095, Grugliasco (TO), Italy
- Department of Internal Medicine, Reproduction and Population Medicine, Faculty of Veterinary Medicine, Ghent University, 9820, Merelbeke, Belgium
| | - Angela Del Carro
- Department of Veterinary Sciences, University of Turin, 10095, Grugliasco (TO), Italy
| | - Michela Corrò
- Istituto Zooprofilattico Sperimentale delle Venezie, 35020, Legnaro (Padua), Italy
| | - Barbara Colitti
- Department of Veterinary Sciences, University of Turin, 10095, Grugliasco (TO), Italy
| | - Ann Van Soom
- Department of Internal Medicine, Reproduction and Population Medicine, Faculty of Veterinary Medicine, Ghent University, 9820, Merelbeke, Belgium
| | - Luigi Bertolotti
- Department of Veterinary Sciences, University of Turin, 10095, Grugliasco (TO), Italy
| | - Ada Rota
- Department of Veterinary Sciences, University of Turin, 10095, Grugliasco (TO), Italy
| |
Collapse
|
14
|
Sokou R, Moschari E, Palioura AE, Palioura AP, Mpakosi A, Adamakidou T, Vlachou E, Theodoraki M, Iacovidou N, Tsartsalis AN. The Impact of Gestational Diabetes Mellitus (GDM) on the Development and Composition of the Neonatal Gut Microbiota: A Systematic Review. Microorganisms 2024; 12:1564. [PMID: 39203408 PMCID: PMC11356352 DOI: 10.3390/microorganisms12081564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 07/23/2024] [Accepted: 07/29/2024] [Indexed: 09/03/2024] Open
Abstract
Gestational diabetes mellitus (GDM) is an important health issue, as it is connected with adverse effects to the mother as well as the fetus. A factor of essence for the pathology of this disorder is the gut microbiota, which seems to have an impact on the development and course of GDM. The role of the gut microbiota on maternal reproductive health and all the changes that happen during pregnancy as well as during the neonatal period is of high interest. The correct establishment and maturation of the gut microbiota is of high importance for the development of basic biological systems. The aim of this study is to provide a systematic review of the literature on the effect of GDM on the gut microbiota of neonates, as well as possible links to morbidity and mortality of neonates born to mothers with GDM. Systematic research took place in databases including PubMed and Scopus until June 2024. Data that involved demographics, methodology, and changes to the microbiota were derived and divided based on patients with exposure to or with GDM. The research conducted on online databases revealed 316 studies, of which only 16 met all the criteria and were included in this review. Research from the studies showed great heterogeneity and varying findings at the level of changes in α and β diversity and enrichment or depletion in phylum, gene, species, and operational taxonomic units in the neonatal gut microbiota of infants born to mothers with GDM. The ways in which the microbiota of neonates and infants are altered due to GDM remain largely unclear and require further investigation. Future studies are needed to explore and clarify these mechanisms.
Collapse
Affiliation(s)
- Rozeta Sokou
- Neonatal Intensive Care Unit, General Hospital of Nikea “Agios Panteleimon”, 18454 Piraeus, Greece; (E.M.); (A.E.P.); (A.-P.P.); (M.T.)
- Neonatal Department, National and Kapodistrian University of Athens, Aretaieio Hospital, 11528 Athens, Greece;
| | - Eirini Moschari
- Neonatal Intensive Care Unit, General Hospital of Nikea “Agios Panteleimon”, 18454 Piraeus, Greece; (E.M.); (A.E.P.); (A.-P.P.); (M.T.)
| | - Alexia Eleftheria Palioura
- Neonatal Intensive Care Unit, General Hospital of Nikea “Agios Panteleimon”, 18454 Piraeus, Greece; (E.M.); (A.E.P.); (A.-P.P.); (M.T.)
| | - Aikaterini-Pothiti Palioura
- Neonatal Intensive Care Unit, General Hospital of Nikea “Agios Panteleimon”, 18454 Piraeus, Greece; (E.M.); (A.E.P.); (A.-P.P.); (M.T.)
| | - Alexandra Mpakosi
- Department of Microbiology, General Hospital of Nikea “Agios Panteleimon”, 18454 Piraeus, Greece;
| | - Theodoula Adamakidou
- Department of Nursing, School of Health Sciences, University of West Attica, Ag. Spydironos 28, 12243 Athens, Greece; (T.A.); (E.V.)
| | - Eugenia Vlachou
- Department of Nursing, School of Health Sciences, University of West Attica, Ag. Spydironos 28, 12243 Athens, Greece; (T.A.); (E.V.)
| | - Martha Theodoraki
- Neonatal Intensive Care Unit, General Hospital of Nikea “Agios Panteleimon”, 18454 Piraeus, Greece; (E.M.); (A.E.P.); (A.-P.P.); (M.T.)
| | - Nicoletta Iacovidou
- Neonatal Department, National and Kapodistrian University of Athens, Aretaieio Hospital, 11528 Athens, Greece;
| | - Athanasios N. Tsartsalis
- Department of Endocrinology Diabetes and Metabolism, Naval Hospital of Athens, Dinokratous 70, 11521 Athens, Greece;
| |
Collapse
|
15
|
Massier L, Musat N, Stumvoll M, Tremaroli V, Chakaroun R, Kovacs P. Tissue-resident bacteria in metabolic diseases: emerging evidence and challenges. Nat Metab 2024; 6:1209-1224. [PMID: 38898236 DOI: 10.1038/s42255-024-01065-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 05/13/2024] [Indexed: 06/21/2024]
Abstract
Although the impact of the gut microbiome on health and disease is well established, there is controversy regarding the presence of microorganisms such as bacteria and their products in organs and tissues. However, recent contamination-aware findings of tissue-resident microbial signatures provide accumulating evidence in support of bacterial translocation in cardiometabolic disease. The latter provides a distinct paradigm for the link between microbial colonizers of mucosal surfaces and host metabolism. In this Perspective, we re-evaluate the concept of tissue-resident bacteria including their role in metabolic low-grade tissue and systemic inflammation. We examine the limitations and challenges associated with studying low bacterial biomass samples and propose experimental and analytical strategies to overcome these issues. Our Perspective aims to encourage further investigation of the mechanisms linking tissue-resident bacteria to host metabolism and their potentially actionable health implications for prevention and treatment.
Collapse
Affiliation(s)
- Lucas Massier
- Department of Medicine (H7), Karolinska Institutet, Stockholm, Sweden
| | - Niculina Musat
- Aarhus University, Department of Biology, Section for Microbiology, Århus, Denmark
| | - Michael Stumvoll
- Medical Department III - Endocrinology, Nephrology, Rheumatology, University of Leipzig Medical Center, Leipzig, Germany
| | - Valentina Tremaroli
- Wallenberg Laboratory, Department of Molecular and Clinical Medicine, Institute of Medicine, University of Gothenburg, Gothenburg, Sweden
| | - Rima Chakaroun
- Medical Department III - Endocrinology, Nephrology, Rheumatology, University of Leipzig Medical Center, Leipzig, Germany.
- Wallenberg Laboratory, Department of Molecular and Clinical Medicine, Institute of Medicine, University of Gothenburg, Gothenburg, Sweden.
| | - Peter Kovacs
- Medical Department III - Endocrinology, Nephrology, Rheumatology, University of Leipzig Medical Center, Leipzig, Germany.
| |
Collapse
|
16
|
Sun Q, Zhou Q, Ge S, Liu L, Li P, Gu Q. Effects of Maternal Diet on Infant Health: A Review Based on Entero-Mammary Pathway of Intestinal Microbiota. Mol Nutr Food Res 2024; 68:e2400077. [PMID: 39059011 DOI: 10.1002/mnfr.202400077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 04/30/2024] [Indexed: 07/28/2024]
Abstract
SCOPE The microbes in breast milk are critical for the early establishment of infant gut microbiota and have important implications for infant health. Breast milk microbes primarily derive from the migration of maternal intestinal microbiota. This review suggests that the regulation of maternal diet on gut microbiota may be an effective strategy to improve infant health. METHODS AND RESULTS This article reviews the impact of breast milk microbiota on infant development and intestinal health. The close relationship between the microbiota in the maternal gut and breast through the entero-mammary pathway is discussed. Based on the effect of diet on gut microbiota, it is proposed that changing the maternal dietary structure is a new strategy for regulating breast milk microbiota and infant intestinal microbiota, which would have a positive impact on infant health. CONCLUSION Breast milk microbes have beneficial effects on infant development and regulation of the immune system. The mother's gut and breast can undergo certain bacterial migration through the entero-mammary pathway. Research has shown that intervening in a mother's diet during breastfeeding can affect the composition of the mother's gut microbiota, thereby regulating the microbiota of breast milk and infant intestines, and is closely related to infant health.
Collapse
Affiliation(s)
- Qiaoyu Sun
- Key Laboratory for Food Microbial Technology of Zhejiang Province, College of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, 310018, China
| | - Qingqing Zhou
- Key Laboratory for Food Microbial Technology of Zhejiang Province, College of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, 310018, China
| | - Sitong Ge
- Key Laboratory for Food Microbial Technology of Zhejiang Province, College of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, 310018, China
| | - Lingli Liu
- Key Laboratory for Food Microbial Technology of Zhejiang Province, College of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, 310018, China
| | - Ping Li
- Key Laboratory for Food Microbial Technology of Zhejiang Province, College of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, 310018, China
| | - Qing Gu
- Key Laboratory for Food Microbial Technology of Zhejiang Province, College of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, 310018, China
| |
Collapse
|
17
|
Bai S, Xu G, Mo H, Qi T, Fu S, Zhu L, Huang B, Zhang J, Chen H. Investigating into microbiota in the uterine cavity of the unexplained recurrent pregnancy loss patients in early pregnancy. Placenta 2024; 152:1-8. [PMID: 38729066 DOI: 10.1016/j.placenta.2024.05.125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 04/25/2024] [Accepted: 05/06/2024] [Indexed: 05/12/2024]
Abstract
INTRODUCTION The majority of unexplained recurrent pregnancy loss (URPL) cases have been attributed to immune abnormalities. Inappropriate changes in microbiota could lead to immune disorders. However, the specific role of uterine cavity microbiota in URPL remains unclear, and only a limited number of related studies are available for reference. METHODS We utilized double-lumen embryo transfer tubes to collect uterine cavity fluid samples from pregnant women in their first trimester. Subsequently, we conducted 16S rRNA sequencing to analyze the composition and abundance of the microbiota in these samples. RESULTS For this study, we enlisted 10 cases of URPL and 28 cases of induced miscarriages during early pregnancy. Microbial communities were detected in all samples of the URPL group (100 %, n = 10), whereas none were found in the control group (0 %, n = 28). Among the identified microbes, Lactobacillus and Curvibacter were the two most dominant species. The abundance of Curvibacter is correlated with the number of NK cells in peripheral blood (r = -0.759, P = 0.018). DISCUSSION This study revealed that during early pregnancy, Lactobacillus and Curvibacter were the predominant colonizers in the uterine cavity of URPL patients and were associated with URPL. Consequently, alterations in the dominant microbiota may lead to adverse pregnancy outcomes.
Collapse
Affiliation(s)
- Shiyu Bai
- Department of Obstetrics and Gynecology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, Guangdong, China; Center for Reproductive Genetics and Reproductive Medicine, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, Guangdong, China.
| | - Guocai Xu
- Department of Obstetrics and Gynecology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, Guangdong, China; Center for Reproductive Genetics and Reproductive Medicine, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, Guangdong, China.
| | - Hanjie Mo
- Department of Obstetrics and Gynecology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, Guangdong, China; Center for Reproductive Genetics and Reproductive Medicine, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, Guangdong, China.
| | - Tianyuan Qi
- Department of Obstetrics and Gynecology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, Guangdong, China; Center for Reproductive Genetics and Reproductive Medicine, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, Guangdong, China.
| | - Shuai Fu
- Department of Obstetrics and Gynecology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, Guangdong, China.
| | - Liqiong Zhu
- Department of Obstetrics and Gynecology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, Guangdong, China.
| | - Bingqian Huang
- Department of Obstetrics and Gynecology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, Guangdong, China; Center for Reproductive Genetics and Reproductive Medicine, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, Guangdong, China.
| | - Jianping Zhang
- Department of Obstetrics and Gynecology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, Guangdong, China.
| | - Hui Chen
- Department of Obstetrics and Gynecology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, Guangdong, China; Department of Genetics and Cell Biology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510120, Guangdong, China.
| |
Collapse
|
18
|
Kim SY, Youn YA. Gut Dysbiosis in the First-Passed Meconium Microbiomes of Korean Preterm Infants Compared to Full-Term Neonates. Microorganisms 2024; 12:1271. [PMID: 39065040 PMCID: PMC11279035 DOI: 10.3390/microorganisms12071271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 06/14/2024] [Accepted: 06/20/2024] [Indexed: 07/28/2024] Open
Abstract
Since gestational age (GA) is an important factor influencing the presence of specific microbiomes, we aimed to characterize the core microbiomes of preterm infants compared to full-term (FT) infants. This study investigated the differences in microbiota composition between very preterm (VP), moderate-to-late preterm (MLP), and FT neonates by examining the core microbiomes of a large cohort of Korean neonates. Meconium samples from 310 neonates with a GA range of 22-40 weeks were collected, and 16S rRNA analyses were performed; 97 samples were obtained from the FT, 59 from the VP, and 154 from the MLP group. Firmicutes, Bacteroidetes, and Proteobacteria were the phylum-level core microbiomes. Infants born before 37 weeks showed a disruption in the core microbiomes. At the phylum level, the relative abundance of Bacteroidetes was positively (r = 0.177, p = 0.002) correlated with GA, while that of Proteobacteria was negatively (r = -0.116, p = 0.040) correlated with GA. At the genus level, the relative abundances of Bacteroides and Prevotella were positively correlated with GA (r = 0.157, p = 0.006; r = 0.160, p = 0.005). The meconium of preterm infants exhibited significantly lower α-diversities than that of FT infants. β-diversities did not appear to differ between the groups. Overall, these findings underscore the importance of GA in shaping the early gut microbiome.
