1
|
Zhang Z, Chen W, Shi Z, Pan F, Wang D. Cryo-EM structures of the full-length human contactin-2. FEBS J 2025; 292:602-618. [PMID: 39702996 PMCID: PMC11796320 DOI: 10.1111/febs.17364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 09/21/2024] [Accepted: 10/31/2024] [Indexed: 12/21/2024]
Abstract
Contactin-2 (CNTN2), an immunoglobulin cell adhesion molecule (IgCAM) expressed on the neural cell surface, regulates the formation of myelin sheaths, facilitates communication between neurons and axoglial cells, and coordinates the migration of neural cells. However, the assembly of full-length CNTN2 is still not fully elucidated. Here, we found that the full-length human CNTN2 forms a concentration-dependent homodimer. We further determined the cryo-EM structures of the full-length CNTN2, revealing a novel bowknot-shaped scaffold constituted of the Ig1-6 repeats from two protomers, with the flexible ribbon-like FNIII repeats extending outward in opposite directions. The Ig1-6 domains, rather than the previously proposed Ig1-4 domains, have an indispensable role in mediating CNTN2-dependent cell adhesion and clustering. Moreover, structure-guided mutagenesis analyses supported the idea that CNTN2 homodimerization observed in our structure is essential for cell adhesion. Our findings offer novel insights into the mechanism through which CNTN2 forms a homodimer to maintain cell-cell contacts in the nervous system.
Collapse
Affiliation(s)
- Zhenzhen Zhang
- Cancer Immunology Center, Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced TechnologyChinese Academy of SciencesShenzhenChina
- Department of Biomedical EngineeringSouthern University of Science and TechnologyShenzhenChina
| | - Wei Chen
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life SciencesNanjing UniversityNanjingChina
| | - Zhubing Shi
- Westlake Laboratory of Life Sciences and BiomedicineHangzhouZhejiangChina
- School of Life SciencesWestlake UniversityHangzhouZhejiangChina
| | - Fan Pan
- Cancer Immunology Center, Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced TechnologyChinese Academy of SciencesShenzhenChina
| | - Daping Wang
- Department of Biomedical EngineeringSouthern University of Science and TechnologyShenzhenChina
| |
Collapse
|
2
|
Barman B, Thakur MK. Neuropsin promotes hippocampal synaptogenesis by regulating the expression and cleavage of L1CAM. J Cell Sci 2024; 137:jcs261422. [PMID: 38206094 DOI: 10.1242/jcs.261422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Accepted: 12/27/2023] [Indexed: 01/12/2024] Open
Abstract
During early postnatal brain development, the formation of proper synaptic connections between neurons is crucial for the development of functional neural networks. Recent studies have established the involvement of protease-mediated modulations of extracellular components in both synapse formation and elimination. The secretory serine protease neuropsin (also known as kallikrein-8) cleaves a few transmembrane or extracellular matrix proteins in a neural activity-dependent manner and regulates neural plasticity. However, neuropsin-dependent proteolysis of extracellular components and the involvement of these components in mouse brain development are poorly understood. We have observed that during hippocampus development, expression of neuropsin and levels of full-length or cleaved fragments of the neuropsin substrate protein L1 cell adhesion molecule (L1CAM) positively correlate with synaptogenesis. Our subcellular fractionation studies show that the expression of neuropsin and its proteolytic activity on L1CAM are enriched at developing hippocampal synapses. Activation of neuropsin expression upregulates the transcription and cleavage of L1CAM. Furthermore, blocking of neuropsin activity, as well as knockdown of L1CAM expression, significantly downregulates in vitro hippocampal synaptogenesis. Taken together, these findings provide evidence for the involvement of neuropsin activity-dependent regulation of L1CAM expression and cleavage in hippocampal synaptogenesis.
Collapse
Affiliation(s)
- Bhabotosh Barman
- Biochemistry and Molecular Biology Laboratory, Centre of Advanced Study, Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi 221005, India
| | - Mahendra Kumar Thakur
- Biochemistry and Molecular Biology Laboratory, Centre of Advanced Study, Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi 221005, India
| |
Collapse
|
3
|
Aberrant Axo-Axonic Synaptic Reorganization in the Phosphorylated L1-CAM/Calcium Channel Subunit α2δ-1-Containing Central Terminals of Injured c-Fibers in the Spinal Cord of a Neuropathic Pain Model. eNeuro 2021; 8:ENEURO.0499-20.2021. [PMID: 33500315 PMCID: PMC8174056 DOI: 10.1523/eneuro.0499-20.2021] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 12/25/2020] [Accepted: 01/08/2021] [Indexed: 12/04/2022] Open
Abstract
In the dorsal horn of the spinal cord, peripheral nerve injury induces structural and neurochemical alterations through which aberrant synaptic signals contribute to the formation of neuropathic pain. However, the role of injured primary afferent terminals in such plastic changes remain unclear. In this study, we investigated the effect of nerve injury on the morphology of cell adhesion molecule L1-CAM [total L1-CAM (tL1-CAM)]-positive primary afferent terminals and on the synaptic contact pattern in the dorsal horn. In the confocal images, the tL1-CAM-positive terminals showed morphologic changes leading to the formation of hypertrophic varicosities in the c-fiber terminal. These hypertrophic varicosities in the dorsal horn were co-labeled with phosphorylated (Ser1181) L1-CAM (pL1-CAM) and shown to store neurotransmitter peptides, but not when co-labeled with the presynaptic marker, synaptophysin. Quantitative analyses based on 3D-reconstructed confocal images revealed that peripheral nerve injury reduced dendritic synaptic contacts but promoted aberrant axo-axonic contacts on the tL1-CAM-positive hypertrophic varicosities. These tL1-CAM-positive varicosities co-expressed the injury-induced α2δ−1 subunit of the calcium channel in the dorsal horn. Administration of the anti-allodynic drug, pregabalin, inhibited accumulation of α2δ−1 and pL1-CAM associated with a reduction in hypertrophic changes of tL1-CAM-positive varicosities, and normalized injury-induced alterations in synaptic contacts in the dorsal horn. Our findings highlight the formation of aberrant spinal circuits that mediate the convergence of local neuronal signals onto injured c-fibers, suggesting that these hypertrophic varicosities may be important contributors to the pathologic mechanisms underlying neuropathic pain.
Collapse
|
4
|
Kim H, Hwang H, Lee H, Hong HJ. L1 Cell Adhesion Molecule Promotes Migration and Invasion via JNK Activation in Extrahepatic Cholangiocarcinoma Cells with Activating KRAS Mutation. Mol Cells 2017; 40:363-370. [PMID: 28535665 PMCID: PMC5463045 DOI: 10.14348/molcells.2017.2282] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Revised: 04/10/2017] [Accepted: 04/28/2017] [Indexed: 02/07/2023] Open
Abstract
Extrahepatic cholangiocarcinoma (ECC), a malignant tumor of biliary origin, has a poor prognosis with limited treatment options. The KRAS oncogene is the most commonly mutated gene in ECC and one of the factors that predicts a poor prognosis and low survival rate. L1 cell adhesion molecule (L1CAM) is expressed in ECC cells and acts as an independent poor prognostic factor in predicting patient survival. In this study we investigate the functional significance of L1CAM in ECC cells with activating KRAS mutation. We selected an ECC cell line, EGI-1, with activating KRAS mutation, and then confirmed its expression of L1CAM by RT-PCR, western blot analysis, and flow cytometry. The suppression of L1CAM expression (using a specific lentivirus-delivered shRNA) significantly decreased the migratory and invasive properties of EGI-1 cells, without altering their proliferation or survival. Analyses of signaling effectors in L1CAM-depleted and control EGI-1 cells indicated that L1CAM suppression decreased the levels of both phosphorylated MKK4 and total MKK4, together with c-Jun N-terminal kinase (JNK) phosphorylation. Further, exposure to a JNK inhibitor (SP600125) decreased migration and invasion of EGI-1 cells. These results suggest that L1CAM promotes cellular migration and invasion via the induction of MKK4 expression, leading to JNK activation. Our study is the first to demonstrate a functional role for L1CAM in ECC carrying the activating KRAS mutation. Given that KRAS is the most commonly mutated oncogene in ECC, L1CAM may serve as an attractive therapeutic target for ECC cells with activating KRAS mutation.
Collapse
Affiliation(s)
- Haejung Kim
- Department of Biology, College of National Science, College of Biomedical Science, Kangwon National University, Chuncheon 24341,
Korea
- Institute of Bioscience and Biotechnology, College of Biomedical Science, Kangwon National University, Chuncheon 24341,
Korea
| | - Haein Hwang
- Department of Systems Immunology, College of Biomedical Science, Kangwon National University, Chuncheon 24341,
Korea
| | - Hansoo Lee
- Department of Biology, College of National Science, College of Biomedical Science, Kangwon National University, Chuncheon 24341,
Korea
| | - Hyo Jeong Hong
- Institute of Bioscience and Biotechnology, College of Biomedical Science, Kangwon National University, Chuncheon 24341,
Korea
- Department of Systems Immunology, College of Biomedical Science, Kangwon National University, Chuncheon 24341,
Korea
| |
Collapse
|
5
|
Vinci M, Falco M, Castiglia L, Grillo L, Spalletta A, Sturnio M, Galesi O, Salemi M, Gloria A, Amata S, Piccione M, Antona V, Vitello GA, Fichera M. Identification of novel mutations in L1CAM gene by a DHPLC-based assay. Genes Genomics 2016. [DOI: 10.1007/s13258-016-0460-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
6
|
Usardi A, Iyer K, Sigoillot SM, Dusonchet A, Selimi F. The immunoglobulin-like superfamily member IGSF3 is a developmentally regulated protein that controls neuronal morphogenesis. Dev Neurobiol 2016; 77:75-92. [PMID: 27328461 DOI: 10.1002/dneu.22412] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Revised: 06/18/2016] [Accepted: 06/18/2016] [Indexed: 01/06/2023]
Abstract
The establishment of a functional brain depends on the fine regulation and coordination of many processes, including neurogenesis, differentiation, dendritogenesis, axonogenesis, and synaptogenesis. Proteins of the immunoglobulin-like superfamily (IGSF) are major regulators during this sequence of events. Different members of this class of proteins play nonoverlapping functions at specific developmental time-points, as shown in particular by studies of the cerebellum. We have identified a member of the little studied EWI subfamily of IGSF, the protein IGSF3, as a membrane protein expressed in a neuron specific- and time-dependent manner during brain development. In the cerebellum, it is transiently found in membranes of differentiating granule cells, and is particularly concentrated at axon terminals. There it co-localizes with other IGSF proteins with well-known functions in cerebellar development: TAG-1 and L1. Functional analysis shows that IGSF3 controls the differentiation of granule cells, more precisely axonal growth and branching. Biochemical experiments demonstrate that, in the developing brain, IGSF3 is in a complex with the tetraspanin TSPAN7, a membrane protein mutated in several forms of X-linked intellectual disabilities. In cerebellar granule cells, TSPAN7 promotes axonal branching and the size of TSPAN7 clusters is increased by downregulation of IGSF3. Thus IGSF3 is a novel regulator of neuronal morphogenesis that might function through interactions with multiple partners including the tetraspanin TSPAN7. This developmentally regulated protein might thus be at the center of a new signaling pathway controlling brain development. © 2016 Wiley Periodicals, Inc. Develop Neurobiol 77: 75-92, 2017.
