1
|
Wilczak M, Surman M, Jankowska U, Skupien-Rabian B, Przybyło M. MGAT3 and MGAT5 overexpression alters the protein cargo of extracellular vesicles released by metastatic melanoma cells. Biochem Biophys Res Commun 2025; 762:151749. [PMID: 40199132 DOI: 10.1016/j.bbrc.2025.151749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Revised: 03/25/2025] [Accepted: 04/01/2025] [Indexed: 04/10/2025]
Abstract
Extracellular vesicles (EVs) are potential non-invasive diagnostic, prognostic and therapeutic tools. Additionally, they are important contributors to tumorigenesis. Glycosylation has been found to modulate the composition of the EV proteome. Increased amounts of β1,6-branched N-glycans, synthesized by N-acetylglucosaminyltransferase V (GnT-V), are most commonly observed in melanoma and are associated with decreased cell adhesion and increased metastasis. The opposite effect is caused by the addition of bisecting GlcNAc by N-acetylglucosaminyltransferase III (GnT-III). To date, the impact of these enzymes on EV cargo in melanoma remains unexplored. Flow cytometry was used to study the surface glycosylation of genetic variants of WM266-4 melanoma cells with induced overexpression of GnT-III or GnT-V encoding genes (MGAT3 or MGAT5) and EVs released by these cells. LC-MS/MS proteomics was applied to analyze the effect of altered glycosylation on the proteome of released EVs, followed by detailed bioinformatic analysis. Flow cytometry analysis revealed dynamic changes in the surface glycosylation of EVs derived from melanoma cells overexpressing MGAT3 or MGAT5. Induced overexpression of MGAT3 or MGAT5 also caused significant changes in the proteome of EVs. The proteomic analysis identified a total of 1770 microvesicular and 704 exosomal proteins that play different roles in melanoma progression, including those with established diagnostic/prognostic potential and those closely associated with melanoma onset. Proteomic profiling of EVs derived from cells overexpressing MGAT3 and MGAT5 revealed functional changes in EV protein content driven by glycosylation modifications. The study presented a potential multifaced application of melanoma-derived EVs for diagnostic and prognostic purposes.
Collapse
Affiliation(s)
- Magdalena Wilczak
- Department of Glycoconjugate Biochemistry, Institute of Zoology and Biomedical Research, Faculty of Biology, Jagiellonian University, 30-387, Krakow, Poland; Doctoral School of Exact and Natural Sciences, Jagiellonian University, 30-348, Krakow, Poland.
| | - Magdalena Surman
- Department of Glycoconjugate Biochemistry, Institute of Zoology and Biomedical Research, Faculty of Biology, Jagiellonian University, 30-387, Krakow, Poland.
| | - Urszula Jankowska
- Proteomics and Mass Spectrometry Core Facility, Malopolska Centre of Biotechnology, Jagiellonian University, 30-387, Krakow, Poland.
| | - Bozena Skupien-Rabian
- Proteomics and Mass Spectrometry Core Facility, Malopolska Centre of Biotechnology, Jagiellonian University, 30-387, Krakow, Poland.
| | - Małgorzata Przybyło
- Department of Glycoconjugate Biochemistry, Institute of Zoology and Biomedical Research, Faculty of Biology, Jagiellonian University, 30-387, Krakow, Poland.
| |
Collapse
|
2
|
Kostyusheva A, Romano E, Yan N, Lopus M, Zamyatnin AA, Parodi A. Breaking barriers in targeted Therapy: Advancing exosome Isolation, Engineering, and imaging. Adv Drug Deliv Rev 2025; 218:115522. [PMID: 39855273 DOI: 10.1016/j.addr.2025.115522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 12/23/2024] [Accepted: 01/19/2025] [Indexed: 01/27/2025]
Abstract
Exosomes have emerged as promising tools for targeted drug delivery in biomedical applications and medicine. This review delves into the scientific advancements, challenges, and future prospects specifically associated with these technologies. In this work, we trace the research milestones that led to the discovery and characterization of exosomes and extracellular vesicles, and discuss strategies for optimizing the synthetic yield and the loading of these particles with various therapeutics. In addition, we report the current major issues affecting the field and hampering the clinical translation of these technologies. Highlighting the pivotal role of imaging techniques, we explore how they drive exosome therapy and development by offering insights into biodistribution and cellular trafficking dynamics. Methodologies for vesicle isolation, characterization, loading, and delivery mechanisms are thoroughly examined, alongside strategies aimed at enhancing their therapeutic efficacy. Special emphasis was dedicated to their therapeutic properties, particularly to their ability to deliver biologics into the cytoplasm. Furthermore, we delve into the intricate balance between surface modifications and targeting properties including also transgenic methods aimed at their functionalization and visualization within biological systems. This review underscores the transformative potential of these carriers in targeted drug delivery and identifies crucial areas for further research and clinical translation.
Collapse
Affiliation(s)
- Anastasiya Kostyusheva
- Laboratory of Genetic Technologies, Martsinovsky Institute of Medical Parasitology, Tropical and Vector-Borne Diseases, First Moscow State Medical University (Sechenov University), 119048 Moscow, Russia
| | | | - Neng Yan
- School of Environmental Studies, China University of Geosciences, Wuhan 430074, China
| | - Manu Lopus
- School of Biological Sciences, UM-DAE Centre for Excellence in Basic Sciences, University of Mumbai Kalina Campus, Vidyanagari, Mumbai 400098, India
| | - Andrey A Zamyatnin
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, 119234 Moscow, Russia; Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119991 Moscow, Russia; Department of Biological Chemistry, Sechenov First Moscow State Medical University, Trubetskaya Str. 8-2, 119991 Moscow, Russia
| | - Alessandro Parodi
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, 119234 Moscow, Russia; Scientific Center for Translational Medicine, Sirius University of Science and Technology, 354340, Sirius, Krasnodar Region, Russia.
| |
Collapse
|
3
|
Li P, Xu X, Zhang C, Chang Q, Wang J, Wang W, Ren H. Glycosylation on extracellular vesicles and its detection strategy: Paving the way for clinical use. Int J Biol Macromol 2025; 295:139714. [PMID: 39798737 DOI: 10.1016/j.ijbiomac.2025.139714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 01/03/2025] [Accepted: 01/07/2025] [Indexed: 01/15/2025]
Abstract
Extracellular vesicles (EVs) contain various glycans during their life cycle, from biogenesis to cellular recognition and uptake by recipient cells. EV glycosylation has substantial diagnostic significance in multiple health conditions, highlighting the necessity of determining an accurate glycosylation pattern for EVs from diverse biological fluids. Reliable and accessible glycan detection techniques help to elaborate the glycosylation-related functional alterations of specific proteins or lipids. However, multiple obstacles exist, including the inconsistency in glycosylation patterns between an entire batch of EVs and a specific EV protein, and difficulty in distinguishing glycosylation types after tedious separation and purification procedures. This review outlines recent advances in EV glycan detection, either at the glycomic level for a collection of intact EVs or at the molecular level for a specific protein on EVs. Particular emphasis has been placed on the abundance of EVs in body fluids and their unique characteristics for drug delivery of EVs, indicating an opportunity for diagnostic and therapeutic purposes via EV glycans.
Collapse
Affiliation(s)
- Ping Li
- The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao 266071, China; School of Rehabilitation Sciences and Engineering, University of Health and Rehabilitation Sciences, Qingdao 266024, China
| | - Xiao Xu
- The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao 266071, China
| | - Cong Zhang
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210042, China
| | - Qi Chang
- Department of Biomedical Engineering, School of Engineering, China Pharmaceutical University, Nanjing 211198, China
| | - Jie Wang
- The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao 266071, China.
| | - Weijie Wang
- School of Rehabilitation Sciences and Engineering, University of Health and Rehabilitation Sciences, Qingdao 266024, China.
| | - He Ren
- The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao 266071, China.
| |
Collapse
|
4
|
Tian W, Zagami C, Chen J, Blomberg AL, Guiu LS, Skovbakke SL, Goletz S. Cell-based glycoengineering of extracellular vesicles through precise genome editing. N Biotechnol 2024; 83:101-109. [PMID: 39079597 DOI: 10.1016/j.nbt.2024.07.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 07/19/2024] [Accepted: 07/26/2024] [Indexed: 08/03/2024]
Abstract
Engineering of extracellular vesicles (EVs) towards more efficient targeting and uptake to specific cells has large potentials for their application as therapeutics. Carbohydrates play key roles in various biological interactions and are essential for EV biology. The extent to which glycan modification of EVs can be achieved through genetic glycoengineering of their parental cells has not been explored yet. Here we introduce targeted glycan modification of EVs through cell-based glycoengineering via modification of various enzymes in the glycosylation machinery. In a "simple cell" strategy, we modified major glycosylation pathways by knocking-out (KO) essential genes for N-glycosylation (MGAT1), O-GalNAc glycosylation (C1GALT1C1), glycosphingolipids (B4GALT5/6), glycosaminoglycans (B4GALT7) and sialylation (GNE) involved in the elongation or biosynthesis of the glycans in HEK293F cells. The gene editing led to corresponding glycan changes on the cells as demonstrated by differential lectin staining. Small EVs (sEVs) isolated from the cells showed overall corresponding glycan changes, but also some unexpected differences to their parental cell including enrichment preference for certain glycan structures and absence of other glycan types. The genetic glycoengineering did not significantly impact sEVs production, size distribution, or syntenin-1 biomarker expression, while a clonal influence on sEVs production yields was observed. Our findings demonstrate the successful implementation of sEVs glycoengineering via genetic modification of the parental cell and a stable source for generation of glycoengineered sEVs. The utilization of glycoengineered sEVs offers a promising opportunity to study the role of glycosylation in EV biology, as well as to facilitate the optimization of sEVs for therapeutic purposes.
Collapse
Affiliation(s)
- Weihua Tian
- Department of Biotechnology and Biomedicine, Section for Medical Biotechnology, Biotherapeutic Glycoengineering and Immunology, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Chiara Zagami
- Department of Biotechnology and Biomedicine, Section for Medical Biotechnology, Biotherapeutic Glycoengineering and Immunology, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Jiasi Chen
- Department of Biotechnology and Biomedicine, Section for Medical Biotechnology, Biotherapeutic Glycoengineering and Immunology, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Anne Louise Blomberg
- Department of Biotechnology and Biomedicine, Section for Medical Biotechnology, Biotherapeutic Glycoengineering and Immunology, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Laura Salse Guiu
- Department of Biotechnology and Biomedicine, Section for Medical Biotechnology, Biotherapeutic Glycoengineering and Immunology, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Sarah Line Skovbakke
- Department of Biotechnology and Biomedicine, Section for Medical Biotechnology, Biotherapeutic Glycoengineering and Immunology, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Steffen Goletz
- Department of Biotechnology and Biomedicine, Section for Medical Biotechnology, Biotherapeutic Glycoengineering and Immunology, Technical University of Denmark, Kongens Lyngby, Denmark.
| |
Collapse
|
5
|
Yamada N, Tominaga K, Tominaga N, Kobayashi A, Niino C, Miyagi Y, Yamagata H, Nakagawa S. Glycosylation changes of vWF in circulating extracellular vesicles to predict depression. Sci Rep 2024; 14:29066. [PMID: 39580509 PMCID: PMC11585580 DOI: 10.1038/s41598-024-80507-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Accepted: 11/19/2024] [Indexed: 11/25/2024] Open
Abstract
The clinical diagnosis of major depressive disorder (MDD) still depends on subjective information in terms of various symptoms regarding mood. Detecting the characterization of extracellular vesicles (EVs) in blood may result in finding a diagnostic biomarker that reflects the depressive stage of patients with MDD. Here, we report the results on the glycosylation pattern of enriched plasma EVs from patients with MDD. We compared glycosylation patterns by lectin blotting expressed in EVs isolated from the plasma of both patients with MDD and age-matched healthy control participants (HCs) using size-exclusion chromatography. The levels of Wheat germ agglutinin (WGA), N-acetyl glucosamine (GlcNAc), and N-Acetylneuraminic acid (Neu5Ac, sialic acid) - binding lectin, were significantly decreased in patients with MDD in the depressive state compared to HCs and in remission state. Furthermore, proteome analysis revealed that the von Willebrand factor (vWF) was a significant factor recognized by WGA. WGA-binding vWF antigen differentiated patients with MDD versus HCs and the same patients with MDD in a depressive versus remission state. In this study, the change patterns in the glycoproteins contained in plasma EVs support the usability of testing to identify patients who are at increased risk of depression during antidepressant treatment.
Collapse
Affiliation(s)
- Norihiro Yamada
- Division of Neuropsychiatry, Department of Neuroscience, Yamaguchi University Graduate School of Medicine, 1-1-1 Minami-kogushi, Ube, 755-8505, Yamaguchi, Japan
| | - Kana Tominaga
- Division of Neuropsychiatry, Department of Neuroscience, Yamaguchi University Graduate School of Medicine, 1-1-1 Minami-kogushi, Ube, 755-8505, Yamaguchi, Japan.
| | - Naoomi Tominaga
- Division of Clinical Laboratory Sciences, Department of Nursing and Laboratory Science, Yamaguchi University Graduate School of Medicine, 1-1-1 Minamikogushi, Ube, 755-8505, Yamaguchi, Japan
| | - Ayumi Kobayashi
- Division of Neuropsychiatry, Department of Neuroscience, Yamaguchi University Graduate School of Medicine, 1-1-1 Minami-kogushi, Ube, 755-8505, Yamaguchi, Japan
| | - Chihiro Niino
- Division of Neuropsychiatry, Department of Neuroscience, Yamaguchi University Graduate School of Medicine, 1-1-1 Minami-kogushi, Ube, 755-8505, Yamaguchi, Japan
| | - Yuta Miyagi
- Division of Clinical Laboratory Sciences, Department of Nursing and Laboratory Science, Yamaguchi University Graduate School of Medicine, 1-1-1 Minamikogushi, Ube, 755-8505, Yamaguchi, Japan
| | - Hirotaka Yamagata
- Division of Neuropsychiatry, Department of Neuroscience, Yamaguchi University Graduate School of Medicine, 1-1-1 Minami-kogushi, Ube, 755-8505, Yamaguchi, Japan
- Kokoro Hospital Machida, 2140, Kamioyamadamachi, Machida, 194-0201, Tokyo, Japan
| | - Shin Nakagawa
- Division of Neuropsychiatry, Department of Neuroscience, Yamaguchi University Graduate School of Medicine, 1-1-1 Minami-kogushi, Ube, 755-8505, Yamaguchi, Japan
| |
Collapse
|
6
|
Xiang H, Bao C, Chen Q, Gao Q, Wang N, Gao Q, Mao L. Extracellular vesicles (EVs)' journey in recipient cells: from recognition to cargo release. J Zhejiang Univ Sci B 2024; 25:633-655. [PMID: 39155778 PMCID: PMC11337091 DOI: 10.1631/jzus.b2300566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Accepted: 11/28/2023] [Indexed: 08/20/2024]
Abstract
Extracellular vesicles (EVs) are nano-sized bilayer vesicles that are shed or secreted by virtually every cell type. A variety of biomolecules, including proteins, lipids, coding and non-coding RNAs, and mitochondrial DNA, can be selectively encapsulated into EVs and delivered to nearby and distant recipient cells, leading to alterations in the recipient cells, suggesting that EVs play an important role in intercellular communication. EVs play effective roles in physiology and pathology and could be used as diagnostic and therapeutic tools. At present, although the mechanisms of exosome biogenesis and secretion in donor cells are well understood, the molecular mechanism of EV recognition and uptake by recipient cells is still unclear. This review summarizes the current understanding of the molecular mechanisms of EVs' biological journey in recipient cells, from recognition to uptake and cargo release. Furthermore, we highlight how EVs escape endolysosomal degradation after uptake and thus release cargo, which is crucial for studies applying EVs as drug-targeted delivery vehicles. Knowledge of the cellular processes that govern EV uptake is important to shed light on the functions of EVs as well as on related clinical applications.