Collapse
Affiliation(s)
| | - Young-Ah Youn
- Department of Pediatrics, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea;
| |
Collapse
|
19
|
Basak S, Mallick R, Navya Sree B, Duttaroy AK. Placental Epigenome Impacts Fetal Development: Effects of Maternal Nutrients and Gut Microbiota. Nutrients 2024; 16:1860. [PMID: 38931215 PMCID: PMC11206482 DOI: 10.3390/nu16121860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 06/07/2024] [Accepted: 06/11/2024] [Indexed: 06/28/2024] Open
Abstract
Evidence is emerging on the role of maternal diet, gut microbiota, and other lifestyle factors in establishing lifelong health and disease, which are determined by transgenerationally inherited epigenetic modifications. Understanding epigenetic mechanisms may help identify novel biomarkers for gestation-related exposure, burden, or disease risk. Such biomarkers are essential for developing tools for the early detection of risk factors and exposure levels. It is necessary to establish an exposure threshold due to nutrient deficiencies or other environmental factors that can result in clinically relevant epigenetic alterations that modulate disease risks in the fetus. This narrative review summarizes the latest updates on the roles of maternal nutrients (n-3 fatty acids, polyphenols, vitamins) and gut microbiota on the placental epigenome and its impacts on fetal brain development. This review unravels the potential roles of the functional epigenome for targeted intervention to ensure optimal fetal brain development and its performance in later life.
Collapse
Affiliation(s)
- Sanjay Basak
- Molecular Biology Division, ICMR-National Institute of Nutrition, Indian Council of Medical Research, Hyderabad 500007, India; (S.B.); (B.N.S.)
| | - Rahul Mallick
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, 70211 Kuopio, Finland;
| | - Boga Navya Sree
- Molecular Biology Division, ICMR-National Institute of Nutrition, Indian Council of Medical Research, Hyderabad 500007, India; (S.B.); (B.N.S.)
| | - Asim K. Duttaroy
- Department of Nutrition, Institute of Medical Sciences, Faculty of Medicine, University of Oslo, 0317 Oslo, Norway
| |
Collapse
|
20
|
Xiao L, Zuo Z, Zhao F. Microbiome in Female Reproductive Health: Implications for Fertility and Assisted Reproductive Technologies. GENOMICS, PROTEOMICS & BIOINFORMATICS 2024; 22:qzad005. [PMID: 38862423 PMCID: PMC11104452 DOI: 10.1093/gpbjnl/qzad005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 10/16/2023] [Accepted: 10/19/2023] [Indexed: 06/13/2024]
Abstract
The microbiome plays a critical role in the process of conception and the outcomes of pregnancy. Disruptions in microbiome homeostasis in women of reproductive age can lead to various pregnancy complications, which significantly impact maternal and fetal health. Recent studies have associated the microbiome in the female reproductive tract (FRT) with assisted reproductive technology (ART) outcomes, and restoring microbiome balance has been shown to improve fertility in infertile couples. This review provides an overview of the role of the microbiome in female reproductive health, including its implications for pregnancy outcomes and ARTs. Additionally, recent advances in the use of microbial biomarkers as indicators of pregnancy disorders are summarized. A comprehensive understanding of the characteristics of the microbiome before and during pregnancy and its impact on reproductive health will greatly promote maternal and fetal health. Such knowledge can also contribute to the development of ARTs and microbiome-based interventions.
Collapse
Affiliation(s)
- Liwen Xiao
- CAS Key Laboratory of Systems Biology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
- Beijing Institutes of Life Science/Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Zhenqiang Zuo
- Beijing Institutes of Life Science/Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Fangqing Zhao
- CAS Key Laboratory of Systems Biology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
- Beijing Institutes of Life Science/Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
21
|
Buetas E, Jordán-López M, López-Roldán A, D'Auria G, Martínez-Priego L, De Marco G, Carda-Diéguez M, Mira A. Full-length 16S rRNA gene sequencing by PacBio improves taxonomic resolution in human microbiome samples. BMC Genomics 2024; 25:310. [PMID: 38528457 DOI: 10.1186/s12864-024-10213-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 03/11/2024] [Indexed: 03/27/2024] Open
Abstract
BACKGROUND Sequencing variable regions of the 16S rRNA gene (≃300 bp) with Illumina technology is commonly used to study the composition of human microbiota. Unfortunately, short reads are unable to differentiate between highly similar species. Considering that species from the same genus can be associated with health or disease it is important to identify them at the lowest possible taxonomic rank. Third-generation sequencing platforms such as PacBio SMRT, increase read lengths allowing to sequence the whole gene with the maximum taxonomic resolution. Despite its potential, full length 16S rRNA gene sequencing is not widely used yet. The aim of the current study was to compare the sequencing output and taxonomic annotation performance of the two approaches (Illumina short read sequencing and PacBio long read sequencing of 16S rRNA gene) in different human microbiome samples. DNA from saliva, oral biofilms (subgingival plaque) and faeces of 9 volunteers was isolated. Regions V3-V4 and V1-V9 were amplified and sequenced by Illumina Miseq and by PacBio Sequel II sequencers, respectively. RESULTS With both platforms, a similar percentage of reads was assigned to the genus level (94.79% and 95.06% respectively) but with PacBio a higher proportion of reads were further assigned to the species level (55.23% vs 74.14%). Regarding overall bacterial composition, samples clustered by niche and not by sequencing platform. In addition, all genera with > 0.1% abundance were detected in both platforms for all types of samples. Although some genera such as Streptococcus tended to be observed at higher frequency in PacBio than in Illumina (20.14% vs 14.12% in saliva, 10.63% vs 6.59% in subgingival plaque biofilm samples) none of the differences were statistically significant when correcting for multiple testing. CONCLUSIONS The results presented in the current manuscript suggest that samples sequenced using Illumina and PacBio are mostly comparable. Considering that PacBio reads were assigned at the species level with higher accuracy than Illumina, our data support the use of PacBio technology for future microbiome studies, although a higher cost is currently required to obtain an equivalent number of reads per sample.
Collapse
Affiliation(s)
- Elena Buetas
- Genomics & Health Department, FISABIO Foundation, Valencia, Spain
| | - Marta Jordán-López
- Department of Periodontics, Faculty of Medicine and Dentistry, University of Valencia, Valencia, Spain
| | - Andrés López-Roldán
- Department of Periodontics, Faculty of Medicine and Dentistry, University of Valencia, Valencia, Spain
| | - Giuseppe D'Auria
- Sequencing and Bioinformatics Service, Fundació Per Al Foment de La Investigació Sanitària I Biomèdica de La Comunitat Valenciana (FISABIO-Salut Pública), València, Spain
| | - Llucia Martínez-Priego
- Sequencing and Bioinformatics Service, Fundació Per Al Foment de La Investigació Sanitària I Biomèdica de La Comunitat Valenciana (FISABIO-Salut Pública), València, Spain
| | - Griselda De Marco
- Sequencing and Bioinformatics Service, Fundació Per Al Foment de La Investigació Sanitària I Biomèdica de La Comunitat Valenciana (FISABIO-Salut Pública), València, Spain
| | | | - Alex Mira
- Genomics & Health Department, FISABIO Foundation, Valencia, Spain
- CIBER Center for Epidemiology and Public Health, Madrid, Spain
| |
Collapse
|
22
|
Almeida FS, Doria ACOC, Sant’Anna LB. Evaluation of the antimicrobial action of plasma activated water on amniotic membrane. RESEARCH ON BIOMEDICAL ENGINEERING 2024; 40:117-124. [DOI: 10.1007/s42600-023-00334-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 12/15/2023] [Indexed: 01/05/2025]
|
23
|
Caprara GL, von Ameln Lovison O, Martins AF, Bernardi JR, Goldani MZ. Gut microbiota transfer evidence from mother to newborn. Eur J Pediatr 2024; 183:749-757. [PMID: 37987847 DOI: 10.1007/s00431-023-05341-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Revised: 11/10/2023] [Accepted: 11/16/2023] [Indexed: 11/22/2023]
Abstract
Early life microbiota is a risk factor for future diseases. The main purpose of this study was to investigate the transfer of gut microbiota from mother to newborn. A biological sample was collected from the anal mucosa of the pregnant women before delivery and from the newborns between 24 and 48 h after delivery, as it was not possible to collect a meconium sample at that time. The microbiome of the samples was analyzed by sequencing the hypervariable regions V3-V4 of the 16S gene. To determine the likelihood of microbiota transfer from mother to newborn and examine the relationship with the mode of delivery, we utilized Fisher's exact test and odds ratio. A weighted transfer ratio was employed as a comprehensive measure of transfer. A total of 5767 ASVs were identified in newborn samples (n = 30) and 7253 in maternal samples (n = 30). In the analysis of transfer correlated with the mode of delivery, we observed significant ASVs (p < 0.05). Vaginal delivery showed a positive probability of transfer (OR = 2.184 and WTR = 1.852). We found a negative correlation (OR < 1) between the abundance of maternal ASVs and the likelihood of microbiota transfer to the newborn in both delivery modes. The relationship was inversely proportional for both cesarean section (log10 = - 0.2229) and vaginal delivery (log10 = - 0.1083), with statistical significance observed only for cesarean section (p = 0.0083). Conclusion: In our sample, the maternal gut microbiome was found to be associated with the infant gut microbiome, indicating evidence of ASV-specific transfer from the maternal microbiome to newborns. What is Known: • There is a relationship of early-life microbiota composition with future health outcomes. What is New: • This was the first study to evaluate maternal gut microbiota transfer to newborns in Brazil.
Collapse
Affiliation(s)
- Gabriele Luiza Caprara
- Programa de Pós-Graduação em Saúde da Criança e do Adolescente, Faculdade de Medicina, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil.
| | - Otávio von Ameln Lovison
- Laboratório de Pesquisa em Resistência Bacteriana (LABRESIS), Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, Brazil
- Núcleo de Bioinformática (Bioinformatics Core), Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, Brazil
- Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Andreza Francisco Martins
- Laboratório de Pesquisa em Resistência Bacteriana (LABRESIS), Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, Brazil
- Núcleo de Bioinformática (Bioinformatics Core), Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, Brazil
- Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Juliana Rombaldi Bernardi
- Programa de Pós-Graduação em Saúde da Criança e do Adolescente, Faculdade de Medicina, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Marcelo Zubaran Goldani
- Programa de Pós-Graduação em Saúde da Criança e do Adolescente, Faculdade de Medicina, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| |
Collapse
|
24
|
Turunen J, Tejesvi MV, Paalanne N, Pokka T, Amatya SB, Mishra S, Kaisanlahti A, Reunanen J, Tapiainen T. Investigating prenatal and perinatal factors on meconium microbiota: a systematic review and cohort study. Pediatr Res 2024; 95:135-145. [PMID: 37591927 PMCID: PMC10798900 DOI: 10.1038/s41390-023-02783-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 06/30/2023] [Accepted: 07/29/2023] [Indexed: 08/19/2023]
Abstract
BACKGROUND The first-pass meconium has been suggested as a proxy for the fetal gut microbiota because it is formed in utero. This systematic review and cohort study investigated how pre- and perinatal factors influence the composition of the meconium microbiota. METHODS We performed the systematic review using Covidence by searching PubMed, Scopus, and Web of Science databases with the search terms "meconium microbiome" and "meconium microbiota". In the cohort study, we performed 16 S rRNA gene sequencing on 393 meconium samples and analyzed the sequencing data using QIIME2. RESULTS Our systematic review identified 69 studies exploring prenatal factors, immediate perinatal factors, and microbial composition in relation to subsequent health of infants but gave only limited comparative evidence regarding factors related to the composition of the meconium microbiota. The cohort study pointed to a low-biomass microbiota consisting of the phyla Firmicutes, Proteobacteria and Actinobacteriota and the genera Staphylococcus, Escherichia-Shigella and Lactobacillus, and indicated that immediate perinatal factors affected the composition of the meconium microbiota more than did prenatal factors. CONCLUSIONS This finding supports the idea that the meconium microbiota mostly starts developing during delivery. IMPACT It is unclear when the first-pass meconium microbiota develops, and what are the sources of the colonization. In this systematic review, we found 69 studies exploring prenatal factors, immediate perinatal factors, and microbial composition relative to subsequent health of infants, but there was no consensus on the factors affecting the meconium microbiota development. In this cohort study, immediate perinatal factors markedly affected the meconium microbiota development while prenatal factors had little effect on it. As the meconium microbiota composition was influenced by immediate perinatal factors, the present study supports the idea that the initial gut microbiota develops mainly during delivery.
Collapse
Affiliation(s)
- Jenni Turunen
- Research Unit of Clinical Medicine, University of Oulu, Oulu, Finland.
