1
|
Ramos-Ramírez M, Caballe-Pérez E, Lucio-Lozada J, Romero-Nuñez E, Castillo-Ruiz C, Dorantes-Sánchez L, Flores-Estrada D, Recondo G, Barrios-Bernal P, Cabrera-Miranda L, Bravo-Dominguez H, Hernández-Pedro N, Arrieta O. Immunomodulatory role of oncogenic alterations in non-small cell lung cancer: a review of implications for immunotherapy. Cancer Metastasis Rev 2025; 44:30. [PMID: 39915358 DOI: 10.1007/s10555-025-10245-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Accepted: 01/16/2025] [Indexed: 03/28/2025]
Abstract
Immune checkpoint inhibitors (ICIs) have improved clinical outcomes in patients with non-small cell lung cancer (NSCLC) lacking targetable oncogenic alterations. However, their efficacy in individuals with such genomic alterations remains heterogeneous and poorly understood. In detail, certain oncogenic alterations in TP53, EGFR (uncommon mutations), KRAS (G12C), BRAF (non-V600E), MET (amplifications), FGFR1 and FGFR4, actively modify MAPK, PI3K, and STING signaling, thus remodeling tumoral immune phenotype and are associated with high TMB counts, enriched T lymphocyte tumor infiltration, and high expression of antigen-presenting molecules, supporting their consideration as part of the eligibility criteria for ICIs treatment. Nonetheless, other oncogenic alterations are associated with an immunosuppressive TME, low TMB counts, and downregulation of targetable immune checkpoints, in which novel therapeutic approaches are currently being tested to overcome their intrinsic resistance. In this context, this review discusses the fundamental mechanisms by which frequent driver alterations affect ICIs efficacy in patients with NSCLC, and outlines their prognostic relevance in the era of immunotherapy.
Collapse
Affiliation(s)
- Maritza Ramos-Ramírez
- Thoracic Oncology Functional Unit (UFOT), Instituto Nacional de Cancerología, (INCAN), Mexico City , (CDMX), Mexico
| | - Enrique Caballe-Pérez
- Thoracic Oncology Functional Unit (UFOT), Instituto Nacional de Cancerología, (INCAN), Mexico City , (CDMX), Mexico
| | - José Lucio-Lozada
- Personalized Medicine Laboratory, Instituto Nacional de Cancerología (INCAN), Mexico City, (CDMX), Mexico
| | - Eunice Romero-Nuñez
- Personalized Medicine Laboratory, Instituto Nacional de Cancerología (INCAN), Mexico City, (CDMX), Mexico
| | - Cesar Castillo-Ruiz
- Personalized Medicine Laboratory, Instituto Nacional de Cancerología (INCAN), Mexico City, (CDMX), Mexico
| | - Lorena Dorantes-Sánchez
- Personalized Medicine Laboratory, Instituto Nacional de Cancerología (INCAN), Mexico City, (CDMX), Mexico
| | - Diana Flores-Estrada
- Thoracic Oncology Functional Unit (UFOT), Instituto Nacional de Cancerología, (INCAN), Mexico City , (CDMX), Mexico
| | - Gonzalo Recondo
- Lowe Center for Thoracic Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Pedro Barrios-Bernal
- Personalized Medicine Laboratory, Instituto Nacional de Cancerología (INCAN), Mexico City, (CDMX), Mexico
| | - Luis Cabrera-Miranda
- Thoracic Oncology Functional Unit (UFOT), Instituto Nacional de Cancerología, (INCAN), Mexico City , (CDMX), Mexico
| | - Heyman Bravo-Dominguez
- Thoracic Oncology Functional Unit (UFOT), Instituto Nacional de Cancerología, (INCAN), Mexico City , (CDMX), Mexico
| | - Norma Hernández-Pedro
- Personalized Medicine Laboratory, Instituto Nacional de Cancerología (INCAN), Mexico City, (CDMX), Mexico.
- Thoracic Oncology Functional Unit (UFOT), Instituto Nacional de Cancerología, (INCAN), Mexico City , (CDMX), Mexico.
| | - Oscar Arrieta
- Personalized Medicine Laboratory, Instituto Nacional de Cancerología (INCAN), Mexico City, (CDMX), Mexico.
- Thoracic Oncology Functional Unit (UFOT), Instituto Nacional de Cancerología, (INCAN), Mexico City , (CDMX), Mexico.
| |
Collapse
|
2
|
Wang L, Kong Y, Zhang Y, Mu C. The impact of PD-L1 expression status on the prognosis of ALK-positive lung cancer patients. Cancer Treat Res Commun 2025; 42:100868. [PMID: 39908681 DOI: 10.1016/j.ctarc.2025.100868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 12/31/2024] [Accepted: 01/09/2025] [Indexed: 02/07/2025]
Abstract
OBJECTIVE This study analyzes the clinical characteristics of ALK-positive lung cancer patients and the impact of PD-L1 expression on their prognosis, providing insights for diagnosis and treatment. MATERIALS AND METHODS A total of 291 ALK-positive lung cancer patients, tested for PD-L1 expression at the First Affiliated Hospital of Soochow University between January 2019 and November 2021, were included. Clinical data and prognostic information were collected. Statistical analysis was conducted using SPSS 26.0 to explore the relationship between clinical features and prognosis. RESULTS In ALK positive patients, the PD-L1 positivity rate was 59.8 %, with 19.2 % showing strong positivity. PD-L1 positive patients were predominantly male, over 55 years old, and presented more clinical symptoms, higher Ki-67 expression, larger tumor sizes, and more advanced disease stages. The progression-free survival (PFS) and overall survival (OS) were significantly lower in the ALK+PD-L1+ group compared to the ALK+PD-L1- group. Those receiving targeted therapy in stage IIIB-IVB non-squamous non-small cell lung cancer had significantly higher PFS and OS. CONCLUSION PD-L1 positivity is common in ALK-positive lung cancer patients and correlates with poorer prognosis. PD-L1 serves as an independent predictor of adverse outcomes, indicating its potential as a biomarker for assessing lung cancer severity and prognosis.
Collapse
Affiliation(s)
- Li Wang
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, China
| | - Yingjun Kong
- Department of Respiratory Medicine, Pingshan District Central Hospital of Shenzhen, Guangdong, 518122, China
| | - Yao Zhang
- Department of Respiratory Medicine, Pingshan District Central Hospital of Shenzhen, Guangdong, 518122, China
| | - Chuanyong Mu
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, China.
| |
Collapse
|
3
|
Shimomura Y, Mizutani M, Yoshida H, Ihara Y, Shintani A. Immunotherapy Following Anaplastic Lymphoma Kinase Inhibitor Therapy for Patients with Anaplastic Lymphoma Kinase‑Positive Non‑small Cell Lung Cancer in Japan. Target Oncol 2025; 20:171-180. [PMID: 39607635 DOI: 10.1007/s11523-024-01116-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/08/2024] [Indexed: 11/29/2024]
Abstract
BACKGROUND Although anaplastic lymphoma kinase inhibitors (ALKis) are the effective initial treatment for patients with anaplastic lymphoma kinase (ALK)-positive non-small cell lung cancer (NSCLC), most patients experience resistance to ALKis, leading to the need for alternative therapies. Immune checkpoint inhibitors (ICIs) are a standard NSCLC treatment. On the other hand, their efficacy remains unclear for ALK-positive NSCLC. OBJECTIVE We aim to describe the treatment patterns and treatment outcomes for patients with ALK-positive NSCLC receiving later-line ICI treatment. METHODS This retrospective cohort study used claims data from Japanese acute care hospitals and included patients with lung cancer (International Classification of Diseases, 10th version (ICD-10), code: C34) diagnosed between 1 December 2015 and 31 January 2023. We extracted patients who received ALKis as first-line therapy and subsequent lines of treatment. Patient characteristics and treatment patterns and durations were descriptively summarized. Time to treatment discontinuation (TTD) for ICIs was examined using Kaplan-Meier estimates. RESULTS Of 478 patients who received ALKi as first-line treatment, 30 received ICIs, 249 ALKis, and 154 non-ICI/ALKi therapy as second-line treatment. Most patient characteristics showed no differences among the groups. ICIs were more likely to be administered to patients who underwent shorter durations of ALKi treatment. The median TTD for ICIs was 66 days, with a 1 year TTD rate of 13%. CONCLUSIONS Given the rarity of ALK-positive NSCLC, this study contributes to add evidence through an expanded database and increased sample size, supporting previous suggestions that ICIs have limited effectiveness in patients positive for ALK.
Collapse
Affiliation(s)
- Yuki Shimomura
- Department of Medical Statistics, Graduate School of Medicine, Osaka Metropolitan University, 1-4-3 Asahi-machi, Abeno-ku, Osaka, 545-8585, Japan.
| | - Megumi Mizutani
- Department of Respiratory Medicine, Graduate School of Medicine, Osaka Metropolitan University, Osaka, Japan
| | - Hisako Yoshida
- Department of Medical Statistics, Graduate School of Medicine, Osaka Metropolitan University, 1-4-3 Asahi-machi, Abeno-ku, Osaka, 545-8585, Japan
| | - Yasutaka Ihara
- Department of Medical Statistics, Graduate School of Medicine, Osaka Metropolitan University, 1-4-3 Asahi-machi, Abeno-ku, Osaka, 545-8585, Japan
- Data Intelligence Department, Digital Transformation Management Division, Global DX, Daiichi Sankyo Co., Ltd., Tokyo, Japan
| | - Ayumi Shintani
- Department of Medical Statistics, Graduate School of Medicine, Osaka Metropolitan University, 1-4-3 Asahi-machi, Abeno-ku, Osaka, 545-8585, Japan
| |
Collapse
|
4
|
Liu XZ, Tai Y, Hou YB, Cao S, Han J, Li MY, Zuo HX, Xing Y, Jin X, Ma J. Parthenolide Inhibits Synthesis and Promotes Degradation of Programmed Cell Death Ligand 1 and Enhances T Cell Tumor-Killing Activity. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:21013-21029. [PMID: 39264009 DOI: 10.1021/acs.jafc.4c04916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/13/2024]
Abstract
Parthenolide is a germacrane sesquiterpene lactone separated from the traditional medicinal plant feverfew. Previous studies have shown that parthenolide possesses many pharmacological activities, involving anti-inflammatory and anticancer activities. However, the antitumor mechanism of parthenolide has not been fully elucidated. Thus, we investigate the potential antitumor mechanisms of parthenolactone. We predicted through network pharmacology that parthenolide may target HIF-1α to interfere with the occurrence and development of cancer. We found that parthenolide inhibited PD-L1 protein synthesis through mTOR/p70S6K/4EBP1/eIF4E and RAS/RAF/MEK/MAPK signaling pathways and promoted PD-L1 protein degradation through the lysosomal pathway, thereby inhibiting PD-L1 expression. Immunoprecipitation and Western blotting results demonstrated that parthenolide inhibited PD-L1 expression by suppressing HIF-1α and RAS cooperatively. We further proved that parthenolide inhibited cell proliferation, migration, invasion, and tube formation via down-regulating PD-L1. Moreover, parthenolide increased the effect of T cells to kill tumor cells. In vivo xenograft assays further demonstrated that parthenolide suppressed the growth of tumor xenografts. Collectively, we report for the first time that parthenolide enhanced T cell tumor-killing activity and suppressed cell proliferation, migration, invasion, and tube formation by PD-L1. The current study provides new insight for the development of parthenolide as a novel anticancer drug targeting PD-L1.
Collapse
Affiliation(s)
- Xin Zhe Liu
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Molecular Medicine Research Center, College of Pharmacy, Yanbian University, Yanji, Jilin Province 133002, China
| | - Yi Tai
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Molecular Medicine Research Center, College of Pharmacy, Yanbian University, Yanji, Jilin Province 133002, China
| | - Yu Bao Hou
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Molecular Medicine Research Center, College of Pharmacy, Yanbian University, Yanji, Jilin Province 133002, China
| | - Shen Cao
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Molecular Medicine Research Center, College of Pharmacy, Yanbian University, Yanji, Jilin Province 133002, China
| | - Jing Han
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Molecular Medicine Research Center, College of Pharmacy, Yanbian University, Yanji, Jilin Province 133002, China
| | - Ming Yue Li
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Molecular Medicine Research Center, College of Pharmacy, Yanbian University, Yanji, Jilin Province 133002, China
| | - Hong Xiang Zuo
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Molecular Medicine Research Center, College of Pharmacy, Yanbian University, Yanji, Jilin Province 133002, China
| | - Yue Xing
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Molecular Medicine Research Center, College of Pharmacy, Yanbian University, Yanji, Jilin Province 133002, China
| | - Xuejun Jin
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Molecular Medicine Research Center, College of Pharmacy, Yanbian University, Yanji, Jilin Province 133002, China
| | - Juan Ma
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Molecular Medicine Research Center, College of Pharmacy, Yanbian University, Yanji, Jilin Province 133002, China
| |
Collapse
|
5
|
Sposito M, Eccher S, Pasqualin L, Scaglione IM, Avancini A, Tregnago D, Trestini I, Insolda J, Bonato A, Ugel S, Derosa L, Milella M, Pilotto S, Belluomini L. Characterizing the immune tumor microenvironment in ALK fusion-positive lung cancer: state-of-the-art and therapeutical implications. Expert Rev Clin Immunol 2024; 20:959-970. [PMID: 38913940 DOI: 10.1080/1744666x.2024.2372327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 06/21/2024] [Indexed: 06/26/2024]
Abstract
INTRODUCTION Approximately 5% of non-small cell lung cancer (NSCLC), exhibits anaplastic lymphoma kinase (ALK) rearrangements. EML4-ALK fusions account for over 90% of ALK rearrangements in NSCLC. The advent of treatment targeting ALK has significantly improved survival rates in patients with advanced ALK-positive NSCLC. However, the emergence of resistance mechanisms and the subsequent progression disease inevitably occurs. The tumor immune microenvironment (TIME) plays a pivotal role in lung cancer, influencing disease development, patient's outcomes, and response to treatments. AREAS COVERED The aim of this review is to provide a comprehensive characterization of the TIME in ALK rearranged NSCLC and its intrinsic plasticity under treatment pressure. EXPERT OPINION Recognizing the fundamental role of the TIME in cancer progression has shifted the paradigm from a tumor cell-centric perspective to the understanding of a complex tumor ecosystem. Understanding the intricate dynamics of the TIME, its influence on treatment response, and the potential of immunotherapy in patients with ALK-positive NSCLC are currently among the primary research objectives in this patient population.
Collapse
Affiliation(s)
- Marco Sposito
- Section of Oncology, Department of Engineering for Innovation Medicine (DIMI), University of Verona School of Medicine and Verona University Hospital Trust, Verona, Italy
| | - Serena Eccher
- Section of Oncology, Department of Engineering for Innovation Medicine (DIMI), University of Verona School of Medicine and Verona University Hospital Trust, Verona, Italy
| | - Luca Pasqualin
- Section of Oncology, Department of Engineering for Innovation Medicine (DIMI), University of Verona School of Medicine and Verona University Hospital Trust, Verona, Italy
| | - Ilaria Mariangela Scaglione
- Section of Oncology, Department of Engineering for Innovation Medicine (DIMI), University of Verona School of Medicine and Verona University Hospital Trust, Verona, Italy
| | - Alice Avancini
- Section of Oncology, Department of Engineering for Innovation Medicine (DIMI), University of Verona School of Medicine and Verona University Hospital Trust, Verona, Italy
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| | - Daniela Tregnago
- Section of Oncology, Department of Engineering for Innovation Medicine (DIMI), University of Verona School of Medicine and Verona University Hospital Trust, Verona, Italy
| | - Ilaria Trestini
- Dietetic Service, Hospital Medical Direction, University and Hospital Trust (AOUI) of Verona, Verona, Italy
| | - Jessica Insolda
- Section of Oncology, Department of Engineering for Innovation Medicine (DIMI), University of Verona School of Medicine and Verona University Hospital Trust, Verona, Italy
| | - Adele Bonato
- Unit of Medical Oncology 2, Azienda Ospedaliero-Universitaria Pisana, Santa Chiara Hospital, Pisa, Italy
| | - Stefano Ugel
- Immunology Section, University Hospital and Department of Medicine, University of Verona, Verona, Italy
| | - Lisa Derosa
- INSERM U1015 Gustave Roussy Cancer Campus, Villejuif Cedex, Villejuif, France
- Faculté de Médicine, Université Paris-Saclay, Le Kremlin-Bicetre, France
| | - Michele Milella
- Section of Oncology, Department of Engineering for Innovation Medicine (DIMI), University of Verona School of Medicine and Verona University Hospital Trust, Verona, Italy
| | - Sara Pilotto
- Section of Oncology, Department of Engineering for Innovation Medicine (DIMI), University of Verona School of Medicine and Verona University Hospital Trust, Verona, Italy
| | - Lorenzo Belluomini
- Section of Oncology, Department of Engineering for Innovation Medicine (DIMI), University of Verona School of Medicine and Verona University Hospital Trust, Verona, Italy
| |
Collapse
|
6
|
Yu S, Zhang P, Xu S, Xiang Z, Madan A, Eslick GD, Dayyani F, Chen S. Revealing the oncogenic role of elevated GNL3L expression in esophageal squamous cell carcinoma: insights into the STAT3 pathway. J Thorac Dis 2024; 16:2580-2590. [PMID: 38738247 PMCID: PMC11087641 DOI: 10.21037/jtd-24-473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 04/19/2024] [Indexed: 05/14/2024]
Abstract
BACKGROUND Esophageal squamous cell carcinoma (ESCC) patients carries a poor prognosis, with limited effective therapeutic targets. This study aimed to clarify the clinical significance of guanine nucleotide-binding protein like 3-like (GNL3L) protein expression in ESCC and its role in malignant progression. METHODS GNL3L expression and associated cancer-promoting pathways in ESCC were interrogated via bioinformatics analysis through use of The Cancer Genome Atlas (TCGA) database. Subsequent verification of GNL3L protein expression in ESCC, coupled with clinical data, was conducted through immunohistochemistry and followed by a comprehensive prognostic analysis. We further investigated potential signaling pathways facilitating ESCC progression, employing a combination of bioinformatics analysis and immunohistochemical (IHC) experiments. RESULTS Bioinformatics analysis unveiled a significant elevation in GNL3L expression, particularly in gastrointestinal tumors and ESCC. Immunohistochemistry confirmed elevated GNL3L expression in ESCC tissues. Regression analysis established a correlation between elevated GNL3L expression and advanced tumor node metastasis (TNM) stage, with high expression associated with poor prognosis in patients with ESCC. Our integrated approach of bioinformatics and IHC analysis indicated a potential role of the signal transducers and activators of transcription 3 (STAT3) signaling pathway in ESCC progression. CONCLUSIONS High GNL3L expression significantly contributes to the malignant progression of ESCC. This study further elucidates the mechanisms driving ESCC progression and offers possible insights for more effective diagnosis and treatment strategies.