Collapse
Affiliation(s)
- Huayuan Xiang
- Department of Laboratory Medicine, Affiliated Kunshan Hospital of Jiangsu University, Kunshan 215300, China
| | - Chenxuan Bao
- Department of Laboratory Medicine, Affiliated Kunshan Hospital of Jiangsu University, Kunshan 215300, China
| | - Qiaoqiao Chen
- Department of Laboratory Medicine, Affiliated Kunshan Hospital of Jiangsu University, Kunshan 215300, China
| | - Qing Gao
- Department of Laboratory Medicine, Affiliated Kunshan Hospital of Jiangsu University, Kunshan 215300, China
| | - Nan Wang
- Department of Laboratory Medicine, Affiliated Kunshan Hospital of Jiangsu University, Kunshan 215300, China
| | - Qianqian Gao
- Department of Laboratory Medicine, Affiliated Kunshan Hospital of Jiangsu University, Kunshan 215300, China
| | - Lingxiang Mao
- Department of Laboratory Medicine, Affiliated Kunshan Hospital of Jiangsu University, Kunshan 215300, China.
| |
Collapse
|
7
|
Yan C, Feng K, Bao B, Chen J, Xu X, Jiang G, Wang Y, Guo J, Jiang T, Kang Y, Wang C, Li C, Zhang C, Nie P, Liu S, Machens H, Zhu L, Yang X, Niu R, Chen Z. Biohybrid Nanorobots Carrying Glycoengineered Extracellular Vesicles Promote Diabetic Wound Repair through Dual-Enhanced Cell and Tissue Penetration. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2404456. [PMID: 38894569 PMCID: PMC11336935 DOI: 10.1002/advs.202404456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 05/18/2024] [Indexed: 06/21/2024]
Abstract
Considerable progress has been made in the development of drug delivery systems for diabetic wounds. However, underlying drawbacks, such as low delivery efficiency and poor tissue permeability, have rarely been addressed. In this study, a multifunctional biohybrid nanorobot platform comprising an artificial unit and several biological components is constructed. The artificial unit is a magnetically driven nanorobot surface modified with antibacterial 2-hydroxypropyltrimethyl ammonium chloride chitosan, which enables the entire platform to move and has excellent tissue penetration capacity. The biological components are two-step engineered extracellular vesicles that are first loaded with mangiferin, a natural polyphenolic compound with antioxidant properties, and then glycoengineered on the surface to enhance cellular uptake efficiency. As expected, the platform is more easily absorbed by endothelial cells and fibroblasts and exhibits outstanding dermal penetration performance and antioxidant properties. Encouraging results are also observed in infected diabetic wound models, showing improved wound re-epithelialization, collagen deposition, angiogenesis, and accelerated wound healing. Collectively, a biohybrid nanorobot platform that possesses the functionalities of both artificial units and biological components serves as an efficient delivery system to promote diabetic wound repair through dual-enhanced cell and tissue penetration and multistep interventions.
Collapse
Affiliation(s)
- Chengqi Yan
- Department of Hand SurgeryUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430022China
| | - Kai Feng
- Key Laboratory of Material Chemistry for Energy Conversion and StorageMinistry of EducationSchool of Chemistry and Chemical EngineeringHuazhong University of Science and TechnologyWuhan430074China
| | - Bingkun Bao
- School of Biomedical EngineeringShanghai Jiao Tong UniversityShanghai200240China
| | - Jing Chen
- Department of DermatologyWuhan No.1 HospitalWuhanHubei430022China
| | - Xiang Xu
- Department of Hand SurgeryUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430022China
| | - Guoyong Jiang
- Department of Hand SurgeryUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430022China
| | - Yufeng Wang
- Department of Hand SurgeryUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430022China
| | - Jiahe Guo
- Department of Hand SurgeryUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430022China
| | - Tao Jiang
- Department of Hand SurgeryUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430022China
| | - Yu Kang
- Department of Hand SurgeryUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430022China
| | - Cheng Wang
- Department of Hand SurgeryUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430022China
| | - Chengcheng Li
- Department of Hand SurgeryUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430022China
| | - Chi Zhang
- Department of Hand SurgeryUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430022China
| | - Pengjuan Nie
- Department of Hand SurgeryUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430022China
| | - Shuoyuan Liu
- Department of Hand SurgeryUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430022China
| | - Hans‐Günther Machens
- Department of Plastic and Hand SurgeryTechnical University of MunichD‐80333MunichGermany
| | - Linyong Zhu
- School of Biomedical EngineeringShanghai Jiao Tong UniversityShanghai200240China
| | - Xiaofan Yang
- Department of Hand SurgeryUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430022China
| | - Ran Niu
- Key Laboratory of Material Chemistry for Energy Conversion and StorageMinistry of EducationSchool of Chemistry and Chemical EngineeringHuazhong University of Science and TechnologyWuhan430074China
| | - Zhenbing Chen
- Department of Hand SurgeryUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430022China
| |
Collapse
|
8
|
Cho Y, Cho MY, Yoon J, Hong DE, Lee J, Park HS, Lee H, Hong KS, Won‐Kyu L, Saehae C, Song S, Noh Y. Evaluation of unmodified human cell-derived extracellular vesicle mitochondrial deoxyribonucleic acid-based biodistribution in rodents. J Extracell Vesicles 2024; 13:e12489. [PMID: 39016198 PMCID: PMC11253025 DOI: 10.1002/jev2.12489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Revised: 06/10/2024] [Accepted: 07/02/2024] [Indexed: 07/18/2024] Open
Abstract
Recently, extracellular vesicles (EVs) have been developed as therapeutic targets for various diseases. Biodistribution is crucial for EVs intended for therapeutic purposes because it can determine the degree of on- and off-target effects. This study aimed to explore techniques to evaluate the biodistribution of unmodified EVs. We devised a novel quantitative polymerase chain reaction (qPCR)-based assay to detect unmodified EVs by targeting mitochondrial deoxyribonucleic acid (mtDNA), a constituent of EVs. We focused on specific mtDNA regions that exhibited homologous variations distinct from their rodent mtDNA counterparts to establish this analytical approach. Herein, we successfully designed primers and probes targeting human and rodent mtDNA sequences and developed a highly specific and sensitive qPCR method. Furthermore, the quantification range of EVs isolated from various cells differed based on the manufacturer and cell source. IRDye 800CW-labelled Expi293F EV mimetics were administered to the animals via the tail vein to compare the imaging test and mtDNA-qPCR results. The results obtained from imaging tests and mtDNA-qPCR to investigate EV biodistribution patterns revealed differences. The results revealed that our newly developed method effectively determined the biodistribution of unmodified EVs with high sensitivity and reproducibility.
Collapse
Affiliation(s)
- Young‐Woo Cho
- Division of Drug Safety EvaluationNDDC, Osong Medical Innovation FoundationCheongjuSouth Korea
- College of PharmacyChungbuk National UniversityCheongjuSouth Korea
| | - Mi Young Cho
- Biopharmaceutical Research CenterKorea Basic Science InstituteCheongjuSouth Korea
| | - Jaehyeon Yoon
- Division of Drug Safety EvaluationNDDC, Osong Medical Innovation FoundationCheongjuSouth Korea
| | - Da Eun Hong
- Division of Drug Safety EvaluationNDDC, Osong Medical Innovation FoundationCheongjuSouth Korea
| | - Ju‐young Lee
- Division of Drug Safety EvaluationNDDC, Osong Medical Innovation FoundationCheongjuSouth Korea
- College of PharmacyChungbuk National UniversityCheongjuSouth Korea
| | - Hye Sun Park
- Biopharmaceutical Research CenterKorea Basic Science InstituteCheongjuSouth Korea
| | - Hyunseung Lee
- Biopharmaceutical Research CenterKorea Basic Science InstituteCheongjuSouth Korea
| | - Kwan Soo Hong
- Biopharmaceutical Research CenterKorea Basic Science InstituteCheongjuSouth Korea
- Department of ChemistryChung‐Ang UniversitySeoulSouth Korea
| | - Lee Won‐Kyu
- Division of Drug Safety EvaluationNDDC, Osong Medical Innovation FoundationCheongjuSouth Korea
| | - Choi Saehae
- Division of Drug Safety EvaluationNDDC, Osong Medical Innovation FoundationCheongjuSouth Korea
| | - Suk‐Gil Song
- College of PharmacyChungbuk National UniversityCheongjuSouth Korea
| | - Young‐Woock Noh
- Division of Drug Safety EvaluationNDDC, Osong Medical Innovation FoundationCheongjuSouth Korea
| |
Collapse
|
9
|
Nishida‐Aoki N, Ochiya T. Impacts of tissue context on extracellular vesicles-mediated cancer-host cell communications. Cancer Sci 2024; 115:1726-1737. [PMID: 38532284 PMCID: PMC11145126 DOI: 10.1111/cas.16161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 02/26/2024] [Accepted: 03/11/2024] [Indexed: 03/28/2024] Open
Abstract
Tumor tissue is densely packed with cancer cells, non-cancerous cells, and ECM, forming functional structures. Cancer cells transfer extracellular vesicles (EVs) to modify surrounding normal cells into cancer-promoting cells, establishing a tumor-favorable environment together with other signaling molecules and structural components. Such tissue environments largely affect cancer cell properties, and so as EV-mediated cellular communications within tumor tissue. However, current research on EVs focuses on functional analysis of vesicles isolated from the liquid phase, including cell culture supernatants and blood draws, 2D-cultured cell assays, or systemic analyses on animal models for biodistribution. Therefore, we have a limited understanding of local EV transfer within tumor tissues. In this review, we discuss the need to study EVs in a physiological tissue context by summarizing the current findings on the impacts of tumor tissue environment on cancer EV properties and transfer and the techniques required for the analysis. Tumor tissue environment is likely to alter EV properties, pose physical barriers, interactions, and interstitial flows for the dynamics, and introduce varieties in the cell types taken up. Utilizing physiological experimental settings and spatial analyses, we need to tackle the remaining questions on physiological EV-mediated cancer-host cell interactions. Understanding cancer EV-mediated cellular communications in physiological tumor tissues will lead to developing interaction-targeting therapies and provide insight into EV-mediated non-cancerous cells and interspecies interactions.
Collapse
Affiliation(s)
| | - Takahiro Ochiya
- Department of Molecular and Cellular Medicine, Center for Future Medical Research, Institute of Medical ScienceTokyo Medical UniversityTokyoJapan
| |
Collapse
|
10
|
Bhat A, Malik A, Yadav P, Ware WJ, Kakalij P, Chand S. Mesenchymal stem cell‐derived extracellular vesicles: Recent therapeutics and targeted drug delivery advances. JOURNAL OF EXTRACELLULAR BIOLOGY 2024; 3. [DOI: 10.1002/jex2.156] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 04/25/2024] [Indexed: 01/03/2025]
Abstract
AbstractThe targeted drug delivery field is rapidly advancing, focusing on developing biocompatible nanoparticles that meet rigorous criteria of non‐toxicity, biocompatibility, and efficient release of encapsulated molecules. Conventional synthetic nanoparticles (SNPs) face complications such as elevated immune responses, complex synthesis methods, and toxicity, which restrict their utility in therapeutics and drug delivery. Extracellular vesicles (EVs) have emerged as promising substitutes for SNPs, leveraging their ability to cross biological barriers, biocompatibility, reduced toxicity, and natural origin. Notably, mesenchymal stem cell‐derived EVs (MSC‐EVs) have garnered much curiosity due to their potential in therapeutics and drug delivery. Studies suggest that MSC‐EVs, the central paracrine contributors of MSCs, replicate the therapeutic effects of MSCs. This review explores the characteristics of MSC‐EVs, emphasizing their potential in therapeutics and drug delivery for various diseases, including CRISPR/Cas9 delivery for gene editing. It also delves into the obstacles and challenges of MSC‐EVs in clinical applications and provides insights into strategies to overcome the limitations of biodistribution and target delivery.
Collapse
Affiliation(s)
- Anjali Bhat
- Department of Anesthesiology University of Nebraska Medical Center Omaha Nebraska USA
| | - Anshu Malik
- Institute for Quantitative Health Science and Engineering (IQ) Michigan State University East Lansing Michigan USA
- Department of Biomedical Engineering Michigan State University East Lansing Michigan USA
| | - Poonam Yadav
- Medical Science Interdepartmental Area University of Nebraska Medical Center Omaha Omaha Nebraska USA
| | | | - Pratiksha Kakalij
- Department of Pharmaceutical Sciences University of Nebraska Medical Center Omaha Omaha Nebraska USA
| | - Subhash Chand
- Department of Anesthesiology University of Nebraska Medical Center Omaha Nebraska USA
| |
Collapse
|
11
|
Xu YP, Jiang T, Yang XF, Chen ZB. Methods, Mechanisms, and Application Prospects for Enhancing Extracellular Vesicle Uptake. Curr Med Sci 2024; 44:247-260. [PMID: 38622425 DOI: 10.1007/s11596-024-2861-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 02/28/2024] [Indexed: 04/17/2024]
Abstract
Extracellular vesicles (EVs) are considered to be a new generation of bioinspired nanoscale drug delivery systems due to their low immunogenicity, natural functionality, and excellent biocompatibility. However, limitations such as low uptake efficiency, insufficient production, and inhomogeneous performance undermine their potential. To address these issues, numerous researchers have put forward various methods and applications for enhancing EV uptake in recent decades. In this review, we introduce various methods for the cellular uptake of EVs and summarize recent advances on the methods and mechanisms for enhancing EV uptake. In addition, we provide further understanding regarding enhancing EV uptake and put forward prospects and challenges for the development of EV-based therapy in the future.
Collapse
Affiliation(s)
- Ying-Peng Xu
- Department of Hand Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Tao Jiang
- Department of Hand Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Xiao-Fan Yang
- Department of Hand Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| | - Zhen-Bing Chen
- Department of Hand Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| |
Collapse
|
12
|
Pendiuk Goncalves J, Cruz Villarreal J, Walker SA, Tan XNS, Borges C, Wolfram J. High-throughput analysis of glycan sorting into extracellular vesicles. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2024; 1871:119641. [PMID: 37996057 DOI: 10.1016/j.bbamcr.2023.119641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 11/06/2023] [Accepted: 11/10/2023] [Indexed: 11/25/2023]
Abstract
Extracellular vesicles (EVs) are cell-released vesicles that mediate intercellular communication by transferring bioactive cargo. Protein and RNA sorting into EVs has been extensively assessed, while selective enrichment of glycans in EVs remains less explored. In this study, a mass spectrometry-based approach, glycan node analysis (GNA), was applied to broadly assess the sorting of glycan features into EVs. Two metastatic variants (lung and bone) generated in mouse modes from the MDA-MB-231 human breast cancer cell line were assessed, as these EVs are known to contain distinct organotropic biomolecules. EVs were isolated from conditioned cell culture medium by tangential flow filtration and authenticated by standard techniques. GNA analysis revealed selective enrichment of several glycan features in EVs compared to the originating cells, particularly those associated with binding to the extracellular matrix, which was also observed in EVs from the parental MDA-MB-231 cell line (human pleural metastases). The bone-tropic variant displayed enrichment of distinct EV glycan features compared to the lung-tropic one. Additionally, the metastatic variants generated in mouse models displayed reduced EV glycan sorting compared to the parental metastatic cell line. This study represents the first comprehensive assessment of differences in glycan features between EVs and originating cells and provides evidence that the diversity of EV glycan sorting is reduced upon generation of variant cell lines in mouse models. Future research is likely to uncover novel mechanisms of EV glycan sorting, shed light on glycan features for EV authentication or biomarker purposes, and assess functional roles of the EV glycocode in (patho)physiology.
