1
|
Balachandran H, Kroll K, Terry K, Manickam C, Jones R, Woolley G, Hayes T, Martinot AJ, Sharma A, Lewis M, Jost S, Reeves RK. NK cells modulate in vivo control of SARS-CoV-2 replication and suppression of lung damage. PLoS Pathog 2024; 20:e1012439. [PMID: 39133756 PMCID: PMC11341101 DOI: 10.1371/journal.ppat.1012439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 08/22/2024] [Accepted: 07/22/2024] [Indexed: 08/18/2024] Open
Abstract
Natural killer (NK) cells play a critical role in virus control. However, it has remained largely unclear whether NK cell mobilization in SARS-CoV-2 infections is beneficial or pathologic. To address this deficit, we employed a validated experimental NK cell depletion non-human primate (NHP) model with SARS-CoV-2 Delta variant B.1.617.2 challenge. Viral loads (VL), NK cell numbers, activation, proliferation, and functional measures were evaluated in blood and tissues. In non-depleted (control) animals, infection rapidly induced NK cell expansion, activation, and increased tissue trafficking associated with VL. Strikingly, we report that experimental NK cell depletion leads to higher VL, longer duration of viral shedding, significantly increased levels of pro-inflammatory cytokines in the lungs, and overt lung damage. Overall, we find the first significant and conclusive evidence for NK cell-mediated control of SARS-CoV-2 virus replication and disease pathology. These data indicate that adjunct therapies for infection could largely benefit from NK cell-targeted approaches.
Collapse
Affiliation(s)
- Harikrishnan Balachandran
- Division of Innate and Comparative Immunology, Center for Human Systems Immunology, Duke University School of Medicine, Durham, North Carolina, United States of America
| | - Kyle Kroll
- Division of Innate and Comparative Immunology, Center for Human Systems Immunology, Duke University School of Medicine, Durham, North Carolina, United States of America
| | - Karen Terry
- Division of Innate and Comparative Immunology, Center for Human Systems Immunology, Duke University School of Medicine, Durham, North Carolina, United States of America
| | - Cordelia Manickam
- Division of Innate and Comparative Immunology, Center for Human Systems Immunology, Duke University School of Medicine, Durham, North Carolina, United States of America
| | - Rhianna Jones
- Division of Innate and Comparative Immunology, Center for Human Systems Immunology, Duke University School of Medicine, Durham, North Carolina, United States of America
| | - Griffin Woolley
- Division of Innate and Comparative Immunology, Center for Human Systems Immunology, Duke University School of Medicine, Durham, North Carolina, United States of America
| | - Tammy Hayes
- Department of Infectious Diseases and Global Health, Cummings School of Veterinary Medicine at Tufts University, North Grafton, Massachusetts, United States of America
| | - Amanda J. Martinot
- Department of Infectious Diseases and Global Health, Cummings School of Veterinary Medicine at Tufts University, North Grafton, Massachusetts, United States of America
| | - Ankur Sharma
- BIOQUAL, Inc., Rockville, Maryland, United States of America
| | - Mark Lewis
- BIOQUAL, Inc., Rockville, Maryland, United States of America
| | - Stephanie Jost
- Division of Innate and Comparative Immunology, Center for Human Systems Immunology, Duke University School of Medicine, Durham, North Carolina, United States of America
| | - R. Keith Reeves
- Division of Innate and Comparative Immunology, Center for Human Systems Immunology, Duke University School of Medicine, Durham, North Carolina, United States of America
- Department of Surgery, Duke University School of Medicine, Durham, North Carolina, United States of America
| |
Collapse
|
2
|
Letafati A, Ardekani OS, Naderisemiromi M, Norouzi M, Shafiei M, Nik S, Mozhgani SH. Unraveling the dynamic mechanisms of natural killer cells in viral infections: insights and implications. Virol J 2024; 21:18. [PMID: 38216935 PMCID: PMC10785350 DOI: 10.1186/s12985-024-02287-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Accepted: 01/04/2024] [Indexed: 01/14/2024] Open
Abstract
Viruses pose a constant threat to human well-being, necessitating the immune system to develop robust defenses. Natural killer (NK) cells, which play a crucial role in the immune system, have become recognized as vital participants in protecting the body against viral infections. These remarkable innate immune cells possess the unique ability to directly recognize and eliminate infected cells, thereby contributing to the early control and containment of viral pathogens. However, recent research has uncovered an intriguing phenomenon: the alteration of NK cells during viral infections. In addition to their well-established role in antiviral defense, NK cells undergo dynamic changes in their phenotype, function, and regulatory mechanisms upon encountering viral pathogens. These alterations can significantly impact the effectiveness of NK cell responses during viral infections. This review explores the multifaceted role of NK cells in antiviral immunity, highlighting their conventional effector functions as well as the emerging concept of NK cell alteration in the context of viral infections. Understanding the intricate interplay between NK cells and viral infections is crucial for advancing our knowledge of antiviral immune responses and could offer valuable information for the creation of innovative therapeutic approaches to combat viral diseases.
Collapse
Affiliation(s)
- Arash Letafati
- Department of Virology, Faculty of Public Health, Tehran University of Medical Sciences, Tehran, Iran
- Research Center for Clinical Virology, Tehran University of Medical Science, Tehran, Iran
| | - Omid Salahi Ardekani
- Research Center for Clinical Virology, Tehran University of Medical Science, Tehran, Iran
| | - Mina Naderisemiromi
- Department of Immunology, Faculty of Medicine and Health, The University of Manchester, Manchester, UK
| | - Mehdi Norouzi
- Department of Virology, Faculty of Public Health, Tehran University of Medical Sciences, Tehran, Iran
- Research Center for Clinical Virology, Tehran University of Medical Science, Tehran, Iran
| | | | - Soheil Nik
- School of Medicine, Alborz University of Medical Sciences, Karaj, Alborz, Iran
| | - Sayed-Hamidreza Mozhgani
- Research Center for Clinical Virology, Tehran University of Medical Science, Tehran, Iran.
- Department of Microbiology and Virology, School of Medicine, Alborz University of Medical Sciences, Karaj, Iran.
| |
Collapse
|
3
|
Ye Y, Gao M, Shi W, Gao Y, Li Y, Yang W, Zheng X, Lu X. The immunomodulatory effects of mesenchymal stem cell-derived extracellular vesicles in Alzheimer's disease. Front Immunol 2024; 14:1325530. [PMID: 38259476 PMCID: PMC10800421 DOI: 10.3389/fimmu.2023.1325530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Accepted: 12/15/2023] [Indexed: 01/24/2024] Open
Abstract
Neuroinflammation has been identified as another significant pathogenic factor in Alzheimer's disease following Aβ amyloid deposition and tau protein hyperphosphorylation, activated in the central nervous system by glial cells in response to injury-related and pathogen-related molecular patterns. Moderate glial cell activity can be neuroprotective; however, excessive glial cell activation advances the pathology of Alzheimer's disease and is accompanied by structural changes in the brain interface, with peripheral immune cells entering the brain through the blood-brain barrier, creating a vicious circle. The immunomodulatory properties of mesenchymal stem cells (MSCs) are primarily conveyed through extracellular vesicles (EVs). MSC-EVs participate in chronic inflammatory and immune processes by transferring nucleic acids, proteins and lipids from the parent cell to the recipient cell, thus MSC-EVs retain their immunomodulatory capacity while avoiding the safety issues associated with living cell therapy, making them a promising focus for immunomodulatory therapy. In this review, we discuss the modulatory effects of MSC-EVs on Alzheimer's disease-associated immune cells and the mechanisms involved in their treatment of the condition. We have found a clinical trial of MSC-EVs in Alzheimer's disease treatment and outlined the challenges of this approach. Overall, MSC-EVs have the potential to provide a safe and effective treatment option for Alzheimer's disease by targeting neuroinflammation.
Collapse
Affiliation(s)
- Yang Ye
- Research Institute for Reproductive Health and Genetic Diseases, Wuxi Maternity and Child Health Care Hospital, Wuxi School of Medicine, Jiangnan University, Wuxi, China
- Neuroscience Center, Wuxi School of Medicine, Jiangnan University, Wuxi, China
| | - Mingzhu Gao
- Neuroscience Center, Wuxi School of Medicine, Jiangnan University, Wuxi, China
- Central Hospital of Jiangnan University, Wuxi No.2 People’s Hospital, Wuxi, China
| | - Wentao Shi
- Neuroscience Center, Wuxi School of Medicine, Jiangnan University, Wuxi, China
| | - Yan Gao
- Neuroscience Center, Wuxi School of Medicine, Jiangnan University, Wuxi, China
| | - Yilu Li
- Neuroscience Center, Wuxi School of Medicine, Jiangnan University, Wuxi, China
| | - Wenhui Yang
- Neuroscience Center, Wuxi School of Medicine, Jiangnan University, Wuxi, China
| | - Xiaomin Zheng
- Research Institute for Reproductive Health and Genetic Diseases, Wuxi Maternity and Child Health Care Hospital, Wuxi School of Medicine, Jiangnan University, Wuxi, China
| | - Xiaojie Lu
- Neuroscience Center, Wuxi School of Medicine, Jiangnan University, Wuxi, China
- Central Hospital of Jiangnan University, Wuxi No.2 People’s Hospital, Wuxi, China
| |
Collapse
|
4
|
Razizadeh MH, Zafarani A, Taghavi-Farahabadi M, Khorramdelazad H, Minaeian S, Mahmoudi M. Natural killer cells and their exosomes in viral infections and related therapeutic approaches: where are we? Cell Commun Signal 2023; 21:261. [PMID: 37749597 PMCID: PMC10519079 DOI: 10.1186/s12964-023-01266-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 08/11/2023] [Indexed: 09/27/2023] Open
Abstract
Innate immunity is the first line of the host immune system to fight against infections. Natural killer cells are the innate immunity lymphocytes responsible for fighting against virus-infected and cancerous cells. They have various mechanisms to suppress viral infections. On the other hand, viruses have evolved to utilize different ways to evade NK cell-mediated responses. Viruses can balance the response by regulating the cytokine release pattern and changing the proportion of activating and inhibitory receptors on the surface of NK cells. Exosomes are a subtype of extracellular vesicles that are involved in intercellular communication. Most cell populations can release these nano-sized vesicles, and it was shown that these vesicles produce identical outcomes to the originating cell from which they are released. In recent years, the role of NK cell-derived exosomes in various diseases including viral infections has been highlighted, drawing attention to utilizing the therapeutic potential of these nanoparticles. In this article, the role of NK cells in various viral infections and the mechanisms used by viruses to evade these important immune system cells are initially examined. Subsequently, the role of NK cell exosomes in controlling various viral infections is discussed. Finally, the current position of these cells in the treatment of viral infections and the therapeutic potential of their exosomes are reviewed. Video Abstract.
Collapse
Affiliation(s)
- Mohammad Hossein Razizadeh
- Department of Virology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
- Antimicrobial Resistance Research Center, Institute of Immunology and Infectious Diseases, Iran University of Medical Sciences, Tehran, Iran
| | - Alireza Zafarani
- Department of Hematology and Blood Banking, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Mahsa Taghavi-Farahabadi
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Hossein Khorramdelazad
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
- Department of Immunology, School of Medicine, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Sara Minaeian
- Antimicrobial Resistance Research Center, Institute of Immunology and Infectious Diseases, Iran University of Medical Sciences, Tehran, Iran.
| | - Mohammad Mahmoudi
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.