Collapse
Affiliation(s)
- Alessia Usardi
- Team Mice, Molecules and Synapse Formation, CIRB, Collège de France, CNRS, INSERM, PSL* Research University, Paris, France, 75231, Cedex 05
| | - Keerthana Iyer
- Team Mice, Molecules and Synapse Formation, CIRB, Collège de France, CNRS, INSERM, PSL* Research University, Paris, France, 75231, Cedex 05
| | - Séverine M Sigoillot
- Team Mice, Molecules and Synapse Formation, CIRB, Collège de France, CNRS, INSERM, PSL* Research University, Paris, France, 75231, Cedex 05
| | - Antoine Dusonchet
- Team Mice, Molecules and Synapse Formation, CIRB, Collège de France, CNRS, INSERM, PSL* Research University, Paris, France, 75231, Cedex 05
| | - Fekrije Selimi
- Team Mice, Molecules and Synapse Formation, CIRB, Collège de France, CNRS, INSERM, PSL* Research University, Paris, France, 75231, Cedex 05
| |
Collapse
|
7
|
Morita S, Miyata S. Synaptic localization of growth-associated protein 43 in cultured hippocampal neurons during synaptogenesis. Cell Biochem Funct 2012; 31:400-11. [PMID: 23055398 DOI: 10.1002/cbf.2914] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2012] [Revised: 09/11/2012] [Accepted: 09/12/2012] [Indexed: 11/07/2022]
Abstract
Growth-associated protein 43 (GAP-43), a novel axonal phosphoprotein, is originally identified as a growth-cone-specific protein of developing neurons in vitro. The expression of GAP-43 is also shown to be up-regulated concomitant with increased synaptic plasticity in the brains in vivo, but how GAP-43 is concerned with synaptic plasticity is not well understood. In the present study, therefore, we aimed to elucidate subcellular localization of GAP-43 as culture development of rat hippocampal neurons. Western blotting showed that the expression of GAP-43 in the cerebral and hippocampal tissues was prominently high at postnatal days 14 and 21 or the active period of synaptogenesis. Double-labelling immunohistochemistry with an axonal marker Tau revealed that the immunoreactivity of GAP-43 was seen throughout axons of cultured hippocampal neurons but stronger at axonal puncta of developing neurons than axonal processes. Double-labelling immunohistochemistry with presynaptic terminal markers of synapsin and synaptotagmin revealed that the immunoreactivity of GAP-43 was observed mostly at weak synapsin- and synaptotagmin-positive puncta rather than strong ones. The quantitative analysis of immunofluorescent intensity showed a clear inverse correlation between GAP-43 and either synapsin or synaptotagmin expression. These data indicate that GAP-43 is highly expressed at immature growing axonal terminals and its expression is decreased along with the maturation of synaptogenesis.
Collapse
Affiliation(s)
- Shoko Morita
- Department of Applied Biology, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto 606-8585, Japan
| | | |
Collapse
|
8
|
Gonzalez LC. Protein microarrays, biosensors, and cell-based methods for secretome-wide extracellular protein-protein interaction mapping. Methods 2012; 57:448-58. [PMID: 22728035 DOI: 10.1016/j.ymeth.2012.06.004] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2012] [Revised: 06/02/2012] [Accepted: 06/08/2012] [Indexed: 12/15/2022] Open
Abstract
Approximately one quarter of all human genes encode proteins that function in the extracellular space or serve to bridge the extracellular and intracellular environments. Physical associations between these secretome proteins serve to regulate a wide range of biological activities and consequently represent important therapeutic targets. Moreover, some extracellular proteins are targeted by pathogens to allow host access or immune evasion. Despite the importance of extracellular protein-protein interactions, our knowledge in this area has remained sparse. Weak affinities and low abundance have often hindered efforts to identify these interactions using traditional methods such as biochemical purification and cDNA library expression cloning. Moreover, current large-scale protein-protein interaction mapping techniques largely under represent extracellular protein-protein interactions. This review highlights emerging biosensor and protein microarray technology, along with more traditional cell-based techniques, that are compatible with secretome-wide screens for extracellular protein-protein interaction discovery. A combination of these approaches will serve to rapidly expand our knowledge of the extracellular protein-protein interactome.
Collapse
Affiliation(s)
- Lino C Gonzalez
- Department of Protein Chemistry, Genentech, 1 DNA Way, South San Francisco, CA 94080, United States.
| |
Collapse
|
9
|
Poplawski GHD, Tranziska AK, Leshchyns'ka I, Meier ID, Streichert T, Sytnyk V, Schachner M. L1CAM increases MAP2 expression via the MAPK pathway to promote neurite outgrowth. Mol Cell Neurosci 2012; 50:169-78. [PMID: 22503709 DOI: 10.1016/j.mcn.2012.03.010] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2011] [Revised: 02/21/2012] [Accepted: 03/29/2012] [Indexed: 11/30/2022] Open
Abstract
The neural cell adhesion molecule L1 (L1CAM) promotes neurite outgrowth via mechanisms that are not completely understood, but are known to involve the cytoskeleton. Here, we show that L1 binds directly to the microtubule associated protein 2c (MAP2c). This isoform of MAP2 is predominantly expressed in developing neurons. We found that the mRNA and protein levels of MAP2c, but not of MAP2a/b, are reduced in brains of young adult L1-deficient transgenic mice. We show via ELISA, that MAP2c, but not MAP2a/b, binds directly to the intracellular domain of L1. Remarkably, all these MAP2 isoforms co-immunoprecipitate with L1, suggesting that MAP2a/b associates with L1 via intermediate binding partners. The expression levels of MAP2a/b/c correlate with those of L1 in different brain regions of early postnatal mice, while expression levels of heat shock cognate protein 70 (Hsc70) or actin do not. L1 enhances the expression of MAP2a/b/c in cultured hippocampal neurons depending on activation of the mitogen-activated protein kinase (MAPK) pathway. Deficiency in both L1 and MAP2a/b/c expression results in reduced neurite outgrowth in vitro. We propose that the L1-triggered increase in MAP2a/b/c expression is required to promote neurite outgrowth.
Collapse
Affiliation(s)
- Gunnar Heiko Dirk Poplawski
- Zentrum für Molekulare Neurobiologie Hamburg, Universitätsklinikum Hamburg-Eppendorf, Martinistr. 52, 20246 Hamburg, Germany
| | | | | | | | | | | | | |
Collapse
|
10
|
Kwok JCF, Yuen YL, Lau WK, Zhang FX, Fawcett JW, Chan YS, Shum DKY. Chondroitin sulfates in the developing rat hindbrain confine commissural projections of vestibular nuclear neurons. Neural Dev 2012; 7:6. [PMID: 22305371 PMCID: PMC3295737 DOI: 10.1186/1749-8104-7-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2011] [Accepted: 02/03/2012] [Indexed: 11/23/2022] Open
Abstract
Background Establishing correct neuronal circuitry is crucial to proper function of the vertebrate nervous system. The abundance of chondroitin sulfate (CS) proteoglycans in embryonic neural environments suggests that matrix proteoglycans regulate axonal projections when fiber tracts have not yet formed. Among the early-born neurons, the vestibular nucleus (VN) neurons initiate commissural projections soon after generation at E12.5 and reach the contralateral target by E15.5 in the rat hindbrain. We therefore exploited 24-hour cultures (1 day in vitro (DIV)) of the rat embryos and chondroitinase ABC treatment of the hindbrain matrix to reveal the role of CS moieties in axonal initiation and projection in the early hindbrain. Results DiI tracing from the VN at E12.5(+1 DIV) showed contralaterally projecting fibers assuming fascicles that hardly reached the midline in the controls. In the enzyme-treated embryos, the majority of fibers were unfasciculated as they crossed the midline at 90°. At E13.5(+1 DIV), the commissural projections formed fascicles and crossed the midline in the controls. Enzyme treatment apparently did not affect the pioneer axons that had advanced as thick fascicles normal to the midline and beyond, towards the contralateral VN. Later projections, however, traversed the enzyme-treated matrix as unfasciculated fibers, deviated from the normal course crossing the midline at various angles and extending beyond the contralateral VN. This suggests that CSs also limit the course of the later projections, which otherwise would be attracted to alternative targets. Conclusions CS moieties in the early hindbrain therefore control the course and fasciculation of axonal projections and the timing of axonal arrival at the target.
Collapse
Affiliation(s)
- Jessica C F Kwok
- Department of Biochemistry, LKS Faculty of Medicine, The University of Hong Kong, Sassoon Road, Hong Kong, China
| | | | | | | | | | | | | |
Collapse
|
11
|
Hai J, Zhu CQ, Bandarchi B, Wang YH, Navab R, Shepherd FA, Jurisica I, Tsao MS. L1 cell adhesion molecule promotes tumorigenicity and metastatic potential in non-small cell lung cancer. Clin Cancer Res 2012; 18:1914-24. [PMID: 22307136 DOI: 10.1158/1078-0432.ccr-11-2893] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE Non-small cell lung cancer (NSCLC) is a highly metastatic cancer with limited treatment options, thus requiring development of novel targeted therapies. Our group previously identified L1 cell adhesion molecule (L1CAM) expression as a member of a prognostic multigene expression signature for NSCLC patients. However, there is little information on the biologic function of L1CAM in lung cancer cells. This study investigates the functional and prognostic role of L1CAM in NSCLC. EXPERIMENTAL DESIGN Cox proportional hazards regression analysis was done on four independent published mRNA expression datasets of primary NSCLCs. L1CAM expression was suppressed by short-hairpin RNA (shRNA)-mediated silencing in human NSCLC cell lines. Effects were assessed by examining in vitro migration and invasion, in vivo tumorigenicity in mice, and metastatic potential using an orthotopic xenograft rat model of lung cancer. RESULTS L1CAM is an independent prognostic marker in resected NSCLC patients, with overexpression strongly associated with worse prognosis. L1CAM downregulation significantly decreased cell motility and invasiveness in lung cancer cells and reduced tumor formation and growth in mice. Cells with L1CAM downregulation were deficient in constitutive extracellular signal-regulated kinase (Erk) activation. Orthotopic studies showed that L1CAM suppression in highly metastatic lung cancer cells significantly decreases spread to distant organs, including bone and kidney. CONCLUSION L1CAM is a novel prometastatic gene in NSCLC, and its downregulation may effectively suppress NSCLC tumor growth and metastasis. Targeted inhibition of L1CAM may be a novel therapy for NSCLC.
