1
|
Santos D, Carrijo Oliveira N, Costa ECA, Ramalho Paes MV, Beltrão-Braga B, Castanha AG, Beltrão-Braga PCB. Modeling potential drugs for Zika virus in animal and in vitro platforms: what is the current state of the art? Expert Opin Drug Discov 2025; 20:585-597. [PMID: 40251755 DOI: 10.1080/17460441.2025.2496461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2025] [Revised: 04/07/2025] [Accepted: 04/17/2025] [Indexed: 04/21/2025]
Abstract
INTRODUCTION The Zika virus (ZIKV) poses a significant public health threat due to its association with congenital Zika syndrome (CZS) and severe neurological disorders. Since its discovery, ZIKV has transitioned from sporadic outbreaks to a major epidemic in Brazil in 2015, which highlighted the urgent need for effective therapies, especially for vulnerable groups like pregnant women and newborns. AREAS COVERED This review provides a comprehensive overview of recent advancements in ZIKV drug discovery and their current stage of development, with a particular focus on those tested in animal models from 2018 to date, excluding vaccine candidates. Repurposed drugs, such as molnupiravir and sofosbuvir, have shown the potential to inhibit viral replication and mitigate disease. Novel compounds targeting viral proteins and host-directed therapies are also discussed. Furthermore, advanced in vitro models, including brain organoids, have offered critical insights into therapeutic efficacy. EXPERT OPINION Although some preclinical models have identified potential drugs ready for human translation, no protocol has yet been established for treating ZIKV infection. Currently, the treatment involves supportive care, managing symptoms, and preventing complications, especially for pregnant women. Ongoing research aims to develop specific antiviral therapies and vaccines; however, no such options are currently available.
Collapse
Affiliation(s)
- Debora Santos
- Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Nathalia Carrijo Oliveira
- Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
- Institut Pasteur de São Paulo, São Paulo, Brazil
| | | | - Maria Vitória Ramalho Paes
- Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Bruna Beltrão-Braga
- Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Andrelissa Gorete Castanha
- Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
- Institut Pasteur de São Paulo, São Paulo, Brazil
| | | |
Collapse
|
2
|
Khan A, Zakirullah, Wahab S, Hong ST. Advances in antiviral strategies targeting mosquito-borne viruses: cellular, viral, and immune-related approaches. Virol J 2025; 22:26. [PMID: 39905499 PMCID: PMC11792744 DOI: 10.1186/s12985-025-02622-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Accepted: 01/03/2025] [Indexed: 02/06/2025] Open
Abstract
Mosquito-borne viruses (MBVs) are a major global health threat, causing significant morbidity and mortality. MBVs belong to several distinct viral families, each with unique characteristics. The primary families include Flaviviridae (e.g., Dengue, Zika, West Nile, Yellow Fever, Japanese Encephalitis), transmitted predominantly by Aedes and Culex mosquitoes; Togaviridae, which consists of the genus Alphavirus (e.g., Chikungunya, Eastern and Western Equine Encephalitis viruses), also transmitted by Aedes and Culex; Bunyaviridae (recently reorganized), containing viruses like Rift Valley Fever and Oropouche virus, transmitted by mosquitoes and sometimes sandflies; and Reoviridae, which includes the genus Orbivirus (e.g., West Nile and Bluetongue viruses), primarily affecting animals and transmitted by mosquitoes and sandflies. Despite extensive research, effective antiviral treatments for MBVs remain scarce, and current therapies mainly provide symptomatic relief and supportive care. This review examines the viral components and cellular and immune factors involved in the life cycle of MBVs. It also highlights recent advances in antiviral strategies targeting host factors such as lipid metabolism, ion channels, and proteasomes, as well as viral targets like NS2B-NS3 proteases and nonstructural proteins. Additionally, it explores immunomodulatory therapies to enhance antiviral responses and emphasizes the potential of drug repurposing, bioinformatics, artificial intelligence, and deep learning in identifying novel antiviral candidates. Continued research is crucial in mitigating MBVs' impact and preventing future outbreaks.
Collapse
Affiliation(s)
- Ayyaz Khan
- Department of Biomedical Sciences and Institute for Medical Science, Jeonbuk National University Medical School, Jeonju, 54907, South Korea
| | - Zakirullah
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, China
| | - Shahid Wahab
- Department of Agriculture, Jeonbuk National University, Jeonju-si, Republic of Korea
| | - Seong-Tshool Hong
- Department of Biomedical Sciences and Institute for Medical Science, Jeonbuk National University Medical School, Jeonju, 54907, South Korea.
| |
Collapse
|
3
|
Tripathi A, Chauhan S, Khasa R. A Comprehensive Review of the Development and Therapeutic Use of Antivirals in Flavivirus Infection. Viruses 2025; 17:74. [PMID: 39861863 PMCID: PMC11769230 DOI: 10.3390/v17010074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2024] [Revised: 12/29/2024] [Accepted: 12/30/2024] [Indexed: 01/27/2025] Open
Abstract
Flaviviruses are a diverse group of viruses primarily transmitted through hematophagous insects like mosquitoes and ticks. Significant expansion in the geographic range, prevalence, and vectors of flavivirus over the last 50 years has led to a dramatic increase in infections that can manifest as hemorrhagic fever or encephalitis, leading to prolonged morbidity and mortality. Millions of infections every year pose a serious threat to worldwide public health, encouraging scientists to develop a better understanding of the pathophysiology and immune evasion mechanisms of these viruses for vaccine development and antiviral therapy. Extensive research has been conducted in developing effective antivirals for flavivirus. Various approaches have been extensively utilized in clinical trials for antiviral development, targeting virus entry, replication, polyprotein synthesis and processing, and egress pathways exploiting virus as well as host proteins. However, to date, no licensed antiviral drug exists to treat the diseases caused by these viruses. Understanding the mechanisms of host-pathogen interaction, host immunity, viral immune evasion, and disease pathogenesis is highly warranted to foster the development of antivirals. This review provides an extensively detailed summary of the most recent advances in the development of antiviral drugs to combat diseases.
Collapse
Affiliation(s)
- Aarti Tripathi
- Department of Pathology, University of Texas Medical Branch, Galveston, TX 77555, USA;
- Galveston National Laboratory, Galveston, TX 77555, USA
| | - Shailendra Chauhan
- Department of Pathology, University of Texas Medical Branch, Galveston, TX 77555, USA;
- Galveston National Laboratory, Galveston, TX 77555, USA
| | - Renu Khasa
- Department of Microbiology and Immunology, Miller School of Medicine, University of Miami/UHealth, Miami, FL 33136, USA
| |
Collapse
|
4
|
Cavina L, Bouma MJ, Gironés D, Feiters MC. Orthoflaviviral Inhibitors in Clinical Trials, Preclinical In Vivo Efficacy Targeting NS2B-NS3 and Cellular Antiviral Activity via Competitive Protease Inhibition. Molecules 2024; 29:4047. [PMID: 39274895 PMCID: PMC11396989 DOI: 10.3390/molecules29174047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 08/21/2024] [Accepted: 08/24/2024] [Indexed: 09/16/2024] Open
Abstract
Orthoflaviviruses, including zika (ZIKV), West Nile (WNV), and dengue (DENV) virus, induce severely debilitating infections and contribute significantly to the global disease burden, yet no clinically approved antiviral treatments exist. This review offers a comprehensive analysis of small-molecule drug development targeting orthoflaviviral infections, with a focus on NS2B-NS3 inhibition. We systematically examined clinical trials, preclinical efficacy studies, and modes of action for various viral replication inhibitors, emphasizing allosteric and orthosteric drugs inhibiting NS2B-NS3 protease with in vivo efficacy and in vitro-tested competitive NS2B-NS3 inhibitors with cellular efficacy. Our findings revealed that several compounds with in vivo preclinical efficacy failed to show clinical antiviral efficacy. NS3-NS4B inhibitors, such as JNJ-64281802 and EYU688, show promise, recently entering clinical trials, underscoring the importance of developing novel viral replication inhibitors targeting viral machinery. To date, the only NS2B-NS3 inhibitor that has undergone clinical trials is doxycycline, however, its mechanism of action and clinical efficacy as viral growth inhibitor require additional investigation. SYC-1307, an allosteric inhibitor, exhibits high in vivo efficacy, while temoporfin and methylene blue represent promising orthosteric non-competitive inhibitors. Compound 71, a competitive NS2B-NS3 inhibitor, emerges as a leading preclinical candidate due to its high cellular antiviral efficacy, minimal cytotoxicity, and favorable in vitro pharmacokinetic parameters. Challenges remain in developing competitive NS2B-NS3 inhibitors, including appropriate biochemical inhibition assays as well as the selectivity and conformational flexibility of the protease, complicating effective antiviral treatment design.
Collapse
Affiliation(s)
- Lorenzo Cavina
- Institute for Molecules and Materials, Faculty of Science, Radboud University, Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands; (M.J.B.); (D.G.)
| | - Mathijs J. Bouma
- Institute for Molecules and Materials, Faculty of Science, Radboud University, Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands; (M.J.B.); (D.G.)
| | - Daniel Gironés
- Institute for Molecules and Materials, Faculty of Science, Radboud University, Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands; (M.J.B.); (D.G.)
