1
|
Zhang S, Elbs-Glatz Y, Tao S, Schmitt S, Li Z, Rottmar M, Maniura-Weber K, Ren Q. Probiotics promote cellular wound healing responses by modulating the PI3K and TGF-β/Smad signaling pathways. Cell Commun Signal 2025; 23:195. [PMID: 40269904 PMCID: PMC12016068 DOI: 10.1186/s12964-025-02179-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2024] [Accepted: 03/27/2025] [Indexed: 04/25/2025] Open
Abstract
BACKGROUND Skin wound healing represents a dynamic and intricate biological process involving the coordinated efforts of various cellular and molecular components to restore tissue integrity and functionality. Among the myriads of cellular events orchestrating wound closure, fibroblast migration and the regulation of fibrosis play pivotal roles in determining the outcome of wound healing. In recent years, probiotic therapy has emerged as a promising strategy for modulating wound healing and fibrosis. Here, we aim to investigate the effect of bacterial probiotics on cell migration and anti-fibrotic response of human dermal fibroblast (HDFs). METHODS Probiotic mixture BioK was co-cultured with HDFs in vitro to assess its impact on fibroblast migration, gene expression, and protein production associated with important processes in wound healing. Gene expression was investigated by transcriptomic analysis and confirmed by RT-qPCR. Protein levels of the identified genes were evaluated by ELISA. The role of lactic acid, produced by BioK, in mediating pH-related effects on fibroblast activity was further examined. RESULTS We observed that BioK effectively promoted HDFs migration in vitro, which was found to be related to the up-regulation of genes involved in the phosphoinositide 3-kinase (PI3K) signaling pathways such as Paxillin, PI3K, PKC and ITG-β1. Interestingly, we also found that BioK down-regulated the expression of Nox-4, α-SMA and Col-I in TGF-Smad signaling pathways, which are involved in the differentiation of fibroblasts to myofibroblasts, and extracellular matrix type I collagen production, demonstrating its potential in reducing formation of fibrosis and scars. One of the acting factors for such down-regulation was identified to be BioK-produced lactic acid, which is known to lower the surrounding pH and to play a major role in fibroblast activity and wound healing. CONCLUSIONS This study demonstrates BioK's beneficial effects on fibroblast migration and its potential to mitigate fibrosis through pH modulation and pathway-specific gene regulation. These findings enhance our understanding of probiotic action on wound healing and offer promising therapeutic insights for the reduction of scar formation. CLINICAL TRIAL NUMBER Not applicable.
Collapse
Affiliation(s)
- Sixuan Zhang
- Empa, Swiss Federal Laboratories for Materials Science and Technology, Biointerfaces Lab, St. Gallen, 9014, Switzerland
| | - Yvonne Elbs-Glatz
- Empa, Swiss Federal Laboratories for Materials Science and Technology, Biointerfaces Lab, St. Gallen, 9014, Switzerland
| | - Siyuan Tao
- Empa, Swiss Federal Laboratories for Materials Science and Technology, Biointerfaces Lab, St. Gallen, 9014, Switzerland
| | - Steven Schmitt
- ETH Zurich, D-BSSE (Department of Biosystems Science and Engineering), Basel, 4056, Switzerland
| | - Zhihao Li
- Empa, Swiss Federal Laboratories for Materials Science and Technology, Biointerfaces Lab, St. Gallen, 9014, Switzerland.
| | - Markus Rottmar
- Empa, Swiss Federal Laboratories for Materials Science and Technology, Biointerfaces Lab, St. Gallen, 9014, Switzerland.
| | - Katharina Maniura-Weber
- Empa, Swiss Federal Laboratories for Materials Science and Technology, Biointerfaces Lab, St. Gallen, 9014, Switzerland.
| | - Qun Ren
- Empa, Swiss Federal Laboratories for Materials Science and Technology, Biointerfaces Lab, St. Gallen, 9014, Switzerland.
| |
Collapse
|
2
|
Zhao Z, Xu Y, Hu Y. Acid-resistant chemotactic DNA micromotors for probiotic delivery in inflammatory bowel disease. Nat Commun 2025; 16:3778. [PMID: 40263286 PMCID: PMC12015548 DOI: 10.1038/s41467-025-59172-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2024] [Accepted: 04/13/2025] [Indexed: 04/24/2025] Open
Abstract
Microcapsules composed of synthetic polymeric matrices have attracted considerable attention in delivering oral probiotics. However, existing polymeric microcapsules demonstrate inadequate acid resistance and adaptability, as well as deficiency in the inflamed colon-specificity and uncontrolled release of probiotics therein. Herein, a DNA microcapsule is prepared as a probiotic-transporting micromotor through photo-crosslinking of hyaluronic acid methacrylate and acrydite-modified A-/C-rich oligomers within the microfludically generated droplets in the presence of nitric oxide-cleavable crosslinker and gas donor manganese carbonyl (MnCO). As the microcapsules traverse stomach, duodenum, and ultimately colon, the formation and dissociation of A-motif and i-motif structures instigate a reversible shrinking-swelling transition of microcapsules to preserve probiotic viability. Subsequently, the microcapsules exhibit chemotaxis towards inflamed colon site, driven by a gas-generating reaction between MnCO and elevated reactive oxygen species. Following disintegration of the microcapsules, triggered by endogenous nitric oxide, probiotics are released to reshape the dysbiosis of intestinal microflora. This advanced delivery system offers significant promise for the effective clinical management of inflammatory bowel disease.
Collapse
Affiliation(s)
- Zinan Zhao
- Department of Polymeric Materials, School of Materials Science and Engineering, Tongji University, Shanghai, 201804, P. R. China
| | - Yao Xu
- Department of Polymeric Materials, School of Materials Science and Engineering, Tongji University, Shanghai, 201804, P. R. China
| | - Yong Hu
- Department of Polymeric Materials, School of Materials Science and Engineering, Tongji University, Shanghai, 201804, P. R. China.
| |
Collapse
|
3
|
Ali DE, Sweilam SH, Atwa AM, Elgindy AM, Mustafa AM, Esmail MM, Alkabbani MA, Senna MM, El-Shiekh RA. HPLC-HRMS/MS and anti-inflammatory effects of bunya pine resin through multifaceted pathway modulation: NUMB/NOTCH1/HES1/mTOR/ PI3K/HMGB1 signaling cascades. Inflammopharmacology 2025:10.1007/s10787-025-01660-x. [PMID: 40163273 DOI: 10.1007/s10787-025-01660-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2024] [Accepted: 01/12/2025] [Indexed: 04/02/2025]
Abstract
The oleoresins of the Araucaria bidwillii Hook. (A.B.) are commonly used for the treatment of several conditions. However, the full phytochemical profile of its active compounds and its mechanism of action to protect the liver from toxicity remain unclear. The purpose of this research was to investigate the complete set of data relating to the A.B. active metabolites and explore the hepatoprotective properties of AB ethanolic extract on MTX-induced liver injury mainly due to its anti-inflammatory role. Hepatic markers, oxidative stress, inflammatory mediators, the NOTCH/NICD signaling cascade, HES1 expression, HMGB1/TLR4, and the PI3K/mTOR axis were assessed. HPLC-HRMS/MS analysis of A.B. led to the annotation of fifteen compounds from different classes, where diterpenes are the dominant class. Additionally, A.B. (100 and 200 mg/kg) significantly decreased hepatic markers, oxidative stress, and inflammatory mediators. Moreover, the extract significantly increased NOTCH pathway stimulation and HES1 expression, accompanied by a significant decline in the NUMB and HMGB1/TLR4 axes. In addition, it significantly inhibited the PI3K/mTOR pathway, with a prominent effect at the higher dose. This study presents A.B. as a promising hepatoprotective agent through stimulation of the NOTCH pathway and inhibition of the HMGB1/TLR4 pathway, as well as the PI3K/mTOR/NF-κB axis, besides its antioxidant and anti-inflammatory effects.
Collapse
Affiliation(s)
- Dalia E Ali
- Pharmacognosy and Natural Products Department, Faculty of Pharmacy, Pharos University in Alexandria, Alexandria, Egypt
| | - Sherouk Hussein Sweilam
- Department of Pharmacognosy, College of Pharmacy, Prince Sattam Bin Abdulaziz University, 11942, Al-Kharj, Saudi Arabia
- Department of Pharmacognosy, Faculty of Pharmacy, Egyptian Russian University, Cairo-Suez Road, Badr City, 11829, Cairo, Egypt
| | - Ahmed M Atwa
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Egyptian Russian University, Badr City, 11829, Cairo, Egypt
- Department of Pharmacology and Toxicology, College of Pharmacy, Al-Ayen Iraqi University, Thi-Qar, 64001, Iraq
| | - Ali M Elgindy
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Egyptian Russian University, Badr City, 11829, Cairo, Egypt
| | - Aya M Mustafa
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Egyptian Russian University, Badr City, 11829, Cairo, Egypt
| | - Manar M Esmail
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Egyptian Russian University, Badr City, 11829, Cairo, Egypt
| | - Mahmoud Abdelrahman Alkabbani
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Egyptian Russian University, Badr City, 11829, Cairo, Egypt
| | - Mohamed Magdy Senna
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Egyptian Russian University, Badr City, 11829, Cairo, Egypt
| | - Riham A El-Shiekh
- Department of Pharmacognosy, Faculty of Pharmacy, Cairo University, Cairo, 11562, Egypt.
| |
Collapse
|
4
|
Mahamud AGMSU, Tanvir IA, Kabir ME, Samonty I, Chowdhury MAH, Rahman MA. Gerobiotics: Exploring the Potential and Limitations of Repurposing Probiotics in Addressing Aging Hallmarks and Chronic Diseases. Probiotics Antimicrob Proteins 2025:10.1007/s12602-025-10501-w. [PMID: 40029460 DOI: 10.1007/s12602-025-10501-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/20/2025] [Indexed: 03/05/2025]
Abstract
As unhealthy aging continues to rise globally, there is a pressing need for effective strategies to promote healthy aging, extend health span, and address aging-related complications. Gerobiotics, an emerging concept in geroscience, offers a novel approach to repurposing selective probiotics, postbiotics, and parabiotics to modulate key aging processes and enhance systemic health. This review explores recent advancements in gerobiotics research, focusing on their role in targeting aging hallmarks, regulating longevity-associated pathways, and reducing risks of multiple age-related chronic conditions. Despite their promise, significant challenges remain, including optimizing formulations, ensuring safety and efficacy across diverse populations, and achieving successful clinical translation. Addressing these gaps through rigorous research, well-designed clinical trials, and advanced biotechnologies can establish gerobiotics as a transformative intervention for healthy aging and chronic disease prevention.
Collapse
Affiliation(s)
| | | | - Md Ehsanul Kabir
- School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, 53715, USA.
| | - Ismam Samonty
- Department of Agricultural Chemistry, Bangladesh Agricultural University, Mymensingh, 2202, Bangladesh
| | - Md Anamul Hasan Chowdhury
- Department of Food Safety and Regulatory Science, Chung-Ang University, Anseong-Si, Gyeonggi-Do, 17546, Republic of Korea
| | - Md Ashikur Rahman
- Department of Food Safety and Regulatory Science, Chung-Ang University, Anseong-Si, Gyeonggi-Do, 17546, Republic of Korea
| |
Collapse
|
5
|
Khan H, Singh A, Singh Y, Sharma D, Dua K, Grewal AK, Singh TG. Pharmacological modulation of PI3K/PTEN/Akt/mTOR/ERK signaling pathways in ischemic injury: a mechanistic perspective. Metab Brain Dis 2025; 40:131. [PMID: 40009091 DOI: 10.1007/s11011-025-01543-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Accepted: 01/21/2025] [Indexed: 02/27/2025]
Abstract
Ischemia, also known as ischemia, relates to the reduced blood movement to a cells, muscle group, or organ in the body, culminating in an insufficient amount of oxygen required for cellular metabolism and the maintenance of tissue viability. There are different types of stroke (ischemic stroke, intracerebral hemorrhage, subarachnoid hemorrhage), and different causes of stroke (e.g., cardioembolic, atherothrombotic, lacunar ischemic strokes, aneurysmal subarachnoid hemorrhage). It also includes other disorders affecting the blood vessels in the brain (e.g., vascular malformations, unruptured aneurysms). Each of these conditions has different characteristics in terms of how common they are and how they are managed. Stroke is the primary and catastrophic clinical presentation of all cerebrovascular diseases. In this review we focused about the importance of PI3K/AKT signaling pathways which are important in the onset of ischemia-reperfusion (I/R) injury. In addition, mTOR, a target that is activated by the PI3K/Akt signaling pathway, is both required and capable of providing enough protection to the heart against harm caused by I/R. Moreover, the signaling pathways that involve PI3K/Akt/Erk/PTEN/mTOR play a crucial role in facilitating the proliferation and maintenance of neurons following an ischemic stroke. The current review summarizes the molecular mechanisms of various signaling pathways in ischemic diseases and suggests targeting its receptors as a preventive approach based on pre-clinical and clinical studies.
Collapse
Affiliation(s)
- Heena Khan
- Chitkara College of Pharmacy, Chitkara University, Punjab, 140401, Punjab, India
| | - Aditi Singh
- Chitkara College of Pharmacy, Chitkara University, Punjab, 140401, Punjab, India
| | - Yashvardhan Singh
- Chitkara College of Pharmacy, Chitkara University, Punjab, 140401, Punjab, India
| | - Diksha Sharma
- Chitkara College of Pharmacy, Chitkara University, Punjab, 140401, Punjab, India
| | - Kamal Dua
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Sydney, NSW, 2007, Australia
- Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, NSW, 2007, Australia
| | - Amarjot Kaur Grewal
- Chitkara College of Pharmacy, Chitkara University, Punjab, 140401, Punjab, India
| | - Thakur Gurjeet Singh
- Chitkara College of Pharmacy, Chitkara University, Punjab, 140401, Punjab, India.
| |
Collapse
|
6
|
Yang Q, Zhao D, Ju L, Cao P, Wei J, Liu Z. Brigatinib can inhibit proliferation and induce apoptosis of human immortalized keratinocyte cells. Front Pharmacol 2025; 16:1524277. [PMID: 40041486 PMCID: PMC11876137 DOI: 10.3389/fphar.2025.1524277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Accepted: 01/21/2025] [Indexed: 03/06/2025] Open
Abstract
Background Brigatinib is approved in multiple countries for the treatment of patients with anaplastic lymphoma kinase (ALK)-positive non-small cell lung cancer (NSCLC). Despite its superior efficacy, the dermal toxicities caused by brigatinib cannot be overlooked. However, its underlying mechanism remains unknown. Methods The effects of brigatinib on the proliferation ability of human immortalized keratinocyte (HaCaT) cells were evaluated using Cell Counting Kit-8 (CCK-8) proliferation, colony formation, and 5-ethynyl-2'-deoxyuridine (EdU) incorporation assays. The effects of brigatinib on apoptosis were detected using Annexin FITC/PI and Acridine Orange (AO) staining assays. Cell cycle was assessed with flow cytometry. An analysis of transcriptome by RNA sequencing procedures (RNA-seq) was performed to reveal the key regulatory genes. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) were used to find out the biological function and related signal pathways. The expressions of amphiregulin, epiregulin and transforming growth factor alpha (TGFA) and the protein levels of Phosphoinositide 3-kinase (PI3K)/protein kinase B (AKT) and Cleaved-Caspase three were measured by quantitative reverse transcription polymerase chain reaction (qRT-PCR) and western blot assay. Results Brigatinib inhibits cell proliferation with an IC50 value of 2.9 μmol/L and significantly increases apoptosis rates. Transcriptome sequencing (RNA-seq) indicates that brigatinib could significantly downregulate the expression of amphiregulin, epiregulin and TGFA. In addition, we demonstrated that brigatinib reduced the protein expression of amphiregulin, epiregulin, TGFA, PI3K, AKT and phosphorylated AKT (p-AKT). Conclusion This study confirms the inhibition of HaCaT cells growth and progression by brigatinib and highlights the potential value of the PI3K/AKT pathway as a therapeutic target for brigatinib-induced dermal toxicities.
Collapse
Affiliation(s)
- Qi Yang
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Dan Zhao
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Linjie Ju
- Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, China
| | - Peng Cao
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Jifu Wei
- Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, China
| | - Zhixian Liu
- Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
7
|
Zhao M, Peng N, Zhou Y, Qu Y, Cao M, Zou Q, Yu Q, Lu L, Xiao F. The immunoregulatory effects of total glucosides of peony in autoimmune diseases. J Leukoc Biol 2025; 117:qiae095. [PMID: 38626175 DOI: 10.1093/jleuko/qiae095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Revised: 03/09/2024] [Accepted: 04/08/2024] [Indexed: 04/18/2024] Open
Abstract
Total glucoside of peony and its main active ingredient paeoniflorin, extracted from the Chinese herb Paeonia lactiflora Pallas, exhibit potent immunomodulatory effects. Total glucoside of peony has been shown to inhibit inflammatory responses and disease progression in experimental models of multiple autoimmune diseases, including rheumatoid arthritis, systemic lupus erythematosus, Sjögren's syndrome, psoriasis, and so on. Total glucoside of peony shows broad immunomodulatory effects on many immune cells, such as T cells, macrophages, and dendritic cells, by regulating their activation, proliferation, differentiation, and production of effector molecules. Mechanistically, total glucoside of peony modulates intracellular signaling transductions, including JAK/STAT, NF-κB, MAPK, and PI3K/AKT/mTOR pathways. Moreover, total glucoside of peony has been applied in the clinical treatment of various autoimmune diseases with satisfactory therapeutic outcomes and minor side effects. Thus, available studies have demonstrated that total glucoside of peony and its bioactive constituents exhibit anti-inflammatory and immunomodulatory functions and may have extensive applications in the treatment of autoimmune diseases.