Collapse
Affiliation(s)
- Josephine Hai
- Princess Margaret Hospital, 610 University Avenue, Toronto, Ontario M5G 2M9, Canada
| | | | | | | | | | | | | | | |
Collapse
|
12
|
Winckler B, Yap CC. Endocytosis and endosomes at the crossroads of regulating trafficking of axon outgrowth-modifying receptors. Traffic 2011; 12:1099-108. [PMID: 21535338 DOI: 10.1111/j.1600-0854.2011.01213.x] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
In neurons, many receptors must be localized correctly to axons or dendrites for proper function. During development, receptors for nerve growth and guidance are targeted to axons and localized to growth cones where receptor activation by ligands results in promotion or inhibition of axon growth. Signaling outcomes downstream of ligand binding are determined by the location, levels and residence times of receptors on the neuronal plasma membrane. Therefore, the mechanisms controlling the trafficking of these receptors are crucial to the proper wiring of circuits. Membrane proteins accumulate on the axonal surface by multiple routes, including polarized sorting in the trans Golgi network, sorting in endosomes and removal by endocytosis. Endosomes also play important roles in the signaling pathways for both growth-promoting and -inhibiting molecules: signaling endosomes derived from endocytosis are important for signaling from growth cones to cell bodies. Growth-promoting neurotrophins and growth-inhibiting Nogo-A can use EHD4/Pincher-dependent endocytosis at the growth cone for their respective retrograde signaling. In addition to retrograde transport of endosomes, anterograde transport to axons in endosomes also occurs for several receptors, including the axon outgrowth-promoting cell adhesion molecule L1/NgCAM and TrkA. L1/NgCAM also depends on EHD4/Pincher-dependent endocytosis for its axonal polarization. In this review, we will focus on receptors whose trafficking has been reported to be modulated by the EHD4/Pincher family of endosomal regulators, namely L1/NgCAM, Trk and Nogo-A. We will first summarize the pathways underlying the axonal transport of these proteins and then discuss the potential roles of EHD4/Pincher in mediating their endocytosis.
Collapse
Affiliation(s)
- Bettina Winckler
- Department of Neuroscience, University of Virginia Medical School, MR4-6115, 409 Lane Road Ext., Charlottesville, VA 22936, USA.
| | | |
Collapse
|
13
|
Nakamura Y, Lee S, Haddox CL, Weaver EJ, Lemmon VP. Role of the cytoplasmic domain of the L1 cell adhesion molecule in brain development. J Comp Neurol 2010; 518:1113-32. [PMID: 20127821 DOI: 10.1002/cne.22267] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Mutations in the human L1CAM gene cause X-linked hydrocephalus and MASA (Mental retardation, Aphasia, Shuffling gait, Adducted thumbs) syndrome. In vitro studies have shown that the L1 cytoplasmic domain (L1CD) is involved in L1 trafficking, neurite branching, signaling, and interactions with the cytoskeleton. L1cam knockout (L1(KO)) mice have hydrocephalus, a small cerebellum, hyperfasciculation of corticothalamic tracts, and abnormal peripheral nerves. To explore the function of the L1CD, we made three new mice lines in which different parts of the L1CD have been altered. In all mutant lines L1 protein is expressed and transported into the axon. Interestingly, these new L1CD mutant lines display normal brain morphology. However, the expression of L1 protein in the adult is dramatically reduced in the two L1CD mutant lines that lack the ankyrin-binding region and they show defects in motor function. Therefore, the L1CD is not responsible for the major defects observed in L1(KO) mice, yet it is required for continued L1 protein expression and motor function in the adult.
Collapse
Affiliation(s)
- Yukiko Nakamura
- The Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, Miami, Florida 33136, USA
| | | | | | | | | |
Collapse
|
14
|
Kamiguchi H. The role of cell adhesion molecules in axon growth and guidance. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2008; 621:95-103. [PMID: 18269213 DOI: 10.1007/978-0-387-76715-4_7] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
During development, axons elongate along the correct path toward their final targets. Growing axons maintain adhesive interactions with specific environmental cues via cell adhesion molecules (CAMs). The axon-environment adhesion must be dynamically controlled, both temporally and spatially, to enable the axons to navigate and migrate correctly. In this way, CAMs play a central role in mediating contact-dependent regulation of motile behavior of the axons. This chapter examines the mechanisms underlying how CAMs control axon growth and guidance, with a particular focus on intracellular signaling, trafficking, and interactions with the actin cytoskeleton.
Collapse
Affiliation(s)
- Hiroyuki Kamiguchi
- Laboratory for Neuronal Growth Mechanisms, RIKEN Brain Science Institute, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan.
| |
Collapse
|
15
|
Ooashi N, Kamiguchi H. The cell adhesion molecule L1 controls growth cone navigation via ankyrin(B)-dependent modulation of cyclic AMP. Neurosci Res 2008; 63:224-6. [PMID: 19110015 DOI: 10.1016/j.neures.2008.11.009] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2008] [Revised: 11/27/2008] [Accepted: 11/27/2008] [Indexed: 11/28/2022]
Abstract
During development, asymmetric Ca(2+) signals across the growth cone mediate bidirectional axon guidance depending on intracellular levels of cyclic AMP: Ca(2+) signals trigger attractive or repulsive turning when cyclic AMP levels are high or low, respectively. Here, we report that the cell adhesion molecule L1 elevates cyclic AMP levels in neurons via ankyrin(B), a protein that links the L1 cytoplasmic tail with the spectrin network. We also show that the loss of ankyrin(B) expression converts Ca(2+)-triggered attraction to repulsion when the growth cone migrates via an L1-dependent mechanism. These results indicate that ankyrin(B) regulates axon guidance via cyclic AMP.
Collapse
Affiliation(s)
- Noriko Ooashi
- Laboratory for Neuronal Growth Mechanisms, RIKEN Brain Science Institute, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | | |
Collapse
|
16
|
Thiery JP, Boyer B, Tucker G, Gavrilovic J, Valles AM. Adhesion mechanisms in embryogenesis and in cancer invasion and metastasis. CIBA FOUNDATION SYMPOSIUM 2007; 141:48-74. [PMID: 3075937 DOI: 10.1002/9780470513736.ch4] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Cell-substratum and cell-cell adhesion mechanisms contribute to the development of animal form. The adhesive status of embryonic cells has been analysed during epithelial-mesenchymal cell interconversion and in cell migrations. Clear-cut examples of the modulation of cell adhesion molecules (CAMs) have been described at critical periods of morphogenesis. In chick embryos the three primary CAMs (N-CAM. L-CAM and N-cadherin) present early in embryogenesis are expressed later in a defined pattern during morphogenesis and histogenesis. The axial mesoderm derived from gastrulating cells expresses increasing amounts of N-cadherin and N-CAM. During metamerization these two adhesion molecules become abundant at somitic cell surfaces. Both CAMs are functional in an in vitro aggregation assay; however, the calcium-dependent adhesion molecule N-cadherin is more sensitive to perturbation by specific antibodies. Neural crest cells which separate from the neural epithelium lose their primary CAMs in a defined time-sequence. Adhesion to fibronectins via specific surface receptors becomes a predominant interaction during the migratory process, while some primary and secondary CAMs are expressed de novo during the ontogeny of the peripheral nervous system. In vitro, different fibronectin functional domains have been identified in the attachment, spreading and migration of neural crest cells. The fibronectin receptors which transduce the adhesive signals play a key role in the control of cell movement. All these results have prompted us to examine whether similar mechanisms operate in carcinoma cell invasion and metastasis. In vitro, rat bladder transitional carcinoma cells convert reversibly into invasive mesenchymal cells. A rapid modulation of adhesive properties is found during the epithelial-mesenchymal carcinoma cell interconversion. The different model systems analysed demonstrate that a limited repertoire of adhesion molecules, expressed in a well-defined spatiotemporal pattern, is involved in tissue formation and in key processes of tumour spread.
Collapse
Affiliation(s)
- J P Thiery
- Laboratoire de Physiopathologie du Développement, CNRS-Ecole Normale Supérieure, Paris, France
| | | | | | | | | |
Collapse
|
17
|
Basak S, Raju K, Babiarz J, Kane-Goldsmith N, Koticha D, Grumet M. Differential expression and functions of neuronal and glial neurofascin isoforms and splice variants during PNS development. Dev Biol 2007; 311:408-22. [PMID: 17936266 DOI: 10.1016/j.ydbio.2007.08.045] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2007] [Revised: 08/22/2007] [Accepted: 08/23/2007] [Indexed: 10/22/2022]
Abstract
The cell adhesion molecule neurofascin (NF) has a major neuronal isoform (NF186) containing a mucin-like domain followed by a fifth fibronectin type III repeat while these domains are absent from glial NF155. Neuronal NF isoforms lacking one or both of these domains are expressed transiently in embryonic dorsal root ganglia (DRG). These two domains are co-expressed in mature NF186, which peaks in expression prior to birth and then persists almost exclusively at nodes of Ranvier on myelinated axons. In contrast, glial NF155 is only detected postnatally with the onset of myelination. All these forms of NF bound homophilically and to Schwann cells but only the mature NF186 isoform inhibits cell adhesion, and this activity may be important in formation of the node of Ranvier. Schwann cells deficient in NF155 myelinated DRG axons in a delayed manner and they showed significantly decreased clustering of both NF and Caspr in regions where paranodes normally form. The combined results suggest that NF186 is expressed prenatally on DRG neurons and it may modulate their adhesive interactions with Schwann cells, which express NF155 postnatally and require it for development of axon-glial paranodal junctions.
Collapse
Affiliation(s)
- Sayantani Basak
- W. M. Keck Center for Collaborative Neuroscience and Dept. of Cell Biology and Neuroscience, Rutgers University, 604 Allison Rd., Piscataway, NJ 08854-8082, USA
| | | | | | | | | | | |
Collapse
|
18
|
Schultheis M, Diestel S, Schmitz B. The role of cytoplasmic serine residues of the cell adhesion molecule L1 in neurite outgrowth, endocytosis, and cell migration. Cell Mol Neurobiol 2007; 27:11-31. [PMID: 17151951 PMCID: PMC11517402 DOI: 10.1007/s10571-006-9113-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2005] [Accepted: 07/14/2006] [Indexed: 10/23/2022]
Abstract
1. The cell adhesion molecule L1 has been implicated in adhesion and migration of cells, in axon growth, guidance, and fasciculation, in myelination and synaptic plasticity. The cytoplasmic domain of neuronal L1 is highly conserved between species and has been shown to be phosphorylated at serine and tyrosine residues. 2. To investigate the significance of L1 serine phosphorylation, mutants of L1 were generated in which ser-1152, ser-1181, ser-1204, and ser-1248 were exchanged for leucine and rat B35 neuroblastoma cells were stably transfected with the L1-cDNA constructs. 3. Neurite outgrowth on poly-L-lysine (PLL) as substrate was determined either with or without differentiation into a neuronal phenotype with dbcAMP. In addition, antibody-induced endocytosis and cell migration were examined. 4. Our observations indicate that phosphorylation of single serine residues of the cytoplasmic domain of L1 contributes to neurite outgrowth through different mechanisms. Neurite growth is increased when ser-1152 or ser-1181 is replaced by a non-phosphorylatable leucine and decreased when ser-1204 or ser-1248 is mutated to leucine. Furthermore, mutation of ser-1181 to leucine results in strongly enhanced antibody-induced endocytosis of L1 and also in enhanced cell migration.