- Immunology Research Center, Institute of Immunology and Infectious Diseases, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
5
|
Oh BLZ, Chan LWY, Chai LYA. Manipulating NK cellular therapy from cancer to invasive fungal infection: promises and challenges. Front Immunol 2023; 13:1044946. [PMID: 36969979 PMCID: PMC10034767 DOI: 10.3389/fimmu.2022.1044946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Accepted: 12/09/2022] [Indexed: 01/13/2023] Open
Abstract
The ideal strategy to fight an infection involves both (i) weakening the invading pathogen through conventional antimicrobial therapy, and (ii) strengthening defense through the augmentation of host immunity. This is even more pertinent in the context of invasive fungal infections whereby the majority of patients have altered immunity and are unable to mount an appropriate host response against the pathogen. Natural killer (NK) cells fit the requirement of an efficient, innate executioner of both tumour cells and pathogens – their unique, targeted cell killing mechanism, combined with other arms of the immune system, make them potent effectors. These characteristics, together with their ready availability (given the various sources of extrinsic NK cells available for harvesting), make NK cells an attractive choice as adoptive cellular therapy against fungi in invasive infections. Improved techniques in ex vivo NK cell activation with expansion, and more importantly, recent advances in genetic engineering including state-of-the-art chimeric antigen receptor platform development, have presented an opportune moment to harness this novel therapeutic as a key component of a multipronged strategy against invasive fungal infections.
Collapse
Affiliation(s)
- Bernice Ling Zhi Oh
- VIVA-University Children’s Cancer Centre, Khoo-Teck Puat-National University Children’s Medical Institute, National University Hospital, Singapore, Singapore
- Department of Paediatrics, Yong Loo Lin School of Medicine, National University Singapore, Singapore, Singapore
| | - Louis Wei Yong Chan
- Clinician Scientist Academy, National University Health System, Singapore, Singapore
| | - Louis Yi Ann Chai
- Division of Infectious Diseases, Department of Medicine, National University Health System, Singapore, Singapore
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Synthetic Biology for Clinical and Technological Innovation (SynCTI), National University of Singapore, Singapore, Singapore
- *Correspondence: Louis Yi Ann Chai,
| |
Collapse
|
6
|
Kocyigit A, Guler EM, Irban A, Kiran B, Atayoglu AT. Assessment of Association Between the Potential Immunomodulatory Activity and Drinking Olive Leaf Tea in the Coronavirus Disease-2019 Pandemic: An Observational Study. JOURNAL OF INTEGRATIVE AND COMPLEMENTARY MEDICINE 2022; 28:940-947. [PMID: 36112183 DOI: 10.1089/jicm.2022.0554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Objective: During the Coronavirus Disease-2019 (COVID-19) pandemic, in addition to the current measures, the healthy immune system plays an essential role and various natural agents have been recommended to boost innate immunity. The aim of this study was to investigate any association between the potential immunomodulatory activity and drinking olive leaf tea (OLT) in the COVID-19 pandemic. Design: The study was conducted among the workers in a tractor factory where OLT was served in routine. Drinking at least one cup of OLT per day for a minimum of 1 month was the inclusion criteria used in the study. The workers who had a history of vaccination and COVID-19 were excluded from the study, and lymphocyte subsets, interleukin (IL)-2, IFN-γ, COVID-19-specific IgM and IgG levels were analyzed in all the participants to determine the asymptomatic individuals among the participants and compare the immunological parameters. Results: The study was conducted among 336 workers, 183 of them were OLT drinkers and 153 were OLT nondrinkers. The results showed higher values of CD3-/CD16/56 (natural killer [NK]) cells, CD3+/CD16/56 (natural killer T [NKT]) cells, total NK (NK+NKT) cells, and serum IFN-γ, and IL-2 levels in OLT drinkers compared to the nondrinkers. Although all the OLT drinkers and nondrinkers included in the study reported no history of COVID-19, specific COVID-19 IgG levels were found positive in 60% of OLT drinkers and 38% OLT nondrinkers. Conclusions: Peripheral NK and NKT cell values and IL-2 and IFN-γ secretion levels were found higher in the OLT drinking group. There were positive correlations between the OLT drinking frequency and NK cell counts. Moreover, the number of individuals who had "asymptomatic" COVID-19 infection was higher in the OLT drinking group than in the nondrinking cohort. Clinical Trial Registration Number: The trial has been registered in the ClinicalTrials.gov database (CTR NCT05222347).
Collapse
Affiliation(s)
- Abdurrahim Kocyigit
- Department of Biochemistry, Faculty of Medicine, Bezmialem Vakıf University, Istanbul, Turkey
| | - Eray Metin Guler
- Department of Clinical Biochemistry and Hamidiye Medicine Faculty, Health Sciences University, Istanbul, Turkey
| | - Arzu Irban
- Department of Anestesia and Reanimation, Hamidiye Medicine Faculty, Health Sciences University, Istanbul, Turkey
| | - Bayram Kiran
- Department of Genetics and Bioengineering, Faculty of Engineering and Architecture, Kastamonu University, Kastamonu, Turkey
| | - Ali Timucin Atayoglu
- Department of Family Medicine, International School of Medicine, Istanbul Medipol University, Istanbul, Turkey
| |
Collapse
|
7
|
The Innate and Adaptive Immune Cells in Alzheimer’s and Parkinson’s Diseases. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:1315248. [PMID: 36211819 PMCID: PMC9534688 DOI: 10.1155/2022/1315248] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 07/14/2022] [Accepted: 08/25/2022] [Indexed: 11/17/2022]
Abstract
Alzheimer's disease (AD) and Parkinson's disease (PD) are the most common neurodegenerative disorders of the central nervous system (CNS). Increasing evidence supports the view that dysfunction of innate immune cells initiated by accumulated and misfolded proteins plays essential roles in the pathogenesis and progression of these diseases. The TLR family was found to be involved in the regulation of microglial function in the pathogenesis and progression of AD or PD, making it as double-edged sword in these diseases. Altered function of peripheral innate immune cells was found in AD and PD and thus contributed to the development and progression of AD and PD. Alteration of different subsets of T cells was found in the peripheral blood and CNS in AD and PD. The CNS-infiltrating T cells can exert both neuroprotective and neurotoxic effects in the pathogenesis and progression. Here, we review recent evidences for the roles of innate and adaptive immune cells in the pathogenesis and progression of AD and PD.
Collapse
|
8
|
Lemieszek MK, Komaniecka I, Chojnacki M, Choma A, Rzeski W. Immunomodulatory Properties of Polysaccharide-Rich Young Green Barley ( Hordeum vulgare) Extract and Its Structural Characterization. Molecules 2022; 27:1742. [PMID: 35268844 PMCID: PMC8911554 DOI: 10.3390/molecules27051742] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 03/03/2022] [Accepted: 03/04/2022] [Indexed: 12/19/2022] Open
Abstract
Young green barley (YGB) water extract has revealed a beneficial impact on natural killer (NK) cells' ability to recognize and eliminate human colon cancer cells, without any side effects for normal colon epithelial cells. The direct anticancer effect of the tested compounds has been also shown. The mixture of oligosaccharides found in this extract was characterized by chemical analyses and via FT-IR spectroscopy and MALDI-TOF MS techniques. The YGB preparation contained 26.9% of proteins and 64.2% of sugars, mostly glucose (54.7%) and fructose (42.7%), with a small amount of mannose (2.6%) and galactose (less than 0.5%). Mass spectrometry analysis of YGB has shown that fructose oligomers contained from 3 to 19 sugar units. The number of fructans was estimated to be about 10.2% of the dry weight basis of YGB. The presented results suggest the beneficial effect of the consumption of preparations based on young barley on the human body, in the field of colon cancer prevention.
Collapse
Affiliation(s)
- Marta Kinga Lemieszek
- Department of Medical Biology, Institute of Rural Health, Jaczewskiego 2, 20-090 Lublin, Poland; (M.C.); (W.R.)
| | - Iwona Komaniecka
- Department of Genetics and Microbiology, Institute of Biological Sciences, Maria Curie-Skłodowska University, Akademicka 19, 20-033 Lublin, Poland; (I.K.); (A.C.)
| | - Michał Chojnacki
- Department of Medical Biology, Institute of Rural Health, Jaczewskiego 2, 20-090 Lublin, Poland; (M.C.); (W.R.)
| | - Adam Choma
- Department of Genetics and Microbiology, Institute of Biological Sciences, Maria Curie-Skłodowska University, Akademicka 19, 20-033 Lublin, Poland; (I.K.); (A.C.)
| | - Wojciech Rzeski
- Department of Medical Biology, Institute of Rural Health, Jaczewskiego 2, 20-090 Lublin, Poland; (M.C.); (W.R.)
- Department of Functional Anatomy and Cytobiology, Institute of Biological Sciences, Maria Curie-Skłodowska University, Akademicka 19, 20-033 Lublin, Poland
| |
Collapse
|
9
|
Elsaid AF, Agrawal S, Agrawal A, Ghoneum M. Dietary Supplementation with Biobran/MGN-3 Increases Innate Resistance and Reduces the Incidence of Influenza-like Illnesses in Elderly Subjects: A Randomized, Double-Blind, Placebo-Controlled Pilot Clinical Trial. Nutrients 2021; 13:nu13114133. [PMID: 34836388 PMCID: PMC8618540 DOI: 10.3390/nu13114133] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 11/13/2021] [Accepted: 11/14/2021] [Indexed: 12/13/2022] Open
Abstract
Influenza-like illness (ILI) remains a major cause of severe mortality and morbidity in the elderly. Aging is associated with a decreased ability to sense pathogens and mount effective innate and adaptive immune responses, thus mandating the development of protective nutraceuticals. Biobran/MGN-3, an arabinoxylan from rice bran, has potent anti-aging and immunomodulatory effects, suggesting that it may be effective against ILI. The objective of the current study was to investigate the effect of Biobran/MGN-3 on ILI incidence, natural killer (NK) cell activity, and the expressions of RIG-1 (retinoic acid-inducible gene 1), MDA5 (melanoma differentiation-associated protein 5), and their downstream signaling genes ISG-15 (interferon-stimulated genes 15) and MX1 (myxovirus (influenza) resistance 1, interferon-inducible). A double-blind, placebo-controlled clinical trial included eighty healthy older adults over 55 years old, 40 males and 40 females, who received either a placebo or Biobran/MGN-3 (500 mg/day) for 3 months during known ILI seasonality (peak incidence) in Egypt. The incidence of ILI was confirmed clinically according to the WHO case definition criteria. Hematological, hepatic, and renal parameters were assessed in all subjects, while the activity of NK and NKT (natural killer T) cells was assessed in six randomly chosen subjects in each group by the degranulation assay. The effect of Biobran/MGN-3 on RIG-1 and MDA5, as well as downstream ISG15 and MX1, was assessed in BEAS-2B pulmonary epithelial cells using flow cytometry. The incidence rate and incidence density of ILI in the Biobran/MGN-3 group were 5.0% and 0.57 cases per 1000 person-days, respectively, compared to 22.5% and 2.95 cases per 1000 person-days in the placebo group. Furthermore, Biobran/MGN-3 ingestion significantly enhanced NK activity compared to the basal levels and to the placebo group. In addition, Biobran/MGN-3 significantly upregulated the expression levels of RIG-1, MDA5, ISG15, and MX1 in the human pulmonary epithelial BEAS-2B cell lines. No side effects were observed. Taken together, Biobran/MGN-3 supplementation enhanced the innate immune response of elderly subjects by upregulating the NK activity associated with reduction of ILI incidence. It also upregulated the intracellular RIG-1, MDA5, ISG15, and MX1 expression in pulmonary epithelial tissue cultures. Biobran/MGN-3 could be a novel agent with prophylactic effects against a wide spectrum of respiratory viral infections that warrants further investigation.