Collapse
Affiliation(s)
- Mengna Zhao
- Department of Pathology, Faculty of Medicine and HKU Shenzhen Hospital, The University of Hong Kong, Pokfulam Road, 999077 Hong Kong, China
| | - Na Peng
- Department of Rheumatology, the Second People's Hospital, China Three Gorges University, 443002 Yichang, China
| | - Yingbo Zhou
- Department of Pathology, Faculty of Medicine and HKU Shenzhen Hospital, The University of Hong Kong, Pokfulam Road, 999077 Hong Kong, China
| | - Yuan Qu
- Department of Rheumatology and Clinical Immunology, Zhujiang Hospital, Southern Medical University, 510280 Guangzhou, China
| | - Meng Cao
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023 Jiangsu, China
| | - Qinghua Zou
- Department of Rheumatology and Immunology, First Affiliated Hospital of Army Medical University, 400038 Chongqing, China
| | - Qinghong Yu
- Department of Rheumatology and Clinical Immunology, Zhujiang Hospital, Southern Medical University, 510280 Guangzhou, China
| | - Liwei Lu
- Department of Pathology, Faculty of Medicine and HKU Shenzhen Hospital, The University of Hong Kong, Pokfulam Road, 999077 Hong Kong, China
- Chongqing International Institute for Immunology, 401300 Chongqing, China
- Centre for Oncology and Immunology, Hong Kong Science Park, New Territories, 999077 Hong Kong, China
| | - Fan Xiao
- Department of Pathology, Faculty of Medicine and HKU Shenzhen Hospital, The University of Hong Kong, Pokfulam Road, 999077 Hong Kong, China
- Centre for Oncology and Immunology, Hong Kong Science Park, New Territories, 999077 Hong Kong, China
| |
Collapse
|
8
|
Zhang G, Yu Q, Chen X, Zhao X, Xu Y, Yang X. Unraveling the complexities of immunotherapy for thymic epithelial tumors via bioinformatics and experimental analyses. Comput Biol Med 2025; 185:109488. [PMID: 39631109 DOI: 10.1016/j.compbiomed.2024.109488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 11/25/2024] [Accepted: 11/26/2024] [Indexed: 12/07/2024]
Abstract
INTRODUCTION Thymic epithelial tumors (TETs) are rare neoplasms typically located in the anterior mediastinum. While immune checkpoint inhibitors (ICIs) show promise for advanced or refractory TETs, their clinical application is hindered by heterogeneous responses across TET subtypes, lack of reliable predictive markers, and the risk of immune-related adverse events (irAEs). METHODS We analyzed TCGA, GEO, and GTEx databases to identify differentially expressed genes (DEGs) among three TET subtypes. Comprehensive enrichment analysis determined gene functions and pathways. CIBERSORT analysis revealed subtype-specific immune infiltration profiles. We assessed immune-related genes using immune/stromal scores, TIDE scores, and immune checkpoint gene correlation analysis. Immunohistochemistry was performed to evaluate FGF17 and PD-L1 protein expression levels and their correlation in TET samples. RESULTS Our findings revealed distinctive molecular and immune infiltration patterns across TET subtypes. Pathway analysis showed upregulation of immune-related pathways in type C. CIBERSORT analysis revealed higher fractions of plasma cells and activated CD4 T cells in type C and increased resting dendritic cells in type A or B3. Furthermore, we identified 1,100 DEGs between responders and non-responders to pembrolizumab. FGF17 emerged as a potential predictive marker for immunotherapy response, showing significantly lower expression in type C and a strong negative correlation with PD-L1 expression (P < 0.001). We identified 115 genes potentially linked to irAEs, with CXCL8, IL17A, and CD40LG among the top hub genes in the protein-protein interaction network. CONCLUSIONS This study provides insights into subtype-specific molecular and immune characteristics of TETs, identifies FGF17 as a potential negative biomarker for immunotherapy response (with lower expression potentially indicating better response), and elucidates mechanisms of irAEs. These findings contribute to the development of targeted immunotherapeutic approaches for managing TETs, particularly in predicting response to immune checkpoint inhibitors.
Collapse
Affiliation(s)
- Gaowen Zhang
- Department of Thoracic Surgery, The Fourth Affiliated Hospital of China Medical University, Shenyang, 110032, China; Department of Thoracic Surgery, Qingdao Hospital, University of Health and Rehabilitation Sciences (Qingdao Municipal Hospital), Qingdao, 266000, China.
| | - Qian Yu
- Department of Thoracic Surgery, The Fourth Affiliated Hospital of China Medical University, Shenyang, 110032, China.
| | - Xiaotong Chen
- Department of Rheumatology and Immunology, The First Hospital of China Medical University, Shenyang, 110001, China.
| | - Xitong Zhao
- Department of Thoracic Surgery, The Fourth Affiliated Hospital of China Medical University, Shenyang, 110032, China.
| | - Yang Xu
- Department of Thoracic Surgery, The Fourth Affiliated Hospital of China Medical University, Shenyang, 110032, China.
| | - Xueying Yang
- Department of Thoracic Surgery, The Fourth Affiliated Hospital of China Medical University, Shenyang, 110032, China.
| |
Collapse
|
9
|
Hu W, Wang Y, Zhou Y, Shi J, Li Z, Jiang X, Wu Q, Zhong C, Weng H, Ouyang S, Jing Y, Cai X, Ye M, Huang N. Exploration of the mechanism of Lithospermum erythrorhizon oil in treating atopic dermatitis based on network pharmacology and experimental validation of the PI3K-Akt pathway regulation. Heliyon 2025; 11:e41707. [PMID: 39906865 PMCID: PMC11791135 DOI: 10.1016/j.heliyon.2025.e41707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 12/02/2024] [Accepted: 01/03/2025] [Indexed: 02/06/2025] Open
Abstract
Objective This study aimed to explore the molecular mechanisms of Lithospermum erythrorhizon oil in treating atopic dermatitis (AD), with a particular focus on its regulatory effect on the PI3K-Akt signaling pathway. Methods Utilizing a network pharmacology approach integrated with experimental validation, we identified active components and potential targets of Lithospermum erythrorhizon oil via TCMSP, ChemSrc, PubChem, and PharmMapper. Common targets were selected by intersecting these with AD-related targets from GeneCards. A protein-protein interaction (PPI) network was built using STRING, and functional analysis Gene Ontology (GO) and pathway enrichment Kyoto Encyclopedia of Genes and Genomes (KEGG) were performed on Metascape. A Gene-miRNA regulatory network was constructed on miRTarBase and NetworkAnalyst, with miRNA functions annotated by miEAA. An AD mouse model induced by DNCB was established to evaluate Lithospermum erythrorhizon oil's therapeutic efficacy, its influence on inflammatory markers, and the PI3K-Akt pathway. Results Fifteen common targets were found to be crucial in AD pathogenesis. The PPI network, constructed using STRING, revealed interactions among 13 nodes and 42 edges, with Cytoscape analysis highlighting 10 core targets. GO and KEGG analyses were significant in biological processes like cell migration and inflammatory response regulation, and in pathways such as IL-17 signaling and PI3K-Akt signaling. The Gene-miRNA network suggested Lithospermum erythrorhizon oil may regulate miRNAs like hsa-mir-124-3p and hsa-let-7b-5p. Experimental results showed that Lithospermum erythrorhizon oil significantly improved AD symptoms in mice, reduced IL-4 and IL-13 levels, and decreased p-PI3K, p-PI3K/PI3K, p-Akt, and p-Akt/Akt expression, inhibiting PI3K-Akt pathway activation. Conclusion Lithospermum erythrorhizon oil exerts multi-target, multi-pathway therapeutic effects in AD, potentially through suppressing Th2-mediated immune responses and the PI3K-Akt signaling pathway, suggesting novel avenues for AD treatment strategies.
Collapse
Affiliation(s)
- Weisheng Hu
- The Second Affiliated Hospital of Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, 350001, China
| | - Yinlan Wang
- The Second Affiliated Hospital of Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, 350001, China
| | - Yingjie Zhou
- The Second Affiliated Hospital of Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, 350001, China
| | - Junbao Shi
- The Second Affiliated Hospital of Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, 350001, China
| | - Zengyan Li
- The Second Affiliated Hospital of Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, 350001, China
| | - Xiaoling Jiang
- The Second Affiliated Hospital of Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, 350001, China
| | - Qinyuan Wu
- The Second Affiliated Hospital of Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, 350001, China
| | - Changming Zhong
- The Second Affiliated Hospital of Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, 350001, China
| | - Huilan Weng
- The Second Affiliated Hospital of Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, 350001, China
- Fujian Provincial Key Laboratory for Integrated Traditional Chinese and Western Medicine Dermatology, The Second Affiliated Hospital of Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, 350001, China
| | - Sijie Ouyang
- School of Acupuncture and Tuina, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, 350122, China
| | - Yuan Jing
- School of Acupuncture and Tuina, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, 350122, China
| | - Xianxiang Cai
- The Second Affiliated Hospital of Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, 350001, China
| | - Mingda Ye
- The Second Affiliated Hospital of Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, 350001, China
| | - Ning Huang
- The Second Affiliated Hospital of Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, 350001, China
- Fujian Provincial Key Laboratory for Integrated Traditional Chinese and Western Medicine Dermatology, The Second Affiliated Hospital of Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, 350001, China
| |
Collapse
|
10
|
Montanari M, Mercuri NB, Martella G. Exceeding the Limits with Nutraceuticals: Looking Towards Parkinson's Disease and Frailty. Int J Mol Sci 2024; 26:122. [PMID: 39795979 PMCID: PMC11719863 DOI: 10.3390/ijms26010122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2024] [Revised: 12/18/2024] [Accepted: 12/23/2024] [Indexed: 01/13/2025] Open
Abstract
One of the most pressing challenges facing society today is the rising prevalence of physical and cognitive frailty. This geriatric condition makes older adults more vulnerable to disability, illness, and a heightened risk of mortality. In this scenario, Parkinson's disease (PD) and geriatric frailty, which share several common characteristics, are becoming increasingly prevalent worldwide, underscoring the urgent need for innovative strategies. Nutraceuticals are naturally occurring bioactive compounds contained in foods, offering health benefits over and above essential nutrition. By examining the literature from the past decade, this review highlights how nutraceuticals can act as complementary therapies, addressing key processes, such as oxidative stress, inflammation, and neuroprotection. Notably, the antioxidant action of nutraceuticals appears particularly beneficial in regard to PD and geriatric frailty. For instance, antioxidant-rich nutraceuticals may mitigate the oxidative damage linked to levodopa therapy in PD, potentially reducing the side effects and enhancing treatment sustainability. Similarly, the antioxidant effects of nutraceuticals may amplify the benefits of physical activity, enhancing muscle function, cognitive health, and resilience, thereby reducing the risk of frailty. This review proposes a holistic approach integrating nutraceuticals with exercise, pharmacotherapy, and lifestyle adjustments. It promises to transform the management of ARD, prolong life, and improve the quality of life and well-being of older people.
Collapse
Affiliation(s)
- Martina Montanari
- Department of Systems Medicine, University of Rome Tor Vergata, Via Montpellier 1, 00133 Rome, Italy;
- Laboratory of Neurophysiology and Plasticity, IRCCS Fondazione Santa Lucia, 00179 Rome, Italy
| | - Nicola Biagio Mercuri
- Neurology Unit, Policlinico Tor Vergata, University of Rome Tor Vergata, 00133 Rome, Italy;
- Department of Experimental Neuroscience, IRCCS Fondazione Santa Lucia, 00179 Rome, Italy
| | - Giuseppina Martella
- Laboratory of Neurophysiology and Plasticity, IRCCS Fondazione Santa Lucia, 00179 Rome, Italy
- Department of Wellbeing, Nutrition and Sport, Faculty of Humanities Educations and Sports, Pegaso Telematics University, 80145 Naples, Italy
| |
Collapse
|
11
|
Zhai Y, Kim M, Fan P, Rajeev S, Kim SA, Driver JD, Galvão KN, Boucher C, Jeong KC. Machine learning-enhanced assessment of potential probiotics from healthy calves for the treatment of neonatal calf diarrhea. Front Microbiol 2024; 15:1507537. [PMID: 39717273 PMCID: PMC11663915 DOI: 10.3389/fmicb.2024.1507537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Accepted: 11/25/2024] [Indexed: 12/25/2024] Open
Abstract
Neonatal calf diarrhea (NCD) remains a significant contributor to calf mortality within the first 3 weeks of life, prompting widespread antibiotic use with associated concerns about antimicrobial resistance and disruption of the calf gut microbiota. Recent research exploring NCD treatments targeting gut microbiota dysbiosis has highlighted probiotic supplementation as a promising and safe strategy for gut homeostasis. However, varying treatment outcomes across studies suggest the need for efficient treatment options. In this study, we evaluated the potential of probiotics Limosilactobacillus reuteri, formally known as Lactobacillus reuteri, isolated from healthy neonatal calves to treat NCD. Through in silico whole genome analysis and in vitro assays, we identified nine L. reuteri strains, which were then administered to calves with NCD. Calves treated with L. reuteri strains shed healthy feces and demonstrated restored gut microbiota and normal animal behavior. Leveraging a machine learning model, we evaluated microbiota profiles and identified bacterial taxa associated with calf gut health that were elevated by L. reuteri administration. These findings represent a crucial advancement towards sustainable antibiotic alternatives for managing NCD, contributing significantly to global efforts in mitigating antimicrobial resistance and promoting overall animal health and welfare.
Collapse
Affiliation(s)
- Yuting Zhai
- Department of Animal Sciences, University of Florida, Gainesville, FL, United States
- Emerging Pathogens Institute, University of Florida, Gainesville, FL, United States
| | - Miju Kim
- Department of Animal Sciences, University of Florida, Gainesville, FL, United States
- Emerging Pathogens Institute, University of Florida, Gainesville, FL, United States
- Department of Food Science and Biotechnology, Kyung Hee University, Seoul, Republic of Korea
| | - Peixin Fan
- Department of Animal Sciences, University of Florida, Gainesville, FL, United States
| | - Sharath Rajeev
- Emerging Pathogens Institute, University of Florida, Gainesville, FL, United States
| | - Sun Ae Kim
- Department of Food Science and Biotechnology, Ewha Womans University, Seoul, Republic of Korea
| | - J. Danny Driver
- Department of Animal Sciences, University of Florida, Gainesville, FL, United States
| | - Klibs N. Galvão
- Department of Large Animal Clinical Sciences, University of Florida, Gainesville, FL, United States
| | - Christina Boucher
- Department of Computer and Information Science and Engineering, University of Florida, Gainesville, FL, United States
| | - Kwangcheol C. Jeong
- Department of Animal Sciences, University of Florida, Gainesville, FL, United States
- Emerging Pathogens Institute, University of Florida, Gainesville, FL, United States
| |
Collapse
|
12
|
Raudenská M, Bugajová M, Kalfeřt D, Plzák J, Šubrt A, Tesařová P, Masařík M. The interplay between microbiome and host factors in pathogenesis and therapy of head and neck cancer. Biochim Biophys Acta Rev Cancer 2024; 1879:189216. [PMID: 39542383 DOI: 10.1016/j.bbcan.2024.189216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 11/06/2024] [Accepted: 11/06/2024] [Indexed: 11/17/2024]
Abstract
Heterogeneous cancers that lack strong driver mutations with high penetrance, such as head and neck squamous cell carcinoma (HNSCC), present unique challenges to understanding their aetiology due to the complex interactions between genetics and environmental factors. The interplay between lifestyle factors (such as poor oral hygiene, smoking, or alcohol consumption), the oral and gut microbiome, and host genetics appears particularly important in the context of HNSCC. The complex interplay between the gut microbiota and cancer treatment outcomes has also received increasing attention in recent years. This review article describes the bidirectional communication between the host and the oral/gut microbiome, focusing on microbiome-derived metabolites and their impact on systemic immune responses and the modulation of the tumour microenvironment. In addition, we review the role of host lifestyle factors in shaping the composition of the oral/gut microbiota and its impact on cancer progression and therapy. Overall, this review highlights the rationality of considering the oral/gut microbiota as a critical determinant of cancer therapy outcomes and points to therapeutic opportunities offered by targeting the oral/gut microbiota in the management of HNSCC.
Collapse
Affiliation(s)
- Martina Raudenská
- Department of Pathological Physiology, Faculty of Medicine, Masaryk University/Kamenice 5, CZ-625 00 Brno, Czech Republic; Department of Physiology, Faculty of Medicine, Masaryk University/Kamenice 5, 62500 Brno, Czech Republic
| | - Maria Bugajová
- Department of Pathological Physiology, Faculty of Medicine, Masaryk University/Kamenice 5, CZ-625 00 Brno, Czech Republic
| | - David Kalfeřt
- Department of Otorhinolaryngology and Head and Neck Surgery, University Hospital Motol, First Faculty of Medicine, Charles University, V Uvalu 84, 15006 Prague, Czech Republic
| | - Jan Plzák
- Department of Otorhinolaryngology and Head and Neck Surgery, University Hospital Motol, First Faculty of Medicine, Charles University, V Uvalu 84, 15006 Prague, Czech Republic
| | - Adam Šubrt
- Department of Oncology, Institute of Radiation Oncology, First Faculty of Medicine, Charles University and Bulovka University Hospital, Prague, Czech Republic
| | - Petra Tesařová
- Department of Oncology, Institute of Radiation Oncology, First Faculty of Medicine, Charles University and Bulovka University Hospital, Prague, Czech Republic
| | - Michal Masařík
- Department of Pathological Physiology, Faculty of Medicine, Masaryk University/Kamenice 5, CZ-625 00 Brno, Czech Republic; Department of Physiology, Faculty of Medicine, Masaryk University/Kamenice 5, 62500 Brno, Czech Republic; International Clinical Research Center, St. Anne's University Hospital, Brno 60200, Czech Republic; Institute of Pathophysiology, First Faculty of Medicine, Charles University, U Nemocnice 5, CZ-128 53 Prague, Czech Republic.
| |
Collapse
|
13
|
Ding L, Wang J, Qiu S, Ren Z, Li Y, An P. Bioinformatics Approach to Identify the Pathogenetic Link of Gut Microbiota-Derived Short-Chain Fatty Acids and Ischemic Stroke. Mol Neurobiol 2024; 61:9478-9490. [PMID: 38649659 PMCID: PMC11496340 DOI: 10.1007/s12035-024-04176-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 04/11/2024] [Indexed: 04/25/2024]
Abstract
Stroke is a life-threatening condition that impairs the arteries and causes neurological impairment. The incidence of stroke is increasing year by year with the arrival of the aging population. Thus, there is an urgent need for early stroke diagnosis. Short-chain fatty acids (SCFAs) can modulate the central nervous system and directly and indirectly impact behavioral and cognitive functions. This study aimed to investigate the connection between SCFA metabolism and stroke development via bioinformatic analysis. Initially, the Gene Set Enrichment Analysis (GSEA) and immune cell infiltration analysis were performed based on RNA data from stroke patients to comprehend the mechanisms governing stroke pathogenesis. The functional analysis, including Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG), and Protein-Protein Interaction (PPI), was performed based on the Differentially Expressed Gene (DEG) selected by the limma package. 1220 SCFA metabolism-related genes screened from Genecards databases were intersected with 242 genes in main modules determined by Weighted Gene Co-Expression Network Analysis (WGCNA), and the final 10 SCFA key genes were obtained. GO analysis revealed that these genes were involved in immune response processes. Through lasso regression analyses, we established a stroke early diagnosis model and selected 6 genes with diagnostic value. The genes were validated by the area under curve (AUC) values and had a relatively good diagnostic performance. Finally, 4 potential therapeutic drugs targeting these genes were predicted using the Drug Signatures Database (DSigDB) via Enrichr. In conclusion, this paper analyzes the involvement of SCFAs in the complex gut-brain axis mechanism, which contributes to developing new targets for treating central nervous system diseases and provides new ideas for early ischemic stroke diagnosis.
