1
|
Dai Y, Yang L, Cao G, Mo L, Yang C, Zhu Y, Guo Y, Hong Y, Xu H, Lu S, Du S, He J. Combination therapy and drug co-delivery systems for atherosclerosis. J Control Release 2025; 381:113543. [PMID: 39986476 DOI: 10.1016/j.jconrel.2025.02.039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Revised: 01/25/2025] [Accepted: 02/15/2025] [Indexed: 02/24/2025]
Abstract
Atherosclerosis is a chronic inflammatory disease characterized by the accumulation of plaque within the arteries. Despite advances in therapeutic strategies including anti-inflammatory, antioxidant, and lipid metabolism modulation treatments over the past two decades, the treatment of atherosclerosis remains challenging, as arterial damage is the result of interconnected pathological factors. Therefore, current monotherapies often fail to address the complex nature of this disease, leading to insufficient therapeutic outcomes. This review addressed this paucity of effective treatment options by comprehensively exploring the potential for combination therapies and advanced drug co-delivery systems for the treatment of atherosclerosis. We investigated the pathological features of and risk factors for atherosclerosis, underscoring the importance of drug combination therapies for the treatment of atherosclerotic diseases. We discuss herein mathematical models for quantifying the efficacy of the combination therapies and provide a systematic summary of drug combinations for the treatment of atherosclerosis. We also provide a detailed review of the latest advances in nanoparticle-based drug co-delivery systems for the treatment of atherosclerosis, focusing on the design of carriers with high biocompatibility and efficacy. By exploring the possibilities and challenges inherent to this approach, we aim to highlight cutting-edge technologies that can foster the development of innovative strategies, optimize drug co-administration, improve treatment outcomes, and reduce the burden of atherosclerosis-related morbidity and mortality on the healthcare system.
Collapse
Affiliation(s)
- Yingxuan Dai
- School of Pharmacy, Hubei University of Chinese Medicine, Wuhan 430065, PR China
| | - Li Yang
- School of Pharmacy, Hubei University of Chinese Medicine, Wuhan 430065, PR China
| | - Guosheng Cao
- School of Pharmacy, Hubei University of Chinese Medicine, Wuhan 430065, PR China; Hubei Shizhen Laboratory, Wuhan 430065, PR China
| | - Liqing Mo
- School of Pharmacy, Hubei University of Chinese Medicine, Wuhan 430065, PR China; Research Center for Pharmaceutical Preparations, Hubei University of Chinese Medicine, Wuhan 430065, PR China
| | - Can Yang
- School of Pharmacy, Hubei University of Chinese Medicine, Wuhan 430065, PR China; Research Center for Pharmaceutical Preparations, Hubei University of Chinese Medicine, Wuhan 430065, PR China
| | - Yuxi Zhu
- Department of Biomedical Informatics, College of Medicine, Ohio State University, Columbus, OH 43210, USA; Department of Pediatrics, University Hospitals Rainbow Babies & Children's Hospital, Cleveland, OH 44106, USA
| | - Yujie Guo
- School of Pharmacy, Hubei University of Chinese Medicine, Wuhan 430065, PR China; Hubei Shizhen Laboratory, Wuhan 430065, PR China; Research Center for Pharmaceutical Preparations, Hubei University of Chinese Medicine, Wuhan 430065, PR China
| | - Yi Hong
- School of Pharmacy, Hubei University of Chinese Medicine, Wuhan 430065, PR China; Hubei Shizhen Laboratory, Wuhan 430065, PR China; Research Center for Pharmaceutical Preparations, Hubei University of Chinese Medicine, Wuhan 430065, PR China
| | - Hanlin Xu
- School of Pharmacy, Hubei University of Chinese Medicine, Wuhan 430065, PR China; Hubei Shizhen Laboratory, Wuhan 430065, PR China; Research Center for Pharmaceutical Preparations, Hubei University of Chinese Medicine, Wuhan 430065, PR China
| | - Shan Lu
- School of Pharmacy, Hubei University of Chinese Medicine, Wuhan 430065, PR China; Hubei Shizhen Laboratory, Wuhan 430065, PR China; Research Center for Pharmaceutical Preparations, Hubei University of Chinese Medicine, Wuhan 430065, PR China.
| | - Shi Du
- Department of Biomedical Informatics, College of Medicine, Ohio State University, Columbus, OH 43210, USA; Division of Pharmaceutics and Pharmacology, College of Pharmacy, Ohio State University, Columbus, OH 43210, USA.
| | - Jianhua He
- School of Pharmacy, Hubei University of Chinese Medicine, Wuhan 430065, PR China; Hubei Shizhen Laboratory, Wuhan 430065, PR China; Research Center for Pharmaceutical Preparations, Hubei University of Chinese Medicine, Wuhan 430065, PR China.
| |
Collapse
|
2
|
Polara H, Shah T, Babanyinah G, Wang H, Bhadran A, Biewer MC, Stefan MC. Improved Drug Delivery through Amide-Functionalized Polycaprolactones: Enhanced Loading Capacity and Sustained Drug Release. Biomacromolecules 2025. [PMID: 40304243 DOI: 10.1021/acs.biomac.5c00280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2025]
Abstract
Polymeric micelles are effective for drug delivery but often face instability, low drug loading capacity (DLC), and premature drug leakage. Herein, we report that disubstituted γ-amide functionalized ε-caprolactone (ε-CL) monomers double the substituent density per polymeric unit, enhancing micelle properties and improving drug delivery applications. Three hydrophobic ε-CL monomers with two propyl groups, two benzyl groups, and a combination of propyl and benzyl groups were synthesized. The obtained monomers were polymerized by ring-opening polymerization using poly(ethylene glycol) (PEG) as a macroinitiator and the hydrophilic block. The synthesized copolymers successfully self-assembled to form micelles, and doxorubicin (DOX) was loaded into all micelles. Poly(ethylene glycol)-b-poly(N-propyl-N-benzyl-7-oxopane-4-carboxamide) (PEG-b-PBnPyCL) exhibited 7.33 wt % DLC with pH-responsive drug release in acidic conditions. In addition, the DOX-loaded micelles of PEG-b-PBnPyCL exhibited nearly 20% cell viability in MDA-MB-231 cancer cells. These results contribute to advancing polymeric micelles as drug carriers with clinical translation potential.
Collapse
Affiliation(s)
- Himanshu Polara
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, Richardson, Texas 75080, United States
| | - Tejas Shah
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, Richardson, Texas 75080, United States
| | - Godwin Babanyinah
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, Richardson, Texas 75080, United States
| | - Hanghang Wang
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, Richardson, Texas 75080, United States
| | - Abhi Bhadran
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, Richardson, Texas 75080, United States
| | - Michael C Biewer
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, Richardson, Texas 75080, United States
| | - Mihaela C Stefan
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, Richardson, Texas 75080, United States
| |
Collapse
|
3
|
Liu L, Yang M, Chen Z. Surface functionalized nanomaterial systems for targeted therapy of endocrine related tumors: a review of recent advancements. Drug Deliv 2024; 31:2390022. [PMID: 39138394 PMCID: PMC11328606 DOI: 10.1080/10717544.2024.2390022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 06/03/2024] [Accepted: 07/23/2024] [Indexed: 08/15/2024] Open
Abstract
The application of multidisciplinary techniques in the management of endocrine-related cancers is crucial for harnessing the advantages of multiple disciplines and their coordinated efforts in eliminating tumors. Due to the malignant characteristics of cancer cells, they possess the capacity to develop resistance to traditional treatments such as chemotherapy and radiotherapy. Nevertheless, despite diligent endeavors to enhance the prediction of outcomes, the overall survival rate for individuals afflicted with endocrine-related malignancy remains quite miserable. Hence, it is imperative to investigate innovative therapy strategies. The latest advancements in therapeutic tactics have offered novel approaches for the therapy of various endocrine tumors. This paper examines the advancements in nano-drug delivery techniques and the utilization of nanomaterials for precise cancer cures through targeted therapy. This review provides a thorough analysis of the potential of combined drug delivery strategies in the treatment of thyroid cancer, adrenal gland tumors, and pancreatic cancer. The objective of this study is to gain a deeper understanding of current therapeutic approaches, stimulate the development of new drug DDS, and improve the effectiveness of treatment for patients with these diseases. The intracellular uptake of pharmaceuticals into cancer cells can be significantly improved through the implantation of synthetic or natural substances into nanoparticles, resulting in a substantial reduction in the development of endocrine malignancies.
Collapse
Affiliation(s)
- Limei Liu
- Department of Endocrinology, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Miao Yang
- Department of Endocrinology, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Ziyang Chen
- Department of Gastroenterology, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| |
Collapse
|
4
|
Cuenca-Escalona J, Bödder J, Subtil B, Sánchez-Sánchez M, Vidal-Manrique M, Sweep MWD, Fauerbach JA, Cambi A, Flórez-Grau G, de Vries JM. EP2/EP4 targeting prevents tumor-derived PGE2-mediated immunosuppression in cDC2s. J Leukoc Biol 2024; 116:1554-1567. [PMID: 39041661 DOI: 10.1093/jleuko/qiae164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 06/11/2024] [Accepted: 07/22/2024] [Indexed: 07/24/2024] Open
Abstract
Tumor-derived prostaglandin E2 (PGE2) impairs antitumor immunity by priming suppressive functions on various immune cell types, including dendritic cells (DCs). In this way, tumors mediate DC dysfunction and hamper their antitumoral activity. PGE2 is known to modulate DC function via signaling through the E-type prostanoid receptor 2 (EP2) and EP4. Preclinical studies have demonstrated the therapeutic value of targeting EP2/4 receptor signaling in DCs. Ongoing phase 1 clinical trials with EP antagonists have shown immunomodulation in cancer patients. However, the systemic drug administration leads to off-target events and subsequent side effects. To limit the off-target effects of EP targeting, EP2 and EP4 antagonists were encapsulated in polymeric nanoparticles (NPs). In this study, we evaluated the efficacy of EP2/4-specific antagonists encapsulated in NPs to protect conventional type 2 DCs (cDC2s) from suppressive effects of tumor-derived PGE2 in different tumor models. We show that tumor-derived PGE2 signals via EP2/4 to mediate the acquisition of a suppressive phenotype of cDC2s. EP2/4 antagonists encapsulated in NPs impaired the conversion of cDC2s toward a suppressive state and inhibited the occurrence of suppressive features such as interleukin-10 production or the ability to expand regulatory T cells. Importantly, the NPs abolished the transition toward this suppressive state in different tumor models: melanoma-conditioned media, ascites fluid derived from ovarian cancer patients (2-dimensional), and upon coculture with colorectal cancer patient-derived organoids (3-dimensional). We propose that targeting the PGE2-EP2/4 axis using NPs can achieve immunomodulation in the immune system of cancer patients, alleviate tumor-derived suppression, and thus facilitate the development of potent antitumor immunity in cancer patients.
Collapse
MESH Headings
- Receptors, Prostaglandin E, EP2 Subtype/antagonists & inhibitors
- Receptors, Prostaglandin E, EP2 Subtype/metabolism
- Dinoprostone/metabolism
- Receptors, Prostaglandin E, EP4 Subtype/antagonists & inhibitors
- Receptors, Prostaglandin E, EP4 Subtype/metabolism
- Dendritic Cells/immunology
- Dendritic Cells/drug effects
- Animals
- Mice
- Cell Line, Tumor
- Female
- Humans
- Mice, Inbred C57BL
- Immune Tolerance/drug effects
- Nanoparticles/chemistry
Collapse
Affiliation(s)
- Jorge Cuenca-Escalona
- Department of Medical BioSciences, Radboud University Medical Center, Geert Grooteplein 28, 6525 GA, Nijmegen, the Netherlands
| | - Johanna Bödder
- Department of Medical BioSciences, Radboud University Medical Center, Geert Grooteplein 28, 6525 GA, Nijmegen, the Netherlands
| | - Beatriz Subtil
- Department of Medical BioSciences, Radboud University Medical Center, Geert Grooteplein 28, 6525 GA, Nijmegen, the Netherlands
| | - Marta Sánchez-Sánchez
- Department of Medical BioSciences, Radboud University Medical Center, Geert Grooteplein 28, 6525 GA, Nijmegen, the Netherlands
| | - Marcos Vidal-Manrique
- Laboratory of Hematology, Radboud University Medical Center, Geert Grooteplein Zuid 10, 6525 GA, Nijmegen, the Netherlands
| | - Mark W D Sweep
- Department of Medical BioSciences, Radboud University Medical Center, Geert Grooteplein 28, 6525 GA, Nijmegen, the Netherlands
- Department of Medical Oncology, Radboud University Medical Center, Geert Grooteplein Zuid 10, 6525 GA, Nijmegen, the Netherlands
| | - Jonathan A Fauerbach
- R&D Reagents, Chemical Biology Department; Miltenyi Biotec B.V. & Co. KG, Friedrich-Ebert-Straße 68, 51429, Bergisch Gladbach, Germany
| | - Alessandra Cambi
- Department of Medical BioSciences, Radboud University Medical Center, Geert Grooteplein 28, 6525 GA, Nijmegen, the Netherlands
| | - Georgina Flórez-Grau
- Department of Medical BioSciences, Radboud University Medical Center, Geert Grooteplein 28, 6525 GA, Nijmegen, the Netherlands
| | - Jolanda M de Vries
- Department of Medical BioSciences, Radboud University Medical Center, Geert Grooteplein 28, 6525 GA, Nijmegen, the Netherlands
| |
Collapse
|
5
|
Lara P, Quiñonero F, Ortiz R, Prados J, Melguizo C. Nanoparticles Bounded to Interfering RNAs as a Therapy for Pancreatic Cancer: A Systematic Review. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2024; 16:e2013. [PMID: 39510122 DOI: 10.1002/wnan.2013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 10/04/2024] [Accepted: 10/07/2024] [Indexed: 11/15/2024]
Abstract
Pancreatic cancer is one of the tumors with poor prognosis and low survival due to late diagnosis, high resistance, and very limited effective therapeutic options. Thus, new pharmacological treatments are necessary to improve the prognosis of patients. In this context, nanoparticles represent an efficient system for transporting and administering therapeutic molecules. Furthermore, siRNA can be used in cancer treatment to selectively inhibit the expression of any target gene. Therefore, nanoparticles associated with siRNA have been tested as a new therapeutic strategy to solve the pancreatic cancer treatment failure in the clinical setting. The current article presents a systematic revision of the literature of the last 10 years in which nanoparticles loading siRNA are used in pancreatic cancer. This research was carried out in three databases (PubMed, Scopus, and Web of Science) obtaining 164 articles from which 37 were selected. Our results show an overall view of the high effectiveness of this new therapy that combines nanoparticles with genetic therapy in pancreatic cancer suggesting that siRNA-based medicines will likely open up a new therapeutic era in the treatment of this type of tumors.
