1
|
Kang PJ, Mullner R, Lian K, Park HO. Cdc42 couples septin recruitment to the axial landmark assembly via Axl2 in budding yeast. J Cell Sci 2024; 137:jcs261080. [PMID: 37712304 PMCID: PMC10617600 DOI: 10.1242/jcs.261080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Accepted: 09/11/2023] [Indexed: 09/16/2023] Open
Abstract
Cell polarization generally occurs along a single axis that is directed by a spatial cue. Cells of the budding yeast Saccharomyces cerevisiae undergo polarized growth and oriented cell division in a spatial pattern by selecting a specific bud site. Haploid a or α cells bud in the axial pattern in response to a transient landmark that includes Bud3, Bud4, Axl1 and Axl2. Septins, a family of filament-forming GTP-binding proteins, are also involved in axial budding and are recruited to an incipient bud site, but the mechanism of recruitment remains unclear. Here, we show that Axl2 interacts with Bud3 and the Cdc42 GTPase in its GTP-bound state. Axl2 also interacts with Cdc10, a septin subunit, promoting efficient recruitment of septins near the cell division site. Furthermore, a cdc42 mutant defective in the axial budding pattern at a semi-permissive temperature had a reduced interaction with Axl2 and compromised septin recruitment in the G1 phase. We thus propose that active Cdc42 brings Axl2 to the Bud3-Bud4 complex and that Axl2 then interacts with Cdc10, linking septin recruitment to the axial landmark.
Collapse
Affiliation(s)
- Pil Jung Kang
- Department of Molecular Genetics, The Ohio State University, Columbus, OH 43210, USA
| | - Rachel Mullner
- Department of Molecular Genetics, The Ohio State University, Columbus, OH 43210, USA
| | - Kendra Lian
- Department of Molecular Genetics, The Ohio State University, Columbus, OH 43210, USA
| | - Hay-Oak Park
- Department of Molecular Genetics, The Ohio State University, Columbus, OH 43210, USA
| |
Collapse
|
2
|
Kang PJ, Mullner R, Lian K, Park HO. Cdc42 couples septin recruitment to the axial landmark assembly via Axl2 in budding yeast. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.25.554823. [PMID: 37662239 PMCID: PMC10473694 DOI: 10.1101/2023.08.25.554823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/05/2023]
Abstract
Cell polarization generally occurs along a single axis that is directed by a spatial cue. Cells of the budding yeast Saccharomyces cerevisiae undergo polarized growth and oriented cell division in a spatial pattern by selecting a specific bud site. Haploid a or α cells bud in the axial pattern in response to a transient landmark that includes Bud3, Bud4, Axl1, and Axl2. Septins, a family of filament-forming GTP-binding proteins, are also involved in axial budding and recruited to an incipient bud site, but the mechanism of recruitment remains unclear. Here, we show that Axl2 interacts with Bud3 and the Cdc42 GTPase in its GTP-bound state. Axl2 also interacts with Cdc10, a septin subunit, promoting efficient recruitment of septins near the cell division site. Furthermore, a cdc42 mutant defective in the axial budding pattern at a semi-permissive temperature had a reduced interaction with Axl2 and compromised septin recruitment in the G1 phase. We thus propose that active Cdc42 brings Axl2 to the Bud3-Bud4 complex and that Axl2 then interacts with Cdc10, linking septin recruitment to the axial landmark.