Collapse
Affiliation(s)
- Liang Ding
- Department of Traditional Chinese Medicine, Qingdao Third People's Hospital, Qingdao City, Shandong Province, China
| | - Jianing Wang
- Neurology Department, Qingdao Hiser Hospital Affiliated of Qingdao University (Qingdao Traditional Chinese Medicine Hospital), Qingdao City, Shandong Province, China
| | - Sha Qiu
- Department of Traditional Chinese Medicine, Qingdao Central Hospital, University of Health and Rehabilitation Sciences (Qingdao Central Hospital), Qingdao City, Shandong Province, China
| | - Zhizhen Ren
- Department of Traditional Chinese Medicine, Community Health Service Center of Shi'nan District in Qingdao, Qingdao City, Shandong Province, China
| | - Yuantao Li
- Acupuncture and Moxibustion Department, Qingdao Third People's Hospital, Qingdao City, Shandong Province, China
| | - Pengpeng An
- Emergency Internal Medicine Department, Qingdao Hiser Hospital Affiliated of Qingdao University (Qingdao Traditional Chinese Medicine Hospital), Qingdao City, Shandong Province, China.
| |
Collapse
|
14
|
Dou J, Wu Y, Hu R, Liu J, Zhang Y, Zhen X, Wu T, Zhang C, Liu Y, Zheng R, Jiang G. Quinoa ameliorates polycystic ovary syndrome via regulating gut microbiota through PI3K/AKT/mTOR pathway and autophagy. Nutr Metab (Lond) 2024; 21:80. [PMID: 39394588 PMCID: PMC11468221 DOI: 10.1186/s12986-024-00855-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Accepted: 09/20/2024] [Indexed: 10/13/2024] Open
Abstract
BACKGROUND Polycystic ovary syndrome (PCOS) is a unity of endocrine and metabolic disorders, associated with PI3K/AKT/mTOR, autophagy, and gut microbiota. Quinoa is a valuable food source, which contains rich minerals, unsaturated fatty acids, and has a positive modulating effect on metabolic diseases. However, its effects and potential mechanisms on PCOS have not been reported yet. Therefore, the purpose of this study is to investigate the effect of quinoa on PCOS rats by regulating PI3K/AKT/mTOR, autophagy, and gut microbiota. METHODS Ten-week-old female Sprague-Dawley (SD) rats have received letrozole for 24 days for induction of PCOS and subsequently were treated with a quinoa diet for 8 weeks. Vaginal smears were used to analyze the estrous cycle of rats. Hormone and biochemical indexes were analyzed by kit assays and glucometer. The pathological changes of ovary, pancreas, duodenum and colon were observed by HE staining. PI3K, AKT, mTOR and autophagy-related proteins in the ovary and colon were measured by western blot and immunohistochemistry staining. Tight junction proteins in colon were measured by immunohistochemistry staining. 16 s rDNA sequencing was used to detect the changes of intestinal microbiota in rats. Network pharmacology and molecular docking were used to study the possible targets and mechanisms of quinoa on PCOS. Spearman correlation analysis was used to study the relationship between intestinal microbial abundance and hormone levels of PCOS rats at the phylum and genus level. RESULTS Quinoa significantly improved estrous cycle and biochemical parameters of PCOS-like rats, and the pathological state of ovary, pancreas, duodenum and colon tissues. Especially, quinoa significantly regulated the expression of PI3K, AKT, mTOR and autophagy-related proteins in the ovary. Quinoa may repair the intestinal barrier by upregulating the expression of tight junction proteins in the colon, and regulate autophagy-related factors in colon. Additionally, quinoa increased the abundance of Lactobacillu, Bacteroides and Oscillospira, and decreased the Firmicutes/Bacteroidetes ratio and the Blautia, and Prevotella, reversing the dysregulation of the gut microbiota. Correlation analysis showed that there is a strong correlation between gut microbiota with significant changes in abundance and hormone related to PCOS. CONCLUSION Our result indicated that effect of quinoa on PCOS maybe associated with activation of the PI3K/AKT/mTOR signaling pathway, inhibition of autophagy, and regulation of intestinal flora.
Collapse
Affiliation(s)
- Jinfang Dou
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Yanxiang Wu
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Rentong Hu
- Affiliated Hospital of Youjiang Medical University for Nationalities, Key Laboratory of Research on Clinical Molecular Diagnosis for High Incidence Diseases in Western Guangxi of Guangxi Higher Education Institutions, Key Laboratory of Research and Development on Clinical Molecular Diagnosis for High-Incidence Diseases of Baise, Guangxi, China
| | - Jiaxian Liu
- Beijing Zhongli Biological Technology Co., Ltd, Beijing, China
- Gansu Chunjie Plateau Agricultural Technology Co., Ltd, Wuwei, China
| | - Yuelin Zhang
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Xianjie Zhen
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Tao Wu
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Chuyue Zhang
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Yutong Liu
- Beijing Zhongli Biological Technology Co., Ltd, Beijing, China
- Gansu Chunjie Plateau Agricultural Technology Co., Ltd, Wuwei, China
| | - Ruifang Zheng
- Institute of Materia Medica, Xinjiang Uyghur Autonomous Region, Urumqi, 830004, China.
| | - Guangjian Jiang
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, China.
| |
Collapse
|
15
|
Dai H, Huang Z, Shi F, Li S, Zhang Y, Wu H, Lv Z. Effects of maternal hawthorn-leaf flavonoid supplementation on the intestinal development of offspring chicks. Poult Sci 2024; 103:103969. [PMID: 39047316 PMCID: PMC11318554 DOI: 10.1016/j.psj.2024.103969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Revised: 06/04/2024] [Accepted: 06/06/2024] [Indexed: 07/27/2024] Open
Abstract
Metabolic disorders in maternal generation during the late egg-laying period have adverse effects on neonatal development. The study was conducted to clarify the effects of maternal feeding of hawthorn-leaf flavonoid (HF) on the microbial community and intestinal development of chicks. Breeder hens were fed a basic corn-soybean diet, while the treatment groups were supplemented with 30 or 60 mg/kg HF. The offspring chicks were divided into CON, LHF, and HHF groups according to the maternal treatments. Maternal HF supplementation at 60 mg/kg increased the average daily gain and decreased the feed conversion rate of chicks (P < 0.05), but did not affect the average daily feed intake. HF treatments increased the villus height to crypt depth ratio and up-regulated the protein expressions of PCNA, IGF-1R, PI3K and p-mTOR in the jejunum (P < 0.05) of 1-day-old and 14-day-old chicks. Additionally, maternal HF treatment up-regulated the mRNA expression of tight junction transmembrane proteins (occludin) and scaffolding proteins (ZO-1 and ZO-2) in the jejunum of 1-day-old chicks (P < 0.05). Moreover, the maternal effects of HF on ZO-1 expression could last for 14 d (P < 0.05). Interestingly, dietary HF supplementation altered the vertically transmitted microbial community from breeder hens to chicks, especially increased the relative abundance of probiotics (i.e., Clostridium_sensu_stricto_1) in the meconium of chicks (P < 0.05), which may help with early gut microbiota colonization and intestinal development. In summary, dietary HF supplementation for breeder hens altered the bacterial community of neonates and might promote intestinal development of chicks through the IGF-1R/AKT/mTOR signaling pathway.
Collapse
Affiliation(s)
- Hongjian Dai
- State Key Laboratory of Animal Nutrition and Feeding, SKLANF, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Zhenwu Huang
- State Key Laboratory of Animal Nutrition and Feeding, SKLANF, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Fangxiong Shi
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Simeng Li
- College of Biotechnology, Aksu Vocational and Technical College, Aksu 843000, China
| | - Yi Zhang
- School of Life Sciences and Technology, Southeast University, Nanjing, 210096, China
| | - Haoze Wu
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Zengpeng Lv
- State Key Laboratory of Animal Nutrition and Feeding, SKLANF, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
16
|
Wang X, Liu H, Wang Y, Wang P, Yi Y, Lin Y, Li X. Novel protein C6ORF120 promotes liver fibrosis by activating hepatic stellate cells through the PI3K/Akt/mTOR pathway. J Gastroenterol Hepatol 2024; 39:1422-1430. [PMID: 38523410 DOI: 10.1111/jgh.16538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Revised: 02/14/2024] [Accepted: 02/27/2024] [Indexed: 03/26/2024]
Abstract
BACKGROUND AND AIM The role of C6ORF120 in promoting CCL4-induced hepatic fibrosis and its possible mechanisms were explored in C6orf120 knockout rats (C6orf120-/-) and LX-2 cells (a type of human hepatic stellate cell line). METHODS In vivo experiments, wild-type and C6orf120-/- rats were used to investigate the function of C6ORF120. In the in vitro experiments, C6ORF120 recombinant protein (rC6ORF120) at a concentration of 200 ng/mL was used to stimulate LX-2 cells. Sirius Red staining, Masson staining, western blotting, polymerase chain reaction, immunohistochemistry, and immunofluorescence were used to explore fibrosis-associated factors. RESULTS C6orf120-/- rats showed mild fibrosis and liver injury in the CCL4-induced liver fibrosis model. Furthermore, RNA-seq revealed that C6orf120-/- rats had less extracellular matrix deposition and activated stellate cells. Consistent with the in vivo, the rC6ORF120 induced LX-2 cell activation. Moreover, mechanistic studies revealed that the p-PI3K/PI3K, p-Akt/Akt, and p-mTOR/mTOR levels were significantly elevated and LY294002 (a PI3K/Akt/mTOR typical pathway inhibitor) reversed the function of C6ORF120 in activating LX-2 cells. CONCLUSION C6ORF120 could activate hepatic stellate cells and promote hepatic fibrosis via the PI3K/Akt/mTOR signaling pathway.
Collapse
Affiliation(s)
- Xin Wang
- Department of Center of Integrated Traditional Chinese and Western Medicine, Peking University Ditan Teaching Hospital, Beijing, China
| | - Hui Liu
- Department of Center of Infectious Disease, Beijing Ditan Hospital; Capital Medical University, Beijing, China
| | - Yuqi Wang
- Department of Center of Integrated Traditional Chinese and Western Medicine, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Peng Wang
- Department of Center of Integrated Traditional Chinese and Western Medicine, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Yunyun Yi
- Department of Center of Integrated Traditional Chinese and Western Medicine, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Yingying Lin
- Department of Center of Integrated Traditional Chinese and Western Medicine, Peking University Ditan Teaching Hospital, Beijing, China
| | - Xin Li
- Department of Center of Integrated Traditional Chinese and Western Medicine, Peking University Ditan Teaching Hospital, Beijing, China
- Department of Center of Integrated Traditional Chinese and Western Medicine, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
17
|
Liu X, Pu Q, Cheng Y, Wu J, Yan J, Wang Z, Wang X, Wang H, Qian Q. Comparative impact of pristine and aged microplastics with triclosan on lipid metabolism in larval zebrafish: Unveiling the regulatory role of miR-217. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 929:172580. [PMID: 38657822 DOI: 10.1016/j.scitotenv.2024.172580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 04/10/2024] [Accepted: 04/17/2024] [Indexed: 04/26/2024]
Abstract
The prevalence of microplastics (MPs), especially aged particles, interacting with contaminants like triclosan (TCS), raises concerns about their toxicological effects on aquatic life. This study focused on the impact of aged polyamide (APA) MPs and TCS on zebrafish lipid metabolism. APA MPs, with rougher surfaces and lower hydrophobicity, exhibited reduced TCS adsorption than unaged polyamide (PA) MPs. Co-exposure to PA/APA MPs and TCS resulted in higher TCS accumulation in zebrafish larvae, notably more with PA than APA. Larvae exposed to PA + TCS exhibited greater oxidative stress, disrupted lipid metabolism, and altered insulin pathway genes than those exposed to TCS. However, these negative effects were lessened in the APA + TCS group. Through miRNA-seq and miR-217 microinjection, it was revealed that PA + TCS co-exposure upregulated miR-217, linked to lipid metabolic disorders in zebrafish. Moreover, molecular docking showed stable interactions formed between PA, TCS, and the insulin signaling protein Pik3r2. This study demonstrated that PA and TCS co-exposure significantly inhibited the insulin signaling in zebrafish, triggering lipid metabolism dysregulation mediated by miR-217 upregulation, while APA and TCS co-exposure alleviated these disruptions. This research underscored the ecological and toxicological risks of aged MPs and pollutants in aquatic environments, providing crucial insights into the wider implications of MPs pollution.
Collapse
Affiliation(s)
- Xingcheng Liu
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Qian Pu
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Ying Cheng
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Ji Wu
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Jin Yan
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Zejun Wang
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Xuedong Wang
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Huili Wang
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China.
| | - Qiuhui Qian
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China.
| |
Collapse
|
18
|
Zhang Y, Bai B, Huang K, Li S, Cao H, Guan X. Bound Polyphenols of Oat Bran Released by Gut Microbiota Mitigate High Fat Diet-Induced Oxidative Stress and Strengthen the Gut Barrier via the Colonic ROS/Akt/Nrf2 Pathway. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:13099-13110. [PMID: 38807079 DOI: 10.1021/acs.jafc.4c01666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2024]
Abstract
Whole-grain foods are rich in bound polyphenols (BPs) whose health benefits were largely underestimated compared with free polyphenols. We first found that DFBP (dietary fiber with BPs from oat bran) exhibited stronger colonic antioxidant activities than DF. 16S rRNA sequencing showed that DFBP selectively changed gut microbial composition, which reciprocally released BPs from DFBP. Released polyphenols from DFBP reduced excessive colonic ROS and exhibited colonic antioxidant activities via the ROS/Akt/Nrf2 pathway revealed by transcriptome and western blot analysis. Colonic antioxidant activities of DFBP mediated by gut microbiota were next proven by treating mice with broad-spectrum antibiotics. Next, Clostridium butyricum, as a distinguished bacterium after DFBP intervention, improved colonic antioxidant capacities synergistically with DFBP in HFD-fed mice. This was explained by the upregulated mRNA expression of esterase, and cellulase of Clostridium butyricum participated in releasing BPs. Our results would provide a solid basis for explaining the health benefits of whole grains.
Collapse
Affiliation(s)
- Yu Zhang
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
- National Grain Industry (Urban Grain and Oil Security) Technology Innovation Center, Shanghai 200093, China
| | - Bing Bai
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Kai Huang
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
- National Grain Industry (Urban Grain and Oil Security) Technology Innovation Center, Shanghai 200093, China
| | - Sen Li
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
- National Grain Industry (Urban Grain and Oil Security) Technology Innovation Center, Shanghai 200093, China
| | - Hongwei Cao
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
- National Grain Industry (Urban Grain and Oil Security) Technology Innovation Center, Shanghai 200093, China
| | - Xiao Guan
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
- National Grain Industry (Urban Grain and Oil Security) Technology Innovation Center, Shanghai 200093, China
| |
Collapse
|
19
|
Hasanian-Langroudi F, Ghasemi A, Hedayati M, Siadat SD, Tohidi M. Novel Insight into the Effect of Probiotics in the Regulation of the Most Important Pathways Involved in the Pathogenesis of Type 2 Diabetes Mellitus. Probiotics Antimicrob Proteins 2024; 16:829-844. [PMID: 37162668 DOI: 10.1007/s12602-023-10056-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/02/2023] [Indexed: 05/11/2023]
Abstract
Type 2 diabetes mellitus (T2DM) is considered one of the most common disorders worldwide. Although several treatment modalities have been developed, the existing interventions have not yielded the desired results. Therefore, researchers have focused on finding treatment choices with low toxicity and few adverse effects that could control T2DM efficiently. Various types of research on the role of gut microbiota in developing T2DM and its related complications have led to the growing interest in probiotic supplementation. Several properties make these organisms unique in terms of human health, including their low cost, high reliability, and good safety profile. Emerging evidence has demonstrated that three of the most important signaling pathways, including nuclear factor kappa B (NF-κB), phosphatidylinositol 3-kinase (PI3K)/protein kinase B (Akt), and nuclear factor erythroid 2-related factor 2 (Nrf2), which involved in the pathogenesis of T2DM, play key functions in the effects of probiotics on this disease. Hence, we will focus on the clinical applications of probiotics in the management of T2DM. Then, we will also discuss the roles of the involvement of various probiotics in the regulation of the most important signaling pathways (NF-κB, PI3K/Akt, and Nrf2) involved in the pathogenesis of T2DM.
Collapse
Affiliation(s)
- Farzaneh Hasanian-Langroudi
- Prevention of Metabolic Disorders Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, P.O. Box, Tehran, 19395-4763, Iran
| | - Asghar Ghasemi
- Endocrine Physiology Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mehdi Hedayati
- Cellular and Molecular Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Seyed Davar Siadat
- Department of Mycobacteriology and Pulmonary Research, Pasteur Institute of Iran, Tehran, Iran.
- Microbiology Research Center, Pasteur Institute of Iran, Tehran, Iran.
| | - Maryam Tohidi
- Prevention of Metabolic Disorders Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, P.O. Box, Tehran, 19395-4763, Iran.
| |
Collapse
|
20
|
Junaid M, Lu H, Din AU, Yu B, Liu Y, Li Y, Liu K, Yan J, Qi Z. Deciphering Microbiome, Transcriptome, and Metabolic Interactions in the Presence of Probiotic Lactobacillus acidophilus against Salmonella Typhimurium in a Murine Model. Antibiotics (Basel) 2024; 13:352. [PMID: 38667028 PMCID: PMC11047355 DOI: 10.3390/antibiotics13040352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 04/06/2024] [Accepted: 04/08/2024] [Indexed: 04/29/2024] Open
Abstract
Salmonella enterica serovar Typhimurium (S. Typhimurium), a foodborne pathogen that poses significant public health risks to humans and animals, presents a formidable challenge due to its antibiotic resistance. This study explores the potential of Lactobacillus acidophilus (L. acidophilus 1.3251) probiotics as an alternative strategy to combat antibiotic resistance associated with S. Typhimurium infection. In this investigation, twenty-four BALB/c mice were assigned to four groups: a non-infected, non-treated group (CNG); an infected, non-treated group (CPG); a group fed with L. acidophilus but not infected (LAG); and a group fed with L. acidophilus and challenged with Salmonella (LAST). The results revealed a reduction in Salmonella levels in the feces of mice, along with restored weight and improved overall health in the LAST compared to the CPG. The feeding of L. acidophilus was found to downregulate pro-inflammatory cytokine mRNA induced by Salmonella while upregulating anti-inflammatory cytokines. Additionally, it influenced the expression of mRNA transcript, encoding tight junction protein, oxidative stress-induced enzymes, and apoptosis-related mRNA expression. Furthermore, the LEfSe analysis demonstrated a significant shift in the abundance of critical commensal genera in the LAST, essential for maintaining gut homeostasis, metabolic reactions, anti-inflammatory responses, and butyrate production. Transcriptomic analysis revealed 2173 upregulated and 506 downregulated differentially expressed genes (DEGs) in the LAST vs. the CPG. Functional analysis of these DEGs highlighted their involvement in immunity, metabolism, and cellular development. Kyoto Encyclopedia of Genes and Genome (KEGG) pathway analysis indicated their role in tumor necrosis factor (TNF), mitogen-activated protein kinase (MAPK), chemokine, Forkhead box O (FOXO), and transforming growth factor (TGF-β) signaling pathway. Moreover, the fecal metabolomic analysis identified 929 differential metabolites, with enrichment observed in valine, leucine, isoleucine, taurine, glycine, and other metabolites. These findings suggest that supplementation with L. acidophilus promotes the growth of beneficial commensal genera while mitigating Salmonella-induced intestinal disruption by modulating immunity, gut homeostasis, gut barrier integrity, and metabolism.