Collapse
Affiliation(s)
- Shaobin Yu
- Department of Thoracic Surgery, Fujian Medical University Union Hospital, Fuzhou, China
| | - Peipei Zhang
- Department of Thoracic Surgery, Fujian Medical University Union Hospital, Fuzhou, China
| | - Shaojun Xu
- Department of Thoracic Surgery, Fujian Medical University Union Hospital, Fuzhou, China
| | - Zhang Xiang
- Department of Pathology, Pingtan Branch of Fujian Medical University Union Hospital, Fuzhou, China
| | - Ankit Madan
- Department of Internal Medicine, Medstar Southern Maryland Hospital Center, Clinton, MD, USA
| | - Guy D. Eslick
- The Australian Paediatric Surveillance Unit (APSU), The University of Sydney, The Children's Hospital, Westmead, New South Wales, Australia
| | - Farshid Dayyani
- Chao Family Comprehensive Cancer Center, University of California Irvine, Orange, CA, USA
| | - Shuchen Chen
- Department of Thoracic Surgery, Fujian Medical University Union Hospital, Fuzhou, China
- Key Laboratory of Cardio-Thoracic Surgery, Fujian Medical University, Fuzhou, China
- Key Laboratory of Gastrointestinal Cancer, Ministry of Education, School of Basic Medical Science, Fujian Medical University, Fuzhou, China
- Fujian Key Laboratory of Tumor Microbiology, Department of Medical Microbiology, Fujian Medical University, Fuzhou, China
| |
Collapse
|
7
|
Zhang Y, Guo F, Wang Y. Hypoxic tumor microenvironment: Destroyer of natural killer cell function. Chin J Cancer Res 2024; 36:138-150. [PMID: 38751439 PMCID: PMC11090795 DOI: 10.21147/j.issn.1000-9604.2024.02.04] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 04/10/2024] [Indexed: 05/18/2024] Open
Abstract
In recent years, immunotherapy has made remarkable progress in treating certain tumors and hematological malignancies. However, the efficacy of natural killer (NK) cells, which are an important subset of innate lymphocytes used in anticancer immunotherapy, remains limited. Hypoxia, a critical characteristic of the tumor microenvironment (TME), is involved in tumor development and resistance to radiotherapy, chemotherapy, and immunotherapy. Moreover, hypoxia contributes to the impairment of NK cell function and may be a significant factor that limits their therapeutic effects. Targeted hypoxia therapy has emerged as a promising research area for enhancing the efficacy of NK cell therapy. Therefore, understanding how the hypoxic TME influences NK cell function is crucial for improving antitumor treatment outcomes.
Collapse
Affiliation(s)
- Yongfei Zhang
- Cancer Center, the First Hospital of Jilin University, Changchun 130021, China
| | - Feifei Guo
- Cancer Center, the First Hospital of Jilin University, Changchun 130021, China
| | - Yufeng Wang
- Cancer Center, the First Hospital of Jilin University, Changchun 130021, China
| |
Collapse
|
8
|
Sun W, Cheng Y, Ma X, Jin Z, Zhang Q, Wang G. Photodynamic therapy upregulates expression of HIF-1α and PD-L1 in related pathways and its clinical relevance in non-small-cell lung cancer. Eur J Med Res 2024; 29:230. [PMID: 38609977 PMCID: PMC11015541 DOI: 10.1186/s40001-024-01780-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 03/10/2024] [Indexed: 04/14/2024] Open
Abstract
BACKGROUND Photodynamic therapy (PDT) is a promising interventional treatment approach that contributes to antitumor immunity. It has been reported that PDT can enhance the effectiveness of immune checkpoint inhibitors (ICIs), but its mechanism is yet unclear. Herein, we implemented bioinformatics analysis to detect common pathways and potential biomarkers in non-small cell lung cancer (NSCLC), PDT, and NSCLC immunotherapy to investigate potential links between PDT, immunotherapy and NSCLC, and their clinical impact. METHODS Differentially expressed genes in NSCLC- and NSCLC immunotherapy-related data in the GEO database were intersected with PDT-related genes in the GeneCards database to obtain candidate genes and shared pathways. Enrichment analysis and protein-protein interaction were established to identify key genes in functionally enriched pathways. The expression profiles and the prognostic significance of key genes were depicted. RESULTS Bioinformatics analysis showed that HIF-1α was screened as a prognostic gene in hypoxia, HIF-1, and PD-L1-related signaling pathways, which was associated with clinical response in NSCLC patients after PDT and immunotherapy. In vivo experiments showed that PDT could inhibit tumor growth and upregulate HIF-1α and PD-L1 expressions in NSCLC tissues with a positive correlation, which might influence the blocking activity of ICIs on the HIF-1, and PD-L1-related signaling pathways. CONCLUSIONS PDT might improve the clinical response of ICIs by upregulating tumor HIF-1α and PD-L1 expressions in NSCLC.
Collapse
Affiliation(s)
- Wen Sun
- Department of Respiratory and Critical Care Medicine, Peking University First Hospital, Beijing, 100034, China
| | - Yuan Cheng
- Department of Respiratory and Critical Care Medicine, Peking University First Hospital, Beijing, 100034, China
| | - Xiaoyu Ma
- Department of Respiratory and Critical Care Medicine, Peking University First Hospital, Beijing, 100034, China
| | - Zhou Jin
- Department of Respiratory and Critical Care Medicine, Peking University First Hospital, Beijing, 100034, China
| | - Qi Zhang
- Department of Respiratory and Critical Care Medicine, Peking University First Hospital, Beijing, 100034, China
| | - Guangfa Wang
- Department of Respiratory and Critical Care Medicine, Peking University First Hospital, Beijing, 100034, China.
- Department of Pulmonary and Critical Care Medicine, Peking University First Hospital, No. 8 Xishiku Street, Xicheng District, Beijing, 100034, China.
| |
Collapse
|
9
|
Zhou Y, Wang F, Li G, Xu J, Zhang J, Gullen E, Yang J, Wang J. From immune checkpoints to therapies: understanding immune checkpoint regulation and the influence of natural products and traditional medicine on immune checkpoint and immunotherapy in lung cancer. Front Immunol 2024; 15:1340307. [PMID: 38426097 PMCID: PMC10902058 DOI: 10.3389/fimmu.2024.1340307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 01/29/2024] [Indexed: 03/02/2024] Open
Abstract
Lung cancer is a disease of global concern, and immunotherapy has brought lung cancer therapy to a new era. Besides promising effects in the clinical use of immune checkpoint inhibitors, immune-related adverse events (irAEs) and low response rates are problems unsolved. Natural products and traditional medicine with an immune-modulating nature have the property to influence immune checkpoint expression and can improve immunotherapy's effect with relatively low toxicity. This review summarizes currently approved immunotherapy and the current mechanisms known to regulate immune checkpoint expression in lung cancer. It lists natural products and traditional medicine capable of influencing immune checkpoints or synergizing with immunotherapy in lung cancer, exploring both their effects and underlying mechanisms. Future research on immune checkpoint modulation and immunotherapy combination applying natural products and traditional medicine will be based on a deeper understanding of their mechanisms regulating immune checkpoints. Continued exploration of natural products and traditional medicine holds the potential to enhance the efficacy and reduce the adverse reactions of immunotherapy.
Collapse
Affiliation(s)
- Yibin Zhou
- Department of Hematology and Oncology, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Fenglan Wang
- Department of Hematology and Oncology, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Guangda Li
- Department of Hematology and Oncology, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Jing Xu
- Department of Hematology and Oncology, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Jingjing Zhang
- Department of Hematology and Oncology, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Elizabeth Gullen
- Department of Pharmacology, Yale Medical School, New Haven, CT, United States
| | - Jie Yang
- Department of Hematology and Oncology, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Jing Wang
- Department of Hematology and Oncology, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
10
|
LoPiccolo J, Gusev A, Christiani DC, Jänne PA. Lung cancer in patients who have never smoked - an emerging disease. Nat Rev Clin Oncol 2024; 21:121-146. [PMID: 38195910 PMCID: PMC11014425 DOI: 10.1038/s41571-023-00844-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/28/2023] [Indexed: 01/11/2024]
Abstract
Lung cancer is the most common cause of cancer-related deaths globally. Although smoking-related lung cancers continue to account for the majority of diagnoses, smoking rates have been decreasing for several decades. Lung cancer in individuals who have never smoked (LCINS) is estimated to be the fifth most common cause of cancer-related deaths worldwide in 2023, preferentially occurring in women and Asian populations. As smoking rates continue to decline, understanding the aetiology and features of this disease, which necessitate unique diagnostic and treatment paradigms, will be imperative. New data have provided important insights into the molecular and genomic characteristics of LCINS, which are distinct from those of smoking-associated lung cancers and directly affect treatment decisions and outcomes. Herein, we review the emerging data regarding the aetiology and features of LCINS, particularly the genetic and environmental underpinnings of this disease as well as their implications for treatment. In addition, we outline the unique diagnostic and therapeutic paradigms of LCINS and discuss future directions in identifying individuals at high risk of this disease for potential screening efforts.
Collapse
Affiliation(s)
- Jaclyn LoPiccolo
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA.
- The Lowe Center for Thoracic Oncology, Dana-Farber Cancer Institute, Boston, MA, USA.
| | - Alexander Gusev
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- The Eli and Edythe L. Broad Institute, Cambridge, MA, USA
| | - David C Christiani
- Department of Environmental Health, Harvard T. H. Chan School of Public Health, Boston, MA, USA
- Massachusetts General Hospital, Boston, MA, USA
| | - Pasi A Jänne
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- The Lowe Center for Thoracic Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| |
Collapse
|
11
|
Manoharan S, Saha S, Murugesan K, Santhakumar A, Perumal E. Natural bioactive compounds and STAT3 against hepatocellular carcinoma: An update. Life Sci 2024; 337:122351. [PMID: 38103726 DOI: 10.1016/j.lfs.2023.122351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Revised: 11/23/2023] [Accepted: 12/11/2023] [Indexed: 12/19/2023]
Abstract
Hepatocellular carcinoma (HCC) is a challenging and very fatal liver cancer. The signal transducer and activator of transcription 3 (STAT3) pathway is a crucial regulator of tumor development and are ubiquitously active in HCC. Therefore, targeting STAT3 has emerged as a promising approach for preventing and treating HCC. Various natural bioactive compounds (NBCs) have been proven to target STAT3 and have the potential to prevent and treat HCC as STAT3 inhibitors. Numerous kinds of STAT3 inhibitors have been identified, including small molecule inhibitors, peptide inhibitors, and oligonucleotide inhibitors. Due to the undesirable side effects of the conventional therapeutic drugs against HCC, the focus is shifted to NBCs derived from plants and other natural sources. NBCs can be broadly classified into the categories of terpenes, alkaloids, carotenoids, and phenols. Most of the compounds belong to the family of terpenes, which prevent tumorigenesis by inhibiting STAT3 nuclear translocation. Further, through STAT3 inhibition, terpenes downregulate matrix metalloprotease 2 (MMP2), matrix metalloprotease 9 (MMP9) and vascular endothelial growth factor (VEGF), modulating metastasis. Terpenes also suppress the anti-apoptotic proteins and cell cycle markers. This review provides comprehensive information related to STAT3 abrogation by NBCs in HCC with in vitro and in vivo evidences.
Collapse
Affiliation(s)
- Suryaa Manoharan
- Molecular Toxicology Laboratory, Department of Biotechnology, Bharathiar University, Coimbatore 641 046, India
| | - Shreejit Saha
- Molecular Toxicology Laboratory, Department of Biotechnology, Bharathiar University, Coimbatore 641 046, India
| | - Krishnasanthiya Murugesan
- Molecular Toxicology Laboratory, Department of Biotechnology, Bharathiar University, Coimbatore 641 046, India
| | - Aksayakeerthana Santhakumar
- Molecular Toxicology Laboratory, Department of Biotechnology, Bharathiar University, Coimbatore 641 046, India
| | - Ekambaram Perumal
- Molecular Toxicology Laboratory, Department of Biotechnology, Bharathiar University, Coimbatore 641 046, India.
| |
Collapse
|
12
|
Zhang P, Wang Y, Miao Q, Chen Y. The therapeutic potential of PD-1/PD-L1 pathway on immune-related diseases: Based on the innate and adaptive immune components. Biomed Pharmacother 2023; 167:115569. [PMID: 37769390 DOI: 10.1016/j.biopha.2023.115569] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 09/14/2023] [Accepted: 09/18/2023] [Indexed: 09/30/2023] Open
Abstract
Currently, immunotherapy targeting programmed cell death 1 (PD-1) or programmed death ligand 1 (PD-L1) has revolutionized the treatment strategy of human cancer patients. Meanwhile, PD-1/PD-L1 pathway has also been implicated in the pathogenesis of many immune-related diseases, such as autoimmune diseases, chronic infection diseases and adverse pregnancy outcomes, by regulating components of the innate and adaptive immune systems. Given the power of the new therapy, a better understanding of the regulatory effects of PD-1/PD-L1 pathway on innate and adaptive immune responses in immune-related diseases will facilitate the discovery of novel biomarkers and therapeutic drug targets. Targeting this pathway may successfully halt or potentially even reverse these pathological processes. In this review, we discuss recent major advances in PD-1/PD-L1 axis regulating innate and adaptive immune components in immune-related diseases. We reveal that the impact of PD-1/PD-L1 axis on the immune system is complex and manifold and multi-strategies on the targeted PD-1/PD-L1 axis are taken in the treatment of immune-related diseases. Consequently, targeting PD-1/PD-L1 pathway, alone or in combination with other treatments, may represent a novel strategy for future therapeutic intervention on immune-related diseases.
Collapse
Affiliation(s)
- Peng Zhang
- Key Laboratory of Environmental Stress and Chronic Disease Control and Prevention (China Medical University), Ministry of Education, Shenyang 110122, Liaoning, China; Division of Pneumoconiosis, School of Public Health, China Medical University, Shenyang 110122, Liaoning, China
| | - Yuting Wang
- Key Laboratory of Environmental Stress and Chronic Disease Control and Prevention (China Medical University), Ministry of Education, Shenyang 110122, Liaoning, China; Division of Pneumoconiosis, School of Public Health, China Medical University, Shenyang 110122, Liaoning, China
| | - Qianru Miao
- Key Laboratory of Environmental Stress and Chronic Disease Control and Prevention (China Medical University), Ministry of Education, Shenyang 110122, Liaoning, China; Division of Pneumoconiosis, School of Public Health, China Medical University, Shenyang 110122, Liaoning, China
| | - Ying Chen
- Key Laboratory of Environmental Stress and Chronic Disease Control and Prevention (China Medical University), Ministry of Education, Shenyang 110122, Liaoning, China; Division of Pneumoconiosis, School of Public Health, China Medical University, Shenyang 110122, Liaoning, China.
| |
Collapse
|
13
|
Jiang B, Hu L, Dong D, Guo Z, Wei W, Wang C, Shao W, Ma T, Chen Y, Li Q, Hu W. TP53 or CDKN2A/B covariation in ALK/RET/ROS1-rearranged NSCLC is associated with a high TMB, tumor immunosuppressive microenvironment and poor prognosis. J Cancer Res Clin Oncol 2023; 149:10041-10052. [PMID: 37261522 DOI: 10.1007/s00432-023-04924-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 05/23/2023] [Indexed: 06/02/2023]
Abstract
INTRODUCTION ALK-rearranged lung adenocarcinomas with TP53 mutations have more unstable genomic features, poorer ALK-TKI efficacy and a worse prognosis than ALK-rearranged lung adenocarcinomas with wild-type TP53. Here, we examine the gene variations that co-occur with ALK/RET/ROS1 rearrangements in NSCLC and the corresponding tumor immune microenvironment, as well as their association with prognosis. METHODS A total of 155 patients with ALK/RET/ROS1 fusions were included retrospectively. Tumor genome mutation analysis was performed by next-generation sequencing. PD-L1 expression and tumor-infiltrating lymphocytes were assessed by multiplex immunohistochemistry. The correlations among gene covariation, the tumor immune microenvironment, and clinicopathological characteristics were analyzed. RESULTS Among the 155 patients, concomitant TP53 mutation appeared most frequently (31%), followed by CDKN2A/B copy number loss (15%). The ALK/RET/ROS1 fusion and TP53 or CDKN2A/B covariation group had more males and patients with stage IV disease (p < 0.001, p = 0.0066). Patients with TP53 or CDKN2A/B co-occurrence had higher tumor mutation burdens and more neoantigens (p < 0.001, p = 0.0032). PD-L1 expression was higher in the tumor areas of the TP53 or CDKN2A/B co-occurring group (p = 0.00038). However, the levels of CD8+, CD8+PD1-, and CD8+PD-L1- TILs were lower in the tumor areas of this group (p = 0.043, p = 0.029, p = 0.025). In the TCGA NSCLC cohorts, the top 2 mutated genes were CDKN2A/B (24%) and TP53 (16%). The TP53 or CDKN2A/B co-occurring group had higher tumor mutation burdens and shorter OS (p < 0.001, p < 0.001). CONCLUSIONS Patients with co-occurring TP53/CDKN2A/B variations and ALK/RET/ROS1 rearrangements are associated with high TMB, more neoantigens, an immunosuppressive microenvironment and a worse prognosis.
Collapse
Affiliation(s)
- Bin Jiang
- Department of Cardiothoracic Surgery, Guiqian International General Hospital, Guiyang, 550000, China
| | - Liwen Hu
- Department of Thoracic Surgery, Zhongnan Hospital of Wuhan University, No. 169 Donghu Road, Wuchang District, Wuhan, 430071, China
| | - Daling Dong
- Department of Cardiothoracic Surgery, Guiqian International General Hospital, Guiyang, 550000, China
| | - Zixin Guo
- Department of Thoracic Surgery, Zhongnan Hospital of Wuhan University, No. 169 Donghu Road, Wuchang District, Wuhan, 430071, China
| | - Wei Wei
- Department of Cardiothoracic Surgery, Guiqian International General Hospital, Guiyang, 550000, China
| | - Chao Wang
- Department of Cardiothoracic Surgery, Guiqian International General Hospital, Guiyang, 550000, China
| | - Weikang Shao
- Genecast Biotechnology Co., Ltd., Wuxi, 214000, China
| | - Ting Ma
- Genecast Biotechnology Co., Ltd., Wuxi, 214000, China
| | - Yanhui Chen
- Genecast Biotechnology Co., Ltd., Wuxi, 214000, China
| | - Qingyun Li
- Genecast Biotechnology Co., Ltd., Wuxi, 214000, China
| | - Weidong Hu
- Department of Thoracic Surgery, Zhongnan Hospital of Wuhan University, No. 169 Donghu Road, Wuchang District, Wuhan, 430071, China.
| |
Collapse
|
14
|
Osoegawa A, Abe M, Takumi Y, Hashimoto T, Karashima T, Miyawaki M, Sugio K. Significance of programmed death-ligand 1 expression in resected lung cancer and its relationship with EGFR mutation. Thorac Cancer 2023; 14:2467-2472. [PMID: 37455369 PMCID: PMC10447166 DOI: 10.1111/1759-7714.15031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 06/24/2023] [Accepted: 06/24/2023] [Indexed: 07/18/2023] Open
Abstract
BACKGROUND Several studies have reported that the high expression of programmed death-ligand 1 (PD-L1) within tumor cells predicts a poor prognosis. However, the relationship between the PD-L1 expression and lymph node metastasis or driver mutations in lung cancer remains poorly understood. METHODS A total of 356 consecutive patients who underwent surgical resection for primary lung cancer were included in the study. There were 268 adenocarcinomas including 100 EGFR mutations, 67 squamous cell carcinomas (Sq), and 21 other histologies. The high expression of PD-L1 was defined as a tumor proportion score (TPS) of ≥50. The relationship between the PD-L1 expression and clinicopathological factors and recurrence-free survival (RFS) was analyzed. RESULTS The PD-L1 expression was high in 75 patients. It was significantly related to smoking history, Sq histology, driver mutation negative, elevated serum carcinoembryonic antigen levels, and lymph node metastasis. Among patients with driver mutations, a high PD-L1 TPS was found in patients with EGFR G719X mutation. A significant difference in RFS was observed in adenocarcinoma patients. A multivariate analysis of adenocarcinoma cases revealed that tumor size and lymph node metastasis were independent prognostic factors for poor RFS, while the PD-L1 expression was not. A logistic regression analysis revealed that the absence of driver mutations, lymph node metastasis, and a history of smoking were significantly associated with the high expression of PD-L1. CONCLUSION Lymph node metastasis was positively related with the high expression of PD-L1, resulting in poor RFS. A high PD-L1 TPS was observed in patients with the EGFR G719X mutation.