- Biocenter Oulu, University of Oulu, Oulu, Finland.
| | - Mysore V Tejesvi
- Biocenter Oulu, University of Oulu, Oulu, Finland
- Ecology and Genetics, Faculty of Science, University of Oulu, Oulu, Finland
| | - Niko Paalanne
- Research Unit of Clinical Medicine, University of Oulu, Oulu, Finland
- Department of Pediatrics and Adolescent Medicine, Oulu University Hospital, Oulu, Finland
| | - Tytti Pokka
- Research Unit of Clinical Medicine, University of Oulu, Oulu, Finland
- Research Service Unit, Oulu University Hospital, Oulu, Finland
| | - Sajeen Bahadur Amatya
- Biocenter Oulu, University of Oulu, Oulu, Finland
- Research Unit of Translational Medicine, University of Oulu, Oulu, Finland
| | - Surbhi Mishra
- Biocenter Oulu, University of Oulu, Oulu, Finland
- Research Unit of Translational Medicine, University of Oulu, Oulu, Finland
| | - Anna Kaisanlahti
- Biocenter Oulu, University of Oulu, Oulu, Finland
- Research Unit of Translational Medicine, University of Oulu, Oulu, Finland
| | - Justus Reunanen
- Biocenter Oulu, University of Oulu, Oulu, Finland
- Research Unit of Translational Medicine, University of Oulu, Oulu, Finland
| | - Terhi Tapiainen
- Research Unit of Clinical Medicine, University of Oulu, Oulu, Finland
- Biocenter Oulu, University of Oulu, Oulu, Finland
- Department of Pediatrics and Adolescent Medicine, Oulu University Hospital, Oulu, Finland
| |
Collapse
|
25
|
Shah NM, Charani E, Ming D, Cheah FC, Johnson MR. Antimicrobial stewardship and targeted therapies in the changing landscape of maternal sepsis. JOURNAL OF INTENSIVE MEDICINE 2024; 4:46-61. [PMID: 38263965 PMCID: PMC10800776 DOI: 10.1016/j.jointm.2023.07.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 07/04/2023] [Accepted: 07/30/2023] [Indexed: 01/25/2024]
Abstract
Pregnant and postnatal women are a high-risk population particularly prone to rapid progression to sepsis with significant morbidity and mortality worldwide. Moreover, severe maternal infections can have a serious detrimental impact on neonates with almost 1 million neonatal deaths annually attributed to maternal infection or sepsis. In this review we discuss the susceptibility of pregnant women and their specific physiological and immunological adaptations that contribute to their vulnerability to sepsis, the implications for the neonate, as well as the issues with antimicrobial stewardship and the challenges this poses when attempting to reach a balance between clinical care and urgent treatment. Finally, we review advancements in the development of pregnancy-specific diagnostic and therapeutic approaches and how these can be used to optimize the care of pregnant women and neonates.
Collapse
Affiliation(s)
- Nishel M Shah
- Department of Metabolism, Digestion and Reproduction, Imperial College London, Chelsea and Westminster Hospital, London, UK
| | - Esmita Charani
- Health Protection Research Unit in Healthcare Associated Infection and Antimicrobial Resistance, Imperial College London, London, UK
- Division of Infectious Diseases and HIV Medicine, Department of Medicine, Groote Schuur Hospital, University of Cape Town, Cape Town, South Africa
| | - Damien Ming
- Department of Infectious Diseases, Imperial College London, Chelsea and Westminster Hospital, London, UK
| | - Fook-Choe Cheah
- Department of Paediatrics, Faculty of Medicine, Universiti Kebangsaan Malaysia Medical Centre, Kuala Lumpur, Malaysia
| | - Mark R Johnson
- Department of Metabolism, Digestion and Reproduction, Imperial College London, Chelsea and Westminster Hospital, London, UK
| |
Collapse
|
26
|
Liu S, Liu X, Guo J, Yang R, Wang H, Sun Y, Chen B, Dong R. The Association Between Microplastics and Microbiota in Placentas and Meconium: The First Evidence in Humans. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:17774-17785. [PMID: 36269573 DOI: 10.1021/acs.est.2c04706] [Citation(s) in RCA: 56] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Pregnancy and infancy are vulnerable times for detrimental environmental exposures. However, the exposure situation of microplastics (MPs) for mother-infant pairs and the adverse health effect of MPs are largely unknown. Therefore, we explored MP exposure in placentas and meconium samples, and the potential correlation of MP exposure with microbiota in placentas and meconium. A total of 18 mother-infant pairs were effectively recruited from Shanghai, China. The study required pregnant women to provide placentas and meconium samples. An Agilent 8700 laser infrared imaging spectrometer (LDIR) was applied to identify MPs. Microbiota detection was identified by 16S rRNA sequencing. Sixteen types of MPs were found in all matrices, and polyamide (PA) and polyurethane (PU) were the major types we identified. MPs detected in samples with a size of 20-50 μm were more than 76.46%. At the phylum level, both placenta and meconium microbiota were mainly composed of Proteobacteria, Bacteroidota, and Firmicutes. We also found some significant differences between placenta and meconium microbiota in β-diversity and gut composition. Additionally, we found polystyrene was inversely related with the Chao index of meconium microbiota. Polyethylene was consistently inversely correlated with several genera of placenta microbiota. The total MPs, PA, and PU consistently impacted several genera of meconium microbiota. In conclusion, MPs are ubiquitous in placentas and meconium samples, indicating the wide exposure of pregnant women and infants. Moreover, our findings may support a link between high concentration of MPs and microbiota genera in placentas and meconium. Additionally, there were several significant associations between the particle size of MPs in 50-100 μm and meconium microbiota.
Collapse
Affiliation(s)
- Shaojie Liu
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education, Fudan University, Shanghai 200032, China
| | - Xinyuan Liu
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education, Fudan University, Shanghai 200032, China
| | - Jialin Guo
- Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai 201204, China
| | - Ruoru Yang
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education, Fudan University, Shanghai 200032, China
| | - Hangwei Wang
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education, Fudan University, Shanghai 200032, China
| | - Yongyun Sun
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education, Fudan University, Shanghai 200032, China
| | - Bo Chen
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education, Fudan University, Shanghai 200032, China
- Institute of Nutrition, Fudan University, Shanghai 200032, China
| | - Ruihua Dong
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education, Fudan University, Shanghai 200032, China
- Institute of Nutrition, Fudan University, Shanghai 200032, China
| |
Collapse
|
27
|
Beretta S, Apparicio M, Toniollo GH, Cardozo MV. The importance of the intestinal microbiota in humans and dogs in the neonatal period. Anim Reprod 2023; 20:e20230082. [PMID: 38026003 PMCID: PMC10681130 DOI: 10.1590/1984-3143-ar2023-0082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Accepted: 09/01/2023] [Indexed: 12/01/2023] Open
Abstract
The neonatal period represents a critical stage for the establishment and development of the gut microbiota, which profoundly influences the future health trajectory of individuals. This review examines the importance of intestinal microbiota in humans and dogs, aiming to elucidate the distinct characteristics and variations in the composition between these two species. In humans, the intestinal microbiota contributes to several crucial physiological processes, including digestion, nutrient absorption, immune system development, and modulation of host metabolism. Dysbiosis, an imbalance or disruption of the gut microbial community, has been linked to various disorders, such as inflammatory bowel disease, obesity, and even neurological conditions. Furthermore, recent research has unveiled the profound influence of the gut-brain axis, emphasizing the bidirectional communication between the gut microbiota and the central nervous system, impacting cognitive function and mental health. Similarly, alterations in the canine intestinal microbiota have been associated with gastrointestinal disorders, including chronic enteropathy, such as inflammatory bowel disease, food allergies, and ulcerative histiocytic colitis. However, our understanding of the intricacies and functional significance of the intestinal microbiota in dogs remains limited. Understanding the complex dynamics of the intestinal microbiota in both humans and dogs is crucial for devising effective strategies to promote health and manage disease. Moreover, exploring the similarities and differences in the gut microbial composition between these two species can facilitate translational research, potentially leading to innovative therapeutic interventions and strategies to enhance the well-being of both humans and dogs.
Collapse
Affiliation(s)
- Samara Beretta
- Departamento de Patologia, Reprodução e Saúde Única, Faculdade de Ciências Agrárias e Veterinárias (FCAV), Universidade Estadual Paulista (UNESP), Jaboticabal, SP, Brasil
| | - Maricy Apparicio
- Departamento de Cirurgia Veterinária e Reprodução Animal, Faculdade de Medicina Veterinária e Zootecnia (FMVZ), Universidade Estadual Paulista (UNESP), Botucatu, SP, Brasil
| | - Gilson Hélio Toniollo
- Departamento de Patologia, Reprodução e Saúde Única, Faculdade de Ciências Agrárias e Veterinárias (FCAV), Universidade Estadual Paulista (UNESP), Jaboticabal, SP, Brasil
| | - Marita Vedovelli Cardozo
- Laboratório de Fisiologia de Microorganismos, Departamento de Ciências Biomédicas e Saúde, Universidade do Estado de Minas Gerais (UEMG), Passos, MG, Brasil
| |
Collapse
|
28
|
Happel AU, Rametse L, Perumaul B, Diener C, Gibbons SM, Nyangahu DD, Donald KA, Gray C, Jaspan HB. Bifidobacterium infantis supplementation versus placebo in early life to improve immunity in infants exposed to HIV: a protocol for a randomized trial. BMC Complement Med Ther 2023; 23:367. [PMID: 37853370 PMCID: PMC10583347 DOI: 10.1186/s12906-023-04208-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Accepted: 10/08/2023] [Indexed: 10/20/2023] Open
Abstract
INTRODUCTION Infants who are born from mothers with HIV (infants who are HIV exposed but uninfected; iHEU) are at higher risk of morbidity and display multiple immune alterations compared to infants who are HIV-unexposed (iHU). Easily implementable strategies to improve immunity of iHEU, and possibly subsequent clinical health outcomes, are needed. iHEU have altered gut microbiome composition and bifidobacterial depletion, and relative abundance of Bifidobacterium infantis has been associated with immune ontogeny, including humoral and cellular vaccine responses. Therefore, we will assess microbiological and immunological phenotypes and clinical outcomes in a randomized, double-blinded trial of B. infantis Rosell®-33 versus placebo given during the first month of life in South African iHEU. METHODS This is a parallel, randomised, controlled trial. Two-hundred breastfed iHEU will be enrolled from the Khayelitsha Site B Midwife Obstetric Unit in Cape Town, South Africa and 1:1 randomised to receive 8 × 109 CFU B. infantis Rosell®-33 daily or placebo for the first 4 weeks of life, starting on day 1-3 of life. Infants will be followed over 36 weeks with extensive collection of meta-data and samples. Primary outcomes include gut microbiome composition and diversity, intestinal inflammation and microbial translocation and cellular vaccine responses. Additional outcomes include biological (e.g. gut metabolome and T cell phenotypes) and clinical (e.g. growth and morbidity) outcome measures. DISCUSSION The results of this trial will provide evidence whether B. infantis supplementation during early life could improve health outcomes for iHEU. ETHICS AND DISSEMINATION Approval for this study has been obtained from the ethics committees at the University of Cape Town (HREC Ref 697/2022) and Seattle Children's Research Institute (STUDY00003679). TRIAL REGISTRATION Pan African Clinical Trials Registry Identifier: PACTR202301748714019. CLINICAL TRIALS gov: NCT05923333. PROTOCOL VERSION Version 1.8, dated 18 July 2023.
Collapse
Affiliation(s)
- Anna-Ursula Happel
- Department of Pathology, University of Cape Town, Anzio Road, Observatory, Cape Town, 7925, South Africa.
- Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Anzio Road, Observatory, Cape Town, 7925, South Africa.
| | - Lerato Rametse
- Department of Pathology, University of Cape Town, Anzio Road, Observatory, Cape Town, 7925, South Africa
| | - Brandon Perumaul
- Department of Pathology, University of Cape Town, Anzio Road, Observatory, Cape Town, 7925, South Africa
| | | | - Sean M Gibbons
- Institute for Systems Biology, Seattle, WA, 98109, USA
- Department of Bioengineering, University of Washington, Seattle, WA, 98195, USA
- Department of Genome Sciences, University of Washington, Seattle, WA, 98195, USA
- eScience Institute, University of Washington, Seattle, WA, 98195, USA
| | - Donald D Nyangahu
- Seattle Children's Research Institute, 307 Westlake Ave. N, Seattle, WA, 98109, USA
| | - Kirsten A Donald
- Division of Developmental Paediatrics, Department of Paediatrics and Child Health, Red Cross War Memorial Children's Hospital, University of Cape Town, Klipfontein Road Rondebosch, Cape Town, 7700, South Africa
- The Neuroscience Institute, University of Cape Town, Anzio Road, Observatory, Cape Town, 7925, South Africa
| | - Clive Gray
- Division of Molecular Biology and Human Genetics, Stellenbosch University, Francie Van Zijl Drive, Tygerberg, 7505, South Africa
| | - Heather B Jaspan
- Department of Pathology, University of Cape Town, Anzio Road, Observatory, Cape Town, 7925, South Africa
- Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Anzio Road, Observatory, Cape Town, 7925, South Africa
- Seattle Children's Research Institute, 307 Westlake Ave. N, Seattle, WA, 98109, USA
- Department of Pediatrics, University of Washington, 1959 NE Pacific St, Seattle, WA, 98195, USA
- Department of Global Health, University of Washington, 1510 San Juan Road NE, Seattle, WA, 98195, USA
| |
Collapse
|
29
|
Chu B, Liu Z, Liu Y, Jiang H. The Role of Advanced Parental Age in Reproductive Genetics. Reprod Sci 2023; 30:2907-2919. [PMID: 37171772 PMCID: PMC10556127 DOI: 10.1007/s43032-023-01256-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 04/29/2023] [Indexed: 05/13/2023]
Abstract
The increase of parental reproductive age is a worldwide trend in modern society in recent decades. In general, older parents have a significant impact on reproductive genetics and the health of offspring. In particular, advanced parental age contributes to the increase in the risk of adverse neurodevelopmental outcomes in offspring. However, it is currently under debate how and to what extent the health of future generations was affected by the parental age. In this review, we aimed to (i) provide an overview of the effects of age on the fertility and biology of the reproductive organs of the parents, (ii) highlight the candidate biological mechanisms underlying reproductive genetic alterations, and (iii) discuss the relevance of the effect of parental age on offspring between animal experiment and clinical observation. In addition, we think that the impact of environmental factors on cognitive and emotional development of older offspring will be an interesting direction.