Collapse
Affiliation(s)
| | - Hongyu Lu
- Medical College, Guangxi University, Nanning 530004, China
| | - Ahmad Ud Din
- Plants for Human Health Institute, North Carolina State University, 600 Laureate Way, Kannapolis, NC 28081, USA
| | - Bin Yu
- Medical College, Guangxi University, Nanning 530004, China
| | - Yu Liu
- Medical College, Guangxi University, Nanning 530004, China
| | - Yixiang Li
- Medical College, Guangxi University, Nanning 530004, China
| | - Kefei Liu
- Tianjin Shengji Group., Co., Ltd., No. 2, Hai Tai Development 2nd Road, Huayuan Industrial Zone, Tianjin 300384, China
| | - Jianhua Yan
- Medical College, Guangxi University, Nanning 530004, China
| | - Zhongquan Qi
- Medical College, Guangxi University, Nanning 530004, China
| |
Collapse
|
21
|
Le Y, Guo J, Liu Z, Liu J, Liu Y, Chen H, Qiu J, Wang C, Dou X, Lu D. Calenduloside E ameliorates non-alcoholic fatty liver disease via modulating a pyroptosis-dependent pathway. JOURNAL OF ETHNOPHARMACOLOGY 2024; 319:117239. [PMID: 37777027 DOI: 10.1016/j.jep.2023.117239] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 09/14/2023] [Accepted: 09/27/2023] [Indexed: 10/02/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Non-alcoholic fatty liver disease (NAFLD) is a prevalent chronic liver condition that can have multiple underlying causes. There are no satisfactory chemical or biological drugs for the treatment of NAFLD. Longyasongmu, the bark and root of Aralia elata (Miq.) Seem, is used extensively in traditional Chinese medicine (TCM) and has been used in treating diverse liver diseases including NAFLD. Based on Aralia elata (Miq.) Seem as the main ingredient, Longya Gantai Capsules have been approved for use in China for the treatment of acute hepatitis and chronic hepatitis. Calenduloside E (CE), a natural pentacyclic triterpenoid saponin, is a significant component of saponin isolated from the bark and root of Aralia elata (Miq.) Seem. However, the role and mechanism of anti-NAFLD effects of CE is still unclear. AIM OF THE STUDY The objective of this study was to examine the potential mechanisms underlying the protective effect of CE on NAFLD. MATERIALS AND METHODS In this study, an NAFLD model was established by Western diet in apoE-/- mice, followed by treatment with various doses of CE (5 mg/kg, 10 mg/kg). The anti-NAFLD effect of CE was assessed by the liver injury, lipid accumulation, inflammation, and pro-fibrotic phenotype. The mechanism of CE in ameliorating NAFLD was studied through transcriptome sequencing (RNA-seq). In vitro, the mouse hepatocytes (AML-12) were stimulated in lipid mixtures with CE and performed the exploration and validation of the relevant pathways using Western blot, immunofluorescence, etc. RESULTS: The findings revealed a significant improvement in liver injury, lipid accumulation, inflammation, and pro-fibrotic phenotype upon CE administration. Furthermore, RNAseq analysis indicated that the primary pathway through which CE alleviates NAFLD involves pyroptosis-related inflammatory cascade pathways. Furthermore, it was observed that CE effectively suppressed inflammasome-mediated pyroptosis both in vivo and in vitro. Remarkably, the functional enrichment analysis of RNA-seq data revealed that the PI3K-Akt signaling pathway is the primarily Signaling transduction pathway modulated by CE treatment. Subsequent experimental outcomes provided further validation of CE's ability to hinder inflammasome-mediated pyroptosis through the inhibition of PI3K/AKT/NF-κB signaling pathway. CONCLUSIONS These findings present a novel pharmacological role of CE in exerting anti-NAFLD effects by inhibiting pyroptosis signaling pathways.
Collapse
Affiliation(s)
- Yifei Le
- School of Life Science, Zhejiang Chinese Medical University, Hangzhou, 310053, Zhejiang, China.
| | - Jianan Guo
- School of Life Science, Zhejiang Chinese Medical University, Hangzhou, 310053, Zhejiang, China.
| | - Zhijun Liu
- School of Life Science, Zhejiang Chinese Medical University, Hangzhou, 310053, Zhejiang, China.
| | - Jing Liu
- School of Life Science, Zhejiang Chinese Medical University, Hangzhou, 310053, Zhejiang, China.
| | - Ying Liu
- School of Life Science, Zhejiang Chinese Medical University, Hangzhou, 310053, Zhejiang, China.
| | - Hang Chen
- School of Life Science, Zhejiang Chinese Medical University, Hangzhou, 310053, Zhejiang, China.
| | - Jiannan Qiu
- School of Life Science, Zhejiang Chinese Medical University, Hangzhou, 310053, Zhejiang, China.
| | - Cui Wang
- School of Life Science, Zhejiang Chinese Medical University, Hangzhou, 310053, Zhejiang, China.
| | - Xiaobing Dou
- School of Life Science, Zhejiang Chinese Medical University, Hangzhou, 310053, Zhejiang, China.
| | - Dezhao Lu
- School of Life Science, Zhejiang Chinese Medical University, Hangzhou, 310053, Zhejiang, China.
| |
Collapse
|
22
|
Hussain MS, Altamimi ASA, Afzal M, Almalki WH, Kazmi I, Alzarea SI, Saleem S, Prasher P, Oliver B, Singh SK, MacLoughlin R, Dua K, Gupta G. From carcinogenesis to therapeutic avenues: lncRNAs and mTOR crosstalk in lung cancer. Pathol Res Pract 2024; 253:155015. [PMID: 38103364 DOI: 10.1016/j.prp.2023.155015] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 12/02/2023] [Accepted: 12/02/2023] [Indexed: 12/19/2023]
Abstract
Long non-coding RNAs (lncRNAs) have been demonstrated to have a crucial function in the modulation of the activity of genes, impacting a variety of homeostatic processes involving growth, survival, movement, and genomic consistency. Certain lncRNAs' aberrant expression has been linked to carcinogenesis, tumor growth, and therapeutic resistance. They are beneficial for the management of malignancies since they can function as cancer-causing or cancer-suppressing genes and behave as screening or prognosis indicators. The modulation of the tumor microenvironment, metabolic modification, and spread have all been linked to lncRNAs in lung cancer. Recent research has indicated that lncRNAs may interact with various mTOR signalling systems to control expression in lung cancer. Furthermore, the route can affect how lncRNAs are expressed. Emphasizing the function of lncRNAs as crucial participants in the mTOR pathway, the current review intends to examine the interactions between the mTOR cascade and the advancement of lung cancer. The article will shed light on the roles and processes of a few lncRNAs associated with the development of lung cancer, as well as their therapeutic prospects.
Collapse
Affiliation(s)
- Md Sadique Hussain
- School of Pharmaceutical Sciences, Jaipur National University, Jagatpura, 302017 Jaipur, Rajasthan, India
| | - Abdulmalik S A Altamimi
- Department of Pharmaceutical Chemistry, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al Kharj 11942, Saudi Arabia
| | - Muhammad Afzal
- Department of Pharmaceutical Sciences, Pharmacy Program, Batterjee Medical College, P.O. Box 6231, Jeddah 21442, Saudi Arabia
| | - Waleed Hassan Almalki
- Department of Pharmacology, College of Pharmacy, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Imran Kazmi
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, 21589, Jeddah, Saudi Arabia
| | - Sami I Alzarea
- ōDepartment of Pharmacology, College of Pharmacy, Jouf University, 72341, Sakaka, Aljouf, Saudi Arabia
| | - Shakir Saleem
- Department of Public Health, College of Health Sciences, Saudi Electronic University, Riyadh, Saudi Arabia
| | - Parteek Prasher
- Department of Chemistry, University of Petroleum & Energy Studies, Energy Acres, Dehradun 248007, India
| | - Brian Oliver
- Faculty of Science, School of Life Sciences, Sydney, NSW 2007, Australia; Woolcock Institute of Medical Research, Macquarie university, Sydney, NSW, 2137
| | - Sachin Kumar Singh
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab 144411, India; Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, NSW 2007, Australia
| | - Ronan MacLoughlin
- School of Pharmacy & Biomolecular Sciences, Royal College of Surgeons in Ireland, Dublin, Leinster D02 YN77, Ireland; School of Pharmacy & Pharmaceutical Sciences, Trinity College, Dublin, Leinster D02 PN40, Ireland; Research and Development, Science and Emerging Technologies, Aerogen Ltd., Galway Business Park, H91 HE94 Galway, Ireland
| | - Kamal Dua
- Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, NSW 2007, Australia; Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, NSW 2007, Australia
| | - Gaurav Gupta
- Centre for Global Health Research, Saveetha Medical College, Saveetha Institute of Medical and Technical Sciences, Saveetha University, India; School of Pharmacy, Graphic Era Hill University, Dehradun 248007, India; School of Pharmacy, Suresh Gyan Vihar University, Jagatpura, Mahal Road, Jaipur, India.
| |
Collapse
|
23
|
Kim KH, Hwang Y, Kang SS. Regulatory Effect of Spray-Dried Lactiplantibacillus plantarum K79 on the Activation of Vasodilatory Factors and Inflammatory Responses. Food Sci Anim Resour 2024; 44:216-224. [PMID: 38229862 PMCID: PMC10789557 DOI: 10.5851/kosfa.2023.e78] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 11/29/2023] [Accepted: 11/30/2023] [Indexed: 01/18/2024] Open
Abstract
The reduction of nitric oxide (NO) bioavailability in the endothelium induces endothelial dysfunction, contributing to the development of hypertension. Although Lactobacillus consumption decreases blood pressure, intracellular signaling pathways related to hypertension have not been well elucidated. Thus, this study examined the effect of spray-dried Lactiplantibacillus plantarum K79 (LpK79) on NO production, intracellular signaling pathways, and inflammatory responses related to vascular function and hypertension. NO production was assessed in human umbilical vein endothelial cells (HUVECs) treated with LpK79. Endothelial NO synthase (eNOS) and intracellular signaling molecules were determined using Western blot analysis. LpK79 dose-dependently increased NO production and activated eNOS via the phosphoinositide 3-kinase/Akt signaling pathway HUVECs. Moreover, LpK79 mitigated the activation of crucial factors pivotal for vascular contraction in smooth muscle cells, such as phospholipase Cγ, myosin phosphatase target subunit 1, and Rho-associated kinase 2. When HUVECs were treated with LpL79 in the presence of Escherichia coli lipopolysaccharide (LPS), LpK79 effectively suppressed mRNA and protein expression of pro-inflammatory mediators induced by E. coli LPS. These results suggest that LpK79 provided a beneficial effect on the regulation of vascular endothelial function.
Collapse
Affiliation(s)
- Ki Hwan Kim
- Department of Food Science and
Biotechnology, College of Life Science and Biotechnology, Dongguk
University, Goyang 10326, Korea
| | | | - Seok-Seong Kang
- Department of Food Science and
Biotechnology, College of Life Science and Biotechnology, Dongguk
University, Goyang 10326, Korea
| |
Collapse
|
24
|
Rawling M, Schiavone M, Mugnier A, Leclercq E, Merrifield D, Foey A, Apper E. Modulation of Zebrafish ( Danio rerio) Intestinal Mucosal Barrier Function Fed Different Postbiotics and a Probiotic from Lactobacilli. Microorganisms 2023; 11:2900. [PMID: 38138044 PMCID: PMC10745996 DOI: 10.3390/microorganisms11122900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 11/25/2023] [Accepted: 11/27/2023] [Indexed: 12/24/2023] Open
Abstract
It is generally accepted that microbes play a critical role in maintaining gut barrier function, making them ideal to target in order to mitigate the effects of intestinal diseases such as inflammatory bowel disease with specialist supplementations such as probiotic or postbiotic preparations. In this study, specific strains of Lactobacillus helvictus both live and inactivated and Lactobacillus plantarum inactivated were fed to zebrafish at an inclusion level of 6 × 106 cells/g in order to assess the effects on gut barrier function and protection. Taken together, our results indicate that dietary administration of pro- or postbiotics strengthens the gut barrier function and innate immunity of healthy zebrafish in a strain-specific and process-dependent way. With some differences in the response intensity, the three treatments led to increased intestinal villi length and proportion of IELs, reinforcement of the GC population and up-regulated expression of biomarkers of AMP production and tight junction zona-occludin 2a (zo-2a). In addition, LPPost had an impact on the adaptive immune response, and we hypothesized that it conferred the potential to drive Th17/ILC3 immunity, as suggested by its effect on the gene expression of il22, of different AMPs, and the expression of zo2a. Moreover, LPPost showed the potential to drive Th1/ILC1-like immunity, with a higher percentage of CD8+ cells and higher ifnγ gene expression. In summary, the use of inactivated Lactobacilli species in this study represented a promising strategy for improving barrier function and regulating the immune fate of the intestinal mucosa in a strain-specific way.
Collapse
Affiliation(s)
- Mark Rawling
- Aquatic Animal Nutrition and Health Research Group, School of Marine and Biological Sciences, Plymouth University, Plymouth, Devon PL4 8AA, UK; (D.M.); (A.F.)
| | - Marion Schiavone
- Lallemand SAS, 19 rue des Briquetiers, 31702 Blagnac, France; (M.S.); (A.M.); (E.L.)
| | - Amélie Mugnier
- Lallemand SAS, 19 rue des Briquetiers, 31702 Blagnac, France; (M.S.); (A.M.); (E.L.)
| | - Eric Leclercq
- Lallemand SAS, 19 rue des Briquetiers, 31702 Blagnac, France; (M.S.); (A.M.); (E.L.)
| | - Daniel Merrifield
- Aquatic Animal Nutrition and Health Research Group, School of Marine and Biological Sciences, Plymouth University, Plymouth, Devon PL4 8AA, UK; (D.M.); (A.F.)
| | - Andrew Foey
- Aquatic Animal Nutrition and Health Research Group, School of Marine and Biological Sciences, Plymouth University, Plymouth, Devon PL4 8AA, UK; (D.M.); (A.F.)
| | - Emmanuelle Apper
- Lallemand SAS, 19 rue des Briquetiers, 31702 Blagnac, France; (M.S.); (A.M.); (E.L.)
| |
Collapse
|
25
|
Sun J, Chen J, Xie Q, Sun M, Zhang W, Wang H, Liu N, Wang Q, Wang M. Sodium butyrate alleviates R97-116 peptide-induced myasthenia gravis in mice by improving the gut microbiota and modulating immune response. J Inflamm (Lond) 2023; 20:37. [PMID: 37924056 PMCID: PMC10625296 DOI: 10.1186/s12950-023-00363-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 10/17/2023] [Indexed: 11/06/2023] Open
Abstract
Fermented butyrate exhibits an anti-inflammatory response to maintain immune homeostasis within the gut. However, the effect and underlying mechanism of butyrate on myasthenia gravis (MG) remain unclear. The changes in the gut microbiota and fecal contents of SCFAs in MG patients were examined. R97-116 peptide was used to induce the experimental autoimmune myasthenia gravis (EAMG) mice and sodium butyrate (NaB) was gavaged to the EAMG mice. Gut microbiota, the frequency of Th1, Th17, Treg, Tfh, and B cells, the levels of IFN-γ, IL-17 A, IL-10, IL-21, and anti-R97-116 IgG, RNA-seq of total B cells in the spleen were explored by metagenomics, flow cytometry, ELISA, and transcriptomics. A significant reduction in SCFA-producing bacteria including Butyricimonas synergistica and functional modules including butyrate synthesis/production II was observed in MG patients and fecal SCFAs detection confirmed the increase. The EAMG mice were successfully constructed and NaB supplementation has changed the composition and function of the gut microbiota. The numbers of Th1, Th17, Tfh, and B cells were significantly increased while that of Treg cells was obviously decreased in EAMG mice compared with controls. Interestingly, NaB treatment has reduced the amounts of Th17, Tfh, and B cells but increased that of Treg cells. Accordingly, the levels of IL-17 A, IL-21, and IgG were increased while IL-10 was decreased in EAMG mice. However, NaB treatment reduced IL-17 A and IL-21 but increased that of IL-10. RNA-seq of B cells has revealed 4577 deferentially expressed genes (DEGs), in which 1218 DEGs were up-regulated while 3359 DEGs were down-regulated in NaB-treated EAMG mice. GO enrichment and KEGG pathway analysis unveiled that the function of these DEGs was mainly focused on immunoglobulin production, mitochondrial respiratory chain complex, ribosome, oxidative phosphorylation, and CNS diseases including amyotrophic lateral sclerosis. We have found that butyrate was significantly reduced in MG patients and NaB gavage could evidently improve MG symptoms in EAMG mice by changing the gut microbiota, regulating the immune response, and altering the gene expression and function of B cells, suggesting NaB might be a potential immunomodulatory supplement for MG drugs.