- Protinhi Therapeutics, Transistorweg 5, 6534 AT Nijmegen, The Netherlands
| | - Martin C. Feiters
- Institute for Molecules and Materials, Faculty of Science, Radboud University, Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands; (M.J.B.); (D.G.)
| |
Collapse
|
5
|
Sulaksono HLS, Annisa A, Ruslami R, Mufeeduzzaman M, Panatarani C, Hermawan W, Ekawardhani S, Joni IM. Recent Advances in Graphene Oxide-Based on Organoid Culture as Disease Model and Cell Behavior - A Systematic Literature Review. Int J Nanomedicine 2024; 19:6201-6228. [PMID: 38911499 PMCID: PMC11193994 DOI: 10.2147/ijn.s455940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Accepted: 06/02/2024] [Indexed: 06/25/2024] Open
Abstract
Due to their ability to replicate the in vivo microenvironment through cell interaction and induce cells to stimulate cell function, three-dimensional cell culture models can overcome the limitations of two-dimensional models. Organoids are 3D models that demonstrate the ability to replicate the natural structure of an organ. In most organoid tissue cultures, matrigel made of a mouse tumor extracellular matrix protein mixture is an essential ingredient. However, its tumor-derived origin, batch-to-batch variation, high cost, and safety concerns have limited the usefulness of organoid drug development and regenerative medicine. Its clinical application has also been hindered by the fact that organoid generation is dependent on the use of poorly defined matrices. Therefore, matrix optimization is a crucial step in developing organoid culture that introduces alternatives as different materials. Recently, a variety of substitute materials has reportedly replaced matrigel. The purpose of this study is to review the significance of the latest advances in materials for cell culture applications and how they enhance build network systems by generating proper cell behavior. Excellence in cell behavior is evaluated from their cell characteristics, cell proliferation, cell differentiation, and even gene expression. As a result, graphene oxide as a matrix optimization demonstrated high potency in developing organoid models. Graphene oxide can promote good cell behavior and is well known for having good biocompatibility. Hence, advances in matrix optimization of graphene oxide provide opportunities for the future development of advanced organoid models.
Collapse
Affiliation(s)
| | - Annisa Annisa
- Department of Biology, Faculty of Mathematics and Natural Sciences, Universitas Padjadjaran, Bandung, Indonesia
| | - Rovina Ruslami
- Department of Biomedical Sciences, Faculty of Medicine, Universitas Padjadjaran, Bandung, Indonesia
| | - Mufeeduzzaman Mufeeduzzaman
- Functional Nano Powder University Center of Excellence (FiNder U-CoE), Universitas Padjadjaran, Bandung, Indonesia
| | - Camellia Panatarani
- Functional Nano Powder University Center of Excellence (FiNder U-CoE), Universitas Padjadjaran, Bandung, Indonesia
- Department of Physics, Faculty of Mathematics and Natural Sciences, Universitas Padjadjaran, Bandung, Indonesia
| | - Wawan Hermawan
- Department of Biology, Faculty of Mathematics and Natural Sciences, Universitas Padjadjaran, Bandung, Indonesia
- Functional Nano Powder University Center of Excellence (FiNder U-CoE), Universitas Padjadjaran, Bandung, Indonesia
| | - Savira Ekawardhani
- Department of Biomedical Sciences, Faculty of Medicine, Universitas Padjadjaran, Bandung, Indonesia
- Functional Nano Powder University Center of Excellence (FiNder U-CoE), Universitas Padjadjaran, Bandung, Indonesia
| | - I Made Joni
- Functional Nano Powder University Center of Excellence (FiNder U-CoE), Universitas Padjadjaran, Bandung, Indonesia
- Department of Physics, Faculty of Mathematics and Natural Sciences, Universitas Padjadjaran, Bandung, Indonesia
| |
Collapse
|
6
|
Lu Z, Wei P, Peng H, Jiang L, Wu P, Yi T. A smart hypochlorous acid fluorescent probe enabling Ibuprofen-release for osteoarthritis theranostics. Theranostics 2024; 14:3900-3908. [PMID: 38994024 PMCID: PMC11234266 DOI: 10.7150/thno.96958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Accepted: 06/05/2024] [Indexed: 07/13/2024] Open
Abstract
Background: Osteoarthritis (OA) standing as the most prevalent form of arthritis, closely associates with heightened levels of reactive oxygen species, particularly hypochlorous acid (HOCl). Although there are numerous probes available for detecting HOCl in the OA region, probes with dual functions of diagnostic and therapeutic capabilities are still significantly lacking. While this type of probe can reduce the time gap between diagnosis and treatment, which is clinically needed. Methods: We developed a fluorescent probe (DHU-CBA1) toward HOCl with theranostics functions through the release of methylene blue (MB) and ibuprofen (IBP) in this work. DHU-CBA1 can detect HOCl with high specificity and sensitivity, releasing MB and IBP with an impressive efficiency of ≥ 95% in vitro. Results: DHU-CBA1 exhibits good biosafety, enabling in vivo imaging of endogenous HOCl, along with reducing arthritis scores, improving synovitis and cartilage damage, and maintaining catabolic balance while alleviating senescence in cartilage. Conclusions: This study proposes a novel approach to enhance osteoarthritis therapy by releasing IBP via a smart HOCl-enabled fluorescent probe.
Collapse
Affiliation(s)
- Zhenni Lu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Chemistry and Chemical Engineering, Donghua University, Shanghai 201620, China
| | - Peng Wei
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Chemistry and Chemical Engineering, Donghua University, Shanghai 201620, China
| | - Hongying Peng
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Chemistry and Chemical Engineering, Donghua University, Shanghai 201620, China
| | - Libo Jiang
- Department of Orthopaedic Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Peiyi Wu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Chemistry and Chemical Engineering, Donghua University, Shanghai 201620, China
| | - Tao Yi
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Chemistry and Chemical Engineering, Donghua University, Shanghai 201620, China
| |
Collapse
|
7
|
Lynch C, Sakamuru S, Ooka M, Huang R, Klumpp-Thomas C, Shinn P, Gerhold D, Rossoshek A, Michael S, Casey W, Santillo MF, Fitzpatrick S, Thomas RS, Simeonov A, Xia M. High-Throughput Screening to Advance In Vitro Toxicology: Accomplishments, Challenges, and Future Directions. Annu Rev Pharmacol Toxicol 2024; 64:191-209. [PMID: 37506331 PMCID: PMC10822017 DOI: 10.1146/annurev-pharmtox-112122-104310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/30/2023]
Abstract
Traditionally, chemical toxicity is determined by in vivo animal studies, which are low throughput, expensive, and sometimes fail to predict compound toxicity in humans. Due to the increasing number of chemicals in use and the high rate of drug candidate failure due to toxicity, it is imperative to develop in vitro, high-throughput screening methods to determine toxicity. The Tox21 program, a unique research consortium of federal public health agencies, was established to address and identify toxicity concerns in a high-throughput, concentration-responsive manner using a battery of in vitro assays. In this article, we review the advancements in high-throughput robotic screening methodology and informatics processes to enable the generation of toxicological data, and their impact on the field; further, we discuss the future of assessing environmental toxicity utilizing efficient and scalable methods that better represent the corresponding biological and toxicodynamic processes in humans.
Collapse
Affiliation(s)
- Caitlin Lynch
- National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, Maryland, USA; ,
| | - Srilatha Sakamuru
- National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, Maryland, USA; ,
| | - Masato Ooka
- National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, Maryland, USA; ,
| | - Ruili Huang
- National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, Maryland, USA; ,
| | - Carleen Klumpp-Thomas
- National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, Maryland, USA; ,
| | - Paul Shinn
- National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, Maryland, USA; ,
| | - David Gerhold
- National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, Maryland, USA; ,
| | - Anna Rossoshek
- National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, Maryland, USA; ,
| | - Sam Michael
- National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, Maryland, USA; ,
| | - Warren Casey
- Division of the National Toxicology Program, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina, USA
| | - Michael F Santillo
- Division of Toxicology, Office of Applied Research and Safety Assessment, Center for Food Safety and Applied Nutrition, U.S. Food and Drug Administration, Laurel, Maryland, USA
| | - Suzanne Fitzpatrick
- Center for Food Safety and Applied Nutrition, U.S. Food and Drug Administration, College Park, Maryland, USA
| | - Russell S Thomas
- Center for Computational Toxicology and Exposure, Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina, USA
| | - Anton Simeonov
- National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, Maryland, USA; ,
| | - Menghang Xia
- National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, Maryland, USA; ,
| |
Collapse
|
8
|
Zaharieva MM, Foka P, Karamichali E, Kroumov AD, Philipov S, Ilieva Y, Kim TC, Podlesniy P, Manasiev Y, Kussovski V, Georgopoulou U, Najdenski HM. Photodynamic Inactivation of Bovine Coronavirus with the Photosensitizer Toluidine Blue O. Viruses 2023; 16:48. [PMID: 38257748 PMCID: PMC10818719 DOI: 10.3390/v16010048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 12/24/2023] [Accepted: 12/25/2023] [Indexed: 01/24/2024] Open
Abstract
Coronaviruses (CoVs) belong to the group of enveloped positive-sense single-strand RNA viruses and are causative agents of respiratory, gastro-intestinal, and central nervous systems diseases in many host species, i.e., birds, mammals, and humans. Beta-CoVs revealed a great potential to cross the barrier between species by causing three epidemics/pandemics among humans in the 21st century. Considering the urgent need for powerful antiviral agents for decontamination, prevention, and treatment of BCoV infections, we turned our attention to the possibility of photodynamic inactivation with photosensitizers in combination with light irradiation. In the present study, we evaluated, for the first time, the antiviral activity of toluidine blue O (TBO) against Beta-coronavirus 1 (BCoV) in comparison to methylene blue (MB). First, we determined the in vitro cytotoxicity of MB and TBO on the Madin-Darby bovine kidney (MDBK) cell line with ISO10993-5/Annex C. Thereafter, BCoV was propagated in MDBK cells, and the virus titer was measured with digital droplet PCR, TCID50 assay and plaque assay. The antiviral activity of non-toxic concentrations of TBO was estimated using the direct inactivation approach. All effects were calculated in MAPLE 15® mathematical software by developing programs for non-linear modeling and response surface analysis. The median inhibitory concentration (IC50) of TBO after 72 h of incubation in MDBK cells was 0.85 µM. The antiviral activity of TBO after the direct inactivation of BCoV (MOI = 1) was significantly stronger than that of MB. The median effective concentration (EC50) of TBO was 0.005 µM. The cytopathic effect decreased in a concentration-dependent manner, from 0.0025 to 0.01 µM, and disappeared fully at concentrations between 0.02 and 0.3 µM of TBO. The number of virus particles also decreased, depending on the concentration applied, as proven by ddPCR analysis. In conclusion, TBO exhibits significant potential for direct inactivation of BCoV in vitro, with a very high selectivity index, and should be subjected to further investigation, aiming at its application in veterinary and/or human medical practice.