Collapse
Affiliation(s)
- Jenifer Pendiuk Goncalves
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane 4072, Australia
| | - Jorvani Cruz Villarreal
- School of Molecular Sciences and Virginia G. Piper Center for Personalized Diagnostics, The Biodesign Institute at Arizona State University, Tempe, AZ 85287, USA
| | - Sierra A Walker
- Department of Biochemistry and Molecular Biology, Department of Physiology and Biomedical Engineering, Department of Transplantation, Mayo Clinic, Jacksonville, FL 32224, USA
| | - Xuan Ning Sharon Tan
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane 4072, Australia
| | - Chad Borges
- School of Molecular Sciences and Virginia G. Piper Center for Personalized Diagnostics, The Biodesign Institute at Arizona State University, Tempe, AZ 85287, USA.
| | - Joy Wolfram
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane 4072, Australia; School of Chemical Engineering, The University of Queensland, Brisbane, QLD 4072, Australia.
| |
Collapse
|
13
|
Mobarak H, Javid F, Narmi MT, Mardi N, Sadeghsoltani F, Khanicheragh P, Narimani S, Mahdipour M, Sokullu E, Valioglu F, Rahbarghazi R. Prokaryotic microvesicles Ortholog of eukaryotic extracellular vesicles in biomedical fields. Cell Commun Signal 2024; 22:80. [PMID: 38291458 PMCID: PMC10826215 DOI: 10.1186/s12964-023-01414-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 12/01/2023] [Indexed: 02/01/2024] Open
Abstract
Every single cell can communicate with other cells in a paracrine manner via the production of nano-sized extracellular vesicles. This phenomenon is conserved between prokaryotic and eukaryotic cells. In eukaryotic cells, exosomes (Exos) are the main inter-cellular bioshuttles with the potential to carry different signaling molecules. Likewise, bacteria can produce and release Exo-like particles, namely microvesicles (MVs) into the extracellular matrix. Bacterial MVs function with diverse biological properties and are at the center of attention due to their inherent therapeutic properties. Here, in this review article, the comparable biological properties between the eukaryotic Exos and bacterial MVs were highlighted in terms of biomedical application. Video Abstract.
Collapse
Affiliation(s)
- Halimeh Mobarak
- Department of Applied Cell Sciences, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Farzin Javid
- Department of Applied Cell Sciences, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Maryam Taghavi Narmi
- Department of Applied Cell Sciences, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Narges Mardi
- Biotechnology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Fatemeh Sadeghsoltani
- Department of Clinical Biochemistry and Laboratory Medicine, School of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Parisa Khanicheragh
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Samaneh Narimani
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mahdi Mahdipour
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Emel Sokullu
- Biophysics Department, Koç University School of Medicine, Rumeli Feneri, 34450, Sariyer, Istanbul, Turkey
| | - Ferzane Valioglu
- Technology Development Zones Management CO, Sakarya University, Sakarya, Turkey
| | - Reza Rahbarghazi
- Department of Applied Cell Sciences, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran.
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
14
|
Morimoto M, Maishi N, Hida K. Acquisition of drug resistance in endothelial cells by tumor-derived extracellular vesicles and cancer progression. CANCER DRUG RESISTANCE (ALHAMBRA, CALIF.) 2024; 7:1. [PMID: 38318528 PMCID: PMC10838380 DOI: 10.20517/cdr.2023.121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 11/17/2023] [Indexed: 02/07/2024]
Abstract
Angiogenesis by endothelial cells (ECs) is essential for tumor growth. Angiogenesis inhibitors are used in combination with anticancer drugs in many tumor types, but tumors eventually become resistant. Previously, the underlying mechanism for developing drug resistance was considered to be a change in the characteristics of tumor cells whereas ECs were thought to be genetically stable and do not contribute to drug resistance. However, tumor endothelial cells (TECs) have been shown to differ from normal endothelial cells (NECs) in that they exhibit chromosomal abnormalities, angiogenic potential, and drug resistance. Extracellular vesicles (EVs) secreted by tumor cells have recently attracted attention as a factor involved in the acquisition of such abnormalities. Various cells communicate with each other through EVs, and it has been reported that tumor-derived EVs act on other tumor cells or stromal cells to develop drug resistance. Drug-resistant tumor cells confer drug resistance to recipient cells by transporting mRNAs encoding ATP-binding cassette subfamily B member 1 (ABCB1) and ATP-binding cassette subfamily C member 1 (ABCC1) as well as miRNAs involved in signaling such as Akt, drug efflux transporters, and P-glycoprotein modulators via EVs. However, there are limited reports on the acquisition of drug resistance in ECs by tumor-derived EVs. Since drug resistance of ECs may induce tumor metastasis and support tumor cell proliferation, the mechanism underlying the development of resistance should be elucidated to find therapeutic application. This review provides insight into the acquisition of drug resistance in ECs via tumor EVs in the tumor microenvironment.
Collapse
Affiliation(s)
- Masahiro Morimoto
- Department of Vascular Biology and Molecular Pathology, Hokkaido University Faculty of Dental Medicine, Sapporo 060-8586, Japan
- Department of Oral Diagnosis and Medicine, Hokkaido University Faculty of Dental Medicine, Sapporo 060-8586, Japan
| | - Nako Maishi
- Department of Vascular Biology and Molecular Pathology, Hokkaido University Faculty of Dental Medicine, Sapporo 060-8586, Japan
| | - Kyoko Hida
- Department of Vascular Biology and Molecular Pathology, Hokkaido University Faculty of Dental Medicine, Sapporo 060-8586, Japan
| |
Collapse
|
15
|
Qin B, Hu XM, Huang YX, Yang RH, Xiong K. A New Paradigm in Spinal Cord Injury Therapy: from Cell-free Treatment to Engineering Modifications. CNS & NEUROLOGICAL DISORDERS DRUG TARGETS 2024; 23:656-673. [PMID: 37076458 DOI: 10.2174/1871527322666230418090857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 01/20/2023] [Accepted: 02/06/2023] [Indexed: 04/21/2023]
Abstract
Spinal cord injury (SCI) is an intractable and poorly prognostic neurological disease, and current treatments are still unable to cure it completely and avoid sequelae. Extracellular vesicles (EVs), as important carriers of intercellular communication and pharmacological effects, are considered to be the most promising candidates for SCI therapy because of their low toxicity and immunogenicity, their ability to encapsulate endogenous bioactive molecules (e.g., proteins, lipids, and nucleic acids), and their ability to cross the blood-brain/cerebrospinal barriers. However, poor targeting, low retention rate, and limited therapeutic efficacy of natural EVs have bottlenecked EVs-based SCI therapy. A new paradigm for SCI treatment will be provided by engineering modified EVs. Furthermore, our limited understanding of the role of EVs in SCI pathology hinders the rational design of novel EVbased therapeutic approaches. In this study, we review the pathophysiology after SCI, especially the multicellular EVs-mediated crosstalk; briefly describe the shift from cellular to cell-free therapies for SCI treatment; discuss and analyze the issues related to the route and dose of EVs administration; summarize and present the common strategies for EVs drug loading in the treatment of SCI and point out the shortcomings of these drug loading methods; finally, we analyze and highlight the feasibility and advantages of bio-scaffold-encapsulated EVs for SCI treatment, providing scalable insights into cell-free therapy for SCI.
Collapse
Affiliation(s)
- Bo Qin
- Hubei Key Laboratory for Kidney Disease Pathogenesis and Intervention, Hubei Polytechnic University School of Medicine, Huangshi, 435003, China
| | - Xi-Min Hu
- Clinical Medicine Eight-year Program, 02 Class, 17 Grade, Xiangya School of Medicine, Central South University, Changsha, 410013, China
| | - Yan-Xia Huang
- Health Management Center, the Third Xiangya Hospital, Central South University, Changsha, 410013, China
| | - Rong-Hua Yang
- Department of Burn and Plastic Surgery, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, 510180, China
| | - Kun Xiong
- Department of Anatomy and Neurobiology, School of Basic Medical Science, Central South University, Changsha, 410013, China
- Hunan Key Laboratory of Ophthalmology, Changsha, 410008, China
- Key Laboratory of Emergency and Trauma, Ministry of Education, College of Emergency and Trauma, Hainan Medical University, Haikou, 571199, China
| |
Collapse
|
16
|
Sakamoto Y, Ochiya T, Yoshioka Y. Extracellular vesicles in the breast cancer brain metastasis: physiological functions and clinical applications. Front Hum Neurosci 2023; 17:1278501. [PMID: 38111675 PMCID: PMC10725966 DOI: 10.3389/fnhum.2023.1278501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 11/10/2023] [Indexed: 12/20/2023] Open
Abstract
Breast cancer, which exhibits an increasing incidence and high mortality rate among cancers, is predominantly attributed to metastatic malignancies. Brain metastasis, in particular, significantly contributes to the elevated mortality in breast cancer patients. Extracellular vesicles (EVs) are small lipid bilayer vesicles secreted by various cells that contain biomolecules such as nucleic acids and proteins. They deliver these bioactive molecules to recipient cells, thereby regulating signal transduction and protein expression levels. The relationship between breast cancer metastasis and EVs has been extensively investigated. In this review, we focus on the molecular mechanisms by which EVs promote brain metastasis in breast cancer. Additionally, we discuss the potential of EV-associated molecules as therapeutic targets and their relevance as early diagnostic markers for breast cancer brain metastasis.
Collapse
Affiliation(s)
| | | | - Yusuke Yoshioka
- Department of Molecular and Cellular Medicine, Institute of Medical Science, Tokyo Medical University, Tokyo, Japan
| |
Collapse
|
17
|
Rocamora F, Peralta AG, Shin S, Sorrentino J, Wu MYM, Toth EA, Fuerst TR, Lewis NE. Glycosylation shapes the efficacy and safety of diverse protein, gene and cell therapies. Biotechnol Adv 2023; 67:108206. [PMID: 37354999 PMCID: PMC11168894 DOI: 10.1016/j.biotechadv.2023.108206] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 05/26/2023] [Accepted: 06/20/2023] [Indexed: 06/26/2023]
Abstract
Over recent decades, therapeutic proteins have had widespread success in treating a myriad of diseases. Glycosylation, a near universal feature of this class of drugs, is a critical quality attribute that significantly influences the physical properties, safety profile and biological activity of therapeutic proteins. Optimizing protein glycosylation, therefore, offers an important avenue to developing more efficacious therapies. In this review, we discuss specific examples of how variations in glycan structure and glycoengineering impacts the stability, safety, and clinical efficacy of protein-based drugs that are already in the market as well as those that are still in preclinical development. We also highlight the impact of glycosylation on next generation biologics such as T cell-based cancer therapy and gene therapy.
Collapse
Affiliation(s)
- Frances Rocamora
- Department of Pediatrics, University of California, San Diego, La Jolla, CA 92093, USA
| | - Angelo G Peralta
- Department of Pediatrics, University of California, San Diego, La Jolla, CA 92093, USA
| | - Seunghyeon Shin
- Department of Pediatrics, University of California, San Diego, La Jolla, CA 92093, USA
| | - James Sorrentino
- Department of Pediatrics, University of California, San Diego, La Jolla, CA 92093, USA
| | - Mina Ying Min Wu
- Department of Pediatrics, University of California, San Diego, La Jolla, CA 92093, USA; Department of Bioengineering, University of California, San Diego, La Jolla, CA 92093, USA
| | - Eric A Toth
- Institute for Bioscience and Biotechnology Research, University of Maryland, Rockville, MD 20850, USA
| | - Thomas R Fuerst
- Institute for Bioscience and Biotechnology Research, University of Maryland, Rockville, MD 20850, USA; Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD 20742, USA
| | - Nathan E Lewis
- Department of Pediatrics, University of California, San Diego, La Jolla, CA 92093, USA; Department of Bioengineering, University of California, San Diego, La Jolla, CA 92093, USA.
| |
Collapse
|
18
|
Amruta A, Iannotta D, Cheetham SW, Lammers T, Wolfram J. Vasculature organotropism in drug delivery. Adv Drug Deliv Rev 2023; 201:115054. [PMID: 37591370 PMCID: PMC10693934 DOI: 10.1016/j.addr.2023.115054] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 07/22/2023] [Accepted: 08/13/2023] [Indexed: 08/19/2023]
Abstract
Over the past decades, there has been an exponential increase in the development of preclinical and clinical nanodelivery systems, and recently, an accelerating demand to deliver RNA and protein-based therapeutics. Organ-specific vasculature provides a promising intermediary for site-specific delivery of nanoparticles and extracellular vesicles to interstitial cells. Endothelial cells express organ-specific surface marker repertoires that can be used for targeted delivery. This article highlights organ-specific vasculature properties, nanodelivery strategies that exploit vasculature organotropism, and overlooked challenges and opportunities in targeting and simultaneously overcoming the endothelial barrier. Impediments in the clinical translation of vasculature organotropism in drug delivery are also discussed.
Collapse
Affiliation(s)
- A Amruta
- School of Chemical Engineering, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Dalila Iannotta
- School of Chemical Engineering, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Seth W Cheetham
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Twan Lammers
- Department of Nanomedicine and Theranostics, Institute for Experimental Molecular Imaging, RWTH Aachen University Hospital, 52074 Aachen, Germany; Helmholtz-Institute for Biomedical Engineering, Medical Faculty of RWTH Aachen University, 52074 Aachen, Germany; Center for Integrated Oncology Aachen Bonn Cologne Düsseldorf (CIO-ABCD), 52074 Aachen, Germany
| | - Joy Wolfram
- School of Chemical Engineering, The University of Queensland, Brisbane, QLD 4072, Australia; Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD 4072, Australia; Department of Nanomedicine, Houston Methodist Research Institute, Houston, TX 77030, USA.
| |
Collapse
|
19
|
Islam MK, Khan M, Gidwani K, Witwer KW, Lamminmäki U, Leivo J. Lectins as potential tools for cancer biomarker discovery from extracellular vesicles. Biomark Res 2023; 11:85. [PMID: 37773167 PMCID: PMC10540341 DOI: 10.1186/s40364-023-00520-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 09/01/2023] [Indexed: 10/01/2023] Open
Abstract
Extracellular vesicles (EVs) have considerable potential as diagnostic, prognostic, and therapeutic agents, in large part because molecular patterns on the EV surface betray the cell of origin and may also be used to "target" EVs to specific cells. Cancer is associated with alterations to cellular and EV glycosylation patterns, and the surface of EVs is enriched with glycan moieties. Glycoconjugates of EVs play versatile roles in cancer including modulating immune response, affecting tumor cell behavior and site of metastasis and as such, paving the way for the development of innovative diagnostic tools and novel therapies. Entities that recognize specific glycans, such as lectins, may thus be powerful tools to discover and detect novel cancer biomarkers. Indeed, the past decade has seen a constant increase in the number of published articles on lectin-based strategies for the detection of EV glycans. This review explores the roles of EV glycosylation in cancer and cancer-related applications. Furthermore, this review summarizes the potential of lectins and lectin-based methods for screening, targeting, separation, and possible identification of improved biomarkers from the surface of EVs.
Collapse
Affiliation(s)
- Md Khirul Islam
- Department of Life Technologies, Division of Biotechnology, University of Turku, Kiinamyllynkatu 10, 20014, Turku, Finland.
- InFLAMES Research Flagship Center, University of Turku, Turku, Finland.
| | - Misba Khan
- Department of Life Technologies, Division of Biotechnology, University of Turku, Kiinamyllynkatu 10, 20014, Turku, Finland
| | - Kamlesh Gidwani
- Department of Life Technologies, Division of Biotechnology, University of Turku, Kiinamyllynkatu 10, 20014, Turku, Finland
| | - Kenneth W Witwer
- Department of Molecular and Comparative Pathobiology, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Urpo Lamminmäki
- Department of Life Technologies, Division of Biotechnology, University of Turku, Kiinamyllynkatu 10, 20014, Turku, Finland
- InFLAMES Research Flagship Center, University of Turku, Turku, Finland
| | - Janne Leivo
- Department of Life Technologies, Division of Biotechnology, University of Turku, Kiinamyllynkatu 10, 20014, Turku, Finland
- InFLAMES Research Flagship Center, University of Turku, Turku, Finland
| |
Collapse
|
20
|
Ghaleh HEG, Vakilzadeh G, Zahiri A, Farzanehpour M. Investigating the potential of oncolytic viruses for cancer treatment via MSC delivery. Cell Commun Signal 2023; 21:228. [PMID: 37667271 PMCID: PMC10478302 DOI: 10.1186/s12964-023-01232-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 07/16/2023] [Indexed: 09/06/2023] Open
Abstract
Mesenchymal stem cells (MSCs) have attracted considerable interest as a promising approach for cancer treatment due to their ability to undergo tumor-trophic migration. MSCs possess the unique ability to selectively migrate to tumors, making them an excellent candidate for targeted delivery of oncolytic viruses (OVs) to treat isolated tumors and metastatic malignancies. OVs have attracted attention as a potential treatment for cancer due to their ability to selectively infect and destroy tumor cells while sparing normal cells. In addition, OVs can induce immunogenic cell death and contain curative transgenes in their genome, making them an attractive candidate for cancer treatment in combination with immunotherapies. In combination with MSCs, OVs can modulate the tumor microenvironment and trigger anti-tumor immune responses, making MSC-releasing OVs a promising approach for cancer treatment. This study reviews researches on the use of MSC-released OVs as a novel method for treating cancer. Video Abstract.