Collapse
Affiliation(s)
- Atsushi Osoegawa
- Department of Thoracic and Breast SurgeryOita University Faculty of MedicineYufuJapan
| | - Miyuki Abe
- Department of Thoracic and Breast SurgeryOita University Faculty of MedicineYufuJapan
| | - Yohei Takumi
- Department of Thoracic and Breast SurgeryOita University Faculty of MedicineYufuJapan
| | - Takafumi Hashimoto
- Department of Thoracic and Breast SurgeryOita University Faculty of MedicineYufuJapan
| | - Takashi Karashima
- Department of Thoracic and Breast SurgeryOita University Faculty of MedicineYufuJapan
| | - Michiyo Miyawaki
- Department of Thoracic and Breast SurgeryOita University Faculty of MedicineYufuJapan
| | - Kenji Sugio
- Department of Thoracic and Breast SurgeryOita University Faculty of MedicineYufuJapan
| |
Collapse
|
15
|
Lin Q, Wang X, Hu Y. The opportunities and challenges in immunotherapy: Insights from the regulation of PD-L1 in cancer cells. Cancer Lett 2023:216318. [PMID: 37454966 DOI: 10.1016/j.canlet.2023.216318] [Citation(s) in RCA: 47] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 07/07/2023] [Accepted: 07/13/2023] [Indexed: 07/18/2023]
Abstract
The immunosuppressive molecule programmed death-ligand 1 (PD-L1) is frequently upregulated in human cancers. Binding of PD-L1 to its receptor, programmed death-1 (PD-1), on activated T cells facilitates cancer cells to evade the host immune system. Antibody-based PD-1/PD-L1 inhibitors can inhibit PD-1/PD-L1 interaction allowing reactivate cytotoxic T cells to eradicate advanced cancer cells. However, the majority of cancer patients fail to respond to anti-PD-1/PD-L1 therapies and the molecular mechanisms for this remain poorly understood. Recent studies show that PD-L1 expression level on tumor cells affect the clinical efficacy of immune checkpoint therapies. Thus, furthering our understanding of the regulatory mechanisms of PD-L1 expression in cancer cells will be critical to improve clinical response rates and the efficacy of PD-1/PD-L1 immune therapies. Here we review recent studies, primarily focusing on the mechanisms that regulate PD-L1 expression at the transcriptional, post-transcriptional and protein level, with the purpose to drive the development of more targeted and effective anti-PD-1/PD-L1 cancer therapies.
Collapse
Affiliation(s)
- Qingyu Lin
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, Heilongjiang Province, 150001, China; Key Laboratory of Science and Engineering for the Multi-modal Prevention and Control of Major Chronic Diseases, Ministry of Industry and Information Technology, China
| | - Xingwen Wang
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, Heilongjiang Province, 150001, China; Key Laboratory of Science and Engineering for the Multi-modal Prevention and Control of Major Chronic Diseases, Ministry of Industry and Information Technology, China
| | - Ying Hu
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, Heilongjiang Province, 150001, China; Key Laboratory of Science and Engineering for the Multi-modal Prevention and Control of Major Chronic Diseases, Ministry of Industry and Information Technology, China.
| |
Collapse
|
16
|
Parkins KM, Krishnamachary B, Jacob D, Kakkad SM, Solaiyappan M, Mishra A, Mironchik Y, Penet MF, McMahon MT, Knopf P, Pichler BJ, Nimmagadda S, Bhujwalla ZM. PET/MRI and Bioluminescent Imaging Identify Hypoxia as a Cause of Programmed Cell Death Ligand 1 Image Heterogeneity. Radiol Imaging Cancer 2023; 5:e220138. [PMID: 37389448 PMCID: PMC10413302 DOI: 10.1148/rycan.220138] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 02/17/2023] [Accepted: 04/24/2023] [Indexed: 07/01/2023]
Abstract
Purpose To examine the association between hypoxia and programmed cell death ligand 1 (PD-L1) expression using bioluminescence imaging (BLI) and PET/MRI in a syngeneic mouse model of triple-negative breast cancer (TNBC). Materials and Methods PET/MRI and optical imaging were used to determine the role of hypoxia in altering PD-L1 expression using a syngeneic TNBC model engineered to express luciferase under hypoxia. Results Imaging showed a close spatial association between areas of hypoxia and increased PD-L1 expression in the syngeneic murine (4T1) tumor model. Mouse and human TNBC cells exposed to hypoxia exhibited a significant increase in PD-L1 expression, consistent with the in vivo imaging data. The role of hypoxia in increasing PD-L1 expression was further confirmed by using The Cancer Genome Atlas analyses of different human TNBCs. Conclusion These results have identified the potential role of hypoxia in contributing to PD-L1 heterogeneity in tumors by increasing cancer cell PD-L1 expression. Keywords: Hypoxia, PD-L1, Triple-Negative Breast Cancer, PET/MRI, Bioluminescence Imaging Supplemental material is available for this article. © RSNA, 2023.
Collapse
Affiliation(s)
| | | | - Desmond Jacob
- From the Russell H. Morgan Department of Radiology and Radiological
Science (K.M.P., B.K., D.J., S.M.K., M.S., A.M., Y.M., M.F.P., M.T.M., S.N.,
Z.M.B.), Sidney Kimmel Comprehensive Cancer Center (M.F.P., S.N., Z.M.B.), and
Department of Radiation Oncology and Molecular Radiation Sciences (Z.M.B.), The
Johns Hopkins University School of Medicine, 720 Rutland Ave, Rm 208C Traylor
Building, Baltimore, MD 21205; The F.M. Kirby Research Center for Functional
Brain Imaging, Kennedy Krieger Institute, Baltimore, Md (M.T.M.); and Werner
Siemens Imaging Center, Department of Preclinical Imaging and Radiopharmacy,
Eberhard Karls University Tuebingen, Tuebingen, Germany (P.K., B.J.P.)
| | - Samata M. Kakkad
- From the Russell H. Morgan Department of Radiology and Radiological
Science (K.M.P., B.K., D.J., S.M.K., M.S., A.M., Y.M., M.F.P., M.T.M., S.N.,
Z.M.B.), Sidney Kimmel Comprehensive Cancer Center (M.F.P., S.N., Z.M.B.), and
Department of Radiation Oncology and Molecular Radiation Sciences (Z.M.B.), The
Johns Hopkins University School of Medicine, 720 Rutland Ave, Rm 208C Traylor
Building, Baltimore, MD 21205; The F.M. Kirby Research Center for Functional
Brain Imaging, Kennedy Krieger Institute, Baltimore, Md (M.T.M.); and Werner
Siemens Imaging Center, Department of Preclinical Imaging and Radiopharmacy,
Eberhard Karls University Tuebingen, Tuebingen, Germany (P.K., B.J.P.)
| | - Meiyappan Solaiyappan
- From the Russell H. Morgan Department of Radiology and Radiological
Science (K.M.P., B.K., D.J., S.M.K., M.S., A.M., Y.M., M.F.P., M.T.M., S.N.,
Z.M.B.), Sidney Kimmel Comprehensive Cancer Center (M.F.P., S.N., Z.M.B.), and
Department of Radiation Oncology and Molecular Radiation Sciences (Z.M.B.), The
Johns Hopkins University School of Medicine, 720 Rutland Ave, Rm 208C Traylor
Building, Baltimore, MD 21205; The F.M. Kirby Research Center for Functional
Brain Imaging, Kennedy Krieger Institute, Baltimore, Md (M.T.M.); and Werner
Siemens Imaging Center, Department of Preclinical Imaging and Radiopharmacy,
Eberhard Karls University Tuebingen, Tuebingen, Germany (P.K., B.J.P.)
| | - Akhilesh Mishra
- From the Russell H. Morgan Department of Radiology and Radiological
Science (K.M.P., B.K., D.J., S.M.K., M.S., A.M., Y.M., M.F.P., M.T.M., S.N.,
Z.M.B.), Sidney Kimmel Comprehensive Cancer Center (M.F.P., S.N., Z.M.B.), and
Department of Radiation Oncology and Molecular Radiation Sciences (Z.M.B.), The
Johns Hopkins University School of Medicine, 720 Rutland Ave, Rm 208C Traylor
Building, Baltimore, MD 21205; The F.M. Kirby Research Center for Functional
Brain Imaging, Kennedy Krieger Institute, Baltimore, Md (M.T.M.); and Werner
Siemens Imaging Center, Department of Preclinical Imaging and Radiopharmacy,
Eberhard Karls University Tuebingen, Tuebingen, Germany (P.K., B.J.P.)
| | - Yelena Mironchik
- From the Russell H. Morgan Department of Radiology and Radiological
Science (K.M.P., B.K., D.J., S.M.K., M.S., A.M., Y.M., M.F.P., M.T.M., S.N.,
Z.M.B.), Sidney Kimmel Comprehensive Cancer Center (M.F.P., S.N., Z.M.B.), and
Department of Radiation Oncology and Molecular Radiation Sciences (Z.M.B.), The
Johns Hopkins University School of Medicine, 720 Rutland Ave, Rm 208C Traylor
Building, Baltimore, MD 21205; The F.M. Kirby Research Center for Functional
Brain Imaging, Kennedy Krieger Institute, Baltimore, Md (M.T.M.); and Werner
Siemens Imaging Center, Department of Preclinical Imaging and Radiopharmacy,
Eberhard Karls University Tuebingen, Tuebingen, Germany (P.K., B.J.P.)
| | - Marie-France Penet
- From the Russell H. Morgan Department of Radiology and Radiological
Science (K.M.P., B.K., D.J., S.M.K., M.S., A.M., Y.M., M.F.P., M.T.M., S.N.,
Z.M.B.), Sidney Kimmel Comprehensive Cancer Center (M.F.P., S.N., Z.M.B.), and
Department of Radiation Oncology and Molecular Radiation Sciences (Z.M.B.), The
Johns Hopkins University School of Medicine, 720 Rutland Ave, Rm 208C Traylor
Building, Baltimore, MD 21205; The F.M. Kirby Research Center for Functional
Brain Imaging, Kennedy Krieger Institute, Baltimore, Md (M.T.M.); and Werner
Siemens Imaging Center, Department of Preclinical Imaging and Radiopharmacy,
Eberhard Karls University Tuebingen, Tuebingen, Germany (P.K., B.J.P.)
| | - Michael T. McMahon
- From the Russell H. Morgan Department of Radiology and Radiological
Science (K.M.P., B.K., D.J., S.M.K., M.S., A.M., Y.M., M.F.P., M.T.M., S.N.,
Z.M.B.), Sidney Kimmel Comprehensive Cancer Center (M.F.P., S.N., Z.M.B.), and
Department of Radiation Oncology and Molecular Radiation Sciences (Z.M.B.), The
Johns Hopkins University School of Medicine, 720 Rutland Ave, Rm 208C Traylor
Building, Baltimore, MD 21205; The F.M. Kirby Research Center for Functional
Brain Imaging, Kennedy Krieger Institute, Baltimore, Md (M.T.M.); and Werner
Siemens Imaging Center, Department of Preclinical Imaging and Radiopharmacy,
Eberhard Karls University Tuebingen, Tuebingen, Germany (P.K., B.J.P.)
| | - Philipp Knopf
- From the Russell H. Morgan Department of Radiology and Radiological
Science (K.M.P., B.K., D.J., S.M.K., M.S., A.M., Y.M., M.F.P., M.T.M., S.N.,
Z.M.B.), Sidney Kimmel Comprehensive Cancer Center (M.F.P., S.N., Z.M.B.), and
Department of Radiation Oncology and Molecular Radiation Sciences (Z.M.B.), The
Johns Hopkins University School of Medicine, 720 Rutland Ave, Rm 208C Traylor
Building, Baltimore, MD 21205; The F.M. Kirby Research Center for Functional
Brain Imaging, Kennedy Krieger Institute, Baltimore, Md (M.T.M.); and Werner
Siemens Imaging Center, Department of Preclinical Imaging and Radiopharmacy,
Eberhard Karls University Tuebingen, Tuebingen, Germany (P.K., B.J.P.)
| | - Bernd J. Pichler
- From the Russell H. Morgan Department of Radiology and Radiological
Science (K.M.P., B.K., D.J., S.M.K., M.S., A.M., Y.M., M.F.P., M.T.M., S.N.,
Z.M.B.), Sidney Kimmel Comprehensive Cancer Center (M.F.P., S.N., Z.M.B.), and
Department of Radiation Oncology and Molecular Radiation Sciences (Z.M.B.), The
Johns Hopkins University School of Medicine, 720 Rutland Ave, Rm 208C Traylor
Building, Baltimore, MD 21205; The F.M. Kirby Research Center for Functional
Brain Imaging, Kennedy Krieger Institute, Baltimore, Md (M.T.M.); and Werner
Siemens Imaging Center, Department of Preclinical Imaging and Radiopharmacy,
Eberhard Karls University Tuebingen, Tuebingen, Germany (P.K., B.J.P.)
| | - Sridhar Nimmagadda
- From the Russell H. Morgan Department of Radiology and Radiological
Science (K.M.P., B.K., D.J., S.M.K., M.S., A.M., Y.M., M.F.P., M.T.M., S.N.,
Z.M.B.), Sidney Kimmel Comprehensive Cancer Center (M.F.P., S.N., Z.M.B.), and
Department of Radiation Oncology and Molecular Radiation Sciences (Z.M.B.), The
Johns Hopkins University School of Medicine, 720 Rutland Ave, Rm 208C Traylor
Building, Baltimore, MD 21205; The F.M. Kirby Research Center for Functional
Brain Imaging, Kennedy Krieger Institute, Baltimore, Md (M.T.M.); and Werner
Siemens Imaging Center, Department of Preclinical Imaging and Radiopharmacy,
Eberhard Karls University Tuebingen, Tuebingen, Germany (P.K., B.J.P.)
| | - Zaver M. Bhujwalla
- From the Russell H. Morgan Department of Radiology and Radiological
Science (K.M.P., B.K., D.J., S.M.K., M.S., A.M., Y.M., M.F.P., M.T.M., S.N.,
Z.M.B.), Sidney Kimmel Comprehensive Cancer Center (M.F.P., S.N., Z.M.B.), and
Department of Radiation Oncology and Molecular Radiation Sciences (Z.M.B.), The
Johns Hopkins University School of Medicine, 720 Rutland Ave, Rm 208C Traylor
Building, Baltimore, MD 21205; The F.M. Kirby Research Center for Functional
Brain Imaging, Kennedy Krieger Institute, Baltimore, Md (M.T.M.); and Werner
Siemens Imaging Center, Department of Preclinical Imaging and Radiopharmacy,
Eberhard Karls University Tuebingen, Tuebingen, Germany (P.K., B.J.P.)
| |
Collapse
|
17
|
Li J, Deng Y, Wang Y, Nepovimova E, Wu Q, Kuca K. Mycotoxins Have a Potential of Inducing Cell Senescence: A New Understanding of Mycotoxin Immunotoxicity. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2023:104188. [PMID: 37331672 DOI: 10.1016/j.etap.2023.104188] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 06/10/2023] [Accepted: 06/15/2023] [Indexed: 06/20/2023]
Abstract
Mycotoxins result in immune dysfunction and cause immune diseases in animals and humans. However, the mechanisms of immunotoxicity involved in mycotoxins have not been fully explored, and emerging evidence suggests that these toxins may promote their immunotoxicity via cellular senescence. Mycotoxins induce cell senescence after DNA damage, and activate signaling via the NF-κB and JNK pathways to promote the secretion of senescence-associated secretory phenotype (SASP) cytokines including IL-6, IL-8, and TNF-α. DNA damage can also over-activate or cleave poly (ADP-ribose) polymerase-1 (PARP-1), increase the expression of cell cycle inhibitory proteins p21, and p53, and induce cell cycle arrest and then senescence. These senescent cells further down-regulate proliferation-related genes and overexpress inflammatory factors resulting in chronic inflammation and eventual immune exhaustion. Here we review the underlying mechanisms by which mycotoxins trigger cell senescence and the potential roles of SASP and PARP in these pathways. This work will help to further understand the mechanisms of immunotoxicity involved in mycotoxins.