Collapse
Affiliation(s)
- Patricia Lara
- Institute of Biopathology and Regenerative Medicine (IBIMER), Biomedical Research Center (CIBM), Granada, Spain
| | - Francisco Quiñonero
- Instituto de Investigación Biosanitaria de Granada, (Ibs.GRANADA), Granada, Spain
| | - Raul Ortiz
- Institute of Biopathology and Regenerative Medicine (IBIMER), Biomedical Research Center (CIBM), Granada, Spain
- Instituto de Investigación Biosanitaria de Granada, (Ibs.GRANADA), Granada, Spain
| | - Jose Prados
- Institute of Biopathology and Regenerative Medicine (IBIMER), Biomedical Research Center (CIBM), Granada, Spain
- Instituto de Investigación Biosanitaria de Granada, (Ibs.GRANADA), Granada, Spain
- Department of Anatomy and Embryology, University of Granada, Granada, Spain
| | - Consolación Melguizo
- Institute of Biopathology and Regenerative Medicine (IBIMER), Biomedical Research Center (CIBM), Granada, Spain
- Instituto de Investigación Biosanitaria de Granada, (Ibs.GRANADA), Granada, Spain
- Department of Anatomy and Embryology, University of Granada, Granada, Spain
| |
Collapse
|
6
|
Rosales TKO, da Silva FFA, Bernardes ES, Paulo Fabi J. Plant-derived polyphenolic compounds: nanodelivery through polysaccharide-based systems to improve the biological properties. Crit Rev Food Sci Nutr 2024; 64:11894-11918. [PMID: 37585699 DOI: 10.1080/10408398.2023.2245038] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/18/2023]
Abstract
Plant-derived polyphenols are naturally occurring compounds widely distributed in plants. They have received greater attention in the food and pharmaceutical industries due to their potential health benefits, reducing the risk of some chronic diseases due to their antioxidant, anti-inflammatory, anticancer, cardioprotective, and neuro-action properties. Polyphenolic compounds orally administered can be used as adjuvants in several treatments but with restricted uses due to chemical instability. The review discusses the different structural compositions of polyphenols and their influence on chemical stability. Despite the potential and wide applications, there is a need to improve the delivery of polyphenolics to target the human intestine without massive chemical modifications. Oral administration of polyphenols is unfeasible due to instability, low bioaccessibility, and limited bioavailability. Nano-delivery systems based on polysaccharides (starch, pectin, chitosan, and cellulose) have been identified as a viable option for oral ingestion, potentiate biological effects, and direct-controlled delivery in specific tissues. The time and dose can be individualized for specific diseases, such as intestinal cancer. This review will address the mechanisms by which polysaccharides-based nanostructured systems can protect against degradation and enhance intestinal permeation, oral bioavailability, and the potential application of polysaccharides as nanocarriers for the controlled and targeted delivery of polyphenolic compounds.
Collapse
Affiliation(s)
- Thiécla Katiane Osvaldt Rosales
- Department of Food Science and Experimental Nutrition, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, SP, Brazil
- Instituto de Pesquisa Energéticas e Nucleares - IPEN, São Paulo, SP, Brazil
| | | | | | - João Paulo Fabi
- Department of Food Science and Experimental Nutrition, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, SP, Brazil
- Food Research Center (FoRC), CEPID-FAPESP (Research, Innovation and Dissemination Centers, São Paulo Research Foundation), São Paulo, SP, Brazil
- Food and Nutrition Research Center (NAPAN), University of São Paulo, São Paulo, SP, Brazil
| |
Collapse
|
7
|
Nan S, Che Y, Gong T, Zhang Z, Fu Y. Renal-Targeted Drug Delivery by Chitosan Oligosaccharide Micelles with HSA-Enriched Protein Corona for the Treatment of Ischemia/Reperfusion-Induced Acute Kidney Injury. ACS APPLIED MATERIALS & INTERFACES 2024; 16:49913-49925. [PMID: 39240782 DOI: 10.1021/acsami.4c09665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/08/2024]
Abstract
Renal-specific nanoparticulate drug delivery systems have shown great potential in reducing systemic side effects and improving the safety and efficacy of treatments for renal diseases. Here, stearic acid-grafted chitosan oligosaccharide (COS-SA) was synthesized as a renal-targeted carrier due to the high affinity of the 2-glucosamine moiety on COS to the megalin receptor expressed on renal proximal tubular epithelial cells. Specifically, COS-SA/CLT micelles were prepared by encapsulating celastrol (CLT) with COS-SA, and different proportions of human serum albumin (HSA) were then adsorbed onto its surface to explore the interaction between the protein corona and cationic polymeric micelles. Our results showed that a multilayered protein corona, consisting of an inner "hard" corona and an outer "soft" corona, was formed on the surface of COS-SA/CLT@HSA8, which was beneficial in preventing its recognition and phagocytosis by macrophages. The formation of HSA protein corona on COS-SA/CLT micelles also increased its accumulation in the renal tubules. Furthermore, the electropositivity of COS-SA/CLT micelles affected the conformation of adsorbed proteins to various degrees. During the adsorption process, the protein corona on the surface of COS-SA/CLT@HSA1 was partially denatured. Overall, COS-SA/CLT and COS-SA/CLT@HSA micelles demonstrated sufficient safety with renal targeting potential, providing a viable strategy for the management of ischemia/reperfusion-induced acute kidney injury.
Collapse
Affiliation(s)
- Simin Nan
- Key Laboratory of Drug Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Yujie Che
- Key Laboratory of Drug Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Tao Gong
- Key Laboratory of Drug Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Zhirong Zhang
- Key Laboratory of Drug Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Yao Fu
- Key Laboratory of Drug Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| |
Collapse
|
8
|
Ciceu A, Fenyvesi F, Hermenean A, Ardelean S, Dumitra S, Puticiu M. Advancements in Plant-Based Therapeutics for Hepatic Fibrosis: Molecular Mechanisms and Nanoparticulate Drug Delivery Systems. Int J Mol Sci 2024; 25:9346. [PMID: 39273295 PMCID: PMC11394827 DOI: 10.3390/ijms25179346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 08/21/2024] [Accepted: 08/27/2024] [Indexed: 09/15/2024] Open
Abstract
Chronic liver injuries often lead to hepatic fibrosis, a condition characterized by excessive extracellular matrix accumulation and abnormal connective tissue hyperplasia. Without effective treatment, hepatic fibrosis can progress to cirrhosis or hepatocellular carcinoma. Current treatments, including liver transplantation, are limited by donor shortages and high costs. As such, there is an urgent need for effective therapeutic strategies. This review focuses on the potential of plant-based therapeutics, particularly polyphenols, phenolic acids, and flavonoids, in treating hepatic fibrosis. These compounds have demonstrated anti-fibrotic activities through various signaling pathways, including TGF-β/Smad, AMPK/mTOR, Wnt/β-catenin, NF-κB, PI3K/AKT/mTOR, and hedgehog pathways. Additionally, this review highlights the advancements in nanoparticulate drug delivery systems that enhance the pharmacokinetics, bioavailability, and therapeutic efficacy of these bioactive compounds. Methodologically, this review synthesizes findings from recent studies, providing a comprehensive analysis of the mechanisms and benefits of these plant-based treatments. The integration of novel drug delivery systems with plant-based therapeutics holds significant promise for developing effective treatments for hepatic fibrosis.
Collapse
Affiliation(s)
- Alina Ciceu
- "Aurel Ardelean" Institute of Life Sciences, Vasile Goldis Western University of Arad, 86 Rebreanu, 310414 Arad, Romania
| | - Ferenc Fenyvesi
- Department of Molecular and Nanopharmaceutics, Faculty of Pharmacy, University of Debrecen, 4032 Debrecen, Hungary
| | - Anca Hermenean
- "Aurel Ardelean" Institute of Life Sciences, Vasile Goldis Western University of Arad, 86 Rebreanu, 310414 Arad, Romania
| | - Simona Ardelean
- Faculty of Pharmacy, Vasile Goldis Western University of Arad, 86 Rebreanu, 310414 Arad, Romania
| | - Simona Dumitra
- Faculty of Medicine, Vasile Goldis Western University of Arad, 86 Rebreanu, 310414 Arad, Romania
| | - Monica Puticiu
- Faculty of Medicine, Vasile Goldis Western University of Arad, 86 Rebreanu, 310414 Arad, Romania
| |
Collapse
|
9
|
Tang C, Zhou K, Wu D, Zhu H. Nanoparticles as a Novel Platform for Cardiovascular Disease Diagnosis and Therapy. Int J Nanomedicine 2024; 19:8831-8846. [PMID: 39220195 PMCID: PMC11365508 DOI: 10.2147/ijn.s474888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Accepted: 08/18/2024] [Indexed: 09/04/2024] Open
Abstract
Cardiovascular disease (CVD) is a major global health issue with high mortality and morbidity rates. With the advances in nanotechnology, nanoparticles are receiving increasing attention in diagnosing and treating CVD. Previous studies have explored the use of nanoparticles in noninvasive diagnostic technologies, such as magnetic resonance imaging and computed tomography. Nanoparticles have been extensively studied as drug carriers and prognostic factors, demonstrating synergistic efficacy. This review summarized the current applications of nanoparticles in CVD and discussed their opportunities and challenges for further exploration.
Collapse
Affiliation(s)
- Chuanyun Tang
- The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, People’s Republic of China
| | - Kexun Zhou
- Department of Medical Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, People’s Republic of China
| | - Di Wu
- The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, People’s Republic of China
| | - Hong Zhu
- Department of Medical Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, People’s Republic of China
| |
Collapse
|
10
|
Fathi Kisomi M, Yadegar A, Shekari T, Amin M, Llopis-Lorente A, Liu C, Haririan I, Aghdaei HA, Shokrgozar MA, Zali MR, Rad-Malekshahi M, Miri AH, Hamblin MR, Wacker MG. Unveiling the potential role of micro/nano biomaterials in the treatment of Helicobacter pylori infection. Expert Rev Anti Infect Ther 2024; 22:613-630. [PMID: 39210553 DOI: 10.1080/14787210.2024.2391910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Accepted: 08/09/2024] [Indexed: 09/04/2024]
Abstract
INTRODUCTION Helicobacter pylori causes stubborn infections and leads to a variety of stomach disorders, such as peptic ulcer, chronic atrophic gastritis, and gastric cancer. Although antibiotic-based approaches have been widely used against H. pylori, some challenges such as antibiotic resistance are increasing in severity. Therefore, simpler but more effective strategies are needed. AREAS COVERED In this review, basic information on functionalized and non-functionalized micro/nano biomaterials and routes of administration for H. pylori inhibition are provided in an easy-to-understand format. Afterward, in vitro and in vivo studies of some promising bio-platforms including metal-based biomaterials, biopolymers, small-molecule saccharides, and vaccines for H. pylori inhibition are discussed in a holistic manner. EXPERT OPINION Functionalized or non-functionalized micro/nano biomaterials loaded with anti-H. pylori agents can show efficient bactericidal activity with no/slight negative influence on the host gastrointestinal microbiota. However, this claim needs to be substantiated with hard data such as assessment of the biopharmaceutical parameters of anti-H. pylori systems and the measurement of diversity/abundance of bacterial genera in the host gastric/gut microbiota before and after H. pylori eradication.
Collapse
Affiliation(s)
- Misagh Fathi Kisomi
- Department of Medical Nanotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Abbas Yadegar
- Foodborne and Waterborne Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Tara Shekari
- Department of Pharmaceutics, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohsen Amin
- Department of Drug and Food Control, Faculty of Pharmacy, and the Institute of Pharmaceutical Sciences, Tehran University of Medical Sciences, Tehran, Iran
| | - Antoni Llopis-Lorente
- Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico (IDM), Universitat Politècnica de València, Universitat de València, Valencia, Spain
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Instituto de Salud Carlos III, Madrid, Spain
| | - Chenguang Liu
- College of Marine Life Science, Ocean University of China, Qingdao, P.R. China
| | - Ismaeil Haririan
- Department of Pharmaceutical Biomaterials and Medical Biomaterials Research Center, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Hamid Asadzadeh Aghdaei
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Mohammad Reza Zali
- Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mazda Rad-Malekshahi
- Department of Pharmaceutical Biomaterials and Medical Biomaterials Research Center, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Amir Hossein Miri
- Department of Pharmaceutical Biomaterials and Medical Biomaterials Research Center, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Michael R Hamblin
- Laser Research Centre, Faculty of Health Science, University of Johannesburg, Doornfontein, South Africa
| | - Matthias G Wacker
- Department of Pharmacy, Faculty of Science, National University of Singapore, 4 Science Drive 2, Singapore 117545, Singapore
| |
Collapse
|
11
|
Andreadi A, Lodeserto P, Todaro F, Meloni M, Romano M, Minasi A, Bellia A, Lauro D. Nanomedicine in the Treatment of Diabetes. Int J Mol Sci 2024; 25:7028. [PMID: 39000136 PMCID: PMC11241380 DOI: 10.3390/ijms25137028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 06/16/2024] [Accepted: 06/25/2024] [Indexed: 07/16/2024] Open
Abstract
Nanomedicine could improve the treatment of diabetes by exploiting various therapeutic mechanisms through the use of suitable nanoformulations. For example, glucose-sensitive nanoparticles can release insulin in response to high glucose levels, mimicking the physiological release of insulin. Oral nanoformulations for insulin uptake via the gut represent a long-sought alternative to subcutaneous injections, which cause pain, discomfort, and possible local infection. Nanoparticles containing oligonucleotides can be used in gene therapy and cell therapy to stimulate insulin production in β-cells or β-like cells and modulate the responses of T1DM-associated immune cells. In contrast, viral vectors do not induce immunogenicity. Finally, in diabetic wound healing, local delivery of nanoformulations containing regenerative molecules can stimulate tissue repair and thus provide a valuable tool to treat this diabetic complication. Here, we describe these different approaches to diabetes treatment with nanoformulations and their potential for clinical application.
Collapse
Affiliation(s)
- Aikaterini Andreadi
- Section of Endocrinology and Metabolic Diseases, Department of Systems Medicine, University of Rome Tor Vergata, 00133 Rome, Italy; (P.L.); (F.T.); (M.M.); (A.B.); (D.L.)
- Division of Endocrinology and Diabetology, Department of Medical Sciences, Fondazione Policlinico Tor Vergata, 00133 Rome, Italy; (M.R.); (A.M.)
| | - Pietro Lodeserto
- Section of Endocrinology and Metabolic Diseases, Department of Systems Medicine, University of Rome Tor Vergata, 00133 Rome, Italy; (P.L.); (F.T.); (M.M.); (A.B.); (D.L.)
- Division of Endocrinology and Diabetology, Department of Medical Sciences, Fondazione Policlinico Tor Vergata, 00133 Rome, Italy; (M.R.); (A.M.)
| | - Federica Todaro
- Section of Endocrinology and Metabolic Diseases, Department of Systems Medicine, University of Rome Tor Vergata, 00133 Rome, Italy; (P.L.); (F.T.); (M.M.); (A.B.); (D.L.)
| | - Marco Meloni
- Section of Endocrinology and Metabolic Diseases, Department of Systems Medicine, University of Rome Tor Vergata, 00133 Rome, Italy; (P.L.); (F.T.); (M.M.); (A.B.); (D.L.)