Collapse
Affiliation(s)
| | - Gazal Vakilzadeh
- Applied Virology Research Center, Baqiyatallah University of Medical sciences, Tehran, Iran
| | - Ali Zahiri
- Students Research Committee, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Mahdieh Farzanehpour
- Applied Virology Research Center, Baqiyatallah University of Medical sciences, Tehran, Iran.
| |
Collapse
|
21
|
Murillo Carrasco AG, Otake AH, Macedo-da-Silva J, Feijoli Santiago V, Palmisano G, Andrade LNDS, Chammas R. Deciphering the Functional Status of Breast Cancers through the Analysis of Their Extracellular Vesicles. Int J Mol Sci 2023; 24:13022. [PMID: 37629204 PMCID: PMC10455604 DOI: 10.3390/ijms241613022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 08/10/2023] [Accepted: 08/18/2023] [Indexed: 08/27/2023] Open
Abstract
Breast cancer (BC) accounts for the highest incidence of tumor-related mortality among women worldwide, justifying the growing search for molecular tools for the early diagnosis and follow-up of BC patients under treatment. Circulating extracellular vesicles (EVs) are membranous nanocompartments produced by all human cells, including tumor cells. Since minimally invasive methods collect EVs, which represent reservoirs of signals for cell communication, these particles have attracted the interest of many researchers aiming to improve BC screening and treatment. Here, we analyzed the cargoes of BC-derived EVs, both proteins and nucleic acids, which yielded a comprehensive list of potential markers divided into four distinct categories, namely, (i) modulation of aggressiveness and growth; (ii) preparation of the pre-metastatic niche; (iii) epithelial-to-mesenchymal transition; and (iv) drug resistance phenotype, further classified according to their specificity and sensitivity as vesicular BC biomarkers. We discuss the therapeutic potential of and barriers to the clinical implementation of EV-based tests, including the heterogeneity of EVs and the available technologies for analyzing their content, to present a consistent, reproducible, and affordable set of markers for further evaluation.
Collapse
Affiliation(s)
- Alexis Germán Murillo Carrasco
- Center for Translational Research in Oncology (LIM24), Instituto do Cancer do Estado de Sao Paulo (ICESP), Hospital das Clinicas da Faculdade de Medicina da Universidade de Sao Paulo (HCFMUSP), São Paulo 01246-000, Brazil; (A.G.M.C.); (A.H.O.); (L.N.d.S.A.)
- Comprehensive Center for Precision Oncology, Universidade de São Paulo, São Paulo 01246-000, Brazil
| | - Andreia Hanada Otake
- Center for Translational Research in Oncology (LIM24), Instituto do Cancer do Estado de Sao Paulo (ICESP), Hospital das Clinicas da Faculdade de Medicina da Universidade de Sao Paulo (HCFMUSP), São Paulo 01246-000, Brazil; (A.G.M.C.); (A.H.O.); (L.N.d.S.A.)
- Comprehensive Center for Precision Oncology, Universidade de São Paulo, São Paulo 01246-000, Brazil
| | - Janaina Macedo-da-Silva
- Departamento de Parasitologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo 05508-000, Brazil; (J.M.-d.-S.); (V.F.S.); (G.P.)
| | - Veronica Feijoli Santiago
- Departamento de Parasitologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo 05508-000, Brazil; (J.M.-d.-S.); (V.F.S.); (G.P.)
| | - Giuseppe Palmisano
- Departamento de Parasitologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo 05508-000, Brazil; (J.M.-d.-S.); (V.F.S.); (G.P.)
- School of Natural Sciences, Macquarie University, Macquarie Park, NSW 2109, Australia
| | - Luciana Nogueira de Sousa Andrade
- Center for Translational Research in Oncology (LIM24), Instituto do Cancer do Estado de Sao Paulo (ICESP), Hospital das Clinicas da Faculdade de Medicina da Universidade de Sao Paulo (HCFMUSP), São Paulo 01246-000, Brazil; (A.G.M.C.); (A.H.O.); (L.N.d.S.A.)
- Comprehensive Center for Precision Oncology, Universidade de São Paulo, São Paulo 01246-000, Brazil
| | - Roger Chammas
- Center for Translational Research in Oncology (LIM24), Instituto do Cancer do Estado de Sao Paulo (ICESP), Hospital das Clinicas da Faculdade de Medicina da Universidade de Sao Paulo (HCFMUSP), São Paulo 01246-000, Brazil; (A.G.M.C.); (A.H.O.); (L.N.d.S.A.)
- Comprehensive Center for Precision Oncology, Universidade de São Paulo, São Paulo 01246-000, Brazil
| |
Collapse
|
22
|
Banerjee A, Lino M, Jesus C, Ribeiro Q, Abrunhosa A, Ferreira L. Imaging platforms to dissect the in vivo communication, biodistribution and controlled release of extracellular vesicles. J Control Release 2023; 360:549-563. [PMID: 37406818 DOI: 10.1016/j.jconrel.2023.06.039] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 06/21/2023] [Accepted: 06/29/2023] [Indexed: 07/07/2023]
Abstract
Extracellular vesicles (EVs) work as communication vehicles, allowing the exchange of bioactive molecules (microRNAs, mRNAs, proteins, etc) between neighbouring and distant cells in the organism. EVs are thus important players in several physiological and pathological processes. Thus, it is critical to understand their role in cellular/organ communication to fully evaluate their biological, diagnosis and therapeutic potential. In addition, recent studies have explored the controlled release of EVs for regenerative medicine applications and thus the evaluation of their release profile is important to correlate with biological activity. Here, we give a brief introduction about EV imaging platforms in terms of their sensitivity, penetration depth, cost, and operational simplicity, followed by a discussion of different EV labelling processes with their advantages and limitations. Next, we cover the relevance of these imaging platforms to dissect the tropism and biological role of endogenous EVs. We also cover the relevance of imaging platforms to monitor the accumulation of exogenous EVs and their potential cellular targets. Finally, we highlight the importance of imaging platforms to investigate the release profile of EVs from different controlled systems.
Collapse
Affiliation(s)
- Arnab Banerjee
- CNC-Center for Neurosciences and Cell Biology, University of Coimbra, 3004-517 Coimbra, Portugal
| | - Miguel Lino
- CNC-Center for Neurosciences and Cell Biology, University of Coimbra, 3004-517 Coimbra, Portugal
| | - Carlos Jesus
- CNC-Center for Neurosciences and Cell Biology, University of Coimbra, 3004-517 Coimbra, Portugal; Faculty of Medicine, University of Coimbra, 3004-504 Coimbra, Portugal
| | - Quélia Ribeiro
- CNC-Center for Neurosciences and Cell Biology, University of Coimbra, 3004-517 Coimbra, Portugal
| | - Antero Abrunhosa
- ICNAS/CIBIT - Institute for Nuclear Sciences Applied to Health/Coimbra Institute for Biomedical Imaging and Translational research, University of Coimbra, 3000-548 Coimbra, Portugal
| | - Lino Ferreira
- CNC-Center for Neurosciences and Cell Biology, University of Coimbra, 3004-517 Coimbra, Portugal; Faculty of Medicine, University of Coimbra, 3004-504 Coimbra, Portugal.
| |
Collapse
|
23
|
Hu M, Kenific CM, Boudreau N, Lyden D. Tumor-derived nanoseeds condition the soil for metastatic organotropism. Semin Cancer Biol 2023; 93:70-82. [PMID: 37178822 PMCID: PMC10362948 DOI: 10.1016/j.semcancer.2023.05.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 05/07/2023] [Accepted: 05/08/2023] [Indexed: 05/15/2023]
Abstract
Primary tumors secrete a variety of factors to turn distant microenvironments into favorable and fertile 'soil' for subsequent metastases. Among these 'seeding' factors that initiate pre-metastatic niche (PMN) formation, tumor-derived extracellular vesicles (EVs) are of particular interest as tumor EVs can direct organotropism depending on their surface integrin profiles. In addition, EVs also contain versatile, bioactive cargo, which include proteins, metabolites, lipids, RNA, and DNA fragments. The cargo incorporated into EVs is collectively shed from cancer cells and cancer-associated stromal cells. Increased understanding of how tumor EVs promote PMN establishment and detection of EVs in bodily fluids highlight how tumor EVs could serve as potential diagnostic and prognostic biomarkers, as well as provide a therapeutic target for metastasis prevention. This review focuses on tumor-derived EVs and how they direct organotropism and subsequently modulate stromal and immune microenvironments at distal sites to facilitate PMN formation. We also outline the progress made thus far towards clinical applications of tumor EVs.
Collapse
Affiliation(s)
- Mengying Hu
- Children's Cancer and Blood Foundation Laboratories, Departments of Pediatrics, and Cell and Developmental Biology, Drukier Institute for Children's Health, Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA
| | - Candia M Kenific
- Children's Cancer and Blood Foundation Laboratories, Departments of Pediatrics, and Cell and Developmental Biology, Drukier Institute for Children's Health, Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA
| | - Nancy Boudreau
- Children's Cancer and Blood Foundation Laboratories, Departments of Pediatrics, and Cell and Developmental Biology, Drukier Institute for Children's Health, Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA.
| | - David Lyden
- Children's Cancer and Blood Foundation Laboratories, Departments of Pediatrics, and Cell and Developmental Biology, Drukier Institute for Children's Health, Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA.
| |
Collapse
|
24
|
Lin SW, Tsai JC, Shyong YJ. Drug delivery of extracellular vesicles: Preparation, delivery strategies and applications. Int J Pharm 2023; 642:123185. [PMID: 37391106 DOI: 10.1016/j.ijpharm.2023.123185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 06/24/2023] [Accepted: 06/26/2023] [Indexed: 07/02/2023]
Abstract
Extracellular vesicles (EV) are cell-originated vesicles exhibited with characteristics similar to the parent cells. Several studies have suggested the therapeutic potential of EV since they played as an intercellular communicator and modulate disease microenvironment, and thus EV has been widely studied in cancer management and tissue regeneration. However, merely application of EV revealed limited therapeutic outcome in different disease scenario and co-administration of drugs may be necessary to exert proper therapeutic effect. The method of drug loading into EV and efficient delivery of the formulation is therefore important. In this review, the advantages of using EV as drug delivery system compared to traditional synthetic nanoparticles will be emphasized, followed by the method of preparing EV and drug loading. The pharmacokinetic characteristics of EV was discussed, together with the review of reported delivery strategies and related application of EV in different disease management.
Collapse
Affiliation(s)
- Shang-Wen Lin
- School of Pharmacy, College of Medicine, National Cheng Kung University, No.1, University Road, Tainan City 701, Taiwan
| | - Jui-Chen Tsai
- School of Pharmacy, College of Medicine, National Cheng Kung University, No.1, University Road, Tainan City 701, Taiwan
| | - Yan-Jye Shyong
- School of Pharmacy, College of Medicine, National Cheng Kung University, No.1, University Road, Tainan City 701, Taiwan.
| |
Collapse
|
25
|
Pendiuk Goncalves J, Walker SA, Aguilar Díaz de león JS, Yang Y, Davidovich I, Busatto S, Sarkaria J, Talmon Y, Borges CR, Wolfram J. Glycan Node Analysis Detects Varying Glycosaminoglycan Levels in Melanoma-Derived Extracellular Vesicles. Int J Mol Sci 2023; 24:8506. [PMID: 37239852 PMCID: PMC10217820 DOI: 10.3390/ijms24108506] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 05/07/2023] [Accepted: 05/08/2023] [Indexed: 05/28/2023] Open
Abstract
Extracellular vesicles (EVs) play important roles in (patho)physiological processes by mediating cell communication. Although EVs contain glycans and glycosaminoglycans (GAGs), these biomolecules have been overlooked due to technical challenges in comprehensive glycome analysis coupled with EV isolation. Conventional mass spectrometry (MS)-based methods are restricted to the assessment of N-linked glycans. Therefore, methods to comprehensively analyze all glyco-polymer classes on EVs are urgently needed. In this study, tangential flow filtration-based EV isolation was coupled with glycan node analysis (GNA) as an innovative and robust approach to characterize most major glyco-polymer features of EVs. GNA is a molecularly bottom-up gas chromatography-MS technique that provides unique information that is unobtainable with conventional methods. The results indicate that GNA can identify EV-associated glyco-polymers that would remain undetected with conventional MS methods. Specifically, predictions based on GNA identified a GAG (hyaluronan) with varying abundance on EVs from two different melanoma cell lines. Enzyme-linked immunosorbent assays and enzymatic stripping protocols confirmed the differential abundance of EV-associated hyaluronan. These results lay the framework to explore GNA as a tool to assess major glycan classes on EVs, unveiling the EV glycocode and its biological functions.
Collapse
Affiliation(s)
- Jenifer Pendiuk Goncalves
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD 4072, Australia;
| | - Sierra A. Walker
- Department of Biochemistry and Molecular Biology, Department of Physiology and Biomedical Engineering, Department of Transplantation, Mayo Clinic, Jacksonville, FL 32224, USA
| | - Jesús S. Aguilar Díaz de león
- School of Molecular Sciences and Virginia G. Piper Center for Personalized Diagnostics, The Biodesign Institute at Arizona State University, Tempe, AZ 85287, USA
| | - Yubo Yang
- Department of Biochemistry and Molecular Biology, Department of Physiology and Biomedical Engineering, Department of Transplantation, Mayo Clinic, Jacksonville, FL 32224, USA
| | - Irina Davidovich
- Department of Chemical Engineering and the Russell Berrie Nanotechnology Institute (RBNI), Technion-Israel Institute of Technology, Haifa 3200003, Israel
| | - Sara Busatto
- Vascular Biology Program, Boston Children’s Hospital, Boston, MA 02115, USA
- Department of Surgery, Harvard Medical School, Boston, MA 02115, USA
| | - Jann Sarkaria
- Department of Radiation Oncology, Mayo Clinic, Rochester, MN 55902, USA
| | - Yeshayahu Talmon
- Department of Chemical Engineering and the Russell Berrie Nanotechnology Institute (RBNI), Technion-Israel Institute of Technology, Haifa 3200003, Israel
| | - Chad R. Borges
- School of Molecular Sciences and Virginia G. Piper Center for Personalized Diagnostics, The Biodesign Institute at Arizona State University, Tempe, AZ 85287, USA
| | - Joy Wolfram
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD 4072, Australia;
- School of Chemical Engineering, The University of Queensland, Brisbane, QLD 4072, Australia
| |
Collapse
|
26
|
Liu YJ, Wang C. A review of the regulatory mechanisms of extracellular vesicles-mediated intercellular communication. Cell Commun Signal 2023; 21:77. [PMID: 37055761 PMCID: PMC10100201 DOI: 10.1186/s12964-023-01103-6] [Citation(s) in RCA: 114] [Impact Index Per Article: 57.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Accepted: 03/15/2023] [Indexed: 04/15/2023] Open
Abstract
Extracellular vesicles (EVs) are small, membrane-bound structures that are released from cells into the surrounding environment. These structures can be categorized as exosomes, microvesicles, or apoptotic vesicles, and they play an essential role in intercellular communication. These vesicles are attracting significant clinical interest as they offer the potential for drug delivery, disease diagnosis, and therapeutic intervention. To fully understand the regulation of intercellular communication through EVs, it is essential to investigate the underlying mechanisms. This review aims to provide a summary of the current knowledge on the intercellular communications involved in EV targeting, binding, and uptake, as well as the factors that influence these interactions. These factors include the properties of the EVs, the cellular environment, and the recipient cell. As the field of EV-related intercellular communication continues to expand and techniques improve, we can expect to uncover more information about this complex area, despite the current limitations in our knowledge.