Collapse
Affiliation(s)
- M. Schultheis
- Department of Biochemistry, Institute of Animal Sciences, University of Bonn, Katzenburgweg 9a, 53115 Bonn, Germany
| | - S. Diestel
- Department of Biochemistry, Institute of Animal Sciences, University of Bonn, Katzenburgweg 9a, 53115 Bonn, Germany
| | - B. Schmitz
- Department of Biochemistry, Institute of Animal Sciences, University of Bonn, Katzenburgweg 9a, 53115 Bonn, Germany
| |
Collapse
|
19
|
Cheng L, Itoh K, Lemmon V. L1-mediated branching is regulated by two ezrin-radixin-moesin (ERM)-binding sites, the RSLE region and a novel juxtamembrane ERM-binding region. J Neurosci 2005; 25:395-403. [PMID: 15647482 PMCID: PMC2860578 DOI: 10.1523/jneurosci.4097-04.2005] [Citation(s) in RCA: 78] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
We investigated how the neural cell adhesion molecule L1 mediates neurite outgrowth through L1-L1 homophilic interactions. Wild-type L1 and L1 with mutations in the cytoplasmic domain (CD) were introduced into L1 knock-out neurons, and transfected neurons were grown on an L1 substrate. Neurite length and branching were compared between wild-type L1 and L1CD mutations. Surprisingly, the L1CD is not required for L1-mediated neurite outgrowth but plays a critical role in neurite branching, through both the juxtamembrane region and the RSLE region. We demonstrate that both regions serve as ezrin-moesin-radixin-binding sites. A truncation mutant that deletes 110 of 114 amino acids of the L1CD still supports neurite outgrowth on an L1 substrate, suggesting that a coreceptor binds to L1 in cis and mediates neurite outgrowth and that L1-ankyrin interactions are not essential for neurite initiation or outgrowth. These data are consistent with a model in which L1 can influence L1-mediated neurite outgrowth and branching through both the L1CD and a coreceptor.
Collapse
Affiliation(s)
- Ling Cheng
- Department of Neurosciences, Case Western Reserve University, Cleveland, Ohio 44106, USA
| | | | | |
Collapse
|
20
|
Kamiguchi H. The mechanism of axon growth: what we have learned from the cell adhesion molecule L1. Mol Neurobiol 2004; 28:219-28. [PMID: 14709786 DOI: 10.1385/mn:28:3:219] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2003] [Accepted: 04/30/2003] [Indexed: 11/11/2022]
Abstract
Cell adhesion molecules (CAMs) are not just an inert glue that mediates static cell-cell and cell-extracellular matrix (ECM) adhesion; instead, their adhesivity is dynamically controlled to enable a cell to migrate through complex environmental situations. Furthermore, cell migration requires distinct levels of CAM adhesivity in various subcellular regions. Recent studies on L1, a CAM in the immunoglobulin superfamily, demonstrate that cell adhesion can be spatially regulated by the polarized internalization and recycling of CAMs. This article examines the molecular mechanism of axon growth, with a particular focus on the role of L1 trafficking in the polarized adhesion and migration of neuronal growth cones.
Collapse
Affiliation(s)
- Hiroyuki Kamiguchi
- Laboratory for Neuronal Growth Mechanisms, RIKEN Brain Science Institute (BSI), 2-1 Hirosawa, Wako, Saitama 351-0198, Japan.
| |
Collapse
|
21
|
Akopians A, Runyan SA, Phelps PE. Expression of L1 decreases during postnatal development of rat spinal cord. J Comp Neurol 2004; 467:375-88. [PMID: 14608600 DOI: 10.1002/cne.10956] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
L1 is a cell adhesion molecule that is highly expressed on developing axons and is associated with neurite outgrowth, guidance, and fasciculation. In this study we systematically examined L1 expression at all spinal levels across eight postnatal ages to detect regional and developmental differences. We observed striking changes in the developmental pattern of L1 expression between birth (P0) and adult ages, with intense L1-immunopositive axons prevalent throughout the funiculi at P0 compared with predominantly L1-immunonegative funicular axons in adults. At all ages and spinal levels examined, some L1-positive dorsal root afferents entered the spinal cord, coursed in Lissauer's tract, and projected into the superficial dorsal horn and the dorsal columns, as well as across the dorsal commissure. Additional L1-positive axons were detected consistently around the perimeter of the spinal cord, in the dorsolateral funiculus, and adjacent to the central canal. While specific L1-labeled axons were detected at all ages, a pattern of segmental variation was observed within animals, with the highest levels of L1 expression detected in lumbar and sacral segments and the lowest in cervical spinal cord. The pattern of L1 immunoreactivity was compared to that of the growth-associated protein GAP-43 and the results indicated colabeling of most axons. These observations demonstrate that L1 is expressed on immature axons well into postnatal development, possibly until they have completed their differentiation. Furthermore, the L1-positive axons that continue to be detected in adults are likely to be either unmyelinated or sprouting axons.
Collapse
Affiliation(s)
- Alin Akopians
- Department of Physiological Science, University of California at Los Angeles, Los Angeles, California 90095-1527, USA
| | | | | |
Collapse
|
22
|
Nakai Y, Kamiguchi H. Migration of nerve growth cones requires detergent-resistant membranes in a spatially defined and substrate-dependent manner. J Cell Biol 2002; 159:1097-108. [PMID: 12499360 PMCID: PMC2173975 DOI: 10.1083/jcb.200209077] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
Motility of nerve growth cones (GCs) is regulated by region-specific activities of cell adhesion molecules (CAMs). CAM activities could be modified by their localization to detergent-resistant membranes (DRMs), specialized microdomains enriched in signaling molecules. This paper deals with a question of whether DRMs are involved in GC migration stimulated by three CAMs; L1, N-cadherin (Ncad), and beta1 integrin. We demonstrate that L1 and Ncad are present in DRMs, whereas beta1 integrin is exclusively detected in non-DRMs of neurons and that localization of L1 and Ncad to DRMs is developmentally regulated. GC migration mediated by L1 and Ncad but not by beta1 integrin is inhibited after DRM disruption by micro-scale chromophore-assisted laser inactivation (micro-CALI) of GM1 gangliosides or by pharmacological treatments that deplete cellular cholesterol or sphingolipids, essential components for DRMs. Characteristic morphology of GCs induced by L1 and Ncad is also affected by micro-CALI-mediated DRM disruption. Micro-CALI within the peripheral domain of GCs, or even within smaller areas such as the filopodia and the lamellipodia, is sufficient to impair their migration. However, micro-CALI within the central domain does not affect GC migration. These results demonstrate the region-specific involvement of DRMs in CAM-dependent GC behavior.
Collapse
Affiliation(s)
- Yoko Nakai
- Developmental Brain Science Group, RIKEN Brain Science Institute (BSI), Wako, Saitama, 351-0198, Japan
| | | |
Collapse
|
23
|
Pollerberg GE, Nolte C, Schachner M. Accumulation of N-CAM 180 at Contact Sites Between Neuroblastoma Cells and Latex Beads Coated with Extracellular Matrix Molecules. Eur J Neurosci 2002; 2:879-887. [PMID: 12106095 DOI: 10.1111/j.1460-9568.1990.tb00399.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Neuronal cells expressing neural cell adhesion molecule (N-CAM) accumulate the largest N-CAM component (N-CAM 180) at cell - cell contact sites. To test whether this accumulation is induced by interactions at the surface membrane, latex beads coated with several purified adhesion molecules or extracellular matrix (ECM) components were co-cultured with neuroblastoma cells. Beads coated with L1, N-CAM, the L2/HNK-1 carbohydrate epitope-carrying molecules from adult mouse brain or laminin from Engelbreth-Holm-Swarm (EHS) sarcoma did not induce an accumulation of N-CAM 180 or L1 at sites of contact suggesting that these molecules are not directly involved in N-CAM 180 accumulation or that their mobility is required for this process. Beads coated with ECM components of the PF-HR9 cell line induced accumulation of N-CAM 180 at sites of contact with neuroblastoma cells. Accumulation was seen at cell bodies of undifferentiated and differentiated neuroblastoma cells, as well as on neurites and growth cones of differentiated neuroblastoma cells. Accumulation of the neural adhesion molecule L1 was also seen, but less prominently and reproducibly. These observations suggest that molecules of the ECM can directly or indirectly, e.g. via molecules linked to N-CAM 180 on the cell surface, induce accumulation of N-CAM 180.
Collapse
Affiliation(s)
- G. Elisabeth Pollerberg
- Department of Neurobiology, University of Heidelberg, Im Neuenheimer Feld 364, 6900 Heidelberg, FRG
| | | | | |
Collapse
|
24
|
Jacob J, Haspel J, Kane-Goldsmith N, Grumet M. L1 mediated homophilic binding and neurite outgrowth are modulated by alternative splicing of exon 2. JOURNAL OF NEUROBIOLOGY 2002; 51:177-89. [PMID: 11984840 DOI: 10.1002/neu.10052] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The neural cell adhesion molecule (CAM) L1 is a member of the immunoglobulin superfamily that has been implicated in neuronal adhesion, neurite outgrowth, and axon guidance. The clinical importance of L1 is illustrated by pathological mutations that lead to hydrocephalus, mental retardation, motor defects, and early mortality. The L1 gene is composed of 28 exons, including exons 2 and 27 that are spliced alternatively, and mutations in exon 2 are associated with severe neurological abnormalities in humans. To elucidate the role of L1 exon 2, a recombinant Fc fusion protein called Delta2L1 was constructed lacking the second exon in the extracellular domain of L1. When bound to fluorescent beads, L1 exhibited homophilic binding while Delta2L1 did not. However, L1 beads coaggregated with the Delta2L1 beads. Similarly, in cell binding studies, L1 bound to L1 and Delta2L1 did not bind to Delta2L1 but it bound moderately to L1. Given the reduced binding of Delta2L1, we tested its effect on neurons. By comparison to L1, a lower percentage of dissociated neurons extended neurites on Delta2L1, and there was a modest decrease in the length of the neurites that grew. Neurite outgrowth from reaggregated neurons was much less robust on Delta2L1 than on L1. The combined results indicate that Delta2L1 does not bind homophilically but it can interact with L1 containing exon 2. The reduced binding and neurite promoting activity of Delta2L1 provides an explanation for certain pathological mutations in L1 that lead to clinically apparent disease in the absence of the normal form of L1 in the nervous system.