Collapse
Affiliation(s)
- Maya Margaritova Zaharieva
- Department of Infectious Microbiology, The Stephan Angeloff Institute of Microbiology, Bulgarian Academy of Sciences, 26 Acad. G. Bonchev Str., 1000 Sofia, Bulgaria; (M.M.Z.); (A.D.K.); (Y.I.); (T.C.K.); (V.K.)
| | - Pelagia Foka
- Department of Microbiology, Laboratory of Molecular Virology, Hellenic Institute Pasteur, Vasilissis Sofias 127, 11521 Athens, Greece; (P.F.); (E.K.)
| | - Eirini Karamichali
- Department of Microbiology, Laboratory of Molecular Virology, Hellenic Institute Pasteur, Vasilissis Sofias 127, 11521 Athens, Greece; (P.F.); (E.K.)
| | - Alexander Dimitrov Kroumov
- Department of Infectious Microbiology, The Stephan Angeloff Institute of Microbiology, Bulgarian Academy of Sciences, 26 Acad. G. Bonchev Str., 1000 Sofia, Bulgaria; (M.M.Z.); (A.D.K.); (Y.I.); (T.C.K.); (V.K.)
| | - Stanislav Philipov
- Chair Human Anatomy, Histology, General and Clinical Pathology and Forensic Medicine, Faculty of Medicine, Hospital Lozenetz, Sofia University “St. Kliment Ohridski”, 2 Kozyak Str., 1407 Sofia, Bulgaria;
| | - Yana Ilieva
- Department of Infectious Microbiology, The Stephan Angeloff Institute of Microbiology, Bulgarian Academy of Sciences, 26 Acad. G. Bonchev Str., 1000 Sofia, Bulgaria; (M.M.Z.); (A.D.K.); (Y.I.); (T.C.K.); (V.K.)
| | - Tanya Chan Kim
- Department of Infectious Microbiology, The Stephan Angeloff Institute of Microbiology, Bulgarian Academy of Sciences, 26 Acad. G. Bonchev Str., 1000 Sofia, Bulgaria; (M.M.Z.); (A.D.K.); (Y.I.); (T.C.K.); (V.K.)
| | - Petar Podlesniy
- Institute of Biomedical Research of Barcelona, CSIC, Rosselló, 161, 7ª Planta, 08036 Barcelona, Spain;
| | - Yordan Manasiev
- Evgeni Budevski Institute of Electrochemistry and Energy Systems, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria;
| | - Vesselin Kussovski
- Department of Infectious Microbiology, The Stephan Angeloff Institute of Microbiology, Bulgarian Academy of Sciences, 26 Acad. G. Bonchev Str., 1000 Sofia, Bulgaria; (M.M.Z.); (A.D.K.); (Y.I.); (T.C.K.); (V.K.)
| | - Urania Georgopoulou
- Department of Microbiology, Laboratory of Molecular Virology, Hellenic Institute Pasteur, Vasilissis Sofias 127, 11521 Athens, Greece; (P.F.); (E.K.)
| | - Hristo Miladinov Najdenski
- Department of Infectious Microbiology, The Stephan Angeloff Institute of Microbiology, Bulgarian Academy of Sciences, 26 Acad. G. Bonchev Str., 1000 Sofia, Bulgaria; (M.M.Z.); (A.D.K.); (Y.I.); (T.C.K.); (V.K.)
| |
Collapse
|
9
|
Zhang N, Tan Z, Wei J, Zhang S, Liu Y, Miao Y, Ding Q, Yi W, Gan M, Li C, Liu B, Wang H, Zheng Z. Identification of novel anti-ZIKV drugs from viral-infection temporal gene expression profiles. Emerg Microbes Infect 2023; 12:2174777. [PMID: 36715162 PMCID: PMC9946313 DOI: 10.1080/22221751.2023.2174777] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Zika virus (ZIKV) infections are typically asymptomatic but cause severe neurological complications (e.g. Guillain-Barré syndrome in adults, and microcephaly in newborns). There are currently no specific therapy or vaccine options available to prevent ZIKV infections. Temporal gene expression profiles of ZIKV-infected human brain microvascular endothelial cells (HBMECs) were used in this study to identify genes essential for viral replication. These genes were then used to identify novel anti-ZIKV agents and validated in publicly available data and functional wet-lab experiments. Here, we found that ZIKV effectively evaded activation of immune response-related genes and completely reprogrammed cellular transcriptional architectures. Knockdown of genes, which gradually upregulated during viral infection but showed distinct expression patterns between ZIKV- and mock infection, discovered novel proviral and antiviral factors. One-third of the 74 drugs found through signature-based drug repositioning and cross-reference with the Drug Gene Interaction Database (DGIdb) were known anti-ZIKV agents. In cellular assays, two promising antiviral candidates (Luminespib/NVP-AUY922, L-161982) were found to reduce viral replication without causing cell toxicity. Overall, our time-series transcriptome-based methods offer a novel and feasible strategy for antiviral drug discovery. Our strategies, which combine conventional and data-driven analysis, can be extended for other pathogens causing pandemics in the future.
Collapse
Affiliation(s)
- Nailou Zhang
- CAS Key Laboratory of Special Pathogens and Biosafety, Center for Emerging Infectious Diseases, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, People’s Republic of China
| | - Zhongyuan Tan
- The Joint Laboratory for Translational Precision Medicine, a. Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, People's Republic of China and b. Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, Hubei, People's Republic of China
| | - Jinbo Wei
- CAS Key Laboratory of Special Pathogens and Biosafety, Center for Emerging Infectious Diseases, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, People’s Republic of China
| | - Sai Zhang
- CAS Key Laboratory of Special Pathogens and Biosafety, Center for Emerging Infectious Diseases, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, People’s Republic of China
| | - Yan Liu
- CAS Key Laboratory of Special Pathogens and Biosafety, Center for Emerging Infectious Diseases, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, People’s Republic of China
| | - Yuanjiu Miao
- CAS Key Laboratory of Special Pathogens and Biosafety, Center for Emerging Infectious Diseases, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, People’s Republic of China
| | - Qingwen Ding
- CAS Key Laboratory of Special Pathogens and Biosafety, Center for Emerging Infectious Diseases, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, People’s Republic of China
| | - Wenfu Yi
- CAS Key Laboratory of Special Pathogens and Biosafety, Center for Emerging Infectious Diseases, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, People’s Republic of China
| | - Min Gan
- CAS Key Laboratory of Special Pathogens and Biosafety, Center for Emerging Infectious Diseases, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, People’s Republic of China
| | - Chunjie Li
- CAS Key Laboratory of Special Pathogens and Biosafety, Center for Emerging Infectious Diseases, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, People’s Republic of China
| | - Bin Liu
- Characteristic Medical Center of Chinese People’s Armed Police Forces, Tianjin, People’s Republic of China
| | - Hanzhong Wang
- CAS Key Laboratory of Special Pathogens and Biosafety, Center for Emerging Infectious Diseases, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, People’s Republic of China
| | - Zhenhua Zheng
- CAS Key Laboratory of Special Pathogens and Biosafety, Center for Emerging Infectious Diseases, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, People’s Republic of China, Zhenhua Zheng CAS Key Laboratory of Special Pathogens and Biosafety, Center for Emerging Infectious Diseases, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan430071, People’s Republic of China
| |
Collapse
|
10
|
Diani E, Lagni A, Lotti V, Tonon E, Cecchetto R, Gibellini D. Vector-Transmitted Flaviviruses: An Antiviral Molecules Overview. Microorganisms 2023; 11:2427. [PMID: 37894085 PMCID: PMC10608811 DOI: 10.3390/microorganisms11102427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 09/18/2023] [Accepted: 09/25/2023] [Indexed: 10/29/2023] Open
Abstract
Flaviviruses cause numerous pathologies in humans across a broad clinical spectrum with potentially severe clinical manifestations, including hemorrhagic and neurological disorders. Among human flaviviruses, some viral proteins show high conservation and are good candidates as targets for drug design. From an epidemiological point of view, flaviviruses cause more than 400 million cases of infection worldwide each year. In particular, the Yellow Fever, dengue, West Nile, and Zika viruses have high morbidity and mortality-about an estimated 20,000 deaths per year. As they depend on human vectors, they have expanded their geographical range in recent years due to altered climatic and social conditions. Despite these epidemiological and clinical premises, there are limited antiviral treatments for these infections. In this review, we describe the major compounds that are currently under evaluation for the treatment of flavivirus infections and the challenges faced during clinical trials, outlining their mechanisms of action in order to present an overview of ongoing studies. According to our review, the absence of approved antivirals for flaviviruses led to in vitro and in vivo experiments aimed at identifying compounds that can interfere with one or more viral cycle steps. Still, the currently unavailability of approved antivirals poses a significant public health issue.
Collapse
Affiliation(s)
- Erica Diani
- Department of Diagnostic and Public Health, Microbiology Section, University of Verona, 37134 Verona, Italy; (A.L.); (V.L.); (R.C.)
| | - Anna Lagni
- Department of Diagnostic and Public Health, Microbiology Section, University of Verona, 37134 Verona, Italy; (A.L.); (V.L.); (R.C.)
| | - Virginia Lotti
- Department of Diagnostic and Public Health, Microbiology Section, University of Verona, 37134 Verona, Italy; (A.L.); (V.L.); (R.C.)
| | - Emil Tonon
- Unit of Microbiology, Azienda Ospedaliera Universitaria Integrata Verona, 37134 Verona, Italy;
| | - Riccardo Cecchetto
- Department of Diagnostic and Public Health, Microbiology Section, University of Verona, 37134 Verona, Italy; (A.L.); (V.L.); (R.C.)