Collapse
Affiliation(s)
- Ya-Juan Liu
- Key Laboratory of Molecular Target and Clinical Pharmacology, The NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, China
| | - Cheng Wang
- Smurfit Institute of Genetics, Trinity College Dublin, Dublin, D02 VF25, Ireland.
| |
Collapse
|
27
|
Shimoda A, Akiyoshi K. Surface Glycan Profiling of Extracellular Vesicles by Lectin Microarray and Glycoengineering for Control of Cellular Interactions. Pharm Res 2023; 40:795-800. [PMID: 37038008 DOI: 10.1007/s11095-023-03511-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Accepted: 03/31/2023] [Indexed: 04/12/2023]
Abstract
BACKGROUND Extracellular vesicles (EVs) are a group of cell-derived membrane vesicles that carry a variety of cargo such as protein, nucleic acids, and lipids, and are secreted by almost all cell types. Functionally, EVs play important roles in physiological and pathological processes such as immune responses and tumor growth through intercellular communication by transferring this molecular information between cells. Therefore, they have potential versatile clinical applications as disease biomarkers and drug delivery carriers. PROBLEM Notably, subpopulations of EVs exhibit distinct characteristics depending on their cell of origin, including the expression of surface glycans, which have been implicated in a variety of cellular processes such as field cancerization, cell recognition, and signal transduction. However, these are features have not been fully exploited because of the difficulty in analyzing these proteins. APPROACH In this paper, we summarize the advancements in glycoengineering and high-performance lectin microarray for high-throughput analysis of EV glycans to generate an index of heterogeneity to identify disease biomarkers, and describe how understanding the function of EVs in disease can enhance their potential application in the clinic.
Collapse
Affiliation(s)
- Asako Shimoda
- Department of Polymer Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-Ku, Kyoto, 615-8510, Japan
| | - Kazunari Akiyoshi
- Department of Polymer Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-Ku, Kyoto, 615-8510, Japan.
| |
Collapse
|
28
|
Mendivil-Alvarado H, Limon-Miro AT, Carvajal-Millan E, Lizardi-Mendoza J, Mercado-Lara A, Coronado-Alvarado CD, Rascón-Durán ML, Anduro-Corona I, Talamás-Lara D, Rascón-Careaga A, Astiazarán-García H. Extracellular Vesicles and Their Zeta Potential as Future Markers Associated with Nutrition and Molecular Biomarkers in Breast Cancer. Int J Mol Sci 2023; 24:ijms24076810. [PMID: 37047783 PMCID: PMC10094966 DOI: 10.3390/ijms24076810] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 03/18/2023] [Accepted: 03/29/2023] [Indexed: 04/14/2023] Open
Abstract
A nutritional intervention promotes the loss of body and visceral fat while maintaining muscle mass in breast cancer patients. Extracellular vesicles (EVs) and their characteristics can be potential biomarkers of disease. Here, we explore the changes in the Zeta potential of EVs; the content of miRNA-30, miRNA-145, and miRNA-155; and their association with body composition and biomarkers of metabolic risk in breast cancer patients, before and 6 months after a nutritional intervention. Clinicopathological data (HER2neu, estrogen receptor, and Ki67), anthropometric and body composition data, and plasma samples were available from a previous study. Plasma EVs were isolated and characterized in 16 patients. The expression of miRNA-30, miRNA-145, and miRNA-155 was analyzed. The Zeta potential was associated with HER2neu (β = 2.1; p = 0.00), Ki67 (β = -1.39; p = 0.007), estrogen positive (β = 1.57; p = 0.01), weight (β = -0.09; p = 0.00), and visceral fat (β = 0.004; p = 0.00). miRNA-30 was associated with LDL (β = -0.012; p = 0.01) and HDL (β = -0.02; p = 0.05). miRNA-155 was associated with visceral fat (β = -0.0007; p = 0.05) and Ki67 (β = -0.47; p = 0.04). Our results reveal significant associations between the expression of miRNA-30 and miRNA-155 and the Zeta potential of the EVs with biomarkers of metabolic risk and disease prognosis in women with breast cancer; particularly, the Zeta potential of EVs can be a new biomarker sensitive to changes in the nutritional status and breast cancer progression.
Collapse
Affiliation(s)
| | - Ana Teresa Limon-Miro
- Department of Nutrition, Research Center for Food and Development, CIAD, A.C., Hermosillo 83304, Mexico
- Department of Medicine, University of Alberta, Edmonton, AB T6G 2R7, Canada
| | - Elizabeth Carvajal-Millan
- Department of Nutrition, Research Center for Food and Development, CIAD, A.C., Hermosillo 83304, Mexico
| | - Jaime Lizardi-Mendoza
- Department of Nutrition, Research Center for Food and Development, CIAD, A.C., Hermosillo 83304, Mexico
| | - Araceli Mercado-Lara
- Undersecretariat of Prevention and Health Promotion, Secretary of Health of the Government of Mexico, Mexico City 11570, Mexico
| | | | - María L Rascón-Durán
- Department of Chemical and Biological Sciences, University of Sonora, Hermosillo 83000, Mexico
| | - Iván Anduro-Corona
- Department of Nutrition, Research Center for Food and Development, CIAD, A.C., Hermosillo 83304, Mexico
| | - Daniel Talamás-Lara
- Department of Infectomics and Molecular Pathogenesis, Center for Research and Advanced Studies, IPN, Mexico City 14330, Mexico
| | - Antonio Rascón-Careaga
- Department of Chemical and Biological Sciences, University of Sonora, Hermosillo 83000, Mexico
| | - Humberto Astiazarán-García
- Department of Nutrition, Research Center for Food and Development, CIAD, A.C., Hermosillo 83304, Mexico
- Department of Chemical and Biological Sciences, University of Sonora, Hermosillo 83000, Mexico
| |
Collapse
|
29
|
Kuipers ME, Nguyen DL, van Diepen A, Mes L, Bos E, Koning RI, Nolte-’t Hoen ENM, Smits HH, Hokke CH. Life stage-specific glycosylation of extracellular vesicles from Schistosoma mansoni schistosomula and adult worms drives differential interaction with C-type lectin receptors DC-SIGN and MGL. Front Mol Biosci 2023; 10:1125438. [PMID: 37006612 PMCID: PMC10050886 DOI: 10.3389/fmolb.2023.1125438] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 02/15/2023] [Indexed: 03/17/2023] Open
Abstract
Schistosomes can survive in mammalian hosts for many years, and this is facilitated by released parasite products that modulate the host’s immune system. Many of these products are glycosylated and interact with host cells via C-type lectin receptors (CLRs). We previously reported on specific fucose-containing glycans present on extracellular vesicles (EVs) released by schistosomula, the early juvenile life stage of the schistosome, and the interaction of these EVs with the C-type lectin receptor Dendritic Cell-Specific Intercellular adhesion molecule-3-Grabbing Non-integrin (DC-SIGN or CD209). EVs are membrane vesicles with a size range between 30–1,000 nm that play a role in intercellular and interspecies communication. Here, we studied the glycosylation of EVs released by the adult schistosome worms. Mass spectrometric analysis showed that GalNAcβ1–4GlcNAc (LacDiNAc or LDN) containing N-glycans were the dominant glycan type present on adult worm EVs. Using glycan-specific antibodies, we confirmed that EVs from adult worms were predominantly associated with LDN, while schistosomula EVs displayed a highly fucosylated glycan profile. In contrast to schistosomula EV that bind to DC-SIGN, adult worm EVs are recognized by macrophage galactose-type lectin (MGL or CD301), and not by DC-SIGN, on CLR expressing cell lines. The different glycosylation profiles of adult worm- and schistosomula-derived EVs match with the characteristic glycan profiles of the corresponding life stages and support their distinct roles in schistosome life-stage specific interactions with the host.
Collapse
Affiliation(s)
- Marije E. Kuipers
- Department of Parasitology, Leiden University Medical Center, Leiden, Netherlands
- Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, Netherlands
| | - D. Linh Nguyen
- Department of Parasitology, Leiden University Medical Center, Leiden, Netherlands
| | - Angela van Diepen
- Department of Parasitology, Leiden University Medical Center, Leiden, Netherlands
| | - Lynn Mes
- Department of Parasitology, Leiden University Medical Center, Leiden, Netherlands
| | - Erik Bos
- Electron Microscopy Facility, Department of Cell and Chemical Biology, Leiden, Netherlands
| | - Roman I. Koning
- Electron Microscopy Facility, Department of Cell and Chemical Biology, Leiden, Netherlands
| | - Esther N. M. Nolte-’t Hoen
- Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, Netherlands
| | - Hermelijn H. Smits
- Department of Parasitology, Leiden University Medical Center, Leiden, Netherlands
| | - Cornelis H. Hokke
- Department of Parasitology, Leiden University Medical Center, Leiden, Netherlands
- *Correspondence: Cornelis H. Hokke,
| |
Collapse
|
30
|
Song X, Xu L, Zhang W. Biomimetic synthesis and optimization of extracellular vesicles for bone regeneration. J Control Release 2023; 355:18-41. [PMID: 36706840 DOI: 10.1016/j.jconrel.2023.01.057] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 01/18/2023] [Accepted: 01/20/2023] [Indexed: 01/29/2023]
Abstract
Critical-size bone defect repair is in high demand but is difficult to treat. Modern therapies, such as autograft and cell-based treatments, face limitations, including potential immunological rejection and tumorigenesis. Therefore, extracellular vesicle (EV)-based strategies have been proposed as a novel approach for tissue regeneration owing to EVs' complex composition of lipids, proteins, and nucleic acids, as well as their low immunogenicity and congenital cell-targeting features. Despite these remarkable features of EVs, biomimetic synthesis and optimization of natural EVs can lead to enhanced bioactivity, increased cellular uptake, and specific cell targeting, aiming to achieve optimal therapeutic efficacy. To maximize their function, these nanoparticles can be integrated into bone graft biomaterials for superior bone regeneration. Herein, we summarize the role of naturally occurring EVs from distinct cell types in bone regeneration, the current strategies for optimizing biomimetic synthetic EVs in bone regeneration, and discuss the recent advances in applying bone graft biomaterials for the delivery of EVs to bone defect repair. We focused on distinct strategies for optimizing EVs with different functions and the most recent research on achieving time-controlled release of nanoparticles from EV-loaded biomaterials. Furthermore, we thoroughly discuss several current challenges and proposed solutions, aiming to provide insight into current progress, inspiration for future development directions, and incentives for clinical application in this field.
Collapse
Affiliation(s)
- Xinyu Song
- Department of Prosthodontics, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai, China; College of Stomatology, Shanghai Jiao Tong University, Shanghai, China; National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai Engineering Research Center of Advanced Dental Technology and Materials, Shanghai, China
| | - Ling Xu
- Department of Prosthodontics, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai, China; College of Stomatology, Shanghai Jiao Tong University, Shanghai, China; National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai Engineering Research Center of Advanced Dental Technology and Materials, Shanghai, China.
| | - Wenjie Zhang
- Department of Prosthodontics, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai, China; College of Stomatology, Shanghai Jiao Tong University, Shanghai, China; National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai Engineering Research Center of Advanced Dental Technology and Materials, Shanghai, China.
| |
Collapse
|
31
|
Zhang J, Song H, Dong Y, Li G, Li J, Cai Q, Yuan S, Wang Y, Song H. Surface Engineering of HEK293 Cell-Derived Extracellular Vesicles for Improved Pharmacokinetic Profile and Targeted Delivery of IL-12 for the Treatment of Hepatocellular Carcinoma. Int J Nanomedicine 2023; 18:209-223. [PMID: 36660339 PMCID: PMC9844138 DOI: 10.2147/ijn.s388916] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Accepted: 12/24/2022] [Indexed: 01/14/2023] Open
Abstract
Background Extracellular vesicles (EVs) are considered a promising drug delivery platform. Naïve EVs face numerous issues that limit their applications, such as fast clearance, hepatic accumulations, and a lack of target-specific tropism. We aimed to explore a series of surface engineering approaches to: 1) reduce the non-specific adhesion of EVs, and 2) improve their enrichment in the target tissue. As a proof-of-concept, we investigated the therapeutic potentials of a multi-modal EVs system carrying a tumor-specific nanobody and the immuno-stimulant interleukin-12 (IL12) using in vivo models of hepatocellular carcinoma. Methods The major cell adhesion molecule on the HEK293-derived EVs, integrin β1 (ITGB1), was knocked out (KO) by CRISPR/Cas9-mediated gene editing, followed by deglycosylation to generate ITGB1-Deg EVs for the subsequent pharmacokinetic and biodistribution analyses. ITGB1-Deg EVs were further loaded with glypican-3 (GPC3)-specific nanobody (HN3) and mouse single-chain IL12 (mscIL12) to generate ITGB1-mscIL12+HN3+Deg EVs, for evaluation of tumor tropism and therapeutic potential in a mice model of hepatocellular carcinoma. Results Removal of ITGB1 led to the broad suppression of integrins on the EVs surface, resulting in a decrease in cellular uptake. Deglycosylation of ITGB1- EVs gave rise to inhibition of the EVs uptake by activated RAW264.7 cells. ITGB1 removal did not significantly alter the pharmacokinetic behaviors of HEK293-EVs, whereas the ITGB1-Deg EVs exhibited enhanced systemic exposure with reduced hepatic accumulation. Loading of HN3 conferred the ITGB1-Deg EVs with tumor-specific tropism for both subcutaneous and metastasized tumors in mice. The ITGB1-mscIL12+HN3+Deg EVs activated mouse splenocytes with high potency. Systemic administration of the EVs with the equivalent dose of 1.5µg/kg of exosomal IL12 achieved satisfactory tumor growth inhibition and good tolerability. Conclusion The combinatorial approach of EVs surface engineering conferred HEK293-EVs with reduced non-specific clearance and enhanced tumor targeting efficacy, which constituted an efficient delivery platform for critical cancer therapeutics like IL12.
Collapse
Affiliation(s)
- Jing Zhang
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing, 102206, People’s Republic of China
| | - Haijing Song
- Emergency Medicine, PLA Strategic Support Force Medical Center, Beijing, 100101, People’s Republic of China
| | - Yanan Dong
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing, 102206, People’s Republic of China
| | - Ganghui Li
- China Pharmaceutical University, Nanjing, 211198, People’s Republic of China
| | - Jun Li
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing, 102206, People’s Republic of China
| | - Qizhe Cai
- Department of Echocardiography, Beijing Chao Yang Hospital, Capital Medical University, Beijing, 100020, People’s Republic of China
| | - Shoujun Yuan
- Beijing Institute of Radiation Medicine, Beijing, 100850, People’s Republic of China
| | - Yi Wang
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing, 102206, People’s Republic of China
| | - Haifeng Song
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing, 102206, People’s Republic of China
| |
Collapse
|
32
|
De Sousa KP, Rossi I, Abdullahi M, Ramirez MI, Stratton D, Inal JM. Isolation and characterization of extracellular vesicles and future directions in diagnosis and therapy. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2023; 15:e1835. [PMID: 35898167 PMCID: PMC10078256 DOI: 10.1002/wnan.1835] [Citation(s) in RCA: 99] [Impact Index Per Article: 49.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 06/23/2022] [Accepted: 06/30/2022] [Indexed: 01/31/2023]
Abstract
Extracellular vesicles (EVs) are a unique and heterogeneous class of lipid bilayer nanoparticles secreted by most cells. EVs are regarded as important mediators of intercellular communication in both prokaryotic and eukaryotic cells due to their ability to transfer proteins, lipids and nucleic acids to recipient cells. In addition to their physiological role, EVs are recognized as modulators in pathological processes such as cancer, infectious diseases, and neurodegenerative disorders, providing new potential targets for diagnosis and therapeutic intervention. For a complete understanding of EVs as a universal cellular biological system and its translational applications, optimal techniques for their isolation and characterization are required. Here, we review recent progress in those techniques, from isolation methods to characterization techniques. With interest in therapeutic applications of EVs growing, we address fundamental points of EV-related cell biology, such as cellular uptake mechanisms and their biodistribution in tissues as well as challenges to their application as drug carriers or biomarkers for less invasive diagnosis or as immunogens. This article is categorized under: Diagnostic Tools > Biosensing Therapeutic Approaches and Drug Discovery > Nanomedicine for Oncologic Disease Therapeutic Approaches and Drug Discovery > Nanomedicine for Infectious Disease.