Collapse
Affiliation(s)
- Jeffrey Jacob
- W.M. Keck Center for Collaborative Neuroscience, Rutgers University, 604 Allison Road, Piscataway, New Jersey 08854-8082, USA
| | | | | | | |
Collapse
|
25
|
Bixby JL, Baerwald-De la Torre K, Wang C, Rathjen FG, Rüegg MA. A neuronal inhibitory domain in the N-terminal half of agrin. JOURNAL OF NEUROBIOLOGY 2002; 50:164-79. [PMID: 11793362 DOI: 10.1002/neu.10025] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Agrin is required for appropriate pre- and postsynaptic differentiation of neuromuscular junctions. While agrin's ability to orchestrate postsynaptic differentiation is well documented, more recent experiments have suggested that agrin is also a "stop signal" for the presynaptic neuron, and that agrin has actions on neurons in the CNS. To elucidate the neuronal activities of agrin and to define the receptor(s) responsible for these functions, we have examined adhesions of neurons and their neurite-outgrowth responses to purified agrin in vitro. We find that both full-length agrin and the C-terminal 95 kDa of agrin (agrin c95), which is sufficient to induce postsynaptic differentiation, are adhesive for chick ciliary ganglion (CG) and forebrain neurons. Consistent with previous findings, our results show that N-CAM binds to full-length agrin, and suggest that alpha-dystroglycan is a neuronal receptor for agrin c95. In neurite outgrowth assays, full-length agrin inhibited both laminin- and N-cadherin-induced neurite growth from CG neurons. The N-terminal 150 kDa fragment of agrin, but not agrin c95, inhibited neurite outgrowth, indicating that domains in the N-terminal portion of agrin are sufficient for this function. Adhesion assays using protein-coated beads and agrin-expressing cells revealed differential interactions of agrin with members of the immunoglobulin superfamily of cell adhesion molecules. However, none of these, including N-CAM, appeared to be critical for neuronal adhesion. In summary, our results suggest that the N-terminal half of agrin is involved in agrin's ability to inhibit neurite outgrowth. Our results further suggest that neither alpha-dystroglycan nor N-CAM, two known binding proteins for agrin, mediate this effect.
Collapse
Affiliation(s)
- John L Bixby
- Department of Molecular & Cellular Pharmacology, University of Miami School of Medicine, 33101, USA.
| | | | | | | | | |
Collapse
|
26
|
Abstract
Motility of the nerve growth cone is highly dependent on its dynamic interactions with the microenvironment mediated by cell adhesion molecules (CAMs). These adhesive interactions can be spatially regulated by changing the density and avidity of CAMs on the growth cone. Previous studies have shown that L1, a member of the immunoglobulin superfamily of CAMs, is endocytosed at the central domain of the growth cone followed by centrifugal vesicular transport and reinsertion into the plasma membrane of the leading edge. The present paper focuses on the functional significance of endocytic L1 trafficking in dorsal root ganglia neurons in vitro. We demonstrate that the rate of L1-based neurite growth has a positive correlation with the amount of endocytosed L1 in the growth cone, whereas stimulation of neurite growth via an N-cadherin-dependent mechanism does not increase L1 endocytosis. A growth cone that migrates on an L1 substrate exhibits a steep gradient of L1-mediated adhesion (strong adhesion at the growth cone's leading edge and weak adhesion at the central domain). This gradient of L1 adhesion is attenuated after inhibition of L1 endocytosis in the growth cone by intracellular loading of a function-blocking antibody against alpha-adaptin, a subunit of the clathrin-associated AP-2 adaptor. Inhibition of L1 endocytosis by this antibody also decreased the rate of L1-dependent growth cone migration. These results indicate that the growth cone actively translocates CAMs to create spatial asymmetry in adhesive interactions with its environment and that this spatial asymmetry is important for growth cone migration.
Collapse
|
27
|
Kamiguchi H, Yoshihara F. The role of endocytic l1 trafficking in polarized adhesion and migration of nerve growth cones. J Neurosci 2001; 21:9194-203. [PMID: 11717353 PMCID: PMC6763905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2023] Open
Abstract
Motility of the nerve growth cone is highly dependent on its dynamic interactions with the microenvironment mediated by cell adhesion molecules (CAMs). These adhesive interactions can be spatially regulated by changing the density and avidity of CAMs on the growth cone. Previous studies have shown that L1, a member of the immunoglobulin superfamily of CAMs, is endocytosed at the central domain of the growth cone followed by centrifugal vesicular transport and reinsertion into the plasma membrane of the leading edge. The present paper focuses on the functional significance of endocytic L1 trafficking in dorsal root ganglia neurons in vitro. We demonstrate that the rate of L1-based neurite growth has a positive correlation with the amount of endocytosed L1 in the growth cone, whereas stimulation of neurite growth via an N-cadherin-dependent mechanism does not increase L1 endocytosis. A growth cone that migrates on an L1 substrate exhibits a steep gradient of L1-mediated adhesion (strong adhesion at the growth cone's leading edge and weak adhesion at the central domain). This gradient of L1 adhesion is attenuated after inhibition of L1 endocytosis in the growth cone by intracellular loading of a function-blocking antibody against alpha-adaptin, a subunit of the clathrin-associated AP-2 adaptor. Inhibition of L1 endocytosis by this antibody also decreased the rate of L1-dependent growth cone migration. These results indicate that the growth cone actively translocates CAMs to create spatial asymmetry in adhesive interactions with its environment and that this spatial asymmetry is important for growth cone migration.
Collapse
Affiliation(s)
- H Kamiguchi
- Developmental Brain Science Group, RIKEN Brain Science Institute, Wako, Saitama 351-0198, Japan.
| | | |
Collapse
|
28
|
Chappuis-Flament S, Wong E, Hicks LD, Kay CM, Gumbiner BM. Multiple cadherin extracellular repeats mediate homophilic binding and adhesion. J Cell Biol 2001; 154:231-43. [PMID: 11449003 PMCID: PMC2196848 DOI: 10.1083/jcb.200103143] [Citation(s) in RCA: 182] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The extracellular homophilic-binding domain of the cadherins consists of 5 cadherin repeats (EC1-EC5). Studies on cadherin specificity have implicated the NH(2)-terminal EC1 domain in the homophilic binding interaction, but the roles of the other extracellular cadherin (EC) domains have not been evaluated. We have undertaken a systematic analysis of the binding properties of the entire cadherin extracellular domain and the contributions of the other EC domains to homophilic binding. Lateral (cis) dimerization of the extracellular domain is thought to be required for adhesive function. Sedimentation analysis of the soluble extracellular segment of C-cadherin revealed that it exists in a monomer-dimer equilibrium with an affinity constant of approximately 64 microm. No higher order oligomers were detected, indicating that homophilic binding between cis-dimers is of significantly lower affinity. The homophilic binding properties of a series of deletion constructs, lacking successive or individual EC domains fused at the COOH terminus to an Fc domain, were analyzed using a bead aggregation assay and a cell attachment-based adhesion assay. A protein with only the first two NH(2)-terminal EC domains (CEC1-2Fc) exhibited very low activity compared with the entire extracellular domain (CEC1-5Fc), demonstrating that EC1 alone is not sufficient for effective homophilic binding. CEC1-3Fc exhibited high activity, but not as much as CEC1-4Fc or CEC1-5Fc. EC3 is not required for homophilic binding, however, since CEC1-2-4Fc and CEC1-2-4-5Fc exhibited high activity in both assays. These and experiments using additional EC combinations show that many, if not all, the EC domains contribute to the formation of the cadherin homophilic bond, and specific one-to-one interaction between particular EC domains may not be required. These conclusions are consistent with a previous study on direct molecular force measurements between cadherin ectodomains demonstrating multiple adhesive interactions (Sivasankar, S., W. Brieher, N. Lavrik, B. Gumbiner, and D. Leckband. 1999. PROC: Natl. Acad. Sci. USA. 96:11820-11824; Sivasankar, S., B. Gumbiner, and D. Leckband. 2001. Biophys J. 80:1758-68). We propose new models for how the cadherin extracellular repeats may contribute to adhesive specificity and function.
Collapse
Affiliation(s)
- S Chappuis-Flament
- Cellular Biochemistry and Biophysics Program, Memorial Sloan-Kettering Cancer Center, 1275 York Ave., New York, NY 10021, USA
| | | | | | | | | |
Collapse
|
29
|
Agarwala KL, Ganesh S, Amano K, Suzuki T, Yamakawa K. DSCAM, a highly conserved gene in mammals, expressed in differentiating mouse brain. Biochem Biophys Res Commun 2001; 281:697-705. [PMID: 11237714 DOI: 10.1006/bbrc.2001.4420] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Down Syndrome Cell Adhesion molecule (DSCAM) is a member of the immunoglobulin superfamily, and represents a novel class of neuronal cell adhesion molecules. In order to understand the cellular functions of DSCAM, we isolated full-length mouse and human cDNA clones, and analysed its expression during mouse development and differentiation. Sequence analysis of the human DSCAM cDNA predicted at least 33 exons that are distributed over 840 kb. When compared to human DSCAM, the mouse homologue showed 90 and 98% identity at the nucleotide and amino acid levels, respectively. In mouse, DSCAM is located on 16C, the syntenic region for human chromosome band 21q22 and also the region duplicated in mouse DS models. DSCAM gene is predicted to encode an approximately 220-kDa protein, and its expression shows dynamic changes that correlate with neuronal differentiation during mouse development. Our results suggest that DSCAM may play critical roles in the formation and maintenance of specific neuronal networks in brain.
Collapse
Affiliation(s)
- K L Agarwala
- Laboratory for Neurogenetics, RIKEN Brain Science Institute, Wako-shi, Saitama, 351-0198, Japan
| | | | | | | | | |
Collapse
|
30
|
Wang SL, Kutsche M, DiSciullo G, Schachner M, Bogen SA. Selective malformation of the splenic white pulp border in L1-deficient mice. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2000; 165:2465-73. [PMID: 10946272 DOI: 10.4049/jimmunol.165.5.2465] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Lymphocytes enter the splenic white pulp by crossing the poorly characterized boundary of the marginal sinus. In this study, we describe the importance of L1, an adhesion molecule of the Ig superfamily, for marginal sinus integrity. We find that germline insertional mutation of L1 is associated with a selective malformation of the splenic marginal sinus. Other splenic structures remain intact. Immunofluorescence analysis of the extracellular framework of the spleen, using an Ab to laminin, reveals that L1 knockout mice have an irregularly shaped, discontinuous white pulp margin. Electron microscopic analysis shows that it is associated with bizarrely shaped marginal sinus lining cells at the periphery of the white pulp. These abnormalities correlate with the localization of L1 in normal mice in that L1 is normally expressed on marginal sinus lining cells at the white pulp border. These L1-immunopositive lining cells coexpress high levels of mucosal addressin cell adhesion molecule-1 and vimentin, indicating that they are of fibroblastic lineage and express a well-characterized addressin. Our findings are the first to implicate L1 in splenic lymphoid architectural development. Moreover, these findings help define the poorly characterized sinusoidal boundary across which mononuclear cells cross to enter the splenic white pulp.