Collapse
Affiliation(s)
- Jing Sun
- Department of Neurology, Lanzhou University Second Hospital, Lanzhou, 730030, China
| | - Juanjuan Chen
- Cuiying Biomedical Research Center, Lanzhou University Second Hospital, Lanzhou, 730030, Gansu, China
| | - Qinfang Xie
- Department of Neurology, Lanzhou University Second Hospital, Lanzhou, 730030, China
| | - Mengjiao Sun
- Department of Neurology, Lanzhou University Second Hospital, Lanzhou, 730030, China
| | - Wenjing Zhang
- Department of Neurology, Qinghai Provincial People's Hospital, Xining, 810007, China
| | - Hongxia Wang
- Department of Neurology, Lanzhou University Second Hospital, Lanzhou, 730030, China
| | - Ning Liu
- Department of Neurology, Lanzhou University Second Hospital, Lanzhou, 730030, China
| | - Qi Wang
- Cuiying Biomedical Research Center, Lanzhou University Second Hospital, Lanzhou, 730030, Gansu, China.
| | - Manxia Wang
- Department of Neurology, Lanzhou University Second Hospital, Lanzhou, 730030, China.
| |
Collapse
|
26
|
Liu S, Zhao Y, Feng X, Xu H. SARS-CoV-2 infection threatening intestinal health: A review of potential mechanisms and treatment strategies. Crit Rev Food Sci Nutr 2023; 63:12578-12596. [PMID: 35894645 DOI: 10.1080/10408398.2022.2103090] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The outbreak of the COVID-19 pandemic has brought great problems to mankind, including economic recession and poor health. COVID-19 patients are frequently reported with gastrointestinal symptoms such as diarrhea and vomiting in clinical diagnosis. Maintaining intestinal health is the key guarantee to maintain the normal function of multiple organs, otherwise it will be a disaster. Therefore, the purpose of this review was deeply understanded the potential mechanism of SARS-CoV-2 infection threatening intestinal health and put forward reasonable treatment strategies. Combined with the existing researches, we summarized the mechanism of SARS-CoV-2 infection threatening intestinal health, including intestinal microbiome disruption, intestinal barrier dysfunction, intestinal oxidative stress and intestinal cytokine storm. These adverse intestinal events may affect other organs through the circulatory system or aggravate the course of the disease. Typically, intestinal disadvantage may promote the progression of SARS-CoV-2 through the gut-lung axis and increase the disease degree of COVID-19 patients. In view of the lack of specific drugs to inhibit SARS-CoV-2 replication, the current review described new strategies of probiotics, prebiotics, postbiotics and nutrients to combat SARS-CoV-2 infection and maintain intestinal health. To provide new insights for the prevention and treatment of gastrointestinal symptoms and pneumonia in patients with COVID-19.
Collapse
Affiliation(s)
- Shanji Liu
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, China
| | - Yu Zhao
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, China
| | - Xiaoyan Feng
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, China
| | - Hengyi Xu
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, China
| |
Collapse
|
27
|
SeyedAlinaghi S, Shahidi R, Afzalian A, Paranjkhoo P, Ghorbanzadeh K, Mojdeganlou H, Razi A, Mojdeganlou P, Dashti M, Ghasemzadeh A, Parikhani SN, Pashaei A, Karimi A, Sepide A, Mehraeen E, Hackett D. Probiotics in prevention and treatment of COVID-19: a systematic review of current evidence. RUSSIAN JOURNAL OF INFECTION AND IMMUNITY 2023; 13:709-722. [DOI: 10.15789/2220-7619-pip-2118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
Abstract
Introduction. Clinical evidence suggests that certain probiotics may help treat and prevent viral infections. To date, the effectiveness of probiotics in the alleviation of COVID-19 has not been established. The aim of this systematic review was to assess the role of probiotics in the prevention and treatment of COVID-19.
Materials and methods. An extensive search of four electronic databases was performed which included Embase, Scopus, Web of Science, and PubMed from November 2019 to June 2022. After reviewing the references list of related articles additional studies were identified. A multiple combination of keywords validated by MESH were used to search the databases. Study selection was performed according to an inclusion and exclusion criteria.
Results. Twenty-three articles met the study inclusion criteria. Six articles were conducted in vitro while the remaining studies were conducted in the human population (in vivo). The type of probiotic was defined in eighteen studies. There were two studies that used supplements (vitamins, herbals, minerals, etc.) in addition to probiotics. The largest sample size was 445 850 participants which were from a study that used an application-based survey. The majority of studies found that probiotics had a positive effect on the COVID-19 disease. The benefits included early remission of COVID-19 symptoms and a shorter duration of sickness (10 studies), lower mortality rates (3 studies), and decreased hospitalization and length of stay (3 studies). Six in vitro studies found that probiotics were beneficial against SARS-CoV-2 through antiviral effects. There were only two studies that found probiotics to be ineffective or caused negative effects when consumed in COVID-19 patients.
Conclusion. Available evidence supports the antiviral role of probiotics on prevention and treatment of COVID-19. The antiviral potential of Lactobacillus paracasei metabolite PlnE and PlnF against SARS-CoV-2 may explain the effectiveness of probiotics on COVID-19.
Collapse
|
28
|
Liu R, Sun B. Lactic Acid Bacteria and Aging: Unraveling the Interplay for Healthy Longevity. Aging Dis 2023; 15:AD.2023.0926. [PMID: 37962461 PMCID: PMC11272207 DOI: 10.14336/ad.2023.0926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 09/25/2023] [Indexed: 11/15/2023] Open
Abstract
Lactic Acid Bacteria (LAB) are beneficial microorganisms widely utilized in food fermentation processes and as probiotic supplements. They offer multifarious health benefits, including enhancing digestion, strengthening immune mechanisms, and mitigating inflammation. Recent studies suggest that LAB might be instrumental in the anti-aging domain, modulating key molecular pathways involved in the aging continuum, such as IL-13, TNF-α, mTOR, IFN-γ, TGF-β, AMPK, and GABA. The TLR family, particularly TLR2, appears pivotal during the primary cellular interactions with bacteria and their byproducts. Concurrently, the Sirtuin family, predominantly Sirtuin-1, plays diverse roles upon cellular stimuli by bacterial components. The potential anti-aging benefits postulated include restoring gut balance, enhancing antioxidant potential, and fortifying cognitive and mental faculties. However, the current body of evidence is still embryonic and calls for expansive human trials and deeper mechanistic analyses. The safety and optimal consumption metrics for LAB also warrant rigorous evaluation. Future research trajectories should identify specific LAB strains with potent anti-aging properties and unravel the underlying biological pathways. Given the promising implications, LAB strains stand as potential dietary contenders to foster healthy aging and enrich the quality of life among the elderly population.
Collapse
Affiliation(s)
- Rui Liu
- School of Food Engineering, Ludong University, Yantai, Shandong 264025, China
| | - Bo Sun
- State Key Laboratory of Digital Medical Engineering, Southeast University, Nanjing 210096, China
| |
Collapse
|
29
|
Ge X, Hu J, Peng Y, Zeng Z, He D, Li X, Chen Y, Luo G, Deng J, Xu Z, He S. Atmosphere-inspired multilayered nanoarmor with modulable protection and delivery of Interleukin-4 for inflammatory microenvironment modulation. Biomaterials 2023; 301:122254. [PMID: 37531774 DOI: 10.1016/j.biomaterials.2023.122254] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 06/26/2023] [Accepted: 07/23/2023] [Indexed: 08/04/2023]
Abstract
Inflammatory bowel disease (IBD) has been closely associated with immune disorders and excessive M1 macrophage activation, which can be reversed by the M2-polarizing effect of interleukin-4 (IL-4). However, maintaining native IL-4 activity with its specific release in the inflammatory microenvironment and efficient biological performance remain a challenge. Inspired by the multilayered defense mechanism of the earth's atmosphere, we constructed a multilayered protective nanoarmor (NA) for IL-4 delivery (termed as IL-4@PEGRA NAs) into an intricate inflammatory microenvironment. The poly(ethylene glycol) (PEG)-ylated phenolic rosmarinic acid (RA)-grafted copolymer contains two protective layers-the intermediate polyphenol (RA molecules) and outermost shield (PEG) layers-to protect the biological activity of IL-4 and prolong its circulation in blood. Moreover, IL-4@PEGRA NAs scavenge reactive oxygen species with the specific release of IL-4 and maximize its biofunction at the site of inflammation, leading to M2 macrophage polarization and downregulation of inflammatory mediators. Simultaneously, gut microbiota dysbiosis can improve to amplify the M2-polarizing effect and inhibit the phosphatidylinositol 3 kinase/Akt signaling pathway, thereby attenuating inflammation and promoting colitis tissue repair. It provides a nature-inspired strategy for constructing an advanced multilayered NA delivery system with protective characteristics and potential for IBD management.
Collapse
Affiliation(s)
- Xin Ge
- Department of Gastroenterology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing Medical University, Chongqing, 400010, China
| | - Junfeng Hu
- Key Laboratory of Luminescence Analysis and Molecular Sensing, Ministry of Education, School of Materials and Energy & Chongqing Engineering Research Center for Micro-Nano Biomedical Materials and Devices, Southwest University, Chongqing, 400715, China
| | - Yuan Peng
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China; Institute of Burn Research, Southwest Hospital, State Key Lab of Trauma, Burn and Combined Injury, Chongqing Key Laboratory for Disease Proteomics, Army Medical University (Third Military Medical University), Chongqing, 400038, China
| | - Zhuo Zeng
- Institute of Burn Research, Southwest Hospital, State Key Lab of Trauma, Burn and Combined Injury, Chongqing Key Laboratory for Disease Proteomics, Army Medical University (Third Military Medical University), Chongqing, 400038, China
| | - Danfeng He
- Institute of Burn Research, Southwest Hospital, State Key Lab of Trauma, Burn and Combined Injury, Chongqing Key Laboratory for Disease Proteomics, Army Medical University (Third Military Medical University), Chongqing, 400038, China
| | - Xilan Li
- Institute of Burn Research, Southwest Hospital, State Key Lab of Trauma, Burn and Combined Injury, Chongqing Key Laboratory for Disease Proteomics, Army Medical University (Third Military Medical University), Chongqing, 400038, China
| | - Yajie Chen
- Institute of Burn Research, Southwest Hospital, State Key Lab of Trauma, Burn and Combined Injury, Chongqing Key Laboratory for Disease Proteomics, Army Medical University (Third Military Medical University), Chongqing, 400038, China
| | - Gaoxing Luo
- Institute of Burn Research, Southwest Hospital, State Key Lab of Trauma, Burn and Combined Injury, Chongqing Key Laboratory for Disease Proteomics, Army Medical University (Third Military Medical University), Chongqing, 400038, China.
| | - Jun Deng
- Institute of Burn Research, Southwest Hospital, State Key Lab of Trauma, Burn and Combined Injury, Chongqing Key Laboratory for Disease Proteomics, Army Medical University (Third Military Medical University), Chongqing, 400038, China.
| | - Zhigang Xu
- Key Laboratory of Luminescence Analysis and Molecular Sensing, Ministry of Education, School of Materials and Energy & Chongqing Engineering Research Center for Micro-Nano Biomedical Materials and Devices, Southwest University, Chongqing, 400715, China.
| | - Song He
- Department of Gastroenterology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing Medical University, Chongqing, 400010, China.
| |
Collapse
|
30
|
Yang Y, Xiao G, Cheng P, Zeng J, Liu Y. Protective Application of Chinese Herbal Compounds and Formulae in Intestinal Inflammation in Humans and Animals. Molecules 2023; 28:6811. [PMID: 37836654 PMCID: PMC10574200 DOI: 10.3390/molecules28196811] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 09/16/2023] [Accepted: 09/19/2023] [Indexed: 10/15/2023] Open
Abstract
Intestinal inflammation is a chronic gastrointestinal disorder with uncertain pathophysiology and causation that has significantly impacted both the physical and mental health of both people and animals. An increasing body of research has demonstrated the critical role of cellular signaling pathways in initiating and managing intestinal inflammation. This review focuses on the interactions of three cellular signaling pathways (TLR4/NF-κB, PI3K-AKT, MAPKs) with immunity and gut microbiota to explain the possible pathogenesis of intestinal inflammation. Traditional medicinal drugs frequently have drawbacks and negative side effects. This paper also summarizes the pharmacological mechanism and application of Chinese herbal compounds (Berberine, Sanguinarine, Astragalus polysaccharide, Curcumin, and Cannabinoids) and formulae (Wumei Wan, Gegen-Qinlian decoction, Banxia xiexin decoction) against intestinal inflammation. We show that the herbal compounds and formulae may influence the interactions among cell signaling pathways, immune function, and gut microbiota in humans and animals, exerting their immunomodulatory capacity and anti-inflammatory and antimicrobial effects. This demonstrates their strong potential to improve gut inflammation. We aim to promote herbal medicine and apply it to multispecies animals to achieve better health.
Collapse
Affiliation(s)
- Yang Yang
- College of Veterinary Medicine, Hunan Agricultural University, Changsha 410125, China; (Y.Y.); (G.X.); (P.C.)
- Hunan Key Laboratory, Chinese Veterinary Medicine, Changsha 410125, China
| | - Gang Xiao
- College of Veterinary Medicine, Hunan Agricultural University, Changsha 410125, China; (Y.Y.); (G.X.); (P.C.)
| | - Pi Cheng
- College of Veterinary Medicine, Hunan Agricultural University, Changsha 410125, China; (Y.Y.); (G.X.); (P.C.)
- Hunan Key Laboratory, Chinese Veterinary Medicine, Changsha 410125, China
| | - Jianguo Zeng
- College of Veterinary Medicine, Hunan Agricultural University, Changsha 410125, China; (Y.Y.); (G.X.); (P.C.)
- Hunan Key Laboratory, Chinese Veterinary Medicine, Changsha 410125, China
| | - Yisong Liu
- College of Veterinary Medicine, Hunan Agricultural University, Changsha 410125, China; (Y.Y.); (G.X.); (P.C.)
- Hunan Key Laboratory, Chinese Veterinary Medicine, Changsha 410125, China
| |
Collapse
|
31
|
Wang D, Ma B, Liao Z, Li W, Zhang T, Lei C, Wang H. Flaxseed Supplementation in Chicken Feed Accelerates Salmonella enterica subsp. enterica Serovar Enteritidis Clearance, Modulates Cecum Microbiota, and Influences Ovarian Gene Expression in Laying Hens. Biomolecules 2023; 13:1353. [PMID: 37759753 PMCID: PMC10526464 DOI: 10.3390/biom13091353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 08/18/2023] [Accepted: 08/20/2023] [Indexed: 09/29/2023] Open
Abstract
Salmonella is a foodborne pathogen that poses a serious threat to both human and animal health and food safety. Flaxseed is rich in unsaturated fatty acids; has anti-metabolic syndrome, anti-inflammatory, and neuroprotective properties; and may be a potential source of feed additives. To investigate the impact of flaxseed on Salmonella-infected laying hens, we administered Salmonella enterica subsp. enterica serovar Enteritidis (S. Enteritidis) after adding flaxseed to the feed of laying hens (15% [750 mg/kg]). S. Enteritidis colonization was reduced and its clearance was accelerated from the laying hens. Furthermore, flaxseed supplementation mitigated the damage to the ileum caused by S. Enteritidis. We analyzed alterations in intestinal flora through 16S rRNA amplicon sequencing. S. Enteritidis infection increased the abundance of Akkermansia and triggered the host inflammatory response. Conversely, the addition of flaxseed to the feed increased the abundance of beneficial intestinal bacteria, such as Lactobacilli and Bacteroides. Ovarian health is important for egg production performance in laying hens and our findings indicate that S. Enteritidis can persist in the ovaries for an extended period. Therefore, we further performed transcriptome sequencing analysis of ovarian tissues on day seven after S. Enteritidis infection. S. Enteritidis infection leads to altered ovarian gene expression, including the downregulation of lipid metabolism and growth and development genes and the upregulation of host immune response genes in laying hens. The upregulation of genes associated with growth and development may have stimulated ovarian growth and development.
Collapse
Affiliation(s)
- De Wang
- College of Life Sciences, Sichuan University, Chengdu 610044, China; (D.W.); (B.M.); (Z.L.); (W.L.); (T.Z.)
- Key Laboratory of Bio-Resource and Eco-Environment of the Ministry of Education, Chengdu 610064, China
- Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, Chengdu 610064, China
| | - Boheng Ma
- College of Life Sciences, Sichuan University, Chengdu 610044, China; (D.W.); (B.M.); (Z.L.); (W.L.); (T.Z.)
- Key Laboratory of Bio-Resource and Eco-Environment of the Ministry of Education, Chengdu 610064, China
- Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, Chengdu 610064, China
| | - Ziwei Liao
- College of Life Sciences, Sichuan University, Chengdu 610044, China; (D.W.); (B.M.); (Z.L.); (W.L.); (T.Z.)
- Key Laboratory of Bio-Resource and Eco-Environment of the Ministry of Education, Chengdu 610064, China
- Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, Chengdu 610064, China
| | - Wenjing Li
- College of Life Sciences, Sichuan University, Chengdu 610044, China; (D.W.); (B.M.); (Z.L.); (W.L.); (T.Z.)
- Key Laboratory of Bio-Resource and Eco-Environment of the Ministry of Education, Chengdu 610064, China
- Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, Chengdu 610064, China
| | - Tiejun Zhang
- College of Life Sciences, Sichuan University, Chengdu 610044, China; (D.W.); (B.M.); (Z.L.); (W.L.); (T.Z.)
- Key Laboratory of Bio-Resource and Eco-Environment of the Ministry of Education, Chengdu 610064, China
- Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, Chengdu 610064, China
| | - Changwei Lei
- College of Life Sciences, Sichuan University, Chengdu 610044, China; (D.W.); (B.M.); (Z.L.); (W.L.); (T.Z.)
- Key Laboratory of Bio-Resource and Eco-Environment of the Ministry of Education, Chengdu 610064, China
- Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, Chengdu 610064, China
| | - Hongning Wang
- College of Life Sciences, Sichuan University, Chengdu 610044, China; (D.W.); (B.M.); (Z.L.); (W.L.); (T.Z.)
- Key Laboratory of Bio-Resource and Eco-Environment of the Ministry of Education, Chengdu 610064, China
- Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, Chengdu 610064, China
| |
Collapse
|
32
|
El Azab EF, Alakilli SYM, Saleh AM, Alhassan HH, Alanazi HH, Ghanem HB, Yousif SO, Alrub HA, Anber N, Elfaki EM, Hamza A, Abdulmalek S. Actinidia deliciosa Extract as a Promising Supplemental Agent for Hepatic and Renal Complication-Associated Type 2 Diabetes (In Vivo and In Silico-Based Studies). Int J Mol Sci 2023; 24:13759. [PMID: 37762060 PMCID: PMC10530616 DOI: 10.3390/ijms241813759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 08/27/2023] [Accepted: 08/29/2023] [Indexed: 09/29/2023] Open
Abstract
Type 2 diabetes (T2D) is a chronic metabolic condition associated with obesity, oxidative stress-mediated inflammation, apoptosis, and impaired insulin signaling. The utilization of phytochemical therapy generated from plants has emerged as a promising approach for the treatment of diabetes and its complications. Kiwifruit is recognized for its substantial content of antioxidative phenolics. Therefore, this work aimed to examine the effect of Actinidia deliciosa (kiwi fruit) on hepatorenal damage in a high-fat diet (HFD) and streptozotocin (STZ)-induced T2D in rats using in vivo and in silico analyses. An increase in hepatic and renal lipid peroxidation was observed in diabetic rats accompanied by a decrease in antioxidant status. Furthermore, it is important to highlight that there were observable inflammatory and apoptotic responses in the hepatic and renal organs of rats with diabetes, along with a dysregulation of the phosphorylation levels of mammalian target of rapamycin (mTOR), protein kinase B (Akt), and phosphoinositide 3-kinase (PI3K) signaling proteins. However, the administration of kiwi extract to diabetic rats alleviated hepatorenal dysfunction, inflammatory processes, oxidative injury, and apoptotic events with activation of the insulin signaling pathway. Furthermore, molecular docking and dynamic simulation studies revealed quercetin, chlorogenic acid, and melezitose as components of kiwi extract that docked well with potential as effective natural products for activating the silent information regulator 1(SIRT-1) pathway. Furthermore, phenolic acids in kiwi extract, especially syringic acid, P-coumaric acid, caffeic acid, and ferulic acid, have the ability to inhibit the phosphatase and tensin homolog (PTEN) active site. In conclusion, it can be argued that kiwi extract may present a potentially beneficial adjunctive therapy approach for the treatment of diabetic hepatorenal complications.