Collapse
Affiliation(s)
- Boling Chu
- Department of Biobank, Suining Central Hospital, Suining, 629000, China
| | - Zhi Liu
- Department of Pathology, Suining Central Hospital, Suining, 629000, China
| | - Yihong Liu
- College of Humanities And Management, Guizhou University of Traditional Chinese Medicine, Guizhou, 550025, China
| | - Hui Jiang
- Department of Biobank, Suining Central Hospital, Suining, 629000, China.
| |
Collapse
|
30
|
Yang T, Zhang Y, Zhang H, Wu X, Sun J, Hua D, Pan K, Liu Q, Cui G, Chen Z. Intracellular presence and genetic relationship of Helicobacter pylori within neonates' fecal yeasts and their mothers' vaginal yeasts. Yeast 2023; 40:401-413. [PMID: 37565669 DOI: 10.1002/yea.3891] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 06/30/2023] [Accepted: 07/18/2023] [Indexed: 08/12/2023] Open
Abstract
Helicobacter pylori are transmissible from person to person and among family members. Mother-to-child transmission is the main intrafamilial route of H. pylori transmission. However, how it transmits from mother to child is still being determined. Vaginal yeast often transmits to neonates during delivery. Therefore, H. pylori hosted in yeast might follow the same transmission route. This study aimed to detect intracellular H. pylori in vaginal and fecal yeasts isolates and explore the role of yeast in H. pylori transmission. Yeast was isolated from the mothers' vaginal discharge and neonates' feces and identified by internal transcribed spacer (ITS) sequencing. H. pylori 16S rRNA and antigen were detected in yeast isolates by polymerase chain reaction and direct immunofluorescence assay. Genetic relationships of Candida strains isolated from seven mothers and their corresponding neonates were determined by random amplified polymorphic DNA (RAPD) fingerprinting and ITS alignment. The Candida isolates from four mother-neonate pairs had identical RAPD patterns and highly homologous ITS sequences. The current study showed H. pylori could be sheltered within yeast colonizing the vagina, and fecal yeast from neonates is genetically related to the vaginal yeast from their mothers. Thus, vaginal yeast presents a potential reservoir of H. pylori and plays a vital role in the transmission from mother to neonate.
Collapse
Affiliation(s)
- Tingxiu Yang
- Key Laboratory of Microbiology and Parasitology of Education Department of Guizhou & Joint Laboratory of Helicobacter Pylori and Intestinal Microecology of Affiliated Hospital of Guizhou Medical University, Guizhou Medical University, Guiyang, China
- Key Laboratory of Endemic and Ethnic Diseases of Ministry of Education & Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang, China
- Department of Hospital Infection and Management, Guizhou Provincial People's Hospital, Guiyang, China
| | - Yuanyuan Zhang
- Key Laboratory of Microbiology and Parasitology of Education Department of Guizhou & Joint Laboratory of Helicobacter Pylori and Intestinal Microecology of Affiliated Hospital of Guizhou Medical University, Guizhou Medical University, Guiyang, China
- Department of Gastroenterology, People's Hospital of Qiannan Prefecture, Guizhou, China
| | - Hua Zhang
- Department of Obstetrics, People's Hospital of Qiannan Prefecture, Guizhou, China
| | - Xiaojuan Wu
- Key Laboratory of Microbiology and Parasitology of Education Department of Guizhou & Joint Laboratory of Helicobacter Pylori and Intestinal Microecology of Affiliated Hospital of Guizhou Medical University, Guizhou Medical University, Guiyang, China
| | - Jianchao Sun
- Key Laboratory of Microbiology and Parasitology of Education Department of Guizhou & Joint Laboratory of Helicobacter Pylori and Intestinal Microecology of Affiliated Hospital of Guizhou Medical University, Guizhou Medical University, Guiyang, China
| | - Dengxiong Hua
- Key Laboratory of Microbiology and Parasitology of Education Department of Guizhou & Joint Laboratory of Helicobacter Pylori and Intestinal Microecology of Affiliated Hospital of Guizhou Medical University, Guizhou Medical University, Guiyang, China
| | - Ke Pan
- Department of Gastroenterology, People's Hospital of Qiannan Prefecture, Guizhou, China
| | - Qi Liu
- Key Laboratory of Microbiology and Parasitology of Education Department of Guizhou & Joint Laboratory of Helicobacter Pylori and Intestinal Microecology of Affiliated Hospital of Guizhou Medical University, Guizhou Medical University, Guiyang, China
| | - Guzhen Cui
- Key Laboratory of Microbiology and Parasitology of Education Department of Guizhou & Joint Laboratory of Helicobacter Pylori and Intestinal Microecology of Affiliated Hospital of Guizhou Medical University, Guizhou Medical University, Guiyang, China
- Key Laboratory of Endemic and Ethnic Diseases of Ministry of Education & Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang, China
| | - Zhenghong Chen
- Key Laboratory of Microbiology and Parasitology of Education Department of Guizhou & Joint Laboratory of Helicobacter Pylori and Intestinal Microecology of Affiliated Hospital of Guizhou Medical University, Guizhou Medical University, Guiyang, China
- Key Laboratory of Endemic and Ethnic Diseases of Ministry of Education & Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang, China
| |
Collapse
|
31
|
Sajdel-Sulkowska EM. The Impact of Maternal Gut Microbiota during Pregnancy on Fetal Gut-Brain Axis Development and Life-Long Health Outcomes. Microorganisms 2023; 11:2199. [PMID: 37764043 PMCID: PMC10538154 DOI: 10.3390/microorganisms11092199] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 08/23/2023] [Accepted: 08/29/2023] [Indexed: 09/29/2023] Open
Abstract
Gut microbiota plays a critical role in physiological regulation throughout life and is specifically modified to meet the demands of individual life stages and during pregnancy. Maternal gut microbiota is uniquely adapted to the pregnancy demands of the mother and the developing fetus. Both animal studies in pregnant germ-free rodents and human studies have supported a critical association between the composition of maternal microbiota during pregnancy and fetal development. Gut microbiota may also contribute to the development of the fetal gut-brain axis (GBA), which is increasingly recognized for its critical role in health and disease. Most studies consider birth as the time of GBA activation and focus on postnatal GBA development. This review focuses on GBA development during the prenatal period and the impact of maternal gut microbiota on fetal GBA development. It is hypothesized that adaptation of maternal gut microbiota to pregnancy is critical for the GBA prenatal development and maturation of GBA postnatally. Consequently, factors affecting maternal gut microbiota during pregnancy, such as maternal obesity, diet, stress and depression, infection, and medication, also affect fetal GBA development and are critical for GBA activity postnatally. Altered maternal gut microbiota during gestation has been shown to have long-term impact postnatally and multigenerational effects. Thus, understanding the impact of maternal gut microbiota during pregnancy on fetal GBA development is crucial for managing fetal, neonatal, and adult health, and should be included among public health priorities.
Collapse
|
32
|
Souza AK, Zangirolamo AF, Droher RG, Bonato FGC, Alfieri AA, Carvalho da Costa M, Seneda MM. Investigation of the vaginal microbiota of dairy cows through genetic sequencing of short (Illumina) and long (PacBio) reads and associations with gestational status. PLoS One 2023; 18:e0290026. [PMID: 37611040 PMCID: PMC10446230 DOI: 10.1371/journal.pone.0290026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 08/01/2023] [Indexed: 08/25/2023] Open
Abstract
The vaginal microbiota has been shown to be important in local immune regulation and may play a role in reproduction and fertility. Next-generation sequencing (NGS) technologies have been used to characterize the bovine vaginal microbiota, mainly using short-read sequencing (Illumina). However, the main limitation of this technique is its inability to classify bacteria at the species level. The objective of this study was to characterize the bovine vaginal microbiota at the species level using long-read sequencing (PacBio) and to compare it with the results of short-read sequencing. In addition, the vaginal microbiota of cows that became pregnant after artificial insemination (AI) was compared with that of infertile animals. Thirteen Holstein cows had vaginal swabs collected prior to AI. DNA was extracted and subjected to Illumina and PacBio sequencing to characterize the V4 region and the entire 16S rRNA gene, respectively. PacBio sequencing yielded 366,509 reads that were assigned to 476 species from 27 phyla. However, none of the most abundant reads (>1%) could be classified at the species level. Illumina sequencing yielded more reads and consequently was able to detect a more observed species, but PacBio sequencing was able to detect more unique and rare species. The composition of the vaginal microbiota varies according to the sequencing method used, which might complicate the interpretation of results obtained in the majority of the current studies. The present study expands on the current knowledge of bovine microbiota, highlighting the need for further efforts to improve the current databanks.
Collapse
Affiliation(s)
- Anne Kemmer Souza
- National Institute of Science and Technology for Dairy Production Chain (INCT–LEITE), Universidade Estadual de Londrina, Londrina, Paraná, Brazil
- Laboratory of Biotechnology of Animal Reproduction, Department of Veterinary Clinics, Center for Agricultural Sciences, Universidade Estadual de Londrina, Londrina, Paraná, Brazil
| | - Amanda Fonseca Zangirolamo
- National Institute of Science and Technology for Dairy Production Chain (INCT–LEITE), Universidade Estadual de Londrina, Londrina, Paraná, Brazil
- Laboratory of Biotechnology of Animal Reproduction, Department of Veterinary Clinics, Center for Agricultural Sciences, Universidade Estadual de Londrina, Londrina, Paraná, Brazil
| | - Ricardo Guella Droher
- Laboratory of Biotechnology of Animal Reproduction, Department of Veterinary Clinics, Center for Agricultural Sciences, Universidade Estadual de Londrina, Londrina, Paraná, Brazil
| | - Francieli Gesleine Capote Bonato
- Laboratory of Biotechnology of Animal Reproduction, Department of Veterinary Clinics, Center for Agricultural Sciences, Universidade Estadual de Londrina, Londrina, Paraná, Brazil
| | - Amauri A. Alfieri
- National Institute of Science and Technology for Dairy Production Chain (INCT–LEITE), Universidade Estadual de Londrina, Londrina, Paraná, Brazil
| | | | - Marcelo Marcondes Seneda
- National Institute of Science and Technology for Dairy Production Chain (INCT–LEITE), Universidade Estadual de Londrina, Londrina, Paraná, Brazil
- Laboratory of Biotechnology of Animal Reproduction, Department of Veterinary Clinics, Center for Agricultural Sciences, Universidade Estadual de Londrina, Londrina, Paraná, Brazil
| |
Collapse
|
33
|
Upreti D, Rouzer SK, Bowring A, Labbe E, Kumar R, Miranda RC, Mahnke AH. Microbiota and nutrition as risk and resiliency factors following prenatal alcohol exposure. Front Neurosci 2023; 17:1182635. [PMID: 37397440 PMCID: PMC10308314 DOI: 10.3389/fnins.2023.1182635] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 05/23/2023] [Indexed: 07/04/2023] Open
Abstract
Alcohol exposure in adulthood can result in inflammation, malnutrition, and altered gastroenteric microbiota, which may disrupt efficient nutrient extraction. Clinical and preclinical studies have documented convincingly that prenatal alcohol exposure (PAE) also results in persistent inflammation and nutrition deficiencies, though research on the impact of PAE on the enteric microbiota is in its infancy. Importantly, other neurodevelopmental disorders, including autism spectrum and attention deficit/hyperactivity disorders, have been linked to gut microbiota dysbiosis. The combined evidence from alcohol exposure in adulthood and from other neurodevelopmental disorders supports the hypothesis that gut microbiota dysbiosis is likely an etiological feature that contributes to negative developmental, including neurodevelopmental, consequences of PAE and results in fetal alcohol spectrum disorders. Here, we highlight published data that support a role for gut microbiota in healthy development and explore the implication of these studies for the role of altered microbiota in the lifelong health consequences of PAE.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Amanda H. Mahnke
- Department of Neuroscience and Experimental Therapeutics, Texas A&M University School of Medicine, Bryan, TX, United States
| |
Collapse
|
34
|
Bosnar LM, Shindler AE, Wood J, Patch C, Franks AE. Attempts to limit sporulation in the probiotic strain Bacillus subtilis BG01-4 TM through mutation accumulation and selection. Access Microbiol 2023; 5:acmi000419. [PMID: 37323944 PMCID: PMC10267654 DOI: 10.1099/acmi.0.000419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Accepted: 03/16/2023] [Indexed: 06/17/2023] Open
Abstract
The use of bacterial spores in probiotics over viable loads of bacteria has many advantages, including the durability of spores, which allows spore-based probiotics to effectively traverse the various biochemical barriers present in the gastrointestinal tract. However, the majority of spore-based probiotics developed currently aim to treat adults, and there is a litany of differences between the adult and infant intestinal systems, including the immaturity and low microbial species diversity observed within the intestines of infants. These differences are only further exacerbated in premature infants with necrotizing enterocolitis (NEC) and indicates that what may be appropriate for an adult or even a healthy full-term infant may not be suited for an unhealthy premature infant. Complications from using spore-based probiotics for premature infants with NEC may involve the spores remaining dormant and adhering to the intestinal epithelia, the out-competing of commensal bacteria by spores, and most importantly the innate antibiotic resistance of spores. Also, the ability of Bacillus subtilis to produce spores under duress may result in less B. subtilis perishing within the intestines and releasing membrane branched-chain fatty acids. The isolate B. subtilis BG01-4TM is a proprietary strain developed by Vernx Biotechnology through accumulating mutations within the BG01-4TM genome in a serial batch culture. Strain BG01-4TM was provided as a non-spore-forming B. subtilis , but a positive sporulation status for BG01-4TM was confirmed through in vitro testing and suggested that selection for the sporulation defective genes could occur within an environment that would select against sporulation. The durability of key sporulation genes was ratified in this study, as the ability of BG01-4TM to produce spores was not eliminated by the attempts to select against sporulation genes in BG01-4TM by the epigenetic factors of high glucose and low pH. However, a variation in the genes in isolate BG01-4-8 involved in the regulation of sporulation is believed to have occurred during the mutation selection from the parent strain BG01-4TM. An alteration in selected sporulation regulation genes is expected to have occurred from BG01-4TM to BG01-4-8, with BG01-4-8 producing spores within 24 h, ~48 h quicker than BG01-4TM.