- Division of Endocrinology and Diabetology, Department of Medical Sciences, Fondazione Policlinico Tor Vergata, 00133 Rome, Italy; (M.R.); (A.M.)
| | - Maria Romano
- Division of Endocrinology and Diabetology, Department of Medical Sciences, Fondazione Policlinico Tor Vergata, 00133 Rome, Italy; (M.R.); (A.M.)
| | - Alessandro Minasi
- Division of Endocrinology and Diabetology, Department of Medical Sciences, Fondazione Policlinico Tor Vergata, 00133 Rome, Italy; (M.R.); (A.M.)
| | - Alfonso Bellia
- Section of Endocrinology and Metabolic Diseases, Department of Systems Medicine, University of Rome Tor Vergata, 00133 Rome, Italy; (P.L.); (F.T.); (M.M.); (A.B.); (D.L.)
- Division of Endocrinology and Diabetology, Department of Medical Sciences, Fondazione Policlinico Tor Vergata, 00133 Rome, Italy; (M.R.); (A.M.)
| | - Davide Lauro
- Section of Endocrinology and Metabolic Diseases, Department of Systems Medicine, University of Rome Tor Vergata, 00133 Rome, Italy; (P.L.); (F.T.); (M.M.); (A.B.); (D.L.)
- Division of Endocrinology and Diabetology, Department of Medical Sciences, Fondazione Policlinico Tor Vergata, 00133 Rome, Italy; (M.R.); (A.M.)
| |
Collapse
|
12
|
Yao M, Wu M, Yuan M, Wu M, Shen A, Chen Y, Lian D, Liu X, Peng J. Enhancing the therapeutic potential of isoliensinine for hypertension through PEG-PLGA nanoparticle delivery: A comprehensive in vivo and in vitro study. Biomed Pharmacother 2024; 174:116541. [PMID: 38565063 DOI: 10.1016/j.biopha.2024.116541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 03/29/2024] [Accepted: 03/29/2024] [Indexed: 04/04/2024] Open
Abstract
BACKGROUND Hypertension, a highly prevalent chronic disease, is known to inflict severe damage upon blood vessels. In our previous study, isoliensinine, a kind of bibenzyl isoquinoline alkaloid which isolated from a TCM named Lotus Plumule (Nelumbo nucifera Gaertn), exhibits antihypertensive and vascular smooth muscle proliferation-inhibiting effects, but its application is limited due to poor water solubility and low bioavailability. In this study, we proposed to prepare isoliensinine loaded by PEG-PLGA polymer nanoparticles to increase its efficacy METHOD: We synthesized and thoroughly characterized PEG-PLGA nanoparticles loaded with isoliensinine using a nanoprecipitation method, denoted as, PEG-PLGA@Isoliensinine. Additionally, we conducted comprehensive investigations into the stability of PEG-PLGA@Isoliensinine, in vitro drug release profiles, and in vivo pharmacokinetics. Furthermore, we assessed the antihypertensive efficacy of this nano-system through in vitro experiments on A7R5 cells and in vivo studies using AngII-induced mice. RESULT The findings reveal that PEG-PLGA@Isoliensinine significantly improves isoliensinine absorption by A7R5 cells and enhances targeted in vivo distribution. This translates to a more effective reduction of AngII-induced hypertension and vascular smooth muscle proliferation. CONCLUSION In this study, we successfully prepared PEG-PLGA@Isoliensinine by nano-precipitation, and we confirmed that PEG-PLGA@Isoliensinine surpasses free isoliensinine in its effectiveness for the treatment of hypertension, as demonstrated through both in vivo and in vitro experiments. SIGNIFICANCE This study lays the foundation for isoliensinine's clinical use in hypertension treatment and vascular lesion protection, offering new insights for enhancing the bioavailability of traditional Chinese medicine components. Importantly, no toxicity was observed, affirming the successful implementation of this innovative drug delivery system in vivo and offers a promising strategy for enhancing the effectiveness of Isoliensinine and propose an innovative avenue for developing novel formulations of traditional Chinese medicine monomers.
Collapse
Affiliation(s)
- Mengying Yao
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, China; Fujian Key Laboratory of Integrative Medicine on Geriatrics, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, China; Fujian Collaborative Innovation Center for Integrative Medicine in Prevention and Treatment of Major Chronic Cardiovascular Diseases, Fuzhou, Fujian 350122, China
| | - Ming Wu
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou 350025, PR China
| | - Meng Yuan
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, China; Fujian Key Laboratory of Integrative Medicine on Geriatrics, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, China
| | - Meizhu Wu
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, China; Fujian Key Laboratory of Integrative Medicine on Geriatrics, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, China; Fujian Collaborative Innovation Center for Integrative Medicine in Prevention and Treatment of Major Chronic Cardiovascular Diseases, Fuzhou, Fujian 350122, China
| | - Aling Shen
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, China; Fujian Key Laboratory of Integrative Medicine on Geriatrics, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, China; Fujian Collaborative Innovation Center for Integrative Medicine in Prevention and Treatment of Major Chronic Cardiovascular Diseases, Fuzhou, Fujian 350122, China; Innovation and Transformation Center, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, China
| | - Youqin Chen
- Department of Pediatrics,Case Western Reserve University School of Medicine,Rainbow Babies and Children's Hospital, Cleveland, OH, USA
| | - Dawei Lian
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, China; Fujian Key Laboratory of Integrative Medicine on Geriatrics, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, China; Fujian Collaborative Innovation Center for Integrative Medicine in Prevention and Treatment of Major Chronic Cardiovascular Diseases, Fuzhou, Fujian 350122, China.
| | - Xiaolong Liu
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou 350025, PR China.
| | - Jun Peng
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, China; Fujian Key Laboratory of Integrative Medicine on Geriatrics, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, China; Fujian Collaborative Innovation Center for Integrative Medicine in Prevention and Treatment of Major Chronic Cardiovascular Diseases, Fuzhou, Fujian 350122, China.
| |
Collapse
|
13
|
Shang Y, Zhu Q, Ding J, Zhao L, Zhang F, Lu J, Feng Y, Wang J, Liu Z, Kuang M, Li C. Bioactive peptide relieves glucocorticoid-induced osteoporosis by giant macrocyclic encapsulation. J Control Release 2024; 369:75-87. [PMID: 38458570 DOI: 10.1016/j.jconrel.2024.02.048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 02/27/2024] [Accepted: 02/29/2024] [Indexed: 03/10/2024]
Abstract
Bioactive peptides play a crucial role in the field of regenerative medicine and tissue engineering. However, their application in vivo and clinic is hindered by their poor stability, short half-life, and low retention rate. Herein, we propose a novel strategy for encapsulating bioactive peptides using giant macrocycles. Platelet-derived growth factor (PDGF) bioactive mimicking peptide Nap-FFGVRKKP (P) was selected as the representative of a bioactive peptide. Quaterphen[4]arene (4) exhibited extensive host-guest complexation with P, and the binding constant was (1.16 ± 0.10) × 107 M-1. In vitro cell experiments confirmed that P + 4 could promote the proliferation of BMSCs by 2.27 times. Even with the addition of the inhibitor dexamethasone (Dex), P + 4 was still able to save 76.94% of the cells in the control group. Compared to the Dex group, the bone mass of the mice with osteoporosis in the P + 4 group was significantly increased. The mean trabecular thickness (Tb.Th) increased by 17.03%, and the trabecular bone volume fraction (BV/TV) values increased by 40.55%. This supramolecular bioactive peptide delivery strategy provides a general approach for delivering bioactive peptides and opens up new opportunities for the development of peptide-based drugs.
Collapse
Affiliation(s)
- Yuna Shang
- Academy of Interdisciplinary Studies on Intelligent Molecules, Tianjin Key Laboratory of Structure and Performance for Functional Molecules, College of Chemistry, Tianjin Normal University, Tianjin 300387, China
| | - Qingrun Zhu
- Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| | - Jiaming Ding
- Department of Orthopedics, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250014, China
| | - Liang Zhao
- Academy of Interdisciplinary Studies on Intelligent Molecules, Tianjin Key Laboratory of Structure and Performance for Functional Molecules, College of Chemistry, Tianjin Normal University, Tianjin 300387, China
| | - Fan Zhang
- Academy of Interdisciplinary Studies on Intelligent Molecules, Tianjin Key Laboratory of Structure and Performance for Functional Molecules, College of Chemistry, Tianjin Normal University, Tianjin 300387, China
| | - Jiayi Lu
- Academy of Interdisciplinary Studies on Intelligent Molecules, Tianjin Key Laboratory of Structure and Performance for Functional Molecules, College of Chemistry, Tianjin Normal University, Tianjin 300387, China
| | - Yinyin Feng
- Academy of Interdisciplinary Studies on Intelligent Molecules, Tianjin Key Laboratory of Structure and Performance for Functional Molecules, College of Chemistry, Tianjin Normal University, Tianjin 300387, China
| | - Jiayu Wang
- Academy of Interdisciplinary Studies on Intelligent Molecules, Tianjin Key Laboratory of Structure and Performance for Functional Molecules, College of Chemistry, Tianjin Normal University, Tianjin 300387, China
| | - Zhixue Liu
- Academy of Interdisciplinary Studies on Intelligent Molecules, Tianjin Key Laboratory of Structure and Performance for Functional Molecules, College of Chemistry, Tianjin Normal University, Tianjin 300387, China
| | - Mingjie Kuang
- Department of Orthopedics, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250014, China.
| | - Chunju Li
- Academy of Interdisciplinary Studies on Intelligent Molecules, Tianjin Key Laboratory of Structure and Performance for Functional Molecules, College of Chemistry, Tianjin Normal University, Tianjin 300387, China.
| |
Collapse
|
14
|
Patra R, Halder S, Saha R, Jana K, Sarkar K. Highly Efficient Photoswitchable Smart Polymeric Nanovehicle for Gene and Anticancer Drug Delivery in Triple-Negative Breast Cancer. ACS Biomater Sci Eng 2024; 10:2299-2323. [PMID: 38551335 DOI: 10.1021/acsbiomaterials.4c00115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/09/2024]
Abstract
Over the past few decades, there has been significant interest in smart drug delivery systems capable of carrying multiple drugs efficiently, particularly for treating genetic diseases such as cancer. Despite the development of various drug delivery systems, a safe and effective method for delivering both anticancer drugs and therapeutic genes for cancer therapy remains elusive. In this study, we describe the synthesis of a photoswitchable smart polymeric vehicle comprising a photoswitchable spiropyran moiety and an amino-acid-based cationic monomer-based block copolymer using reversible addition-fragmentation chain transfer (RAFT) polymerization. This system aims at diagnosing triple-negative breast cancer and subsequently delivering genes and anticancer agents. Triple-negative breast cancer patients have elevated concentrations of Cu2+ ions, making them excellent targets for diagnosis. The polymer can detect Cu2+ ions with a low limit of detection value of 9.06 nM. In vitro studies on doxorubicin drug release demonstrated sustained delivery at acidic pH level similar to the tumor environment. Furthermore, the polymer exhibited excellent blood compatibility even at the concentration as high as 500 μg/mL. Additionally, it displayed a high transfection efficiency of approximately 82 ± 5% in MDA-MB-231 triple-negative breast cancer cells at an N/P ratio of 50:1. It is observed that mitochondrial membrane depolarization and intracellular reactive oxygen species generation are responsible for apoptosis and the higher number of apoptotic cells, which occurred through the arrest of the G2/M phase of the cell cycle were observed. Therefore, the synthesized light-responsive cationic polymer may be an effective system for diagnosis, with an efficient anticancer drug and gene carrier for the treatment of triple-negative breast cancer in the future.
Collapse
Affiliation(s)
- Rishik Patra
- Gene Therapy and Tissue Engineering Lab, Department of Polymer Science and Technology, University of Calcutta, 92, A.P.C. Road, Kolkata 700009, India
| | - Satyajit Halder
- Division of Molecular Medicine, Centenary Campus, Bose Institute, P-1/12 C.I.T. Scheme VII-M, Kolkata 700054, India
| | - Rima Saha
- Gene Therapy and Tissue Engineering Lab, Department of Polymer Science and Technology, University of Calcutta, 92, A.P.C. Road, Kolkata 700009, India
| | - Kuladip Jana
- Division of Molecular Medicine, Centenary Campus, Bose Institute, P-1/12 C.I.T. Scheme VII-M, Kolkata 700054, India
| | - Kishor Sarkar
- Gene Therapy and Tissue Engineering Lab, Department of Polymer Science and Technology, University of Calcutta, 92, A.P.C. Road, Kolkata 700009, India
| |
Collapse
|
15
|
Lv Y, Li W, Liao W, Jiang H, Liu Y, Cao J, Lu W, Feng Y. Nano-Drug Delivery Systems Based on Natural Products. Int J Nanomedicine 2024; 19:541-569. [PMID: 38260243 PMCID: PMC10802180 DOI: 10.2147/ijn.s443692] [Citation(s) in RCA: 25] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Accepted: 01/09/2024] [Indexed: 01/24/2024] Open
Abstract
Natural products have proven to have significant curative effects and are increasingly considered as potential candidates for clinical prevention, diagnosis, and treatment. Compared with synthetic drugs, natural products not only have diverse structures but also exhibit a range of biological activities against different disease states and molecular targets, making them attractive for development in the field of medicine. Despite advancements in the use of natural products for clinical purposes, there remain obstacles that hinder their full potential. These challenges include issues such as limited solubility and stability when administered orally, as well as short durations of effectiveness. To address these concerns, nano-drug delivery systems have emerged as a promising solution to overcome the barriers faced in the clinical application of natural products. These systems offer notable advantages, such as a large specific surface area, enhanced targeting capabilities, and the ability to achieve sustained and controlled release. Extensive in vitro and in vivo studies have provided further evidence supporting the efficacy and safety of nanoparticle-based systems in delivering natural products in preclinical disease models. This review describes the limitations of natural product applications and the current status of natural products combined with nanotechnology. The latest advances in nano-drug delivery systems for delivery of natural products are considered from three aspects: connecting targeting warheads, self-assembly, and co-delivery. Finally, the challenges faced in the clinical translation of nano-drugs are discussed.