Collapse
Affiliation(s)
- Jiefeng Li
- College of Life Science, Yangtze University, Jingzhou 434025, China
| | - Ying Deng
- College of Life Science, Yangtze University, Jingzhou 434025, China
| | - Yating Wang
- College of Life Science, Yangtze University, Jingzhou 434025, China
| | - Eugenie Nepovimova
- Department of Chemistry, Faculty of Science, University of Hradec Králové, Hradec Králové 50003, Czech Republic
| | - Qinghua Wu
- College of Life Science, Yangtze University, Jingzhou 434025, China; Department of Chemistry, Faculty of Science, University of Hradec Králové, Hradec Králové 50003, Czech Republic.
| | - Kamil Kuca
- Department of Chemistry, Faculty of Science, University of Hradec Králové, Hradec Králové 50003, Czech Republic; Andalusian Research Institute in Data Science and Computational Intelligence (DaSCI), University of Granada, Granada, Spain; Biomedical Reseaerch Center, University Hospital Hradec Kralove, 500 05 Hradec Kralove, Czech Republic.
| |
Collapse
|
18
|
Zhong Y, Li MY, Han L, Tai Y, Cao S, Li J, Zhao H, Wang R, Lv B, Shan Z, Zuo HX, Piao L, Jin HL, Xing Y, Jin X, Ma J. Galangin inhibits programmed cell death-ligand 1 expression by suppressing STAT3 and MYC and enhances T cell tumor-killing activity. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 116:154877. [PMID: 37267692 DOI: 10.1016/j.phymed.2023.154877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 05/08/2023] [Accepted: 05/10/2023] [Indexed: 06/04/2023]
Abstract
BACKGROUND The flavonoid galangin (3,5,7-trihydroxyflavone) is derived from the root of Alpinia officinarum Hance, an edible and medicinal herb. Galangin has many biological activities, such as anti-inflammatory, anti-microbial, anti-viral, anti-obesogenic, and anti-oxidant effects. However, the anti-tumor mechanism of galangin remains unclear. PURPOSE To elucidate the anti-tumor mechanisms of galangin in vitro and in vivo. METHODS MTT, western blotting, immunoprecipitation, RT-PCR, and immunofluorescence assays were used to assess the mechanism of galangin inhibiting PD-L1 expression. The effect of galangin on T cell activity was analyzed in Hep3B/T cell co-cultures. Colony formation, EdU, migration, and invasion assays were performed to explore the effect of galangin on cancer progression and metastasis. Anti-tumor effects of galangin were investigated in a xenograft model. RESULTS Galangin inhibited PD-L1 expression dose-dependently, which plays a major role in tumor progression. Moreover, galangin blocked STAT3 activation through the JAK1/JAK2/Src signaling pathway and Myc activation through the Ras/RAF/MEK/ERK signaling pathway. Galangin reduced PD-L1 expression by suppressing STAT3 and Myc cooperatively. Galangin increased the killing effect of T cells on tumor cells in Hep3B/T cell co-cultures. Moreover, galangin inhibited tumor cell proliferation, migration, and invasion through PD-L1. In vivo experiments showed that galangin suppressed tumor growth. CONCLUSION Galangin enhances T-cell activity and inhibits tumor cell proliferation, migration, and invasion through PD-L1. The current study emphasizes the anti-tumor properties of galangin, offering new insights into the development of tumor therapeutics targeting PD-L1.
Collapse
Affiliation(s)
- Yi Zhong
- Molecular Medicine Research Center, College of Pharmacy, Yanbian University, Yanji 133002, Jilin Province, China
| | - Ming Yue Li
- Molecular Medicine Research Center, College of Pharmacy, Yanbian University, Yanji 133002, Jilin Province, China
| | - Lizhuo Han
- Molecular Medicine Research Center, College of Pharmacy, Yanbian University, Yanji 133002, Jilin Province, China
| | - Yi Tai
- Molecular Medicine Research Center, College of Pharmacy, Yanbian University, Yanji 133002, Jilin Province, China
| | - Shen Cao
- Molecular Medicine Research Center, College of Pharmacy, Yanbian University, Yanji 133002, Jilin Province, China
| | - Jiaxuan Li
- Molecular Medicine Research Center, College of Pharmacy, Yanbian University, Yanji 133002, Jilin Province, China
| | - Hanyu Zhao
- Molecular Medicine Research Center, College of Pharmacy, Yanbian University, Yanji 133002, Jilin Province, China
| | - Run Wang
- Molecular Medicine Research Center, College of Pharmacy, Yanbian University, Yanji 133002, Jilin Province, China
| | - Baojiang Lv
- Molecular Medicine Research Center, College of Pharmacy, Yanbian University, Yanji 133002, Jilin Province, China
| | - Zhida Shan
- Molecular Medicine Research Center, College of Pharmacy, Yanbian University, Yanji 133002, Jilin Province, China
| | - Hong Xiang Zuo
- Molecular Medicine Research Center, College of Pharmacy, Yanbian University, Yanji 133002, Jilin Province, China
| | - Lianxun Piao
- Molecular Medicine Research Center, College of Pharmacy, Yanbian University, Yanji 133002, Jilin Province, China
| | - Hong Lan Jin
- Molecular Medicine Research Center, College of Pharmacy, Yanbian University, Yanji 133002, Jilin Province, China
| | - Yue Xing
- Molecular Medicine Research Center, College of Pharmacy, Yanbian University, Yanji 133002, Jilin Province, China.
| | - Xuejun Jin
- Molecular Medicine Research Center, College of Pharmacy, Yanbian University, Yanji 133002, Jilin Province, China.
| | - Juan Ma
- Molecular Medicine Research Center, College of Pharmacy, Yanbian University, Yanji 133002, Jilin Province, China.
| |
Collapse
|
19
|
Pan Y, Liu X, Zhang W, Wang W, Wang H, Luo L, Jia K, Shao C, Mao S, Qiu T, Ni J, Yu J, Wang L, Chen B, Xiong A, Gao G, Chen X, Wu F, Zhou C, Wu C, Ren S. Association of PD-L1 expression with efficacy of alectinib in advanced NSCLC patients with ALK fusion. Lung Cancer 2023; 181:107233. [PMID: 37201296 DOI: 10.1016/j.lungcan.2023.107233] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 04/28/2023] [Accepted: 05/01/2023] [Indexed: 05/20/2023]
Abstract
BACKGROUND Programmed cell death-ligand 1 (PD-L1) expression was found to be a biomarker of inferior efficacy of epidermal growth factor receptor (EGFR) tyrosine kinase inhibitors (TKIs) in EGFR-mutated non-small cell lung cancer (NSCLC). However, whether PD-L1 expression could also serve as a similar biomarker in anaplastic lymphoma kinase (ALK)-positive patients, especially for those treated with front-line alectinib, remains unclear. The aim of the study is to investigate the association of PD-L1 expression and efficacy of alectinib in this setting. METHODS From January 2018 to March 2020, 225 patients with ALK-rearranged lung cancer were consecutively collected at Shanghai Pulmonary Hospital, Tongji University. Baseline PD-L1 expression was detected using immunohistochemistry (IHC) in 56 patients of advanced ALK-rearranged lung cancer who received front-line alectinib. RESULTS Among the 56 eligible patients, 30 (53.6%) were PD-L1 expression negative, 19 (33.9%) patients had TPS 1%-49% and 7 (12.5%) had TPS ≥ 50%.We found no statistically significant associations between PD-L1 positivity and objective response rate (ORR, 90.0% vs. 80.8%, p = 0.274) or progression-free survival (PFS, not reached vs. not reached, HR: 0.98, 95 %CI: 0.37-2.61, p = 0.97) in patients treated with alectinib. Meanwhile, patients with PD-L1 high expression (TPS ≥ 50%) had a trend of longer PFS (not reached vs. not reached, p = 0.61). CONCLUSIONS PD-L1 expression might not serve as a predict biomarker for the efficacy of front-line alectinib in ALK-positive NSCLC patients.
Collapse
Affiliation(s)
- Yingying Pan
- Department of Medical Oncology, Shanghai Pulmonary Hospital, Cancer Institute, Tongji University School of Medicine, Shanghai 200433, PR China
| | - Xinyu Liu
- Department of Medical Oncology, Shanghai Pulmonary Hospital, Cancer Institute, Tongji University School of Medicine, Shanghai 200433, PR China
| | - Wei Zhang
- Department of Pathology, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai 200433, PR China
| | - Wanying Wang
- Department of Medical Oncology, Shanghai Pulmonary Hospital, Cancer Institute, Tongji University School of Medicine, Shanghai 200433, PR China
| | - Haowei Wang
- Department of Medical Oncology, Shanghai Pulmonary Hospital, Cancer Institute, Tongji University School of Medicine, Shanghai 200433, PR China
| | - Libo Luo
- Department of Medical Oncology, Shanghai Pulmonary Hospital, Cancer Institute, Tongji University School of Medicine, Shanghai 200433, PR China
| | - Keyi Jia
- Department of Medical Oncology, Shanghai Pulmonary Hospital, Cancer Institute, Tongji University School of Medicine, Shanghai 200433, PR China
| | - Chuchu Shao
- Department of Medical Oncology, Shanghai Pulmonary Hospital, Cancer Institute, Tongji University School of Medicine, Shanghai 200433, PR China
| | - Shiqi Mao
- Department of Medical Oncology, Shanghai Pulmonary Hospital, Cancer Institute, Tongji University School of Medicine, Shanghai 200433, PR China
| | - Tianyu Qiu
- Department of Medical Oncology, Shanghai Pulmonary Hospital, Cancer Institute, Tongji University School of Medicine, Shanghai 200433, PR China
| | - Jun Ni
- Department of Pulmonary and Critical Care Medicine, Zhangjiagang TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Zhangjiagang, Jiangsu 215699, PR China
| | - Jia Yu
- Department of Medical Oncology, Shanghai Pulmonary Hospital, Cancer Institute, Tongji University School of Medicine, Shanghai 200433, PR China
| | - Lei Wang
- Department of Medical Oncology, Shanghai Pulmonary Hospital, Cancer Institute, Tongji University School of Medicine, Shanghai 200433, PR China
| | - Bin Chen
- Department of Medical Oncology, Shanghai Pulmonary Hospital, Cancer Institute, Tongji University School of Medicine, Shanghai 200433, PR China
| | - Anwen Xiong
- Department of Medical Oncology, Shanghai Pulmonary Hospital, Cancer Institute, Tongji University School of Medicine, Shanghai 200433, PR China
| | - Guanghui Gao
- Department of Medical Oncology, Shanghai Pulmonary Hospital, Cancer Institute, Tongji University School of Medicine, Shanghai 200433, PR China
| | - Xiaoxia Chen
- Department of Medical Oncology, Shanghai Pulmonary Hospital, Cancer Institute, Tongji University School of Medicine, Shanghai 200433, PR China
| | - Fengying Wu
- Department of Medical Oncology, Shanghai Pulmonary Hospital, Cancer Institute, Tongji University School of Medicine, Shanghai 200433, PR China
| | - Caicun Zhou
- Department of Medical Oncology, Shanghai Pulmonary Hospital, Cancer Institute, Tongji University School of Medicine, Shanghai 200433, PR China
| | - Chunyan Wu
- Department of Pathology, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai 200433, PR China.
| | - Shengxiang Ren
- Department of Medical Oncology, Shanghai Pulmonary Hospital, Cancer Institute, Tongji University School of Medicine, Shanghai 200433, PR China.
| |
Collapse
|
20
|
Xiao G, Li L, Tanzhu G, Liu Z, Gao X, Wan X, Xiao D, Chen L, Xia X, Zhou R. Heterogeneity of tumor immune microenvironment of EGFR/ALK-positive tumors versus EGFR/ALK-negative tumors in resected brain metastases from lung adenocarcinoma. J Immunother Cancer 2023; 11:jitc-2022-006243. [PMID: 36868569 PMCID: PMC9990629 DOI: 10.1136/jitc-2022-006243] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/20/2023] [Indexed: 03/05/2023] Open
Abstract
BACKGROUND Previous studies found that lung adenocarcinomas (LUAD) with EGFR-positive and ALK-positive were less responsive to immunotherapy, which may be associated with a suppressive tumor immune microenvironment (TIME). Given the discordance in the TIME between primary lung cancer and brain metastasis, it is urgent to explore the TIME in patients with EGFR/ALK-positive LUAD with brain metastases (BMs). METHODS The transcriptome feature of formalin-fixed and paraffin-embedded samples of BMs and paired primary LUAD from 70 patients with LUAD BMs was illustrated by RNA-sequencing. Six of them were available for paired sample analysis. Then, after excluding 3 co-occurring patients, we divided 67 BMs patients into 41 EGFR/ALK-positive and 26 EGFR/ALK-negative patients. The differences in immune profiling between the two groups were analyzed from three dimensions: TIME, T-cell receptor repertoire, and immunohistochemistry. Finally, the survival data of 55 patients were collected. RESULTS Compared with primary LUAD, BMs present an immunosuppressed TIME, manifested as: inhibition of immune-related pathways; low expression of immune checkpoint; decreased infiltration of CD8+T cells and cytotoxic lymphocyte; increased proportion of suppressive M2 macrophages. In different subgroups based on EGFR/ALK gene variation status, both EGFR-positive and ALK-positive tumors present a relatively immunosuppressive microenvironment, but the heterogeneity of tumor microenvironment may undergo different mechanisms. EGFR-positive BMs showed decreased CD8+T cells and increased regulatory T cells (Treg) cells, while ALK-positive BMs showed decreased CD8+T cells and increased M2 macrophages. Moreover, in the TCGA-LUAD cohort, EGFR-positive tumors showed reduced CD8+T cell infiltrations (p<0.001) and borderline significantly higher Tregs than EGFR/ALK-negative (p=0.072). In parallel, ALK-positive tumors had higher median M2 macrophages infiltrations than EGFR/ALK-negative (p=0.175), although there was no statistical significance. Collectively, there was a similar immunosuppressive milieu between EGFR/ALK-positive primary LUAD and BMs. Moreover, survival analysis uncovered higher CD8A expression, cytotoxic lymphocyte infiltration, and immune scores were significantly associated with better prognosis in both EGFR/ALK-positive and EGFR/ALK-negative groups. CONCLUSION This study found that LUAD-derived BMs exhibited an immunosuppressive TIME and revealed that EGFR-positive and ALK-positive BMs exhibited different immunosuppressive characteristics. Meanwhile, EGFR-negative BMs showed a potential benefit to immunotherapy. These findings boost molecular and clinical understanding of LUAD BMs.
Collapse
Affiliation(s)
- Gang Xiao
- Department of Radiation Oncology, Xiangya Hospital Central South University, Changsha, Hunan, China
| | | | - Guilong Tanzhu
- Department of Radiation Oncology, Xiangya Hospital Central South University, Changsha, Hunan, China
| | - Zhiyuan Liu
- Department of Radiation Oncology, Xiangya Hospital Central South University, Changsha, Hunan, China
| | - Xuan Gao
- Institute of Microbiology, Chinese Academy of Sciences, State Key Laboratory of Microbial Resources, Beijing, China.,GenePlus-Shenzhen Clinical Laboratory, Shenzhen, China
| | - Xin Wan
- Department of Neurosurgery, Xiangya Hospital Central South University, Changsha, Hunan, China
| | - Desheng Xiao
- Department of Pathology, Xiangya Hospital Central South University, Changsha, Hunan, China
| | - Liu Chen
- Department of Radiation Oncology, Xiangya Hospital Central South University, Changsha, Hunan, China
| | | | - Rongrong Zhou
- Department of Radiation Oncology, Xiangya Hospital Central South University, Changsha, Hunan, China .,Xiangya Lung Cancer Center, Xiangya Hospital Central South University, Changsha, Hunan, China
| |
Collapse
|
21
|
Schenk EL. Narrative review: immunotherapy in anaplastic lymphoma kinase (ALK)+ lung cancer-current status and future directions. Transl Lung Cancer Res 2023; 12:322-336. [PMID: 36895933 PMCID: PMC9989807 DOI: 10.21037/tlcr-22-883] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 02/08/2023] [Indexed: 03/01/2023]
Abstract
Background and Objective Patients with metastatic anaplastic lymphoma kinase (ALK)+ non-small cell lung cancer (NSCLC) often experience years of disease control on targeted therapies but the disease eventually develops resistance and progresses. Multiple clinical trial efforts to incorporate PD-1/PD-L1 immunotherapy into the treatment paradigm for ALK+ NSCLC have resulted in significant toxicities without clear improvement in patient outcomes. Observations from clinical trials, translational studies, and preclinical models suggest the immune system interacts with ALK+ NSCLC and this interaction is heightened with the initiation of targeted therapy. The objective of this review is to summarize knowledge to date about current and potential immunotherapy approaches for patients with ALK+ NSCLC. Methods To identify the relevant literature and clinical trials the databases PubMed.gov and ClinicalTrials.gov were queried with keywords "ALK" and "lung cancer". PubMed search was further refined with terms such as "immunotherapy", "tumor microenvironment or TME", "PD-1", and "T cells". The search for clinical trials was limited to interventional studies. Key Content and Findings In this review, the current status of PD-1/PD-L1 immunotherapy for ALK+ NSCLC is updated and alternative immunotherapy approaches are highlighted in the context of available patient level and translational data on the ALK+ NSCLC tumor microenvironment (TME). An increase in CD8+ T cells within the ALK+ NSCLC TME has been observed with targeted therapy initiation across multiple studies. Therapies to augment this including tumor infiltrating lymphocyte (TIL) therapy, modified cytokines, and oncolytic viruses are reviewed. Furthermore, the contribution of innate immune cells in TKI mediated tumor cell clearance is discussed as a future target for novel immunotherapy approaches that promote cancer cell phagocytosis. Conclusions Immune modulating strategies derived from current and evolving knowledge of the ALK+ NSCLC TME may have a role in ALK+ NSCLC beyond PD-1/PD-L1 based immunotherapy.
Collapse
Affiliation(s)
- Erin L Schenk
- Division of Medical Oncology, Department of Medicine, University of Colorado - Anschutz Medical Campus, Colorado, USA
| |
Collapse
|
22
|
Papavassiliou KA, Marinos G, Papavassiliou AG. Combining STAT3-Targeting Agents with Immune Checkpoint Inhibitors in NSCLC. Cancers (Basel) 2023; 15:386. [PMID: 36672335 PMCID: PMC9857288 DOI: 10.3390/cancers15020386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Revised: 12/31/2022] [Accepted: 01/04/2023] [Indexed: 01/11/2023] Open
Abstract
Despite recent therapeutic advances, non-small cell lung cancer (NSCLC) remains the leading cause of cancer-related death. Signal transducer and activator of transcription 3 (STAT3) is a transcription factor (TF) with multiple tumor-promoting effects in NSCLC, including proliferation, anti-apoptosis, angiogenesis, invasion, metastasis, immunosuppression, and drug resistance. Recent studies suggest that STAT3 activation contributes to resistance to immune checkpoint inhibitors. Thus, STAT3 represents an attractive target whose pharmacological modulation in NSCLC may assist in enhancing the efficacy of or overcoming resistance to immune checkpoint inhibitors. In this review, we discuss the biological mechanisms through which STAT3 inhibition synergizes with or overcomes resistance to immune checkpoint inhibitors and highlight the therapeutic strategy of using drugs that target STAT3 as potential combination partners for immune checkpoint inhibitors in the management of NSCLC patients.