Collapse
Affiliation(s)
- Luke M. Bosnar
- Department of Physiology, Anatomy and Microbiology, School of Life Sciences, La Trobe University, Melbourne, Victoria 3086, Australia
| | - Anya E. Shindler
- Department of Physiology, Anatomy and Microbiology, School of Life Sciences, La Trobe University, Melbourne, Victoria 3086, Australia
| | - Jennifer Wood
- Department of Physiology, Anatomy and Microbiology, School of Life Sciences, La Trobe University, Melbourne, Victoria 3086, Australia
| | - Craig Patch
- School of Allied Health, Human Services, and Sport, La Trobe University, Melbourne, Victoria 3086, Australia
- Vernx Pty Ltd, Level 17, 40 City Road, Southbank, Victoria 3066, Australia
| | - Ashley E. Franks
- Department of Physiology, Anatomy and Microbiology, School of Life Sciences, La Trobe University, Melbourne, Victoria 3086, Australia
| |
Collapse
|
35
|
Banchi P, Colitti B, Del Carro A, Corrò M, Bertero A, Ala U, Del Carro A, Van Soom A, Bertolotti L, Rota A. Challenging the Hypothesis of in Utero Microbiota Acquisition in Healthy Canine and Feline Pregnancies at Term: Preliminary Data. Vet Sci 2023; 10:vetsci10050331. [PMID: 37235414 DOI: 10.3390/vetsci10050331] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 04/29/2023] [Accepted: 05/02/2023] [Indexed: 05/28/2023] Open
Abstract
At present, there are no data on the presence of bacteria in healthy canine and feline pregnancies at term. Here, we investigated the uterine microbiome in bitches (n = 5) and queens (n = 3) undergoing elective cesarean section in two facilities. Samples included swabs from the endometrium, amniotic fluid, and meconium, and environmental swabs of the surgical tray as controls. Culture and 16S rRNA gene sequencing were used to investigate the presence of bacteria. Culture was positive for 34.3% of samples (uterus n = 3, amniotic fluid n = 2, meconium n = 4, controls n = 0), mostly with low growth of common contaminant bacteria. With sequencing techniques, the bacterial abundance was significantly lower than in environmental controls (p < 0.05). Sequencing results showed a species-specific pattern, and significant differences between canine and feline bacterial populations were found at order, family, and genus level. No differences were found in alpha and beta diversities between feto-maternal tissues and controls (p > 0.05). Dominant phyla were Bacteroidetes, Firmicutes, and Proteobacteria in different proportions based on tissue and species. Culture and sequencing results suggest that the bacterial biomass is very low in healthy canine and feline pregnancies at term, that bacteria likely originate from contamination from the dam's skin, and that the presence of viable bacteria could not be confirmed most of the time.
Collapse
Affiliation(s)
- Penelope Banchi
- Department of Veterinary Sciences, University of Turin, 10095 Grugliasco, Italy
- Department of Internal Medicine, Reproduction and Population Medicine, Faculty of Veterinary Medicine, Ghent University, 9820 Merelbeke, Belgium
| | - Barbara Colitti
- Department of Veterinary Sciences, University of Turin, 10095 Grugliasco, Italy
| | - Andrea Del Carro
- Iunovet-Clinique Vetérinaire Saint Hubert, 06240 Beausoleil, France
| | - Michela Corrò
- Istituto Zooprofilattico Sperimentale delle Venezie, 35020 Legnaro, Italy
| | - Alessia Bertero
- Department of Veterinary Sciences, University of Turin, 10095 Grugliasco, Italy
| | - Ugo Ala
- Department of Veterinary Sciences, University of Turin, 10095 Grugliasco, Italy
| | - Angela Del Carro
- Department of Veterinary Sciences, University of Turin, 10095 Grugliasco, Italy
| | - Ann Van Soom
- Department of Internal Medicine, Reproduction and Population Medicine, Faculty of Veterinary Medicine, Ghent University, 9820 Merelbeke, Belgium
| | - Luigi Bertolotti
- Department of Veterinary Sciences, University of Turin, 10095 Grugliasco, Italy
| | - Ada Rota
- Department of Veterinary Sciences, University of Turin, 10095 Grugliasco, Italy
| |
Collapse
|
36
|
Xiao L, Zhao F. Microbial transmission, colonisation and succession: from pregnancy to infancy. Gut 2023; 72:772-786. [PMID: 36720630 PMCID: PMC10086306 DOI: 10.1136/gutjnl-2022-328970] [Citation(s) in RCA: 59] [Impact Index Per Article: 29.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 01/10/2023] [Indexed: 02/02/2023]
Abstract
The microbiome has been proven to be associated with many diseases and has been used as a biomarker and target in disease prevention and intervention. Currently, the vital role of the microbiome in pregnant women and newborns is increasingly emphasised. In this review, we discuss the interplay of the microbiome and the corresponding immune mechanism between mothers and their offspring during the perinatal period. We aim to present a comprehensive picture of microbial transmission and potential immune imprinting before and after delivery. In addition, we discuss the possibility of in utero microbial colonisation during pregnancy, which has been highly debated in recent studies, and highlight the importance of the microbiome in infant development during the first 3 years of life. This holistic view of the role of the microbial interplay between mothers and infants will refine our current understanding of pregnancy complications as well as diseases in early life and will greatly facilitate the microbiome-based prenatal diagnosis and treatment of mother-infant-related diseases.
Collapse
Affiliation(s)
- Liwen Xiao
- Beijing Institutes of Life Science, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Fangqing Zhao
- Beijing Institutes of Life Science, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
- Key Laboratory of System Biology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, China
| |
Collapse
|
37
|
Xie J, Tang C, Hong S, Xin Y, Zhang J, Lin Y, Mao L, Xiao Y, Wu Q, Zhang X, Shen H. Maternal vaginal fluids play a major role in the colonization of the neonatal intestinal microbiota. Front Cell Infect Microbiol 2023; 13:1065884. [PMID: 37009505 PMCID: PMC10061231 DOI: 10.3389/fcimb.2023.1065884] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 02/27/2023] [Indexed: 03/18/2023] Open
Abstract
BackgroundCaesarean section (CS) is associated with newborns’ health risks due to the blocking of microbiome transfer. The gut microbiota of CS-born babies was different from those born vaginally, which may be attributed to reduced exposure to maternal vaginal microbes during labour. To understand the microbial transfer and reduce CS disadvantages, the effect of vaginal microbiota exposure on infant gut microbiota composition was evaluated using 16s rDNA sequencing-based techniques.ResultsPregnant women were recruited in the Women and Children’s Hospital, School of Medicine, Xiamen University from June 1st to August 15th, 2017. Maternal faeces (n = 26), maternal vaginal fluids (n = 26), and neonatal transitional stools (n = 26) were collected, while the participants underwent natural delivery (ND) (n = 6), CS (n = 4) and CS with the intervention of vaginal seedings (I) (n = 16). 26 mothers with the median age 26.50 (25.00-27.25) years showed no substantial clinical differences. The newborns’ gut microbiota altered among ND, CS and I, and clustered into two groups (PERMANOVA P = 0.001). Microbial composition of ND babies shared more features with maternal vaginal samples (PERMANOVA P = 0.065), while the microbiota structure of ND babies was obviously different from that of sample of maternal faeces. The genus Bacteroides in CS-born babies with intervention approached to vaginal-born neonates, compared with CS-born neonates without intervention.ConclusionsNeonatal gut microbiota was dependent on the delivery mode. And the gut microbiota CS newborns with vaginal seeding shared more features with those of ND babies, which hinted the aberrant gut microbiota composition initiated by CS might be partly mitigated by maternal vaginal microbiota exposure.
Collapse
Affiliation(s)
- Jingxian Xie
- Department of Obstetrics, Women and Children’s Hospital, School of Medicine, Xiamen University, Xiamen, Fujian, China
| | - Chen Tang
- School of Life Sciences, Xiamen University, Xiamen, Fujian, China
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen, Fujian, China
| | - Shouqiang Hong
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen, Fujian, China
| | - Yuntian Xin
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, Fujian, China
| | - Jie Zhang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen, Fujian, China
| | - Yi Lin
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen, Fujian, China
| | - Lindong Mao
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen, Fujian, China
| | - Yunshan Xiao
- Department of Obstetrics, Women and Children’s Hospital, School of Medicine, Xiamen University, Xiamen, Fujian, China
| | - Quanfeng Wu
- Department of Obstetrics, Women and Children’s Hospital, School of Medicine, Xiamen University, Xiamen, Fujian, China
| | - Xueqin Zhang
- Department of Obstetrics, Women and Children’s Hospital, School of Medicine, Xiamen University, Xiamen, Fujian, China
- *Correspondence: Heqing Shen, ; Xueqin Zhang,
| | - Heqing Shen
- Department of Obstetrics, Women and Children’s Hospital, School of Medicine, Xiamen University, Xiamen, Fujian, China
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen, Fujian, China
- *Correspondence: Heqing Shen, ; Xueqin Zhang,
| |
Collapse
|
38
|
Dos Anjos Borges LG, Pastuschek J, Heimann Y, Dawczynski K, Schleußner E, Pieper DH, Zöllkau J. Vaginal and neonatal microbiota in pregnant women with preterm premature rupture of membranes and consecutive early onset neonatal sepsis. BMC Med 2023; 21:92. [PMID: 36907851 PMCID: PMC10009945 DOI: 10.1186/s12916-023-02805-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 02/22/2023] [Indexed: 03/14/2023] Open
Abstract
BACKGROUND Preterm premature rupture of membranes (PPROM), which is associated with vaginal dysbiosis, is responsible for up to one-third of all preterm births. Consecutive ascending colonization, infection, and inflammation may lead to relevant neonatal morbidity including early-onset neonatal sepsis (EONS). The present study aims to assess the vaginal microbial composition of PPROM patients and its development under standard antibiotic therapy and to evaluate the usefulness of the vaginal microbiota for the prediction of EONS. It moreover aims to decipher neonatal microbiota at birth as possible mirror of the in utero microbiota. METHODS As part of the PEONS prospective multicenter cohort study, 78 women with PPROM and their 89 neonates were recruited. Maternal vaginal and neonatal pharyngeal, rectal, umbilical cord blood, and meconium microbiota were analyzed by 16S rRNA gene sequencing. Significant differences between the sample groups were evaluated using permutational multivariate analysis of variance and differently distributed taxa by the Mann-Whitney test. Potential biomarkers for the prediction of EONS were analyzed using the MetaboAnalyst platform. RESULTS Vaginal microbiota at admission after PPROM were dominated by Lactobacillus spp. Standard antibiotic treatment triggers significant changes in microbial community (relative depletion of Lactobacillus spp. and relative enrichment of Ureaplasma parvum) accompanied by an increase in bacterial diversity, evenness and richness. The neonatal microbiota showed a heterogeneous microbial composition where meconium samples were characterized by specific taxa enriched in this niche. The vaginal microbiota at birth was shown to have the potential to predict EONS with Escherichia/Shigella and Facklamia as risk taxa and Anaerococcus obesiensis and Campylobacter ureolyticus as protective taxa. EONS cases could also be predicted at a reasonable rate from neonatal meconium communities with the protective taxa Bifidobacterium longum, Agathobacter rectale, and S. epidermidis as features. CONCLUSIONS Vaginal and neonatal microbiota analysis by 16S rRNA gene sequencing after PPROM may form the basis of individualized risk assessment for consecutive EONS. Further studies on extended cohorts are necessary to evaluate how far this technique may in future close a diagnostic gap to optimize and personalize the clinical management of PPROM patients. TRIAL REGISTRATION NCT03819192, ClinicalTrials.gov. Registered on January 28, 2019.
Collapse
Affiliation(s)
- Luiz Gustavo Dos Anjos Borges
- Microbial Interactions and Processes Research Group, Helmholtz Centre for Infection Research, Inhoffenstrasse 7, 38124, Brunswick, Germany
| | - Jana Pastuschek
- Department of Obstetrics, Jena University Hospital, Am Klinikum 1, 07747, Jena, Germany.,Center for Sepsis Control and Case (CSCC), Jena University Hospital, Am Klinikum 1, 07747, Jena, Germany
| | - Yvonne Heimann
- Department of Obstetrics, Jena University Hospital, Am Klinikum 1, 07747, Jena, Germany.,Center for Sepsis Control and Case (CSCC), Jena University Hospital, Am Klinikum 1, 07747, Jena, Germany
| | - Kristin Dawczynski
- Center for Sepsis Control and Case (CSCC), Jena University Hospital, Am Klinikum 1, 07747, Jena, Germany.,Department of Pediatrics, Section Neonatology, Jena University Hospital, Am Klinikum 1, 07747, Jena, Germany
| | | | - Ekkehard Schleußner
- Department of Obstetrics, Jena University Hospital, Am Klinikum 1, 07747, Jena, Germany.,Center for Sepsis Control and Case (CSCC), Jena University Hospital, Am Klinikum 1, 07747, Jena, Germany
| | - Dietmar H Pieper
- Microbial Interactions and Processes Research Group, Helmholtz Centre for Infection Research, Inhoffenstrasse 7, 38124, Brunswick, Germany.
| | - Janine Zöllkau
- Department of Obstetrics, Jena University Hospital, Am Klinikum 1, 07747, Jena, Germany.,Center for Sepsis Control and Case (CSCC), Jena University Hospital, Am Klinikum 1, 07747, Jena, Germany
| |
Collapse
|
39
|
Kapoor B, Gulati M, Gupta R, Singla RK. Microbiota dysbiosis and myasthenia gravis: Do all roads lead to Rome? Autoimmun Rev 2023; 22:103313. [PMID: 36918089 DOI: 10.1016/j.autrev.2023.103313] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 03/09/2023] [Indexed: 03/14/2023]
Abstract
Dysregulated immune system with a failure to recognize self from non-self-antigens is one of the common pathogeneses seen in autoimmune diseases. The complex interplay of genetic and environmental factors is important for the occurrence and development of the disease. Among the environmental factors, disturbed gut microbiota (gut dysbiosis) has recently attracted particular attention, especially with advancement in human microbiome research. Although the alterations in microbiota have been seen in various autoimmune diseases, including those of nervous system, there is paucity of information on neuromuscular system diseases. Myasthenia gravis (MG) is one such rare autoimmune disease of neuromuscular junction, and is caused by generation of pathogenic autoantibodies to components of the postsynaptic muscle endplate. In the recent years, accumulating evidences have endorsed the key role of host microbiota, particularly those of gut, in the pathogenesis of MG. Differential microbiota composition, characterized by increased abundance of Fusobacteria, Bacteroidetes, and Proteobacteria, and decreased abundance of Actinobacteria and Firmicutes, has been seen in MG patients in comparison to healthy subjects. Disturbance of microbiota composition, particularly reduced ratio of Firmicutes/Bacteroidetes, alter the gut permeability, subsequently triggering the immunological response. Resultant reduction in levels of short chain fatty acids (SCFAs) is another factor contributing to the immunological response in MG patients. Modulation of gut microbiota via intervention of probiotics, prebiotics, synbiotics, postbiotics (metabiotics), and fecal microbiota transplantation (FMT) is considered to be the futuristic approach for the management of MG. This review summarizes the role of gut microbiota and their metabolites (postbiotics) in the progression of MG. Also, various bacteriotherapeutic approaches involving gut microbiota are discussed for the prevention of MG progression.