Collapse
Affiliation(s)
- Ahmed F. Elsaid
- Department of Community Medicine and Public Health, Zagazig University, Zagazig 44519, Egypt
- Correspondence: or
| | - Sudhanshu Agrawal
- Division of Basic and Clinical Immunology, Department of Medicine, University of California, Irvine, CA 92697, USA; (S.A.); (A.A.)
| | - Anshu Agrawal
- Division of Basic and Clinical Immunology, Department of Medicine, University of California, Irvine, CA 92697, USA; (S.A.); (A.A.)
| | - Mamdooh Ghoneum
- Department of Surgery, Charles R. Drew University of Medicine and Science, Los Angeles, CA 90059, USA;
| |
Collapse
|
10
|
Abstract
Natural Killer (NK) cells are key effectors of the innate immune system which represent the first line of defense against viral infections. NK cell activation depends on the engagement of a complex receptor repertoire expressed on their surface, consisting of both activating and inhibitory receptors. Among the known NK cell receptors, the family of killer Ig-like receptors (KIRs) consists in activating/inhibitory receptors that interact with specific human leukocyte antigen (HLA) molecules expressed on target cells. In particular, the expression of peculiar KIRs have been reported to be associated to viral infection susceptibility. Interestingly, a significant association between the development and onset of different human pathologies, such as tumors, neurodegeneration and infertility, and a clonal KIRs expression on NK cells has been described in presence of viral infections, supporting the crucial role of KIRs in defining the effect of viral infections in different tissues and organs. This review aims to report the state of art about the role of KIRs receptors in NK cell activation and viral infection control.
Collapse
|
11
|
Zuo W, Zhao X. Natural killer cells play an important role in virus infection control: Antiviral mechanism, subset expansion and clinical application. Clin Immunol 2021; 227:108727. [PMID: 33887436 PMCID: PMC8055501 DOI: 10.1016/j.clim.2021.108727] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2021] [Revised: 03/15/2021] [Accepted: 04/11/2021] [Indexed: 02/06/2023]
Abstract
With the global spread of coronavirus disease 2019 (COVID-19), the important role of natural killer (NK) cells in the control of various viral infections attracted more interest, via non-specific activation, such as antibody-dependent cell-mediated cytotoxicity (ADCC) and activating receptors, as well as specific activation, such as memory-like NK generation. In response to different viral infections, NK cells fight viruses in different ways, and different NK subsets proliferate. For instance, cytomegalovirus (CMV) induces NKG2C + CD57 + KIR+ NK cells to expand 3-6 months after hematopoietic stem cell transplantation (HSCT), but human immunodeficiency virus (HIV) induces KIR3DS1+/KIR3DL1 NK cells to expand in the acute phase of infection. However, the similarities and differences among these processes and their molecular mechanisms have not been fully discussed. In this article, we provide a summary and comparison of antiviral mechanisms, unique subset expansion and time periods in peripheral blood and tissues under different conditions of CMV, HIV, Epstein-Barr virus (EBV), COVID-19 and hepatitis B virus (HBV) infections. Accordingly, we also discuss current clinical NK-associated antiviral applications, including cell therapy and NK-related biological agents, and we state the progress and future prospects of NK cell antiviral treatment.
Collapse
Affiliation(s)
- Wei Zuo
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China
| | - Xiangyu Zhao
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China.
| |
Collapse
|
12
|
Viral Infection of Human Natural Killer Cells. Viruses 2019; 11:v11030243. [PMID: 30870969 PMCID: PMC6466310 DOI: 10.3390/v11030243] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Revised: 03/05/2019] [Accepted: 03/07/2019] [Indexed: 12/12/2022] Open
Abstract
Natural killer (NK) cells are essential in the early immune response against viral infections, in particular through clearance of virus-infected cells. In return, viruses have evolved multiple mechanisms to evade NK cell-mediated viral clearance. Several unrelated viruses, including influenza virus, respiratory syncytial virus, and human immunodeficiency virus, can directly interfere with NK cell functioning through infection of these cells. Viral infection can lead to immune suppression, either by downregulation of the cytotoxic function or by triggering apoptosis, leading to depletion of NK cells. In contrast, some viruses induce proliferation or changes in the morphology of NK cells. In this review article, we provide a comprehensive overview of the viruses that have been reported to infect NK cells, we discuss their mechanisms of entry, and describe the interference with NK cell effector function and phenotype. Finally, we discuss the contribution of virus-infected NK cells to viral load. The development of specific therapeutics, such as viral entry inhibitors, could benefit from an enhanced understanding of viral infection of NK cells, opening up possibilities for the prevention of NK cell infection.
Collapse
|
13
|
Lemieszek MK, Nunes FM, Rzeski W. Branched mannans from the mushroom Cantharellus cibarius enhance the anticancer activity of natural killer cells against human cancers of lung and colon. Food Funct 2019; 10:5816-5826. [DOI: 10.1039/c9fo00510b] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Cantharellus cibarius branched mannans increase natural killer cells NK92 viability and proliferation and enhance their cytotoxicity against lung and colon cancer cells A549 and LS180, at the same time they do not affect lung and colon epithelial cells NL20 and CCD841 CoN.
Collapse
Affiliation(s)
| | - Fernando M. Nunes
- CQ-Vila Real
- Chemistry Research Centre
- Chemistry Department
- Food and Wine Chemistry Lab
- University of Trás-os-Montes e Alto Douro
| | - Wojciech Rzeski
- Department of Medical Biology
- Institute of Rural Health
- Lublin
- Poland
- Department of Virology and Immunology
| |
Collapse
|
14
|
Presta I, Vismara M, Novellino F, Donato A, Zaffino P, Scali E, Pirrone KC, Spadea MF, Malara N, Donato G. Innate Immunity Cells and the Neurovascular Unit. Int J Mol Sci 2018; 19:E3856. [PMID: 30513991 PMCID: PMC6321635 DOI: 10.3390/ijms19123856] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Revised: 11/26/2018] [Accepted: 11/30/2018] [Indexed: 12/11/2022] Open
Abstract
Recent studies have clarified many still unknown aspects related to innate immunity and the blood-brain barrier relationship. They have also confirmed the close links between effector immune system cells, such as granulocytes, macrophages, microglia, natural killer cells and mast cells, and barrier functionality. The latter, in turn, is able to influence not only the entry of the cells of the immune system into the nervous tissue, but also their own activation. Interestingly, these two components and their interactions play a role of great importance not only in infectious diseases, but in almost all the pathologies of the central nervous system. In this paper, we review the main aspects in the field of vascular diseases (cerebral ischemia), of primitive and secondary neoplasms of Central Nervous System CNS, of CNS infectious diseases, of most common neurodegenerative diseases, in epilepsy and in demyelinating diseases (multiple sclerosis). Neuroinflammation phenomena are constantly present in all diseases; in every different pathological state, a variety of innate immunity cells responds to specific stimuli, differentiating their action, which can influence the blood-brain barrier permeability. This, in turn, undergoes anatomical and functional modifications, allowing the stabilization or the progression of the pathological processes.
Collapse
Affiliation(s)
- Ivan Presta
- Department of Health Sciences, University "Magna Græcia" of Catanzaro, 88100 Catanzaro, Italy.
| | - Marco Vismara
- Department of Cell Biotechnologies and Hematology, University "La Sapienza" of Rome, 00185 Rome, Italy.
| | - Fabiana Novellino
- Institute of Molecular Bioimaging and Physiology, National Research Council, 88100 Catanzaro, Italy.
| | - Annalidia Donato
- Department of Medical and Surgical Sciences, University "Magna Graecia" of Catanzaro, 88100 Catanzaro, Italy.
| | - Paolo Zaffino
- Department of Clinical and Experimental Medicine, University "Magna Graecia" of Catanzaro, 88100 Catanzaro, Italy.
| | - Elisabetta Scali
- Department of Health Sciences, University "Magna Græcia" of Catanzaro, 88100 Catanzaro, Italy.
| | - Krizia Caterina Pirrone
- Department of Health Sciences, University "Magna Græcia" of Catanzaro, 88100 Catanzaro, Italy.
| | - Maria Francesca Spadea
- Department of Clinical and Experimental Medicine, University "Magna Graecia" of Catanzaro, 88100 Catanzaro, Italy.
| | - Natalia Malara
- Department of Clinical and Experimental Medicine, University "Magna Graecia" of Catanzaro, 88100 Catanzaro, Italy.
| | - Giuseppe Donato
- Department of Health Sciences, University "Magna Græcia" of Catanzaro, 88100 Catanzaro, Italy.
| |
Collapse
|
15
|
High expression of GALNT7 promotes invasion and proliferation of glioma cells. Oncol Lett 2018; 16:6307-6314. [PMID: 30405766 PMCID: PMC6202485 DOI: 10.3892/ol.2018.9498] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Accepted: 07/20/2018] [Indexed: 01/06/2023] Open
Abstract
Polypeptide-N-acetyl-galactosaminlytransferase 7 (GALNT7), a member of the GalNAc-transferase family, has not been previously evaluated as a prognostic factor of glioblastoma (GBM) or low-grade glioma (LGG). Based on The Cancer Genome Atlas database and bioinformatics analyses, the expression of GALNT7 was demosntrated to be higher in GBM and LGG tissues than in normal brain tissue. The expression levels of GANLT7 were associated with age, tumor grade, survival rate, disease-free survival time and overall survival time. Gene correlation and gene-set enrichment analyses suggested that GALNT7 may affect the proliferative and invasive abilities of glioma cells through multiple signaling pathways, including regulation of the actin cytoskeleton, natural killer cell-mediated cytotoxicity, the janus kinase-signal transducer and activator of transcription (STAT) signaling pathway, cell adhesion molecules and extracellular matrix receptor interaction pathways. Furthermore, 5 target genes of GALNT7 involved in these signaling pathways were identified, including Crk, Rac family small GTPase 1, STAT3, poliovirus receptor and Tenascin C. In summary, high expression of GALNT7 was associated with poor prognosis of glioma, and may be used as an effective biomarker of glioma.
Collapse
|
16
|
Zamora AE, Aguilar EG, Sungur CM, Khuat LT, Dunai C, Lochhead GR, Du J, Pomeroy C, Blazar BR, Longo DL, Venstrom JM, Baumgarth N, Murphy WJ. Licensing delineates helper and effector NK cell subsets during viral infection. JCI Insight 2017; 2:87032. [PMID: 28515356 DOI: 10.1172/jci.insight.87032] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Accepted: 04/18/2017] [Indexed: 11/17/2022] Open
Abstract
Natural killer (NK) cells can be divided into phenotypic subsets based on expression of receptors that bind self-MHC-I molecules, a concept termed licensing or education. Here we show NK cell subsets with different migratory, effector, and immunoregulatory functions in dendritic cell and antigen (ag)-specific CD8+ T cell responses during influenza and murine cytomegalovirus infections. Shortly after infection, unlicensed NK cells localized in draining lymph nodes and produced GM-CSF, which correlated with the expansion and activation of dendritic cells, and resulted in greater and sustained ag-specific T cell responses. In contrast, licensed NK cells preferentially migrated to infected tissues and produced IFN-γ. Importantly, human NK cell subsets exhibited similar phenotypic characteristics. Collectively, our studies demonstrate a critical demarcation between the functions of licensed and unlicensed NK cell subsets, with the former functioning as the classical effector subset and the latter as the stimulator of adaptive immunity helping to prime immune responses.