Collapse
Affiliation(s)
- Kostas A. Papavassiliou
- First University Department of Respiratory Medicine, Medical School, “Sotiria” Hospital, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Georgios Marinos
- Department of Hygiene, Epidemiology and Medical Statistics, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Athanasios G. Papavassiliou
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
| |
Collapse
|
23
|
YAN X, Shi JH, Xue JF, Guo WZ, Li B, Zhang SJ. PD-1/PD-L1 inhibition promotes hepatic regeneration in small-for-size liver following extended hepatectomy. Cytokine 2022; 159:156017. [DOI: 10.1016/j.cyto.2022.156017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 08/12/2022] [Accepted: 08/22/2022] [Indexed: 11/09/2022]
|
24
|
Anticancer natural products targeting immune checkpoint protein network. Semin Cancer Biol 2022; 86:1008-1032. [PMID: 34838956 DOI: 10.1016/j.semcancer.2021.11.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 11/13/2021] [Accepted: 11/23/2021] [Indexed: 01/27/2023]
Abstract
Normal cells express surface proteins that bind to immune checkpoint proteins on immune cells to turn them off, whereby the immune system does not attack normal healthy cells. Cancer cells can also utilize this same protective mechanism by expressing surface proteins that can interact with checkpoint proteins on immune cells to overcome the immune surveillance. Immunotherapy is making the best use of the body's own immune system to reinforce anti-tumor responses. The most generally used immunotherapy is the control of immune checkpoints including the cytotoxic T lymphocyte-associated molecule 4 (CTLA-4), programmed cell deathreceptor 1 (PD-1), or programmed cell death ligand-1 (PD-L1). In spite of the clinical effectiveness of immune checkpoint inhibitors, the overall response rate still remains low. Therefore, there have been considerable efforts in searching for alternative immune checkpoint proteins that may work as new therapeutic targets for treatment of cancer. Recent studies have identified several additional novel immune checkpoint targets, including lymphocyte activation gene-3, T cell immunoglobulin and mucin-domain containing-3, T cell immunoglobulin and immunoreceptor tyrosine-based inhibition motif domain, V-domain Ig suppressor of T cell activation, B7 homolog 3 protein, B and T cell lymphocyte attenuator, and inducible T cell COStimulator. Natural compounds, especially those present in medicinal or dietary plants, have been investigated for their anti-tumor effects in various in vitro and in vivo models. Some phytochemicals exert anti-tumor activities based on immunoregulatioby blocking interaction between proteins involved in immune checkpoint signal transduction or regulating their expression/activity. Recently, synergistic anti-cancer effects of diverse phytochemicals with anti-PD-1/PD-L1 or anti-CTLA-4 monoclonal antibody drugs have been continuously reported. Considering an increasing attention to noteworthy therapeutic effects of immune checkpoint inhibitors in the cancer therapy, this review focuses on regulatory effects of selected phytochemicals on immune checkpoint protein network and their combinational effectiveness with immune checkpoint inhibitors targeting tumor cells.
Collapse
|
25
|
Chen T, Chen H, Lu W, Yao Y. T lymphocyte subsets and PD-1 expression on lymphocytes in peripheral blood of patients with non-small cell lung cancer. Medicine (Baltimore) 2022; 101:e31307. [PMID: 36281084 PMCID: PMC9592462 DOI: 10.1097/md.0000000000031307] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
The incidence rate and mortality rate of lung cancer (LC) are very high. This study aimed to analyze the T lymphocyte subsets and programmed death-1 (PD-1) expression on lymphocytes in the peripheral blood of non-small cell lung cancer (NSCLC) patients and explore whether there were changes in cellular immunity in NSCLC. Peripheral blood samples were collected from newly diagnosed NSCLC patients and healthy individuals. The T lymphocyte subsets and PD-1 expression were evaluated using flow cytometry. Single-sample gene set enrichment analysis (ssGSEA) was performed to explore the correlations of PD-1 expression with infiltration patterns for tumor-infiltrating T immune cells. By flow cytometry, two populations of lymphocytes in NSCLC patients were observed. Apart from a population of normal volume lymphocytes (Lym1), the other population had larger volume and more particles (Lym2). Compared with the healthy group, the proportion of CD4+ T cells and PD-1 expression on Lym1 was higher, and that of CD8+ T cells was lower in the NSCLC group. In the NSCLC group, the proportions of CD3+ T cells, CD8+ T cells, CD4+CD8+ T (DPT) cells, and PD-1 expression were higher on Lym2 than those on Lym1 (P < .05). ssGSEA showed that tumor infiltrating immune T cells were positively correlated with PD-1 expression. The PD-1 expression on lymphocytes increased in recurrent patients who treated with PD-1 inhibitor. Lym2 may be tumor-infiltrating lymphocytes (TILs) which upregulated PD-1 expression in NSCLC. PD-1 expression on lymphocytes may be used as a recurrence indicator for NSCLC patients treated with PD-1 inhibitors.
Collapse
Affiliation(s)
- Tingting Chen
- Medical Laboratory, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Traditional Chinese Medicine), Hangzhou, China
| | - Haixin Chen
- The First Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China
| | - Wei Lu
- Medical Laboratory, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Traditional Chinese Medicine), Hangzhou, China
| | - Yimin Yao
- Medical Laboratory, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Traditional Chinese Medicine), Hangzhou, China
- *Correspondence: Yimin Yao, Medical Laboratory, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Traditional Chinese Medicine), No.54 Youdian Road, Shangcheng District, Hangzhou, Zhejiang 310006, China (e-mail: )
| |
Collapse
|
26
|
Gao Z, Ling X, Shi C, Wang Y, Lin A. Tumor immune checkpoints and their associated inhibitors. J Zhejiang Univ Sci B 2022; 23:823-843. [PMID: 36226537 PMCID: PMC9561405 DOI: 10.1631/jzus.b2200195] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Accepted: 07/13/2022] [Indexed: 11/05/2022]
Abstract
Immunological evasion is one of the defining characteristics of cancers, as the immune modification of an immune checkpoint (IC) confers immune evasion capabilities to tumor cells. Multiple ICs, such as programmed cell death protein-1 (PD-1) and cytotoxic T-lymphocyte-associated antigen-4 (CTLA-4), can bind to their respective receptors and reduce tumor immunity in a variety of ways, including blocking immune cell activation signals. IC blockade (ICB) therapies targeting these checkpoint molecules have demonstrated significant clinical benefits. This is because antibody-based IC inhibitors and a variety of specific small molecule inhibitors can inhibit key oncogenic signaling pathways and induce durable tumor remission in patients with a variety of cancers. Deciphering the roles and regulatory mechanisms of these IC molecules will provide crucial theoretical guidance for clinical treatment. In this review, we summarize the current knowledge on the functional and regulatory mechanisms of these IC molecules at multiple levels, including epigenetic regulation, transcriptional regulation, and post-translational modifications. In addition, we provide a summary of the medications targeting various nodes in the regulatory pathway, and highlight the potential of newly identified IC molecules, focusing on their potential implications for cancer diagnostics and immunotherapy.
Collapse
Affiliation(s)
- Zerui Gao
- MOE Laboratory of Biosystem Homeostasis and Protection, College of Life Sciences, Zhejiang University, Hangzhou 310058, China
- Cancer Center, Zhejiang University, Hangzhou 310058, China
- Key Laboratory for Cell and Gene Engineering of Zhejiang Province, Hangzhou 310058, China
- Chu Kochen Honors College of Zhejiang University, Hangzhou 310058, China
| | - Xingyi Ling
- MOE Laboratory of Biosystem Homeostasis and Protection, College of Life Sciences, Zhejiang University, Hangzhou 310058, China
- Cancer Center, Zhejiang University, Hangzhou 310058, China
- Key Laboratory for Cell and Gene Engineering of Zhejiang Province, Hangzhou 310058, China
| | - Chengyu Shi
- MOE Laboratory of Biosystem Homeostasis and Protection, College of Life Sciences, Zhejiang University, Hangzhou 310058, China
- Cancer Center, Zhejiang University, Hangzhou 310058, China
- Key Laboratory for Cell and Gene Engineering of Zhejiang Province, Hangzhou 310058, China
| | - Ying Wang
- MOE Laboratory of Biosystem Homeostasis and Protection, College of Life Sciences, Zhejiang University, Hangzhou 310058, China
- Cancer Center, Zhejiang University, Hangzhou 310058, China
- Key Laboratory for Cell and Gene Engineering of Zhejiang Province, Hangzhou 310058, China
| | - Aifu Lin
- MOE Laboratory of Biosystem Homeostasis and Protection, College of Life Sciences, Zhejiang University, Hangzhou 310058, China.
- Cancer Center, Zhejiang University, Hangzhou 310058, China.
- Key Laboratory for Cell and Gene Engineering of Zhejiang Province, Hangzhou 310058, China.
- Breast Center of the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, China.
- International School of Medicine, International Institutes of Medicine, the Fourth Affiliated Hospital of Zhejiang University School of Medicine, Yiwu 322000, China.
- ZJU-QILU Joint Research Institute, Hangzhou 310058, China.
| |
Collapse
|
27
|
Ashish S, Rodriguez RR, Sethi P, Yu F, Raj M. Anaplastic Lymphoma Kinase (ALK) Mutation-Targeting Treatment With Alectinib in Lung Adenocarcinoma and Primary Cutaneous Marginal Zone B-Cell Lymphoma. Cureus 2022; 14:e29922. [PMID: 36348885 PMCID: PMC9633320 DOI: 10.7759/cureus.29922] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/04/2022] [Indexed: 11/07/2022] Open
Abstract
Lung adenocarcinoma or non-small cell lung cancer (NSCLC) represents one of the most diagnosed cancers worldwide. Anaplastic lymphoma kinase (ALK) mutation, a tyrosine kinase and ALK fusion or rearrangement oncogene, has been found rarely in patients with NSCLC. Newer treatment modalities with different ALK inhibitors in targetable specific ALK mutations have recently made great strides in the management of NSCLC patients. We present a case of NSCLC harboring ALK mutation with primary cutaneous marginal zone B-cell lymphoma (PCMZL) treated with adjuvant chemotherapy with pemetrexed and cisplatin, and ALK-echinoderm microtubule-associated protein-like 4 (EML4)-targeting treatment alectinib.
Collapse
|
28
|
Prognostic Modeling of Lung Adenocarcinoma Based on Hypoxia and Ferroptosis-Related Genes. JOURNAL OF ONCOLOGY 2022; 2022:1022580. [PMID: 36245988 PMCID: PMC9553523 DOI: 10.1155/2022/1022580] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 08/10/2022] [Accepted: 08/16/2022] [Indexed: 11/17/2022]
Abstract
Background. It is well known that hypoxia and ferroptosis are intimately connected with tumor development. The purpose of this investigation was to identify whether they have a prognostic signature. To this end, genes related to hypoxia and ferroptosis scores were investigated using bioinformatics analysis to stratify the risk of lung adenocarcinoma. Methods. Hypoxia and ferroptosis scores were estimated using The Cancer Genome Atlas (TCGA) database-derived cohort transcriptome profiles via the single sample gene set enrichment analysis (ssGSEA) algorithm. The candidate genes associated with hypoxia and ferroptosis scores were identified using weighted correlation network analysis (WGCNA) and differential expression analysis. The prognostic genes in this study were discovered using the Cox regression (CR) model in conjunction with the LASSO method, which was then utilized to create a prognostic signature. The efficacy, accuracy, and clinical value of the prognostic model were evaluated using an independent validation cohort, Receiver Operator Characteristic (ROC) curve, and nomogram. The analysis of function and immune cell infiltration was also carried out. Results. Here, we appraised 152 candidate genes expressed not the same, which were related to hypoxia and ferroptosis for prognostic modeling in The Cancer Genome Atlas Lung Adenocarcinoma (TCGA-LUAD) cohort, and these genes were further validated in the GSE31210 cohort. We found that the 14-gene-based prognostic model, utilizing MAPK4, TNS4, WFDC2, FSTL3, ITGA2, KLK11, PHLDB2, VGLL3, SNX30, KCNQ3, SMAD9, ANGPTL4, LAMA3, and STK32A, performed well in predicting the prognosis in lung adenocarcinoma. ROC and nomogram analyses showed that risk scores based on prognostic signatures provided desirable predictive accuracy and clinical utility. Moreover, gene set variance analysis showed differential enrichment of 33 hallmark gene sets between different risk groups. Additionally, our results indicated that a higher risk score will lead to more fibroblasts and activated CD4 T cells but fewer myeloid dendritic cells, endothelial cells, eosinophils, immature dendritic cells, and neutrophils. Conclusion. Our research found a 14-gene signature and established a nomogram that accurately predicted the prognosis in patients with lung adenocarcinoma. Clinical decision-making and therapeutic customization may benefit from these results, which may serve as a valuable reference in the future.
Collapse
|
29
|
Denize T, Hou Y, Pignon JC, Walton E, West DJ, Freeman GJ, Braun DA, Wu CJ, Gupta S, Motzer RJ, Atkins MB, McDermott D, Choueiri TK, Shukla SA, Signoretti S. Transcriptomic Correlates of Tumor Cell PD-L1 Expression and Response to Nivolumab Monotherapy in Metastatic Clear Cell Renal Cell Carcinoma. Clin Cancer Res 2022; 28:4045-4055. [PMID: 35802667 PMCID: PMC9481706 DOI: 10.1158/1078-0432.ccr-22-0923] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 06/17/2022] [Accepted: 07/06/2022] [Indexed: 11/16/2022]
Abstract
PURPOSE PD-L1 expression on tumor cells (TC) is associated with response to anti-PD-1-based therapies in some tumor types, but its significance in clear cell renal cell carcinoma (ccRCC) is uncertain. We leveraged tumor heterogeneity to identify molecular correlates of TC PD-L1 expression in ccRCC and assessed their role in predicting response to anti-PD-1 monotherapy. EXPERIMENTAL DESIGN RNA sequencing was performed on paired TC PD-L1 positive and negative areas isolated from eight ccRCC tumors and transcriptomic features associated with PD-L1 status were identified. A cohort of 232 patients with metastatic ccRCC from the randomized CheckMate-025 (CM-025) trial was used to confirm the findings and correlate transcriptomic profiles with clinical outcomes. RESULTS In both the paired samples and the CM-025 cohort, TC PD-L1 expression was associated with combined overexpression of immune- and cell proliferation-related pathways, upregulation of T-cell activation signatures, and increased tumor-infiltrating immune cells. In the CM-025 cohort, TC PD-L1 expression was not associated with clinical outcomes. A molecular RCC subtype characterized by combined overexpression of immune- and cell proliferation-related pathways (previously defined by unsupervised clustering of transcriptomic data) was enriched in TC PD-L1 positive tumors and displayed longer progression-free survival (HR, 0.32; 95% confidence interval, 0.13-0.83) and higher objective response rate (30% vs. 0%, P = 0.04) on nivolumab compared with everolimus. CONCLUSIONS Both TC-extrinsic (immune-related) and TC-intrinsic (cell proliferation-related) mechanisms are likely intertwined in the regulation of TC PD-L1 expression in ccRCC. The quantitation of these transcriptional programs may better predict benefit from anti-PD-1-based therapy compared with TC PD-L1 expression alone in ccRCC.
Collapse
Affiliation(s)
- Thomas Denize
- Department of Pathology, Brigham and Women’s Hospital, Boston, MA
- Harvard Medical School, Boston, MA
| | - Yue Hou
- Translational Immunogenomics Laboratory, Dana-Farber Cancer Institute, Boston, MA
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA
| | - Jean-Christophe Pignon
- Department of Pathology, Brigham and Women’s Hospital, Boston, MA
- Harvard Medical School, Boston, MA
| | - Emily Walton
- Department of Pathology, Brigham and Women’s Hospital, Boston, MA
| | - Destiny J. West
- Department of Pathology, Brigham and Women’s Hospital, Boston, MA
| | - Gordon J. Freeman
- Harvard Medical School, Boston, MA
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA
| | - David A. Braun
- Harvard Medical School, Boston, MA
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA
- Broad Institute of MIT and Harvard, Cambridge, MA
- Center of Molecular and Cellular Oncology, Yale Cancer Center, Yale School of Medicine, New Haven, CT
| | - Catherine J. Wu
- Harvard Medical School, Boston, MA
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA
- Broad Institute of MIT and Harvard, Cambridge, MA
| | | | - Robert J. Motzer
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
| | | | - David McDermott
- Harvard Medical School, Boston, MA
- Department of Medical Oncology, Beth Israel Deaconess Medical Center, Boston, MA
| | - Toni K. Choueiri
- Harvard Medical School, Boston, MA
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA
- Broad Institute of MIT and Harvard, Cambridge, MA
| | - Sachet A. Shukla
- Harvard Medical School, Boston, MA
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA
- Broad Institute of MIT and Harvard, Cambridge, MA
- Department of Hematopoietic Biology and Malignancy, The University of Texas M.D. Anderson Cancer Center, Houston, TX
- Corresponding authors: Sabina Signoretti, M.D., Brigham and Women’s Hospital, Thorn Building 504A, 75 Francis Street; Boston, MA 02115, +1 617-525-7437, , Sachet A. Shukla, Ph.D. Hematopoietic Biology and Malignancy, University of Texas MD Anderson Cancer Center, Houston, TX, USA, +1 515-708-1252,
| | - Sabina Signoretti
- Department of Pathology, Brigham and Women’s Hospital, Boston, MA
- Harvard Medical School, Boston, MA
- Broad Institute of MIT and Harvard, Cambridge, MA
- Department of Oncologic Pathology, Dana-Farber Cancer Institute, Boston, MA
- Corresponding authors: Sabina Signoretti, M.D., Brigham and Women’s Hospital, Thorn Building 504A, 75 Francis Street; Boston, MA 02115, +1 617-525-7437, , Sachet A. Shukla, Ph.D. Hematopoietic Biology and Malignancy, University of Texas MD Anderson Cancer Center, Houston, TX, USA, +1 515-708-1252,
| |
Collapse
|
30
|
Zhang Y, Fang H, Hong J, Wang X, Wang H, Pan G. Response to treatment with an ALK-TKI in a patient with advanced lung adenocarcinoma with concurrent ALK fusion and high PD-L1 expression: A case report. Medicine (Baltimore) 2022; 101:e30094. [PMID: 35984185 PMCID: PMC9387991 DOI: 10.1097/md.0000000000030094] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
RATIONALE Previous studies have shown that PD-L1 TPS ≥50% in lung cancer rarely overlaps with driver oncogenes such as epidermal growth factor receptor and anaplastic lymphoma kinase (ALK). The initial gene detection of the patient in this study showed ALK fusion combined with high expression of PD-L1. We explored the treatment options for this patient. PATIENT CONCERNS A 34-year-old woman presented for the first time with "repeated fever and cough for 20 days." The patient denied any underlying medical history. DIAGNOSIS After a series of imaging examinations and needle biopsy, the patient was diagnosed as stage IV lung adenocarcinoma with multiple liver and bone metastases (EML4-ALK fusion, PD-L1 TPS 80%). INTERVENTIONS The patient was initially given alectinib targeted therapy. After progression, a second round of genetic testing was performed and the patient was detected to have both ALK fusion and BRAF mutation. The patient was then successively changed to treatment with ensatinib combined with dabrafenib, and lorlatinib combined with dabrafenib. OUTCOMES The initial efficacy evaluation of alectinib was PR, but its PFS was only 4 months. The patient only achieved an overall survival of 10 months. LESSONS Non-small cell lung cancer with an ALK fusion and high PD-L1 expression responds poorly to most current treatment options, with survival time after ALK-tyrosine kinase inhibitor treatment notably shorter than that of patients with an ALK fusion alone.