Collapse
Affiliation(s)
- Ying Lv
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, Harbin, 150040, People’s Republic of China
| | - Wenqing Li
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, Harbin, 150040, People’s Republic of China
| | - Wei Liao
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, Harbin, 150040, People’s Republic of China
| | - Haibo Jiang
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, Harbin, 150040, People’s Republic of China
| | - Yuwei Liu
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, Harbin, 150040, People’s Republic of China
| | - Jiansheng Cao
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, Harbin, 150040, People’s Republic of China
| | - Wenfei Lu
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, Harbin, 150040, People’s Republic of China
| | - Yufei Feng
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, Harbin, 150040, People’s Republic of China
| |
Collapse
|
16
|
Han X, Gong C, Yang Q, Zheng K, Wang Z, Zhang W. Biomimetic Nano-Drug Delivery System: An Emerging Platform for Promoting Tumor Treatment. Int J Nanomedicine 2024; 19:571-608. [PMID: 38260239 PMCID: PMC10802790 DOI: 10.2147/ijn.s442877] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Accepted: 12/12/2023] [Indexed: 01/24/2024] Open
Abstract
With the development of nanotechnology, nanoparticles (NPs) have shown broad prospects as drug delivery vehicles. However, they exhibit certain limitations, including low biocompatibility, poor physiological stability, rapid clearance from the body, and nonspecific targeting, which have hampered their clinical application. Therefore, the development of novel drug delivery systems with improved biocompatibility and high target specificity remains a major challenge. In recent years, biofilm mediated biomimetic nano-drug delivery system (BNDDS) has become a research hotspot focus in the field of life sciences. This new biomimetic platform uses bio-nanotechnology to encapsulate synthetic NPswithin biomimetic membrane, organically integrating the low immunogenicity, low toxicity, high tumor targeting, good biocompatibility of the biofilm with the adjustability and versatility of the nanocarrier, and shows promising applications in the field of precision tumor therapy. In this review, we systematically summarize the new progress in BNDDS used for optimizing drug delivery, providing a theoretical reference for optimizing drug delivery and designing safe and efficient treatment strategies to improve tumor treatment outcomes.
Collapse
Affiliation(s)
- Xiujuan Han
- Department of Pharmacy, First Affiliated Hospital of Naval Medical University (Shanghai Changhai Hospital), Shanghai, 200433, People’s Republic of China
- School of Life Sciences and Biopharmaceuticals, Shenyang Pharmaceutical University, Shenyang, 110016, People’s Republic of China
| | - Chunai Gong
- Department of Pharmacy, Shanghai Ninth People’s Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, 201999, People’s Republic of China
| | - Qingru Yang
- Department of Pharmacy, First Affiliated Hospital of Naval Medical University (Shanghai Changhai Hospital), Shanghai, 200433, People’s Republic of China
- School of Life Sciences and Biopharmaceuticals, Shenyang Pharmaceutical University, Shenyang, 110016, People’s Republic of China
| | - Kaile Zheng
- Department of Pharmacy, First Affiliated Hospital of Naval Medical University (Shanghai Changhai Hospital), Shanghai, 200433, People’s Republic of China
| | - Zhuo Wang
- Department of Pharmacy, First Affiliated Hospital of Naval Medical University (Shanghai Changhai Hospital), Shanghai, 200433, People’s Republic of China
- School of Life Sciences and Biopharmaceuticals, Shenyang Pharmaceutical University, Shenyang, 110016, People’s Republic of China
| | - Wei Zhang
- Department of Pharmacy, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, 200433, People’s Republic of China
| |
Collapse
|
17
|
Chan WJ, Li H. Recent advances in nano/micro systems for improved circulation stability, enhanced tumor targeting, penetration, and intracellular drug delivery: a review. Biomed Phys Eng Express 2024; 10:022001. [PMID: 38086099 DOI: 10.1088/2057-1976/ad14f0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 12/12/2023] [Indexed: 01/17/2024]
Abstract
In recent years, nanoparticles (NPs) have been extensively developed as drug carriers to overcome the limitations of cancer therapeutics. However, there are several biological barriers to nanomedicines, which include the lack of stability in circulation, limited target specificity, low penetration into tumors and insufficient cellular uptake, restricting the active targeting toward tumors of nanomedicines. To address these challenges, a variety of promising strategies were developed recently, as they can be designed to improve NP accumulation and penetration in tumor tissues, circulation stability, tumor targeting, and intracellular uptake. In this Review, we summarized nanomaterials developed in recent three years that could be utilized to improve drug delivery for cancer treatments.
Collapse
Affiliation(s)
- Wei-Jen Chan
- Department of Pharmaceutical Sciences, University of Pittsburgh, Pittsburgh, PA 15261, United States of America
| | - Huatian Li
- Department of Pharmaceutical Sciences, University of Pittsburgh, Pittsburgh, PA 15261, United States of America
| |
Collapse
|
18
|
Behnke M, Holick CT, Vollrath A, Schubert S, Schubert US. Knowledge-Based Design of Multifunctional Polymeric Nanoparticles. Handb Exp Pharmacol 2024; 284:3-26. [PMID: 37017790 DOI: 10.1007/164_2023_649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/06/2023]
Abstract
Conventional drug delivery systems (DDS) today still face several drawbacks and obstacles. High total doses of active pharmaceutical ingredients (API) are often difficult or impossible to deliver due to poor solubility of the API or undesired clearance from the body caused by strong interactions with plasma proteins. In addition, high doses lead to a high overall body burden, in particular if they cannot be delivered specifically to the target site. Therefore, modern DDS must not only be able to deliver a dose into the body, but should also overcome the hurdles mentioned above as examples. One of these promising devices are polymeric nanoparticles, which can encapsulate a wide range of APIs despite having different physicochemical properties. Most importantly, polymeric nanoparticles are tunable to obtain tailored systems for each application. This can already be achieved via the starting material, the polymer, by incorporating, e.g., functional groups. This enables the particle properties to be influenced not only specifically in terms of their interactions with APIs, but also in terms of their general properties such as size, degradability, and surface properties. In particular, the combination of size, shape, and surface modification allows polymeric nanoparticles to be used not only as a simple drug delivery device, but also to achieve targeting. This chapter discusses to what extent polymers can be designed to form defined nanoparticles and how their properties affect their performance.
Collapse
Affiliation(s)
- Mira Behnke
- Laboratory of Organic and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena, Jena, Germany
- Jena Center for Soft Matter (JCSM), Friedrich Schiller University Jena, Jena, Germany
| | - Caroline T Holick
- Laboratory of Organic and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena, Jena, Germany
- Jena Center for Soft Matter (JCSM), Friedrich Schiller University Jena, Jena, Germany
| | - Antje Vollrath
- Laboratory of Organic and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena, Jena, Germany
- Jena Center for Soft Matter (JCSM), Friedrich Schiller University Jena, Jena, Germany
| | - Stephanie Schubert
- Laboratory of Organic and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena, Jena, Germany
- Jena Center for Soft Matter (JCSM), Friedrich Schiller University Jena, Jena, Germany
| | - Ulrich S Schubert
- Laboratory of Organic and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena, Jena, Germany.
- Jena Center for Soft Matter (JCSM), Friedrich Schiller University Jena, Jena, Germany.
| |
Collapse
|
19
|
Angjelova A, Jovanova E, Polizzi A, Santonocito S, Lo Giudice A, Isola G. The Potential of Nano-Based Photodynamic Treatment as a Therapy against Oral Leukoplakia: A Narrative Review. J Clin Med 2023; 12:6819. [PMID: 37959284 PMCID: PMC10649116 DOI: 10.3390/jcm12216819] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 10/25/2023] [Accepted: 10/26/2023] [Indexed: 11/15/2023] Open
Abstract
Oral leukoplakia is a predominantly white lesion of the oral mucosa that cannot be classified as any other definable lesion with the risk of progressing into malignancy. Despite the advancements in conventional therapy, the rates of malignant transformation remain notably high, affecting 4.11% of adults, due to the difficulty of accurate diagnosis and indistinct treatment. Photodynamic therapy (PDT), being a minimally invasive surgical intervention, employs a variety of factors, including light, nano-photosensitizers (PSs) and oxygen in the management of precancerous lesions. PDT faces limitations in administering photosensitizers (PSs) because of their low water solubility. However, these challenges could be effectively resolved through the incorporation of PSs in nanostructured drug delivery systems, such as gold nanoparticles, micelles, liposomes, metal nanoparticles, dendrimers and quantum dots. This review will give an overview of the different innovative PS approaches in the management of premalignant lesions, highlighting the most recent advancements. From a clinical perspective, it is expected that nanotechnology will overcome barriers faced by traditional therapeutics and will address critical gaps in clinical cancer care.
Collapse
Affiliation(s)
- Angela Angjelova
- University Dental Clinical Center St. Pantelejmon, Skopje, Faculty of Dentistry, Ss. Cyril and Methodius University in Skopje, 1000 Skopje, North Macedonia; (A.A.); (E.J.)
| | - Elena Jovanova
- University Dental Clinical Center St. Pantelejmon, Skopje, Faculty of Dentistry, Ss. Cyril and Methodius University in Skopje, 1000 Skopje, North Macedonia; (A.A.); (E.J.)
| | - Alessandro Polizzi
- Department of General Surgery and Surgical-Medical Specialties, School of Dentistry, University of Catania, 95124 Catania, Italy; (S.S.); (A.L.G.); (G.I.)
| | - Simona Santonocito
- Department of General Surgery and Surgical-Medical Specialties, School of Dentistry, University of Catania, 95124 Catania, Italy; (S.S.); (A.L.G.); (G.I.)
| | - Antonino Lo Giudice
- Department of General Surgery and Surgical-Medical Specialties, School of Dentistry, University of Catania, 95124 Catania, Italy; (S.S.); (A.L.G.); (G.I.)
| | - Gaetano Isola
- Department of General Surgery and Surgical-Medical Specialties, School of Dentistry, University of Catania, 95124 Catania, Italy; (S.S.); (A.L.G.); (G.I.)
| |
Collapse
|
20
|
Zaiki Y, Iskandar A, Wong TW. Functionalized chitosan for cancer nano drug delivery. Biotechnol Adv 2023; 67:108200. [PMID: 37331671 DOI: 10.1016/j.biotechadv.2023.108200] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 05/18/2023] [Accepted: 06/11/2023] [Indexed: 06/20/2023]
Abstract
Chitosan is a biotechnological derivative of chitin receiving a widespread pharmaceutical and biomedical applications. It can be used to encapsulate and deliver cancer therapeutics with inherent pH-dependent solubility to confer drug targeting at tumour microenvironment and anti-cancer activity synergizing cancer cytotoxic drug actions. To further reduce the off-target and by-stander adverse effects of drugs, a high targeted drug delivery efficiency at the lowest possible drug doses is clinically required. The chitosan has been functionalized with covalent conjugates or complexes and processed into nanoparticles to encapsulate and control drug release, to avoid premature drug clearance, to deliver drugs passively and actively to cancer site at tissue, cell or subcellular levels, and to promote cancer cell uptake of nanoparticles through membrane permeabilization at higher specificity and scale. Nanomedicine developed using functionalized chitosan translates to significant preclinical improvements. Future challenges related to nanotoxicity, manufacturability, selection precision of conjugates and complexes as a function of cancer omics and their biological responses from administration site to cancer target need critical assessments.
Collapse
Affiliation(s)
- Yazid Zaiki
- Non-Destructive Biomedical and Pharmaceutical Research Centre, Smart Manufacturing Research Institute, Universiti Teknologi MARA Selangor, 42300 Puncak Alam, Selangor, Malaysia; Particle Design Research Group, Faculty of Pharmacy, Universiti Teknologi MARA Selangor, 42300 Puncak Alam, Selangor, Malaysia
| | - Athirah Iskandar
- Non-Destructive Biomedical and Pharmaceutical Research Centre, Smart Manufacturing Research Institute, Universiti Teknologi MARA Selangor, 42300 Puncak Alam, Selangor, Malaysia; Particle Design Research Group, Faculty of Pharmacy, Universiti Teknologi MARA Selangor, 42300 Puncak Alam, Selangor, Malaysia
| | - Tin Wui Wong
- Non-Destructive Biomedical and Pharmaceutical Research Centre, Smart Manufacturing Research Institute, Universiti Teknologi MARA Selangor, 42300 Puncak Alam, Selangor, Malaysia; Particle Design Research Group, Faculty of Pharmacy, Universiti Teknologi MARA Selangor, 42300 Puncak Alam, Selangor, Malaysia; Sino-Malaysia Molecular Oncology and Traditional Chinese Medicine Delivery Joint Research Centre, Medical College, Yangzhou University, 136, Jiangyang Middle Road, Yangzhou, Jiangsu Province, China; Faculty of Pharmacy, Universiti Malaya, 50603 Kuala Lumpur, Malaysia.
| |
Collapse
|
21
|
Liu H, Zhang Y, Li H, Gao X, Wang J, Cong X, Xin Y, Zhu Q, Chen B, Yang YG, Sun T. Co-delivery of vitamin D3 and Lkb1 siRNA by cationic lipid-assisted PEG-PLGA nanoparticles to effectively remodel the immune system in vivo. Biomater Sci 2023; 11:5931-5941. [PMID: 37470222 DOI: 10.1039/d3bm00767g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/21/2023]
Abstract
The imbalance of the immune system can lead to the occurrence of autoimmune diseases. Controlling and regulating the proliferation and function of effector T (Teff) cells and regulatory T (Treg) cells becomes the key to treating these diseases. Dendritic cells (DCs), as dedicated antigen-presenting cells, play a key role in inducing the differentiation of naive CD4+ T cells. In this study, we designed a cationic lipid-assisted PEG-PLGA nanoparticle (NPs/VD3/siLkb1) to deliver 1,25-dihydroxyvitamin D3 (VD3) and small interfering RNA (siRNA) to DC cells in the draining lymph nodes. By modulating the phenotypic changes of DC cells, this approach expands Treg cells and reduces the occurrence of autoimmune diseases. Thus, this study provides a novel approach to alleviating the occurrence and development of autoimmune diseases while also minimizing the risk of unwanted complications.
Collapse
Affiliation(s)
- Haochuan Liu
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, Jilin University, Changchun, Jilin, 130061, China.
- Department of Orthopaedics, China-Japan Union Hospital of Jilin University, Changchun, Jilin, 130031, China
| | - Yuning Zhang
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, Jilin University, Changchun, Jilin, 130061, China.
- International Center of Future Science, Jilin University, Changchun, Jilin, 130015, China
- National-local Joint Engineering Laboratory of Animal Models for Human Diseases, Changchun, Jilin, 130062, China
| | - He Li
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, Jilin University, Changchun, Jilin, 130061, China.
- National-local Joint Engineering Laboratory of Animal Models for Human Diseases, Changchun, Jilin, 130062, China
| | - Xue Gao
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, Jilin University, Changchun, Jilin, 130061, China.
| | - Jialiang Wang
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, Jilin University, Changchun, Jilin, 130061, China.
- National-local Joint Engineering Laboratory of Animal Models for Human Diseases, Changchun, Jilin, 130062, China
| | - Xiuxiu Cong
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, Jilin University, Changchun, Jilin, 130061, China.
- National-local Joint Engineering Laboratory of Animal Models for Human Diseases, Changchun, Jilin, 130062, China
| | - Yanbao Xin
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, Jilin University, Changchun, Jilin, 130061, China.