Collapse
Affiliation(s)
| | | | | | | | | | - G Raymond Lochhead
- Department of Internal Medicine, UC Davis School of Medicine, Sacramento, California, USA
| | - Juan Du
- Department of Medicine, UCSF, San Francisco, California, USA
| | - Claire Pomeroy
- President of Lasker Foundation, Albert and Mary Lasker Foundation, New York City, New York, USA
| | - Bruce R Blazar
- Masonic Cancer Center and Department of Pediatrics, Division of Blood and Marrow Transplantation, University of Minnesota, Minneapolis, Minnesota, USA
| | - Dan L Longo
- National Institute on Aging, NIH, Baltimore, Maryland, USA
| | | | - Nicole Baumgarth
- Center for Comparative Medicine, UC Davis, Davis, California, USA
| | - William J Murphy
- Department of Dermatology.,Department of Internal Medicine, UC Davis School of Medicine, Sacramento, California, USA
| |
Collapse
|
17
|
Guruvayoorappan C, Kuttan G. Effect of Amentoflavone on the Inhibition of Pulmonary Metastasis Induced by B16F-10 Melanoma Cells in C57BL/6 Mice. Integr Cancer Ther 2016; 6:185-97. [PMID: 17548797 DOI: 10.1177/1534735407302345] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
This study was an investigation of the antimetastatic activity of amentoflavone using B16F-10 melanoma—induced experimental lung metastasis in C57BL/6 mice. Amentoflavone treatment significantly reduced tumor nodule formation accompanied by reduced lung collagen hydroxyproline, hexosamine, and uronic acid levels. Serum sialic acid and γglutamyl transpeptidase levels were also significantly inhibited after amentoflavone treatment. Amentoflavone treatment up-regulated the lung tissue inhibitor of metalloprotease-1 and tissue inhibitor of metalloprotease-2 expression. The cytokine profile and growth factors such as interleukin-1β , interleukin-6, tumor necrosis factor-α, granulocyte monocyte— colony stimulating factor, vascular endothelial growth factor, interleukin-2, and tissue inhibitor of metalloprotease-1 in the serum of these animals were markedly altered after amentoflavone treatment. This altered level of cytokines after amentoflavone treatment was also accompanied by enhanced natural killer cell antibody—dependent cellular cytotoxicity. The study reveals that amentoflavone treatment could alter proinflammatory cytokine production and could inhibit the activation and nuclear translocation of p65, p50, c-Rel subunits of nuclear factor—κB, and other transcription factors such as c-fos, activated transcription factor—2, and cyclic adenosine monophosphate response element—binding protein in B16F-10 melanoma cells.
Collapse
|
18
|
Huang BY, Zhan YP, Zong WJ, Yu CJ, Li JF, Qu YM, Han S. The PD-1/B7-H1 pathway modulates the natural killer cells versus mouse glioma stem cells. PLoS One 2015; 10:e0134715. [PMID: 26266810 PMCID: PMC4534134 DOI: 10.1371/journal.pone.0134715] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2015] [Accepted: 07/13/2015] [Indexed: 01/26/2023] Open
Abstract
PURPOSE Glioblastoma multiforme (GBM) is the most malignant primary type of brain tumor in adults. There has been increased focus on the immunotherapies to treat GBM patients, the therapeutic value of natural killer (NK) cells is still unknown. Programmed death-1 (PD-1) is a major immunological checkpoint that can negatively regulate the T-cell-mediated immune response. We tested the combination of the inhibiting the PD-1/B7H1 pathway with a NK-cell mediated immune response in an orthotopic mouse model of GBM. METHODS AND MATERIALS Mouse glioma stem cells (GL261GSCs) and mouse NK cells were isolated and identified. A lactate dehydrogenase (LDH) assay was perfomed to detect the cytotoxicity of NK cells against GL261GSCs. GL261GSCs were intracranially implanted into mice, and the mice were stratified into 3 treatment groups: 1) control, 2) NK cells treatment, and 3) PD-1 inhibited NK cells treatment group. Overall survival was quantified, and animal magnetic resonance imaging (MRI) was performed to determine tumor growth. The brains were harvested after the mice were euthanized, and immunohistochemistry against CD45 and PCNA was performed. RESULTS The mouse NK cells were identified as 90% CD3- NK1.1+CD335+ by flow cytometric analysis. In the LDH assay, the ratios of the damaged GL261GSCs, with the E:T ratios of 2.5:1, 5:1, and 10:1, were as follows: 1) non-inhibited group: 7.42%, 11.31%, and 15.1%, 2) B7H1 inhibited group: 14.75%, 18.25% and 29.1%, 3) PD-1 inhibited group: 15.53%, 19.21% and 29.93%, 4) double inhibited group: 33.24%, 42.86% and 54.91%. In the in vivo experiments, the mice in the PD-1 inhibited NK cells treatment group and IL-2-stimulated-NK cells treatment group displayed a slowest tumor growth (F = 308.5, P<0.01) and a slower tumor growth compared with control group (F = 118.9, P<0.01), respectively. The median survival of the mice in the three groups were as follows: 1) conrol group: 29 days, 2) NK cells treatment group: 35 days (P = 0.0012), 3) PD-1 inhibited NK cells treatment group: 44 days (P = 0.0024). Immunologic data of PCNA-positive cell ratios and CD45-positive cell ratios of the tumor specimens in the three groups were as follows: 1) control group: 65.72% (PCNA) and 0.92% (CD45), 2) NK treatment group: 27.66% (PCNA) and 13.46% (CD45), and 3) PD-1 inhibited NK cells treatment group: 13.66% (PCNA) and 23.66% (CD45) (P<0.001). CONCLUSION The results demonstrated that blockade of PD-1/B7H1 pathway could promote mouse NK cells to kill the GL261GSCs, and the PD-1-inhibited NK cells could be a feasible immune therapeutic approach against GBM.
Collapse
Affiliation(s)
- Bo Yuan Huang
- Department of Neurosurgery, Beijing San Bo Brain Hospital, Capital Medical University, Beijing, China
| | - Yi Ping Zhan
- Department of Neurosurgery, Beijing San Bo Brain Hospital, Capital Medical University, Beijing, China
| | - Wen Jing Zong
- College of traditional Chinese Medicine, Capital Medical University, Beijing, China
| | - Chun Jiang Yu
- Department of Neurosurgery, Beijing San Bo Brain Hospital, Capital Medical University, Beijing, China
| | - Jun Fa Li
- Department of Neurosurgery, Brain Sciences Institute of Beijing, Capital Medical University, Beijing, China
| | - Yan Ming Qu
- Department of Neurosurgery, Beijing San Bo Brain Hospital, Capital Medical University, Beijing, China
| | - Song Han
- Department of Neurosurgery, Brain Sciences Institute of Beijing, Capital Medical University, Beijing, China
| |
Collapse
|
19
|
Rygh CB, Wang J, Thuen M, Gras Navarro A, Huuse EM, Thorsen F, Poli A, Zimmer J, Haraldseth O, Lie SA, Enger PØ, Chekenya M. Dynamic contrast enhanced MRI detects early response to adoptive NK cellular immunotherapy targeting the NG2 proteoglycan in a rat model of glioblastoma. PLoS One 2014; 9:e108414. [PMID: 25268630 PMCID: PMC4182474 DOI: 10.1371/journal.pone.0108414] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2014] [Accepted: 08/27/2014] [Indexed: 01/05/2023] Open
Abstract
There are currently no established radiological parameters that predict response to immunotherapy. We hypothesised that multiparametric, longitudinal magnetic resonance imaging (MRI) of physiological parameters and pharmacokinetic models might detect early biological responses to immunotherapy for glioblastoma targeting NG2/CSPG4 with mAb9.2.27 combined with natural killer (NK) cells. Contrast enhanced conventional T1-weighted MRI at 7±1 and 17±2 days post-treatment failed to detect differences in tumour size between the treatment groups, whereas, follow-up scans at 3 months demonstrated diminished signal intensity and tumour volume in the surviving NK+mAb9.2.27 treated animals. Notably, interstitial volume fraction (ve), was significantly increased in the NK+mAb9.2.27 combination therapy group compared mAb9.2.27 and NK cell monotherapy groups (p = 0.002 and p = 0.017 respectively) in cohort 1 animals treated with 1 million NK cells. ve was reproducibly increased in the combination NK+mAb9.2.27 compared to NK cell monotherapy in cohort 2 treated with increased dose of 2 million NK cells (p<0.0001), indicating greater cell death induced by NK+mAb9.2.27 treatment. The interstitial volume fraction in the NK monotherapy group was significantly reduced compared to mAb9.2.27 monotherapy (p<0.0001) and untreated controls (p = 0.014) in the cohort 2 animals. NK cells in monotherapy were unable to kill the U87MG cells that highly expressed class I human leucocyte antigens, and diminished stress ligands for activating receptors. A significant association between apparent diffusion coefficient (ADC) of water and ve in combination NK+mAb9.2.27 and NK monotherapy treated tumours was evident, where increased ADC corresponded to reduced ve in both cases. Collectively, these data support histological measures at end-stage demonstrating diminished tumour cell proliferation and pronounced apoptosis in the NK+mAb9.2.27 treated tumours compared to the other groups. In conclusion, ve was the most reliable radiological parameter for detecting response to intralesional NK cellular therapy.
Collapse
Affiliation(s)
- Cecilie Brekke Rygh
- Department of Biomedicine, University of Bergen, Bergen, Norway
- Cardiovascular Research Group, Haukeland University Hospital, Bergen, Norway
- * E-mail:
| | - Jian Wang
- Department of Biomedicine, University of Bergen, Bergen, Norway
| | - Marte Thuen
- MI Lab, Department of Circulation and Medical Imaging, NTNU, Trondheim, Norway
| | | | - Else Marie Huuse
- MI Lab, Department of Circulation and Medical Imaging, NTNU, Trondheim, Norway
| | - Frits Thorsen
- Molecular Imaging Center, Department of Biomedicine, University of Bergen, Bergen, Norway
| | - Aurelie Poli
- Department of Biomedicine, University of Bergen, Bergen, Norway
- Laboratoire d'Immunogénétique-Allergologie, CRP-Santé, Luxembourg City, Luxembourg
| | - Jacques Zimmer
- Laboratoire d'Immunogénétique-Allergologie, CRP-Santé, Luxembourg City, Luxembourg
| | - Olav Haraldseth
- MI Lab, Department of Circulation and Medical Imaging, NTNU, Trondheim, Norway
- Department of Medical Imaging, St. Olavs Hospital, Trondheim, Norway
| | - Stein Atle Lie
- Institute for Clinical Dentistry, University of Bergen, Bergen, Norway
| | - Per Øyvind Enger
- Department of Biomedicine, University of Bergen, Bergen, Norway
- Department of Neurosurgery, Haukeland University Hospital, Bergen, Norway
| | - Martha Chekenya
- Department of Biomedicine, University of Bergen, Bergen, Norway
- Institute for Clinical Dentistry, University of Bergen, Bergen, Norway
| |
Collapse
|
20
|
Abstract
Glioblastoma (GBM) is the most malignant brain tumor where patients' survival is only 14.6 months, despite multimodal therapy with debulking surgery, concurrent chemotherapy and radiotherapy. There is an urgent, unmet need for novel, effective therapeutic strategies for this devastating disease. Although several immunotherapies are under development for the treatment of GBM patients, the use of natural killer (NK) cells is still marginal despite this being a promising approach to treat cancer. In regard of our knowledge on the role of NG2/CSPG4 in promoting GBM aggressiveness we investigated the potential of an innovative immunotherapeutic strategy combining mAb9.2.27 against NG2/CSPG4 and NK cells in preclinical animal models of GBM. Multiple immune escape mechanisms maintain the tumor microenvironment in an anti-inflammatory state to promote tumor growth, however, the distinct roles of resident microglia versus recruited macrophages is not elucidated. We hypothesized that exploiting the cytokine release capabilities of activated (NK) cells to reverse the anti-inflammatory axis combined with mAb9.2.27 targeting the NG2/CSPG4 may favor tumor destruction by editing pro-GBM immune responses. Combination treatment with NK+mAb9.2.27 diminished tumor growth that was associated with reduced tumor proliferation, increased cellular apoptosis and prolonged survival compared to vehicle and monotherapy controls. The therapeutic efficacy was mediated by recruitment of CCR2low macrophages into the tumor microenvironment, increased ED1 and MHC class II expression on microglia that might render them competent for GBM antigen presentation, as well as elevated IFN-γ and TNF-α levels in the cerebrospinal fluid compared to controls. Depletion of systemic macrophages by liposome-encapsulated clodronate decreased the CCR2low macrophages recruited to the brain and abolished the beneficial outcomes. Moreover, mAb9.2.27 reversed tumor-promoting effects of patient-derived tumor-associated macrophage/microglia(TAM) ex vivo.Taken together, these findings indicate thatNK+mAb9.2.27 treatment may be an amenable therapeutic strategy to treat NG2/CSPG4 expressing GBMs. We provide a novel conceptual approach of combination immunotherapy for glioblastoma. The results traverse beyond the elucidation of NG2/CSPG4 as a therapeutic target, but demonstrate a proof of concept that this antibody may hold potential for the treatment of GBM by activation of tumor infiltrated microglia/macrophages.