- Unit of Microbiology, Azienda Ospedaliera Universitaria Integrata Verona, 37134 Verona, Italy;
| | - Davide Gibellini
- Department of Diagnostic and Public Health, Microbiology Section, University of Verona, 37134 Verona, Italy; (A.L.); (V.L.); (R.C.)
- Unit of Microbiology, Azienda Ospedaliera Universitaria Integrata Verona, 37134 Verona, Italy;
| |
Collapse
|
11
|
Samrat SK, Bashir Q, Huang Y, Trieshmann CW, Tharappel AM, Zhang R, Chen K, Geoge Zheng Y, Li Z, Li H. Broad-Spectrum Small-Molecule Inhibitors Targeting the SAM-Binding Site of Flavivirus NS5 Methyltransferase. ACS Infect Dis 2023; 9:1319-1333. [PMID: 37348028 PMCID: PMC10436986 DOI: 10.1021/acsinfecdis.2c00571] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/24/2023]
Abstract
Flavivirus infections, such as those caused by dengue virus (DENV), West Nile virus (WNV), yellow fever virus (YFV), and Zika virus (ZIKV), pose a rising threat to global health. There are no FDA-approved drugs for flaviviruses, although a small number of flaviviruses have vaccines. For flaviviruses or unknown viruses that may appear in the future, it is particularly desirable to identify broad-spectrum inhibitors. The NS5 protein is regarded as one of the most promising flavivirus drug targets because it is conserved across flaviviruses. In this study, we used FL-NAH, a fluorescent analog of the methyl donor S-adenosyl methionine (SAM), to develop a fluorescence polarization (FP)-based high throughput screening (HTS) assay to specifically target methyltransferase (MTase), a vital enzyme for flaviviruses that methylates the N7 and 2'-O positions of the viral 5'-RNA cap. Pilot screening identified two candidate MTase inhibitors, NSC 111552 and 288387. The two compounds inhibited the FL-NAH binding to the DENV3 MTase with low micromolar IC50. Functional assays verified the inhibitory potency of these molecules for the flavivirus MTase activity. Binding studies indicated that these molecules are bound directly to the DENV3 MTase with similar low micromolar affinity. Furthermore, we showed that these compounds greatly reduced ZIKV replication in cell-based experiments at dosages that did not cause cytotoxicity. Finally, docking studies revealed that these molecules bind to the SAM-binding region on the DENV3 MTase, and further mutagenesis studies verified residues important for the binding of these compounds. Overall, these compounds are innovative and attractive candidates for the development of broad-spectrum inhibitors for the treatment of flavivirus infections.
Collapse
Affiliation(s)
- Subodh Kumar Samrat
- Department of Pharmacology and Toxicology, R Ken Coit College of Pharmacy, The University of Arizona, 1703 E Mabel St, Tucson AZ, 85721-0207, USA
| | - Qamar Bashir
- Department of Pharmacology and Toxicology, R Ken Coit College of Pharmacy, The University of Arizona, 1703 E Mabel St, Tucson AZ, 85721-0207, USA
| | - Yiding Huang
- Department of Pharmacology and Toxicology, R Ken Coit College of Pharmacy, The University of Arizona, 1703 E Mabel St, Tucson AZ, 85721-0207, USA
| | - Carl William Trieshmann
- Department of Pharmaceutical and Biomedical Sciences, College of Pharmacy, University of Georgia, Athens, Georgia, 30602, USA
| | - Anil Mathew Tharappel
- Department of Pharmacology and Toxicology, R Ken Coit College of Pharmacy, The University of Arizona, 1703 E Mabel St, Tucson AZ, 85721-0207, USA
| | - Ran Zhang
- Department of Pharmacology and Toxicology, R Ken Coit College of Pharmacy, The University of Arizona, 1703 E Mabel St, Tucson AZ, 85721-0207, USA
| | - Ke Chen
- Department of Pharmacology and Toxicology, R Ken Coit College of Pharmacy, The University of Arizona, 1703 E Mabel St, Tucson AZ, 85721-0207, USA
| | - Y. Geoge Zheng
- Department of Pharmacology and Toxicology, R Ken Coit College of Pharmacy, The University of Arizona, 1703 E Mabel St, Tucson AZ, 85721-0207, USA
- Department of Pharmaceutical and Biomedical Sciences, College of Pharmacy, University of Georgia, Athens, Georgia, 30602, USA
| | - Zhong Li
- Department of Pharmacology and Toxicology, R Ken Coit College of Pharmacy, The University of Arizona, 1703 E Mabel St, Tucson AZ, 85721-0207, USA
| | - Hongmin Li
- Department of Pharmacology and Toxicology, R Ken Coit College of Pharmacy, The University of Arizona, 1703 E Mabel St, Tucson AZ, 85721-0207, USA
- Department of Chemistry and Biochemistry, College of Science & College of Medicine, The University of Arizona, Tucson AZ, 85721, USA
- The BIO5 Institute, The University of Arizona, Tucson, AZ 85721, USA
| |
Collapse
|
12
|
Kandagalla S, Kumbar B, Novak J. Structural Modifications Introduced by NS2B Cofactor Binding to the NS3 Protease of the Kyasanur Forest Disease Virus. Int J Mol Sci 2023; 24:10907. [PMID: 37446083 DOI: 10.3390/ijms241310907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 06/28/2023] [Accepted: 06/28/2023] [Indexed: 07/15/2023] Open
Abstract
Kyasanur Forest Disease virus (KFDV), a neglected human pathogenic virus, is a Flavivirus that causes severe hemorrhagic fever in humans. KFDV is transmitted to humans by the bite of the hard tick (Haemaphysalis spinigera), which acts as a reservoir of KFDV. The recent expansion of the endemic area of KFDV is of concern and requires the development of new preventive measures against KFDV. Currently, there is no antiviral therapy against KFDV, and the existing vaccine has limited efficacy. To develop a new antiviral therapy against KFDV, we focused on the nonstructural proteins NS2B and NS3 of KFDV, which are responsible for serine protease activity. Viral proteases have shown to be suitable therapeutic targets in the development of antiviral drugs against many diseases. However, success has been limited in flaviviruses, mainly because of the important features of the active site, which is flat and highly charged. In this context, the present study focuses on the dynamics of NS2B and NS3 to identify potential allosteric sites in the NS2B/NS3 protease of KDFV. To our knowledge, there are no reports on the dynamics of NS2B and NS3 in KFDV, and the crystal structure of the NS2B/NS3 protease of KFDV has not yet been solved. Overall, we created the structure of the NS2B/NS3 protease of KFDV using AlphaFold and performed molecular dynamics simulations with and without NS2B cofactor to investigate structural rearrangements due to cofactor binding and to identify alternative allosteric sites. The identified allosteric site is promising due to its geometric and physicochemical properties and druggability and can be used for new drug development. The applicability of the proposed allosteric binding sites was verified for the best-hit molecules from the virtual screening and MD simulations.
Collapse
Affiliation(s)
- Shivananda Kandagalla
- Laboratory of Computational Modeling of Drugs, Higher Medical & Biological School, South Ural State University, 454080 Chelyabinsk, Russia
| | - Bhimanagoud Kumbar
- ICAR-National Institute of Veterinary Epidemiology and Disease Informatics, Bengaluru 560064, Karnataka, India
| | - Jurica Novak
- Department of Biotechnology, University of Rijeka, 51000 Rijeka, Croatia
- Center for Artificial Intelligence and Cybersecurity, University of Rijeka, 51000 Rijeka, Croatia
| |
Collapse
|
13
|
Yang S, Hu H, Kung H, Zou R, Dai Y, Hu Y, Wang T, Lv T, Yu J, Li F. Organoids: The current status and biomedical applications. MedComm (Beijing) 2023; 4:e274. [PMID: 37215622 PMCID: PMC10192887 DOI: 10.1002/mco2.274] [Citation(s) in RCA: 57] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 04/22/2023] [Accepted: 04/27/2023] [Indexed: 05/24/2023] Open
Abstract
Organoids are three-dimensional (3D) miniaturized versions of organs or tissues that are derived from cells with stem potential and can self-organize and differentiate into 3D cell masses, recapitulating the morphology and functions of their in vivo counterparts. Organoid culture is an emerging 3D culture technology, and organoids derived from various organs and tissues, such as the brain, lung, heart, liver, and kidney, have been generated. Compared with traditional bidimensional culture, organoid culture systems have the unique advantage of conserving parental gene expression and mutation characteristics, as well as long-term maintenance of the function and biological characteristics of the parental cells in vitro. All these features of organoids open up new opportunities for drug discovery, large-scale drug screening, and precision medicine. Another major application of organoids is disease modeling, and especially various hereditary diseases that are difficult to model in vitro have been modeled with organoids by combining genome editing technologies. Herein, we introduce the development and current advances in the organoid technology field. We focus on the applications of organoids in basic biology and clinical research, and also highlight their limitations and future perspectives. We hope that this review can provide a valuable reference for the developments and applications of organoids.