- National-local Joint Engineering Laboratory of Animal Models for Human Diseases, Changchun, Jilin, 130062, China
| | - Qingsan Zhu
- Department of Orthopaedics, China-Japan Union Hospital of Jilin University, Changchun, Jilin, 130031, China
| | - Bing Chen
- Department of Anesthesiology, China-Japan Union Hospital of Jilin University, Changchun, Jilin, 130031, China.
| | - Yong-Guang Yang
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, Jilin University, Changchun, Jilin, 130061, China.
- International Center of Future Science, Jilin University, Changchun, Jilin, 130015, China
- National-local Joint Engineering Laboratory of Animal Models for Human Diseases, Changchun, Jilin, 130062, China
| | - Tianmeng Sun
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, Jilin University, Changchun, Jilin, 130061, China.
- International Center of Future Science, Jilin University, Changchun, Jilin, 130015, China
- National-local Joint Engineering Laboratory of Animal Models for Human Diseases, Changchun, Jilin, 130062, China
- State Key Laboratory of Supramolecular Structure and Materials, Jilin University, Changchun, Jilin, 130012, China
| |
Collapse
|
22
|
Radeva L, Yordanov Y, Spassova I, Kovacheva D, Tzankova V, Yoncheva K. Double-Loaded Doxorubicin/Resveratrol Polymeric Micelles Providing Low Toxicity on Cardiac Cells and Enhanced Cytotoxicity on Lymphoma Cells. Pharmaceutics 2023; 15:pharmaceutics15041287. [PMID: 37111772 PMCID: PMC10143567 DOI: 10.3390/pharmaceutics15041287] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 04/13/2023] [Accepted: 04/14/2023] [Indexed: 04/29/2023] Open
Abstract
The anthracycline antibiotic doxorubicin is a well-known antitumour agent, however its cardiotoxicity is a significant obstacle to therapy. The aim of the present study was to improve the safety of doxorubicin through its simultaneous encapsulation with a cardioprotective agent (resveratrol) in Pluronic micelles. The formation and double-loading of the micelles was performed via the film hydration method. Infrared spectroscopy proved the successful incorporation of both drugs. X-ray diffraction analyses revealed that resveratrol was loaded in the core, whereas doxorubicin was included in the shell. The double-loaded micelles were characterised by a small diameter (26 nm) and narrow size distribution, which is beneficial for enhanced permeability and retention effects. The in vitro dissolution tests showed that the release of doxorubicin depended on the pH of the medium and was faster than that of resveratrol. In vitro studies on cardioblasts showed the opportunity to reduce the cytotoxicity of doxorubicin through the presence of resveratrol in double-loaded micelles. Higher cardioprotection was observed when the cells were treated with the double-loaded micelles compared with referent solutions with equal concentrations of both drugs. In parallel, treatments of L5178 lymphoma cells with the double-loaded micelles revealed that the cytotoxic effect of doxorubicin was enhanced. Thus, the study demonstrated that the simultaneous delivery of doxorubicin and resveratrol via the micellar system enabled the cytotoxicity of doxorubicin in lymphoma cells and lowered its cardiotoxicity in cardiac cells.
Collapse
Affiliation(s)
- Lyubomira Radeva
- Faculty of Pharmacy, Medical University of Sofia, 1000 Sofia, Bulgaria
| | - Yordan Yordanov
- Faculty of Pharmacy, Medical University of Sofia, 1000 Sofia, Bulgaria
| | - Ivanka Spassova
- Institute of General and Inorganic Chemistry, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria
| | - Daniela Kovacheva
- Institute of General and Inorganic Chemistry, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria
| | - Virginia Tzankova
- Faculty of Pharmacy, Medical University of Sofia, 1000 Sofia, Bulgaria
| | | |
Collapse
|
23
|
Herdiana Y, Wathoni N, Gozali D, Shamsuddin S, Muchtaridi M. Chitosan-Based Nano-Smart Drug Delivery System in Breast Cancer Therapy. Pharmaceutics 2023; 15:pharmaceutics15030879. [PMID: 36986740 PMCID: PMC10051865 DOI: 10.3390/pharmaceutics15030879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2023] [Revised: 02/28/2023] [Accepted: 03/06/2023] [Indexed: 03/11/2023] Open
Abstract
Despite recent advances, cancer remains the primary killer on a global scale. Numerous forms of research have been conducted to discover novel and efficient anticancer medications. The complexity of breast cancer is a major challenge which is coupled with patient-to-patient variations and heterogeneity between cells within the tumor. Revolutionary drug delivery is expected to provide a solution to that challenge. Chitosan nanoparticles (CSNPs) have prospects as a revolutionary delivery system capable of enhancing anticancer drug activity and reducing negative impacts on normal cells. The use of smart drug delivery systems (SDDs) as delivering materials to improve the bioactivity of NPs and to understand the intricacies of breast cancer has garnered significant interest. There are many reviews about CSNPs that present various points of view, but they have not yet described a series in cancer therapy from cell uptake to cell death. With this description, we will provide a more complete picture for designing preparations for SDDs. This review describes CSNPs as SDDSs, enhancing cancer therapy targeting and stimulus response using their anticancer mechanism. Multimodal chitosan SDDs as targeting and stimulus response medication delivery will improve therapeutic results.
Collapse
Affiliation(s)
- Yedi Herdiana
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Universitas Padjadjaran, Sumedang 45363, Indonesia
- Correspondence: (Y.H.); (M.M.)
| | - Nasrul Wathoni
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Universitas Padjadjaran, Sumedang 45363, Indonesia
| | - Dolih Gozali
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Universitas Padjadjaran, Sumedang 45363, Indonesia
| | - Shaharum Shamsuddin
- School of Health Sciences, Universiti Sains Malaysia, Kubang Kerian 16150, Malaysia
- Nanobiotech Research Initiative, Institute for Research in Molecular Medicine (INFORMM), USM, Penang 11800, Malaysia
- USM-RIKEN Interdisciplinary Collaboration on Advanced Sciences (URICAS), USM, Penang 11800, Malaysia
| | - Muchtaridi Muchtaridi
- Department of Pharmaceutical Analysis and Medicinal Chemistry, Faculty of Pharmacy, Universitas Padjadjaran, Sumedang 45363, Indonesia
- Correspondence: (Y.H.); (M.M.)
| |
Collapse
|
24
|
Sharma S, Mahajan SD, Chevli K, Schwartz SA, Aalinkeel R. Nanotherapeutic Approach to Delivery of Chemo- and Gene Therapy for Organ-Confined and Advanced Castration-Resistant Prostate Cancer. Crit Rev Ther Drug Carrier Syst 2023; 40:69-100. [PMID: 37075068 PMCID: PMC11007628 DOI: 10.1615/critrevtherdrugcarriersyst.2022043827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Treatments for late-stage prostate cancer (CaP) have not been very successful. Frequently, advanced CaP progresses to castration-resistant prostate cancer (CRPC), with 50#37;-70% of patients developing bone metastases. CaP with bone metastasis-associated clinical complications and treatment resistance presents major clinical challenges. Recent advances in the formulation of clinically applicable nanoparticles (NPs) have attracted attention in the fields of medicine and pharmacology with applications to cancer and infectious and neurological diseases. NPs have been rendered biocompatible, pose little to no toxicity to healthy cells and tissues, and are engineered to carry large therapeutic payloads, including chemo- and genetic therapies. Additionally, if required, targeting specificity can be achieved by chemically coupling aptamers, unique peptide ligands, or monoclonal antibodies to the surface of NPs. Encapsulating toxic drugs within NPs and delivering them specifically to their cellular targets overcomes the problem of systemic toxicity. Encapsulating highly labile genetic therapeutics such as RNA within NPs provides a protective environment for the payload during parenteral administration. The loading efficiencies of NPs have been maximized while the controlled their therapeutic cargos has been released. Theranostic ("treat and see") NPs have developed combining therapy with imaging capabilities to provide real-time, image-guided monitoring of the delivery of their therapeutic payloads. All of these NP accomplishments have been applied to the nanotherapy of late-stage CaP, offering a new opportunity for a previously dismal prognosis. This article gives an update on current developments in the use of nanotechnology for treating late-stage, castration-resistant CaP.
Collapse
Affiliation(s)
- Satish Sharma
- Department of Urology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY
| | - Supriya D. Mahajan
- Department of Medicine, Division of Allergy, Immunology and Rheumatology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY
| | - Kent Chevli
- Department of Urology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY
| | - Stanley A. Schwartz
- Department of Urology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY
- Department of Medicine, Division of Allergy, Immunology and Rheumatology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY
| | - Ravikumar Aalinkeel
- Department of Urology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY
- Department of Medicine, Division of Allergy, Immunology and Rheumatology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY
| |
Collapse
|
25
|
Neves AR, Biswas S, Sousa Â, Costa D. Nanoconjugates and nanoconjugate formulations for improving drug delivery and therapeutic efficacy. ADVANCED NANOFORMULATIONS 2023:397-430. [DOI: 10.1016/b978-0-323-85785-7.00020-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
26
|
Pei Z, Chen S, Ding L, Liu J, Cui X, Li F, Qiu F. Current perspectives and trend of nanomedicine in cancer: A review and bibliometric analysis. J Control Release 2022; 352:211-241. [PMID: 36270513 DOI: 10.1016/j.jconrel.2022.10.023] [Citation(s) in RCA: 99] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 10/12/2022] [Accepted: 10/14/2022] [Indexed: 11/07/2022]
Abstract
The limitations of traditional cancer treatments are driving the creation and development of new nanomedicines. At present, with the rapid increase of research on nanomedicine in the field of cancer, there is a lack of intuitive analysis of the development trend, main authors and research hotspots of nanomedicine in the field of cancer, as well as detailed elaboration of possible research hotspots. In this review, data collected from the Web of Science Core Collection database between January 1st, 2000, and December 31st, 2021, were subjected to a bibliometric analysis. The co-authorship, co-citation, and co-occurrence of countries, institutions, authors, literature, and keywords in this subject were examined using VOSviewer, Citespace, and a well-known online bibliometrics platform. We collected 19,654 published papers, China produced the most publications (36.654%, 7204), followed by the United States (29.594%, 5777), and India (7.780%, 1529). An interesting fact is that, despite China having more publications than the United States, the United States still dominates this field, having the highest H-index and the most citations. Acs Nano, Nano Letters, and Biomaterials are the top three academic publications that publish articles on nanomedicine for cancer out of a total of 7580 academic journals. The most significant increases were shown for the keywords "cancer nanomedicine", "tumor microenvironment", "nanoparticles", "prodrug", "targeted nanomedicine", "combination", and "cancer immunotherapy" indicating the promising area of research. Meanwhile, the development prospects and challenges of nanomedicine in cancer are also discussed and provided some solutions to the major obstacles.
Collapse
Affiliation(s)
- Zerong Pei
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Shuting Chen
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Liqin Ding
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Jingbo Liu
- College of Horticulture and Landscape Architecture, Tianjin Agricultural University, Tianjin 300384, China
| | - Xinyi Cui
- College of Horticulture and Landscape Architecture, Tianjin Agricultural University, Tianjin 300384, China
| | - Fengyun Li
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China.
| | - Feng Qiu
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China.
| |
Collapse
|
27
|
Microfluidic paclitaxel-loaded lipid nanoparticle formulations for chemotherapy. Int J Pharm 2022; 628:122320. [DOI: 10.1016/j.ijpharm.2022.122320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 10/12/2022] [Accepted: 10/14/2022] [Indexed: 11/22/2022]
|
28
|
Du X, Chen C, Yang L, Cui Y, Tan B. Bibliometric and visualized analysis of the application of nanotechnology in glioma. Front Pharmacol 2022; 13:995512. [PMID: 36188579 PMCID: PMC9520472 DOI: 10.3389/fphar.2022.995512] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Accepted: 08/22/2022] [Indexed: 11/13/2022] Open
Abstract
Background: Glioma is the most prevalent malignant tumor in the central nervous system (CNS). Due to its highly invasive characteristics and the existence of the blood–brain barrier (BBB), the early diagnosis and treatment of glioma remains a major challenge in cancer. With the flourishing development of nanotechnology, targeted nano-therapy for glioma has become a hot topic of current research by using the characteristics of nanoparticles (NPs), such as it is easier to pass the blood–brain barrier, degradable, and aids controllable release of drugs in the brain. The purpose of this study is to visualize the scientific achievements and research trends of the application of nanotechnology in glioma. Methods: We searched the literature related to glioma nanotechnology on the Web of Science (WOS). The bibliometric and visual analysis was performed mainly using CiteSpace, VOSviewer, and R software, for countries/regions, authors, journals, references, and keywords associated with the field. Results: A total of 3,290 publications from 2012 to June 2022 were searched, and 2,041 works of literature were finally obtained according to the search criteria, the number of publications increasing year by year, with an average growth rate (AGR) of 15.22% from 2012 to 2021. China published 694 (20.99%), followed by the United States (480, 20.70%). The institution with the highest number of publications is Fudan Univ (111, 13.16%), and 80% of the top ten institutions belong to China. HUILE GAO (30) and XINGUO JIANG (30) both published the largest number of research studies. STUPP R (412) was the most cited author, followed by GAO HL (224). The degree of collaboration (DC) among countries/regions, research institutions, and authors is 23.37%, 86.23%, and 99.22%, respectively. International Journal of Nanomedicine published the largest number of publications (81), followed by Biomaterials (73). Biomaterials (1,420) was the most cited journal, followed by J Control Release (1,300). The high frequency of keywords was drug delivery (487), followed by nanoparticle (450), which indicates that nanoparticles (NPs) as a carrier for drug delivery is a hot topic of current research and a direction of continuous development. Conclusion: In recent years, nanotechnology has attracted much attention in the medical field. Cooperation and communication between countries/regions and institutions need to be strengthened in future research to promote the development of nanomedicine. Nanotherapeutic drug delivery systems (NDDS) can enhance drug penetration and retention in tumor tissues, improve drug targeting, and reduce the toxic side effects of drugs, which has great potential for the treatment of glioma and has become the focus of current research and future research trends in the treatment of glioma.