Collapse
Affiliation(s)
- S L Wang
- Department of Pathology and Laboratory Medicine, Boston University School of Medicine, Boston, MA 02118, USA
| | | | | | | | | |
Collapse
|
31
|
Agarwala KL, Nakamura S, Tsutsumi Y, Yamakawa K. Down syndrome cell adhesion molecule DSCAM mediates homophilic intercellular adhesion. BRAIN RESEARCH. MOLECULAR BRAIN RESEARCH 2000; 79:118-26. [PMID: 10925149 DOI: 10.1016/s0169-328x(00)00108-x] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Down Syndrome (DS) caused by trisomy 21 is the most common birth defect associated with mental retardation. Recently, a novel gene named, DSCAM, has been identified in the DS critical region. DSCAM is predicted to be a transmembrane protein with a very high structural and sequence homology to Ig superfamily of cell adhesion molecules and is expressed in the developing nervous system with the highest level in fetal brain. Diverse glycoproteins of cell surfaces and extracellular matrices operationally termed as 'adhesion molecule' are important in the specification of cell interactions during development, maintenance and regeneration of the nervous system. To understand the cellular function of DSCAM protein, we transfected human DSCAM cDNA into mouse fibroblast L cells and analysed its expression. On Western blot analysis, antibodies raised against recombinant DSCAM-Ig3 recognized a 198 kDa protein band in the membrane fraction of DSCAM transfected L cells. Stable transformants expressing DSCAM showed uniform surface expression. DSCAM-expressing transfectants exhibited enhanced adhesive properties, aggregating with faster kinetics and forming aggregates in a homophilic manner. Divalent cations are not required for this cell aggregation. These results demonstrate that DSCAM is a cell adhesion molecule that can mediate cation-independent homophilic binding activity between DSCAM expressing cells.
Collapse
Affiliation(s)
- K L Agarwala
- Laboratory for Neurogenetics, Brain Science Institute, Institute of Physical and Chemical Research (RIKEN), Saitama, Japan
| | | | | | | |
Collapse
|
32
|
Abstract
The cell adhesion molecule (CAM) L1 plays crucial roles in axon growth in vitro and in the formation of major axonal tracts in vivo. It is generally thought that CAMs link extracellular immobile ligands with retrogradely moving actin filaments to transmit force that pulls the growth cone forward. However, relatively little is known about the fate of CAMs that have been translocated into the central (C)-domain of the growth cone. We have shown previously that L1 is preferentially endocytosed at the C-domain. In the present study, we further analyze the subcellular distribution of endocytic organelles containing L1 at different time points and demonstrate that internalized L1 is transported into the peripheral (P)-domain of growth cones advancing via an L1-dependent mechanism. Internalized L1 is found in vesicles positioned along microtubules, and the centrifugal transport of these L1-containing vesicles is dependent on dynamic microtubules in the P-domain. Furthermore, we show that endocytosed L1 is reinserted into the plasma membrane at the leading edge of the P-domain. Monitoring recycled L1 reveals that it moves retrogradely on the cell surface into the C-domain. In contrast, the growth cone advancing independently of L1 internalizes and recycles L1 within the C-domain. For the growth cone to advance, the leading edge needs to establish strong adhesive interactions with the substrate while attachments at the rear are released. Recycling L1 from the C-domain to the leading edge provides an effective way to create asymmetric L1-mediated adhesion and therefore would be critical for L1-based growth cone motility.
Collapse
|
33
|
Kamiguchi H, Lemmon V. Recycling of the cell adhesion molecule L1 in axonal growth cones. J Neurosci 2000; 20:3676-86. [PMID: 10804209 PMCID: PMC1237010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023] Open
Abstract
The cell adhesion molecule (CAM) L1 plays crucial roles in axon growth in vitro and in the formation of major axonal tracts in vivo. It is generally thought that CAMs link extracellular immobile ligands with retrogradely moving actin filaments to transmit force that pulls the growth cone forward. However, relatively little is known about the fate of CAMs that have been translocated into the central (C)-domain of the growth cone. We have shown previously that L1 is preferentially endocytosed at the C-domain. In the present study, we further analyze the subcellular distribution of endocytic organelles containing L1 at different time points and demonstrate that internalized L1 is transported into the peripheral (P)-domain of growth cones advancing via an L1-dependent mechanism. Internalized L1 is found in vesicles positioned along microtubules, and the centrifugal transport of these L1-containing vesicles is dependent on dynamic microtubules in the P-domain. Furthermore, we show that endocytosed L1 is reinserted into the plasma membrane at the leading edge of the P-domain. Monitoring recycled L1 reveals that it moves retrogradely on the cell surface into the C-domain. In contrast, the growth cone advancing independently of L1 internalizes and recycles L1 within the C-domain. For the growth cone to advance, the leading edge needs to establish strong adhesive interactions with the substrate while attachments at the rear are released. Recycling L1 from the C-domain to the leading edge provides an effective way to create asymmetric L1-mediated adhesion and therefore would be critical for L1-based growth cone motility.
Collapse
Affiliation(s)
- H Kamiguchi
- Developmental Brain Science Group, Brain Science Institute, RIKEN (Institute of Physical and Chemical Research), Wako, Saitama 351-0198, Japan
| | | |
Collapse
|
34
|
Fitzli D, Stoeckli ET, Kunz S, Siribour K, Rader C, Kunz B, Kozlov SV, Buchstaller A, Lane RP, Suter DM, Dreyer WJ, Sonderegger P. A direct interaction of axonin-1 with NgCAM-related cell adhesion molecule (NrCAM) results in guidance, but not growth of commissural axons. J Cell Biol 2000; 149:951-68. [PMID: 10811834 PMCID: PMC2174557 DOI: 10.1083/jcb.149.4.951] [Citation(s) in RCA: 76] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
An interaction of growth cone axonin-1 with the floor-plate NgCAM-related cell adhesion molecule (NrCAM) was shown to play a crucial role in commissural axon guidance across the midline of the spinal cord. We now provide evidence that axonin-1 mediates a guidance signal without promoting axon elongation. In an in vitro assay, commissural axons grew preferentially on stripes coated with a mixture of NrCAM and NgCAM. This preference was abolished in the presence of anti-axonin-1 antibodies without a decrease in neurite length. Consistent with these findings, commissural axons in vivo only fail to extend along the longitudinal axis when both NrCAM and NgCAM interactions, but not when axonin-1 and NrCAM or axonin-1 and NgCAM interactions, are perturbed. Thus, we conclude that axonin-1 is involved in guidance of commissural axons without promoting their growth.
Collapse
Affiliation(s)
- Dora Fitzli
- Institute of Biochemistry, University of Zurich, CH-8057 Zurich, Switzerland
| | - Esther T. Stoeckli
- Department of Integrative Biology, University of Basel, CH-4051 Basel, Switzerland
| | - Stefan Kunz
- Institute of Biochemistry, University of Zurich, CH-8057 Zurich, Switzerland
| | - Kingsley Siribour
- Institute of Biochemistry, University of Zurich, CH-8057 Zurich, Switzerland
| | - Christoph Rader
- Institute of Biochemistry, University of Zurich, CH-8057 Zurich, Switzerland
| | - Beat Kunz
- Institute of Biochemistry, University of Zurich, CH-8057 Zurich, Switzerland
| | - Serguei V. Kozlov
- Institute of Biochemistry, University of Zurich, CH-8057 Zurich, Switzerland
| | - Andrea Buchstaller
- Institute of Biochemistry, University of Zurich, CH-8057 Zurich, Switzerland
| | - Robert P. Lane
- Division of Biology 156-29, California Institute of Technology, Pasadena, California 91125
| | - Daniel M. Suter
- Institute of Biochemistry, University of Zurich, CH-8057 Zurich, Switzerland
| | - William J. Dreyer
- Division of Biology 156-29, California Institute of Technology, Pasadena, California 91125
| | - Peter Sonderegger
- Institute of Biochemistry, University of Zurich, CH-8057 Zurich, Switzerland
| |
Collapse
|
35
|
Haspel J, Friedlander DR, Ivgy-May N, Chickramane S, Roonprapunt C, Chen S, Schachner M, Grumet M. Critical and optimal Ig domains for promotion of neurite outgrowth by L1/Ng-CAM. ACTA ACUST UNITED AC 2000. [DOI: 10.1002/(sici)1097-4695(20000215)42:3<287::aid-neu1>3.0.co;2-x] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
36
|
Haney C, Sahenk Z, Li C, Lemmon V, Roder J, Trapp B. Heterophilic binding of L1 on unmyelinated sensory axons mediates Schwann cell adhesion and is required for axonal survival. J Cell Biol 1999; 146:1173-84. [PMID: 10477768 PMCID: PMC2169489 DOI: 10.1083/jcb.146.5.1173] [Citation(s) in RCA: 97] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/1999] [Accepted: 07/23/1999] [Indexed: 01/18/2023] Open
Abstract
This study investigated the function of the adhesion molecule L1 in unmyelinated fibers of the peripheral nervous system (PNS) by analysis of L1- deficient mice. We demonstrate that L1 is present on axons and Schwann cells of sensory unmyelinated fibers, but only on Schwann cells of sympathetic unmyelinated fibers. In L1-deficient sensory nerves, Schwann cells formed but failed to retain normal axonal ensheathment. L1-deficient mice had reduced sensory function and loss of unmyelinated axons, while sympathetic unmyelinated axons appeared normal. In nerve transplant studies, loss of axonal-L1, but not Schwann cell-L1, reproduced the L1-deficient phenotype. These data establish that heterophilic axonal-L1 interactions mediate adhesion between unmyelinated sensory axons and Schwann cells, stabilize the polarization of Schwann cell surface membranes, and mediate a trophic effect that assures axonal survival.
Collapse
Affiliation(s)
- C.A. Haney
- Department of Neuroscience, School of Medicine, Case Western Reserve University, Cleveland, Ohio 44106
- Department of Neurosciences, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, Ohio 44195
| | - Z. Sahenk
- Department of Neurology, Neuromuscular Disease Center, College of Medicine, Ohio State University, Columbus, Ohio 43210
| | - C. Li
- Samuel Lunenfeld Research Institute, Mt. Sinai Hospital, Department of Molecular and Medical Genetics, University of Toronto, Toronto, Canada
| | - V.P. Lemmon
- Department of Neuroscience, School of Medicine, Case Western Reserve University, Cleveland, Ohio 44106
| | - J. Roder
- Samuel Lunenfeld Research Institute, Mt. Sinai Hospital, Department of Molecular and Medical Genetics, University of Toronto, Toronto, Canada
| | - B.D. Trapp
- Department of Neuroscience, School of Medicine, Case Western Reserve University, Cleveland, Ohio 44106
- Department of Neurosciences, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, Ohio 44195
| |
Collapse
|
37
|
Sonderegger P, Kunz S, Rader C, Buchstaller A, Berger P, Vogt L, Kozlov SV, Ziegler U, Kunz B, Fitzli D, Stoeckli ET. Discrete clusters of axonin-1 and NgCAM at neuronal contact sites: facts and speculations on the regulation of axonal fasciculation. PROGRESS IN BRAIN RESEARCH 1999; 117:93-104. [PMID: 9932403 DOI: 10.1016/s0079-6123(08)64010-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- P Sonderegger
- Institute of Biochemistry, University of Zürich, Switzerland.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Bates CA, Becker CG, Miotke JA, Meyer RL. Expression of polysialylated NCAM but not L1 or N-cadherin by regenerating adult mouse optic fibers in vitro. Exp Neurol 1999; 155:128-39. [PMID: 9918712 DOI: 10.1006/exnr.1998.6972] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
This study asks if there might be irreversible maturational changes in adult neurons that limit their capacity to regenerate. Retina from adult and embryonic mouse were placed in culture on laminin substrates so that regenerating adult optic fibers could be compared to growing embryonic fibers. Several cell adhesion molecules (CAMs) known to mediate the growth of embryonic neurites on astrocytes were assayed by immunocytochemistry: L1, N-cadherin, and NCAM. Thy 1.2, a potential CAM with inhibitory activity, was also examined. As in vivo, embryonic fibers were found to express both L1 and N-cadherin. In contrast, regenerating adult fibers had no detectable amounts of either of these CAMs. N-Cadherin is normally down regulated during development so its absence in adult fibers suggests it can not be reexpressed during regeneration. L1 is normally found in the proximal regions of adult optic fibers so its absence indicates it is not expressed or transported in regenerating fibers. Adult regenerating fibers expressed high levels of Thy 1.2, which was undetectable in embryonic optic fibers. Thy 1.2 is normally found in mature fibers, indicating this phenotypic feature is preserved during regeneration. Both adult and embryonic fibers showed strong reactivity for NCAM, which in vivo is normally found in embryonic and at lower levels in adult fibers. Surprisingly, both embryonic and regenerating adult fibers expressed high levels of polysialic acid, which is normally absent in adult fibers. NCAM may be one of few CAMs available to adult optic fibers for regeneration on astrocytes.