Collapse
|
21
|
Murine natural killer cell licensing and regulation by T regulatory cells in viral responses. Proc Natl Acad Sci U S A 2013; 110:7401-6. [PMID: 23589894 DOI: 10.1073/pnas.1218767110] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Natural killer (NK) cells show differential functionality based on their capability of binding to self-MHC consistent with licensing. Here we show in vivo confirmation of the physiologic effects of licensing with differential effects of NK subsets on anti-murine cytomegalovirus (anti-MCMV) responses after syngeneic hematopoietic stem cell transplantation (HSCT) or regulatory T-cell (Treg) depletion. After HSCT, depletion of licensed NK cells led to far greater viral loads in target organs early after infection compared with nondepleted and unlicensed depleted mice. There was a preferential expansion of licensed, C-type lectin-like activating receptor Ly49H+ NK cells with increased IFNγ production after infection in nondepleted mice post-HSCT and after Treg depletion. Adoptive transfer of licensed NK subsets into immunodeficient hosts provided significantly greater MCMV resistance compared with transfer of total NK populations or unlicensed subsets. In non-HSCT mice, only concurrent depletion of Tregs or TGF-β neutralization resulted in detection of NK licensing effects. This suggests that licensed NK cells are the initial and rapidly responding population of NK cells to MCMV infection, but are highly regulated by Tregs and TGF-β.
Collapse
|
22
|
Wang J, Li F, Zheng M, Sun R, Wei H, Tian Z. Lung natural killer cells in mice: phenotype and response to respiratory infection. Immunology 2012; 137:37-47. [PMID: 22612500 DOI: 10.1111/j.1365-2567.2012.03607.x] [Citation(s) in RCA: 80] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Natural killer (NK) cells have a specialized function in peripheral organs, which is determined by the organ-specific niches. We have attempted to explore whether lung NK cells display a particular phenotype according to their function in the unique pulmonary environment in health or during respiratory infection in mice. In healthy mice, higher frequencies of NK cells among lymphocytes were detected in the lung than in other tissues (lymph node, bone marrow, spleen, blood and liver), and lung NK cells maintained a more mature phenotype, implying that lung NK cells were critical for the pulmonary immune response. However, lung NK cells expressed higher levels of inhibitory receptors and lower levels of activating receptors, migration/adhesion-associated molecules and co-stimulatory molecules than splenic NK cells, implying that lung NK cells were quiescent, and the activation of lung NK cells was tightly regulated by the pulmonary environment in health. During respiratory infection, lung NK cells could be activated and express functional molecules (CD107a and interferon-γ) to take part in the response to infection quickly. These results suggested that the unique pulmonary environment promotes the development of NK cells with a lung-specific phenotype.
Collapse
Affiliation(s)
- Jian Wang
- Department of Immunology, School of Life Sciences, University of Science and Technology of China, Hefei, Anhui, China
| | | | | | | | | | | |
Collapse
|
23
|
Jackaman C, Lansley S, Allan JE, Robinson BWS, Nelson DJ. IL-2/CD40-driven NK cells install and maintain potency in the anti-mesothelioma effector/memory phase. Int Immunol 2012; 24:357-68. [DOI: 10.1093/intimm/dxs005] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
|
24
|
Mouse NK cell-mediated rejection of bone marrow allografts exhibits patterns consistent with Ly49 subset licensing. Blood 2011; 119:1590-8. [PMID: 22184406 DOI: 10.1182/blood-2011-08-374314] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Natural killer (NK) cells can mediate the rejection of bone marrow allografts and exist as subsets based on expression of inhibitory/activating receptors that can bind MHC. In vitro data have shown that NK subsets bearing Ly49 receptors for self-MHC class I have intrinsically higher effector function, supporting the hypothesis that NK cells undergo a host MHC-dependent functional education. These subsets also play a role in bone marrow cell (BMC) allograft rejection. Thus far, little in vivo evidence for this preferential licensing across mouse strains with different MHC haplotypes has been shown. We assessed the intrinsic response potential of the different Ly49(+) subsets in BMC rejection by using β2-microglobulin deficient (β2m(-/-)) mice as donors. Using congenic and allogeneic mice as recipients and depleting the different Ly49 subsets, we found that NK subsets bearing Ly49s, which bind "self-MHC" were found to be the dominant subset responsible for β2m(-/-) BMC rejection. This provides in vivo evidence for host MHC class I-dependent functional education. Interestingly, all H2(d) strain mice regardless of background were able to resist significantly greater amounts of β2m(-/-), but not wild-type BMC than H2(b) mice, providing evidence that the rheostat hypothesis regarding Ly49 affinities for MHC and NK-cell function impacts BMC rejection capability.
Collapse
|
25
|
Natural killer cells are involved in acute lung immune injury caused by respiratory syncytial virus infection. J Virol 2011; 86:2251-8. [PMID: 22171263 DOI: 10.1128/jvi.06209-11] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
It is known that respiratory syncytial virus (RSV) is the main cause of bronchiolitis and pneumonia in young children. RSV infection often leads to severe acute lung immunopathology, but the underlying immune mechanisms are not yet fully elucidated. Here, we found that RSV infection induced severe acute lung immune injury and promoted the accumulation and activation of lung natural killer (NK) cells at the early stage of infection in BALB/c mice. Activated lung NK cells highly expressed activating receptors NKG2D and CD27 and became functional NK cells by producing a large amount of gamma interferon (IFN-γ), which was responsible for acute lung immune injury. NK cell depletion significantly attenuated lung immune injury and reduced infiltration of total inflammatory cells and production of IFN-γ in bronchoalveolar lavage fluid (BALF). These data show that NK cells are involved in exacerbating the lung immune injury at the early stage of RSV infection via IFN-γ secretion.
Collapse
|
26
|
Barao I, Alvarez M, Redelman D, Weiss JM, Ortaldo JR, Wiltrout RH, Murphy WJ. Hydrodynamic delivery of human IL-15 cDNA increases murine natural killer cell recovery after syngeneic bone marrow transplantation. Biol Blood Marrow Transplant 2011; 17:1754-64. [PMID: 21906575 DOI: 10.1016/j.bbmt.2011.08.023] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2011] [Accepted: 08/31/2011] [Indexed: 01/26/2023]
Abstract
Immune deficiency immediately following bone marrow transplantation (BMT) increases susceptibility to opportunistic infections as well as tumor relapse. Natural Killer (NK) cells play important roles in the resistance to virally infected and transformed cells. Interleukin (IL)-15 has been shown to be essential for NK cell development and survival. We administered human (h) IL-15 cDNA (pIL-15) via hydrodynamic delivery to murine recipients undergoing congenic BMT to determine its effects on NK cell reconstitution. Hydrodynamic pIL-15 delivery resulted in high levels of hIL-15 protein in the serum that lasted for several days and then quickly declined. The appearance of hIL-15 was followed by a significant increase of mature donor-derived NK cells within the bone marrow, spleens, and livers of the treated recipients. No accumulation of immature NK cell progenitors was observed. The NK cells from IL-15-treated recipients displayed an activated phenotype and were lytically active toward tumor targets in vitro to a similar degree as did those cells from recipients treated with control plasmid. This suggests that the predominant effect of IL-15 was a quantitative increase in total NK cell numbers and not qualitative changes in NK cell functions. No toxicities or adverse effects were observed. Studies performed in transplanted mice bearing renal carcinoma tumors demonstrated that this mode of hIL-15 gene delivery resulted in increased antitumor responses. These results support the use of cytokine gene transfer-based regimens as a platform to augment NK cell recovery after BMT.
Collapse
Affiliation(s)
- Isabel Barao
- University of Nevada, Reno, Department of Microbiology and Immunology, Reno, Nevada, USA
| | | | | | | | | | | | | |
Collapse
|
27
|
Kanwar N, Wilkins JA. IQGAP1 involvement in MTOC and granule polarization in NK-cell cytotoxicity. Eur J Immunol 2011; 41:2763-73. [PMID: 21681737 DOI: 10.1002/eji.201040444] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2010] [Revised: 04/30/2011] [Accepted: 06/10/2011] [Indexed: 11/06/2022]
Abstract
Natural killer (NK) cells form a region of tight contact called the NK immunological synapse (NKIS) with their target cells. This is a dynamic region serving as a platform for targeted signaling and exocytotic events. We previously identified IQGAP1 as a cytoskeletal component of the NK-like cell line YTS. The present study was undertaken to determine the role of IQGAP1 in the function of NK cells. Silencing of IQGAP1 expression resulted in almost complete loss of the cytotoxic activity of YTS cells. Loss of IQGAP1 did not prevent conjugate formation with target cells but it did result in a failure to reorient the microtubule organizing centre to the immune synapse. Significantly, IQGAP1 expression was required for the perigranular accumulation of an F-actin network. IQGAP1 was shown to undergo marked rearrangements during synapse maturation in effector target conjugates of YTS or primary NK cells. These results suggest previously undescribed role(s) for IQGAP1 in regulating multiple aspects of cytoskeletal organization and granule polarization in NK cells.
Collapse
Affiliation(s)
- Namita Kanwar
- Manitoba Centre for Proteomics and Systems Biology, Winnipeg, Manitoba, Canada.
| | | |
Collapse
|
28
|
Barao I, Alvarez M, Ames E, Orr MT, Stefanski HE, Blazar BR, Lanier LL, Anderson SK, Redelman D, Murphy WJ. Mouse Ly49G2+ NK cells dominate early responses during both immune reconstitution and activation independently of MHC. Blood 2011; 117:7032-41. [PMID: 21498673 PMCID: PMC3143551 DOI: 10.1182/blood-2010-11-316653] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2010] [Accepted: 03/28/2011] [Indexed: 11/20/2022] Open
Abstract
Natural killer (NK) cell subsets can be defined by the differential expression of inhibitory receptors for MHC class I molecules. Early after congenic HSCT, we found that Ly49G2(high) single-positive NK cells repopulated, displayed an activated phenotype, and were highly cytolytic. Over time, this subset was replaced with NK cells with a normal pattern of Ly49 expression. Treatment of mice with IL-2 also resulted in the rapid expansion of these Ly49G2(high) single-positive NK cells. Only the Ly49g (Klra7) Pro1 transcript was highly induced in both HSCT- and IL-2-treated recipients. MHC-independent expansion of the Ly49G2(+) subset was also observed after Listeria monocytogenes or mouse cytomegalovirus infection. Our data indicate that during reconstitution after HSCT and various activation stimuli, Ly49G2(+) NK cells represent the "first-responder" NK cells, which occur independently of NK-cell licensing via Ly49-MHC interactions. These data suggest that the inhibitory Ly49G2 receptor represents an activation marker on mouse NK cells under various conditions.