Collapse
Affiliation(s)
- Xue Du
- Department of Oncology, Afliated Hospital of North Sichuan Medical College, Nanchong, China
- North Sichuan Medical College, Nanchong, China
| | | | - Lu Yang
- Department of Oncology, Afliated Hospital of North Sichuan Medical College, Nanchong, China
- North Sichuan Medical College, Nanchong, China
| | - Yu Cui
- Department of Oncology, Afliated Hospital of North Sichuan Medical College, Nanchong, China
- North Sichuan Medical College, Nanchong, China
| | - Bangxian Tan
- Department of Oncology, Afliated Hospital of North Sichuan Medical College, Nanchong, China
- North Sichuan Medical College, Nanchong, China
- *Correspondence: Bangxian Tan,
| |
Collapse
|
29
|
Rajan R, Pal K, Jayadev D, Jayan JS, U A, Appukuttan S, de Souza FG, Joseph K, Kumar SS. Polymeric Nanoparticles in Hybrid Catalytic Processing and Drug Delivery System. Top Catal 2022. [DOI: 10.1007/s11244-022-01697-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
30
|
Mun SJ, Cho E, Kim JS, Yang CS. Pathogen-derived peptides in drug targeting and its therapeutic approach. J Control Release 2022; 350:716-733. [PMID: 36030988 DOI: 10.1016/j.jconrel.2022.08.041] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 08/18/2022] [Accepted: 08/21/2022] [Indexed: 02/06/2023]
Abstract
Peptides, short stretches of amino acids or small proteins that occupy a strategic position between proteins and amino acids, are readily accessible by chemical and biological methods. With ideal properties for forming high-affinity and specific interactions with host target proteins, they have established an important niche in the drug development spectrum complementing small molecule and biological therapeutics. Among the most successful biomedicines in use today, peptide-based drugs show great promise. This, coupled with recent advances in synthetic and nanochemical biology, has led to the creation of tailor-made peptide therapeutics for improved biocompatibility. This review presents an overview of the latest research on pathogen-derived, host-cell-interacting peptides. It also highlights strategies for using peptide-based therapeutics that address cellular transport challenges through the introduction of nanoparticles that serve as platforms to facilitate the delivery of peptide biologics and therapeutics for treating various inflammatory diseases. Finally, this paper describes future perspectives, specific pathogen-based peptides that can enhance specificity, efficiency, and capacity in functional peptide-based therapeutics, which are in the spotlight as new treatment alternatives for various diseases, and also presents verified sequences and targets that can increase chemical and pharmacological value.
Collapse
Affiliation(s)
- Seok-Jun Mun
- Department of Bionano Technology, Hanyang University, Seoul 04673, Republic of Korea; Center for Bionano Intelligence Education and Research, Ansan 15588, Republic of Korea
| | - Euni Cho
- Department of Bionano Technology, Hanyang University, Seoul 04673, Republic of Korea; Center for Bionano Intelligence Education and Research, Ansan 15588, Republic of Korea
| | - Jae-Sung Kim
- Department of Bionano Technology, Hanyang University, Seoul 04673, Republic of Korea; Institute of Natural Science & Technology, Hanyang University, Ansan 15588, Republic of Korea
| | - Chul-Su Yang
- Center for Bionano Intelligence Education and Research, Ansan 15588, Republic of Korea; Department of Molecular and Life Science, Hanyang University, Ansan 15588, Republic of Korea.
| |
Collapse
|
31
|
Zhou W, Yang J, Zhang Y, Hu X, Wang W. Current landscape of gene-editing technology in biomedicine: Applications, advantages, challenges, and perspectives. MedComm (Beijing) 2022; 3:e155. [PMID: 35845351 PMCID: PMC9283854 DOI: 10.1002/mco2.155] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Revised: 06/14/2022] [Accepted: 06/16/2022] [Indexed: 02/05/2023] Open
Abstract
The expanding genome editing toolbox has revolutionized life science research ranging from the bench to the bedside. These "molecular scissors" have offered us unprecedented abilities to manipulate nucleic acid sequences precisely in living cells from diverse species. Continued advances in genome editing exponentially broaden our knowledge of human genetics, epigenetics, molecular biology, and pathology. Currently, gene editing-mediated therapies have led to impressive responses in patients with hematological diseases, including sickle cell disease and thalassemia. With the discovery of more efficient, precise and sophisticated gene-editing tools, more therapeutic gene-editing approaches will enter the clinic to treat various diseases, such as acquired immunodeficiency sydrome (AIDS), hematologic malignancies, and even severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. These initial successes have spurred the further innovation and development of gene-editing technology. In this review, we will introduce the architecture and mechanism of the current gene-editing tools, including clustered regularly interspaced short palindromic repeats (CRISPR) and CRISPR-associated nuclease-based tools and other protein-based DNA targeting systems, and we summarize the meaningful applications of diverse technologies in preclinical studies, focusing on the establishment of disease models and diagnostic techniques. Finally, we provide a comprehensive overview of clinical information using gene-editing therapeutics for treating various human diseases and emphasize the opportunities and challenges.
Collapse
Affiliation(s)
- Weilin Zhou
- Department of BiotherapyyState Key Laboratory of Biotherapy and Cancer CenterWest China HospitalSichuan UniversityChengduPeople's Republic of China
| | - Jinrong Yang
- Department of BiotherapyyState Key Laboratory of Biotherapy and Cancer CenterWest China HospitalSichuan UniversityChengduPeople's Republic of China
- Department of HematologyHematology Research LaboratoryState Key Laboratory of Biotherapy and Cancer CenterWest China HospitalSichuan UniversityChengduSichuanP. R. China
| | - Yalan Zhang
- Department of BiotherapyyState Key Laboratory of Biotherapy and Cancer CenterWest China HospitalSichuan UniversityChengduPeople's Republic of China
| | - Xiaoyi Hu
- Department of BiotherapyyState Key Laboratory of Biotherapy and Cancer CenterWest China HospitalSichuan UniversityChengduPeople's Republic of China
- Department of Gynecology and ObstetricsDevelopment and Related Disease of Women and Children Key Laboratory of Sichuan ProvinceKey Laboratory of Birth Defects and Related Diseases of Women and ChildrenMinistry of EducationWest China Second HospitalSichuan UniversityChengduP. R. China
| | - Wei Wang
- Department of BiotherapyyState Key Laboratory of Biotherapy and Cancer CenterWest China HospitalSichuan UniversityChengduPeople's Republic of China
| |
Collapse
|
32
|
Waheed S, Li Z, Zhang F, Chiarini A, Armato U, Wu J. Engineering nano-drug biointerface to overcome biological barriers toward precision drug delivery. J Nanobiotechnology 2022; 20:395. [PMID: 36045386 PMCID: PMC9428887 DOI: 10.1186/s12951-022-01605-4] [Citation(s) in RCA: 56] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 08/14/2022] [Indexed: 11/24/2022] Open
Abstract
The rapid advancement of nanomedicine and nanoparticle (NP) materials presents novel solutions potentially capable of revolutionizing health care by improving efficacy, bioavailability, drug targeting, and safety. NPs are intriguing when considering medical applications because of their essential and unique qualities, including a significantly higher surface to mass ratio, quantum properties, and the potential to adsorb and transport drugs and other compounds. However, NPs must overcome or navigate several biological barriers of the human body to successfully deliver drugs at precise locations. Engineering the drug carrier biointerface can help overcome the main biological barriers and optimize the drug delivery in a more personalized manner. This review discusses the significant heterogeneous biological delivery barriers and how biointerface engineering can promote drug carriers to prevail over hurdles and navigate in a more personalized manner, thus ushering in the era of Precision Medicine. We also summarize the nanomedicines' current advantages and disadvantages in drug administration, from natural/synthetic sources to clinical applications. Additionally, we explore the innovative NP designs used in both non-personalized and customized applications as well as how they can attain a precise therapeutic strategy.
Collapse
Affiliation(s)
- Saquib Waheed
- Department of Burn and Plastic Surgery, Shenzhen Institute of Translational Medicine, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen, 518035, China
- Department of Biomedical Engineering, School of Medicine, Shenzhen University, Shenzhen, 518060, China
| | - Zhibin Li
- Department of Burn and Plastic Surgery, Shenzhen Institute of Translational Medicine, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen, 518035, China
| | - Fangyingnan Zhang
- Department of Burn and Plastic Surgery, Shenzhen Institute of Translational Medicine, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen, 518035, China
| | - Anna Chiarini
- Human Histology & Embryology Section, Department of Surgery, Dentistry, Paediatrics & Gynaecology, University of Verona Medical School, 37134, Verona, Venetia, Italy
| | - Ubaldo Armato
- Department of Burn and Plastic Surgery, Shenzhen Institute of Translational Medicine, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen, 518035, China
- Human Histology & Embryology Section, Department of Surgery, Dentistry, Paediatrics & Gynaecology, University of Verona Medical School, 37134, Verona, Venetia, Italy
| | - Jun Wu
- Department of Burn and Plastic Surgery, Shenzhen Institute of Translational Medicine, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen, 518035, China.
- Human Histology & Embryology Section, Department of Surgery, Dentistry, Paediatrics & Gynaecology, University of Verona Medical School, 37134, Verona, Venetia, Italy.
| |
Collapse
|
33
|
Dhilip Kumar SS, Abrahamse H. Recent advances in the development of biocompatible nanocarriers and their cancer cell targeting efficiency in photodynamic therapy. Front Chem 2022; 10:969809. [PMID: 36046728 PMCID: PMC9420852 DOI: 10.3389/fchem.2022.969809] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 07/25/2022] [Indexed: 11/13/2022] Open
Abstract
In recent years, the role of biocompatible nanocarriers (BNs) and their cancer cell targeting efficiency in photodynamic therapy (PDT) holds potential benefits for cancer treatment. Biocompatible and biodegradable nanoparticles are successfully used as carrier molecules to deliver cancer drugs and photosensitizers due to their material safety in the drug delivery system. Biocompatible nanocarriers are non-toxic and ensure high-level biocompatibility with blood, cells, and physiological conditions. The physicochemical properties of BNs often enable them to modify their surface chemistry, which makes conjugating specific ligands or antibodies to achieve cancer cell targeting drug delivery in PDT. This review article focuses on the various types of BNs used in targeted drug delivery, physicochemical properties, and surface chemistry of BNs in targeted drug delivery, advantages of BNs in drug delivery systems, and the targeting efficiency of BNs on some specific targeting receptors for cancer therapy. Furthermore, the review briefly recaps the nanocarrier-based targeted approaches in cancer PDT.
Collapse
|
34
|
Al Bostami RD, Abuwatfa WH, Husseini GA. Recent Advances in Nanoparticle-Based Co-Delivery Systems for Cancer Therapy. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:2672. [PMID: 35957103 PMCID: PMC9370272 DOI: 10.3390/nano12152672] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 07/25/2022] [Accepted: 07/26/2022] [Indexed: 12/20/2022]
Abstract
Cancer therapies have advanced tremendously throughout the last decade, yet multiple factors still hinder the success of the different cancer therapeutics. The traditional therapeutic approach has been proven insufficient and lacking in the suppression of tumor growth. The simultaneous delivery of multiple small-molecule chemotherapeutic drugs and genes improves the effectiveness of each treatment, thus optimizing efficacy and improving synergistic effects. Nanomedicines integrating inorganic, lipid, and polymeric-based nanoparticles have been designed to regulate the spatiotemporal release of the encapsulated drugs. Multidrug-loaded nanocarriers are a potential strategy to fight cancer and the incorporation of co-delivery systems as a feasible treatment method has projected synergistic benefits and limited undesirable effects. Moreover, the development of co-delivery systems for maximum therapeutic impact necessitates better knowledge of the appropriate therapeutic agent ratio as well as the inherent heterogeneity of the cancer cells. Co-delivery systems can simplify clinical processes and increase patient quality of life, even though such systems are more difficult to prepare than single drug delivery systems. This review highlights the progress attained in the development and design of nano carrier-based co-delivery systems and discusses the limitations, challenges, and future perspectives in the design and fabrication of co-delivery systems.
Collapse
Affiliation(s)
- Rouba D. Al Bostami
- Department of Chemical Engineering, College of Engineering, American University of Sharjah, Sharjah P.O. Box 26666, United Arab Emirates
| | - Waad H. Abuwatfa
- Department of Chemical Engineering, College of Engineering, American University of Sharjah, Sharjah P.O. Box 26666, United Arab Emirates
- Materials Science and Engineering Program, College of Arts and Sciences, American University of Sharjah, Sharjah P.O. Box 26666, United Arab Emirates
| | - Ghaleb A. Husseini
- Department of Chemical Engineering, College of Engineering, American University of Sharjah, Sharjah P.O. Box 26666, United Arab Emirates
- Materials Science and Engineering Program, College of Arts and Sciences, American University of Sharjah, Sharjah P.O. Box 26666, United Arab Emirates
| |
Collapse
|
35
|
Yu J, Mu Q, Fung M, Xu X, Zhu L, Ho RJY. Challenges and opportunities in metastatic breast cancer treatments: Nano-drug combinations delivered preferentially to metastatic cells may enhance therapeutic response. Pharmacol Ther 2022; 236:108108. [PMID: 34999182 PMCID: PMC9256851 DOI: 10.1016/j.pharmthera.2022.108108] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 12/12/2021] [Accepted: 01/03/2022] [Indexed: 02/07/2023]
Abstract
Despite advances in breast cancer treatments and related 5-year survival outcomes, metastatic breast cancer cures remain elusive. The current standard of care includes a combination of surgery, radiation therapy and drug therapy. However, even the most advanced procedures and treatments do not prevent breast cancer recurrence and metastasis. Once metastasis occurs, patient prognosis is poor. Recent elucidation of the spatiotemporal transit of metastatic cancer cells from primary tumor sites to distant sites provide an opportunity to integrate knowledge of drug disposition in our effort to enhance drug localization and exposure in cancer laden tissues . Novel technologies have been developed, but could be further refined to facilitate the distribution of drugs to target cancer cells and tissues. The purpose of this review is to highlight the challenges in metastatic breast cancer treatment and focus on novel drug combination and nanotechnology approaches to overcome the challenges. With improved definition of metastatic tissue target, directed localization and retention of multiple, pharmacologically active drugs to tissues and cells of interest may overcome the limitations in breast cancer treatment that may lead to a cure for breast cancer.
Collapse
Affiliation(s)
- Jesse Yu
- Department of Pharmaceutics, University of Washington, Seattle, WA 98195, USA
| | - Qingxin Mu
- Department of Pharmaceutics, University of Washington, Seattle, WA 98195, USA
| | - Millie Fung
- Department of Pharmaceutics, University of Washington, Seattle, WA 98195, USA
| | - Xiaolin Xu
- Department of Pharmaceutics, University of Washington, Seattle, WA 98195, USA
| | - Linxi Zhu
- Department of Pharmaceutics, University of Washington, Seattle, WA 98195, USA
| | - Rodney J Y Ho
- Department of Pharmaceutics, University of Washington, Seattle, WA 98195, USA; Department of Bioengineering, University of Washington, Seattle, WA 98195, USA.
| |
Collapse
|
36
|
A cationic amino acid polymer nanocarrier synthesized in supercritical CO 2 for co-delivery of drug and gene to cervical cancer cells. Colloids Surf B Biointerfaces 2022; 216:112584. [PMID: 35617878 DOI: 10.1016/j.colsurfb.2022.112584] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 05/11/2022] [Accepted: 05/15/2022] [Indexed: 12/19/2022]
Abstract
The present study was undertaken to investigate the ability of a drug curcumin-loaded polymer to inhibit the growth of cervical cancer cells by enhancing the anti-cancer efficiency of curcumin. We synthesized poly(methacryloyl beta-alanine) (PMBA) as a nanocarrier by radical polymerization in supercritical CO2. The results showed that the curcumin encapsulated and folic acid (FA)-treated PMBA (Poly@Cur-FA) for 24 h activated the reactive oxygen species-mediated programmed cell death machinery in HeLa cells. This remarkable effect of Poly@Cur-FA treatment was visualized using different fluorescent probes, which demonstrated that the Poly@Cur-FA treatment disrupted the cell membrane, as also supported by scanning electron microscopy observations. The effect of Poly@Cur-FA dispersion on the cells was observed under a transmission electron microscope. Further, the HeLa cells were treated with the polymer encapsulated curcumin and Bcl2 siRNA (Pol-Cur-siRNA) for 24 h, which effectively suppressed the Bcl2 and simulated the autophagic pathway. This co-delivery system was designed to inhibit curcumin efflux and can enhance the treatment efficacy by targeting multiple signaling pathways, including cell cycle, apoptotic, and autophagic pathways. Collectively, the Pol-Cur-siRNA system appears to offer an efficient combinational therapeutic strategy that might overcome the problems associated with the chemosensitivity against the standard synthetic anti-cancer drugs. To support the experimental data, an artificial neural network model was developed to foresee the drug and gene release behaviors.