Collapse
Affiliation(s)
- C A Bates
- Developmental and Cell Biology, Developmental Biology Center, Irvine, California, 92697-2275, USA
| | | | | | | |
Collapse
|
39
|
Hrynkow SH, Morest DK, Brumwell C, Rutishauser U. Spatio-temporal diversity in the microenvironments for neural cell adhesion molecule, neural cell adhesion molecule-polysialic acid, and L1-cell adhesion molecule expression by sensory neurons and their targets during cochleo-vestibular innervation. Neuroscience 1998; 87:401-22. [PMID: 9740401 DOI: 10.1016/s0306-4522(98)00155-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Sixteen phases in the microenvironments were defined for the structural development and innervation of the cochleo-vestibular ganglion and its targets. In each phase the cell adhesion molecules, neural cell adhesion molecule, neural cell adhesion molecule-polysialic acid, and L1-cell adhesion molecule, were expressed differentially by cochleo-vestibular ganglion cells, their precursors, and the target cells on which they synapse. Detected by immunocytochemistry in staged chicken embryos, in the otocyst, neural cell adhesion molecule, but not L1-cell adhesion molecule, was localized to the ganglion and hair cell precursors. Ganglionic precursors, migrating from the otocyst, only weakly expressed neural cell adhesion molecule. Epithelial hair cell precursors, remaining in the otocyst, expressed neural cell adhesion molecule, but not L1-cell adhesion molecule. Post-migratory ganglion cell processes expressed both molecules in all stages. The cell adhesion molecules were most heavily expressed by axons penetrating the otic epithelium and accumulated in large amounts in the basal lamina. In the basilar papilla (cochlea), cell adhesion molecule expression followed the innervation gradient. Neural cell adhesion molecule and L1 were heavily concentrated on axonal endings peripherally and centrally. In the rhombencephalon, primitive epithelial cells expressed neural cell adhesion molecule, but not L1-cell adhesion molecule, except in the floorplate. The neuroblasts and their axons expressed L1-cell adhesion molecule, but not neural cell adhesion molecule, when they began to migrate and form the dorsal commissure. There was a stage-dependent, differential distribution of the cell adhesion molecules in the floorplate. Commissural axons expressed both cell adhesion molecules, but their polysialic acid disappeared within the floorplate at later stages. In conclusion, the cell adhesion molecules are expressed by the same cells at different times and places during their development. They are positioned to play different roles in migration, target penetration, and synapse formation by sensory neurons. A multiphasic model provides a morphological basis for experimental analyses of the molecules critical for the changing roles of the microenvironment in neuronal specification.
Collapse
Affiliation(s)
- S H Hrynkow
- Department of Anatomy and Center for Neurological Sciences, University of Connecticut Health Center, Farmington 06030, USA
| | | | | | | |
Collapse
|
40
|
A neuronal form of the cell adhesion molecule L1 contains a tyrosine-based signal required for sorting to the axonal growth cone. J Neurosci 1998. [PMID: 9570805 DOI: 10.1523/jneurosci.18-10-03749.1998] [Citation(s) in RCA: 88] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The neural cell adhesion molecule L1, which is present on axons and growth cones, plays a crucial role in the formation of major axonal tracts such as the corticospinal tract and corpus callosum. L1 is preferentially transported to axons and inserted in the growth cone membrane. However, how L1 is sorted to axons remains unclear. Tyr1176 in the L1 cytoplasmic domain is adjacent to a neuron-specific alternatively spliced sequence, RSLE (Arg-Ser-Leu-Glu). The resulting sequence of YRSLE conforms to a tyrosine-based consensus motif (YxxL) for sorting of integral membrane proteins into specific cellular compartments. To study a possible role of the YRSLE sequence in L1 sorting, chick DRG neurons were transfected with human L1 cDNA that codes for full-length L1 (L1FL), a non-neuronal form of L1 that lacks the RSLE sequence (L1DeltaRSLE), mutant L1 with a Y1176A substitution (L1Y1176A), or L1 truncated immediately after the RSLE sequence (L1DeltaC77). L1FL and L1DeltaC77, both of which possess the YRSLE sequence, were expressed in the axonal growth cone and to a lesser degree in the cell body. In contrast, expression of both L1DeltaRSLE and L1Y1176A was restricted to the cell body and proximal axonal shaft. We also found that L1DeltaRSLE and L1Y1176A were integrated into the plasma membrane in the cell body after missorting. These data demonstrate that the neuronal form of L1 carries the tyrosine-based sorting signal YRSLE, which is critical for sorting L1 to the axonal growth cone.
Collapse
|
41
|
Kamiguchi H, Lemmon V. A neuronal form of the cell adhesion molecule L1 contains a tyrosine-based signal required for sorting to the axonal growth cone. J Neurosci 1998; 18:3749-56. [PMID: 9570805 PMCID: PMC1226933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The neural cell adhesion molecule L1, which is present on axons and growth cones, plays a crucial role in the formation of major axonal tracts such as the corticospinal tract and corpus callosum. L1 is preferentially transported to axons and inserted in the growth cone membrane. However, how L1 is sorted to axons remains unclear. Tyr1176 in the L1 cytoplasmic domain is adjacent to a neuron-specific alternatively spliced sequence, RSLE (Arg-Ser-Leu-Glu). The resulting sequence of YRSLE conforms to a tyrosine-based consensus motif (YxxL) for sorting of integral membrane proteins into specific cellular compartments. To study a possible role of the YRSLE sequence in L1 sorting, chick DRG neurons were transfected with human L1 cDNA that codes for full-length L1 (L1FL), a non-neuronal form of L1 that lacks the RSLE sequence (L1DeltaRSLE), mutant L1 with a Y1176A substitution (L1Y1176A), or L1 truncated immediately after the RSLE sequence (L1DeltaC77). L1FL and L1DeltaC77, both of which possess the YRSLE sequence, were expressed in the axonal growth cone and to a lesser degree in the cell body. In contrast, expression of both L1DeltaRSLE and L1Y1176A was restricted to the cell body and proximal axonal shaft. We also found that L1DeltaRSLE and L1Y1176A were integrated into the plasma membrane in the cell body after missorting. These data demonstrate that the neuronal form of L1 carries the tyrosine-based sorting signal YRSLE, which is critical for sorting L1 to the axonal growth cone.
Collapse
Affiliation(s)
- H Kamiguchi
- Department of Neurosciences, Case Western Reserve University, Cleveland, Ohio 44106, USA
| | | |
Collapse
|
42
|
Kamiguchi H, Hlavin ML, Yamasaki M, Lemmon V. Adhesion molecules and inherited diseases of the human nervous system. Annu Rev Neurosci 1998; 21:97-125. [PMID: 9530493 DOI: 10.1146/annurev.neuro.21.1.97] [Citation(s) in RCA: 103] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Mutations in the human genes for the adhesion molecules Po, L1, and merosin cause severe abnormalities in nervous system development. Po and merosin are required for normal myelination in the nervous system, and L1 is essential for development of major axon pathways such as the corticospinal tract and corpus callosum. While mutations that lead to a loss of the adhesive function of these molecules produce severe phenotypes, mutations that disrupt intracellular signals or intracellular interactions are also deleterious. Geneticists have found that more than one clinical syndrome can be caused by mutations in each of these adhesion molecules, confirming that these proteins are multifunctional. This review focuses on identifying common mechanisms by which mutations in adhesion molecules alter neural development.
Collapse
Affiliation(s)
- H Kamiguchi
- Department of Neurosciences, Case Western Reserve University, Cleveland, Ohio 44106, USA
| | | | | | | |
Collapse
|
43
|
Geisert EE, Seo H, Sullivan CD, Yang LJ, Grefe A. A novel approach to identify proteins associated with the inhibition of neurite growth. J Neurosci Methods 1998; 79:21-9. [PMID: 9531456 DOI: 10.1016/s0165-0270(97)00154-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
In the present study, a novel combination of techniques was used to identify the genes that may be involved in the lack of axonal regeneration in the mammalian adult central nervous system (CNS). The key features of this approach are: (1) a functional assay that can be affected by antibody perturbation; (2) increased specificity of the polyclonal antiserum by adsorption; (3) the expression cloning of the genes from a lambdagt11 library; (4) amplification of the insert cDNA by PCR; and (5) the direct cycle sequencing of PCR products. In this culture assay system, neurons were plated directly on sections of the rat CNS. This assay system could be used to demonstrate the lack of neuronal attachment to or neurite extension over myelinated regions of the CNS (white matter). This prohibitive nature of the CNS sections could be masked by a rabbit polyclonal antiserum directed against rat CNS white matter. This data indicates that the anti-white matter antiserum recognizes and neutralizes inhibitory molecules on the surface of the sections. Making the assumption that the prohibitive antigen is associated with the cell membrane, the antiserum was adsorbed against a soluble protein fraction of the adult rat brain. This adsorption significantly increased the specificity of the antiserum as demonstrated by immunoblot methods. The adsorbed antiserum was then used to screen the cDNA library of the adult rat brain. The present report describes this novel combination of techniques allowing one to go from a functional tissue culture assay system to defining the molecular basis for the cellular interactions.