Collapse
Affiliation(s)
- Karina P. De Sousa
- Bioscience Research Group, School of Life and Medical SciencesUniversity of HertfordshireHertfordshireUK
| | - Izadora Rossi
- School of Human SciencesLondon Metropolitan UniversityLondonUK
- Federal University of ParanáCuritibaBrazil
| | | | - Marcel Ivan Ramirez
- Federal University of ParanáCuritibaBrazil
- Carlos Chagas Institute (ICC)CuritibaBrazil
| | - Dan Stratton
- Open UniversityThe School of Life, Health and Chemical SciencesMilton KeynesUK
| | - Jameel Malhador Inal
- Bioscience Research Group, School of Life and Medical SciencesUniversity of HertfordshireHertfordshireUK
- School of Human SciencesLondon Metropolitan UniversityLondonUK
| |
Collapse
|
33
|
Morimoto M, Maishi N, Tsumita T, Alam MT, Kikuchi H, Hida Y, Yoshioka Y, Ochiya T, Annan DA, Takeda R, Kitagawa Y, Hida K. miR-1246 in tumor extracellular vesicles promotes metastasis via increased tumor cell adhesion and endothelial cell barrier destruction. Front Oncol 2023; 13:973871. [PMID: 37124539 PMCID: PMC10130374 DOI: 10.3389/fonc.2023.973871] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 03/29/2023] [Indexed: 05/02/2023] Open
Abstract
Background Tumor blood vessels play a key role in tumor metastasis. We have previously reported that tumor endothelial cells (TECs) exhibit abnormalities compared to normal endothelial cells. However, it is unclear how TECs acquire these abnormalities. Tumor cells secrete extracellular vesicles (EVs) to create a suitable environment for themselves. We have previously identified miR-1246 to be more abundant in high metastatic melanoma EVs than in low metastatic melanoma EVs. In the current study, we focused on miR-1246 as primarily responsible for acquiring abnormalities in TECs and examined whether the alteration of endothelial cell (EC) character by miR-1246 promotes cancer metastasis. Methods We analyzed the effect of miR-1246 in metastatic melanoma, A375SM-EVs, in vivo metastasis. The role of tumor EV-miR-1246 in the adhesion between ECs and tumor cells and the EC barrier was addressed. Changes in the expression of adhesion molecule and endothelial permeability were examined. Results Intravenous administration of A375SM-EVs induced tumor cell colonization in the lung resulting in lung metastasis. In contrast, miR-1246 knockdown in A375SM decreased lung metastasis in vivo. miR-1246 transfection in ECs increased the expression of adhesion molecule ICAM-1 via activation of STAT3, followed by increased tumor cell adhesion to ECs. Furthermore, the expression of VE-Cadherin was downregulated in miR-1246 overexpressed EC. A375SM-EV treatment enhanced endothelial permeability. VE-Cadherin was validated as the potential target gene of miR-1246 via the target gene prediction database and 3' UTR assay. Conclusion miR-1246 in high metastatic tumor EVs promotes lung metastasis by inducing the adhesion of tumor cells to ECs and destroying the EC barrier.
Collapse
Affiliation(s)
- Masahiro Morimoto
- Department of Vascular Biology and Molecular Pathology, Hokkaido University Graduate School of Dental Medicine, Sapporo, Japan
- Department of Oral Diagnosis and Medicine, Hokkaido University Graduate School of Dental Medicine, Sapporo, Japan
| | - Nako Maishi
- Department of Vascular Biology and Molecular Pathology, Hokkaido University Graduate School of Dental Medicine, Sapporo, Japan
| | - Takuya Tsumita
- Department of Vascular Biology and Molecular Pathology, Hokkaido University Graduate School of Dental Medicine, Sapporo, Japan
| | - Mohammad Towfik Alam
- Department of Vascular Biology and Molecular Pathology, Hokkaido University Graduate School of Dental Medicine, Sapporo, Japan
| | - Hiroshi Kikuchi
- Department of Vascular Biology and Molecular Pathology, Hokkaido University Graduate School of Dental Medicine, Sapporo, Japan
- Department of Renal and Genitourinary Surgery, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Yasuhiro Hida
- Department of Cardiovascular and Thoracic Surgery, Hokkaido University Faculty of Medicine, Sapporo, Japan
| | - Yusuke Yoshioka
- Institute of Medical Science, Tokyo Medical University, Tokyo, Japan
| | - Takahiro Ochiya
- Institute of Medical Science, Tokyo Medical University, Tokyo, Japan
| | - Dorcas A. Annan
- Department of Vascular Biology and Molecular Pathology, Hokkaido University Graduate School of Dental Medicine, Sapporo, Japan
| | - Ryo Takeda
- Department of Vascular Biology and Molecular Pathology, Hokkaido University Graduate School of Dental Medicine, Sapporo, Japan
- Department of Oral Diagnosis and Medicine, Hokkaido University Graduate School of Dental Medicine, Sapporo, Japan
| | - Yoshimasa Kitagawa
- Department of Oral Diagnosis and Medicine, Hokkaido University Graduate School of Dental Medicine, Sapporo, Japan
| | - Kyoko Hida
- Department of Vascular Biology and Molecular Pathology, Hokkaido University Graduate School of Dental Medicine, Sapporo, Japan
- *Correspondence: Kyoko Hida,
| |
Collapse
|
34
|
Kanao E, Wada S, Nishida H, Kubo T, Tanigawa T, Imami K, Shimoda A, Umezaki K, Sasaki Y, Akiyoshi K, Adachi J, Otsuka K, Ishihama Y. Classification of Extracellular Vesicles Based on Surface Glycan Structures by Spongy-like Separation Media. Anal Chem 2022; 94:18025-18033. [PMID: 36511577 DOI: 10.1021/acs.analchem.2c04391] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Extracellular vesicles (EVs) are lipid bilayer vesicles that enclose various biomolecules. EVs hold promise as sensitive biomarkers to detect and monitor various diseases. However, they have heterogeneous molecular compositions. The compositions of EVs from identical donor cells obtained using the same purification methods may differ, which is a significant obstacle for elucidating objective biological functions. Herein, the potential of a novel lectin-based affinity chromatography (LAC) method to classify EVs based on their glycan structures is demonstrated. The proposed method utilizes a spongy-like monolithic polymer (spongy monolith, SPM), which consists of poly(ethylene-co-glycidyl methacrylate) with continuous micropores and allows an efficient in situ protein reaction with epoxy groups. Two distinct lectins with different specificities, Sambucus sieboldiana agglutinin and concanavalin A, are effectively immobilized on SPM without impacting the binding activity. Moreover, high recovery rates of liposomal nanoparticles as a model of EVs are achieved due to the large flow-through pores (>10 μm) of SPM compared to a typical agarose gel. Finally, lectin-immobilized SPMs are employed to classify EVs based on the surface glycan structures and demonstrate different subpopulations by proteome profiling. This is the first approach to clarify the variation of protein contents in EVs by the difference of surface glycans via lectin immobilized media.
Collapse
Affiliation(s)
- Eisuke Kanao
- Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto606-8501, Japan.,National Institutes of Biomedical Innovation, Health and Nutrition, Ibaraki, Osaka567-0085, Japan
| | - Shuntaro Wada
- Department of Material Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto615-8510, Japan
| | - Hiroshi Nishida
- National Institutes of Biomedical Innovation, Health and Nutrition, Ibaraki, Osaka567-0085, Japan
| | - Takuya Kubo
- Department of Material Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto615-8510, Japan
| | - Tetsuya Tanigawa
- Department of Material Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto615-8510, Japan
| | - Koshi Imami
- Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto606-8501, Japan.,Precursory Research for Embryonic Science and Technology (PRESTO), Japan Science and Technology Agency (JST), 4-1-8 Honcho, Kawaguchi, Saitama332-0012, Japan
| | - Asako Shimoda
- Department of Polymer Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto615-8510, Japan
| | - Kaori Umezaki
- Department of Polymer Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto615-8510, Japan
| | - Yoshihiro Sasaki
- Department of Polymer Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto615-8510, Japan
| | - Kazunari Akiyoshi
- Department of Polymer Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto615-8510, Japan
| | - Jun Adachi
- Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto606-8501, Japan.,National Institutes of Biomedical Innovation, Health and Nutrition, Ibaraki, Osaka567-0085, Japan
| | - Koji Otsuka
- Department of Material Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto615-8510, Japan
| | - Yasushi Ishihama
- Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto606-8501, Japan.,National Institutes of Biomedical Innovation, Health and Nutrition, Ibaraki, Osaka567-0085, Japan
| |
Collapse
|
35
|
Hirata T, Harada Y, Hirosawa KM, Tokoro Y, Suzuki KG, Kizuka Y. N-acetylglucosaminyltransferase-V (GnT-V)-enriched small extracellular vesicles mediate N-glycan remodeling in recipient cells. iScience 2022; 26:105747. [PMID: 36590176 PMCID: PMC9794981 DOI: 10.1016/j.isci.2022.105747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 11/09/2022] [Accepted: 12/02/2022] [Indexed: 12/12/2022] Open
Abstract
Small extracellular vesicles (sEVs) secreted from cancer cells play pivotal roles in cancer metastasis and malignancy by transferring biomolecules and conditioning future metastatic sites. Studies have elucidated structures and functions of glycans on sEVs; however, whether sEVs remodel glycans in recipient cells remains poorly understood. Here, we examined the enzyme activity of glycosyltransferases for complex N-glycan biosynthesis in cancer-derived sEVs and discovered that cancer-related glycosyltransferase, N-acetylglucosaminyltransferase-V (GnT-V, a.k.a. MGAT5), is selectively enriched in sEVs among various glycosyltransferases. GnT-V in sEVs is a cleaved form, and cleavage by SPPL3 protease is necessary for loading GnT-V in sEVs. Fractionation experiments and single-particle imaging further revealed that GnT-V was enriched in non-exosomal sEVs. Strikingly, we found that enzymatically active GnT-V in sEVs was transferred to recipient cells and the N-glycan structures of recipient cells were remodeled to express GnT-V-produced glycans. Our results suggest GnT-V-enriched sEVs' role in glycan remodeling in cancer metastasis.
Collapse
Affiliation(s)
- Tetsuya Hirata
- Laboratory of Glyco-biochemistry, Institute for Glyco-core Research (iGCORE), Gifu University, Gifu 501-1193, Japan
| | - Yoichiro Harada
- Department of Glyco-Oncology and Medical Biochemistry, Osaka International Cancer Institute, Osaka 541-8567, Japan
| | - Koichiro M. Hirosawa
- Laboratory of Cell Biophysics, Institute for Glyco-core Research (iGCORE), Gifu University, Gifu 501-1193, Japan
| | - Yuko Tokoro
- Laboratory of Glyco-biochemistry, Institute for Glyco-core Research (iGCORE), Gifu University, Gifu 501-1193, Japan
| | - Kenichi G.N. Suzuki
- Laboratory of Cell Biophysics, Institute for Glyco-core Research (iGCORE), Gifu University, Gifu 501-1193, Japan
| | - Yasuhiko Kizuka
- Laboratory of Glyco-biochemistry, Institute for Glyco-core Research (iGCORE), Gifu University, Gifu 501-1193, Japan,Corresponding author
| |
Collapse
|
36
|
Tsuchiya A, Terai S, Horiguchi I, Homma Y, Saito A, Nakamura N, Sato Y, Ochiya T, Kino-oka M. Basic points to consider regarding the preparation of extracellular vesicles and their clinical applications in Japan. Regen Ther 2022; 21:19-24. [PMID: 35619946 PMCID: PMC9127121 DOI: 10.1016/j.reth.2022.05.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Revised: 05/02/2022] [Accepted: 05/04/2022] [Indexed: 12/23/2022] Open
Abstract
In recent years, extracellular vesicles (EVs)1 have attracted attention as a new therapeutic tool. In Europe, the United States, and Asia, there is an accelerating trend of moving beyond basic research on clinical trials. However, treatment using EVs is still in the research and development stage, and the general public has insufficient awareness and understanding of the risks involved in ensuring safety and efficacy, the status of laws and regulations, and global research and development trends regarding their use. The Japanese Society for Regenerative Medicine, which has promoted the research and development of regenerative medicine, an innovative medical technology based on the principle of delivering it safely, effectively, and promptly, including the establishment of laws and regulations, would like to express two positions in light of the rapid development of therapies using EVs: 1) concern about treatments that are based solely on the discretion of medical practitioners, and 2) active promotion of treatments based on sound scientific evidence. Because EVs are released from cells, there are many similarities between EVs and processed cells2 in terms of manufacturing processes and safety hazards. As for efficacy, the mechanism of action of EVs is still unclear, as is the case with specified processed cellsb; in such cases, it is difficult to measure potency, identify efficacy-related quality attributes, and evaluate the comparability of quality before and after a change in the manufacturing process. In other words, the number of quality attributes that can be obtained for EVs is limited because of their complex characteristics, and it is difficult to grasp their quality through specifications and characterization. Therefore, while designing a quality control strategy for EVs, it is important to ensure the quality of the final product (EVs) by controlling the raw materials and manufacturing process. On the contrary, since EVs do not contain living cell components and are not classified into specified processed cells, non-commercial clinical research on treatments using EVs and individual medical treatments with EVs at the discretion of medical practitioners are out of the scope of the Act on the Safety of Regenerative Medicine of Japan3. At present, there are no relevant laws or regulations for the use of EVs other than the Medical Practitioners’ Act and the Medical Care Act in Japan. Therefore, there is a concern that treatment will be performed without sufficient objective evaluation of the scientific basis for safety and efficacy. Despite these concerns, the development of therapies using EVs is underway worldwide. This could potentially lead to a wide variety of new therapeutic areas if the methods needed to stably secure and mass cultivate cells as raw materials and the technologies needed for the mass production of EVs can be developed, in addition to understanding the risks involved and developing relevant laws and regulations. As part of the Japanese Society for Regenerative Medicine, we will continue to work on the development of these methods and technologies and hope that such a promising field will be promoted with a high level of safety before reaching the public.
Collapse
Affiliation(s)
- Atsunori Tsuchiya
- Division of Gastroenterology and Hepatology, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan
| | - Shuji Terai
- Division of Gastroenterology and Hepatology, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan
- Corresponding author. Division of Gastroenterology and Hepatology, Graduate School of Medical and Dental Sciences, Niigata University, 1-757, Asahimachi-dori, Chuo-ku, Niigata, 951-8510, Japan.
| | - Ikki Horiguchi
- Department of Biotechnology, Graduate School of Engineering, Osaka University, Osaka, Japan
| | - Yasuhiro Homma
- Department of Orthopaedic Surgery, Juntendo University School of Medicine, Tokyo, Japan
| | - Atsuhiro Saito
- Department of Biotechnology, Graduate School of Engineering, Osaka University, Osaka, Japan
| | - Norimasa Nakamura
- Department of Orthopaedic Surgery, Osaka University Graduate School of Medicine, Osaka, Japan
- Institute for Medical Science in Sports, Osaka Health Science University, Osaka, Japan
- Global Center for Medical Engineering and Informatics, Osaka University, Osaka, Japan
| | - Yoji Sato
- Division of Cell-Based Therapeutic Products, National Institute of Health Sciences, Kawasaki, Japan
| | - Takahiro Ochiya
- Department of Molecular and Cellular Medicine, Tokyo Medical University, Tokyo, Japan
| | - Masahiro Kino-oka
- Department of Biotechnology, Graduate School of Engineering, Osaka University, Osaka, Japan
- Corresponding author. Department of Biotechnology, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka, 565-0871, Japan.
| | | |
Collapse
|
37
|
Aimaletdinov AM, Gomzikova MO. Tracking of Extracellular Vesicles' Biodistribution: New Methods and Approaches. Int J Mol Sci 2022; 23:11312. [PMID: 36232613 PMCID: PMC9569979 DOI: 10.3390/ijms231911312] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 09/15/2022] [Accepted: 09/21/2022] [Indexed: 12/12/2022] Open
Abstract
Extracellular vesicles (EVs) are nanosized lipid bilayer vesicles that are released by almost all cell types. They range in diameter from 30 nm to several micrometres and have the ability to carry biologically active molecules such as proteins, lipids, RNA, and DNA. EVs are natural vectors and play an important role in many physiological and pathological processes. The amount and composition of EVs in human biological fluids serve as biomarkers and are used for diagnosing diseases and monitoring the effectiveness of treatment. EVs are promising for use as therapeutic agents and as natural vectors for drug delivery. However, the successful use of EVs in clinical practice requires an understanding of their biodistribution in an organism. Numerous studies conducted so far on the biodistribution of EVs show that, after intravenous administration, EVs are mostly localized in organs rich in blood vessels and organs associated with the reticuloendothelial system, such as the liver, lungs, spleen, and kidneys. In order to improve resolution, new dyes and labels are being developed and detection methods are being optimized. In this work, we review all available modern methods and approaches used to assess the biodistribution of EVs, as well as discuss their advantages and limitations.