Collapse
Affiliation(s)
- Bhupinder Kapoor
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, India.
| | - Monica Gulati
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, India; Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, NSW 2007, Australia.
| | - Reena Gupta
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, India
| | - Rajeev K Singla
- Institutes for Systems Genetics, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Xinchuan Road, 2222, Chengdu, Sichuan, China; iGlobal Research and Publishing Foundation, New Delhi, India
| |
Collapse
|
40
|
Balouei F, Stefanon B, Sgorlon S, Sandri M. Factors Affecting Gut Microbiota of Puppies from Birth to Weaning. Animals (Basel) 2023; 13:ani13040578. [PMID: 36830365 PMCID: PMC9951692 DOI: 10.3390/ani13040578] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 01/26/2023] [Accepted: 02/01/2023] [Indexed: 02/09/2023] Open
Abstract
The review described the most important factors affecting the development of the intestinal microbiota in puppies from birth to weaning. The health and well-being of the microbiome in puppies is influenced by the type of parturition, the maternal microbiota, and the diet of the mother, directly or indirectly. The isolation of bacteria in dogs from the placenta, fetal fluids, and fetuses suggests that colonization could occur before birth, although this is still a matter of debate. Accordingly, newborn puppies could harbor bacteria that could be of maternal origin and that could influence microbial colonization later in life. However, the long-term impacts on health and the clinical significance of this transfer is not yet clear and needs to be investigated. The same maternal bacteria were found in puppies that were born vaginally and in those delivered via cesarean section. Potentially, the relationship between the type of parturition and the colonization of the microbiome will influence the occurrence of diseases, since it can modulate the gut microbiome during early life. In addition, puppies' gut microbiota becomes progressively more similar to adult dogs at weaning, as a consequence of the transition from milk to solid food that works together with behavioral factors. A number of researches have investigated the effects of diet on the gut microbiota of dogs, revealing that dietary interference may affect the microbial composition and activity through the production of short-chain fatty acids and vitamins. These compounds play a fundamental role during the development of the fetus and the initial growth of the puppy. The composition of the diet fed during pregnancy to the bitches is also an important factor to consider for the health of newborns. As far as it is known, the effects of the type of parturition, the maternal microbiota, and the diet on the microbial colonization and the long-term health of the dogs deserve further studies. Definitely, longitudinal studies with a larger number of dogs will be required to assess a causal link between microbiome composition in puppies and diseases in adult dogs.
Collapse
|
41
|
Chen Q, Zhang X, Hu Q, Zhang W, Xie Y, Wei W. The alteration of intrauterine microbiota in chronic endometritis patients based on 16S rRNA sequencing analysis. Ann Clin Microbiol Antimicrob 2023; 22:4. [PMID: 36635729 PMCID: PMC9838023 DOI: 10.1186/s12941-023-00556-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Accepted: 01/05/2023] [Indexed: 01/14/2023] Open
Abstract
BACKGROUND Chronic endometritis (CE) is a disease of continuous and subtle inflammation occurring in the endometrial stromal area, which is often asymptomatic or present with non-specific clinical symptoms. METHODS This study investigated the composition and distribution of the intrauterine microbiota of 71 patients who underwent hysteroscopy during the routine clinical inspection of infertility. Among them, patients who were diagnosed with chronic endometritis (CE) were allocated into CE group (n = 29) and others into non-CE group (n = 42). There was no significant difference in average age between the two groups (P = 0.19). Uterine flushing fluid was collected by the self-developed cervical trocar uterine cavity sampler and 16S rRNA sequencing was performed. RESULTS The alpha diversity in the CE group was significantly higher than that in the non-CE group (P < 0.05). Firmicutes (newly named Bacillota) were the dominant phylum in the non-CE group (72.23%), while their abundance was much lower in the CE group (49.92%), but there was no statistically significant difference between the two groups. The abundances of Actinobacteriota and Cyanobacteria in the CE group were significantly higher than those in the non-CE group (P < 0.05). At the genus level, the abundance of Lactobacillus dominated in all samples, which presented a significantly lower abundance in the CE group (40.88%) than that in the non-CE group (64.22%) (P < 0.05). Correspondingly, the abundance of non-Lactobacillus was higher in the CE group, among which Pseudomonas and Cutibacterium increased significantly (P < 0.01). Moreover, compared with the non-CE group, the pathways involved in arginine and proline metabolism and retinol metabolism were significantly enriched in the CE group (P < 0.05), while the metabolism of lipid and prenyltransferases were significantly decreased in the CE group (P < 0.05). CONCLUSIONS A certain microbial community was colonized in the uterine cavity, which was dominated by Lactobacillus. The structure and distribution of intrauterine microbiota in the CE group were different from those in the non-CE group by showing a lower abundance of Lactobacillus, and a significantly higher abundance of Pseudomonas and Cutibacterium. Additionally, the microbial metabolism was altered in the CE group. This study elaborated the alteration of intrauterine microbiota in CE patients, which may contribute to the diagnosis of CE and provide a reference for antibiotic treatment of CE.
Collapse
Affiliation(s)
- Qing Chen
- grid.440601.70000 0004 1798 0578Department of Obstetrics and Gynecology, Peking University Shenzhen Hospital, Shenzhen, 518036 P. R. China ,Institute of Obstetrics and Gynecology, Shenzhen PKU-HKUST Medical Center, Shenzhen, 518036 P. R. China ,Shenzhen Key Laboratory on Technology for Early Diagnosis of Major Gynecologic Diseases, Shenzhen, 518036 P. R. China
| | - Xiaowei Zhang
- grid.440601.70000 0004 1798 0578Department of Obstetrics and Gynecology, Peking University Shenzhen Hospital, Shenzhen, 518036 P. R. China ,Institute of Obstetrics and Gynecology, Shenzhen PKU-HKUST Medical Center, Shenzhen, 518036 P. R. China ,Shenzhen Key Laboratory on Technology for Early Diagnosis of Major Gynecologic Diseases, Shenzhen, 518036 P. R. China
| | - Qicai Hu
- grid.440601.70000 0004 1798 0578Department of Obstetrics and Gynecology, Peking University Shenzhen Hospital, Shenzhen, 518036 P. R. China ,Institute of Obstetrics and Gynecology, Shenzhen PKU-HKUST Medical Center, Shenzhen, 518036 P. R. China ,Shenzhen Key Laboratory on Technology for Early Diagnosis of Major Gynecologic Diseases, Shenzhen, 518036 P. R. China
| | - Wei Zhang
- grid.440601.70000 0004 1798 0578Department of Obstetrics and Gynecology, Peking University Shenzhen Hospital, Shenzhen, 518036 P. R. China ,Institute of Obstetrics and Gynecology, Shenzhen PKU-HKUST Medical Center, Shenzhen, 518036 P. R. China ,Shenzhen Key Laboratory on Technology for Early Diagnosis of Major Gynecologic Diseases, Shenzhen, 518036 P. R. China
| | - Yi Xie
- grid.440601.70000 0004 1798 0578Department of Obstetrics and Gynecology, Peking University Shenzhen Hospital, Shenzhen, 518036 P. R. China ,Institute of Obstetrics and Gynecology, Shenzhen PKU-HKUST Medical Center, Shenzhen, 518036 P. R. China ,Shenzhen Key Laboratory on Technology for Early Diagnosis of Major Gynecologic Diseases, Shenzhen, 518036 P. R. China
| | - Weixia Wei
- grid.440601.70000 0004 1798 0578Department of Obstetrics and Gynecology, Peking University Shenzhen Hospital, Shenzhen, 518036 P. R. China ,Institute of Obstetrics and Gynecology, Shenzhen PKU-HKUST Medical Center, Shenzhen, 518036 P. R. China ,Shenzhen Key Laboratory on Technology for Early Diagnosis of Major Gynecologic Diseases, Shenzhen, 518036 P. R. China
| |
Collapse
|
42
|
Guo B, Tang J, Ding G, Mashilingi SK, Huang J, An J. Gut microbiota is a potential factor in shaping phenotypic variation in larvae and adults of female bumble bees. Front Microbiol 2023; 14:1117077. [PMID: 36937270 PMCID: PMC10014921 DOI: 10.3389/fmicb.2023.1117077] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 02/13/2023] [Indexed: 03/05/2023] Open
Abstract
Host symbionts are often considered an essential part of the host phenotype, influencing host growth and development. Bumble bee is an ideal model for investigating the relationship between microbiota and phenotypes. Variations in life history across bumble bees may influence the community composition of gut microbiota, which in turn influences phenotypes. In this study, we explored gut microbiota from four development stages (early-instar larvae, 1st instar; mid-instar larvae, 5th instar; late-instar larvae, 9th instar; and adults) of workers and queens in the bumble bee Bombus terrestris using the full-length 16S rRNA sequencing technology. The results showed that morphological indices (weight and head capsule) were significantly different between workers and queens from 5th instar larvae (p < 0.01). The alpha and beta diversities of gut microbiota were similar between workers and queens in two groups: early instar and mid instar larvae. However, the alpha diversity was significantly different in late instar larvae or adults. The relative abundance of three main phyla of bacteria (Cyanobacteria, Proteobacteria, and Firmicutes) and two genera (Snodgrassella and Lactobacillus) were significantly different (p < 0.01) between workers and queens in late instar larvae or adults. Also, we found that age significantly affected the microbial alpha diversity as the Shannon and ASVs indices differed significantly among the four development stages. Our study suggests that the 5th instar larval stage can be used to judge the morphology of workers or queens in bumble bees. The key microbes differing in phenotypes may be involved in regulating phenotypic variations.
Collapse
Affiliation(s)
- Baodi Guo
- Key Laboratory for Insect-Pollinator Biology of the Ministry of Agriculture and Rural Affairs, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Jiao Tang
- Key Laboratory for Insect-Pollinator Biology of the Ministry of Agriculture and Rural Affairs, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Guiling Ding
- Key Laboratory for Insect-Pollinator Biology of the Ministry of Agriculture and Rural Affairs, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Shibonage K. Mashilingi
- Key Laboratory for Insect-Pollinator Biology of the Ministry of Agriculture and Rural Affairs, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing, China
- Department of Crop Sciences and Beekeeping Technology, College of Agriculture and Food Technology, University of Dar es Salaam, Dar es Salaam, Tanzania
| | - Jiaxing Huang
- Key Laboratory for Insect-Pollinator Biology of the Ministry of Agriculture and Rural Affairs, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Jiandong An
- Key Laboratory for Insect-Pollinator Biology of the Ministry of Agriculture and Rural Affairs, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing, China
- *Correspondence: Jiandong An,
| |
Collapse
|
43
|
Kennedy KM, de Goffau MC, Perez-Muñoz ME, Arrieta MC, Bäckhed F, Bork P, Braun T, Bushman FD, Dore J, de Vos WM, Earl AM, Eisen JA, Elovitz MA, Ganal-Vonarburg SC, Gänzle MG, Garrett WS, Hall LJ, Hornef MW, Huttenhower C, Konnikova L, Lebeer S, Macpherson AJ, Massey RC, McHardy AC, Koren O, Lawley TD, Ley RE, O'Mahony L, O'Toole PW, Pamer EG, Parkhill J, Raes J, Rattei T, Salonen A, Segal E, Segata N, Shanahan F, Sloboda DM, Smith GCS, Sokol H, Spector TD, Surette MG, Tannock GW, Walker AW, Yassour M, Walter J. Questioning the fetal microbiome illustrates pitfalls of low-biomass microbial studies. Nature 2023; 613:639-649. [PMID: 36697862 PMCID: PMC11333990 DOI: 10.1038/s41586-022-05546-8] [Citation(s) in RCA: 185] [Impact Index Per Article: 92.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Accepted: 11/09/2022] [Indexed: 01/26/2023]
Abstract
Whether the human fetus and the prenatal intrauterine environment (amniotic fluid and placenta) are stably colonized by microbial communities in a healthy pregnancy remains a subject of debate. Here we evaluate recent studies that characterized microbial populations in human fetuses from the perspectives of reproductive biology, microbial ecology, bioinformatics, immunology, clinical microbiology and gnotobiology, and assess possible mechanisms by which the fetus might interact with microorganisms. Our analysis indicates that the detected microbial signals are likely the result of contamination during the clinical procedures to obtain fetal samples or during DNA extraction and DNA sequencing. Furthermore, the existence of live and replicating microbial populations in healthy fetal tissues is not compatible with fundamental concepts of immunology, clinical microbiology and the derivation of germ-free mammals. These conclusions are important to our understanding of human immune development and illustrate common pitfalls in the microbial analyses of many other low-biomass environments. The pursuit of a fetal microbiome serves as a cautionary example of the challenges of sequence-based microbiome studies when biomass is low or absent, and emphasizes the need for a trans-disciplinary approach that goes beyond contamination controls by also incorporating biological, ecological and mechanistic concepts.