Collapse
Affiliation(s)
- E E Geisert
- Department of Anatomy and Neurobiology, University of Tennessee, Memphis 38163, USA.
| | | | | | | | | |
Collapse
|
44
|
Shiga T, Lustig M, Grumet M, Shirai T. Cell adhesion molecules regulate guidance of dorsal root ganglion axons in the marginal zone and their invasion into the mantle layer of embryonic spinal cord. Dev Biol 1997; 192:136-48. [PMID: 9405103 DOI: 10.1006/dbio.1997.8742] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
In order to elucidate the mechanisms regulating the projections of dorsal root ganglion (DRG) axons in the dorsal funiculus and invasion into target regions in the mantle layer (prospective gray matter) of the spinal cord, we examined the interactions between DRG axons and spinal cord. DRG neurons were dissociated from chick embryos and cultured for 1-2 days on cryostat sections of the spinal cord at embryonic day 5 (E5) or at E9. E5 and E9 DRG neurons extended neurites onto both marginal zone (prospective white matter) and mantle layer (prospective gray matter) of the spinal cord, suggesting that both of these regions are permissive for neurite growth. When E5 DRG neurites approached cryosections of E5 spinal cord from outside, most of them ran in the marginal zone without invading the mantle layer. In contrast, about half of E9 DRG neurites entered the mantle layer after crossing the marginal zone of E9 spinal cord. These growth patterns of DRG neurites on spinal marginal zone and mantle layer are similar to the pathway formation of DRG axons at comparable stages in vivo; DRG axons run exclusively in the prospective dorsal funiculus before E6, and enter the mantle layer (prospective dorsal horn) to reach the target regions by E9. Perturbation of functions of Ng-CAM, Nr-CAM, and axonin-1/SC2 by adding the specific antibodies in the culture medium increased the ratio of DRG neurites entering the mantle layer of E5 spinal cord, suggesting that these cell adhesion molecules are involved in keeping DRG neurites in the marginal zone. Taken together with the expression of Ng-CAM, Nr-CAM, and axonin-1/SC2, these CAMs on DRG axons may regulate the guidance of these axons in the marginal zone before E6, and the subsequent decrease in the relative levels of these CAMs might allow DRG axons to invade the target mantle layer.
Collapse
Affiliation(s)
- T Shiga
- Department of Anatomy, Yamagata University School of Medicine, Yamagata, 990-23, Japan
| | | | | | | |
Collapse
|
45
|
Monnerie H, Dastugue B, Meiniel A. In vitro differentiation of chick spinal cord neurons in the presence of Reissner's fibre, an ependymal brain secretion. BRAIN RESEARCH. DEVELOPMENTAL BRAIN RESEARCH 1997; 102:167-76. [PMID: 9352099 DOI: 10.1016/s0165-3806(97)00094-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The subcommissural organ (SCO), which belongs to the circumventricular organs, is a specialized ependymal structure of the brain that secretes glycoproteins into the cerebrospinal fluid (CSF) which condense to form a thread-like structure, the Reissner's fibre (RF). Regarding the presence of this ependymal brain secretion all along the central canal of the developing spinal cord, we analysed a putative developmental activity of RF on neuronal spinal cord cells. The effects of RF proper and soluble RF-material were examined in primary cultures of dissociated spinal cord cells from day 6 chicken embryos. In serum-containing mixed glial/neuronal cell cultures, both RF and soluble RF-material promoted neuronal survival. This effect was blocked by addition of specific antibodies raised against bovine RF into the culture medium. In serum-free neuron-enriched cultures, no neuronal survival activity was observed; however, under these conditions RF proper induced neuronal aggregation and neuritic outgrowth of spinal cord cells. Interestingly, neurites extending from the aggregates appeared mainly unfasciculated. Our results suggest a direct modulation of cell-cell interactions by SCO/RF glycoproteins and an indirect survival effect on neurons. These data strengthen the hypothesis of the involvement of SCO/RF complex in the development of the central nervous system (CNS) and are discussed regarding molecular features of SCO-spondin, a novel glycoprotein recently identified in this complex.
Collapse
Affiliation(s)
- H Monnerie
- INSERUM U 384, Faculté de Médecine, Clermont-Ferrand, France
| | | | | |
Collapse
|
46
|
Jackson DE, Loo RO, Holyst MT, Newman PJ. Identification and characterization of functional cation coordination sites in platelet endothelial cell adhesion molecule-1. Biochemistry 1997; 36:9395-404. [PMID: 9235983 DOI: 10.1021/bi970084x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
We have employed 45CaCl2 binding studies, terbium (Tb3+) luminescence spectroscopy, and electrospray mass spectroscopy (ESI-MS) to identify divalent metal binding properties of soluble recombinant human PECAM-1 (srPECAM-1), and to define unique cation binding domains using short, linear peptide sequences from the protein. PECAM-1 was found to directly interact with 45CaCl2, binding 2.3 nmol of Ca2+/nmol of srPECAM-1 with a Kd of 1.17 nM. PECAM-1 was found to contain high-affinity cation binding sites involving amino acids Asp443, Asp444, and Glu446 of Ig-domain 5 and residues Glu487, Glu490, Asp491, Glu538, Glu540, and Glu542 of Ig-domain 6. The PECAM cation binding sites demonstrated broad specificity for all divalent cations, with Mn2+ having a higher affinity than Ca2+ or Mg2+. Direct binding of Tb3+ to these PECAM peptides was confirmed by ESI-MS. Modeling studies predict that the six cation binding residues within Ig-domain 6 are proximal to each other in three-dimensional space, and may form a single cation coordination site. The identification of cation binding sites in PECAM-1 will direct further work in examining its cation-dependent roles in cellular signaling.
Collapse
Affiliation(s)
- D E Jackson
- Blood Research Institute, The Blood Center of Southeastern Wisconsin, Milwaukee, Wisconsin 53226-3548, USA
| | | | | | | |
Collapse
|
47
|
Abstract
The neural cell adhesion molecule L1 plays a key role in nervous system development including neuronal migration, neurite growth, and axonal fasciculation. L1 is expressed on most developing axons, and homophilic binding of L1 molecules on adjacent axons is likely to play a key role in axon extension. It is now well documented that a number of second-messenger systems are involved in L1-stimulated neurite growth in vitro. However, it is unclear how L1 homophilic or heterophilic binding trigger signals that regulate the mechanical forces that produce axon extension. In this report, we will review recent advances in understanding L1-associated signals, L1 interactions with the cytoskeleton, and the molecular mechanisms underlying growth cone motility.
Collapse
Affiliation(s)
- H Kamiguchi
- Department of Neurosciences, Case Western Reserve University, Cleveland, Ohio 44106-4975, USA
| | | |
Collapse
|
48
|
Sakurai T, Lustig M, Nativ M, Hemperly JJ, Schlessinger J, Peles E, Grumet M. Induction of neurite outgrowth through contactin and Nr-CAM by extracellular regions of glial receptor tyrosine phosphatase beta. J Cell Biol 1997; 136:907-18. [PMID: 9049255 PMCID: PMC2132488 DOI: 10.1083/jcb.136.4.907] [Citation(s) in RCA: 144] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/1996] [Revised: 10/25/1996] [Indexed: 02/03/2023] Open
Abstract
Receptor protein tyrosine phosphatase beta (RPTPbeta) is expressed as soluble and receptor forms with common extracellular regions consisting of a carbonic anhydrase domain (C), a fibronectin type III repeat (F), and a unique region called S. We showed previously that a recombinant Fc fusion protein with the C domain (beta C) binds to contactin and supports neuronal adhesion and neurite growth. As a substrate, betaCFS was less effective in supporting cell adhesion, but it was a more effective promoter of neurite outgrowth than betaCF. betaS had no effect by itself, but it potentiated neurite growth when mixed with betaCF. Neurite outgrowth induced by betaCFS was inhibited by antibodies against Nr-CAM and contactin, and these cell adhesion molecules formed a complex that bound betaCFS. NIH-3T3 cells transfected to express betaCFS on their surfaces induced neuronal differentiation in culture. These results suggest that binding of glial RPTPbeta to the contactin/Nr-CAM complex is important for neurite growth and neuronal differentiation.
Collapse
Affiliation(s)
- T Sakurai
- Department of Pharmacology, New York University Medical Center 10016, USA
| | | | | | | | | | | | | |
Collapse
|
49
|
Buchstaller A, Kunz S, Berger P, Kunz B, Ziegler U, Rader C, Sonderegger P. Cell adhesion molecules NgCAM and axonin-1 form heterodimers in the neuronal membrane and cooperate in neurite outgrowth promotion. J Cell Biol 1996; 135:1593-607. [PMID: 8978825 PMCID: PMC2133975 DOI: 10.1083/jcb.135.6.1593] [Citation(s) in RCA: 106] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
The axonal surface glycoproteins neuronglia cell adhesion molecule (NgCAM) and axonin-1 promote cell-cell adhesion, neurite outgrowth and fasciculation, and are involved in growth cone guidance. A direct binding between NgCAM and axonin-1 has been demonstrated using isolated molecules conjugated to the surface of fluorescent microspheres. By expressing NgCAM and axonin-1 in myeloma cells and performing cell aggregation assays, we found that NgCAM and axonin-1 cannot bind when present on the surface of different cells. In contrast, the cocapping of axonin-1 upon antibody-induced capping of NgCAM on the surface of CV-1 cells coexpressing NgCAM and axonin-1 and the selective chemical cross-linking of the two molecules in low density cultures of dorsal root ganglia neurons indicated a specific and direct binding of axonin-1 and Ng-CAM in the plane of the same membrane. Suppression of the axonin-1 translation by antisense oligonucleotides prevented neurite outgrowth in dissociated dorsal root ganglia neurons cultured on an NgCAM substratum, indicating that neurite outgrowth on NgCAM substratum requires axonin-1. Based on these and previous results, which implicated NgCAM as the neuronal receptor involved in neurite outgrowth on NgCAM substratum, we concluded that neurite outgrowth on an NgCAM substratum depends on two essential interactions of growth cone NgCAM: a trans-interaction with substratum NgCAM and a cis-interaction with axonin-1 residing in the same growth cone membrane.
Collapse
Affiliation(s)
- A Buchstaller
- Institute of Biochemistry, University of Zurich, Switzerland
| | | | | | | | | | | | | |
Collapse
|
50
|
Suzuki Y, Sato N, Tohyama M, Wanaka A, Takagi T. cDNA cloning of a novel membrane glycoprotein that is expressed specifically in glial cells in the mouse brain. LIG-1, a protein with leucine-rich repeats and immunoglobulin-like domains. J Biol Chem 1996; 271:22522-7. [PMID: 8798419 DOI: 10.1074/jbc.271.37.22522] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
A cDNA encoding a protein designated as LIG-1 has been cloned and characterized. A fragment of this cDNA was found previously in a screen for genes up-regulated during neural differentiation in mouse P19 embryonal carcinoma cells. Comparative sequence analysis revealed LIG-1 to be a novel integral membrane glycoprotein (1091 amino acids) containing an extracellular region (794 amino acids) with a potential signal peptide, 15 leucine-rich repeats, 3 immnunoglobulin-like domains, and 7 potential N-glycosylation sites, a transmembrane region of 23 amino acids, and a cytoplasmic region of 274 amino acids. This protein, therefore, is a new member of both the leucine-rich repeat and the immunoglobulin superfamilies. Furthermore, Northern blot and in situ hybridization analyses showed LIG-1 gene expression to be predominantly in the brain, restricted to a small subset of glial cells such as Bergmann glial cells of the cerebellum and glial cells in the nerve fiber layer of the olfactory bulb. On the basis of its structural features and expression pattern, we propose that LIG-1 functions as a cell type-specific adhesion molecule or receptor at the glial cell surface, and plays a role in the nervous system in for example neuroglial differentiation, development, and/or maintenance of neural functions where it is expressed.
Collapse
Affiliation(s)
- Y Suzuki
- Department of Molecular Neurobiology (TANABE), Osaka University Medical School, 2-2 Yamada-oka, Suita City, Osaka 565, Japan
| | | | | | | | | |
Collapse
|