Collapse
Affiliation(s)
| | - Marina O. Gomzikova
- Laboratory of Intercellular Communication, Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan 420008, Russia
| |
Collapse
|
38
|
Lucotti S, Kenific CM, Zhang H, Lyden D. Extracellular vesicles and particles impact the systemic landscape of cancer. EMBO J 2022; 41:e109288. [PMID: 36052513 PMCID: PMC9475536 DOI: 10.15252/embj.2021109288] [Citation(s) in RCA: 55] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Revised: 02/16/2022] [Accepted: 03/23/2022] [Indexed: 11/09/2022] Open
Abstract
Intercellular cross talk between cancer cells and stromal and immune cells is essential for tumor progression and metastasis. Extracellular vesicles and particles (EVPs) are a heterogeneous class of secreted messengers that carry bioactive molecules and that have been shown to be crucial for this cell-cell communication. Here, we highlight the multifaceted roles of EVPs in cancer. Functionally, transfer of EVP cargo between cells influences tumor cell growth and invasion, alters immune cell composition and function, and contributes to stromal cell activation. These EVP-mediated changes impact local tumor progression, foster cultivation of pre-metastatic niches at distant organ-specific sites, and mediate systemic effects of cancer. Furthermore, we discuss how exploiting the highly selective enrichment of molecules within EVPs has profound implications for advancing diagnostic and prognostic biomarker development and for improving therapy delivery in cancer patients. Altogether, these investigations into the role of EVPs in cancer have led to discoveries that hold great promise for improving cancer patient care and outcome.
Collapse
Affiliation(s)
- Serena Lucotti
- Children’s Cancer and Blood Foundation Laboratories, Departments of Pediatrics, and Cell and Developmental Biology, Drukier Institute for Children’s Health, Meyer Cancer CenterWeill Cornell MedicineNew YorkNYUSA
| | - Candia M Kenific
- Children’s Cancer and Blood Foundation Laboratories, Departments of Pediatrics, and Cell and Developmental Biology, Drukier Institute for Children’s Health, Meyer Cancer CenterWeill Cornell MedicineNew YorkNYUSA
| | - Haiying Zhang
- Children’s Cancer and Blood Foundation Laboratories, Departments of Pediatrics, and Cell and Developmental Biology, Drukier Institute for Children’s Health, Meyer Cancer CenterWeill Cornell MedicineNew YorkNYUSA
| | - David Lyden
- Children’s Cancer and Blood Foundation Laboratories, Departments of Pediatrics, and Cell and Developmental Biology, Drukier Institute for Children’s Health, Meyer Cancer CenterWeill Cornell MedicineNew YorkNYUSA
| |
Collapse
|
39
|
N-Glycans in Immortalized Mesenchymal Stromal Cell-Derived Extracellular Vesicles Are Critical for EV–Cell Interaction and Functional Activation of Endothelial Cells. Int J Mol Sci 2022; 23:ijms23179539. [PMID: 36076936 PMCID: PMC9455930 DOI: 10.3390/ijms23179539] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 08/11/2022] [Accepted: 08/13/2022] [Indexed: 11/17/2022] Open
Abstract
Mesenchymal stromal cell-derived extracellular vesicles (MSC-EV) are widely considered as a cell-free therapeutic alternative to MSC cell administration, due to their immunomodulatory and regenerative properties. However, the interaction mechanisms between EV and target cells are not fully understood. The surface glycans could be key players in EV–cell communication, being specific molecular recognition patterns that are still little explored. In this study, we focused on the role of N-glycosylation of MSC-EV as mediators of MSC-EV and endothelial cells’ interaction for subsequent EV uptake and the induction of cell migration and angiogenesis. For that, EV from immortalized Wharton’s Jelly MSC (iWJ-MSC-EV) were isolated by size exclusion chromatography (SEC) and treated with the glycosidase PNGase-F in order to remove wild-type N-glycans. Then, CFSE-labelled iWJ-MSC-EV were tested in the context of in vitro capture, agarose-spot migration and matrigel-based tube formation assays, using HUVEC. As a result, we found that the N-glycosylation in iWJ-MSC-EV is critical for interaction with HUVEC cells. iWJ-MSC-EV were captured by HUVEC, stimulating their tube-like formation ability and promoting their recruitment. Conversely, the removal of N-glycans through PNGase-F treatment reduced all of these functional activities induced by native iWJ-MSC-EV. Finally, comparative lectin arrays of iWJ-MSC-EV and PNGase-F-treated iWJ-MSC-EV found marked differences in the surface glycosylation pattern, particularly in N-acetylglucosamine, mannose, and fucose-binding lectins. Taken together, our results highlight the importance of N-glycans in MSC-EV to permit EV–cell interactions and associated functions.
Collapse
|
40
|
Arifin DR, Witwer KW, Bulte JWM. Non-Invasive imaging of extracellular vesicles: Quo vaditis in vivo? J Extracell Vesicles 2022; 11:e12241. [PMID: 35844061 PMCID: PMC9289215 DOI: 10.1002/jev2.12241] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 06/12/2022] [Accepted: 06/16/2022] [Indexed: 01/11/2023] Open
Abstract
Extracellular vesicles (EVs) are lipid-bilayer delimited vesicles released by nearly all cell types that serve as mediators of intercellular signalling. Recent evidence has shown that EVs play a key role in many normal as well as pathological cellular processes. EVs can be exploited as disease biomarkers and also as targeted, cell-free therapeutic delivery and signalling vehicles for use in regenerative medicine and other clinical settings. Despite this potential, much remains unknown about the in vivo biodistribution and pharmacokinetic profiles of EVs after administration into living subjects. The ability to non-invasively image exogeneous EVs, especially in larger animals, will allow a better understanding of their in vivo homing and retention patterns, blood and tissue half-life, and excretion pathways, all of which are needed to advance clinical diagnostic and/or therapeutic applications of EVs. We present the current state-of-the-art methods for labeling EVs with various diagnostic contrast agents and tracers and the respective imaging modalities that can be used for their in vivo visualization: magnetic resonance imaging (MRI), X-ray computed tomography (CT) imaging, magnetic particle imaging (MPI), single-photon emission computed tomography (SPECT), positron emission tomography (PET), and optical imaging (fluorescence and bioluminescence imaging). We review here the strengths and weaknesses of each of these EV imaging approaches, with special emphasis on clinical translation.
Collapse
Affiliation(s)
- Dian R. Arifin
- Russell H. Morgan Department of Radiology and Radiological ScienceDivision of MR Researchthe Johns Hopkins University School of MedicineBaltimoreMarylandUSA
- Cellular Imaging Section and Vascular Biology ProgramInstitute for Cell Engineeringthe Johns Hopkins University School of MedicineBaltimoreMarylandUSA
| | - Kenneth W. Witwer
- Department of Molecular and Comparative Pathobiologythe Johns Hopkins University School of MedicineBaltimoreMarylandUSA
- Department of Neurologythe Johns Hopkins University School of MedicineBaltimoreMarylandUSA
| | - Jeff W. M. Bulte
- Russell H. Morgan Department of Radiology and Radiological ScienceDivision of MR Researchthe Johns Hopkins University School of MedicineBaltimoreMarylandUSA
- Cellular Imaging Section and Vascular Biology ProgramInstitute for Cell Engineeringthe Johns Hopkins University School of MedicineBaltimoreMarylandUSA
- Department of Oncologythe Johns Hopkins University School of MedicineBaltimoreMarylandUSA
- Department of Chemical & Biomolecular Engineeringthe Johns Hopkins University School of MedicineBaltimoreMarylandUSA
- Department of Biomedical Engineeringthe Johns Hopkins University School of MedicineBaltimoreMarylandUSA
| |
Collapse
|
41
|
Circulating extracellular vesicles and tumor cells: sticky partners in metastasis. Trends Cancer 2022; 8:799-805. [DOI: 10.1016/j.trecan.2022.05.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 04/21/2022] [Accepted: 05/05/2022] [Indexed: 12/13/2022]
|
42
|
Ou Q, Tan L, Shao Y, Lei F, Huang W, Yang N, Qu Y, Cao Z, Niu L, Liu Y, Kou X, Shi S. Electrostatic Charge-Mediated Apoptotic Vesicle Biodistribution Attenuates Sepsis by Switching Neutrophil NETosis to Apoptosis. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2200306. [PMID: 35481721 DOI: 10.1002/smll.202200306] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Revised: 03/08/2022] [Indexed: 05/16/2023]
Abstract
Mesenchymal stem cell (MSC) therapy can attenuate organ damage and reduce mortality in sepsis; however, the detailed mechanism is not fully elucidated. In this study, it is shown that MSC-derived apoptotic vesicles (apoVs) can ameliorate multiple organ dysfunction and improve survival in septic mice. Mechanistically, it is found that tail vein-infused apoVs mainly accumulate in the bone marrow of septic mice via electrostatic charge interactions with positively charged neutrophil extracellular traps (NETs). Moreover, apoVs switch neutrophils NETosis to apoptosis via the apoV-Fas ligand (FasL)-activated Fas pathway. In summary, these findings uncover a previously unknown role of apoVs in sepsis treatment and an electrostatic charge-directed target therapeutic mechanism, suggesting that cell death is associated with disease development and therapy.
Collapse
Affiliation(s)
- Qianmin Ou
- South China Center of Craniofacial Stem Cell Research, Hospital of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-Sen University, Guangzhou, 510080, P. R. China
| | - Lingping Tan
- South China Center of Craniofacial Stem Cell Research, Hospital of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-Sen University, Guangzhou, 510080, P. R. China
| | - Yiting Shao
- South China Center of Craniofacial Stem Cell Research, Hospital of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-Sen University, Guangzhou, 510080, P. R. China
| | - Fangcao Lei
- South China Center of Craniofacial Stem Cell Research, Hospital of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-Sen University, Guangzhou, 510080, P. R. China
| | - Weiying Huang
- South China Center of Craniofacial Stem Cell Research, Hospital of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-Sen University, Guangzhou, 510080, P. R. China
| | - Ning Yang
- Department of Pediatric Dentistry, School and Hospital of Stomatology, China Medical University, Shenyang, 110122, P. R. China
| | - Yan Qu
- South China Center of Craniofacial Stem Cell Research, Hospital of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-Sen University, Guangzhou, 510080, P. R. China
| | - Zeyuan Cao
- South China Center of Craniofacial Stem Cell Research, Hospital of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-Sen University, Guangzhou, 510080, P. R. China
| | - Luhan Niu
- South China Center of Craniofacial Stem Cell Research, Hospital of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-Sen University, Guangzhou, 510080, P. R. China
| | - Yao Liu
- Department of Pediatric Dentistry, School and Hospital of Stomatology, China Medical University, Shenyang, 110122, P. R. China
| | - Xiaoxing Kou
- South China Center of Craniofacial Stem Cell Research, Hospital of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-Sen University, Guangzhou, 510080, P. R. China
- Key Laboratory of Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-Sen University, Guangzhou, 510080, P. R. China
| | - Songtao Shi
- South China Center of Craniofacial Stem Cell Research, Hospital of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-Sen University, Guangzhou, 510080, P. R. China
- Key Laboratory of Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-Sen University, Guangzhou, 510080, P. R. China
| |
Collapse
|
43
|
Ginini L, Billan S, Fridman E, Gil Z. Insight into Extracellular Vesicle-Cell Communication: From Cell Recognition to Intracellular Fate. Cells 2022; 11:1375. [PMID: 35563681 PMCID: PMC9101098 DOI: 10.3390/cells11091375] [Citation(s) in RCA: 64] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Revised: 04/13/2022] [Accepted: 04/14/2022] [Indexed: 01/27/2023] Open
Abstract
Extracellular vesicles (EVs) are heterogamous lipid bilayer-enclosed membranous structures secreted by cells. They are comprised of apoptotic bodies, microvesicles, and exosomes, and carry a range of nucleic acids and proteins that are necessary for cell-to-cell communication via interaction on the cells surface. They initiate intracellular signaling pathways or the transference of cargo molecules, which elicit pleiotropic responses in recipient cells in physiological processes, as well as pathological processes, such as cancer. It is therefore important to understand the molecular means by which EVs are taken up into cells. Accordingly, this review summarizes the underlying mechanisms involved in EV targeting and uptake. The primary method of entry by EVs appears to be endocytosis, where clathrin-mediated, caveolae-dependent, macropinocytotic, phagocytotic, and lipid raft-mediated uptake have been variously described as being prevalent. EV uptake mechanisms may depend on proteins and lipids found on the surfaces of both vesicles and target cells. As EVs have been shown to contribute to cancer growth and progression, further exploration and targeting of the gateways utilized by EVs to internalize into tumor cells may assist in the prevention or deceleration of cancer pathogenesis.
Collapse
Affiliation(s)
- Lana Ginini
- Rappaport Family Institute for Research in the Medical Sciences, Technion–Israel Institute of Technology, Haifa 31096, Israel; (L.G.); (E.F.)
| | - Salem Billan
- Head and Neck Institute, The Holy Family Hospital Nazareth, Nazareth 1641100, Israel;
- Medical Oncology and Radiation Therapy Program, Oncology Section, Rambam Health Care Campus, HaAliya HaShniya Street 8, Haifa 3109601, Israel
| | - Eran Fridman
- Rappaport Family Institute for Research in the Medical Sciences, Technion–Israel Institute of Technology, Haifa 31096, Israel; (L.G.); (E.F.)
| | - Ziv Gil
- Head and Neck Institute, The Holy Family Hospital Nazareth, Nazareth 1641100, Israel;
| |
Collapse
|
44
|
Insights into the Steps of Breast Cancer-Brain Metastases Development: Tumor Cell Interactions with the Blood-Brain Barrier. Int J Mol Sci 2022; 23:ijms23031900. [PMID: 35163822 PMCID: PMC8836543 DOI: 10.3390/ijms23031900] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 02/01/2022] [Accepted: 02/05/2022] [Indexed: 02/07/2023] Open
Abstract
Brain metastases (BM) represent a growing problem for breast cancer (BC) patients. Recent studies have demonstrated a strong impact of the BC molecular subtype on the incidence of BM development. This study explores the interaction between BC cells of different molecular subtypes and the blood–brain barrier (BBB). We compared the ability of BC cells of different molecular subtypes to overcome several steps (adhesion to the brain endothelium, disruption of the BBB, and invasion through the endothelial layer) during cerebral metastases formation, in vitro as well as in vivo. Further, the impact of these cells on the BBB was deciphered at the molecular level by transcriptome analysis of the triple-negative (TNBC) cells themselves as well as of hBMECs after cocultivation with BC cell secretomes. Compared to luminal BC cells, TNBC cells have a greater ability to influence the BBB in vitro and consequently develop BM in vivo. The brain-seeking subline and parental TNBC cells behaved similarly in terms of adhesion, whereas the first showed a stronger impact on the brain endothelium integrity and increased invasive ability. The comparative transcriptome revealed potential brain-metastatic-specific key regulators involved in the aforementioned processes, e.g., the angiogenesis-related factors TNXIP and CXCL1. In addition, the transcriptomes of the two TNBC cell lines strongly differed in certain angiogenesis-associated factors and in several genes related to cell migration and invasion. Based on the present study, we hypothesize that the tumor cell’s ability to disrupt the BBB via angiogenesis activation, together with increased cellular motility, is required for BC cells to overcome the BBB and develop brain metastases.