Collapse
|
37
|
Sahoo RK, Gupta T, Batheja S, Goyal AK, Gupta U. Surface Engineered Dendrimers: A Potential Nanocarrier for the Effective Management of Glioblastoma Multiforme. Curr Drug Metab 2022; 23:708-722. [PMID: 35713127 DOI: 10.2174/1389200223666220616125524] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 04/25/2022] [Accepted: 05/18/2022] [Indexed: 01/05/2023]
Abstract
Gliomas are the most prevailing intracranial tumors, which account for approximately 36% of the primary brain tumors of glial cells. Glioblastoma multiforme (GBM) possesses a higher degree of malignancy among different gliomas. The blood-brain barrier (BBB) protects the brain against infections and toxic substances by preventing foreign molecules or unwanted cells from entering the brain parenchyma. Nano-carriers such as liposomes, nanoparticles, dendrimers, etc. boost the brain permeability of various anticancer drugs or other drugs. The favorable properties like small size, better solubility, and the modifiable surface of dendrimers have proven their broad applicability in the better management of GBM. However, in vitro and in vivo toxicities caused by dendrimers have been a significant concern. The presence of multiple functionalities on the surface of dendrimers enables the grafting of target ligand and/or therapeutic moieties. Surface engineering improves certain properties like targeting efficiency, pharmacokinetic profile, therapeutic effect, and toxicity reduction. This review will be focused on the role of different surface-modified dendrimers in the effective management of GBM.
Collapse
Affiliation(s)
- Rakesh Kumar Sahoo
- Department of Pharmacy, School of Chemical Sciences and Pharmacy, Central University of Rajasthan, Bandarsindri, Ajmer, Rajasthan 305817, India
| | - Tanisha Gupta
- Department of Pharmacy, School of Chemical Sciences and Pharmacy, Central University of Rajasthan, Bandarsindri, Ajmer, Rajasthan 305817, India
| | - Sanya Batheja
- Department of Pharmacy, School of Chemical Sciences and Pharmacy, Central University of Rajasthan, Bandarsindri, Ajmer, Rajasthan 305817, India
| | - Amit Kumar Goyal
- Department of Pharmacy, School of Chemical Sciences and Pharmacy, Central University of Rajasthan, Bandarsindri, Ajmer, Rajasthan 305817, India
| | - Umesh Gupta
- Department of Pharmacy, School of Chemical Sciences and Pharmacy, Central University of Rajasthan, Bandarsindri, Ajmer, Rajasthan 305817, India
| |
Collapse
|
38
|
Alamdari SG, Amini M, Jalilzadeh N, Baradaran B, Mohammadzadeh R, Mokhtarzadeh A, Oroojalian F. Recent advances in nanoparticle-based photothermal therapy for breast cancer. J Control Release 2022; 349:269-303. [PMID: 35787915 DOI: 10.1016/j.jconrel.2022.06.050] [Citation(s) in RCA: 98] [Impact Index Per Article: 32.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 06/20/2022] [Accepted: 06/25/2022] [Indexed: 12/17/2022]
Abstract
Breast cancer is one of the most common cancers among women that is associated with high mortality. Conventional treatments including surgery, radiotherapy, and chemotherapy, which are not effective enough and have disadvantages such as toxicity and damage to healthy cells. Photothermal therapy (PTT) of cancer cells has been took great attention by researchers in recent years due to the use of light radiation and heat generation at the tumor site, which thermal ablation is considered a minimally invasive method for the treatment of breast cancer. Nanotechnology has opened up a new perspective in the treatment of breast cancer using PTT method. Through NIR light absorption, researchers applied various nanostructures because of their specific nature of penetrating and targeting tumor tissue, increasing the effectiveness of PTT, and combining it with other treatments. If PTT is used with common cancer treatments, it can dramatically increase the effectiveness of treatment and reduce the side effects of other methods. PTT performance can also be improved by hybridizing at least two different nanomaterials. Nanoparticles that intensely absorb light and increase the efficiency of converting light into heat can specifically kill tumors through hyperthermia of cancer cells. One of the main reasons that have increased the efficiency of nanoparticles in PTT is their permeability and durability effect and they can accumulate in tumor tissue. Targeted PTT can be provided by incorporating specific ligands to target receptors expressed on the surface of cancer cells on nanoparticles. These nanoparticles can specifically target cancer cells by maintaining the surface area and increasing penetration. In this study, we briefly introduce the performance of light therapy, application of metal nanoparticles, polymer nanoparticles, carbon nanoparticles, and hybrid nanoparticles for use in PTT of breast cancer.
Collapse
Affiliation(s)
- Sania Ghobadi Alamdari
- Department of Cell and Molecular Biology, Faculty of Basic Sciences, University of Maragheh, Maragheh, Iran; Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Amini
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Nazila Jalilzadeh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Behzad Baradaran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Reza Mohammadzadeh
- Department of Cell and Molecular Biology, Faculty of Basic Sciences, University of Maragheh, Maragheh, Iran
| | - Ahad Mokhtarzadeh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Fatemeh Oroojalian
- Department of Advanced Technologies, School of Medicine, North Khorasan University of Medical Sciences, Bojnurd, Iran; Natural Products and Medicinal Plants Research Center, North Khorasan University of Medical Sciences, Bojnurd, Iran.
| |
Collapse
|
39
|
Lin B, Ma YY, Wang JW. Nano-Technological Approaches for Targeting Kidney Diseases With Focus on Diabetic Nephropathy: Recent Progress, and Future Perspectives. Front Bioeng Biotechnol 2022; 10:870049. [PMID: 35646840 PMCID: PMC9136139 DOI: 10.3389/fbioe.2022.870049] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Accepted: 04/18/2022] [Indexed: 12/13/2022] Open
Abstract
Diabetic nephropathy (DN) is the leading cause of end-stage renal disease worldwide. With the rising prevalence of diabetes, the occurrence of DN is likely to hit pandemic proportions. The current treatment strategies employed for DN focus on the management of blood pressure, glycemia, and cholesterol while neglecting DN’s molecular progression mechanism. For many theranostic uses, nano-technological techniques have evolved in biomedical studies. Several nanotechnologically based theranostics have been devised that can be tagged with targeting moieties for both drug administration and/or imaging systems and are being studied to identify various clinical conditions. The molecular mechanisms involved in DN are discussed in this review to assist in understanding its onset and progression pattern. We have also discussed emerging strategies for establishing a nanomedicine-based platform for DN-targeted drug delivery to increase drug’s efficacy and safety, as well as their reported applications.
Collapse
Affiliation(s)
- Bo Lin
- Urology & Nephrology Center, Department of Nephrology, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital, Hangzhou Medical College), Hangzhou, China
| | - Ying-Yu Ma
- Key Laboratory of Gastroenterology of Zhejiang Province, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital, Hangzhou Medical College), Hangzhou, China
- Clinical Research Institute, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital, Hangzhou Medical College), Hangzhou, China
- *Correspondence: Ying-Yu Ma, ; Jun-Wei Wang,
| | - Jun-Wei Wang
- Emergency Department, Tiantai People’s Hospital of Zhejiang Province (Tiantai Branch of Zhejiang People’s Hospital), Taizhou, China
- *Correspondence: Ying-Yu Ma, ; Jun-Wei Wang,
| |
Collapse
|
40
|
Jiang H, Li L, Zhu D, Zhou X, Yu Y, Zhou Q, Sun L. A Review of Nanotechnology for Treating Dysfunctional Placenta. Front Bioeng Biotechnol 2022; 10:845779. [PMID: 35402416 PMCID: PMC8987505 DOI: 10.3389/fbioe.2022.845779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Accepted: 03/01/2022] [Indexed: 11/13/2022] Open
Abstract
The placenta plays a significant role during pregnancy. Placental dysfunction contributes to major obstetric complications, such as fetal growth restriction and preeclampsia. Currently, there is no effective treatment for placental dysfunction in the perinatal period, and prophylaxis is often delivered too late, at which point the disease manifestation cannot be prevented. However, with recent integration of nanoscience and medicine to perform elaborate experiments on the human placenta, it is expected that novel and efficient nanotherapies will be developed to resolve the challenge of managing placental dysfunction. The advent of nanomedicine has enabled the safe and targeted delivery of drugs using nanoparticles. These smart nanoparticles can load the necessary therapeutic substances that specifically target the placenta, such as drugs, targeting molecules, and ligands. Packaging multifunctional molecules into specific delivery systems with high targeting ability, diagnosis, and treatment has emerged as a novel theragnostic (both therapeutic and diagnostic) approach. In this review, the authors discuss recent advances in nanotechnology for placental dysfunction treatment. In particular, the authors highlight potential candidate nanoparticle-loaded molecules that target the placenta to improve utero-placental blood flow, and reduce reactive oxygen species and oxidative stress. The authors intend to provide basic insight and understanding of placental dysfunction, potential delivery targets, and recent research on placenta-targeted nanoparticle delivery systems for the potential treatment of placental dysfunction. The authors hope that this review will sensitize the reader for continued exploration of novel nanomedicines.
Collapse
Affiliation(s)
- Huabo Jiang
- Shanghai Key Laboratory of Maternal Fetal Medicine, Department of Fetal Medicine and Prenatal Diagnosis Center, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Li Li
- Reproductive Medicine Center, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Dan Zhu
- Shanghai Key Laboratory of Maternal Fetal Medicine, Department of Fetal Medicine and Prenatal Diagnosis Center, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Xinyao Zhou
- Shanghai Key Laboratory of Maternal Fetal Medicine, Department of Fetal Medicine and Prenatal Diagnosis Center, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Yongsheng Yu
- Clinical and Translational Research Center, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, China
- *Correspondence: Yongsheng Yu, ; Qian Zhou, ; Luming Sun,
| | - Qian Zhou
- Clinical and Translational Research Center, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, China
- *Correspondence: Yongsheng Yu, ; Qian Zhou, ; Luming Sun,
| | - Luming Sun
- Shanghai Key Laboratory of Maternal Fetal Medicine, Department of Fetal Medicine and Prenatal Diagnosis Center, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, China
- *Correspondence: Yongsheng Yu, ; Qian Zhou, ; Luming Sun,
| |
Collapse
|
41
|
Ljubimov VA, Ramesh A, Davani S, Danielpour M, Breunig JJ, Black KL. Neurosurgery at the crossroads of immunology and nanotechnology. New reality in the COVID-19 pandemic. Adv Drug Deliv Rev 2022; 181:114033. [PMID: 34808227 PMCID: PMC8604570 DOI: 10.1016/j.addr.2021.114033] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 10/19/2021] [Accepted: 10/28/2021] [Indexed: 12/12/2022]
Abstract
Neurosurgery as one of the most technologically demanding medical fields rapidly adapts the newest developments from multiple scientific disciplines for treating brain tumors. Despite half a century of clinical trials, survival for brain primary tumors such as glioblastoma (GBM), the most common primary brain cancer, or rare ones including primary central nervous system lymphoma (PCNSL), is dismal. Cancer therapy and research have currently shifted toward targeted approaches, and personalized therapies. The orchestration of novel and effective blood-brain barrier (BBB) drug delivery approaches, targeting of cancer cells and regulating tumor microenvironment including the immune system are the key themes of this review. As the global pandemic due to SARS-CoV-2 virus continues, neurosurgery and neuro-oncology must wrestle with the issues related to treatment-related immune dysfunction. The selection of chemotherapeutic treatments, even rare cases of hypersensitivity reactions (HSRs) that occur among immunocompromised people, and number of vaccinations they have to get are emerging as a new chapter for modern Nano neurosurgery.
Collapse
Affiliation(s)
- Vladimir A Ljubimov
- Department of Neurosurgery, Cedars-Sinai Medical Center, Los Angeles, CA, USA.
| | | | | | - Moise Danielpour
- Department of Neurosurgery, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Joshua J Breunig
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Keith L Black
- Department of Neurosurgery, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| |
Collapse
|
42
|
Rezaei T, Davoudian E, Khalili S, Amini M, Hejazi M, de la Guardia M, Mokhtarzadeh A. Strategies in DNA vaccine for melanoma cancer. Pigment Cell Melanoma Res 2021; 34:869-891. [PMID: 33089665 DOI: 10.1111/pcmr.12933] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 09/05/2020] [Accepted: 09/22/2020] [Indexed: 11/29/2022]
Abstract
According to reports of the international agency for cancer on research, although malignant melanoma shows less prevalence than nonmelanoma skin cancers, it is the major cause of skin cancer mortality. Given that, the production of effective vaccines to control melanoma is eminently required. In this regard, DNA-based vaccines have been extensively investigated for melanoma therapy. DNA vaccines are capable of inducing both cellular and humoral branches of immune responses. These vaccines possess some valuable advantages such as lack of severe side effects and high stability compared to conventional vaccination methods. The ongoing studies are focused on novel strategies in the development of DNA vaccines encoding artificial polyepitope immunogens based on the multiple melanoma antigens, the inclusion of molecular adjuvants to increase the level of immune responses, and the improvement of delivery approaches. In this review, we have outlined the recent advances in the field of melanoma DNA vaccines and described their implications in clinical trials as a strong strategy in the prevention and control of melanoma.