Collapse
MESH Headings
- Animals
- Biomarkers/metabolism
- Cell Line, Tumor
- Cells, Cultured
- Cytomegalovirus/immunology
- Female
- Gene Expression Regulation
- Graft Survival
- Hematopoietic Stem Cell Transplantation
- Interleukin-2/metabolism
- Killer Cells, Natural/cytology
- Killer Cells, Natural/immunology
- Killer Cells, Natural/metabolism
- Listeria monocytogenes/immunology
- Lymphocyte Activation
- Major Histocompatibility Complex
- Mice
- Mice, Congenic
- Mice, Inbred Strains
- Neoplasms/immunology
- Receptors, Immunologic/genetics
- Receptors, Immunologic/metabolism
- Recombinant Proteins/metabolism
- Transcription, Genetic
Collapse
Affiliation(s)
- Isabel Barao
- Department of Microbiology and Immunology, University of Nevada, Reno, Reno, NV, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Warlick ED, Miller JS. Myelodysplastic syndromes: the role of the immune system in pathogenesis. Leuk Lymphoma 2011; 52:2045-9. [PMID: 21663505 DOI: 10.3109/10428194.2011.584002] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
The myelodysplastic syndromes (MDS) represent a complex spectrum of clonal hematopoietic stem cell disorders manifested by cytopenias, risk of infection, and variable risk of progression to acute myelogenous leukemia. Several theories of MDS pathogenesis exist, with contributions of genetic, epigenetic, apoptotic, differentiation, and cytokine milieu abnormalities. Immune dysregulation has also been implicated in MDS pathogenesis. In some forms of MDS it is evident that immune dysregulation may be a primary pathophysiologic abnormality, while in others the abnormal immune function may represent only a small part of the pathologic puzzle. We review the current literature regarding natural killer (NK) cell, T cell, and myeloid derived suppressor cell abnormalities in the spectrum of MDS.
Collapse
Affiliation(s)
- Erica D Warlick
- Division of Hematology, Oncology, and Transplantation, University of Minnesota Medical School, Minneapolis, MN, USA.
| | | |
Collapse
|
30
|
Jiang MH, Zhu L, Jiang JG. Immunoregulatory actions of polysaccharides from Chinese herbal medicine. Expert Opin Ther Targets 2010; 14:1367-402. [DOI: 10.1517/14728222.2010.531010] [Citation(s) in RCA: 127] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
31
|
Türkseven MR, Oygür T. Evaluation of natural killer cell defense in oral squamous cell carcinoma. Oral Oncol 2010; 46:e34-7. [DOI: 10.1016/j.oraloncology.2010.02.019] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2010] [Revised: 02/19/2010] [Accepted: 02/19/2010] [Indexed: 11/15/2022]
|
32
|
Konno S. Synergistic potentiation of D-fraction with vitamin C as possible alternative approach for cancer therapy. Int J Gen Med 2009; 2:91-108. [PMID: 20360893 PMCID: PMC2840554 DOI: 10.2147/ijgm.s5498] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Maitake D-fraction or PDF is the bioactive extract of maitake mushroom (Grifola frondosa) and its active constituent is the protein-bound polysaccharide (proteoglucan), or more specifically known as beta-glucan. PDF has been extensively studied and a number of its medicinal potentials/properties have been unveiled and demonstrated. Those include various physiological benefits ranging from immunomodulatory and antitumor activities to treatment for hypertension, diabetes, hypercholesterolemia, viral infections (hepatitis B and human immunodeficiency virus), and obesity. Particularly, two major biological activities of PDF, immunomodulatory and antitumor activities, have been the main target for scientific and clinical research. To demonstrate and confirm such biological activities, numerous studies have been performed in vitro and in vivo or in clinical settings. These studies showed that PDF was indeed capable of modulating immunologic and hematologic parameters, inhibiting or regressing the cancer cell growth, and even improving quality of life of cancer patients. Synergistic potentiation of PDF with vitamin C demonstrated in vitro is rather interesting and may have clinical implication, because such combination therapy appears to help improve the efficacy of currently ongoing cancer therapies. Recently, intravenous administration of vitamin C has been often used to increase its physiological concentration and this useful procedure may further make this combination therapy feasible. Therefore, PDF may have great potential, either being used solely or combined with other agents, for cancer therapy. Such relevant and detailed studies will be described and discussed herein with a special focus on the combination of PDF and vitamin C as a viable therapeutic option.
Collapse
Affiliation(s)
- Sensuke Konno
- Department of Urology, New York Medical College, Valhalla, NY, USA
| |
Collapse
|
33
|
Reed W, Noga SJ, Gee AP, Rooney CM, Wagner JE, McCullough J, McKenna DH, Whiteside TL, Donnenberg AD, Baker AK, Lindblad RW, Wagner EL, Mondoro TH. Production Assistance for Cellular Therapies (PACT): four-year experience from the United States National Heart, Lung, and Blood Institute (NHLBI) contract research program in cell and tissue therapies. Transfusion 2009; 49:786-96. [PMID: 19170985 PMCID: PMC4165072 DOI: 10.1111/j.1537-2995.2008.02027.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
BACKGROUND In 2002, the US National Heart, Lung, and Blood Institute (NHLBI) conducted a workshop to determine needs of the cell therapy community. A consensus emerged that improved access to cGMP facilities, regulatory assistance, and training would foster the advancement of cellular therapy. STUDY DESIGN AND METHODS A 2003 NHLBI request for proposals resulted in four contracts being awarded to three cell-manufacturing facilities (Baylor College of Medicine, University of Minnesota, and University of Pittsburgh) and one administrative center (The EMMES Corporation). As a result, Production Assistance for Cellular Therapies (PACT) was formed. RESULTS As of October 1, 2008, PACT has received 65 preliminary applications of which 45 have been approved for product manufacture. A variety of cell therapies are represented including T-regulatory cells, natural killer cells, adipose-derived stem cells, cardiac progenitor cells for cardiac disease, hematopoietic progenitor cells (HPCs) for central nervous system applications, cytotoxic T lymphocytes, and dendritic cells. A total of 169 products have been administered under 12 applications and 2 reagents were manufactured and delivered. Fourteen peer-reviewed publications and 15 abstracts have resulted from the PACT project to date. A cell therapy textbook is nearly complete. PACT technical projects have addressed assay development, rapid endotoxin testing, shipping of cell products, and CD34+ HPC isolation from low-volume marrow. Educational Web seminars and on-site training through workshops have been conducted. CONCLUSIONS PACT is an active and successful cell therapy manufacturing resource in the United States, addressing research and training while forging relationships among academia, industry, and participating institutions.
Collapse
Affiliation(s)
- William Reed
- Blood Systems Research Institute, 270 Masonic Avenue, San Francisco, CA 94118, USA. william.reed@.ucsf.edu
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Negative effect of KIR alloreactivity in recipients of umbilical cord blood transplant depends on transplantation conditioning intensity. Blood 2009; 113:5628-34. [PMID: 19329778 DOI: 10.1182/blood-2008-12-197467] [Citation(s) in RCA: 103] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
We examined the clinical impact of killer-immunoglobulin receptor-ligand (KIR-L) mismatch in 257 recipients of single (n = 91) or double (n = 166) unit umbilical cord blood (UCB) grafts after myeloablative (n = 155) or reduced intensity (n = 102) conditioning regimens. Analyses of double unit grafts considered the KIR-L match status of the dominant engrafting unit. After myeloablative conditioning, KIR-L mismatch had no effect on grade III-IV acute graft-versus-host disease (GVHD), transplantation-related mortality (TRM), relapse, and survival. In contrast, after reduced intensity conditioning, KIR-L mismatch between the engrafted unit and the recipient resulted in significantly higher rates of grade III-IV acute GVHD (42% [CI, 27-59] vs 13% [CI, 5-21], P < .01) and TRM (27% [CI, 12%-42%] vs 12% [CI, 5%-19%], P = .03) with inferior survival (32% [CI, 15%-59%] vs 52% [CI, 47%-67%], P = .03). Multivariate analysis identified KIR-L mismatch as the only predictive factor associated with the development of grade III-IV acute GVHD (RR, 1.8 [CI, 1.1-2.9]; P = .02) and demonstrated a significant association between KIR-L mismatch and increased risk of death (RR, 1.8; 95% CI, 1.0-3.1; P = .05). Our results do not support the selection of UCB units based on KIR-L status and suggest that KIR-L mismatching should be avoided in reduced intensity UCB transplantation.
Collapse
|
35
|
Zhang H, Liu R, Huang W. A 14-mer peptide from HSP70 protein is the critical epitope which enhances NK activity against tumor cells in vivo. Immunol Invest 2007; 36:233-46. [PMID: 17558707 DOI: 10.1080/08820130600992073] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Heat shock protein 70 (Hsp70) has been found to play key roles in tumor immunity due its chaperone function of binding antigenic peptides. Here we report it can also stimulate NK cells in vivo, which is another role in Hsp70s' anti-tumor response. Injecting Hsp70 into mice increased splenic NK cell populations, which may be reason for anti-tumor effect of Hsp70. The Hsp70 14-mer peptide (aa450-463, TRD) was identified as the critical epitope for this stimulatory activity. It was the murine Hsp70 14-mer peptide TRD instead of the corresponding human Hsp70 14-mer peptide TKD that functioned in the mouse experimental model.
Collapse
Affiliation(s)
- Honghai Zhang
- Department of Biochemistry, School of Life Sciences, Fudan University, Shanghai, PR China
| | | | | |
Collapse
|
36
|
McKenna DH, Sumstad D, Bostrom N, Kadidlo DM, Fautsch S, McNearney S, Dewaard R, McGlave PB, Weisdorf DJ, Wagner JE, McCullough J, Miller JS. Good manufacturing practices production of natural killer cells for immunotherapy: a six-year single-institution experience. Transfusion 2007; 47:520-8. [PMID: 17319835 DOI: 10.1111/j.1537-2995.2006.01145.x] [Citation(s) in RCA: 95] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
BACKGROUND Natural killer (NK) cells, a subset of lymphocytes and part of the innate immune system, play a crucial role in defense against cancer and viral infection. Herein is a report on the experience of clinical-scale, good manufacturing practices (GMPs) production of NK cells to treat advanced cancer. STUDY DESIGN AND METHODS Two types of NK cell enrichments were performed on nonmobilized peripheral blood mononuclear cell apheresis collections with a cell selection system (CliniMACS, Miltenyi): CD3 cell depletion to enrich for NK cells and CD3 cell depletion followed by CD56 cell selection to obtain a more pure NK cell product. After overnight incubation with interleukin-2 (IL-2), cells were washed, resuspended in 5 percent human serum albumin, and then released for infusion. RESULTS A total of 70 NK cell therapy products have been manufactured for patient infusion since 2000. For the CD3 cell-depleted NK cell products, the mean purity, recovery, and viability were 38, 79, and 86 percent, respectively. For the CD3 cell-depleted/CD56 cell-enriched NK cell products, the mean purity, recovery, and viability were 90, 19, and 85 percent, respectively. Gram stain, sterility, and endotoxin testing were all within acceptable limits for established lot release. Compared to the resting processed cells, IL-2 activation significantly increased the function of cells in cytotoxicity assays. CONCLUSION Clinical-scale production of NK cells is efficient and can be performed under GMPs. The purified NK cell product results in high NK cell purity with minimal contamination by T cells, monocytes, and B cells, but it requires more time for processing and results in a lower NK cell recovery when compared to NK cell enrichment with CD3 cell depletion alone. Additional laboratory studies and results from clinical trials will identify the best source and type of NK cell product.