Collapse
|
3
|
Abstract
The Rho GTPase Cdc42 is a central regulator of cell polarity in diverse cell types. The activity of Cdc42 is dynamically controlled in time and space to enable distinct polarization events, which generally occur along a single axis in response to spatial cues. Our understanding of the mechanisms underlying Cdc42 polarization has benefited largely from studies of the budding yeast Saccharomyces cerevisiae, a genetically tractable model organism. In budding yeast, Cdc42 activation occurs in two temporal steps in the G1 phase of the cell cycle to establish a proper growth site. Here, we review findings in budding yeast that reveal an intricate crosstalk among polarity proteins for biphasic Cdc42 regulation. The first step of Cdc42 activation may determine the axis of cell polarity, while the second step ensures robust Cdc42 polarization for growth. Biphasic Cdc42 polarization is likely to ensure the proper timing of events including the assembly and recognition of spatial landmarks and stepwise assembly of a new ring of septins, cytoskeletal GTP-binding proteins, at the incipient bud site. Biphasic activation of GTPases has also been observed in mammalian cells, suggesting that biphasic activation could be a general mechanism for signal-responsive cell polarization. Cdc42 activity is necessary for polarity establishment during normal cell division and development, but its activity has also been implicated in the promotion of aging. We also discuss negative polarity signaling and emerging concepts of Cdc42 signaling in cellular aging.
Collapse
Affiliation(s)
- Kristi E Miller
- Department of Molecular Genetics, The Ohio State University, Columbus, OH 43210.,Present address: Department of Biochemistry and Cell Biology, The Geisel School of Medicine at Dartmouth, Hanover, NH 03755
| | - Pil Jung Kang
- Department of Molecular Genetics, The Ohio State University, Columbus, OH 43210
| | - Hay-Oak Park
- Department of Molecular Genetics, The Ohio State University, Columbus, OH 43210
| |
Collapse
|
4
|
Castells-Ballester J, Zatorska E, Meurer M, Neubert P, Metschies A, Knop M, Strahl S. Monitoring Protein Dynamics in Protein O-Mannosyltransferase Mutants In Vivo by Tandem Fluorescent Protein Timers. Molecules 2018; 23:E2622. [PMID: 30322079 PMCID: PMC6222916 DOI: 10.3390/molecules23102622] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Revised: 10/05/2018] [Accepted: 10/09/2018] [Indexed: 12/27/2022] Open
Abstract
For proteins entering the secretory pathway, a major factor contributing to maturation and homeostasis is glycosylation. One relevant type of protein glycosylation is O-mannosylation, which is essential and evolutionarily-conserved in fungi, animals, and humans. Our recent proteome-wide study in the eukaryotic model organism Saccharomyces cerevisiae revealed that more than 26% of all proteins entering the secretory pathway receive O-mannosyl glycans. In a first attempt to understand the impact of O-mannosylation on these proteins, we took advantage of a tandem fluorescent timer (tFT) reporter to monitor different aspects of protein dynamics. We analyzed tFT-reporter fusions of 137 unique O-mannosylated proteins, mainly of the secretory pathway and the plasma membrane, in mutants lacking the major protein O-mannosyltransferases Pmt1, Pmt2, or Pmt4. In these three pmtΔ mutants, a total of 39 individual proteins were clearly affected, and Pmt-specific substrate proteins could be identified. We observed that O-mannosylation may cause both enhanced and diminished protein abundance and/or stability when compromised, and verified our findings on the examples of Axl2-tFT and Kre6-tFT fusion proteins. The identified target proteins are a valuable resource towards unraveling the multiple functions of O-mannosylation at the molecular level.
Collapse
Affiliation(s)
| | - Ewa Zatorska
- Centre for Organismal Studies (COS), Heidelberg University, 69120 Heidelberg, Germany.
| | - Matthias Meurer
- Zentrum für Molekulare Biologie der Universität Heidelberg (ZMBH), DKFZ-ZMBH Alliance, Heidelberg University, 69120 Heidelberg, Germany.
| | - Patrick Neubert
- Centre for Organismal Studies (COS), Heidelberg University, 69120 Heidelberg, Germany.
| | - Anke Metschies
- Centre for Organismal Studies (COS), Heidelberg University, 69120 Heidelberg, Germany.
| | - Michael Knop
- Zentrum für Molekulare Biologie der Universität Heidelberg (ZMBH), DKFZ-ZMBH Alliance, Heidelberg University, 69120 Heidelberg, Germany.