Collapse
Affiliation(s)
- Tayebeh Rezaei
- Department of Molecular Medicine and Biotechnology, Faculty of Medicine, Arak University of Medical Science, Arak, Iran
| | - Elham Davoudian
- Department of Microbiology, School of Paramedical Sciences, Ilam University of Medical Sciences, Ilam, Iran
| | - Saeed Khalili
- Department of Biology Sciences, Shahid Rajaee Teacher Training University, Tehran, Iran
| | - Mohammad Amini
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Maryam Hejazi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Ahad Mokhtarzadeh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
43
|
Ehsanimehr S, Moghadam PN, Dehaen W, Shafiei‐Irannejad V. Redox and pH‐Responsive NCC/L‐Cysteine/CM‐β‐CD/FA Contains Disulfide Bond‐Bridged as Nanocarriers for Biosafety and Anti‐Tumor Efficacy System. STARCH-STARKE 2021. [DOI: 10.1002/star.202100061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Sedigheh Ehsanimehr
- Department of Organic Chemistry Faculty of Chemistry Urmia University Urmia 57153‐165 Iran
| | - Peyman Najafi Moghadam
- Department of Organic Chemistry Faculty of Chemistry Urmia University Urmia 57153‐165 Iran
| | - Wim Dehaen
- Department of Chemistry Molecular Design and Synthesis KU Leuven, Celestijnenlaan 200F Leuven 3001 Belgium
| | - Vahid Shafiei‐Irannejad
- Cellular and Molecular Research Center Cellular and Molecular Medicine Institute Urmia University of Medical Sciences Urmia Iran
| |
Collapse
|
44
|
Anwar DM, El-Sayed M, Reda A, Fang JY, Khattab SN, Elzoghby AO. Recent advances in herbal combination nanomedicine for cancer: delivery technology and therapeutic outcomes. Expert Opin Drug Deliv 2021; 18:1609-1625. [PMID: 34254868 DOI: 10.1080/17425247.2021.1955853] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Introduction: The use of herbal compounds in cancer therapy has great potential to promote the efficacy of current cancer therapeutic strategies. Herbal compounds were successfully reported to enhance tumor cells sensitization to the action of chemo-, hormonal- and gene-therapeutic agents via different mechanisms. Herbal ingredients can affect different signaling pathways, reduce the toxic side effects or inhibit the efflux of anticancer drugs.Areas covered: This review will discuss the delivery of herbal compounds with other cancer treatments such as hormonal, small molecule inhibitors and inorganic hybrids to tumor cells. An overview of physicochemical properties of herbal components that require intelligent design of combo-nanomedicines for efficient co-delivery of those herbal-derived and other anticancer agents was discussed. Nanocarriers provide various benefits to overcome the shortcomings of the encapsulated herbal compounds including improved solubility, increased stability and enhanced tumor targeting. Different nanocarrier systems were the focus of this review.Expert opinion: Multifunctional nanocarrier systems encapsulating herbal and different anticancer drugs showed to be a wonderful approach in the treatment of cancer enabling the co-delivery of anticancer drugs with versatile modes of action in an accurate manner in an attempt to enhance the efficacy, benefit from the synergism between the drugs as well as to minimize the development of multi-drug resistance. The main challenge point is the early detection and management of any developed adverse effect.
Collapse
Affiliation(s)
- Doaa M Anwar
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Arab Academy for Science Technology & Maritime Transport, Alexandria, Egypt.,Cancer Nanotechnology Research Laboratory (CNRL), Faculty of Pharmacy, Alexandria University, Alexandria, Egypt
| | - Mousa El-Sayed
- Chemistry Department, Faculty of Science, Alexandria University, Alexandria, Egypt.,Department of Chemistry, School of Sciences and Engineering, American University in Cairo, New Cairo, Egypt
| | - Asmaa Reda
- Nanomedicine Division, Center for Materials Science, University of Science and Technology (UST), Zewail City of Science and Technology, Giza, Egypt.,Molecular and Cellular Biology Department, Faculty of Science, Benha University, Benha, Egypt
| | - Jia-You Fang
- Pharmaceutics Laboratory, Graduate Institute of Natural Products, Chang Gung University, Taoyuan, Taiwan.,Research Center for Industry of Human Ecology, Research Center for Chinese Herbal Medicine, Chang Gung University of Science and Technology, Taoyuan, Taiwan.,Department of AnesthesiologyChang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Sherine N Khattab
- Cancer Nanotechnology Research Laboratory (CNRL), Faculty of Pharmacy, Alexandria University, Alexandria, Egypt.,Chemistry Department, Faculty of Science, Alexandria University, Alexandria, Egypt
| | - Ahmed O Elzoghby
- Cancer Nanotechnology Research Laboratory (CNRL), Faculty of Pharmacy, Alexandria University, Alexandria, Egypt.,Department of Industrial Pharmacy, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt
| |
Collapse
|
45
|
Abd Elkodous M, Olojede SO, Morsi M, El-Sayyad GS. Nanomaterial-based drug delivery systems as promising carriers for patients with COVID-19. RSC Adv 2021; 11:26463-26480. [PMID: 35480012 PMCID: PMC9037715 DOI: 10.1039/d1ra04835j] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 07/27/2021] [Indexed: 01/09/2023] Open
Abstract
Once the World Health Organization (WHO) declared the COVID-19 outbreak to be pandemic, massive efforts have been launched by researchers around the globe to combat this emerging infectious disease. Here we review the most recent data on the novel SARS-CoV-2 pathogen. We analyzed its etiology, pathogenesis, diagnosis, prevention, and current medications. After that, we summarized the promising drug delivery application of nanomaterial-based systems. Their preparation routes, unique advantages over the traditional drug delivery routes and their toxicity though risk analysis were also covered. We also discussed in detail the mechanism of action for one example of drug-loaded nanomaterial drug delivery systems (Avigan-contained nano-emulsions). This review provides insights about employing nanomaterial-based drug delivery systems for the treatment of COVID-19 to increase the bioavailability of current drugs, reducing their toxicity, and to increase their efficiency.
Collapse
Affiliation(s)
- M Abd Elkodous
- Department of Electrical and Electronic Information Engineering, Toyohashi University of Technology Toyohashi Aichi 441-8580 Japan
- Center for Nanotechnology (CNT), School of Engineering and Applied Sciences, Nile University Sheikh Zayed Giza 16453 Egypt
| | - S O Olojede
- Nanotechnology Platforms, Discipline of Clinical Anatomy, Nelson Mandela School of Medicine, University of KwaZulu-Natal Durban South Africa
| | - Mahmoud Morsi
- Faculty of Medicine, Menoufia University Menoufia Shebin El Kom Egypt
| | - Gharieb S El-Sayyad
- Drug Radiation Research Department, National Center for Radiation Research and Technology (NCRRT), Egyptian Atomic Energy Authority (EAEA) Cairo Egypt
- Chemical Engineering Department, Military Technical College (MTC) Egyptian Armed Forces Cairo Egypt
| |
Collapse
|
46
|
Tseng YY, Chen TY, Liu SJ. Role of Polymeric Local Drug Delivery in Multimodal Treatment of Malignant Glioma: A Review. Int J Nanomedicine 2021; 16:4597-4614. [PMID: 34267515 PMCID: PMC8275179 DOI: 10.2147/ijn.s309937] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Accepted: 06/21/2021] [Indexed: 12/29/2022] Open
Abstract
Malignant gliomas (MGs) are the most common and devastating primary brain tumor. At present, surgical interventions, radiotherapy, and chemotherapy are only marginally effective in prolonging the life expectancy of patients with MGs. Inherent heterogeneity, aggressive invasion and infiltration, intact physical barriers, and the numerous mechanisms underlying chemotherapy and radiotherapy resistance contribute to the poor prognosis for patients with MGs. Various studies have investigated methods to overcome these obstacles in MG treatment. In this review, we address difficulties in MG treatment and focus on promising polymeric local drug delivery systems. In contrast to most local delivery systems, which are directly implanted into the residual cavity after intratumoral injection or the surgical removal of a tumor, some rapidly developing and promising nanotechnological methods—including surface-decorated nanoparticles, magnetic nanoparticles, and focused ultrasound assist transport—are administered through (systemic) intravascular injection. We also discuss further synergistic and multimodal strategies for heightening therapeutic efficacy. Finally, we outline the challenges and therapeutic potential of these polymeric drug delivery systems.
Collapse
Affiliation(s)
- Yuan-Yun Tseng
- Department of Neurosurgery, New Taipei Municipal Tu-Cheng Hospital (Built and Operated by Chang Gung Medical Foundation), New Taipei City, Taiwan
| | - Tai-Yuan Chen
- Department of Surgery, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Shih-Jung Liu
- Department of Mechanical Engineering, Chang Gung University, Tao-Yuan, Taiwan.,Department of Orthopedic Surgery, Chang Gung Memorial Hospital-Linkuo, Tao-Yuan, Taiwan
| |
Collapse
|
47
|
Maleki H, Hosseini Najafabadi MR, Webster TJ, Hadjighassem MR, Sadroddiny E, Ghanbari H, Khosravani M, Adabi M. Effect of Paclitaxel/etoposide co-loaded polymeric nanoparticles on tumor size and survival rate in a rat model of glioblastoma. Int J Pharm 2021; 604:120722. [PMID: 34022255 DOI: 10.1016/j.ijpharm.2021.120722] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 05/11/2021] [Accepted: 05/17/2021] [Indexed: 12/18/2022]
Abstract
The aim of this work is to co-load paclitaxel (PTX) and etoposide (ETP) in methoxy poly(ethylene glycol)-poly(lactic-co-glycolic acid) nanoparticles (mPEG-PLGA NPs) to overcome pharmacokinetics and physiological limitations and enhance therapeutic efficacy for treating intracranial glioblastoma. Both drugs were loaded into mPEG-PLGA NPs by a nano-precipitation method. The resultant NPs demonstrated an enhanced cytotoxic effect indicated by lower IC50 values and augmented cell apoptosis to U87 and C6 glioma cell lines compared to both free drugs. Additionally, blood compatibility assays showed that the PTX/ETP co-loaded mPEG-PLGA NPs did not induce blood hemolysis, blood clotting, or platelet aggregation. In vivo anti-glioma efficacy evaluation in rats bearingintracranialC6glioma revealed a superior anti-glioma activity for the treatment with PTX/ETP co-loaded mPEG-PLGA NPs compared to other formulations, particularly a significantly longer median survival, 76 days compared to 36 days for free PTX and 37 days for free ETP treatment, respectively, and higher tumor regression, proved by magnetic resonance imaging (MRI).
Collapse
Affiliation(s)
- Hassan Maleki
- Department of Medical Nanotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran; Nano Drug Delivery Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Mohammad Reza Hosseini Najafabadi
- Department of Medical Nanotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Thomas J Webster
- Chemical Engineering Department, Northeastern University, Boston, MA 02115, USA
| | - Mahmoud Reza Hadjighassem
- Brain and Spinal Cord Injury Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Esmaeil Sadroddiny
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Hossein Ghanbari
- Department of Medical Nanotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Masood Khosravani
- Department of Medical Nanotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| | - Mahdi Adabi
- Department of Medical Nanotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
48
|
Targeted delivery system using silica nanoparticles coated with chitosan and AS1411 for combination therapy of doxorubicin and antimiR-21. Carbohydr Polym 2021; 266:118111. [PMID: 34044928 DOI: 10.1016/j.carbpol.2021.118111] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 04/04/2021] [Accepted: 04/18/2021] [Indexed: 12/22/2022]
Abstract
Herein, a novel targeted delivery system was developed for intracellular co-delivery of doxorubicin (DOX) as a chemotherapeutic drug, antimiR-21 as an oncogenic antagomiR. In this system, DOX was loaded into mesoporous silica nanoparticles (MSNs) and chitosan was applied to cover the surface of MSNs. AS1411 aptamer as targeting nucleolin and antimiR-21 were electrostatically attached onto the surface of the chitosan-coated MSNs and formed the final nanocomplex (AACS nanocomplex). The study of drug release was based on DOX release under pH 7.4 and 5.5. Cellular toxicity and cellular uptake assessments of AACS nanocomplex were carried out in nucleolin positive (C26, MCF-7, and 4T1) and nucleolin negative (CHO) cell lines using MTT assay and flow cytometry analysis, respectively. Also, Anti-tumor efficacy of AACS nanocomplex was evaluated in C26 tumor-bearing mice. Overall, the results show that the combination therapy of DOX and antimiR-21, using AACS nanocomplex, could combat the cancer cell growth rate.
Collapse
|
49
|
Hemlata, Gupta S, Tejavath KK. ROS-Mediated Apoptosis Induced by BSA Nanospheres Encapsulated with Fruit Extract of Cucumis prophetarum in Various Human Cancer Cell Lines. ACS OMEGA 2021; 6:10383-10395. [PMID: 34056191 PMCID: PMC8153748 DOI: 10.1021/acsomega.1c00755] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Accepted: 03/25/2021] [Indexed: 05/14/2023]
Abstract
In recent decades, biodegradable polymeric nanoparticles have been used as a nanocarrier for the delivery of anticancer drugs. In the present study, we synthesize bovine serum albumin (BSA) nanospheres and evaluate their ability to incorporate a plant extract with anticancer activity. The plant extract used was the methanol fruit extract of Cucumis prophetarum, which is a medicinal herb. The fruit-extract-encapsulated BSA nanospheres (Cp-BSA nanospheres) were prepared using a desolvation method at various pH values of 5, 7, and 9. The nanosphere formulations were characterized using various techniques such as dynamic light scattering (DLS), ζ-potential, Fourier transform infrared spectroscopy (FTIR), and field-effect scanning electron microscopy (FESEM). The results show that the Cp-BSA nanospheres prepared at pH 7 were spherical with a uniform particle size, low polydispersity index (PDI), ζ-potential, and high entrapment efficiency (82.3%) and showed sustained release of fruit extract from Cp-BSA nanospheres in phosphate-buffered saline (PBS), pH 5. The anticancer activity was evaluated on A549, HepG2, MCF-7 cancer cell lines and HEK 293 normal cell lines. In vitro, antioxidant activity using the 2,2-diphenyl-1-picrylhydrazyl (DPPH) assay, intracellular reactive oxygen species (ROS) production, and mitochondrial membrane potential were estimated. An in vitro cellular uptake study was performed using fluorescein isothiocyanate (FITC) dye at a different time of incubation, and DNA fragmentation was observed in a dose-dependent manner. The gene expression level of Bax and the suppression level of Bcl-2 were observed upon the treatment of Cp-BSA nanospheres. Thus, the Cp-BSA nanospheres triggered ROS-dependent mitochondrial apoptosis in different human cancer cell lines when compared to the noncancerous cell lines and could be used as a potential candidate for anticancer agents.
Collapse
Affiliation(s)
- Hemlata
- Department of Biochemistry,
School of Life Sciences, Central University
of Rajasthan, NH-8, Bandarsindri, Kishangarh, 305817 Ajmer, Rajasthan, India
| | - Shruti Gupta
- Department of Biochemistry,
School of Life Sciences, Central University
of Rajasthan, NH-8, Bandarsindri, Kishangarh, 305817 Ajmer, Rajasthan, India
| | - Kiran Kumar Tejavath
- Department of Biochemistry,
School of Life Sciences, Central University
of Rajasthan, NH-8, Bandarsindri, Kishangarh, 305817 Ajmer, Rajasthan, India
| |
Collapse
|
50
|
Fulfager AD, Yadav KS. Understanding the implications of co-delivering therapeutic agents in a nanocarrier to combat multidrug resistance (MDR) in breast cancer. J Drug Deliv Sci Technol 2021. [DOI: 10.1016/j.jddst.2021.102405] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|