Collapse
Affiliation(s)
- Eman Fawzy El Azab
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences at Al-Qurayyat, Jouf University, Al-Qurayyat 77454, Saudi Arabia; (H.H.A.); (S.O.Y.); (H.A.A.); (E.M.E.); (A.H.)
| | - Saleha Y. M. Alakilli
- Department of Biological Sciences, Faculty of Sciences, King Abdulaziz University, Jeddah 23761, Saudi Arabia;
| | - Abdulrahman M. Saleh
- Pharmaceutical Medicinal Chemistry & Drug Design Department, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo 11884, Egypt;
| | - Hassan H. Alhassan
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Jouf University, Sakaka 72341, Saudi Arabia; (H.H.A.); (H.B.G.)
| | - Hamad H. Alanazi
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences at Al-Qurayyat, Jouf University, Al-Qurayyat 77454, Saudi Arabia; (H.H.A.); (S.O.Y.); (H.A.A.); (E.M.E.); (A.H.)
| | - Heba Bassiony Ghanem
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Jouf University, Sakaka 72341, Saudi Arabia; (H.H.A.); (H.B.G.)
- Medical Biochemistry Department, Faculty of Medicine, Tanta University, Tanta 31527, Egypt
| | - Sara Osman Yousif
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences at Al-Qurayyat, Jouf University, Al-Qurayyat 77454, Saudi Arabia; (H.H.A.); (S.O.Y.); (H.A.A.); (E.M.E.); (A.H.)
- Department of Clinical Chemistry, Faculty of medical Laboratory Sciences, Sudan University of Science and Technology, Khartoum 13311, Sudan
| | - Heba Abu Alrub
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences at Al-Qurayyat, Jouf University, Al-Qurayyat 77454, Saudi Arabia; (H.H.A.); (S.O.Y.); (H.A.A.); (E.M.E.); (A.H.)
| | - Nahla Anber
- Emergency Hospital, Mansoura University, Mansoura 35516, Egypt;
| | - Elyasa Mustafa Elfaki
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences at Al-Qurayyat, Jouf University, Al-Qurayyat 77454, Saudi Arabia; (H.H.A.); (S.O.Y.); (H.A.A.); (E.M.E.); (A.H.)
| | - Alneil Hamza
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences at Al-Qurayyat, Jouf University, Al-Qurayyat 77454, Saudi Arabia; (H.H.A.); (S.O.Y.); (H.A.A.); (E.M.E.); (A.H.)
| | - Shaymaa Abdulmalek
- Biochemistry Department, Faculty of Science, Alexandria University, Alexandria 21511, Egypt;
| |
Collapse
|
33
|
Jiao L, Feng X, Jin S, Xie J, Guo X, Ma R. Transcriptome analysis of Cryptocaryon irritans tomont responding to Bacillus licheniformis treatment. FISH & SHELLFISH IMMUNOLOGY 2023; 140:108943. [PMID: 37451523 DOI: 10.1016/j.fsi.2023.108943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 07/05/2023] [Accepted: 07/11/2023] [Indexed: 07/18/2023]
Abstract
Cryptocaryon irritans is a ciliated obligate parasite that causes cryptocaryonosis (white spot disease) and poses great threat to marine fish farming. In recent years, the use of probiotics protects fish from pathogens, which has been identified as the sustainable and environmentally friendly tool to maintain the health and well-being of the host. Accordingly, Cryptocaryon irritans tomont and probiotic Bacillus strain (B.licheniformis, previously isolated from aquaculture water) were co-cultured to detect whether B. licheniformis has anti-C. irritants effect. The result showed that during 4-day incubation, B. licheniformi with 1 × 107 CFU/mL and 1 × 108 CFU/mL concentration effectively inhibited the incubation of C. irritans tomont, indicating that B. licheniformi could inhibit the transformation from reproductive tomont to infective theront of C. irritans. Later, C. irritans samples in the control (without B. licheniformi supplementation) and 1 × 107 CFU/mL B. licheniformi treatment group were sent for transcriptome analysis. Compare with the control group, a total of 3237 differentially expressed genes were identified, among which 626 genes were up-regulated and 2611 genes were down-regulated in 1 × 107 CFU/mL B. licheniformi group. Further Kyoto Encyclopedia of Genes and Genomes pathways analysis showed that anti-C. irritans mechanism of B. licheniformi was mainly involved in the energy metabolism (carbon metabolism, oxidative phosphorylation, biosynthesis of amino acids), transcription and translation (Ribosomes, spliceosomes, RNA transport, etc), lysosome-based degradation (lysosome, phagosome, protein processing in endoplasmic reticulum) and PI3K-Akt pathways. Our study findings raised the possibility of using marine microorganism B. licheniformi in handling aquaculture associated pathogen C. irritans, and preliminarily clarified the molecular mechanism.
Collapse
Affiliation(s)
- Lefei Jiao
- School of Marine Sciences, Ningbo University, Ningbo, 315211, PR China
| | - Xuewei Feng
- School of Marine Sciences, Ningbo University, Ningbo, 315211, PR China
| | - Shan Jin
- School of Marine Sciences, Ningbo University, Ningbo, 315211, PR China
| | - Jiasong Xie
- School of Marine Sciences, Ningbo University, Ningbo, 315211, PR China
| | - Xiangyu Guo
- School of Marine Sciences, Ningbo University, Ningbo, 315211, PR China
| | - Rongrong Ma
- School of Marine Sciences, Ningbo University, Ningbo, 315211, PR China.
| |
Collapse
|
34
|
Li Y, Tong T, Li P, Peng Y, Zhang M, Liu J, She Y, Li Z, Li Y. Screening of Potential Probiotic Lactobacillaceae and Their Improvement of Type 2 Diabetes Mellitus by Promoting PI3K/AKT Signaling Pathway in db/db Mice. Pol J Microbiol 2023; 72:285-297. [PMID: 37725896 PMCID: PMC10508973 DOI: 10.33073/pjm-2023-028] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 06/09/2023] [Indexed: 09/21/2023] Open
Abstract
The study aimed to isolate Lactobacillaceae strains with in vitro hypoglycemic activity and probiotic properties and to determine their antidiabetic abilities in vivo. Lactiplantibacillus plantarum 22, L. plantarum 25, Limosilactobacillus fermentum 11, and L. fermentum 305 with high in vitro hypoglycemic activity were screened from 23 strains of Lactobacillaceae isolated from human feces and identified by 16S rDNA sequencing. The fasting blood glucose (FBG) of the mice was recorded weekly. After 12 weeks, liver, kidney, and pancreas tissues were stained with hematoxylin and eosin (H&E) to observe histomorphology; the inflammatory factors were assayed by Quantitative Real-time PCR; PI3K and AKT were measured by Western blot; the short-chain fatty acids (SCFAs) were determined by LC-MS/MS. Inhibitory activities of L. plantarum 22, L. plantarum 25, L. fermentum 11, and L. fermentum 305 against α-amylase were 62.29 ± 0.44%, 51.81 ± 3.65%, 58.40 ± 1.68%, and 57.48 ± 5.04%, respectively. Their inhibitory activities to α-glucosidase were 14.89 ± 0.38%, 15.32 ± 0.89%, 52.63 ± 3.07%, and 51.79 ± 1.13%, respectively. Their survival rate after simulated gastrointestinal test were 12.42 ± 2.84%, 9.10 ± 1.12%, 5.86 ± 0.52%, and 8.82 ± 2.50% and their adhesion rates to Caco-2 cell were 6.09 ± 0.39%, 6.37 ± 0.28%, 6.94 ± 0.27%, and 6.91 ± 0.11%, respectively. The orthogonal tests of bacterial powders of the four strains showed that the maximum inhibitory activities to α-amylase and α-glucosidase were 93.18 ± 1.19% and 75.33 ± 2.89%, respectively. The results showed that the mixture of Lactobacillaceae could lower FBG, reduce inflammation, and liver, kidney, and pancreas damage, promote PI3K/AKT signaling pathway, and increase the content of SCFAs. The combination of L. plantarum 22, L. plantarum 25, L. fermentum 11, and L. fermentum 305 can potentially improve type 2 diabetes mellitus (T2DM).
Collapse
Affiliation(s)
- Yueyang Li
- College of Biochemical Engineering, Beijing Union University, Beijing, China
| | - Tong Tong
- College of Biochemical Engineering, Beijing Union University, Beijing, China
| | - Peifan Li
- College of Biochemical Engineering, Beijing Union University, Beijing, China
| | - Yian Peng
- College of Biochemical Engineering, Beijing Union University, Beijing, China
| | - Michael Zhang
- Department of Physics and Astronomy, University of Manitoba, Winnipeg, Canada
- School of Public Health, Anhui University of Science and Technology, Hefei, China
| | - Jia Liu
- Internal Trade Food Science and Technology (Beijing) Co., Ltd., Beijing, China
| | - Yongxin She
- Institute of Quality Standard and Testing Technology for Agro-Products, Chinese Academy of Agricultural Science, Beijing, China
| | - Zuming Li
- College of Biochemical Engineering, Beijing Union University, Beijing, China
| | - Yongli Li
- Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
35
|
Gao J, Cao B, Zhao R, Li H, Xu Q, Wei B. Critical Signaling Transduction Pathways and Intestinal Barrier: Implications for Pathophysiology and Therapeutics. Pharmaceuticals (Basel) 2023; 16:1216. [PMID: 37765024 PMCID: PMC10537644 DOI: 10.3390/ph16091216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Revised: 08/18/2023] [Accepted: 08/22/2023] [Indexed: 09/29/2023] Open
Abstract
The intestinal barrier is a sum of the functions and structures consisting of the intestinal mucosal epithelium, mucus, intestinal flora, secretory immunoglobulins, and digestive juices. It is the first-line defense mechanism that resists nonspecific infections with powerful functions that include physical, endocrine, and immune defenses. Health and physiological homeostasis are greatly dependent on the sturdiness of the intestinal barrier shield, whose dysfunction can contribute to the progression of numerous types of intestinal diseases. Disorders of internal homeostasis may also induce barrier impairment and form vicious cycles during the response to diseases. Therefore, the identification of the underlying mechanisms involved in intestinal barrier function and the development of effective drugs targeting its damage have become popular research topics. Evidence has shown that multiple signaling pathways and corresponding critical molecules are extensively involved in the regulation of the barrier pathophysiological state. Ectopic expression or activation of signaling pathways plays an essential role in the process of shield destruction. Although some drugs, such as molecular or signaling inhibitors, are currently used for the treatment of intestinal diseases, their efficacy cannot meet current medical requirements. In this review, we summarize the current achievements in research on the relationships between the intestinal barrier and signaling pathways. The limitations and future perspectives are also discussed to provide new horizons for targeted therapies for restoring intestinal barrier function that have translational potential.
Collapse
Affiliation(s)
- Jingwang Gao
- Department of General Surgery, Medical School of Chinese PLA, Beijing 100853, China; (J.G.); (R.Z.); (H.L.); (Q.X.)
- Department of General Surgery, First Medical Center, Chinese PLA General Hospital, Beijing 100853, China;
| | - Bo Cao
- Department of General Surgery, First Medical Center, Chinese PLA General Hospital, Beijing 100853, China;
| | - Ruiyang Zhao
- Department of General Surgery, Medical School of Chinese PLA, Beijing 100853, China; (J.G.); (R.Z.); (H.L.); (Q.X.)
- Department of General Surgery, First Medical Center, Chinese PLA General Hospital, Beijing 100853, China;
| | - Hanghang Li
- Department of General Surgery, Medical School of Chinese PLA, Beijing 100853, China; (J.G.); (R.Z.); (H.L.); (Q.X.)
- Department of General Surgery, First Medical Center, Chinese PLA General Hospital, Beijing 100853, China;
| | - Qixuan Xu
- Department of General Surgery, Medical School of Chinese PLA, Beijing 100853, China; (J.G.); (R.Z.); (H.L.); (Q.X.)
- Department of General Surgery, First Medical Center, Chinese PLA General Hospital, Beijing 100853, China;
| | - Bo Wei
- Department of General Surgery, Medical School of Chinese PLA, Beijing 100853, China; (J.G.); (R.Z.); (H.L.); (Q.X.)
| |
Collapse
|
36
|
Hieber C, Grabbe S, Bros M. Counteracting Immunosenescence-Which Therapeutic Strategies Are Promising? Biomolecules 2023; 13:1085. [PMID: 37509121 PMCID: PMC10377144 DOI: 10.3390/biom13071085] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 07/03/2023] [Accepted: 07/05/2023] [Indexed: 07/30/2023] Open
Abstract
Aging attenuates the overall responsiveness of the immune system to eradicate pathogens. The increased production of pro-inflammatory cytokines by innate immune cells under basal conditions, termed inflammaging, contributes to impaired innate immune responsiveness towards pathogen-mediated stimulation and limits antigen-presenting activity. Adaptive immune responses are attenuated as well due to lowered numbers of naïve lymphocytes and their impaired responsiveness towards antigen-specific stimulation. Additionally, the numbers of immunoregulatory cell types, comprising regulatory T cells and myeloid-derived suppressor cells, that inhibit the activity of innate and adaptive immune cells are elevated. This review aims to summarize our knowledge on the cellular and molecular causes of immunosenescence while also taking into account senescence effects that constitute immune evasion mechanisms in the case of chronic viral infections and cancer. For tumor therapy numerous nanoformulated drugs have been developed to overcome poor solubility of compounds and to enable cell-directed delivery in order to restore immune functions, e.g., by addressing dysregulated signaling pathways. Further, nanovaccines which efficiently address antigen-presenting cells to mount sustained anti-tumor immune responses have been clinically evaluated. Further, senolytics that selectively deplete senescent cells are being tested in a number of clinical trials. Here we discuss the potential use of such drugs to improve anti-aging therapy.
Collapse
Affiliation(s)
- Christoph Hieber
- Department of Dermatology, University Medical Center of the Johannes Gutenberg-University Mainz, Langenbeckstraße 1, 55131 Mainz, Germany
- Institute of Molecular Biology (IMB), Ackermannweg 4, 55128 Mainz, Germany
| | - Stephan Grabbe
- Department of Dermatology, University Medical Center of the Johannes Gutenberg-University Mainz, Langenbeckstraße 1, 55131 Mainz, Germany
- Institute of Molecular Biology (IMB), Ackermannweg 4, 55128 Mainz, Germany
| | - Matthias Bros
- Department of Dermatology, University Medical Center of the Johannes Gutenberg-University Mainz, Langenbeckstraße 1, 55131 Mainz, Germany
| |
Collapse
|
37
|
Roy T, Boateng ST, Uddin MB, Banang-Mbeumi S, Yadav RK, Bock CR, Folahan JT, Siwe-Noundou X, Walker AL, King JA, Buerger C, Huang S, Chamcheu JC. The PI3K-Akt-mTOR and Associated Signaling Pathways as Molecular Drivers of Immune-Mediated Inflammatory Skin Diseases: Update on Therapeutic Strategy Using Natural and Synthetic Compounds. Cells 2023; 12:1671. [PMID: 37371141 PMCID: PMC10297376 DOI: 10.3390/cells12121671] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 06/10/2023] [Accepted: 06/12/2023] [Indexed: 06/29/2023] Open
Abstract
The dysregulated phosphatidylinositol-3-kinase (PI3K)-Akt-mammalian target of rapamycin (mTOR) signaling pathway has been implicated in various immune-mediated inflammatory and hyperproliferative dermatoses such as acne, atopic dermatitis, alopecia, psoriasis, wounds, and vitiligo, and is associated with poor treatment outcomes. Improved comprehension of the consequences of the dysregulated PI3K/Akt/mTOR pathway in patients with inflammatory dermatoses has resulted in the development of novel therapeutic approaches. Nonetheless, more studies are necessary to validate the regulatory role of this pathway and to create more effective preventive and treatment methods for a wide range of inflammatory skin diseases. Several studies have revealed that certain natural products and synthetic compounds can obstruct the expression/activity of PI3K/Akt/mTOR, underscoring their potential in managing common and persistent skin inflammatory disorders. This review summarizes recent advances in understanding the role of the activated PI3K/Akt/mTOR pathway and associated components in immune-mediated inflammatory dermatoses and discusses the potential of bioactive natural products, synthetic scaffolds, and biologic agents in their prevention and treatment. However, further research is necessary to validate the regulatory role of this pathway and develop more effective therapies for inflammatory skin disorders.
Collapse
Affiliation(s)
- Tithi Roy
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana at Monroe, Monroe, LA 71209, USA; (T.R.); (S.T.B.); (S.B.-M.); (R.K.Y.); (C.R.B.); (J.T.F.); (A.L.W.)
| | - Samuel T. Boateng
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana at Monroe, Monroe, LA 71209, USA; (T.R.); (S.T.B.); (S.B.-M.); (R.K.Y.); (C.R.B.); (J.T.F.); (A.L.W.)
| | - Mohammad B. Uddin
- Department of Toxicology and Cancer Biology, Center for Research on Environmental Diseases, College of Medicine, University of Kentucky, Lexington, KY 40536, USA;
| | - Sergette Banang-Mbeumi
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana at Monroe, Monroe, LA 71209, USA; (T.R.); (S.T.B.); (S.B.-M.); (R.K.Y.); (C.R.B.); (J.T.F.); (A.L.W.)