Collapse
Affiliation(s)
- Yaping Zhang
- Xiaoshan Hospital, Hangzhou Normal University, Hangzhou, China
| | - Hongming Fang
- Xiaoshan Hospital, Hangzhou Normal University, Hangzhou, China
- *Correspondence: Hongming Fang, Xiaoshan Hospital, Hangzhou Normal University, No. 728, Yucai North Road, Xiaoshan District, Hangzhou City, Zhejiang Province, China (e-mail: )
| | | | - Xiaoyan Wang
- Xiaoshan Hospital, Hangzhou Normal University, Hangzhou, China
| | - Hui Wang
- Xiaoshan Hospital, Hangzhou Normal University, Hangzhou, China
| | - Guoqiang Pan
- Xiaoshan Hospital, Hangzhou Normal University, Hangzhou, China
| |
Collapse
|
31
|
Anti-Angiogenic Therapy in ALK Rearranged Non-Small Cell Lung Cancer (NSCLC). Int J Mol Sci 2022; 23:ijms23168863. [PMID: 36012123 PMCID: PMC9407780 DOI: 10.3390/ijms23168863] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 08/07/2022] [Accepted: 08/08/2022] [Indexed: 11/17/2022] Open
Abstract
The management of advanced lung cancer has been transformed with the identification of targetable oncogenic driver alterations. This includes anaplastic lymphoma kinase (ALK) gene rearrangements. ALK tyrosine kinase inhibitors (TKI) are established first-line treatment options in advanced ALK rearranged non-small cell lung cancer (NSCLC), with several next-generation ALK TKIs (alectinib, brigatinib, ensartinib and lorlatinib) demonstrating survival benefit compared with the first-generation ALK TKI crizotinib. Still, despite high objective response rates and durable progression-free survival, drug resistance inevitably ensues, and treatment options beyond ALK TKI are predominantly limited to cytotoxic chemotherapy. Anti-angiogenic therapy targeting the vascular endothelial growth factor (VEGF) signaling pathway has shown efficacy in combination with platinum-doublet chemotherapy in advanced NSCLC without a driver alteration, and with EGFR TKI in advanced EGFR mutated NSCLC. The role for anti-angiogenic therapy in ALK rearranged NSCLC, however, remains to be elucidated. This review will discuss the pre-clinical rationale, clinical trial evidence to date, and future directions to evaluate anti-angiogenic therapy in ALK rearranged NSCLC.
Collapse
|
32
|
Guo Y, Guo H, Zhang Y, Cui J. Anaplastic lymphoma kinase-special immunity and immunotherapy. Front Immunol 2022; 13:908894. [PMID: 35958559 PMCID: PMC9359062 DOI: 10.3389/fimmu.2022.908894] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 06/30/2022] [Indexed: 11/13/2022] Open
Abstract
Alterations in the anaplastic lymphoma kinase (ALK) gene play a key role in the development of various human tumors, and targeted therapy has transformed the treatment paradigm for these oncogene-driven tumors. However, primary or acquired resistance remains a challenge. ALK gene variants (such as gene rearrangements and mutations) also play a key role in the tumor immune microenvironment. Immunotherapy targeting the ALK gene has potential clinical applications. Here, we review the results of recent studies on the immunological relevance of ALK-altered tumors, which provides important insights into the development of tumor immunotherapies targeting this large class of tumors.
Collapse
Affiliation(s)
| | | | | | - Jiuwei Cui
- Cancer Center, The First Hospital of Jilin University, Changchun, China
| |
Collapse
|
33
|
Li Q, Zhang P, Hu H, Huang H, Pan D, Mao G, Hu B. The DDR-related gene signature with cell cycle checkpoint function predicts prognosis, immune activity, and chemoradiotherapy response in lung adenocarcinoma. Respir Res 2022; 23:190. [PMID: 35840978 PMCID: PMC9288070 DOI: 10.1186/s12931-022-02110-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 07/09/2022] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND As a DNA surveillance mechanism, cell cycle checkpoint has recently been discovered to be closely associated with lung adenocarcinoma (LUAD) prognosis. It is also an essential link in the process of DNA damage repair (DDR) that confers resistance to radiotherapy. Whether genes that have both functions play a more crucial role in LUAD prognosis remains unclear. METHODS In this study, DDR-related genes with cell cycle checkpoint function (DCGs) were selected to investigate their effects on the prognosis of LUAD. The TCGA-LUAD cohort and two GEO external validation cohorts (GSE31210 and GSE42171) were performed to construct a prognosis model based on the least absolute shrinkage and selection operator (LASSO) regression. Patients were divided into high-risk and low-risk groups based on the model. Subsequently, the multivariate COX regression was used to construct a prognostic nomogram. The ssGSEA, CIBERSORT algorithm, TIMER tool, CMap database, and IC50 of chemotherapeutic agents were used to analyze immune activity and responsiveness to chemoradiotherapy. RESULTS 4 DCGs were selected as prognostic signatures, and patients in the high-risk group had a lower overall survival (OS). The lower infiltration levels of immune cells and the higher expression levels of immune checkpoints appeared in the high-risk group. The damage repair pathways were upregulated, and chemotherapeutic agent sensitivity was poor in the high-risk group. CONCLUSIONS The 4-DCGs signature prognosis model we constructed could predict the survival rate, immune activity, and chemoradiotherapy responsiveness of LUAD patients.
Collapse
Affiliation(s)
- Quan Li
- Department of Radiation Medicine, School of Public Health and Management, Wenzhou Medical University, Wenzhou, 325035, China.,Zhejiang Provincial Key Laboratory of Watershed Sciences and Health, Wenzhou Medical University, Wenzhou, 325035, China.,South Zhejiang Institute of Radiation Medicine and Nuclear Technology, Wenzhou Medical University, Wenzhou, 325035, China.,Department of Preventive Medicine, School of Public Health and Management, Wenzhou Medical University, Wenzhou, 325035, China
| | - Pan Zhang
- Department of Radiation Medicine, School of Public Health and Management, Wenzhou Medical University, Wenzhou, 325035, China.,Zhejiang Provincial Key Laboratory of Watershed Sciences and Health, Wenzhou Medical University, Wenzhou, 325035, China.,South Zhejiang Institute of Radiation Medicine and Nuclear Technology, Wenzhou Medical University, Wenzhou, 325035, China.,Department of Preventive Medicine, School of Public Health and Management, Wenzhou Medical University, Wenzhou, 325035, China
| | - Huixiao Hu
- Department of Radiation Medicine, School of Public Health and Management, Wenzhou Medical University, Wenzhou, 325035, China.,Zhejiang Provincial Key Laboratory of Watershed Sciences and Health, Wenzhou Medical University, Wenzhou, 325035, China.,South Zhejiang Institute of Radiation Medicine and Nuclear Technology, Wenzhou Medical University, Wenzhou, 325035, China.,Department of Preventive Medicine, School of Public Health and Management, Wenzhou Medical University, Wenzhou, 325035, China
| | - Hang Huang
- Department of Radiation Medicine, School of Public Health and Management, Wenzhou Medical University, Wenzhou, 325035, China.,Zhejiang Provincial Key Laboratory of Watershed Sciences and Health, Wenzhou Medical University, Wenzhou, 325035, China.,South Zhejiang Institute of Radiation Medicine and Nuclear Technology, Wenzhou Medical University, Wenzhou, 325035, China.,Department of Preventive Medicine, School of Public Health and Management, Wenzhou Medical University, Wenzhou, 325035, China
| | - Dong Pan
- Department of Dermatology, Duke University Medical Center, Durham, NC, 27710, USA
| | - Guangyun Mao
- Department of Preventive Medicine, School of Public Health and Management, Wenzhou Medical University, Wenzhou, 325035, China
| | - Burong Hu
- Department of Radiation Medicine, School of Public Health and Management, Wenzhou Medical University, Wenzhou, 325035, China. .,Zhejiang Provincial Key Laboratory of Watershed Sciences and Health, Wenzhou Medical University, Wenzhou, 325035, China. .,South Zhejiang Institute of Radiation Medicine and Nuclear Technology, Wenzhou Medical University, Wenzhou, 325035, China.
| |
Collapse
|
34
|
Shen DD, Bi YP, Pang JR, Zhao LJ, Zhao LF, Gao Y, Wang B, Liu HM, Liu Y, Wang N, Zheng YC, Liu HM. Generation, secretion and degradation of cancer immunotherapy target PD-L1. Cell Mol Life Sci 2022; 79:413. [PMID: 35819633 PMCID: PMC11073444 DOI: 10.1007/s00018-022-04431-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Revised: 06/06/2022] [Accepted: 06/14/2022] [Indexed: 02/06/2023]
Abstract
Cancer immunotherapy is a rapidly developing and effective method for the treatment of a variety of malignancies in recent years. As a significant immune checkpoint, programmed cell death 1 ligand 1 (PD-L1) and its receptor programmed cell death protein 1 (PD-1) play the most significant role in cancer immune escape and cancer immunotherapy. Though PD-L1 have become an important target for drug development and there have been various approved drugs and clinic trials targeting it, and various clinical response rate and adverse reactions prevent many patients from benefiting from it. In recent years, combination trials have become the main direction of PD-1/PD-L1 antibodies development. Here, we summarized PD-L1 biofunctions and key roles in various cancers along with the development of PD-L1 inhibitors. The regulators that are involved in controlling PD-L1 expression including post-translational modification, mRNA level regulation as well as degradation and exosome secretory pathway of PD-L1 were focused. This systematic summary may provide comprehensive understanding of different regulations on PD-L1 as well as a broad prospect for the search of the important regulator of PD-L1. The regulatory factors of PD-L1 can be potential targets for immunotherapy and increase strategies of immunotherapy in combination.
Collapse
Affiliation(s)
- Dan-Dan Shen
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou Key Laboratory of Endometrial Disease Prevention and Treatment Zhengzhou China, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China; Key Laboratory of Henan Province for Drug Quality and Evaluation; Institute of Drug Discovery and Development; School of Pharmaceutical Sciences, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, 450052, Henan, China
| | - Ya-Ping Bi
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China; Key Laboratory of Henan Province for Drug Quality and Evaluation; Institute of Drug Discovery and Development; School of Pharmaceutical Sciences, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, 450052, Henan, China
| | - Jing-Ru Pang
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China; Key Laboratory of Henan Province for Drug Quality and Evaluation; Institute of Drug Discovery and Development; School of Pharmaceutical Sciences, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, 450052, Henan, China
| | - Li-Juan Zhao
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China; Key Laboratory of Henan Province for Drug Quality and Evaluation; Institute of Drug Discovery and Development; School of Pharmaceutical Sciences, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, 450052, Henan, China
- State Key Laboratory of Esophageal Cancer Prevention & Treatment; Academy of Medical Sciences, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, 450052, Henan, China
| | - Long-Fei Zhao
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China; Key Laboratory of Henan Province for Drug Quality and Evaluation; Institute of Drug Discovery and Development; School of Pharmaceutical Sciences, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, 450052, Henan, China
| | - Ya Gao
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China; Key Laboratory of Henan Province for Drug Quality and Evaluation; Institute of Drug Discovery and Development; School of Pharmaceutical Sciences, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, 450052, Henan, China
| | - Bo Wang
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China; Key Laboratory of Henan Province for Drug Quality and Evaluation; Institute of Drug Discovery and Development; School of Pharmaceutical Sciences, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, 450052, Henan, China
| | - Hui-Min Liu
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China; Key Laboratory of Henan Province for Drug Quality and Evaluation; Institute of Drug Discovery and Development; School of Pharmaceutical Sciences, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, 450052, Henan, China
| | - Ying Liu
- The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Ning Wang
- The School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong, China
| | - Yi-Chao Zheng
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou Key Laboratory of Endometrial Disease Prevention and Treatment Zhengzhou China, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China.
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China; Key Laboratory of Henan Province for Drug Quality and Evaluation; Institute of Drug Discovery and Development; School of Pharmaceutical Sciences, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, 450052, Henan, China.
- State Key Laboratory of Esophageal Cancer Prevention & Treatment; Academy of Medical Sciences, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, 450052, Henan, China.
| | - Hong-Min Liu
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China; Key Laboratory of Henan Province for Drug Quality and Evaluation; Institute of Drug Discovery and Development; School of Pharmaceutical Sciences, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, 450052, Henan, China.
- State Key Laboratory of Esophageal Cancer Prevention & Treatment; Academy of Medical Sciences, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, 450052, Henan, China.
| |
Collapse
|
35
|
Wang S, Zhao Y, Song Y, Qiao G, Di Y, Zhao J, Sun P, Zheng H, Huang H, Huang H. ERBB2D16 Expression in HER2 Positive Gastric Cancer Is Associated With Resistance to Trastuzumab. Front Oncol 2022; 12:855308. [PMID: 35463314 PMCID: PMC9021701 DOI: 10.3389/fonc.2022.855308] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Accepted: 03/08/2022] [Indexed: 11/21/2022] Open
Abstract
The human epidermal growth factor receptor-2 (ERBB2; formerly HER2)isoform ERBB2ΔEx16 (ERBB2d16) was oncogenic by mediating epithelial-mesenchymal transition (EMT), immune evasion, and resistance cell death to the anti-HER2 (trastuzumab) therapy. However, its physiological implications in gastric cancer were unclear. In this study, we examined a total of 110 patients with either locally advanced or metastatic HER2+ gastric cancer for the expression of ERBB2d16 and EMT markers, and the infiltration of CD3+ T cells in tumor tissues, and evaluated their relevance with the responses to the standard chemotherapy plus trastuzumab according to the RECIST criteria. We found that the ERBB2d16 isoform was present at a relatively high level in about half of the tumor samples examined (53/110) and an elevated ERBB2d16/ERBB2 ratio was positively associated with the expression of high E-cadherin and low vimentin indicating EMT, and with poor CD3+ T cell infiltration and strong intratumoral expression of programmed death 1 (PD-1) and programmed death ligand 1 (PD-L1) as well as reduced diversity of T cell receptor clones. Moreover, the progression-free survival and overall survival of patients treated with trastuzumab were substantially shorter in those with a high ERBB2d16/ERBB2 ratio. In agreement, analysis by Cox proportional hazards models confirmed that high ERBB2d16 expression was a risk factor associated with an adverse prognosis. Thus, our data fit well with an oncogenic role of ERBB2d16 in gastric cancer by promoting EMT and immunosuppression. We also found that ERBB2d16 expression resists gastric cell death in patients treated with trustuzumab, and the ERBB2d16/ERBB2 ratio may serve as a novel prognostic maker for patients with gastric cancer that receive trastuzumab therapy.
Collapse
Affiliation(s)
- Shuo Wang
- Department of Oncology, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
| | - Yuze Zhao
- Department of Oncology, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
| | - Yuguang Song
- Department of Oncology, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
| | - Guoliang Qiao
- Department of Surgical Oncology, Massachusetts General Hospital, Boston, MA, United States
| | - Yan Di
- Department of Oncology, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
| | - Jing Zhao
- Department of Oncology, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
| | - Pingping Sun
- Department of Pathology, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
| | - Huixia Zheng
- Department of Pathology, First Hospital of Shanxi Medical University, Taiyuan, China
| | - He Huang
- Department of General Surgery, First Hospital of Shanxi Medical University, Taiyuan, China
| | - Hongyan Huang
- Department of Oncology, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
36
|
Zhou Y, Song L, Xu Q, Zeng L, Jiang W, Yang N, Zhang Y. Investigation on the survival implications of PD-L1 expression status in ALK- rearranged advanced non-small cell lung cancer treated with first-line crizotinib. Lung Cancer 2022; 167:58-64. [PMID: 35405360 DOI: 10.1016/j.lungcan.2022.04.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 03/20/2022] [Accepted: 04/02/2022] [Indexed: 11/19/2022]
Abstract
BACKGROUND Programmed cell death-ligand 1 (PD-L1) expression has been associated with shorter progression-free survival (PFS) of crizotinib-treated patients with anaplastic lymphoma kinase (ALK) rearranged non-small cell lung cancer (NSCLC). However, the association between PD-L1 expression and overall survival (OS) in ALK-rearranged NSCLC remains unclear. In this study, we investigated the survival implication of baseline PD-L1 expression status in crizotinib-treated patients with ALK-rearranged advanced NSCLC. METHODS Between October 1, 2015, and October 31, 2021, we retrospectively analyzed the baseline PD-L1 expression levels using immunohistochemistry 22C3 assay of tissue samples from 128 patients with ALK-rearranged advanced lung adenocarcinoma who were treated with first-line crizotinib. RESULTS Of the 128 baseline tumor specimens analyzed, a majority (76.6%, n = 98) had low PD-L1 expression (tumor proportion score (TPS) < 50%), wherein 58.6% (n = 75) had < 1% and 18.0% (n = 23) had 1%-49%, and the remaining 23.4% (n = 30) had high PD-L1 expression level (TPS ≥ 50%). High baseline PD-L1 expression was not associated with any clinical characteristic examined. Patients with high baseline PD-L1 (n = 30) expression level had significantly shorter median PFS (6 vs 11 months, p = 0.011) and OS (17 vs 53 months, p = 0.023) on crizotinib treatment than those with low PD-L1 level (n = 98). CONCLUSIONS A subset of patients with ALK-rearranged NSCLC having high baseline PD-L1 expression level (TPS of ≥ 50%) had poorer survival outcomes despite crizotinib therapy. Our study raises the need to investigate alternative treatment strategies to improve survival outcomes of this patient subset.