Collapse
|
45
|
Shimoda A, Miura R, Tateno H, Seo N, Shiku H, Sawada SI, Sasaki Y, Akiyoshi K. Assessment of Surface Glycan Diversity on Extracellular Vesicles by Lectin Microarray and Glycoengineering Strategies for Drug Delivery Applications. SMALL METHODS 2022; 6:e2100785. [PMID: 35174988 DOI: 10.1002/smtd.202100785] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 11/08/2021] [Indexed: 06/14/2023]
Abstract
Extracellular vesicles (EVs) are released by all types of mammalian cells for cell-cell communication. In this study, surface glycans on EVs are compared in terms of their cell type, size, and isolation method to examine whether EV glycan profiles by lectin microarray can be used to define EV subpopulations. Moreover, EVs are glycoengineered with four distinctive surface glycan patterns and evaluated their cellular uptake efficiencies for potential drug delivery applications. Both similarities and differences in glycan patterns are identified on EVs obtained under each experimental condition. EV size- and isolation method-dependent lectin-binding patterns are observed. Moreover, cellular uptake behaviors of EVs are affected by EV glycan profiles and acceptor cells. The in vivo biodistribution of EVs is also dependent on their glycan profile. These results suggest that EV surface glycans are a potential novel indicator of EV heterogeneity, and glycoengineering is a useful approach to regulate cell-EV interactions for biomedical applications.
Collapse
Affiliation(s)
- Asako Shimoda
- Department of Polymer Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto, 615-8510, Japan
| | - Risako Miura
- Department of Energy and Hydrocarbon Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto, 615-8510, Japan
| | - Hiroaki Tateno
- Cellular and Molecular Biotechnology Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Central 6, 1-1-1 Higashi, Tsukuba, Ibaraki, 305-8566, Japan
| | - Naohiro Seo
- Department of Personalized Cancer Immunotherapy, Mie University Graduate School of Medicine, Edobashi, Tsu, Mie, 514-8507, Japan
| | - Hiroshi Shiku
- Department of Personalized Cancer Immunotherapy, Mie University Graduate School of Medicine, Edobashi, Tsu, Mie, 514-8507, Japan
| | - Shin-Ichi Sawada
- Department of Polymer Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto, 615-8510, Japan
| | - Yoshihiro Sasaki
- Department of Polymer Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto, 615-8510, Japan
| | - Kazunari Akiyoshi
- Department of Polymer Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto, 615-8510, Japan
| |
Collapse
|
46
|
Ben Ami Pilo H, Khan Khilji S, Lühle J, Biskup K, Levy Gal B, Rosenhek Goldian I, Alfandari D, Revach O, Kiper E, Morandi MI, Rotkopf R, Porat Z, Blanchard V, Seeberger PH, Regev‐Rudzki N, Moscovitz O. Sialylated N-glycans mediate monocyte uptake of extracellular vesicles secreted from Plasmodium falciparum-infected red blood cells. JOURNAL OF EXTRACELLULAR BIOLOGY 2022; 1:e33. [PMID: 38938665 PMCID: PMC11080922 DOI: 10.1002/jex2.33] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 01/17/2022] [Accepted: 01/26/2022] [Indexed: 06/29/2024]
Abstract
Glycoconjugates on extracellular vesicles (EVs) play a vital role in internalization and mediate interaction as well as regulation of the host immune system by viruses, bacteria, and parasites. During their intraerythrocytic life-cycle stages, malaria parasites, Plasmodium falciparum (Pf) mediate the secretion of EVs by infected red blood cells (RBCs) that carry a diverse range of parasitic and host-derived molecules. These molecules facilitate parasite-parasite and parasite-host interactions to ensure parasite survival. To date, the number of identified Pf genes associated with glycan synthesis and the repertoire of expressed glycoconjugates is relatively low. Moreover, the role of Pf glycans in pathogenesis is mostly unclear and poorly understood. As a result, the expression of glycoconjugates on Pf-derived EVs or their involvement in the parasite life-cycle has yet to be reported. Herein, we show that EVs secreted by Pf-infected RBCs carry significantly higher sialylated complex N-glycans than EVs derived from healthy RBCs. Furthermore, we reveal that EV uptake by host monocytes depends on N-glycoproteins and demonstrate that terminal sialic acid on the N-glycans is essential for uptake by human monocytes. Our results provide the first evidence that Pf exploits host sialylated N-glycans to mediate EV uptake by the human immune system cells.
Collapse
Affiliation(s)
- Hila Ben Ami Pilo
- Faculty of BiochemistryDepartment of Biomolecular SciencesWeizmann Institute of ScienceRehovotIsrael
| | - Sana Khan Khilji
- Department of Biomolecular SystemsMax‐Planck‐Institute of Colloids and InterfacesBerlinGermany
- Institute of Chemistry and BiochemistryFreie Universität BerlinBerlinGermany
| | - Jost Lühle
- Department of Biomolecular SystemsMax‐Planck‐Institute of Colloids and InterfacesBerlinGermany
- Institute of Chemistry and BiochemistryFreie Universität BerlinBerlinGermany
| | - Karina Biskup
- Institute of Laboratory MedicineClinical Chemistry and PathobiochemistryCharite University Medicine BerlinBerlinGermany
| | - Bar Levy Gal
- Flow Cytometry Unit, Life Sciences Core FacilitiesWeizmann Institute of ScienceRehovotIsrael
| | | | - Daniel Alfandari
- Faculty of BiochemistryDepartment of Biomolecular SciencesWeizmann Institute of ScienceRehovotIsrael
| | - Or‐Yam Revach
- Faculty of BiochemistryDepartment of Biomolecular SciencesWeizmann Institute of ScienceRehovotIsrael
| | - Edo Kiper
- Faculty of BiochemistryDepartment of Biomolecular SciencesWeizmann Institute of ScienceRehovotIsrael
| | - Mattia I. Morandi
- Faculty of BiochemistryDepartment of Biomolecular SciencesWeizmann Institute of ScienceRehovotIsrael
| | - Ron Rotkopf
- Bioinformatics Unit, Life Sciences Core FacilitiesWeizmann Institute of ScienceRehovotIsrael
| | - Ziv Porat
- Flow Cytometry Unit, Life Sciences Core FacilitiesWeizmann Institute of ScienceRehovotIsrael
| | - Véronique Blanchard
- Institute of Laboratory MedicineClinical Chemistry and PathobiochemistryCharite University Medicine BerlinBerlinGermany
| | - Peter H. Seeberger
- Department of Biomolecular SystemsMax‐Planck‐Institute of Colloids and InterfacesBerlinGermany
- Institute of Chemistry and BiochemistryFreie Universität BerlinBerlinGermany
| | - Neta Regev‐Rudzki
- Faculty of BiochemistryDepartment of Biomolecular SciencesWeizmann Institute of ScienceRehovotIsrael
| | - Oren Moscovitz
- Department of Biomolecular SystemsMax‐Planck‐Institute of Colloids and InterfacesBerlinGermany
| |
Collapse
|
47
|
Fu P, Zhang J, Li H, Mak M, Xu W, Tao Z. Extracellular vesicles as delivery systems at nano-/micro-scale. Adv Drug Deliv Rev 2021; 179:113910. [PMID: 34358539 PMCID: PMC8986465 DOI: 10.1016/j.addr.2021.113910] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 07/23/2021] [Accepted: 07/28/2021] [Indexed: 12/11/2022]
Abstract
Extracellular vesicles (EVs) have shown significant promises as nano-/micro-size carriers in drug delivery and bioimaging. With more characteristics of EVs explored through tremendous research efforts, their unmatched physicochemical properties, biological features, and mechanical aspects make them unique vehicles, owning exceptional pharmacokinetics, circulatory metabolism and biodistribution pattern when delivering theranostic cargoes. In this review we firstly analyzed pros and cons of the EVs as a delivery platform. Secondly, compared to engineered nanoparticle delivery systems, such as biocompatible di-block co-polymers, rational design to improve EVs (exosomes in particular) were elaborated. Lastly, different pharmaceutical loading approaches into EVs were compared, reaching a conclusion on how to construct a clinically available and effective nano-/micro-carrier for a satisfactory medical mission.
Collapse
Affiliation(s)
- Peiwen Fu
- Jiangsu Province Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang 212013, China; Zhenjiang Municipal Key Laboratory of High Technology for Basic and Translational Research on Exosomes, Zhenjiang 212013, China
| | - Jianguo Zhang
- Jiangsu Province Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang 212013, China; Department of Critical Care Medicine, The Affiliated Hospital of Jiangsu University, Zhenjiang 212001, China
| | - Haitao Li
- Institute for Energy Research, School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Michael Mak
- Department of Biomedical Engineering, School of Engineering and Applied Science, Yale University, New Haven 06520, USA.
| | - Wenrong Xu
- Jiangsu Province Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang 212013, China; Zhenjiang Municipal Key Laboratory of High Technology for Basic and Translational Research on Exosomes, Zhenjiang 212013, China.
| | - Zhimin Tao
- Jiangsu Province Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang 212013, China; Zhenjiang Municipal Key Laboratory of High Technology for Basic and Translational Research on Exosomes, Zhenjiang 212013, China.
| |
Collapse
|
48
|
Bertok T, Pinkova Gajdosova V, Bertokova A, Svecova N, Kasak P, Tkac J. Breast cancer glycan biomarkers: their link to tumour cell metabolism and their perspectives in clinical practice. Expert Rev Proteomics 2021; 18:881-910. [PMID: 34711108 DOI: 10.1080/14789450.2021.1996231] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
INTRODUCTION Breast cancer (BCa) is the most common cancer type diagnosed in women and 5th most common cause of deaths among all cancer deaths despite the fact that screening program is at place. This is why novel diagnostics approaches are needed in order to decrease number of BCa cases and disease mortality. AREAS COVERED In this review paper, we aim to cover some basic aspects regarding cellular metabolism and signalling in BCa behind altered glycosylation. We also discuss novel exciting discoveries regarding glycan-based analysis, which can provide useful information for better understanding of the disease. The final part deals with clinical usefulness of glycan-based biomarkers and the clinical performance of such biomarkers is compared to already approved BCa biomarkers and diagnostic tools based on imaging. EXPERT OPINION Recent discoveries suggest that glycan-based biomarkers offer high accuracy for possible BCa diagnostics in blood, but also for better monitoring and management of BCa patients. The review article was written using Web of Science search engine to include articles published between 2019 and 2021.
Collapse
Affiliation(s)
- Tomas Bertok
- Glycanostics Ltd., Bratislava, Slovak Republic.,Department of Glycobiotechnology, Institute of Chemistry, Slovak Academy of Sciences, Bratislava, Slovak Republic
| | - Veronika Pinkova Gajdosova
- Department of Glycobiotechnology, Institute of Chemistry, Slovak Academy of Sciences, Bratislava, Slovak Republic
| | | | - Natalia Svecova
- Department of Glycobiotechnology, Institute of Chemistry, Slovak Academy of Sciences, Bratislava, Slovak Republic
| | - Peter Kasak
- Center for Advanced Materials, Qatar University, Doha, Qatar
| | - Jan Tkac
- Glycanostics Ltd., Bratislava, Slovak Republic.,Department of Glycobiotechnology, Institute of Chemistry, Slovak Academy of Sciences, Bratislava, Slovak Republic
| |
Collapse
|
49
|
Ghoroghi S, Mary B, Asokan N, Goetz JG, Hyenne V. Tumor extracellular vesicles drive metastasis (it's a long way from home). FASEB Bioadv 2021; 3:930-943. [PMID: 34761175 PMCID: PMC8565230 DOI: 10.1096/fba.2021-00079] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2021] [Accepted: 07/27/2021] [Indexed: 12/13/2022] Open
Abstract
Among a plethora of functions, extracellular vesicles released by primary tumors spread in the organism and reach distant organs where they can induce the formation of a premetastatic niche. This constitutes a favorable microenvironment for circulating tumor cells which facilitates their seeding and colonization. In this review, we describe the journey of extracellular vesicles (EVs) from the primary tumor to the future metastatic organ, with a focus on the mechanisms used by EVs to target organs with a specific tropism (i.e., organotropism). We then highlight important tumor EV cargos in the context of premetastatic niche formation and summarize their known effects on extracellular matrix remodeling, angiogenesis, vessel permeabilization, resident cell activation, recruitment of foreign cells, and ultimately the formation of a pro-inflammatory and immuno-tolerant microenvironment. Finally, we discuss current experimental limitations and remaining opened questions in light of metastatic diagnosis and potential therapies targeting PMN formation.
Collapse
Affiliation(s)
- Shima Ghoroghi
- Tumor Biomechanics INSERM UMR_S1109 Strasbourg France
- Université de Strasbourg Strasbourg France
- Fédération de Médecine Translationnelle de Strasbourg (FMTS) Strasbourg France
- Equipe Labellisée Ligue Contre le Cancer Strasbourg France
| | - Benjamin Mary
- Tumor Biomechanics INSERM UMR_S1109 Strasbourg France
- Université de Strasbourg Strasbourg France
- Fédération de Médecine Translationnelle de Strasbourg (FMTS) Strasbourg France
- Equipe Labellisée Ligue Contre le Cancer Strasbourg France
| | - Nandini Asokan
- Tumor Biomechanics INSERM UMR_S1109 Strasbourg France
- Université de Strasbourg Strasbourg France
- Fédération de Médecine Translationnelle de Strasbourg (FMTS) Strasbourg France
- Equipe Labellisée Ligue Contre le Cancer Strasbourg France
| | - Jacky G Goetz
- Tumor Biomechanics INSERM UMR_S1109 Strasbourg France
- Université de Strasbourg Strasbourg France
- Fédération de Médecine Translationnelle de Strasbourg (FMTS) Strasbourg France
- Equipe Labellisée Ligue Contre le Cancer Strasbourg France
| | - Vincent Hyenne
- Tumor Biomechanics INSERM UMR_S1109 Strasbourg France
- Université de Strasbourg Strasbourg France
- Fédération de Médecine Translationnelle de Strasbourg (FMTS) Strasbourg France
- Equipe Labellisée Ligue Contre le Cancer Strasbourg France
- CNRS SNC5055 Strasbourg France
| |
Collapse
|
50
|
Harada Y, Ohkawa Y, Maeda K, Kizuka Y, Taniguchi N. Extracellular Vesicles and Glycosylation. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1325:137-149. [PMID: 34495533 DOI: 10.1007/978-3-030-70115-4_6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/14/2023]
Abstract
Extracellular vesicles (EVs), a generic term for any vesicles or particles that are released from cells, play an important role in modulating numerous biological and pathological events, including development, differentiation, aging, thrombus formation, immune responses, neurodegenerative diseases, and tumor progression. During the biogenesis of EVs, they encapsulate biologically active macromolecules (i.e., nucleotides and proteins) and transmit signals for delivering them to neighboring or cells that are located some distance away. In contrast, there are receptor molecules on the surface of EVs that function to mediate EV-to-cell and EV-to-matrix interactions. A growing body of evidence indicates that the EV surface is heavily modified with glycans, the function of which is to regulate the biogenesis and extracellular behaviors of EVs. In this chapter, we introduce the current status of our knowledge concerning EV glycosylation and discuss how it influences EV biology, highlighting the potential roles of EV glycans in clinical applications.
Collapse
Affiliation(s)
- Yoichiro Harada
- Department of Glyco-Oncology and Medical Biochemistry, Osaka International Cancer Institute, Osaka, Japan
| | - Yuki Ohkawa
- Department of Glyco-Oncology and Medical Biochemistry, Osaka International Cancer Institute, Osaka, Japan
| | - Kento Maeda
- Department of Glyco-Oncology and Medical Biochemistry, Osaka International Cancer Institute, Osaka, Japan
| | - Yasuhiko Kizuka
- Center for Highly Advanced Integration of Nano and Life Sciences (G-CHAIN), Gifu University, Gifu, Japan
- Institute for Glyco-core Research (iGCORE), Gifu University, Gifu, Japan
| | - Naoyuki Taniguchi
- Department of Glyco-Oncology and Medical Biochemistry, Osaka International Cancer Institute, Osaka, Japan.
| |
Collapse
|