- Division for Research and Innovation, POHOFI Inc., Madison, WI 53744, USA
- School of Nursing and Allied Health Sciences, Louisiana Delta Community College, Monroe, LA 71203, USA
| | - Rajesh K. Yadav
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana at Monroe, Monroe, LA 71209, USA; (T.R.); (S.T.B.); (S.B.-M.); (R.K.Y.); (C.R.B.); (J.T.F.); (A.L.W.)
| | - Chelsea R. Bock
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana at Monroe, Monroe, LA 71209, USA; (T.R.); (S.T.B.); (S.B.-M.); (R.K.Y.); (C.R.B.); (J.T.F.); (A.L.W.)
| | - Joy T. Folahan
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana at Monroe, Monroe, LA 71209, USA; (T.R.); (S.T.B.); (S.B.-M.); (R.K.Y.); (C.R.B.); (J.T.F.); (A.L.W.)
| | - Xavier Siwe-Noundou
- Department of Pharmaceutical Sciences, School of Pharmacy, Sefako Makgatho Health Sciences University, P.O. Box 218, Pretoria 0208, South Africa;
| | - Anthony L. Walker
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana at Monroe, Monroe, LA 71209, USA; (T.R.); (S.T.B.); (S.B.-M.); (R.K.Y.); (C.R.B.); (J.T.F.); (A.L.W.)
| | - Judy A. King
- Department of Pathology and Translational Pathobiology, LSU Health Shreveport, 1501 Kings Highway, Shreveport, LA 71103, USA;
- College of Medicine, Belmont University, 900 Belmont Boulevard, Nashville, TN 37212, USA
| | - Claudia Buerger
- Department of Dermatology, Venerology and Allergology, Clinic of the Goethe University, 60590 Frankfurt am Main, Germany;
| | - Shile Huang
- Department of Biochemistry and Molecular Biology, Louisiana State University Health Sciences Center, 1501 Kings Highway, Shreveport, LA 71130, USA;
- Department of Hematology and Oncology, Louisiana State University Health Sciences Center, 1501 Kings Highway, Shreveport, LA 71130, USA
- Feist-Weiller Cancer Center, Louisiana State University Health Sciences Center, Shreveport, LA 71130, USA
| | - Jean Christopher Chamcheu
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana at Monroe, Monroe, LA 71209, USA; (T.R.); (S.T.B.); (S.B.-M.); (R.K.Y.); (C.R.B.); (J.T.F.); (A.L.W.)
- Department of Pathology and Translational Pathobiology, LSU Health Shreveport, 1501 Kings Highway, Shreveport, LA 71103, USA;
| |
Collapse
|
38
|
Yilmaz İU, Koc A. Boron stress signal is transmitted through the TOR pathway. J Trace Elem Med Biol 2023; 79:127222. [PMID: 37270859 DOI: 10.1016/j.jtemb.2023.127222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 05/14/2023] [Accepted: 05/23/2023] [Indexed: 06/06/2023]
Abstract
Although boron is an essential element for many organisms, an excess amount of it can cause toxicity, and the mechanism behind this toxicity is not yet fully understood. The Gcn4 transcription factor plays a crucial role in the boron stress response by directly activating the expression of the boron efflux pump Atr1. More than a dozen transcription factors and multiple cell signaling pathways have roles in regulating the Gcn4 transcription factor under various circumstances. However, it is unknown which pathways or factors mediate boron signaling to Gcn4. Using the yeast Saccharomyces cerevisiae as a model, we analyzed the factors that converge on the Gcn4 transcription factor to assess their possible roles in boron stress signaling. Our findings show that the GCN system is activated by uncharged tRNA stress in response to boron treatment and that GCN1, which plays a role in transferring uncharged tRNAs to Gcn2, is necessary for the kinase activity of Gcn2. The SNF and PKA pathways were not involved in mediating boron stress, even though they interact with Gcn4. Mutations in TOR pathway genes, such as GLN3 and TOR1, abolished Gcn4 and ATR1 activation in response to boric acid treatment. Therefore, our study suggests that the TOR pathway must be functional to form a proper response against boric acid stress.
Collapse
Affiliation(s)
- İrem Uluisik Yilmaz
- Department of Biomedical Engineering, Iskenderun Technical University, Hatay 31200, Turkey; Department of Molecular Biology and Genetics, Izmir Institute of Technology, Izmir 35430, Turkey
| | - Ahmet Koc
- Department of Genetics, Inonu University School of Medicine, Malatya 44280, Turkey; Department of Molecular Biology and Genetics, Izmir Institute of Technology, Izmir 35430, Turkey.
| |
Collapse
|
39
|
Yuk JM, Park EJ, Kim IS, Jo EK. Itaconate family-based host-directed therapeutics for infections. Front Immunol 2023; 14:1203756. [PMID: 37261340 PMCID: PMC10228716 DOI: 10.3389/fimmu.2023.1203756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 05/04/2023] [Indexed: 06/02/2023] Open
Abstract
Itaconate is a crucial anti-infective and anti-inflammatory immunometabolite that accumulates upon disruption of the Krebs cycle in effector macrophages undergoing inflammatory stress. Esterified derivatives of itaconate (4-octyl itaconate and dimethyl itaconate) and its isomers (mesaconate and citraconate) are promising candidate drugs for inflammation and infection. Several itaconate family members participate in host defense, immune and metabolic modulation, and amelioration of infection, although opposite effects have also been reported. However, the precise mechanisms by which itaconate and its family members exert its effects are not fully understood. In addition, contradictory results in different experimental settings and a lack of clinical data make it difficult to draw definitive conclusions about the therapeutic potential of itaconate. Here we review how the immune response gene 1-itaconate pathway is activated during infection and its role in host defense and pathogenesis in a context-dependent manner. Certain pathogens can use itaconate to establish infections. Finally, we briefly discuss the major mechanisms by which itaconate family members exert antimicrobial effects. To thoroughly comprehend how itaconate exerts its anti-inflammatory and antimicrobial effects, additional research on the actual mechanism of action is necessary. This review examines the current state of itaconate research in infection and identifies the key challenges and opportunities for future research in this field.
Collapse
Affiliation(s)
- Jae-Min Yuk
- Infection Control Convergence Research Center, College of Medicine, Chungnam National University, Daejeon, Republic of Korea
- Department of Medical Science, College of Medicine, Chungnam National University, Daejeon, Republic of Korea
- Department of Infection Biology, College of Medicine, Chungnam National University, Daejeon, Republic of Korea
| | - Eun-Jin Park
- Infection Control Convergence Research Center, College of Medicine, Chungnam National University, Daejeon, Republic of Korea
- Department of Microbiology, College of Medicine, Chungnam National University, Daejeon, Republic of Korea
| | - In Soo Kim
- Infection Control Convergence Research Center, College of Medicine, Chungnam National University, Daejeon, Republic of Korea
- Department of Medical Science, College of Medicine, Chungnam National University, Daejeon, Republic of Korea
- Department of Pharmacology, College of Medicine, Chungnam National University, Daejeon, Republic of Korea
| | - Eun-Kyeong Jo
- Infection Control Convergence Research Center, College of Medicine, Chungnam National University, Daejeon, Republic of Korea
- Department of Medical Science, College of Medicine, Chungnam National University, Daejeon, Republic of Korea
- Department of Microbiology, College of Medicine, Chungnam National University, Daejeon, Republic of Korea
| |
Collapse
|
40
|
Wu X, Wang J, Li B, Gong M, Cao C, Song L, Qin L, Wang Y, Zhang Y, Li Y. Chlorogenic acid, rutin, and quercetin from Lysimachia christinae alleviate triptolide-induced multi-organ injury in vivo by modulating immunity and AKT/mTOR signal pathway to inhibit ferroptosis and apoptosis. Toxicol Appl Pharmacol 2023; 467:116479. [PMID: 36963520 DOI: 10.1016/j.taap.2023.116479] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 03/16/2023] [Accepted: 03/18/2023] [Indexed: 03/26/2023]
Abstract
Drug-induced organ injury is one of the key factors causing organ failure and death in the global public. Triptolide (TP) is the main immunosuppressive component of Tripterygium wilfordii Hook. f. (Leigongteng, LGT) for the first-line management of autoimmune conditions, but it can cause serious multi-organ injury. Lysimachia christinae (Jinqiancao, JQC) is a detoxifying Chinese medicine and could suppress LGT's toxicity. It contains many immune enhancement and organ protection components including chlorogenic acid (CA), rutin (Rut), and quercetin (Que). This study aimed to explore the protection of combined treatments of these organ-protective ingredients of JQC on TP-induced liver, kidney, and heart injury and initially explore the mechanisms. Molecular docking showed that CA, Rut, and Que bounded protein kinase B (AKT)/mechanistic target of rapamycin (mTOR) pathway-related molecules intimately and might competitively antagonize TP. Corresponding in vivo results showed that the combination activated TP-inhibited protein of AKT/mTOR pathway, and reversed TP-induced excessive ferroptosis (excessive Fe 2+ and lipid peroxidation malondialdehyde accumulation, decreased levels of antioxidant enzymes catalase, glutathione peroxidase, glutathione-s transferase, reduced glutathione, and superoxide dismutase, and down-regulated P62/nuclear factor erythroid-2-related factor 2/heme oxygenase-1 pathway), and apoptosis (activated apoptotic factor Fas and Bax and inhibited Bcl-2) in the organ of mice to varying degrees. In conclusion, the combined treatments of CA, Rut, and Que from JQC inhibited TP-induced multi-organ injury in vivo, and the mechanism may largely involve immunomodulation and activation of the AKT/mTOR pathway-mediated cell death reduction including ferroptosis and apoptosis inhibition.
Collapse
Affiliation(s)
- Xiaohui Wu
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou 450046, China
| | - Junming Wang
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou 450046, China; Co-construction Collaborative Innovation Center for Chinese Medicine and Respiratory Diseases by Henan & Education Ministry of P.R. China, Henan University of Chinese Medicine, Zhengzhou 450046, China.
| | - Bingyin Li
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou 450046, China
| | - Mingzhu Gong
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou 450046, China
| | - Can Cao
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou 450046, China; College of Chinese medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Lingling Song
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou 450046, China
| | - Lingyu Qin
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou 450046, China
| | - Yanmei Wang
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou 450046, China
| | - Yueyue Zhang
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou 450046, China
| | - Yamin Li
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou 450046, China
| |
Collapse
|
41
|
Lombardi F, Augello FR, Palumbo P, Bonfili L, Artone S, Altamura S, Sheldon JM, Latella G, Cifone MG, Eleuteri AM, Cinque B. Bacterial Lysate from the Multi-Strain Probiotic SLAB51 Triggers Adaptative Responses to Hypoxia in Human Caco-2 Intestinal Epithelial Cells under Normoxic Conditions and Attenuates LPS-Induced Inflammatory Response. Int J Mol Sci 2023; 24:ijms24098134. [PMID: 37175841 PMCID: PMC10179068 DOI: 10.3390/ijms24098134] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 04/28/2023] [Accepted: 05/01/2023] [Indexed: 05/15/2023] Open
Abstract
Hypoxia-inducible factor-1α (HIF-1α), a central player in maintaining gut-microbiota homeostasis, plays a pivotal role in inducing adaptive mechanisms to hypoxia and is negatively regulated by prolyl hydroxylase 2 (PHD2). HIF-1α is stabilized through PI3K/AKT signaling regardless of oxygen levels. Considering the crucial role of the HIF pathway in intestinal mucosal physiology and its relationships with gut microbiota, this study aimed to evaluate the ability of the lysate from the multi-strain probiotic formulation SLAB51 to affect the HIF pathway in a model of in vitro human intestinal epithelium (intestinal epithelial cells, IECs) and to protect from lipopolysaccharide (LPS) challenge. The exposure of IECs to SLAB51 lysate under normoxic conditions led to a dose-dependent increase in HIF-1α protein levels, which was associated with higher glycolytic metabolism and L-lactate production. Probiotic lysate significantly reduced PHD2 levels and HIF-1α hydroxylation, thus leading to HIF-1α stabilization. The ability of SLAB51 lysate to increase HIF-1α levels was also associated with the activation of the PI3K/AKT pathway and with the inhibition of NF-κB, nitric oxide synthase 2 (NOS2), and IL-1β increase elicited by LPS treatment. Our results suggest that the probiotic treatment, by stabilizing HIF-1α, can protect from an LPS-induced inflammatory response through a mechanism involving PI3K/AKT signaling.
Collapse
Affiliation(s)
- Francesca Lombardi
- Department of Life, Health & Environmental Sciences, University of L'Aquila, 67100 L'Aquila, Italy
| | | | - Paola Palumbo
- Department of Life, Health & Environmental Sciences, University of L'Aquila, 67100 L'Aquila, Italy
| | - Laura Bonfili
- School of Biosciences and Veterinary Medicine, University of Camerino, 62032 Camerino, Italy
| | - Serena Artone
- Department of Life, Health & Environmental Sciences, University of L'Aquila, 67100 L'Aquila, Italy
| | - Serena Altamura
- Department of Life, Health & Environmental Sciences, University of L'Aquila, 67100 L'Aquila, Italy
| | - Jenna Marie Sheldon
- Dr. Kiran C Patel College of Osteopathic Medicine, Nova Southeastern University, Fort Lauderdale, FL 33314-7796, USA
| | - Giovanni Latella
- Department of Life, Health & Environmental Sciences, University of L'Aquila, 67100 L'Aquila, Italy
| | - Maria Grazia Cifone
- Department of Life, Health & Environmental Sciences, University of L'Aquila, 67100 L'Aquila, Italy
| | - Anna Maria Eleuteri
- School of Biosciences and Veterinary Medicine, University of Camerino, 62032 Camerino, Italy
| | - Benedetta Cinque
- Department of Life, Health & Environmental Sciences, University of L'Aquila, 67100 L'Aquila, Italy
| |
Collapse
|
42
|
Immune response gene 1 deficiency aggravates high fat diet-induced nonalcoholic fatty liver disease via promotion of redox-sensitive AKT suppression. Biochim Biophys Acta Mol Basis Dis 2023; 1869:166656. [PMID: 36706797 DOI: 10.1016/j.bbadis.2023.166656] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 01/18/2023] [Accepted: 01/19/2023] [Indexed: 01/26/2023]
Abstract
Nonalcoholic fatty liver disease (NAFLD) is the most common chronic liver disorder worldwide. Immune response gene 1 (IRG1) catalyzes the production of bio-active itaconate, which is actively involved in the regulation of signal transduction. A recent study has found that the expression of IRG1 was significantly down-regulated in obesity-associated fatty liver, but the potential roles of IRG1 in the development NAFLD remain unclear. The present study found that genetic deletion of IRG1 aggravated high fat diet (HFD)-induced metabolic disturbance, including obesity, dyslipidemia and insulin resistance. In addition, HFD induced more severe liver steatosis and higher serum ALT and AST level in IRG1 KO mice, which were accompanied with altered expression of genes involved in lipid uptake, synthesis and catabolism. RNA-seq and immunoblot analysis indicated that deficiency of IRG1 is associated with suppressed activation of AKT, a master metabolic regulator. Mechanistically, IRG1/itaconate enhanced the antioxidative NRF2 pathway and prevented redox-sensitive suppression of AKT. Interestingly, supplementation with 4-octyl itaconate (4-OI), a cell-permeable derivate of itaconate, alleviated HFD-induced oxidative stress, AKT suppression and liver steatosis. Therefore, IRG1 probably functions as a protective regulator in the development of NAFLD and the cell-permeable 4-OI might have potential value for the pharmacological intervention of NAFLD.
Collapse
|
43
|
Ma B, Wang D, Mei X, Lei C, Li C, Wang H. Effect of Enrofloxacin on the Microbiome, Metabolome, and Abundance of Antibiotic Resistance Genes in the Chicken Cecum. Microbiol Spectr 2023; 11:e0479522. [PMID: 36840593 PMCID: PMC10100749 DOI: 10.1128/spectrum.04795-22] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 01/19/2023] [Indexed: 02/24/2023] Open
Abstract
Enrofloxacin is an important antibiotic for the treatment of Salmonella infections in livestock and poultry. However, the effects of different concentrations of enrofloxacin on the bacterial and metabolite compositions of the chicken gut and changes in the abundance of resistance genes in cecum contents remain unclear. To investigate the effects of enrofloxacin on chickens, we orally administered different concentrations of enrofloxacin to 1-day-old chickens and performed 16S rRNA gene sequencing to assess changes in the gut microbiomes of chickens after treatment. The abundance of fluoroquinolone (FQ) resistance genes was measured using quantitative PCR. Metabolomics techniques were used to examine the cecal metabolite composition. We found that different concentrations of enrofloxacin had different effects on cecum microorganisms, with the greatest effect on cecum microbial diversity in the low-concentration enrofloxacin group at day 7. Enrofloxacin use reduced the abundance of beneficial bacteria such as Lactobacillaceae and Oscillospira. Furthermore, cecum microbial diversity was gradually restored as the chickens grew. In addition, enrofloxacin increased the abundance of resistance genes, and there were differences in the changes in abundance among different antibiotic resistance genes. Moreover, enrofloxacin significantly affected linoleic acid metabolism, amino acid metabolism, and signaling pathways. This study helps improve our understanding of how antibiotics affect host physiological activities and provides new insights into the rational use of drugs in poultry farming. The probiotics and metabolites that we identified could be used to modulate the negative effects of antibiotics on the host, which requires further study. IMPORTANCE In this study, we investigated changes in the cecum flora, metabolites, and abundances of fluoroquinolone antibiotic resistance genes in chickens following the use of different concentrations of enrofloxacin. These results were used to determine the effects of enrofloxacin on chick physiology and the important flora and metabolites that might contribute to these effects. In addition, these results could help in assessing the effect of enrofloxacin concentrations on host metabolism. Our findings could help guide the rational use of antibiotics and mitigate the negative effects of antibiotics on the host.