Collapse
Affiliation(s)
- David H McKenna
- Department of Laboratory Medicine and Pathology, Division of Transfusion Medicine, University of Minnesota Medical School, Minnesota 55108, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Abstract
Cancer immunotherapy is a growing field that aims at restoring and enhancing immune function to combat oncogenic conditions. One target of this field is natural killer (NK) cells. Part of innate immunity, NK cells are able to kill tumor cells without previous priming. Results from stem cell transplants containing alloreactive donor NK cells and in vitro work have evidenced a great antitumor potential. In addition, NK cells are likely to interact with dendritic cells, potent antigen-presenting cells, thus forming a bridge between innate and adaptive immunity. This review aims to provide an overview of NK cells with particular emphasis on properties that can and are being targeted in order to potentiate the antitumor activity of these cells.
Collapse
Affiliation(s)
- Karrune Woan
- University of Florida College of Medicine, Gainesville, FL 32608, USA.
| | | |
Collapse
|
38
|
Tato CM, Mason N, Artis D, Shapira S, Caamano JC, Bream JH, Liou HC, Hunter CA. Opposing roles of NF-kappaB family members in the regulation of NK cell proliferation and production of IFN-gamma. Int Immunol 2006; 18:505-13. [PMID: 16481345 PMCID: PMC1800429 DOI: 10.1093/intimm/dxh391] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
It is well established that the nuclear factor-kappaB (NF-kappaB) family of transcription factors participates in the regulation of many aspects of innate and adaptive immunity. The majority of these reports have focused on the role of NF-kappaB in accessory cell and T or B cell function, but less is known about the role of NF-kappaB in NK cells. However, several studies have demonstrated that these transcription factors are required for NK cell production of IFN-gamma and proliferation. The studies presented here examine the role of two NF-kappaB members, c-Rel and p50, in NK cell function. In vitro data revealed that in the absence of c-Rel, NK cells have a defect in their ability to secrete IFN-gamma, but remain unaffected in their capacity to proliferate. In contrast, p50-/- NK cells have enhanced proliferative and IFN-gamma responses compared with wild-type NK cells. The latter findings suggest a role for p50 as a negative regulator of NK cell production of IFN-gamma and chromatin immunoprecipitation assays demonstrated the association of p50 with the IFN-gamma promoter of resting NK cells. Consistent with the in vitro studies, in vivo studies with NF-kappaB gene-deficient mice infected with Toxoplasma gondii revealed that the absence of p50 leads to enhanced NK cell proliferation and production of IFN-gamma. Together, these studies define distinct roles for c-Rel and p50 in the function of NK cells.
Collapse
Affiliation(s)
- Cristina M Tato
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, 3800 Spruce Street, Philadelphia, PA 19104-6008, USA
| | | | | | | | | | | | | | | |
Collapse
|
39
|
Volz A, Radeloff B. Detecting the unusual: natural killer cells. PROGRESS IN NUCLEIC ACID RESEARCH AND MOLECULAR BIOLOGY 2006; 81:473-541. [PMID: 16891179 DOI: 10.1016/s0079-6603(06)81012-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Armin Volz
- Institut für Immungenetik Charité-Universitätsmedizin Berlin, Campus Virchow-Klinikum, Spanndauer Damm 130, 14050 Berlin, Germany
| | | |
Collapse
|
40
|
Lull C, Wichers HJ, Savelkoul HFJ. Antiinflammatory and immunomodulating properties of fungal metabolites. Mediators Inflamm 2005; 2005:63-80. [PMID: 16030389 PMCID: PMC1160565 DOI: 10.1155/mi.2005.63] [Citation(s) in RCA: 219] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2004] [Accepted: 01/25/2005] [Indexed: 01/15/2023] Open
Abstract
We discuss current information on the ability of extracts and isolated metabolites from mushrooms to modulate immune responses. This can result in a more enhanced innate and acquired disease resistance. The major immunomodulating effects of these active substances derived from mushrooms include mitogenicity and activation of immune effector cells, such as lymphocytes, macrophages, and natural killer cells, resulting in the production of cytokines, including interleukins (ILs), tumor necrosis factor alpha (TNF)-alpha, and interferon gamma (INF)-gamma. In particular, the ability of selective mushroom extracts to modulate the differentiation capacity of CD4(+) T cells to mature into T(H)1 and/or T(H)2 subsets will be discussed. As a consequence these extracts will have profound effects in particular diseases, like chronic autoimmune T(H)1-mediated or allergic T(H)2-mediated diseases. Immunosuppressive effects by mushroom components have also been observed. The therapeutic effects of mushrooms, such as anticancer activity, suppression of autoimmune diseases, and allergy have been associated with their immunomodulating effects. However, further studies are needed to determine the molecular mechanisms of the immunomodulating effects of mushrooms metabolites both individually and in complex mixtures, for example, extracts.
Collapse
Affiliation(s)
- Cristina Lull
- Agrotechnology and Food Innovations, Wageningen University and Research Center, Bornsesteeg 59, 6708 PD Wageningen, The Netherlands
| | - Harry J. Wichers
- Agrotechnology and Food Innovations, Wageningen University and Research Center, Bornsesteeg 59, 6708 PD Wageningen, The Netherlands
| | - Huub F. J. Savelkoul
- Cell Biology and Immunology Group, Wageningen University and Research Center, Marijkeweg 40, 6709 PG Wageningen, The Netherlands
| |
Collapse
|
41
|
Cebo C, Voutsadakis IA, Da Rocha S, Bourhis JH, Jalil A, Azzarone B, Turhan AG, Chelbi-Alix M, Chouaib S, Caignard A. Altered IFNγ Signaling and Preserved Susceptibility to Activated Natural Killer Cell–Mediated Lysis of BCR/ABL Targets. Cancer Res 2005; 65:2914-20. [PMID: 15805294 DOI: 10.1158/0008-5472.can-04-1932] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Previous studies have shown that BCR/ABL oncogene, the molecular counterpart of the Ph1 chromosome, could represent a privileged target to natural killer (NK) cells. In the present study, we showed that activated peripheral NK cells killed high-level BCR/ABL transfectant UT-7/9 derived from the pluripotent hematopoietic cell line UT-7 with a high efficiency. To further define the mechanisms controlling BCR/ABL target susceptibility to NK-mediated lysis, we studied the effect of IFNgamma, a key cytokine secreted by activated NK cells, on the lysis of these targets. Treatment of UT-7, UT-7/neo, and low BCR/ABL transfectant UT-7/E8 cells with IFNgamma resulted in a dramatic induction of human leukocyte antigen class I (HLA-I) molecules and subsequently in their reduced susceptibility to NK-mediated cytolysis likely as a consequence of inhibitory NK receptors engagement. In contrast, such treatment neither affected HLA-I expression on transfectants expressing high level of BCR/ABL (UT-7/9) nor modulated their lysis by NK cells. Our data further show that the high-level BCR/ABL in UT-7/9 cells display an altered IFNgamma signaling, as evidenced by a decrease in IFN regulatory factor-1 (IRF-1) and signal transducers and activators of transcription (STAT) 1 induction and activation in response to IFNgamma, whereas this pathway is normal in UT-7 and UT-7/E8 cells. A decreased HLA-I induction and nuclear phospho-STAT1 nuclear translocation were also observed in blasts from most chronic myelogenous leukemia patients in response to IFNgamma. These results outline the crucial role of IFNgamma in the control of target cell susceptibility to lysis by activated NK cells and indicate that the altered response to IFNgamma in BCR/ABL targets may preserve these cells from the cytokine-induced negative regulatory effect on their susceptibility to NK-mediated lysis.
Collapse
MESH Headings
- Benzamides
- Cell Nucleus/metabolism
- Fusion Proteins, bcr-abl/biosynthesis
- Fusion Proteins, bcr-abl/genetics
- Fusion Proteins, bcr-abl/immunology
- HLA Antigens/immunology
- Hematopoietic Stem Cells/cytology
- Hematopoietic Stem Cells/immunology
- Hematopoietic Stem Cells/physiology
- Humans
- Imatinib Mesylate
- Immunotherapy, Adoptive
- Interferon-alpha/pharmacology
- Interferon-gamma/immunology
- Killer Cells, Natural/immunology
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/blood
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/immunology
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/metabolism
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/therapy
- Piperazines/pharmacology
- Pyrimidines/pharmacology
- Signal Transduction
- Transfection
Collapse
Affiliation(s)
- Christelle Cebo
- Institut National de la Sante et de la Recherche Medicale U487, Villejuif, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
DiPenta JM, Johnson JG, Murphy RJL. Natural killer cells and exercise training in the elderly: a review. ACTA ACUST UNITED AC 2005; 29:419-43. [PMID: 15317983 DOI: 10.1139/h04-027] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Consistent reports of the positive relationship between regular physical activity and immunosenescence have generated much excitement in the field of exercise immunology. It is generally accepted that natural killer (NK) cell activity per NK cell decreases with age; decreases in NKCA have been associated with infection and death in the aged. The effects of exercise and training on natural killer cells, components of the innate immune system, have been studied extensively in young people. However, the published research on the elderly population is limited. Generally it has been found that training increases or does not change natural killer cell activity or counts in the elderly. The clinical relevance of these results is yet to be fully explored. In addition, the limitations of these studies on immune function have been many, and studies are often difficult to compare due to differences in their methods and presentation of results.
Collapse
|
43
|
Papanikolaou IS, Lazaris AC, Apostolopoulos P, Kavantzas N, Papas MG, Mavrogiannis C, Patsouris ES, Archimandritis A. Tissue detection of natural killer cells in colorectal adenocarcinoma. BMC Gastroenterol 2004; 4:20. [PMID: 15363095 PMCID: PMC517933 DOI: 10.1186/1471-230x-4-20] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2004] [Accepted: 09/13/2004] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Natural killer (NK) cells represent a first line of defence against a developing cancer; however, their exact role in colorectal cancer remains undetermined. The aim of the present study was to evaluate the expression of CD16 and CD57 [immunohistochemical markers of natural NK cells] in colorectal adenocarcinoma. METHODS Presence of NK cells was investigated in 82 colorectal adenocarcinomas. Immunohistochemical analysis was performed, using 2 monoclonal antibodies (anti-Fc Gamma Receptor II, CD16 and an equivalent to Leu-7, specific for CD-57). The number of immunopositive cells (%) was evaluated by image analysis. The cases were characterized according to: patient gender and age, tumor location, size, grade, bowel wall invasion, lymph node metastases and Dukes' stage. RESULTS NK cells were detected in 79/82 cases at the primary tumor site, 27/33 metastatic lymph nodes and 3/4 hepatic metastases; they were detected in levels similar to those reported in the literature, but their presence was not correlated to the clinical or pathological characteristics of the series, except for a negative association with the patients' age (p = 0.031). CONCLUSIONS Our data do not support an association of NK cell tissue presence with clinical or pathological variables of colorectal adenocarcinoma, except for a negative association with the patients' age; this might possibly be attributed to decreased adhesion molecule expression in older ages.