Collapse
Affiliation(s)
- Yuling Zhou
- Department of Medical Oncology, Lung Cancer and Gastrointestinal Unit, Hunan Cancer Hospital/The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha 410013, China; Graduate Collaborative Training Base of Hunan Cancer Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| | - Lianxi Song
- Department of Medical Oncology, Lung Cancer and Gastrointestinal Unit, Hunan Cancer Hospital/The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha 410013, China; Graduate Collaborative Training Base of Hunan Cancer Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| | - Qinqin Xu
- Department of Medical Oncology, Qinghai Provincial People's Hospital, Xining 810000, China
| | - Liang Zeng
- Department of Medical Oncology, Lung Cancer and Gastrointestinal Unit, Hunan Cancer Hospital/The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha 410013, China
| | - Wenjuan Jiang
- Department of Medical Oncology, Lung Cancer and Gastrointestinal Unit, Hunan Cancer Hospital/The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha 410013, China
| | - Nong Yang
- Department of Medical Oncology, Lung Cancer and Gastrointestinal Unit, Hunan Cancer Hospital/The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha 410013, China; Graduate Collaborative Training Base of Hunan Cancer Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| | - Yongchang Zhang
- Department of Medical Oncology, Lung Cancer and Gastrointestinal Unit, Hunan Cancer Hospital/The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha 410013, China; Graduate Collaborative Training Base of Hunan Cancer Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China.
| |
Collapse
|
37
|
Kapoor SS, Zaiss DMW. Emerging Role of EGFR Mutations in Creating an Immune Suppressive Tumour Microenvironment. Biomedicines 2021; 10:biomedicines10010052. [PMID: 35052732 PMCID: PMC8772868 DOI: 10.3390/biomedicines10010052] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Revised: 12/22/2021] [Accepted: 12/23/2021] [Indexed: 02/06/2023] Open
Abstract
Several types of tumours overexpress the Epidermal Growth Factor Receptor (EGFR) in either wild type or mutated form. These tumours are often highly aggressive and difficult to treat. The underlying mechanisms for this phenomenon have remained largely unresolved, but recent publications suggest two independent mechanisms that may contribute. According to one line of research, tumours that overexpress the EGFR grow autonomously and become “addicted” to growth factor signalling. Inhibition of this signal using EGFR inhibitors can, therefore, induce cell death in tumour cells and lead to tumour shrinkage. The other line of research, as highlighted by recent findings, suggests that the overexpression, specifically of mutant forms of the EGFR, may create an immune-suppressive and lymphocyte depleted microenvironment within tumours. Such a lymphocyte depleted microenvironment may explain the resistance of EGFR overexpressing cancers to tumour therapies, particularly to check-point inhibitor treatments. In this article, we discuss the recent data which support an immune modulatory effect of EGFR signalling and compare these published studies with the most recent data from The Cancer Genome Atlas (TCGA), in this way, dissecting possible underlying mechanisms. We thereby focus our study on how EGFR overexpression may lead to the local activation of TGFβ, and hence to an immune suppressive environment. Consequently, we define a novel concept of how the mitogenic and immune modulatory effects of EGFR overexpression may contribute to tumour resistance to immunotherapy, and how EGFR specific inhibitors could be used best to enhance the efficacy of tumour therapy.
Collapse
Affiliation(s)
- Simran S. Kapoor
- Institute of Immunology and Infection Research, University of Edinburgh, Edinburgh EH9 3FL, UK;
| | - Dietmar M. W. Zaiss
- Institute of Immunology and Infection Research, University of Edinburgh, Edinburgh EH9 3FL, UK;
- Faculty of Medicine, Institute of Immune Medicine, University of Regensburg, 93053 Regensburg, Germany
- Correspondence:
| |
Collapse
|
38
|
Luo J, Du X. A promising prognostic signature for lung adenocarcinoma (LUAD) patients basing on 6 hypoxia-related genes. Medicine (Baltimore) 2021; 100:e28237. [PMID: 34918689 PMCID: PMC8677978 DOI: 10.1097/md.0000000000028237] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 11/24/2021] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND Hypoxia signaling plays a critical role in the development of lung adenocarcinoma (LUAD). We herein aimed to explore the prognostic value of hypoxia-related genes and construct the hypoxia-related prognostic signature for LUAD patients. METHODS A total of 26 hypoxia-related genes were collected. Five hundred thirteen and 246 LUAD samples were obtained from the Cancer Genome Atlas and Gene Expression Omnibus databases, respectively. Univariate Cox regression and LASSO Cox regression analyses were conducted to screen the hypoxia-related genes associated with the prognosis of LUAD patients, which would be used for constructing prognosis predictive model for LUAD patients. Multivariate Cox regression analysis was done to determine the independent prognostic factors. The Nomogram model was constructed to predict the prognosis of LUAD patients. RESULTS Based on 26 hypoxia-related genes, LUAD samples could be divided into 4 clusters with different prognoses. Among which, 6 genes were included to construct the Risk Score and the LUAD patients with higher Risk Score had worse prognosis. Besides, the Nomogram based on all the independent risk factors could relatively reliably predict the survival probability. And 9 types of immune cells' infiltration was significantly differential between high and low risk LUAD patients. CONCLUSION The Risk Score model based on the 6 crucial hypoxia-related genes could relatively reliably predict the prognosis of LUAD patients.
Collapse
|
39
|
Jin Y, Zuo HX, Li MY, Zhang ZH, Xing Y, Wang JY, Ma J, Li G, Piao H, Gu P, Jin X. Anti-Tumor Effects of Carrimycin and Monomeric Isovalerylspiramycin I on Hepatocellular Carcinoma in Vitro and in Vivo. Front Pharmacol 2021; 12:774231. [PMID: 34899336 PMCID: PMC8662527 DOI: 10.3389/fphar.2021.774231] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2021] [Accepted: 10/27/2021] [Indexed: 12/30/2022] Open
Abstract
Hepatocellular carcinoma results in a high risk of second primary malignancies and has prominent morbidity and mortality. There is a lack of effective treatment and prognosis is poor. Therefore, effective drugs need to be discovered. Carrimycin is a 16-member macrolide antibiotic with anticancer activity, and monomeric isovalerylspiramycin I is a main component. The aim of this study was to determine the anti-tumor effects of carrimycin and monomeric isovalerylspiramycin I on hepatocellular carcinoma through in vivo and in vitro experiments. In vitro, changes in cellular proliferation, migration, invasion, and apoptosis were analyzed by MTT, colony formation, EdU labeling, wound-healing, matrigel transwell invasion, and flow cytometric assays using SK-Hep1, Hep3B, SNU-354, SNU-387 hepatocellular carcinoma cell lines. Western blotting and RT-PCR were used to detect the effects of carrimycin and monomeric isovalerylspiramycin I on the expression levels of vascular endothelial growth factor (VEGF) and programmed death ligand 1 (PD-L1). Nude mice were subcutaneously transplanted with SK-Hep1 cells or C57BL/6J mice were orthotopically transplanted with hepatocarcinoma H22 cells. Tumor volume, pathological changes in tumor tissues, and the concentration of VEGF in mouse serum were measured after treatments. Carrimycin and monomeric isovalerylspiramycin I dose-dependently inhibited hepatocellular carcinoma cell viability, colony formation, and DNA replication. These agents markedly suppressed migration and invasion and promoted apoptosis of the cell lines. Western blotting and RT-PCR demonstrated that carrimycin and monomeric isovalerylspiramycin I reduced VEGF and PD-L1 protein and mRNA levels in a dose-dependent manner. In vivo studies further confirmed that carrimycin and monomeric isovalerylspiramycin I could significantly inhibit tumor growth, tumor histopathological alterations, and the concentration of VEGF in both mouse tumor models. These results show that carrimycin and monomeric isovalerylspiramycin I promoted apoptosis and inhibited proliferation, migration, and invasion of hepatocellular carcinoma cells. Therefore, our discovery suggests anti-tumor capacity for carrimycin and monomeric isovalerylspiramycin I and provides data on potential new drugs for inhibiting hepatocellular carcinoma.
Collapse
Affiliation(s)
- Yong Jin
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Molecular Medicine Research Center, College of Pharmacy, Yanbian University, Yanji, China
| | - Hong Xiang Zuo
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Molecular Medicine Research Center, College of Pharmacy, Yanbian University, Yanji, China
| | - Ming Yue Li
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Molecular Medicine Research Center, College of Pharmacy, Yanbian University, Yanji, China
| | - Zhi Hong Zhang
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Molecular Medicine Research Center, College of Pharmacy, Yanbian University, Yanji, China
| | - Yue Xing
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Molecular Medicine Research Center, College of Pharmacy, Yanbian University, Yanji, China
| | - Jing Ying Wang
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Molecular Medicine Research Center, College of Pharmacy, Yanbian University, Yanji, China
| | - Juan Ma
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Molecular Medicine Research Center, College of Pharmacy, Yanbian University, Yanji, China
| | - Gao Li
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Molecular Medicine Research Center, College of Pharmacy, Yanbian University, Yanji, China
| | - Hongxin Piao
- Liver Diseases Branch, Yanbian University Affiliated Hospital, Yanji, China
| | - Puqing Gu
- Shanghai Tonglian Pharmaceutical Co., Ltd, Shanghai, China
| | - Xuejun Jin
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Molecular Medicine Research Center, College of Pharmacy, Yanbian University, Yanji, China
| |
Collapse
|
40
|
Parakh S, Ernst M, Poh AR. Multicellular Effects of STAT3 in Non-small Cell Lung Cancer: Mechanistic Insights and Therapeutic Opportunities. Cancers (Basel) 2021; 13:6228. [PMID: 34944848 PMCID: PMC8699548 DOI: 10.3390/cancers13246228] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Revised: 12/09/2021] [Accepted: 12/10/2021] [Indexed: 12/12/2022] Open
Abstract
Non-small cell lung cancer (NSCLC) is the most common type of lung cancer and accounts for 85% of lung cancer cases. Aberrant activation of the Signal Transducer and Activator of Transcription 3 (STAT3) is frequently observed in NSCLC and is associated with a poor prognosis. Pre-clinical studies have revealed an unequivocal role for tumor cell-intrinsic and extrinsic STAT3 signaling in NSCLC by promoting angiogenesis, cell survival, cancer cell stemness, drug resistance, and evasion of anti-tumor immunity. Several STAT3-targeting strategies have also been investigated in pre-clinical models, and include preventing upstream receptor/ligand interactions, promoting the degradation of STAT3 mRNA, and interfering with STAT3 DNA binding. In this review, we discuss the molecular and immunological mechanisms by which persistent STAT3 activation promotes NSCLC development, and the utility of STAT3 as a prognostic and predictive biomarker in NSCLC. We also provide a comprehensive update of STAT3-targeting therapies that are currently undergoing clinical evaluation, and discuss the challenges associated with these treatment modalities in human patients.
Collapse
Affiliation(s)
- Sagun Parakh
- Department of Medical Oncology, The Olivia Newton-John Cancer and Wellness Centre, Austin Health, Heidelberg, VIC 3084, Australia;
- Tumor Targeting Laboratory, The Olivia Newton-John Cancer Research Institute, Heidelberg, VIC 3084, Australia
- School of Cancer Medicine, La Trobe University, Melbourne, VIC 3086, Australia;
| | - Matthias Ernst
- School of Cancer Medicine, La Trobe University, Melbourne, VIC 3086, Australia;
- Cancer and Inflammation Laboratory, The Olivia Newton-John Cancer Research Institute, Heidelberg, VIC 3084, Australia
| | - Ashleigh R. Poh
- School of Cancer Medicine, La Trobe University, Melbourne, VIC 3086, Australia;
- Cancer and Inflammation Laboratory, The Olivia Newton-John Cancer Research Institute, Heidelberg, VIC 3084, Australia
| |
Collapse
|
41
|
Dai Z, Liu T, Liu G, Deng Z, Yu P, Wang B, Cen B, Guo L, Zhang J. Identification of Clinical and Tumor Microenvironment Characteristics of Hypoxia-Related Risk Signature in Lung Adenocarcinoma. Front Mol Biosci 2021; 8:757421. [PMID: 34869590 PMCID: PMC8634728 DOI: 10.3389/fmolb.2021.757421] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Accepted: 10/22/2021] [Indexed: 12/18/2022] Open
Abstract
Background: Lung cancer is the leading cause of cancer-related death globally. Hypoxia can suppress the activation of the tumor microenvironment (TME), which contributes to distant metastasis. However, the role of hypoxia-mediated TME in predicting the diagnosis and prognosis of lung adenocarcinoma (LUAD) patients remains unclear. Methods: Both RNA and clinical data from the LUAD cohort were downloaded from the Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) databases. Both univariate and multivariate Cox regression analyses were used to further screen prognosis-related hypoxia gene clusters. Time-dependent receiver operation characteristic (ROC) curves were established to evaluate the predictive sensitivity and specificity of the hypoxia-related risk signature. The characterization of gene set enrichment analysis (GSEA) and TME immune cell infiltration were further explored to identify hypoxia-related immune infiltration. Results: Eight hypoxia-related genes (LDHA, DCN, PGK1, PFKP, FBP1, LOX, ENO3, and CXCR4) were identified and established to construct a hypoxia-related risk signature. The high-risk group showed a poor overall survival compared to that of the low-risk group in the TCGA and GSE68465 cohorts (p < 0.0001). The AUCs for 1-, 3-, and 5-year overall survival were 0.736 vs. 0.741, 0.656 vs. 0.737, and 0.628 vs. 0.649, respectively. The high-risk group was associated with immunosuppression in the TME. Conclusion: The hypoxia-related risk signature may represent an independent biomarker that can differentiate the characteristics of TME immune cell infiltration and predict the prognosis of LUAD.
Collapse
Affiliation(s)
- Zili Dai
- Department of Radiation Oncology, Affiliated Cancer Hospital and Institute of Guangzhou Medical University, State Key Laboratory of Respiratory Diseases, Institute of Respiratory Disease, Guangzhou, China
| | - Taisheng Liu
- Department of Thoracic Surgery, Affiliated Cancer Hospital and Institute of Guangzhou Medical University, Guangzhou, China
| | - Guihong Liu
- Department of Radiation Oncology, DongGuan Tungwah Hospital, Dongguan, China
| | - Zhen Deng
- Department of Radiation Oncology, Huizhou Municipal Central Hospital, Huizhou, China
| | - Peng Yu
- Department of Radiation Oncology, Affiliated Cancer Hospital and Institute of Guangzhou Medical University, State Key Laboratory of Respiratory Diseases, Institute of Respiratory Disease, Guangzhou, China
| | - Baiyao Wang
- Department of Radiation Oncology, Affiliated Cancer Hospital and Institute of Guangzhou Medical University, State Key Laboratory of Respiratory Diseases, Institute of Respiratory Disease, Guangzhou, China
| | - Bohong Cen
- Department of Radiation Oncology, Affiliated Cancer Hospital and Institute of Guangzhou Medical University, State Key Laboratory of Respiratory Diseases, Institute of Respiratory Disease, Guangzhou, China
| | - Liyi Guo
- Department of Oncology and Hematology, The Six People's Hospital of Huizhou City, Huiyang Hospital Affiliated to Southern Medical University, Huizhou, China
| | - Jian Zhang
- Department of Radiation Oncology, Affiliated Cancer Hospital and Institute of Guangzhou Medical University, State Key Laboratory of Respiratory Diseases, Institute of Respiratory Disease, Guangzhou, China
| |
Collapse
|
42
|
Chung SW, Xie Y, Suk JS. Overcoming physical stromal barriers to cancer immunotherapy. Drug Deliv Transl Res 2021; 11:2430-2447. [PMID: 34351575 PMCID: PMC8571040 DOI: 10.1007/s13346-021-01036-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/19/2021] [Indexed: 12/17/2022]
Abstract
Immunotherapy has emerged as an unprecedented hope for the treatment of notoriously refractory cancers. Numerous investigational drugs and immunotherapy-including combination regimens are under preclinical and clinical investigation. However, only a small patient subpopulation across different types of cancer responds to the therapy due to the presence of several mechanisms of resistance. There have been extensive efforts to overcome this limitation and to expand the patient population that could be benefited by this state-of-the-art therapeutic modality. Among various causes of the resistance, we here focus on physical stromal barriers that impede the access of immunotherapeutic drug molecules and/or native and engineered immune cells to cancer tissues and cells. Two primary stromal barriers that contribute to the resistance include aberrant tumor vasculatures and excessive extracellular matrix build-ups that restrict extravasation and infiltration, respectively, of molecular and cellular immunotherapeutic agents into tumor tissues. Here, we review the features of these barriers that limit the efficacy of immunotherapy and discuss recent advances that could potentially help immunotherapy overcome the barriers and improve therapeutic outcomes.
Collapse
Affiliation(s)
- Seung Woo Chung
- Center for Nanomedicine, The Johns Hopkins University School of Medicine, 400 N. Broadway, Baltimore, MD, 602921231, USA
- Department of Ophthalmology, The Johns Hopkins University School of Medicine, Baltimore, MD, 21231, USA
| | - Yunxuan Xie
- Center for Nanomedicine, The Johns Hopkins University School of Medicine, 400 N. Broadway, Baltimore, MD, 602921231, USA
- Department of Ophthalmology, The Johns Hopkins University School of Medicine, Baltimore, MD, 21231, USA
- Department of Chemical and Biomolecular Engineering, The Johns Hopkins University, Baltimore, 21218, USA
| | - Jung Soo Suk
- Center for Nanomedicine, The Johns Hopkins University School of Medicine, 400 N. Broadway, Baltimore, MD, 602921231, USA.
- Department of Ophthalmology, The Johns Hopkins University School of Medicine, Baltimore, MD, 21231, USA.
- Department of Chemical and Biomolecular Engineering, The Johns Hopkins University, Baltimore, 21218, USA.
| |
Collapse
|
43
|
Kopecka J, Salaroglio IC, Perez-Ruiz E, Sarmento-Ribeiro AB, Saponara S, De Las Rivas J, Riganti C. Hypoxia as a driver of resistance to immunotherapy. Drug Resist Updat 2021; 59:100787. [PMID: 34840068 DOI: 10.1016/j.drup.2021.100787] [Citation(s) in RCA: 127] [Impact Index Per Article: 31.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 11/10/2021] [Accepted: 11/11/2021] [Indexed: 02/07/2023]
Abstract
Hypoxia, a hallmark of solid tumors, determines the selection of invasive and aggressive malignant clones displaying resistance to radiotherapy, conventional chemotherapy or targeted therapy. The recent introduction of immunotherapy, based on immune checkpoint inhibitors (ICPIs) and chimeric antigen receptor (CAR) T-cells, has markedly transformed the prognosis in some tumors but also revealed the existence of intrinsic or acquired drug resistance. In the current review we highlight hypoxia as a culprit of immunotherapy failure. Indeed, multiple metabolic cross talks between tumor and stromal cells determine the prevalence of immunosuppressive populations within the hypoxic tumor microenvironment and confer upon tumor cells resistance to ICPIs and CAR T-cells. Notably, hypoxia-triggered angiogenesis causes immunosuppression, adding another piece to the puzzle of hypoxia-induced immunoresistance. If these factors concurrently contribute to the resistance to immunotherapy, they also unveil an unexpected Achille's heel of hypoxic tumors, providing the basis for innovative combination therapies that may rescue the efficacy of ICPIs and CAR T-cells. Although these treatments reveal both a bright side and a dark side in terms of efficacy and safety in clinical trials, they represent the future solution to enhance the efficacy of immunotherapy against hypoxic and therapy-resistant solid tumors.