Collapse
Affiliation(s)
- Boheng Ma
- College of Life Sciences, Sichuan University, Chengdu, People’s Republic of China
- Key Laboratory of Bio-Resource and Eco-Environment of the Ministry of Education, Chengdu, People’s Republic of China
- Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, Chengdu, People’s Republic of China
| | - De Wang
- College of Life Sciences, Sichuan University, Chengdu, People’s Republic of China
- Key Laboratory of Bio-Resource and Eco-Environment of the Ministry of Education, Chengdu, People’s Republic of China
- Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, Chengdu, People’s Republic of China
| | - Xueran Mei
- Department of Obstetrics, The Second Clinical Medical College, Jinan University (Shenzhen People’s Hospital), Shenzhen, People’s Republic of China
- Post-doctoral Scientific Research Station of Clinical Medicine, Jinan University, Guangzhou, People’s Republic of China
| | - Changwei Lei
- College of Life Sciences, Sichuan University, Chengdu, People’s Republic of China
- Key Laboratory of Bio-Resource and Eco-Environment of the Ministry of Education, Chengdu, People’s Republic of China
- Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, Chengdu, People’s Republic of China
| | - Cui Li
- College of Life Sciences, Sichuan University, Chengdu, People’s Republic of China
- Key Laboratory of Bio-Resource and Eco-Environment of the Ministry of Education, Chengdu, People’s Republic of China
- Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, Chengdu, People’s Republic of China
| | - Hongning Wang
- College of Life Sciences, Sichuan University, Chengdu, People’s Republic of China
- Key Laboratory of Bio-Resource and Eco-Environment of the Ministry of Education, Chengdu, People’s Republic of China
- Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, Chengdu, People’s Republic of China
| |
Collapse
|
44
|
He Y, Su Y, Duan C, Wang S, He W, Zhang Y, An X, He M. Emerging role of aging in the progression of NAFLD to HCC. Ageing Res Rev 2023; 84:101833. [PMID: 36565959 DOI: 10.1016/j.arr.2022.101833] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Revised: 12/10/2022] [Accepted: 12/20/2022] [Indexed: 12/24/2022]
Abstract
With the aging of global population, the incidence of nonalcoholic fatty liver disease (NAFLD) has surged in recent decades. NAFLD is a multifactorial disease that follows a progressive course, ranging from simple fatty liver, nonalcoholic steatohepatitis (NASH) to liver cirrhosis and hepatocellular carcinoma (HCC). It is well established that aging induces pathological changes in liver and potentiates the occurrence and progression of NAFLD, HCC and other age-related liver diseases. Studies of senescent cells also indicate a pivotal engagement in the development of NAFLD via diverse mechanisms. Moreover, nicotinamide adenine dinucleotide (NAD+), silence information regulator protein family (sirtuins), and mechanistic target of rapamycin (mTOR) are three vital and broadly studied targets involved in aging process and NAFLD. Nevertheless, the crucial role of these aging-associated factors in aging-related NAFLD remains underestimated. Here, we reviewed the current research on the roles of aging, cellular senescence and three aging-related factors in the evolution of NAFLD to HCC, aiming at inspiring promising therapeutic targets for aging-related NAFLD and its progression.
Collapse
Affiliation(s)
- Yongyuan He
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Ministry of Education, Shanghai Frontiers Science Center of Cellular Homeostasis and Human Diseases, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yinghong Su
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Ministry of Education, Shanghai Frontiers Science Center of Cellular Homeostasis and Human Diseases, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chengcheng Duan
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Ministry of Education, Shanghai Frontiers Science Center of Cellular Homeostasis and Human Diseases, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Siyuan Wang
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Ministry of Education, Shanghai Frontiers Science Center of Cellular Homeostasis and Human Diseases, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wei He
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Ministry of Education, Shanghai Frontiers Science Center of Cellular Homeostasis and Human Diseases, Shanghai Jiao Tong University School of Medicine, Shanghai, China; School of Basic Medicine, Kunming Medical University, China
| | - Yingting Zhang
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Ministry of Education, Shanghai Frontiers Science Center of Cellular Homeostasis and Human Diseases, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiaofei An
- Department of Endocrinology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China.
| | - Ming He
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Ministry of Education, Shanghai Frontiers Science Center of Cellular Homeostasis and Human Diseases, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Department of Pathology, The Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, China.
| |
Collapse
|
45
|
Lin W, Fan S, Liao K, Huang Y, Cong Y, Zhang J, Jin H, Zhao Y, Ruan Y, Lu H, Yang F, Wu C, Zhao D, Fu Z, Zheng B, Xu JF, Pi J. Engineering zinc oxide hybrid selenium nanoparticles for synergetic anti-tuberculosis treatment by combining Mycobacterium tuberculosis killings and host cell immunological inhibition. Front Cell Infect Microbiol 2023; 12:1074533. [PMID: 36776549 PMCID: PMC9908760 DOI: 10.3389/fcimb.2022.1074533] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 12/28/2022] [Indexed: 01/27/2023] Open
Abstract
Introduction As a deadly disease induced by Mycobacterium tuberculosis (Mtb), tuberculosis remains one of the top killers among infectious diseases. The low intracellular Mtb killing efficiency of current antibiotics introduced the long duration anti-TB therapy in clinic with strong side effects and increased drug-resistant mutants. Therefore, the exploration of novel anti-TB agents with potent anti-TB efficiency becomes one of the most urgent issues for TB therapies. Methods Here, we firstly introduced a novel method for the preparation of zinc oxide-selenium nanoparticles (ZnO-Se NPs) by the hybridization of zinc oxide and selenium to combine the anti-TB activities of zinc oxide nanoparticles and selenium nanoparticles. We characterized the ZnO-Se NPs by dynamic laser light scattering and transmission electron microscopy, and then tested the inhibition effects of ZnO-Se NPs on extracellular Mtb by colony-forming units (CFU) counting, bacterial ATP analysis, bacterial membrane potential analysis and scanning electron microscopy imaging. We also analyzed the effects of ZnO-Se NPs on the ROS production, mitochondrial membrane potential, apoptosis, autophagy, polarization and PI3K/Akt/mTOR signaling pathway of Mtb infected THP-1 macrophages. At last, we also tested the effects of ZnO-Se NPs on intracellular Mtb in THP-1 cells by colony-forming units (CFU) counting. Results The obtained spherical core-shell ZnO-Se NPs with average diameters of 90 nm showed strong killing effects against extracellular Mtb, including BCG and the virulent H37Rv, by disrupting the ATP production, increasing the intracellular ROS level and destroying the membrane structures. More importantly, ZnO-Se NPs could also inhibit intracellular Mtb growth by promoting M1 polarization to increase the production of antiseptic nitric oxide and also promote apoptosis and autophagy of Mtb infected macrophages by increasing the intracellular ROS, disrupting mitochondria membrane potential and inhibiting PI3K/Akt/mTOR signaling pathway. Discussion These ZnO-Se NPs with synergetic anti-TB efficiency by combining the Mtb killing effects and host cell immunological inhibition effects were expected to serve as novel anti-TB agents for the development of more effective anti-TB strategy.
Collapse
Affiliation(s)
- Wensen Lin
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, China,Institute of Laboratory Medicine, School of Medical Technology, Guangdong Medical University, Dongguan, China
| | - Shuhao Fan
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, China,Institute of Laboratory Medicine, School of Medical Technology, Guangdong Medical University, Dongguan, China
| | - Kangsheng Liao
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, China,Institute of Laboratory Medicine, School of Medical Technology, Guangdong Medical University, Dongguan, China
| | - Yifan Huang
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, China,Institute of Laboratory Medicine, School of Medical Technology, Guangdong Medical University, Dongguan, China
| | - Yanguang Cong
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, China
| | - Junai Zhang
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, China
| | - Hua Jin
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, China
| | - Yi Zhao
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, China
| | - Yongdui Ruan
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, China
| | - Hongmei Lu
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, China
| | - Fen Yang
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, China,Institute of Laboratory Medicine, School of Medical Technology, Guangdong Medical University, Dongguan, China
| | - Changxian Wu
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, China,Institute of Laboratory Medicine, School of Medical Technology, Guangdong Medical University, Dongguan, China
| | - Daina Zhao
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, China,Institute of Laboratory Medicine, School of Medical Technology, Guangdong Medical University, Dongguan, China
| | - Zhendong Fu
- Songshan Lake Materials Laboratory, Dongguan, China
| | - Biying Zheng
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, China,Institute of Laboratory Medicine, School of Medical Technology, Guangdong Medical University, Dongguan, China,*Correspondence: Biying Zheng, ; Jun-Fa Xu, ; Jiang Pi,
| | - Jun-Fa Xu
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, China,Institute of Laboratory Medicine, School of Medical Technology, Guangdong Medical University, Dongguan, China,*Correspondence: Biying Zheng, ; Jun-Fa Xu, ; Jiang Pi,
| | - Jiang Pi
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, China,Institute of Laboratory Medicine, School of Medical Technology, Guangdong Medical University, Dongguan, China,*Correspondence: Biying Zheng, ; Jun-Fa Xu, ; Jiang Pi,
| |
Collapse
|
46
|
Flynn CM, Yuan Q. Probiotic supplement as a promising strategy in early tau pathology prevention: Focusing on GSK-3β? Front Neurosci 2023; 17:1159314. [PMID: 37034173 PMCID: PMC10073452 DOI: 10.3389/fnins.2023.1159314] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Accepted: 03/07/2023] [Indexed: 04/11/2023] Open
Abstract
Neurofibrillary tangles (NFT) is one of the hallmarks of Alzheimer's disease (AD). Recent research suggests that pretangle tau, the soluble precursor of NFT, is an initiator for AD pathogenesis, thus targeting pretangle tau pathology may be a promising early intervention focus. The bidirectional communications between the gut and the brain play a crucial role in health. The compromised gut-brain axis is involved in various neurodegenerative diseases including AD. However, most research on the relationship between gut microbiome and AD have focused on amyloid-β. In this mini review, we propose to target preclinical pretangle tau stages with gut microbiota interventions such as probiotic supplementation. We discuss the importance of targeting pretangle tau that starts decades before the onset of clinical symptoms, and potential intervention focusing on probiotic regulation of tau hyperphosphorylation. A particular focus is on GSK-3β, a protein kinase that is at the interface between tau phosphorylation, AD and diabetes mellitus.
Collapse
|
47
|
Jiang Y, Liao Y, Si C, Du J, Xia C, Wang YN, Liu G, Li Q, Zhao J. Oral administration of Bacillus cereus GW-01 alleviates the accumulation and detrimental effects of β-cypermethrin in mice. CHEMOSPHERE 2023; 312:137333. [PMID: 36410514 DOI: 10.1016/j.chemosphere.2022.137333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 11/02/2022] [Accepted: 11/17/2022] [Indexed: 06/16/2023]
Abstract
Pyrethroid insecticides negatively affect feed conversion, reproductive fitness, and food safety in exposed animals. Although probiotics have previously been widely studied for their effect on gut health, comparatively little is known regarding the efficacy of probiotic administration in specifically reducing pesticide toxicity in mice. We demonstrated that oral administration of a β-cypermethrin (β-CY)-degrading bacterial strain (Bacillus cereus GW-01) to β-CY-exposed mice reduced β-CY levels in the liver, kidney, brain, blood, lipid, and feces (18%-53%). Additionally, co-administration of strain GW-01 to β-CY-exposed mice reduced weight loss (22%-31%) and improved liver function (15%-19%) in mice. Additionally, mice receiving GW-01 had near-control levels of numerous β-CY-affected gut microbial taxa, including Muribaculaceae, Alloprevotella, Bacteroides, Dubosiella, and Alistipes. The survival and β-CY biosorption of GW-01 in simulated gastrointestinal fluid conditions were significantly higher than E. coli. These results suggested that GW-01 can reduce β-CY accumulation and alleviate the damage in mice. This study is the first to demonstrate that a probiotic strain can reduce the toxicity of β-CY in mice.
Collapse
Affiliation(s)
- Yangdan Jiang
- College of Life Science, Sichuan Normal University, 610101, Chengdu, Sichuan, PR China
| | - Ying Liao
- College of Life Science, Sichuan Normal University, 610101, Chengdu, Sichuan, PR China
| | - Chaojin Si
- College of Life Science, Sichuan Normal University, 610101, Chengdu, Sichuan, PR China
| | - Juan Du
- Faculty of Geography Resource Science, Sichuan Normal University, 610101, Chengdu, Sichuan, PR China
| | - Chen Xia
- Institute of Agro-products Processing Science and Technology, Sichuan Academy of Agricultural Sciences, 610066, Chengdu, Sichuan, PR China
| | - Ya-Nan Wang
- College of Life Science, Sichuan Normal University, 610101, Chengdu, Sichuan, PR China
| | - Gang Liu
- College of Life Science, Sichuan Normal University, 610101, Chengdu, Sichuan, PR China
| | - Qi Li
- College of Life Science, Sichuan Normal University, 610101, Chengdu, Sichuan, PR China
| | - Jiayuan Zhao
- College of Life Science, Sichuan Normal University, 610101, Chengdu, Sichuan, PR China.
| |
Collapse
|
48
|
The Interaction of Food Allergy and Diabetes: Food Allergy Effects on Diabetic Mice by Intestinal Barrier Destruction and Glucagon-like Peptide 1 Reduction in Jejunum. Foods 2022; 11:foods11233758. [PMID: 36496564 PMCID: PMC9741085 DOI: 10.3390/foods11233758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 11/14/2022] [Accepted: 11/17/2022] [Indexed: 11/23/2022] Open
Abstract
The increase in food allergies and diabetes leads to the assumption that they are related. This study aimed to (1) verify the interaction between food allergy and diabetes and (2) explore the potential mechanisms by which food allergy promotes diabetes. Female BALB/c mice were grouped into a control group (CK), an ovalbumin-sensitized group (OVA), a diabetes group (STZ), and a diabetic allergic group (STZ + OVA) (Mice were modeled diabetes with STZ first, then were given OVA to model food allergies), and an allergic diabetic group (OVA + STZ) (Mice were modeled food allergies with OVA first, then were given STZ to model diabetes). The results showed that OVA + STZ mice exhibited a more serious Th2 humoral response, and they were more susceptible to diabetes. Furthermore, when the OVA + STZ mice were in the sensitized state, the intestinal barrier function was severely impaired, and mast cell activation was promoted. Moreover, we found that the effect of food allergy on diabetes is related to the inhibition of GLP-1 secretion and the up-regulation of the PI3K/Akt/mTOR/NF-κB P65 signaling pathway in the jejunum. Overall, our results suggest that food allergies have interactions with diabetes, which sheds new light on the importance of food allergies in diabetes.
Collapse
|
49
|
Xiong Z, Cui Y, Wu J, Shi L, Quan Wen, Yang S, Feng Y. Luteolin-7-O-rutinoside from Pteris cretica L. var. nervosa attenuates LPS/D-gal-induced acute liver injury by inhibiting PI3K/AKT/AMPK/NF-κB signaling pathway. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2022; 395:1283-1295. [PMID: 35881166 DOI: 10.1007/s00210-022-02266-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 06/19/2022] [Indexed: 10/25/2022]
Abstract
Pteris cretica L. var. nervosa is one of the most well-known Chinese medicines. Although it is widely used to treat jaundice hepatitis, the main ingredient for its treatment was not thoroughly explored until recently. Essentially, the purpose of this study is to find the monomer compound in Pteris cretica L. var. nervosa, which is most likely to be effective in treating liver injury. Through the model of LPS/D-gal-induced liver injury in mice, the best therapeutic site of the total extract was explored, the chemical components of the parts with the best therapeutic effect were separated, a total of 10 flavonoids were isolated, and the RAW264.7 cells induced by LPS were used as the experimental model to explore the preliminary anti-inflammatory activity of NO production in vitro. Finally, the anti-inflammatory activity and the highest content in this plant Luteolin-7-O-rutinoside (LUT) were selected, as the object of study in vivo. It was found that LUT could not only reduce alanine aminotransferase (ALT) and aspartate aminotransferase (AST) levels, but also significantly reduce the release of tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6), and interleukin-1β (IL-1β), and inhibit PI3K/AKT/AMPK/NF-κB pathway. In addition, LUT can increase levels of SOD and GSH to reduce oxidative stress. It has an obvious therapeutic effect on acute liver injury induced by LPS/D-gal in mice. Therefore, infer LUT is a functional substance in Pteris cretica L. var. nervosa.
Collapse
Affiliation(s)
- Ziwei Xiong
- Jiangxi University of Chinese Medicine, No. 1688 Meiling Avenue, Nanchang, 330004, People's Republic of China
| | - Yushun Cui
- Jiangxi University of Chinese Medicine, No. 1688 Meiling Avenue, Nanchang, 330004, People's Republic of China
- State Key Laboratory of Innovative Drug and Efficient Energy-Saving Pharmaceutical Equipment, No. 56 Yangming Road, Nanchang, 330006, People's Republic of China
| | - Jiahui Wu
- Jiangxi University of Chinese Medicine, No. 1688 Meiling Avenue, Nanchang, 330004, People's Republic of China
| | - Lingyu Shi
- Jiangxi University of Chinese Medicine, No. 1688 Meiling Avenue, Nanchang, 330004, People's Republic of China
| | - Quan Wen
- Jiangxi University of Chinese Medicine, No. 1688 Meiling Avenue, Nanchang, 330004, People's Republic of China
| | - Shilin Yang
- State Key Laboratory of Innovative Drug and Efficient Energy-Saving Pharmaceutical Equipment, No. 56 Yangming Road, Nanchang, 330006, People's Republic of China
| | - Yulin Feng
- Jiangxi University of Chinese Medicine, No. 1688 Meiling Avenue, Nanchang, 330004, People's Republic of China.
- State Key Laboratory of Innovative Drug and Efficient Energy-Saving Pharmaceutical Equipment, No. 56 Yangming Road, Nanchang, 330006, People's Republic of China.
| |
Collapse
|
50
|
Wang L, Li S, Fan H, Han M, Xie J, Du J, Peng F. Bifidobacterium lactis combined with Lactobacillus plantarum inhibit glioma growth in mice through modulating PI3K/AKT pathway and gut microbiota. Front Microbiol 2022; 13:986837. [PMID: 36147842 PMCID: PMC9486703 DOI: 10.3389/fmicb.2022.986837] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 08/18/2022] [Indexed: 11/13/2022] Open
Abstract
Glioma is a common primary aggressive tumor with limited clinical treatment. Recently, growing research suggests that gut microbiota is involved in tumor progression, and several probiotics can inhibit tumor growth. However, evidence for the effect of probiotics on glioma is lacking. Here, we found that Bifidobacterium (B.) lactis combined with Lactobacillus (L.) plantarum reduced tumor volume, prolonged survival time and repaired the intestinal barrier damage in an orthotopic mouse model of glioma. Experiments demonstrated that B. lactis combined with L. plantarum suppressed the PI3K/AKT pathway and down-regulated the expression of Ki-67 and N-cadherin. The glioma-inhibitory effect of probiotic combination is also related to the modulation of gut microbiota composition, which is characterized by an increase in relative abundance of Lactobacillus and a decrease in some potential pathogenic bacteria. Additionally, probiotic combination altered fecal metabolites represented by fatty acyls and organic oxygen compounds. Together, our results prove that B. lactis combined with L. plantarum can inhibit glioma growth by suppressing PI3K/AKT pathway and regulating gut microbiota composition and metabolites in mice, thus suggesting the potential benefits of B. lactis and L. plantarum against glioma.
Collapse
Affiliation(s)
- Li Wang
- Department of Pharmacology, Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, China
| | - Sui Li
- Department of Pharmacology, Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, China
| | - Huali Fan
- Department of Pharmacology, Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, China
| | - Mingyu Han
- Department of Pharmacology, Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, China
| | - Jie Xie
- College of Life Sciences, Sichuan Normal University, Chengdu, China
| | - Junrong Du
- Department of Pharmacology, Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, China
- *Correspondence: Junrong Du,
| | - Fu Peng
- Department of Pharmacology, Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, China
- Fu Peng,
| |
Collapse
|