Collapse
Affiliation(s)
- Siqi Yang
- Division of Biliary Tract SurgeryDepartment of General SurgeryWest China HospitalSichuan UniversityChengduSichuan ProvinceChina
| | - Haijie Hu
- Division of Biliary Tract SurgeryDepartment of General SurgeryWest China HospitalSichuan UniversityChengduSichuan ProvinceChina
| | - Hengchung Kung
- Krieger School of Arts and SciencesJohns Hopkins UniversityBaltimoreMarylandUSA
| | - Ruiqi Zou
- Division of Biliary Tract SurgeryDepartment of General SurgeryWest China HospitalSichuan UniversityChengduSichuan ProvinceChina
| | - Yushi Dai
- Division of Biliary Tract SurgeryDepartment of General SurgeryWest China HospitalSichuan UniversityChengduSichuan ProvinceChina
| | - Yafei Hu
- Division of Biliary Tract SurgeryDepartment of General SurgeryWest China HospitalSichuan UniversityChengduSichuan ProvinceChina
| | - Tiantian Wang
- Key Laboratory of Rehabilitation Medicine in Sichuan ProvinceWest China HospitalSichuan UniversityChengduSichuanChina
| | - Tianrun Lv
- Division of Biliary Tract SurgeryDepartment of General SurgeryWest China HospitalSichuan UniversityChengduSichuan ProvinceChina
| | - Jun Yu
- Departments of MedicineJohns Hopkins University School of MedicineBaltimoreMarylandUSA
- Departments of OncologyJohns Hopkins University School of MedicineBaltimoreMarylandUSA
| | - Fuyu Li
- Division of Biliary Tract SurgeryDepartment of General SurgeryWest China HospitalSichuan UniversityChengduSichuan ProvinceChina
| |
Collapse
|
14
|
Zhu Y, Liang M, Yu J, Zhang B, Zhu G, Huang Y, He Z, Yuan J. Repurposing of Doramectin as a New Anti-Zika Virus Agent. Viruses 2023; 15:v15051068. [PMID: 37243154 DOI: 10.3390/v15051068] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Revised: 04/23/2023] [Accepted: 04/25/2023] [Indexed: 05/28/2023] Open
Abstract
Zika virus (ZIKV), belonging to the Flavivirus family and mainly transmitted by mosquitoes, causes a variety of adverse outcomes, including Guillain-Barré syndrome, microcephaly, and meningoencephalitis. However, there are no approved vaccines or drugs available for ZIKV. The discovery and research on drugs for ZIKV are still essential. In this study, we identified doramectin, an approved veterinary antiparasitic drug, as a novel anti-ZIKV agent (EC50 value from 0.85 μM to 3.00 μM) with low cytotoxicity (CC50 > 50 μM) in multiple cellular models. The expression of ZIKV proteins also decreased significantly under the treatment of doramectin. Further study showed that doramectin directly interacted with the key enzyme for ZIKV genome replication, RNA-dependent RNA polymerase (RdRp), with a stronger affinity (Kd = 16.9 μM), which may be related to the effect on ZIKV replication. These results suggested that doramectin might serve as a promising drug candidate for anti-ZIKV.
Collapse
Affiliation(s)
- Yujia Zhu
- School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
- Key Laboratory of Tropical Disease Control (Sun Yat-sen University), Ministry of Education, Guangzhou 510080, China
| | - Minqi Liang
- School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
- Key Laboratory of Tropical Disease Control (Sun Yat-sen University), Ministry of Education, Guangzhou 510080, China
| | - Jianchen Yu
- School of Chemistry, South China Normal University, Guangzhou 510006, China
- Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China
| | - Bingzhi Zhang
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Ge Zhu
- Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China
| | - Yun Huang
- School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Zhenjian He
- School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
- Key Laboratory of Tropical Disease Control (Sun Yat-sen University), Ministry of Education, Guangzhou 510080, China
| | - Jie Yuan
- Key Laboratory of Tropical Disease Control (Sun Yat-sen University), Ministry of Education, Guangzhou 510080, China
- Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China
| |
Collapse
|
15
|
Celegato M, Sturlese M, Vasconcelos Costa V, Trevisan M, Lallo Dias AS, Souza Passos IB, Queiroz-Junior CM, Messa L, Favaro A, Moro S, Teixeira MM, Loregian A, Mercorelli B. Small-Molecule Inhibitor of Flaviviral NS3-NS5 Interaction with Broad-Spectrum Activity and Efficacy In Vivo. mBio 2023; 14:e0309722. [PMID: 36622141 PMCID: PMC9973282 DOI: 10.1128/mbio.03097-22] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 11/30/2022] [Indexed: 01/10/2023] Open
Abstract
Every year, dengue virus (DENV) causes one hundred million infections worldwide that can result in dengue disease and severe dengue. Two other mosquito-borne flaviviruses, i.e., Zika virus (ZIKV) and West Nile virus (WNV), are responsible of prolonged outbreaks and are associated with severe neurological diseases, congenital defects, and eventually death. These three viruses, despite their importance for global public health, still lack specific drug treatments. Here, we describe the structure-guided discovery of small molecules with pan-flavivirus antiviral potential by a virtual screening of ~1 million structures targeting the NS3-NS5 interaction surface of different flaviviruses. Two molecules inhibited the interaction between DENV NS3 and NS5 in vitro and the replication of all DENV serotypes as well as ZIKV and WNV and exhibited low propensity to select resistant viruses. Remarkably, one molecule demonstrated efficacy in a mouse model of dengue by reducing peak viremia, viral load in target organs, and associated tissue pathology. This study provides the proof of concept that targeting the flaviviral NS3-NS5 interaction is an effective therapeutic strategy able to reduce virus replication in vivo and discloses new chemical scaffolds that could be further developed, thus providing a significant milestone in the development of much awaited broad-spectrum antiflaviviral drugs. IMPORTANCE More than one-third of the human population is at risk of infection by different mosquito-borne flaviviruses. Despite this, no specific antiviral drug is currently available. In this work, using a computational approach based on molecular dynamics simulation and virtual screening of ~1 million small-molecule structures, we identified a compound that targets the interaction between the two sole flaviviral enzymes, i.e., NS3 and NS5. This compound demonstrated pan-serotype anti-DENV activity and pan-flavivirus potential in infected cells, low propensity to select viral resistant mutant viruses, and efficacy in a mouse model of dengue. Broad-spectrum antivirals are much awaited, and this work represents a significant advance toward the development of therapeutic molecules with extended antiflavivirus potential that act by an innovative mechanism and could be used alone or in combination with other antivirals.
Collapse
Affiliation(s)
- Marta Celegato
- Department of Molecular Medicine, University of Padua, Padua, Italy
| | - Mattia Sturlese
- Molecular Modeling Section (MMS), Department of Pharmaceutical and Pharmacological Sciences, University of Padua, Padua, Italy
| | | | - Marta Trevisan
- Department of Molecular Medicine, University of Padua, Padua, Italy
| | - Angélica Samer Lallo Dias
- Departamento de Bioquímica e Imunologia, ICB, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | | | | | - Lorenzo Messa
- Department of Molecular Medicine, University of Padua, Padua, Italy
| | - Annagiulia Favaro
- Molecular Modeling Section (MMS), Department of Pharmaceutical and Pharmacological Sciences, University of Padua, Padua, Italy
| | - Stefano Moro
- Molecular Modeling Section (MMS), Department of Pharmaceutical and Pharmacological Sciences, University of Padua, Padua, Italy
| | - Mauro Martins Teixeira
- Departamento de Bioquímica e Imunologia, ICB, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Arianna Loregian
- Department of Molecular Medicine, University of Padua, Padua, Italy
| | | |
Collapse
|
16
|
Lachman HM. Use of cerebral organoids to model environmental and gene x environment interactions in the developing fetus and neurodegenerative disorders. PHENOTYPING OF HUMAN IPSC-DERIVED NEURONS 2023:173-200. [DOI: 10.1016/b978-0-12-822277-5.00006-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
17
|
Chen Y, You Y, Wang S, Jiang L, Tian L, Zhu S, An X, Song L, Tong Y, Fan H. Antiviral Drugs Screening for Swine Acute Diarrhea Syndrome Coronavirus. Int J Mol Sci 2022; 23:ijms231911250. [PMID: 36232553 PMCID: PMC9569988 DOI: 10.3390/ijms231911250] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 09/16/2022] [Accepted: 09/16/2022] [Indexed: 11/16/2022] Open
Abstract
Coronaviruses as possible cross-species viruses have caused several epidemics. The ongoing emergency of coronavirus disease 2019 (COVID-19) caused by SARS-CoV-2 has posed severe threats to the global economy and public health, which has generated great concerns about zoonotic viruses. Swine acute diarrhea syndrome coronavirus (SADS-CoV), an alpha-coronavirus, was responsible for mass piglet deaths, resulting in unprecedented economic losses, and no approved drugs or vaccines are currently available for SADS-CoV infection. Given its potential ability to cause cross-species infection, it is essential to develop specific antiviral drugs and vaccines against SADS-CoV. Drug screening was performed on a total of 3523 compound-containing drug libraries as a strategy of existing medications repurposing. We identified five compounds (gemcitabine, mycophenolate mofetil, mycophenolic acid, methylene blue and cepharanthine) exhibiting inhibitory effects against SADS-CoV in a dose-dependent manner. Cepharanthine and methylene blue were confirmed to block viral entry, and gemcitabine, mycophenolate mofetil, mycophenolic acid and methylene blue could inhibit viral replication after SADS-CoV entry. This is the first report on SADS-CoV drug screening, and we found five compounds from drug libraries to be potential anti-SADS-CoV drugs, supporting the development of antiviral drugs for a possible outbreak of SADS-CoV in the future.
Collapse
|
18
|
Kumar A, Kumar D, Jose J, Giri R, Mysorekar IU. Drugs to limit Zika virus infection and implication for maternal-fetal health. FRONTIERS IN VIROLOGY 2022; 2. [PMID: 37064602 PMCID: PMC10104533 DOI: 10.3389/fviro.2022.928599] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Although the placenta has robust defense mechanisms that protect the fetus from a viral infection, some viruses can manipulate or evade these mechanisms and disrupt physiology or cross the placental barrier. It is well established that the Zika virus is capable of vertical transmission from mother to fetus and can cause malformation of the fetal central nervous system (i.e., microcephaly), as well as Guillain-Barre syndrome in adults. This review seeks to gather and assess the contributions of translational research associated with Zika virus infection, including maternal-fetal vertical transmission of the virus. Nearly 200 inhibitors that have been evaluated in vivo and/or in vitro for their therapeutic properties against the Zika virus are summarized in this review. We also review the status of current vaccine candidates. Our main objective is to provide clinically relevant information that can guide future research directions and strategies for optimized treatment and preventive care of infections caused by Zika virus or similar pathogens.