Collapse
Affiliation(s)
- Ioannis S Papanikolaou
- Department of Gastroenterology, H. Venizelou General Hospital, Faculty of Nursing, National University of Athens, Athens, Greece
| | - Andreas Ch Lazaris
- Department of Pathology, National University of Athens Medical School, Athens, Greece
| | - Periklis Apostolopoulos
- Department of Pathophysiology, Gastroenterology Section, National University of Athens Medical School, Athens, Greece
| | - Nikos Kavantzas
- Department of Pathology, National University of Athens Medical School, Athens, Greece
| | - Maria G Papas
- Department of General Medicine, University Hospital, Dijon, France
| | - Christos Mavrogiannis
- Department of Gastroenterology, H. Venizelou General Hospital, Faculty of Nursing, National University of Athens, Athens, Greece
| | | | - Athanasios Archimandritis
- Department of Pathophysiology, Gastroenterology Section, National University of Athens Medical School, Athens, Greece
| |
Collapse
|
44
|
Teunis MAT, Heijnen CJ, Cools AR, Kavelaars A. Reduced splenic natural killer cell activity in rats with a hyperreactive dopaminergic system. Psychoneuroendocrinology 2004; 29:1058-64. [PMID: 15219657 DOI: 10.1016/j.psyneuen.2003.09.007] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2003] [Revised: 06/20/2003] [Accepted: 09/30/2003] [Indexed: 11/20/2022]
Abstract
Interactions between the nervous system and the immune system have been recognized as important regulatory processes in determining the activity of the immune response. We have previously shown that rats, which differ in the reactivity of the dopaminergic system (APO-SUS and APO-UNSUS rats), also differ in experimental metastasis formation and in susceptibility to autoimmunity. APO-SUS rats have a high response to administration of apomorphine and can be characterized as hyperdopaminergic, whereas their APO-UNSUS counterparts show low susceptibility to apomorphine and have a hypodopaminergic phenotype. In this study we investigated whether the decreased experimental metastasis formation of APO-SUS rats compared to APO-UNSUS rats is associated with higher natural killer cell activity in APO-SUS rats. Surprisingly, splenic NK cell activity of hyperdopaminergic APO-SUS female as well as male rats is significantly lower than NK cell activity of their hypodopaminergic APO-UNSUS counterparts. The reduced splenic NK activity of female APO-SUS rats is associated with lower percentages of NK cells in the spleen cell population. In contrast, male APO-SUS and APO-UNSUS rats show similar numbers of NK cells in the spleen. There was no difference in plasma dopamine levels between APO-SUS and APO-UNSUS rats and i.p. treatment of rats with the dopaminergic agonist quinpirole did not alter NK cell activity. In conclusion, our data demonstrate that differences in the reactivity of the dopaminergic system are associated with differences in splenic NK cell activity. Moreover, our data demonstrate that in this model lower splenic NK cell activity is not related to increased experimental lung metastasis formation.
Collapse
Affiliation(s)
- Marc A T Teunis
- Laboratory for Psychoneuroimmunology, Wilhelmina Children's Hospital of the University Medical Center Utrecht, room: KC03.068.0, Lundlaan 6, 3584 EA, Utrecht, The Netherlands
| | | | | | | |
Collapse
|
45
|
Ishida Y, Migita K, Izumi Y, Nakao K, Ida H, Kawakami A, Abiru S, Ishibashi H, Eguchi K, Ishii N. The role of IL-18 in the modulation of matrix metalloproteinases and migration of human natural killer (NK) cells. FEBS Lett 2004; 569:156-60. [PMID: 15225625 DOI: 10.1016/j.febslet.2004.05.039] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2004] [Revised: 05/11/2004] [Accepted: 05/21/2004] [Indexed: 11/25/2022]
Abstract
In this study, we examined whether interleukin-18 (IL-18) affects natural killer (NK) cells' migration and matrix metalloproteinases (MMPs) production. We demonstrated that chemotaxis of human NK cells through basement membrane-like Matrigel was augmented by IL-18. As well, IL-18 stimulation induces the production of activated forms of matrix metalloproteinase-2 (MMP-2) as well as the production of pro-MMP-2 from NK cells. We also demonstrated that MT1-MMP expression on human NK cells, which is a major activator of MMP-2, was induced by IL-18 stimulation coordinated with MMP-2 activation. These data suggest that the MT1-MMP/MMP-2 system participates in the degradation of basement membrane components and thus contributes to NK cell migration.
Collapse
Affiliation(s)
- Yukiko Ishida
- Department of Clinical Pharmacology and Health Research Center, Nagasaki University Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Gao Y, Chan E, Zhou S. Immunomodulating Activities ofGanoderma, a Mushroom with Medicinal Properties. FOOD REVIEWS INTERNATIONAL 2004. [DOI: 10.1081/fri-120037158] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
47
|
Abstract
BACKGROUND Immunotherapy with NK cells has been limited by the inability to obtain sufficient numbers of pure NK cells suitable for manipulation and expansion. The goal of this study was to isolate CD56(+) cells (CD3(-)/CD56(+), CD3(+)/CD56(+)) and expand them under culture conditions compliant with current good manufacturing practices. METHODS Magnetic cell-selection technology, using paramagnetic CD56 microbeads and cell selection columns, was used to isolate a CD56(+) population containing both CD3(-)/56(+) NK (60.6+/-10.8%) and CD3(+)/56(+) NK T cells (30.4+/-8.6%) to initiate the expansion studies. The isolated CD56(+) cells were cultured in X-Vivo10 serum-free media supplemented with 10% human AB serum and 500 U/mL recombinant human IL-2 or 500 U/mL IL-2 plus 10 ng/mL recombinant human IL-15 for 14 days. Cultures were fed fresh media and cytokines every 3-4 days, and were evaluated for cell expansion, phenotype, and cytotoxicity at the end of the culture period. RESULTS Significant expansion of CD56 cells occurred only during the second week of culture. Although an average of two log expansions was observed, there was substantial cell-expansion variability, depending on the donor, and even when the same donor was tested on different occasions. The cytotoxicity of selected and expanded CD56(+) cells at a low E:T ratio was significantly higher than the starting population, but was comparable to non-separated PBMC expanded for 2 weeks under the same conditions. IL-15 (in combination with IL-2) induced higher killing at the 1:1 E:T ratio than IL-2 alone. Since CD3 cells were not depleted upfront, the expansion of CD3(+)CD56(+) cells was 2-3 times that of CD3(-)CD56(+) cells. NK cells that express the FcgammaRIII (CD16) can mediate Ab-dependent cellular cytotoxicity, and can contribute to enhanced efficacy of MAb treatment. Under the given culture conditions, only moderate expansion of CD56(+)/CD3(-)/CD16(+) cells occurred, with the majority of cells being CD56(+)/CD3(+)/CD16(+) cells. DISCUSSION Our studies suggest that the positive magnetic cell-separation method provides a good basis for obtaining enriched CD56(+) cells but expansion conditions need to be optimized.
Collapse
Affiliation(s)
- H-G Klingemann
- Section of Bone Marrow Transplant and Cell Therapy, RUSH University Medical Center, Chicago, IL 60612, USA
| | | |
Collapse
|
48
|
Morse MA, Lyerly H, Clay TM, Abdel-Wahab O, Chui SY, Garst J, Gollob J, Grossi PM, Kalady M, Mosca PJ, Onaitis M, Sampson JH, Seigler HF, Toloza EM, Tyler D, Vieweg J, Yang Y. How does the immune system attack cancer? Curr Probl Surg 2004. [DOI: 10.1016/j.cpsurg.2003.08.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
49
|
Koh CY, Ortaldo JR, Blazar BR, Bennett M, Murphy WJ. NK-cell purging of leukemia: superior antitumor effects of NK cells H2 allogeneic to the tumor and augmentation with inhibitory receptor blockade. Blood 2003; 102:4067-75. [PMID: 12893752 DOI: 10.1182/blood-2003-04-1367] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Natural killer (NK) cells are composed of subsets characterized by the expression of inhibitory or activating receptors, or both, specific for different major histocompatibility complex (MHC) class I determinants. We have previously shown that inhibitory receptor blockade of syngeneic NK cells was an effective means of ex vivo purging of leukemia-contaminated bone marrow and that the transplantation of mice with the purged bone marrow cells (BMCs) resulted in long-term, relapse-free survival. We have extended the investigation to assess the antitumor effects mediated by NK cells H2-allogeneic to tumor cells. We demonstrate that various tumor cell lines are more susceptible to lysis by H2-allogeneic NK cells than by syngeneic NK cells in vitro even though comparable percentages of Ly49 NK cells were present. Using allogeneic NK cells to purge leukemia-contaminating BMCs before transplantation resulted in a higher proportion of mice with long-term survival than using syngeneic NK cells. Allogeneic NK cells did not suppress hematopoietic reconstitution as measured by granulocyte/monocyte-colony-forming unit (CFU-GM), complete blood count (CBC), and donor chimerism at various days after transplantation. Inhibitory receptor blockade of allogeneic NK cells also significantly increased these antitumor effects at lower NK/tumor ratios compared with those of syngeneic NK cells. These results demonstrate that H2-allogeneic NK cells mediate more potent antitumor effects than syngeneic NK cells without adverse hematologic effects and thus may be useful in cancer therapy.
Collapse
MESH Headings
- Animals
- Bone Marrow Purging/methods
- Bone Marrow Transplantation/methods
- Cells, Cultured
- Cytotoxicity, Immunologic
- Graft vs Leukemia Effect
- H-2 Antigens/immunology
- Immunotherapy, Adoptive
- Killer Cells, Natural/immunology
- Killer Cells, Natural/transplantation
- Leukemia/immunology
- Leukemia/therapy
- Mice
- Mice, Inbred C57BL
- Receptors, Immunologic/antagonists & inhibitors
- Receptors, KIR
- Survival Rate
- Transplantation, Homologous
- Transplantation, Isogeneic
Collapse
Affiliation(s)
- Crystal Y Koh
- Department of Microbiology and Immunology, University of Nevada School of Medicine, Applied Research Facility, Bldg 344/MS 199, Reno, NV 89557, USA
| | | | | | | | | |
Collapse
|
50
|
Orange JS, Harris KE, Andzelm MM, Valter MM, Geha RS, Strominger JL. The mature activating natural killer cell immunologic synapse is formed in distinct stages. Proc Natl Acad Sci U S A 2003; 100:14151-6. [PMID: 14612578 PMCID: PMC283561 DOI: 10.1073/pnas.1835830100] [Citation(s) in RCA: 192] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Natural killer (NK) cells form a structure at their interface with a susceptible target cell called the activating NK cell immunologic synapse (NKIS). The mature activating NKIS contains a central and peripheral supramolecular activation cluster (SMAC), and includes polarized surface receptors, filamentous actin (F-actin) and perforin. Evaluation of the NKIS in human NK cells revealed CD2, CD11a, CD11b and F-actin in the peripheral SMAC (pSMAC) with perforin in the central SMAC. The accumulation of F-actin and surface receptors was rapid and depended on Wiskott-Aldrich syndrome protein-driven actin polymerization. The accumulation at and arrangement of these molecules in the pSMAC was not affected by microtubule depolymerization. The polarization of perforin, however was slower and required intact actin, Wiskott-Aldrich syndrome protein, and microtubule function. Thus the process of CD2, CD11a, CD11b, and F-actin accumulation in the pSMAC and perforin accumulation in the central SMAC of the NKIS are sequential processes with distinct cytoskeletal requirements.
Collapse
Affiliation(s)
- Jordan S Orange
- Department of Molecular and Cellular Biology, 7 Divinity Avenue, Harvard University, Cambridge, MA 02138, USA.
| | | | | | | | | | | |
Collapse
|