Collapse
Affiliation(s)
- Katherine M Kennedy
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada
- Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, Ontario, Canada
| | - Marcus C de Goffau
- Tytgat Institute for Liver and Intestinal Research, Amsterdam University Medical Centers, Amsterdam, The Netherlands
- Department of Vascular Medicine, Academic Medical Centre, University of Amsterdam, Amsterdam, The Netherlands
- Wellcome Sanger Institute, Cambridge, UK
| | - Maria Elisa Perez-Muñoz
- Department of Agriculture, Food and Nutrition Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - Marie-Claire Arrieta
- International Microbiome Center, University of Calgary, Calgary, Alberta, Canada
| | - Fredrik Bäckhed
- The Wallenberg Laboratory, Department of Molecular and Clinical Medicine, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Department of Clinical Physiology, Region Västra Götaland, Sahlgrenska University Hospital, Gothenburg, Sweden
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Peer Bork
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
- Max Delbrück Centre for Molecular Medicine, Berlin, Germany
- Yonsei Frontier Lab (YFL), Yonsei University, Seoul, South Korea
- Department of Bioinformatics, Biocenter, University of Würzburg, Würzburg, Germany
| | - Thorsten Braun
- Department of Obstetrics and Experimental Obstetrics, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Frederic D Bushman
- Department of Microbiology Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Joel Dore
- Université Paris-Saclay, INRAE, MetaGenoPolis, AgroParisTech, MICALIS, Jouy-en-Josas, France
| | - Willem M de Vos
- Human Microbiome Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- Laboratory of Microbiology, Wageningen University, Wageningen, The Netherlands
| | - Ashlee M Earl
- Infectious Disease and Microbiome Program, Broad Institute of MIT and Harvard, Boston, MA, USA
| | - Jonathan A Eisen
- Department of Evolution and Ecology, University of California, Davis, Davis, CA, USA
- Department of Medical Microbiology and Immunology, University of California, Davis, Davis, CA, USA
- UC Davis Genome Center, University of California, Davis, Davis, CA, USA
| | - Michal A Elovitz
- Maternal and Child Health Research Center, Department of Obstetrics and Gynecology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Stephanie C Ganal-Vonarburg
- Universitätsklinik für Viszerale Chirurgie und Medizin, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
- Department for Biomedical Research (DBMR), University of Bern, Bern, Switzerland
| | - Michael G Gänzle
- Department of Agriculture, Food and Nutrition Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - Wendy S Garrett
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Harvard T.H. Chan Microbiome in Public Health Center, Boston, MA, USA
- Department of Medicine and Division of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA, USA
- Broad Institute of Harvard and MIT, Cambridge, MA, USA
| | - Lindsay J Hall
- Quadram Institute Bioscience, Norwich Research Park, Norwich, UK
- Norwich Medical School, University of East Anglia, Norwich, UK
- Chair of Intestinal Microbiome, ZIEL-Institute for Food and Health, School of Life Sciences, Technical University of Munich, Freising, Germany
| | - Mathias W Hornef
- Institute of Medical Microbiology, RWTH University Hospital, Aachen, Germany
| | - Curtis Huttenhower
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Broad Institute of Harvard and MIT, Cambridge, MA, USA
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Liza Konnikova
- Departments of Pediatrics and Obstetrics, Gynecology and Reproductive Sciences, Yale School of Medicine, New Haven, CT, USA
| | - Sarah Lebeer
- Department of Bioscience Engineering, University of Antwerp, Antwerp, Belgium
| | - Andrew J Macpherson
- Department for Biomedical Research (DBMR), University of Bern, Bern, Switzerland
| | - Ruth C Massey
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- School of Microbiology, University College Cork, Cork, Ireland
| | - Alice Carolyn McHardy
- Computational Biology of Infection Research, Helmholtz Centre for Infection Research, Braunschweig, Germany
- German Center for Infection Research (DZIF), Hannover Braunschweig site, Braunschweig, Germany
- Braunschweig Integrated Centre of Systems Biology (BRICS), Technische Universität Braunschweig, Braunschweig, Germany
| | - Omry Koren
- Azrieli Faculty of Medicine, Bar-Ilan University, Safed, Israel
| | - Trevor D Lawley
- Department of Vascular Medicine, Academic Medical Centre, University of Amsterdam, Amsterdam, The Netherlands
| | - Ruth E Ley
- Department of Microbiome Science, Max Planck Institute for Developmental Biology, Tübingen, Germany
| | - Liam O'Mahony
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- School of Microbiology, University College Cork, Cork, Ireland
- Department of Medicine, University College Cork, Cork, Ireland
| | - Paul W O'Toole
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- School of Microbiology, University College Cork, Cork, Ireland
| | - Eric G Pamer
- Duchossois Family Institute, University of Chicago, Chicago, IL, USA
| | - Julian Parkhill
- Department of Veterinary Medicine, University of Cambridge, Cambridge, UK
| | - Jeroen Raes
- VIB Center for Microbiology, Leuven, Belgium
- Department of Microbiology, Immunology and Transplantation, Rega Institute, KU Leuven, Leuven, Belgium
| | - Thomas Rattei
- Centre for Microbiology and Environmental Systems Science, University of Vienna, Vienna, Austria
| | - Anne Salonen
- Human Microbiome Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Eran Segal
- Weizmann Institute of Science, Rehovot, Israel
| | - Nicola Segata
- Department CIBIO, University of Trento, Trento, Italy
- European Institute of Oncology (IEO), IRCCS, Milan, Italy
| | - Fergus Shanahan
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- Department of Medicine, University College Cork, Cork, Ireland
| | - Deborah M Sloboda
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada
- Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, Ontario, Canada
- Department of Pediatrics, McMaster University, Hamilton, Ontario, Canada
- Department of Obstetrics and Gynecology, McMaster University, Hamilton, Ontario, Canada
| | - Gordon C S Smith
- Department of Obstetrics and Gynaecology, University of Cambridge, Cambridge, UK
- NIHR Cambridge Biomedical Research Centre, Cambridge, UK
| | - Harry Sokol
- Gastroenterology Department, AP-HP, Saint Antoine Hospital, Centre de Recherche Saint-Antoine, CRSA, INSERM and Sorbonne Université, Paris, France
- Paris Center for Microbiome Medicine (PaCeMM), Fédération Hospitalo-Universitaire, Paris, France
- Micalis Institute, INRAE, AgroParisTech, Université Paris-Saclay, Jouy en Josas, France
| | - Tim D Spector
- Department of Twin Research, King's College London, London, UK
| | - Michael G Surette
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada
- Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, Ontario, Canada
- Department of Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Gerald W Tannock
- Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand
| | - Alan W Walker
- Gut Health Group, Rowett Institute, University of Aberdeen, Aberdeen, UK
| | - Moran Yassour
- School of Computer Science and Engineering, The Hebrew University of Jerusalem, Jerusalem, Israel
- Department of Microbiology and Molecular Genetics, IMRIC, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Jens Walter
- APC Microbiome Ireland, University College Cork, Cork, Ireland.
- School of Microbiology, University College Cork, Cork, Ireland.
- Department of Medicine, University College Cork, Cork, Ireland.
| |
Collapse
|
44
|
Compositional Differences of Meconium Microbiomes of Preterm and Term Infants, and Infants That Developed Necrotizing Enterocolitis or Feeding Intolerance. Pathogens 2022; 12:pathogens12010055. [PMID: 36678403 PMCID: PMC9863680 DOI: 10.3390/pathogens12010055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 12/23/2022] [Accepted: 12/27/2022] [Indexed: 12/31/2022] Open
Abstract
The primary aim of this study was to investigate the compositional differences of the first passed meconium microbiome in preterm and term infants, and the secondary aim was to compare the meconium microbiomes of preterm and term infants that later developed necrotizing enterocolitis (NEC)/Feeding intolerance (FI) compared to those that did not develop NEC/FI. During the study period, a total of 108 preterm and term newborns' first passed meconium occurring within 72 hours of birth were collected and microbiome analyzed. Meconium microbiomes showed a disruption in the percentages of the core microbiome constituents in both the phylum and genus levels in infants born < 30 weeks of gestational age (GA) compared to those born ≥ 30 weeks of GA. In the phylum level, Bacteroidetes and Firmicutes, and in the genus level, Prevotella and Bacteroides, were predominant, with Prevotella accounting for 20−30% of the relative abundance. As GA increased, a significant increase in the relative abundance of Bacteroidetes (P for trend < 0.001) and decrease in Proteobacteria (P for trend = 0.049) was observed in the phylum level. In the genus level, as GA increased, Prevotella (P for trend < 0.001) and Bacteroides (P for trend = 0.002) increased significantly, whereas Enterococcus (P for trend = 0.020) decreased. Compared to the control group, the meconium of infants that later developed NEC/FI had significantly lower alpha diversities but similar beta-diversities. Furthermore, the NEC/FI group showed a significantly lower abundance of Bacteroidetes (P < 0.001), and higher abundance of Firmicutes (P = 0.034). To conclude, differences were observed in the composition of the first passed meconium in preterm and term infants that later develop NEC/FI compared to those that did not.
Collapse
|
45
|
Zhu B, Tao Z, Edupuganti L, Serrano MG, Buck GA. Roles of the Microbiota of the Female Reproductive Tract in Gynecological and Reproductive Health. Microbiol Mol Biol Rev 2022; 86:e0018121. [PMID: 36222685 PMCID: PMC9769908 DOI: 10.1128/mmbr.00181-21] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
The microbiome of the female reproductive tract defies the convention that high biodiversity is a hallmark of an optimal ecosystem. Although not universally true, a homogeneous vaginal microbiome composed of species of Lactobacillus is generally associated with health, whereas vaginal microbiomes consisting of other taxa are generally associated with dysbiosis and a higher risk of disease. The past decade has seen a rapid advancement in our understanding of these unique biosystems. Of particular interest, substantial effort has been devoted to deciphering how members of the microbiome of the female reproductive tract impact pregnancy, with a focus on adverse outcomes, including but not limited to preterm birth. Herein, we review recent research efforts that are revealing the mechanisms by which these microorganisms of the female reproductive tract influence gynecologic and reproductive health of the female reproductive tract.
Collapse
Affiliation(s)
- Bin Zhu
- Microbiology & Immunology, School of Medicine, Virginia Commonwealth University, Richmond, Virginia, USA
- Center for Microbiome Engineering and Data Analysis, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Zhi Tao
- Microbiology & Immunology, School of Medicine, Virginia Commonwealth University, Richmond, Virginia, USA
- Center for Microbiome Engineering and Data Analysis, Virginia Commonwealth University, Richmond, Virginia, USA
- Department of Obstetrics and Gynecology, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing, People’s Republic of China
| | - Laahirie Edupuganti
- Microbiology & Immunology, School of Medicine, Virginia Commonwealth University, Richmond, Virginia, USA
- Center for Microbiome Engineering and Data Analysis, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Myrna G. Serrano
- Microbiology & Immunology, School of Medicine, Virginia Commonwealth University, Richmond, Virginia, USA
- Center for Microbiome Engineering and Data Analysis, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Gregory A. Buck
- Microbiology & Immunology, School of Medicine, Virginia Commonwealth University, Richmond, Virginia, USA
- Center for Microbiome Engineering and Data Analysis, Virginia Commonwealth University, Richmond, Virginia, USA
- Computer Science, School of Engineering, Virginia Commonwealth University, Richmond, Virginia, USA
| |
Collapse
|
46
|
Qiu L, Zhao Y, Ma H, Tian X, Bai C, Liao T. The Quality and Bacterial Community Changes in Freshwater Crawfish Stored at 4 °C in Vacuum Packaging. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27238618. [PMID: 36500719 PMCID: PMC9740484 DOI: 10.3390/molecules27238618] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 11/11/2022] [Accepted: 12/01/2022] [Indexed: 12/12/2022]
Abstract
Crawfish can be easily spoiled due to their rich nutrition and high water content, which is difficult to preserve. In this study, the dominant spoilage organisms in crawfish which were stored at 4 °C in vacuum packaging were identified by high-throughput sequencing technology; after sequencing the full-length 16S rRNA gene, the changes in the bacterial community structure, diversity and quality (texture, flavor, etc.) were analyzed. Our results reflected that the specific spoilage organisms (SSOs) of crawfish were Aeromonas sobria, Shewanella putrefaciens, Trichococcus pasteurii and Enterococcus aquimarinus, since their abundances significantly increased after being stored for 12 days at 4 °C under vacuum conditions. At the same time, the abundance and diversity of the microbial community decreased with storage time, which was related to the rapid growth of the dominant spoilage organisms and the inhibition of other kinds of microorganisms at the end of the spoilage stage. Function prediction results showed that the gene which contributed to metabolism influenced the spoilage process. Moreover, the decline in texture of crawfish was negatively correlated to the richness of SSOs; this may be because SSOs can produce alkaline proteases to degrade the myofibrillar protein. On the contrary, the unpleasant flavor of crawfish, resulting from volatile flavor compounds such as S-containing compounds and APEOs, etc., is negatively correlated to the richness of SSOs, due to the metabolism of SSOs by secondary metabolites such as terpenoids, polyketides and lips, which can lead to decarboxylation, deamination and enzymatic oxidation. These results are very important to achieve the purpose of targeted inhibition of crawfish spoilage at 4 °C in vacuum packaging.