Collapse
Affiliation(s)
- Ankur Kumar
- Department of Medicine, Section of Infectious Diseases, Baylor College of Medicine, Houston, TX, United States
- School of Basic Sciences, Indian Institute of Technology Mandi, VPO-Kamand, Mandi, India
| | - Deepak Kumar
- Department of Medicine, Section of Infectious Diseases, Baylor College of Medicine, Houston, TX, United States
| | - Joyce Jose
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA, State College, United States
| | - Rajanish Giri
- School of Basic Sciences, Indian Institute of Technology Mandi, VPO-Kamand, Mandi, India
| | - Indira U. Mysorekar
- Department of Medicine, Section of Infectious Diseases, Baylor College of Medicine, Houston, TX, United States
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, United States
- CORRESPONDENCE Indira U. Mysorekar,
| |
Collapse
|
19
|
Exploring inactivation of SARS-CoV-2, MERS-CoV, Ebola, Lassa, and Nipah viruses on N95 and KN95 respirator material using photoactivated methylene blue to enable reuse. Am J Infect Control 2022; 50:863-870. [PMID: 35908824 PMCID: PMC9329093 DOI: 10.1016/j.ajic.2022.02.016] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 02/15/2022] [Indexed: 12/25/2022]
Abstract
Background The COVID-19 pandemic resulted in a worldwide shortage of N95 respirators, prompting the development of decontamination methods to enable limited reuse. Countries lacking reliable supply chains would also benefit from the ability to safely reuse PPE. Methylene blue (MB) is a light-activated dye with demonstrated antimicrobial activity used to sterilize blood plasma. Decontamination of respirators using photoactivated MB requires no specialized equipment, making it attractive for use in the field during outbreaks. Methods We examined decontamination of N95 and KN95 respirators using photoactivated MB and 3 variants of SARS-CoV-2, the virus that causes COVID-19; and 4 World Health Organization priority pathogens: Ebola virus, Middle East respiratory syndrome coronavirus, Nipah virus, and Lassa virus. Virus inactivation by pretreating respirator material was also tested. Results Photoactivated MB inactivated all tested viruses on respirator material, albeit with varying efficiency. Virus applied to respirator material pre-treated with MB was also inactivated, thus MB pretreatment may potentially protect respirator wearers from virus exposure in real-time. Conclusions These results demonstrate that photoactivated MB represents a cost-effective, rapid, and widely deployable method to decontaminate N95 respirators for reuse during supply shortages.
Collapse
|
20
|
Kabra KB, Lendvay TS, Chen J, Rolley P, Dawson T, Mores CN. Inactivation strategies for SARS-CoV-2 on surgical masks using light-activated chemical dyes. Am J Infect Control 2022; 50:844-848. [PMID: 35908821 PMCID: PMC9329073 DOI: 10.1016/j.ajic.2022.03.015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 03/27/2022] [Accepted: 03/28/2022] [Indexed: 01/08/2023]
Abstract
Background Methylene blue (MB) and riboflavin (RB) are light-activated dyes with demonstrated antimicrobial activity. They require no specialized equipment, making them attractive for widespread use. Due to COVID-19-related worldwide shortages of surgical masks, simple, safe, and effective decontamination methods for reusing masks have become desirable in clinical and public settings. Material and methods We examined the decontamination of SARS-CoV-2 Beta variant on surgical masks and Revolution-Zero Environmentally Sustainable (RZES) reusable masks using these photoactivated dyes. We pre-treated surgical masks with 2 MB concentrations, 2 RB concentrations, and 2 combinations of MB and RB. We also tested 7 MB concentrations on RZES masks. Results Photoactivated MB consistently inactivated SARS-CoV-2 at >99.9% for concentrations of 2.6 µM or higher within 30 min on RZES masks and 5 µM or higher within 5 min on disposable surgical masks. RB alone showed a lower, yet still significant inactivation (∼93-99%) in these conditions. Discussion MB represents a cost-effective, rapid, and widely deployable decontamination method for SARS-CoV-2. The simplicity of MB formulation makes it ideal for mask pre-treatment in low-resource settings. Conclusions The results demonstrate that MB effectively decontaminates SARS-CoV-2 at concentrations above 5 µM on surgical masks and above 10 µM on RZES masks.
Collapse
|
21
|
LaNoce E, Dumeng-Rodriguez J, Christian KM. Using 2D and 3D pluripotent stem cell models to study neurotropic viruses. FRONTIERS IN VIROLOGY (LAUSANNE, SWITZERLAND) 2022; 2:869657. [PMID: 36325520 PMCID: PMC9624474 DOI: 10.3389/fviro.2022.869657] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Understanding the impact of viral pathogens on the human central nervous system (CNS) has been challenging due to the lack of viable human CNS models for controlled experiments to determine the causal factors underlying pathogenesis. Human embryonic stem cells (ESCs) and, more recently, cellular reprogramming of adult somatic cells to generate human induced pluripotent stem cells (iPSCs) provide opportunities for directed differentiation to neural cells that can be used to evaluate the impact of known and emerging viruses on neural cell types. Pluripotent stem cells (PSCs) can be induced to neural lineages in either two- (2D) or three-dimensional (3D) cultures, each bearing distinct advantages and limitations for modeling viral pathogenesis and evaluating effective therapeutics. Here we review the current state of technology in stem cell-based modeling of the CNS and how these models can be used to determine viral tropism and identify cellular phenotypes to investigate virus-host interactions and facilitate drug screening. We focus on several viruses (e.g., human immunodeficiency virus (HIV), herpes simplex virus (HSV), Zika virus (ZIKV), human cytomegalovirus (HCMV), SARS-CoV-2, West Nile virus (WNV)) to illustrate key advantages, as well as challenges, of PSC-based models. We also discuss how human PSC-based models can be used to evaluate the safety and efficacy of therapeutic drugs by generating data that are complementary to existing preclinical models. Ultimately, these efforts could facilitate the movement towards personalized medicine and provide patients and physicians with an additional source of information to consider when evaluating available treatment strategies.
Collapse
Affiliation(s)
- Emma LaNoce
- Mahoney Institute for Neurosciences, Department of Neuroscience, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Jeriel Dumeng-Rodriguez
- Developmental, Stem Cell and Regenerative Biology Program, Cell and Molecular Biology Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Kimberly M. Christian
- Mahoney Institute for Neurosciences, Department of Neuroscience, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| |
Collapse
|
22
|
Eberle RJ, Olivier DS, Amaral MS, Pacca CC, Nogueira ML, Arni RK, Willbold D, Coronado MA. Riboflavin, a Potent Neuroprotective Vitamin: Focus on Flavivirus and Alphavirus Proteases. Microorganisms 2022; 10:1331. [PMID: 35889050 PMCID: PMC9315535 DOI: 10.3390/microorganisms10071331] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 06/24/2022] [Accepted: 06/29/2022] [Indexed: 12/01/2022] Open
Abstract
Several neurotropic viruses are members of the flavivirus and alphavirus families. Infections caused by these viruses may cause long-term neurological sequelae in humans. The continuous emergence of infections caused by viruses around the world, such as the chikungunya virus (CHIKV) (Alphavirus genus), the zika virus (ZIKV) and the yellow fever virus (YFV) (both of the Flavivirus genus), warrants the development of new strategies to combat them. Our study demonstrates the inhibitory potential of the water-soluble vitamin riboflavin against NS2B/NS3pro of ZIKV and YFV and nsP2pro of CHIKV. Riboflavin presents a competitive inhibition mode with IC50 values in the medium µM range of 79.4 ± 5.0 µM for ZIKV NS2B/NS3pro and 45.7 ± 2.9 μM for YFV NS2B/NS3pro. Against CHIKV nsP2pro, the vitamin showed a very strong effect (93 ± 5.7 nM). The determined dissociation constants (KD) are significantly below the threshold value of 30 µM. The ligand binding increases the thermal stability between 4 °C and 8 °C. Unexpectedly, riboflavin showed inhibiting activity against another viral protein; the molecule was also able to inhibit the viral entry of CHIKV. Molecular dynamics simulations indicated great stability of riboflavin in the protease active site, which validates the repurposing of riboflavin as a promising molecule in drug development against the viruses presented here.
Collapse
Affiliation(s)
- Raphael J. Eberle
- Institute of Biological Information Processing (IBI-7: Structural Biochemistry), Forschungszentrum Jülich GmbH, 52428 Jülich, Germany;
- Institut für Physikalische Biologie, Heinrich-Heine-Universität Düsseldorf, Universitätsstraße, 40225 Düsseldorf, Germany
| | - Danilo S. Olivier
- Center of Integrated Sciences, Campus Cimba, Federal University of Tocantins, Araguaína 77824-838, TO, Brazil;
| | - Marcos S. Amaral
- Institute of Physics, Federal University of Mato Grosso do Sul, Campo Grande 79070-900, MS, Brazil;
| | - Carolina C. Pacca
- Instituto Superior de Educação Ceres, FACERES Medical School, São José do Rio Preto 15090-305, SP, Brazil;
- Laboratório de Pesquisas em Virologia, Departamento de Doenças Dermatológicas, Infecciosas e Parasitárias, Faculdade de Medicina de São José do Rio Preto-FAMERP, São José do Rio Preto 15090-000, SP, Brazil;
| | - Mauricio L. Nogueira
- Laboratório de Pesquisas em Virologia, Departamento de Doenças Dermatológicas, Infecciosas e Parasitárias, Faculdade de Medicina de São José do Rio Preto-FAMERP, São José do Rio Preto 15090-000, SP, Brazil;
- Department of Pathology, University of Texas Medical Branch, Galveston, TX 77550, USA
| | - Raghuvir K. Arni
- Multiuser Center for Biomolecular Innovation, Department of Physics, IBILCE, São Paulo State University, São Jose do Rio Preto 15054-000, SP, Brazil;
| | - Dieter Willbold
- Institute of Biological Information Processing (IBI-7: Structural Biochemistry), Forschungszentrum Jülich GmbH, 52428 Jülich, Germany;
- Institut für Physikalische Biologie, Heinrich-Heine-Universität Düsseldorf, Universitätsstraße, 40225 Düsseldorf, Germany
- JuStruct: Jülich Centre for Structural Biology, Forchungszentrum Jülich, 52428 Jülich, Germany
| | - Monika A. Coronado
- Institute of Biological Information Processing (IBI-7: Structural Biochemistry), Forschungszentrum Jülich GmbH, 52428 Jülich, Germany;
| |
Collapse
|
23
|
Infectivity and Morphology of Bovine Coronavirus Inactivated In Vitro by Cationic Photosensitizers. Viruses 2022; 14:v14051053. [PMID: 35632792 PMCID: PMC9144331 DOI: 10.3390/v14051053] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 05/08/2022] [Accepted: 05/13/2022] [Indexed: 12/12/2022] Open
Abstract
Bovine coronaviruses (BCoVs), which cause gastrointestinal and respiratory diseases in cattle, and are genetically related to the human coronavirus HCoV-OC43, which is responsible for up to 10% of common colds, attract increased attention. We applied the method of photodynamic inactivation with cationic photosensitizers (PSs) to reduce the titers of BCoV and studied the morphological structure of viral particles under various modes of photodynamic exposure. The samples of virus containing liquid with an initial virus titer of 5 Log10 TCID50/mL were incubated with methylene blue (MB) or octakis(cholinyl)zinc phthalocyanine (Zn-PcChol8+) at concentrations of 1–5 μM for 10 min in the dark at room temperature. After incubation, samples were irradiated with LED (emission with maximum at 663 nm for MB or at 686 nm for Zn-PcChol8+) with light doses of 1.5 or 4 J/cm2. Next, the irradiation titrated virus containing liquid was studied using negative staining transmission electron microscopy. MB and Zn-PcChol8+ at concentrations of 1–5 μM, in combination with red light from LED sources in the low doses of 1.5–4.0 J/cm2, led to a decrease in BCoV titers by at least four orders of magnitude from the initial titer 5 Log10 TCID50/mL. Morphological changes in photodamaged BCoVs with increasing PS concentrations were loss of spikes, change in shape, decreased size of virus particles, destruction of the envelope, and complete disintegration of viruses. BCoV has been found to be sensitive to MB, which is the well-known approved drug, even in the absence of light.