Collapse
Affiliation(s)
| | | | - Elizabeth Perez-Ruiz
- Unidad de Gestión Clínica Intercentros de Oncología Médica, Hospitales Universitarios Regional y Virgen de la Victoria, IBIMA, Málaga, Spain
| | - Ana Bela Sarmento-Ribeiro
- Laboratory of Oncobiology and Hematology and University Clinic of Hematology and Coimbra Institute for Clinical and Biomedical Research - Group of Environment Genetics and Oncobiology (iCBR/CIMAGO), Faculty of Medicine, University of Coimbra (FMUC), Center for Innovative Biomedicine and Biotechnology (CIBB) and Centro Hospitalar e Universitário de Coimbra (CHUC), Coimbra, Portugal
| | | | - Javier De Las Rivas
- Cancer Research Center (CiC-IBMCC, CSIC/USAL/IBSAL), Consejo Superior de Investigaciones Científicas (CSIC), University of Salamanca (USAL), and Instituto de Investigación Biomédica de Salamanca (IBSAL), Salamanca, Spain
| | | |
Collapse
|
44
|
Kim TH, Park JH, Park J, Son DM, Baek JY, Jang HJ, Jung WK, Byun Y, Kim SK, Park SK. Stereospecific inhibition of AMPK by (R)-crizotinib induced changes to the morphology and properties of cancer and cancer stem cell-like cells. Eur J Pharmacol 2021; 911:174525. [PMID: 34582848 DOI: 10.1016/j.ejphar.2021.174525] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Revised: 09/17/2021] [Accepted: 09/22/2021] [Indexed: 02/07/2023]
Abstract
Crizotinib is used in the clinic for treating patients with ALK- or ROS1-positive non-small-cell lung carcinoma. The objective of the present study was to determine if crizotinib enantiomers could induce changes to the properties of cancer and cancer stem cell (CSC)-like cells at a high concentration (∼ 3 μM). While (R)-crizotinib induced changes in morphologies or sizes of cells, (S)-crizotinib did not. Pretreatment with (R)-crizotinib suppressed the proliferation of cancer or CSC-like cells in vitro and tumor growth in vivo. In vivo administration of (R)-crizotinib inhibited the growth of tumors formed from CSC-like cells by 72%. %. Along with the morphological changes induced by (R)-crizotinib, the expression levels of CD44 (NCI-H23 and HCT-15), ALDH1 (NCI-H460), nanog (PC-3), and Oct-4A (CSC-like cells), which appear to be specific marker proteins, were greatly changed, suggesting that changes in cellular properties accompanied the morphological changes in the cells. The expression levels of Snail, Slug, and E-cadherin were also greatly altered by (R)-crizotinib. Among several signal transduction molecules examined, AMPK phosphorylation appeared to be selectively inhibited by (R)-crizotinib. BML-275 (an AMPK inhibitor) and AMPKα2 siRNA efficiently induced morphological changes to all types of cells examined, suggesting that (R)-crizotinib might cause losses of characteristics of cancer or CSCs via inhibition of AMPK. These results indicate that (R)-crizotinib might be an effective anticancer agent that can cause alteration in cancer cell properties.
Collapse
Affiliation(s)
- Tae Hyun Kim
- College of Pharmacy, Korea University, Sejong, Republic of Korea
| | - Jong Hyeok Park
- College of Pharmacy, Korea University, Sejong, Republic of Korea
| | - Jooyeon Park
- College of Pharmacy, Korea University, Sejong, Republic of Korea
| | - Dong Min Son
- College of Pharmacy, Korea University, Sejong, Republic of Korea
| | - Ji-Young Baek
- College of Pharmacy, Korea University, Sejong, Republic of Korea
| | - Hee Jun Jang
- College of Pharmacy, Korea University, Sejong, Republic of Korea
| | - Won Ki Jung
- College of Pharmacy, Korea University, Sejong, Republic of Korea
| | - Youngjoo Byun
- College of Pharmacy, Korea University, Sejong, Republic of Korea.
| | - Sang Kyum Kim
- College of Pharmacy, Chungnam National University, Daejeon, Republic of Korea
| | - Song-Kyu Park
- College of Pharmacy, Korea University, Sejong, Republic of Korea; Research Driven Hospital, Korea University Guro Hospital, Biomedical Research Center, Seoul, Republic of Korea.
| |
Collapse
|
45
|
Yuan M, Zhu Z, Mao W, Wang H, Qian H, Wu J, Guo X, Xu Q. Anlotinib Combined With Anti-PD-1 Antibodies Therapy in Patients With Advanced Refractory Solid Tumors: A Single-Center, Observational, Prospective Study. Front Oncol 2021; 11:683502. [PMID: 34692475 PMCID: PMC8529018 DOI: 10.3389/fonc.2021.683502] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Accepted: 09/17/2021] [Indexed: 01/05/2023] Open
Abstract
Introduction Anlotinib (AL3818) is a novel multi-target tyrosine kinase inhibitor (TKI) targeting vascular endothelial growth factor receptor (VEGFR) and suppressing tumor growth. Modulation of tumor suppressive immune microenvironment via the inhibition of vascular endothelial growth factor may augment the activity of immune checkpoint inhibitors. Here we described the results of safety, and clinical efficacy of anlotinib combined with immunotherapy in patients with advanced solid tumors, the serum cytokine levels, and peripheral blood T lymphocyte populations were detected simultaneously. Methods Twenty six cases with advanced late-stage cancers including lung, gallbladder, endometrial, gastric, pancreatic, penile cancers and melanoma were treated since January 2019. Patients received a combination of anlotinib (12mg) once daily on day 1 to day 14 (21 days as a course) plus anti-PD-1 antibodies every 3 weeks until progression or intolerable toxicity. Imaging was performed every 6 weeks for the first year of therapy. Blood samples were collected from patients prospectively. Serum interleukin (IL)-2, IL-4, IL-6, IL-10, Tumor necrosis factor-α (TNF-α), interferon-γ (IFN-γ) and circulating immune cell subsets were measured at baseline and after two cycles of treatment via flow cytometry. Results There were ten tumor types enrolled with lung, gallbladder, cholangiocarcinoma and soft tissue sarcoma being the most common. Most patients had received front line treatments for metastatic disease (80.8%). The objective response rate (ORR) was 23.1%, including one complete response (CR) (3.8%) and five partial responses (PR) (19.2%) and a disease control rate (DCR=CR+PR+SD) of 80.8% (21 of 26). The median PFS was 8.37 months (95% CI: 6.5-10.0 months). Three patients (11.5%) had grade 3 treatment-related adverse events. There were no grade 4 or 5 treatment-related adverse events. Grades 3 toxicities included hand-foot syndrome (n=2) and hypertension (n=1). Higher serum IL-2, IL-4, IL-10, TNF-α, IFN-γ levels and lower ratios of CD4/CD8 T cells were found in the responders compared with non-responders. Conclusions The preliminary data showed that the combination of anlotinib and anti-PD-1 antibodies demonstrated promising durable antitumor efficacy with acceptable toxicity in patients with various advance tumors, and promoted favorable changes in serum IL-2, IL-4, IL-10, TNF-α, IFN-γ levels and circulating immune cell subsets in clinical responders. It is worth to further validate the efficacy in a randomized prospective trial.
Collapse
Affiliation(s)
- Min Yuan
- Department of Oncology, Shanghai Tenth People's Hospital, Tongji University, Shanghai, China
| | - Zhongzheng Zhu
- Department of Oncology, Shanghai Tenth People's Hospital, Tongji University, Shanghai, China
| | - Wei Mao
- Department of Oncology, Shanghai Tenth People's Hospital, Tongji University, Shanghai, China
| | - Hui Wang
- Department of Oncology, Shanghai Tenth People's Hospital, Tongji University, Shanghai, China
| | - Hong Qian
- Department of Oncology, Shanghai Tenth People's Hospital, Tongji University, Shanghai, China
| | - Jianguo Wu
- Department of Oncology, Shanghai Tenth People's Hospital, Tongji University, Shanghai, China
| | - Xianling Guo
- Department of Oncology, Shanghai Tenth People's Hospital, Tongji University, Shanghai, China
| | - Qing Xu
- Department of Oncology, Shanghai Tenth People's Hospital, Tongji University, Shanghai, China
| |
Collapse
|
46
|
Somarribas Patterson LF, Vardhana SA. Metabolic regulation of the cancer-immunity cycle. Trends Immunol 2021; 42:975-993. [PMID: 34610889 DOI: 10.1016/j.it.2021.09.002] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 09/09/2021] [Accepted: 09/11/2021] [Indexed: 12/11/2022]
Abstract
The cancer-immunity cycle (CIC) comprises a series of events that are required for immune-mediated control of tumor growth. Interruption of one or more steps of the CIC enables tumors to evade immunosurveillance. However, attempts to restore antitumor immunity by reactivating the CIC have had limited success thus far. Recently, numerous studies have implicated metabolic reprogramming of tumor and immune cells within the tumor microenvironment (TME) as key contributors to immune evasion. In this opinion, we propose that alterations in cellular metabolism during tumorigenesis promote both initiation and disruption of the CIC. We also provide a rationale for metabolically targeting the TME, which may assist in improving tumor responsiveness to chimeric antigen receptor (CAR)-transduced T cells or immune checkpoint blockade (ICB) therapies.
Collapse
Affiliation(s)
- Luis F Somarribas Patterson
- Department of Biochemistry, School of Medicine, University of Costa Rica, 11501-2060 San José, Costa Rica; Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Santosha A Vardhana
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA; Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA; Parker Institute for Cancer Immunotherapy, San Francisco, CA, USA.
| |
Collapse
|
47
|
Shen C, He Y, Chen Q, Feng H, Williams TM, Lu Y, He Z. Narrative review of emerging roles for AKT-mTOR signaling in cancer radioimmunotherapy. ANNALS OF TRANSLATIONAL MEDICINE 2021; 9:1596. [PMID: 34790802 PMCID: PMC8576660 DOI: 10.21037/atm-21-4544] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 09/27/2021] [Indexed: 12/20/2022]
Abstract
OBJECTIVE To summarize the roles of AKT-mTOR signaling in the regulation of the DNA damage response and PD-L1 expression in cancer cells, and propose a novel strategy of targeting AKT-mTOR signaling in combination with radioimmunotherapy in the era of cancer immunotherapy. BACKGROUND Immunotherapy has greatly improved the clinical outcomes of many cancer patients and has changed the landscape of cancer patient management. However, only a small subgroup of cancer patients (~20-30%) benefit from immune checkpoint blockade-based immunotherapy. The current challenge is to find biomarkers to predict the response of patients to immunotherapy and strategies to sensitize patients to immunotherapy. METHODS Search and review the literature which were published in PUBMED from 2000-2021 with the key words mTOR, AKT, drug resistance, DNA damage response, immunotherapy, PD-L1, DNA repair, radioimmunotherapy. CONCLUSIONS More than 50% of cancer patients receive radiotherapy during their course of treatment. Radiotherapy has been shown to reduce the growth of locally irradiated tumors as well as metastatic non-irradiated tumors (abscopal effects) by affecting systemic immunity. Consistently, immunotherapy has been demonstrated to enhance radiotherapy with more than one hundred clinical trials of radiation in combination with immunotherapy (radioimmunotherapy) across cancer types. Nevertheless, current available data have shown limited efficacy of trials testing radioimmunotherapy. AKT-mTOR signaling is a major tumor growth-promoting pathway and is upregulated in most cancers. AKT-mTOR signaling is activated by growth factors as well as genotoxic stresses including radiotherapy. Importantly, recent advances have shown that AKT-mTOR is one of the main signaling pathways that regulate DNA damage repair as well as PD-L1 levels in cancers. These recent advances clearly suggest a novel cancer therapy strategy by targeting AKT-mTOR signaling in combination with radioimmunotherapy.
Collapse
Affiliation(s)
- Changxian Shen
- Department of Radiation Oncology, Beckman Research Institute, City of Hope National Medical Center, Duarte, CA, USA
| | - Yuqi He
- Monash School of Medicine, Monash University, Clayton, VIC, Australia
| | - Qiang Chen
- Department of Oncology, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Haihua Feng
- Department of Radiation Oncology, Beckman Research Institute, City of Hope National Medical Center, Duarte, CA, USA
| | - Terence M. Williams
- Department of Radiation Oncology, Beckman Research Institute, City of Hope National Medical Center, Duarte, CA, USA
| | - Yuanzhi Lu
- Department of Clinical Pathology, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Zhengfu He
- Department of Thoracic Surgery, Sir Run Run Shaw Hospital, College of Medicine Zhejiang University, Hangzhou, China
| |
Collapse
|
48
|
Wang D, Li Y, Chen X, Li P. Prognostic significance of volume-based 18F-FDG PET/CT parameters and correlation with PD-L1 expression in patients with surgically resected lung adenocarcinoma. Medicine (Baltimore) 2021; 100:e27100. [PMID: 34477147 PMCID: PMC8415941 DOI: 10.1097/md.0000000000027100] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Accepted: 08/11/2021] [Indexed: 12/09/2022] Open
Abstract
The aim of this study was to retrospectively analyze 18F-FDG positron emission tomography/computed tomography (18F-FDG PET/CT) metabolic variables, programmed death-ligand 1 (PD-L1) and phosphorylated signal transducer and activator of transcription 3 (p-STAT3) tumor expression, and other factors as predictors of disease-free survival (DFS) in patients with lung adenocarcinoma (LUAD) (stage IA-IIIA) who underwent surgical resection. We still lack predictor of immune checkpoint (programmed cell death-1 [PD-1]/PD-L1) inhibitors. Herein, we investigated the correlation between metabolic parameters from 18F-FDG PET/CT and PD-L1 expression in patients with surgically resected LUAD.Seventy-four patients who underwent 18F-FDG PET/CT prior to treatment were consecutively enrolled. The main 18F-FDG PET/CT-derived variables were primary tumor maximum standardized uptake value (SUVmax), metabolic tumor volume (MTV), and total lesion glycolysis (TLG). Surgical tumor specimens were analyzed for PD-L1 and p-STAT3 expression using immunohistochemistry. Correlations between immunohistochemistry results and 18F-FDG PET/CT-derived variables were compared. Associations of PD-L1 and p-STAT3 tumor expression, 18F-FDG PET/CT-derived variables, and other factors with DFS in resected LUAD were evaluated.All tumors were FDG-avid. The cutoff values of low and high SUVmax, MTV, and TLG were 12.60, 14.87, and 90.85, respectively. The results indicated that TNM stage, PD-L1 positivity, and high 18F-FDG PET/CT metabolic volume parameters (TLG ≥90.85 or MTV ≥14.87) were independent predictors of worse DFS in resected LUAD. No 18F-FDG metabolic parameters associated with PD-L1 expression were observed (chi-square test), but we found that patients with positive PD-L1 expression have significantly higher SUVmax (P = .01), MTV (P = .00), and TLG (P = .00) than patients with negative PD-L1 expression.18F-FDG PET/CT metabolic volume parameters (TLG ≥90.85 or MTV ≥14.87) were more helpful in prognostication than the conventional parameter (SUVmax), PD-L1 expression was an independent predictor of DFS in patients with resected LUAD. Metabolic parameters on 18F-FDG PET/CT have a potential role for 18F-FDG PET/CT in selecting candidate LUAD for treatment with checkpoint inhibitors.
Collapse
Affiliation(s)
- Dalong Wang
- Department of PET/CT, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, China
| | - Yingci Li
- Department of PET/CT, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang Province, China
| | - Xiaolin Chen
- Department of PET/CT, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, China
| | - Ping Li
- Department of PET/CT, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, China
| |
Collapse
|
49
|
The Role of Oncogenes and Redox Signaling in the Regulation of PD-L1 in Cancer. Cancers (Basel) 2021; 13:cancers13174426. [PMID: 34503236 PMCID: PMC8431622 DOI: 10.3390/cancers13174426] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 07/29/2021] [Accepted: 08/16/2021] [Indexed: 12/17/2022] Open
Abstract
Tumor cells can evade the immune system via multiple mechanisms, including the dysregulation of the immune checkpoint signaling. These signaling molecules are important factors that can either stimulate or inhibit tumor immune response. Under normal physiological conditions, the interaction between programmed cell death ligand 1 (PD-L1) and its receptor, programmed cell death 1 (PD-1), negatively regulates T cell function. In cancer cells, high expression of PD-L1 plays a key role in cancer evasion of the immune surveillance and seems to be correlated with clinical response to immunotherapy. As such, it is important to understand various mechanisms by which PD-L1 is regulated. In this review article, we provide an up-to-date review of the different mechanisms that regulate PD-L1 expression in cancer. We will focus on the roles of oncogenic signals (c-Myc, EML4-ALK, K-ras and p53 mutants), growth factor receptors (EGFR and FGFR), and redox signaling in the regulation of PD-L1 expression and discuss their clinical relevance and therapeutic implications. These oncogenic signalings have common and distinct regulatory mechanisms and can also cooperatively control tumor PD-L1 expression. Finally, strategies to target PD-L1 expression in tumor microenvironment including combination therapies will be also discussed.
Collapse
|
50
|
Fang Y, Wang Y, Zeng D, Zhi S, Shu T, Huang N, Zheng S, Wu J, Liu Y, Huang G, Xue Y, Bin J, Liao Y, Shi M, Liao W. Comprehensive analyses reveal TKI-induced remodeling of the tumor immune microenvironment in EGFR/ALK-positive non-small-cell lung cancer. Oncoimmunology 2021; 10:1951019. [PMID: 34345533 PMCID: PMC8288040 DOI: 10.1080/2162402x.2021.1951019] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
Tyrosine kinase inhibitors (TKI) play a pivotal role in the treatment of non-small-cell lung cancer (NSCLC) with mutations in epidermal growth factor receptor (EGFR) and rearrangements in anaplastic lymphoma kinase (ALK). However, the influences of TKIs on the tumor immune microenvironment (TIM), especially dynamic changes of responders, have not yet been fully elucidated. Therefore, RNA sequencing and whole-exome sequencing were performed on EGFR/ALK-positive NSCLC samples before and after TKI treatment. In combination with neoantigen and mutational-load estimations, xCell and single-sample gene set enrichment analysis (ssGSEA) were used to assess tumor immune-cell infiltration and activity. Furthermore, weighted-gene correlation network analysis and the bottleneck method were used to identify the hub genes that affected treatment-related immune responses. We found that TKI treatment remodeled the TIM in treatment-responsive samples. Profound increases in the rate of anti-tumor cell infiltration and cytotoxicity was observed following TKI treatment, while antigen presentation was limited in ALK-rearranged samples. However, no significant change in anti-tumor cell infiltration or cytotoxicity was found between pre-treatment and post-progression samples. Subsequently, we found that neurofilament heavy (NEFH) mutations were enriched in samples after TKI treatment and were associated with reduced neutrophil infiltration. The cytotoxicity of EGFR-mutant NSCLCs with co-driver TP53 mutation and ALK-rearranged samples with wild-type TP53 seems to be more easily induced by TKI. Finally, the immune-associated score generated by hub genes was positively correlated with immune infiltration, immune activation, and a favorable prognosis. In conclusion, the dynamic changes in the TIM provide clues to drug selection and timing for TKI-immunotherapy combinations.
Collapse
Affiliation(s)
- Yisheng Fang
- Department of Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Yuanyuan Wang
- Department of Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Dongqiang Zeng
- Department of Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Shimeng Zhi
- Department of Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Tingting Shu
- Department of Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Na Huang
- Department of Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Siting Zheng
- Department of Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Jianhua Wu
- Department of Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Yantan Liu
- Department of Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Genjie Huang
- Department of Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Yichen Xue
- Department of Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Jianping Bin
- Department of Cardiology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Yulin Liao
- Department of Cardiology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Min Shi
- Department of Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Wangjun Liao
- Department of Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| |
Collapse
|