Collapse
Affiliation(s)
- Liang Qiu
- Institute of Agro-Products Processing and Nuclear Agricultural Technology, Hubei Academy of Agricultural Sciences, 5th Nanhu Aevenue, Wuhan 430064, China
- Key Laboratory of Cold Chain Logistics for Agro-Product, Ministry of Agriculture and Rural Affairs, Wuhan 430064, China
| | - Yunchun Zhao
- Guangdong Key Laboratory of Fermentation & Enzyme Engineering, School of Biology and Biological Engineering, South China University of Technology, 382 East Out Loop, University Park, Guangzhou 510006, China
| | - Hui Ma
- Institute of Agro-Products Processing and Nuclear Agricultural Technology, Hubei Academy of Agricultural Sciences, 5th Nanhu Aevenue, Wuhan 430064, China
- Key Laboratory of Cold Chain Logistics for Agro-Product, Ministry of Agriculture and Rural Affairs, Wuhan 430064, China
| | - Xiaofei Tian
- Guangdong Key Laboratory of Fermentation & Enzyme Engineering, School of Biology and Biological Engineering, South China University of Technology, 382 East Out Loop, University Park, Guangzhou 510006, China
| | - Chan Bai
- Institute of Agro-Products Processing and Nuclear Agricultural Technology, Hubei Academy of Agricultural Sciences, 5th Nanhu Aevenue, Wuhan 430064, China
- Key Laboratory of Cold Chain Logistics for Agro-Product, Ministry of Agriculture and Rural Affairs, Wuhan 430064, China
| | - Tao Liao
- Institute of Agro-Products Processing and Nuclear Agricultural Technology, Hubei Academy of Agricultural Sciences, 5th Nanhu Aevenue, Wuhan 430064, China
- Key Laboratory of Cold Chain Logistics for Agro-Product, Ministry of Agriculture and Rural Affairs, Wuhan 430064, China
- Correspondence: ; Tel.: +868-738-9705
| |
Collapse
|
47
|
Zhong Z, Tang H, Shen T, Ma X, Zhao F, Kwok LY, Sun Z, Bilige M, Zhang H. Bifidobacterium animalis subsp. lactis Probio-M8 undergoes host adaptive evolution by glcU mutation and translocates to the infant's gut via oral-/entero-mammary routes through lactation. MICROBIOME 2022; 10:197. [PMID: 36419187 PMCID: PMC9682673 DOI: 10.1186/s40168-022-01398-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 10/20/2022] [Indexed: 06/16/2023]
Abstract
BACKGROUND Most previous studies attempting to prove the phenomenon of mother-to-infant microbiota transmission were observational, performed only at genus/species-level resolution, and relied entirely on non-culture-based methodologies, impeding interpretation. RESULTS This work aimed to use a biomarker strain, Bifidobacterium animalis subsp. lactis Probio-M8 (M8), to directly evaluate the vertical transmission of maternally ingested bacteria by integrated culture-dependent/-independent methods. Our culture and metagenomics results showed that small amounts of maternally ingested bacteria could translocate to the infant gut via oral-/entero-mammary routes through lactation. Interestingly, many mother-infant-pair-recovered M8 homologous isolates exhibited high-frequency nonsynonymous mutations in a sugar transporter gene (glcU) and altered carbohydrate utilization preference/capacity compared with non-mutant isolates, suggesting that M8 underwent adaptive evolution for better survival in simple sugar-deprived lower gut environments. CONCLUSIONS This study presented direct and strain-level evidence of mother-to-infant bacterial transmission through lactation and provided insights into the impact of milk microbiota on infant gut colonization. Video Abstract.
Collapse
Affiliation(s)
- Zhi Zhong
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Hohhot, 010018, China
- Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs, Inner Mongolia Agricultural University, Hohhot, 010018, China
- Inner Mongolia Key Laboratory of Dairy Biotechnology and Engineering, Hohhot, 010018, China
| | - Hai Tang
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Hohhot, 010018, China
- Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs, Inner Mongolia Agricultural University, Hohhot, 010018, China
- Inner Mongolia Key Laboratory of Dairy Biotechnology and Engineering, Hohhot, 010018, China
| | - Tingting Shen
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Hohhot, 010018, China
- Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs, Inner Mongolia Agricultural University, Hohhot, 010018, China
- Inner Mongolia Key Laboratory of Dairy Biotechnology and Engineering, Hohhot, 010018, China
| | - Xinwei Ma
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Hohhot, 010018, China
- Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs, Inner Mongolia Agricultural University, Hohhot, 010018, China
- Inner Mongolia Key Laboratory of Dairy Biotechnology and Engineering, Hohhot, 010018, China
| | - Feiyan Zhao
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Hohhot, 010018, China
- Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs, Inner Mongolia Agricultural University, Hohhot, 010018, China
- Inner Mongolia Key Laboratory of Dairy Biotechnology and Engineering, Hohhot, 010018, China
| | - Lai-Yu Kwok
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Hohhot, 010018, China
- Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs, Inner Mongolia Agricultural University, Hohhot, 010018, China
- Inner Mongolia Key Laboratory of Dairy Biotechnology and Engineering, Hohhot, 010018, China
| | - Zhihong Sun
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Hohhot, 010018, China
- Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs, Inner Mongolia Agricultural University, Hohhot, 010018, China
- Inner Mongolia Key Laboratory of Dairy Biotechnology and Engineering, Hohhot, 010018, China
| | - Menghe Bilige
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Hohhot, 010018, China
- Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs, Inner Mongolia Agricultural University, Hohhot, 010018, China
- Inner Mongolia Key Laboratory of Dairy Biotechnology and Engineering, Hohhot, 010018, China
| | - Heping Zhang
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Hohhot, 010018, China.
- Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs, Inner Mongolia Agricultural University, Hohhot, 010018, China.
- Inner Mongolia Key Laboratory of Dairy Biotechnology and Engineering, Hohhot, 010018, China.
| |
Collapse
|
48
|
Wang Z, Zhao Y, Lan X, He J, Wan F, Shen W, Tang S, Zhou C, Tan Z, Yang Y. Tannic acid supplementation in the diet of Holstein bulls: Impacts on production performance, physiological and immunological characteristics, and ruminal microbiota. Front Nutr 2022; 9:1066074. [PMID: 36466399 PMCID: PMC9709124 DOI: 10.3389/fnut.2022.1066074] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 10/31/2022] [Indexed: 09/29/2023] Open
Abstract
This study was conducted to evaluate the influences of supplementing tannic acid (TA) at different doses on the production performance, physiological and immunological characteristics, and rumen bacterial microbiome of cattle. Forty-eight Holstein bulls were randomly allocated to four dietary treatments: the control (CON, basal diet), the low-dose TA treatment [TAL, 0.3% dry matter (DM)], the mid-dose TA treatment (TAM, 0.9% DM), and the high-dose TA treatment (TAH, 2.7% DM). This trial consisted of 7 days for adaptation and 90 days for data and sample collection, and samples of blood and rumen fluid were collected on 37, 67, and 97 d, respectively. The average daily gain was unaffected (P > 0.05), whilst the ruminal NH3-N was significantly decreased (P < 0.01) by TA supplementation. The 0.3% TA addition lowered (P < 0.05) the levels of ruminal isobutyrate, valerate, and tumor necrosis factor alpha (TNF-α), and tended to (P < 0.1) increase the gain to feed ratio. The digestibility of DM, organic matter (OM), and crude protein, and percentages of butyrate, isobutyrate, and valerate were lower (P < 0.05), while the acetate proportion and acetate to propionate ratio in both TAM and TAH were higher (P < 0.05) than the CON. Besides, the 0.9% TA inclusion lessened (P < 0.05) the concentrations of glucagon and TNF-α, but enhanced (P < 0.05) the interferon gamma (IFN-γ) level and Simpson index of ruminal bacteria. The 2.7% TA supplementation reduced (P < 0.05) the intake of DM and OM, and levels of malondialdehyde and thyroxine, while elevated (P < 0.05) the Shannon index of the rumen bacterial populations. Moreover, the relative abundances of the phyla Fibrobacteres and Lentisphaerae, the genera Fibrobacter and Bradyrhizobium, and the species Bradyrhizobium sp., Lachnospiraceae bacterium RM29, and Lachnospiraceae bacterium CG57 were highly significantly (q < 0.01) or significantly (q < 0.05) raised by adding 2.7% TA. Results suggested that the TA addition at 0.3% is more suitable for the cattle, based on the general comparison on the impacts of supplementing TA at different doses on all the measured parameters.
Collapse
Affiliation(s)
- Zuo Wang
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, Hunan, China
| | - Yuan Zhao
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, Hunan, China
| | - Xinyi Lan
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, Hunan, China
| | - Jianhua He
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, Hunan, China
| | - Fachun Wan
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, Hunan, China
| | - Weijun Shen
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, Hunan, China
| | - Shaoxun Tang
- CAS Key Laboratory of Agro-Ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Hunan Provincial Key Laboratory of Animal Nutrition and Physiology and Metabolism, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, Hunan, China
| | - Chuanshe Zhou
- CAS Key Laboratory of Agro-Ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Hunan Provincial Key Laboratory of Animal Nutrition and Physiology and Metabolism, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, Hunan, China
| | - Zhiliang Tan
- CAS Key Laboratory of Agro-Ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Hunan Provincial Key Laboratory of Animal Nutrition and Physiology and Metabolism, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, Hunan, China
| | - Yanming Yang
- Jiurui Biology and Chemistry Co., Ltd., Zhangjiajie, Hunan, China
| |
Collapse
|
49
|
Wang Z, Yin L, Liu L, Lan X, He J, Wan F, Shen W, Tang S, Tan Z, Yang Y. Tannic acid reduced apparent protein digestibility and induced oxidative stress and inflammatory response without altering growth performance and ruminal microbiota diversity of Xiangdong black goats. Front Vet Sci 2022; 9:1004841. [PMID: 36187804 PMCID: PMC9516568 DOI: 10.3389/fvets.2022.1004841] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 08/22/2022] [Indexed: 11/13/2022] Open
Abstract
The present study was performed to evaluate the impacts of tannic acid (TA) supplementation at different levels on the growth performance, physiological, oxidative and immunological metrics, and ruminal microflora of Xiangdong black goats. Twenty-four goats were randomly assigned to four dietary treatments: the control (CON, basal diet), the low-dose TA group [TAL, 0.3 % of dry matter (DM)], the mid-dose TA group (TAM, 0.6 % of DM), and the high-dose TA group (TAH, 0.9 % of DM). Results showed that the growth performance was unaffected (P > 0.05) by adding TA, whilst the 0.3 % and 0.6 % TA supplementation significantly decreased (P < 0.05) the apparent digestibility of crude protein (CP) and ruminal NH3-N concentration, and raised (P < 0.05) the level of total volatile fatty acid (TVFA) in rumen. The increments of alanine aminotransferase (ALT), triglyceride (TG), cortisol (CORT), total antioxidant capacity (T-AOC), interleukin (IL)-1β, IL-6, and serumamyloid A (SAA), and decrements of globulin (GLB), immunoglobulin G (IgG), cholinesterase (CHE), glutathione reductase (GR), creatinine (CRE), growth hormone (GH), high-density lipoprotein cholesterol (HDLC), and insulin-like growth factor 1 (IGF-1) to different extents by TA addition were observed. Although the Alpha and Beta diversity of rumen bacterial community remained unchanged by supplementing TA, the relative abundance of the predominant genus Prevotella_1 was significantly enriched (P < 0.05) in TAL. It could hence be concluded that the TA supplementation in the present trial generally decreased CP digestion and caused oxidative stress and inflammatory response without influencing growth performance and ruminal microbiota diversity. More research is needed to explore the premium dosage and mechanisms of effects for TA addition in the diet of goats.
Collapse
Affiliation(s)
- Zuo Wang
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, China
| | - Lei Yin
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, China
| | - Lei Liu
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, China
| | - Xinyi Lan
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, China
| | - Jianhua He
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, China
| | - Fachun Wan
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, China
| | - Weijun Shen
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, China
| | - Shaoxun Tang
- CAS Key Laboratory of Agro-Ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Hunan Provincial Key Laboratory of Animal Nutrition & Physiology and Metabolism, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China
| | - Zhiliang Tan
- CAS Key Laboratory of Agro-Ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Hunan Provincial Key Laboratory of Animal Nutrition & Physiology and Metabolism, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China
| | - Yanming Yang
- Jiurui Biology & Chemistry Co., Ltd., Zhangjiajie, China
| |
Collapse
|
50
|
Garrigues Q, Apper E, Chastant S, Mila H. Gut microbiota development in the growing dog: A dynamic process influenced by maternal, environmental and host factors. Front Vet Sci 2022; 9:964649. [PMID: 36118341 PMCID: PMC9478664 DOI: 10.3389/fvets.2022.964649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 08/12/2022] [Indexed: 11/13/2022] Open
Abstract
Microorganisms of the gastrointestinal tract play a crucial role in the health, metabolism and development of their host by modulating vital functions such as digestion, production of key metabolites or stimulation of the immune system. This review aims to provide an overview on the current knowledge of factors shaping the gut microbiota of young dogs. The composition of the gut microbiota is modulated by many intrinsic (i.e., age, physiology, pathology) and extrinsic factors (i.e., nutrition, environment, medication) which can cause both beneficial and harmful effects depending on the nature of the changes. The composition of the gut microbiota is quickly evolving during the early development of the dog, and some crucial bacteria, mostly anaerobic, progressively colonize the gut before the puppy reaches adulthood. Those bacterial communities are of paramount importance for the host health, with disturbance in their composition potentially leading to altered metabolic states such as acute diarrhea or inflammatory bowel disease. While many studies focused on the microbiota of young children, there is still a lack of knowledge concerning the development of gut microbiota in puppies. Understanding this early evolution is becoming a key aspect to improve dogs' short and long-term health and wellbeing.
Collapse
Affiliation(s)
- Quentin Garrigues
- NeoCare, ENVT, Université de Toulouse, Toulouse, France
- *Correspondence: Quentin Garrigues
| | | | | | - Hanna Mila
- NeoCare, ENVT, Université de Toulouse, Toulouse, France
| |
Collapse
|