Collapse
|
24
|
Huber S, Braun NJ, Schmacke LC, Quek JP, Murra R, Bender D, Hildt E, Luo D, Heine A, Steinmetzer T. Structure-Based Optimization and Characterization of Macrocyclic Zika Virus NS2B-NS3 Protease Inhibitors. J Med Chem 2022; 65:6555-6572. [PMID: 35475620 DOI: 10.1021/acs.jmedchem.1c01860] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Zika virus (ZIKV) is a human pathogenic arbovirus. So far, neither a specific treatment nor a vaccination against ZIKV infections has been approved. Starting from our previously described lead structure, a series of 29 new macrocyclic inhibitors of the Zika virus protease containing different linker motifs have been synthesized. By selecting hydrophobic d-amino acids as part of the linker, numerous inhibitors with Ki values < 5 nM were obtained. For 12 inhibitors, crystal structures in complex with the ZIKV protease up to 1.30 Å resolution were determined, which contribute to the understanding of the observed structure-activity relationship (SAR). In immunofluorescence assays, an antiviral effect was observed for compound 26 containing a d-homocyclohexylalanine residue in its linker segment. Due to its excellent selectivity profile and low cytotoxicity, this inhibitor scaffold could be a suitable starting point for the development of peptidic drugs against the Zika virus and related flaviviruses.
Collapse
Affiliation(s)
- Simon Huber
- Institute of Pharmaceutical Chemistry, Philipps University of Marburg, Marbacher Weg 6, 35032 Marburg, Germany
| | - Niklas J Braun
- Institute of Pharmaceutical Chemistry, Philipps University of Marburg, Marbacher Weg 6, 35032 Marburg, Germany
| | - Luna C Schmacke
- Institute of Pharmaceutical Chemistry, Philipps University of Marburg, Marbacher Weg 6, 35032 Marburg, Germany
| | - Jun Ping Quek
- Lee Kong Chian School of Medicine, Nanyang Technological University, EMB 03-07, 59 Nanyang Drive, Singapore 636921.,NTU Institute of Structural Biology, Nanyang Technological University, EMB 06-01, 59 Nanyang Drive, Singapore 636921
| | - Robin Murra
- Federal Institute for Vaccines and Biomedicines, Department of Virology, Paul-Ehrlich-Institut, Paul-Ehrlich-Straße 51-59, 63225 Langen, Germany
| | - Daniela Bender
- Federal Institute for Vaccines and Biomedicines, Department of Virology, Paul-Ehrlich-Institut, Paul-Ehrlich-Straße 51-59, 63225 Langen, Germany
| | - Eberhard Hildt
- Federal Institute for Vaccines and Biomedicines, Department of Virology, Paul-Ehrlich-Institut, Paul-Ehrlich-Straße 51-59, 63225 Langen, Germany
| | - Dahai Luo
- Lee Kong Chian School of Medicine, Nanyang Technological University, EMB 03-07, 59 Nanyang Drive, Singapore 636921.,NTU Institute of Structural Biology, Nanyang Technological University, EMB 06-01, 59 Nanyang Drive, Singapore 636921.,School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551
| | - Andreas Heine
- Institute of Pharmaceutical Chemistry, Philipps University of Marburg, Marbacher Weg 6, 35032 Marburg, Germany
| | - Torsten Steinmetzer
- Institute of Pharmaceutical Chemistry, Philipps University of Marburg, Marbacher Weg 6, 35032 Marburg, Germany
| |
Collapse
|
25
|
Li Z, Xu J, Lang Y, Wu X, Hu S, Samrat SK, Tharappel AM, Kuo L, Butler D, Song Y, Zhang QY, Zhou J, Li H. In vitro and in vivo characterization of erythrosin B and derivatives against Zika virus. Acta Pharm Sin B 2022; 12:1662-1670. [PMID: 35847519 PMCID: PMC9279632 DOI: 10.1016/j.apsb.2021.10.017] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 09/30/2021] [Accepted: 10/04/2021] [Indexed: 01/03/2023] Open
Abstract
Zika virus (ZIKV) causes significant human diseases without specific therapy. Previously we found erythrosin B, an FDA-approved food additive, inhibited viral NS2B−NS3 interactions, leading to inhibition of ZIKV infection in cell culture. In this study, we performed pharmacokinetic and in vivo studies to demonstrate the efficacy of erythrosin B against ZIKV in 3D mini-brain organoid and mouse models. Our results showed that erythrosin B is very effective in abolishing ZIKV replication in the 3D organoid model. Although pharmacokinetics studies indicated that erythrosin B had a low absorption profile, mice challenged by a lethal dose of ZIKV showed a significantly improved survival rate upon oral administration of erythrosin B, compared to vehicle control. Limited structure−activity relationship studies indicated that most analogs of erythrosin B with modifications on the xanthene ring led to loss or reduction of inhibitory activities towards viral NS2B−NS3 interactions, protease activity and antiviral efficacy. In contrast, introducing chlorine substitutions on the isobenzofuran ring led to slightly increased activities, suggesting that the isobenzofuran ring is well tolerated for modifications. Cytotoxicity studies indicated that all derivatives are nontoxic to human cells. Overall, our studies demonstrated erythrosin B is an effective antiviral against ZIKV both in vitro and in vivo.
Collapse
|
26
|
Depla JA, Mulder LA, de Sá RV, Wartel M, Sridhar A, Evers MM, Wolthers KC, Pajkrt D. Human Brain Organoids as Models for Central Nervous System Viral Infection. Viruses 2022; 14:v14030634. [PMID: 35337041 PMCID: PMC8948955 DOI: 10.3390/v14030634] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 03/12/2022] [Accepted: 03/15/2022] [Indexed: 02/06/2023] Open
Abstract
Pathogenesis of viral infections of the central nervous system (CNS) is poorly understood, and this is partly due to the limitations of currently used preclinical models. Brain organoid models can overcome some of these limitations, as they are generated from human derived stem cells, differentiated in three dimensions (3D), and can mimic human neurodevelopmental characteristics. Therefore, brain organoids have been increasingly used as brain models in research on various viruses, such as Zika virus, severe acute respiratory syndrome coronavirus 2, human cytomegalovirus, and herpes simplex virus. Brain organoids allow for the study of viral tropism, the effect of infection on organoid function, size, and cytoarchitecture, as well as innate immune response; therefore, they provide valuable insight into the pathogenesis of neurotropic viral infections and testing of antivirals in a physiological model. In this review, we summarize the results of studies on viral CNS infection in brain organoids, and we demonstrate the broad application and benefits of using a human 3D model in virology research. At the same time, we describe the limitations of the studies in brain organoids, such as the heterogeneity in organoid generation protocols and age at infection, which result in differences in results between studies, as well as the lack of microglia and a blood brain barrier.
Collapse
Affiliation(s)
- Josse A. Depla
- OrganoVIR Labs, Department of Medical Microbiology, Amsterdam UMC Location Academic Medical Center, Amsterdam Institute for Infection and Immunity, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands; (L.A.M.); (A.S.); (K.C.W.); (D.P.)
- Department of Pediatric Infectious Diseases, Emma Children’s Hospital, Amsterdam UMC Location Academic Medical Center, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands
- UniQure Biopharma B.V., Department of Research & Development, Paasheuvelweg 25A, 1105 BE Amsterdam, The Netherlands; (R.V.d.S.); (M.W.); (M.M.E.)
- Correspondence:
| | - Lance A. Mulder
- OrganoVIR Labs, Department of Medical Microbiology, Amsterdam UMC Location Academic Medical Center, Amsterdam Institute for Infection and Immunity, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands; (L.A.M.); (A.S.); (K.C.W.); (D.P.)
- Department of Pediatric Infectious Diseases, Emma Children’s Hospital, Amsterdam UMC Location Academic Medical Center, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands
| | - Renata Vieira de Sá
- UniQure Biopharma B.V., Department of Research & Development, Paasheuvelweg 25A, 1105 BE Amsterdam, The Netherlands; (R.V.d.S.); (M.W.); (M.M.E.)
| | - Morgane Wartel
- UniQure Biopharma B.V., Department of Research & Development, Paasheuvelweg 25A, 1105 BE Amsterdam, The Netherlands; (R.V.d.S.); (M.W.); (M.M.E.)
| | - Adithya Sridhar
- OrganoVIR Labs, Department of Medical Microbiology, Amsterdam UMC Location Academic Medical Center, Amsterdam Institute for Infection and Immunity, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands; (L.A.M.); (A.S.); (K.C.W.); (D.P.)
| | - Melvin M. Evers
- UniQure Biopharma B.V., Department of Research & Development, Paasheuvelweg 25A, 1105 BE Amsterdam, The Netherlands; (R.V.d.S.); (M.W.); (M.M.E.)
| | - Katja C. Wolthers
- OrganoVIR Labs, Department of Medical Microbiology, Amsterdam UMC Location Academic Medical Center, Amsterdam Institute for Infection and Immunity, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands; (L.A.M.); (A.S.); (K.C.W.); (D.P.)
| | - Dasja Pajkrt
- OrganoVIR Labs, Department of Medical Microbiology, Amsterdam UMC Location Academic Medical Center, Amsterdam Institute for Infection and Immunity, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands; (L.A.M.); (A.S.); (K.C.W.); (D.P.)
- Department of Pediatric Infectious Diseases, Emma Children’s Hospital, Amsterdam UMC Location Academic Medical Center, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands
| |
Collapse
|
27
|
Samrat SK, Xu J, Li Z, Zhou J, Li H. Antiviral Agents against Flavivirus Protease: Prospect and Future Direction. Pathogens 2022; 11:293. [PMID: 35335617 PMCID: PMC8955721 DOI: 10.3390/pathogens11030293] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 02/15/2022] [Accepted: 02/20/2022] [Indexed: 12/18/2022] Open
Abstract
Flaviviruses cause a significant amount of mortality and morbidity, especially in regions where they are endemic. A recent example is the outbreak of Zika virus throughout the world. Development of antiviral drugs against different viral targets is as important as the development of vaccines. During viral replication, a single polyprotein precursor (PP) is produced and further cleaved into individual proteins by a viral NS2B-NS3 protease complex together with host proteases. Flavivirus protease is one of the most attractive targets for development of therapeutic antivirals because it is essential for viral PP processing, leading to active viral proteins. In this review, we have summarized recent development in drug discovery targeting the NS2B-NS3 protease of flaviviruses, especially Zika, dengue, and West Nile viruses.
Collapse
Affiliation(s)
- Subodh K. Samrat
- Department of Pharmacology and Toxicology, College of Pharmacy, The University of Arizona, 1703 E Mabel St, Tucson, AZ 85721, USA; (S.K.S.); (Z.L.)
| | - Jimin Xu
- Chemical Biology Program, Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, TX 77555, USA; (J.X.); (J.Z.)
| | - Zhong Li
- Department of Pharmacology and Toxicology, College of Pharmacy, The University of Arizona, 1703 E Mabel St, Tucson, AZ 85721, USA; (S.K.S.); (Z.L.)
| | - Jia Zhou
- Chemical Biology Program, Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, TX 77555, USA; (J.X.); (J.Z.)
| | - Hongmin Li
- Department of Pharmacology and Toxicology, College of Pharmacy, The University of Arizona, 1703 E Mabel St, Tucson, AZ 85721, USA; (S.K.S.); (Z.L.)
- BIO5 Institute, The University of Arizona, Tucson, AZ 85721, USA
| |
Collapse
|
28
|
Su X, Yue P, Kong J, Xu X, Zhang Y, Cao W, Fan Y, Liu M, Chen J, Liu A, Bao F. Human Brain Organoids as an In Vitro Model System of Viral Infectious Diseases. Front Immunol 2022; 12:792316. [PMID: 35087520 PMCID: PMC8786735 DOI: 10.3389/fimmu.2021.792316] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Accepted: 12/20/2021] [Indexed: 11/13/2022] Open
Abstract
Brain organoids, or brainoids, have shown great promise in the study of central nervous system (CNS) infection. Modeling Zika virus (ZIKV) infection in brain organoids may help elucidate the relationship between ZIKV infection and microcephaly. Brain organoids have been used to study the pathogenesis of SARS-CoV-2, human immunodeficiency virus (HIV), HSV-1, and other viral infections of the CNS. In this review, we summarize the advances in the development of viral infection models in brain organoids and their potential application for exploring mechanisms of viral infections of the CNS and in new drug development. The existing limitations are further discussed and the prospects for the development and application of brain organs are prospected.
Collapse
Affiliation(s)
- Xuan Su
- Yunnan Province Key Laboratory for Tropical Infectious Diseases in Universities, Kunming Medical University, Kunming, China.,Department of Pediatrics, The Affiliated Children Hospital, Kunming Medical University, Kunming, China
| | - Peng Yue
- Yunnan Province Key Laboratory for Tropical Infectious Diseases in Universities, Kunming Medical University, Kunming, China.,Department of Biochemistry and Molecular Biology, Kunming Medical University, Kunming, China
| | - Jing Kong
- Yunnan Province Key Laboratory for Tropical Infectious Diseases in Universities, Kunming Medical University, Kunming, China.,Department of Biochemistry and Molecular Biology, Kunming Medical University, Kunming, China
| | - Xin Xu
- Yunnan Province Key Laboratory for Tropical Infectious Diseases in Universities, Kunming Medical University, Kunming, China.,Department of Microbiology and Immunology, Kunming Medical University, Kunming, China
| | - Yu Zhang
- Yunnan Province Key Laboratory for Tropical Infectious Diseases in Universities, Kunming Medical University, Kunming, China.,Department of Microbiology and Immunology, Kunming Medical University, Kunming, China
| | - Wenjing Cao
- Yunnan Province Key Laboratory for Tropical Infectious Diseases in Universities, Kunming Medical University, Kunming, China.,Department of Biochemistry and Molecular Biology, Kunming Medical University, Kunming, China
| | - Yuxin Fan
- Yunnan Province Key Laboratory for Tropical Infectious Diseases in Universities, Kunming Medical University, Kunming, China.,Department of Microbiology and Immunology, Kunming Medical University, Kunming, China
| | - Meixiao Liu
- Yunnan Province Key Laboratory for Tropical Infectious Diseases in Universities, Kunming Medical University, Kunming, China.,Department of Microbiology and Immunology, Kunming Medical University, Kunming, China
| | - Jingjing Chen
- Yunnan Province Key Laboratory for Tropical Infectious Diseases in Universities, Kunming Medical University, Kunming, China.,Department of Biochemistry and Molecular Biology, Kunming Medical University, Kunming, China
| | - Aihua Liu
- Yunnan Province Key Laboratory for Tropical Infectious Diseases in Universities, Kunming Medical University, Kunming, China.,Department of Biochemistry and Molecular Biology, Kunming Medical University, Kunming, China
| | - Fukai Bao
- Yunnan Province Key Laboratory for Tropical Infectious Diseases in Universities, Kunming Medical University, Kunming, China.,Department of Microbiology and Immunology, Kunming Medical University, Kunming, China
| |
Collapse
|
29
|
Hopkins HK, Traverse EM, Barr KL. Methodologies for Generating Brain Organoids to Model Viral Pathogenesis in the CNS. Pathogens 2021; 10:1510. [PMID: 34832665 PMCID: PMC8625030 DOI: 10.3390/pathogens10111510] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 11/12/2021] [Accepted: 11/17/2021] [Indexed: 12/22/2022] Open
Abstract
(1) Background: The human brain is of interest in viral research because it is often the target of viruses. Neurological infections can result in consequences in the CNS, which can result in death or lifelong sequelae. Organoids modeling the CNS are notable because they are derived from stem cells that differentiate into specific brain cells such as neural progenitors, neurons, astrocytes, and glial cells. Numerous protocols have been developed for the generation of CNS organoids, and our goal was to describe the various CNS organoid models available for viral pathogenesis research to serve as a guide to determine which protocol might be appropriate based on research goal, timeframe, and budget. (2) Methods: Articles for this review were found in Pubmed, Scopus and EMBASE. The search terms used were "brain + organoid" and "CNS + organoid" (3) Results: There are two main methods for organoid generation, and the length of time for organoid generation varied from 28 days to over 2 months. The costs for generating a population of organoids ranged from USD 1000 to 5000. (4) Conclusions: There are numerous methods for generating organoids representing multiple regions of the brain, with several types of modifications for fine-tuning the model to a researcher's specifications. Organoid models of the CNS can serve as a platform for characterization and mechanistic studies that can reduce or eliminate the use of animals, especially for viruses that only cause disease in the human CNS.
Collapse
Affiliation(s)
| | | | - Kelli L. Barr
- Center for Global Health and Infectious Disease Research, University of South Florida, Tampa, FL 33612, USA; (H.K.H.); (E.M.T.)
| |
Collapse
|
30
|
Organoids in modelling infectious diseases. Drug Discov Today 2021; 27:223-233. [PMID: 34418577 DOI: 10.1016/j.drudis.2021.08.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 05/14/2021] [Accepted: 08/13/2021] [Indexed: 12/12/2022]
Abstract
Approaches based on animal and two-dimensional (2D) cell culture models cannot ensure reliable results in modeling novel pathogens or in drug testing in the short term; therefore, there is rising interest in platforms such as organoids. To develop a toolbox that can be used successfully to overcome current issues in modeling various infections, it is essential to provide a framework of recent achievements in applying organoids. Organoids have been used to study viruses, bacteria, and protists that cause, for example, respiratory, gastrointestinal, and liver diseases. Their future as models of infection will be associated with improvements in system complexity, including abilities to model tissue structure, a dynamic microenvironment, and coinfection. Teaser. Organoids are a flexible tool for modelling viral, bacterial and protist infections. They can provide fast and reliable information on the biology of pathogens and in drug screening, and thus have become essential in combatting emerging infectious diseases.
Collapse
|