- Deutsches Krebsforschungszentrum (DKFZ), DKFZ-ZMBH Alliance, 69120 Heidelberg, Germany.
| | - Sabine Strahl
- Centre for Organismal Studies (COS), Heidelberg University, 69120 Heidelberg, Germany.
| |
Collapse
|
5
|
López-Ramírez LA, Hernández NV, Lozoya-Pérez NE, Lopes-Bezerra LM, Mora-Montes HM. Functional characterization of the Sporothrix schenckii Ktr4 and Ktr5, mannosyltransferases involved in the N-linked glycosylation pathway. Res Microbiol 2018; 169:188-197. [PMID: 29476824 DOI: 10.1016/j.resmic.2018.02.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Revised: 02/05/2018] [Accepted: 02/06/2018] [Indexed: 01/22/2023]
Abstract
Sporothrix schenckii is one of the causative agents of the deep-seated mycosis sporotrichosis, a fungal infection with worldwide distribution. Fungus-specific molecules and biosynthetic pathways are potential targets for the development of new antifungal drugs. The MNT1/KRE2 gene family is a group of genes that encode fungus-specific Golgi-resident mannosyltransferases that participate in the synthesis of O-linked and N-linked glycans. While this family is composed of five and nine members in Candida albicans and Saccharomyces cerevisiae, respectively, the S. schenckii genome contains only three putative members. MNT1 has been previously characterized as an enzyme that participates in the synthesis of both N-linked and O-linked glycans. Here, we aimed to establish the functional role of the two remaining family members, KTR4 and KTR5, in the protein glycosylation pathways by using heterologous complementation in C. albicans mutants lacking genes of the MNT1/KRE2 family. The two S. schenckii genes restored defects in the elaboration of N-linked glycans, but no complementation of mutants that synthesize truncated O-linked glycans was observed. Therefore, our results suggest that MNT1 is the sole member with a role in O-linked glycan elaboration, whereas the three family members have redundant activity in the S. schenckii N-linked glycan synthesis.
Collapse
Affiliation(s)
- Luz A López-Ramírez
- Departamento de Biología, División de Ciencias Naturales y Exactas, Campus Guanajuato, Universidad de Guanajuato, Noria Alta s/n, col. Noria Alta, C.P. 36050, Guanajuato Gto., Mexico
| | - Nahúm V Hernández
- Departamento de Biología, División de Ciencias Naturales y Exactas, Campus Guanajuato, Universidad de Guanajuato, Noria Alta s/n, col. Noria Alta, C.P. 36050, Guanajuato Gto., Mexico
| | - Nancy E Lozoya-Pérez
- Departamento de Biología, División de Ciencias Naturales y Exactas, Campus Guanajuato, Universidad de Guanajuato, Noria Alta s/n, col. Noria Alta, C.P. 36050, Guanajuato Gto., Mexico
| | - Leila M Lopes-Bezerra
- Laboratory of Cellular Mycology and Proteomics, Universidade do Estado do Rio de Janeiro, Brazil; Faculdade de Farmácia, Universidade de São Paulo, Brazil
| | - Héctor M Mora-Montes
- Departamento de Biología, División de Ciencias Naturales y Exactas, Campus Guanajuato, Universidad de Guanajuato, Noria Alta s/n, col. Noria Alta, C.P. 36050, Guanajuato Gto., Mexico.
| |
Collapse
|
6
|
Xu Y, Li L, Ren HT, Yin B, Yuan JG, Peng XZ, Qiang BQ, Cui LY. Mutation of the cellular adhesion molecule NECL2 is associated with neuromyelitis optica spectrum disorder. J Neurol Sci 2017; 388:133-138. [PMID: 29627007 DOI: 10.1016/j.jns.2017.10.023] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Revised: 10/01/2017] [Accepted: 10/15/2017] [Indexed: 11/20/2022]
Abstract
AIMS To investigate the association of the Nectin/Necl family genes with the risk of developing NMOSD. METHODS Whole-exome sequencing was performed on two familial NMOSD cases and two unaffected family members. Additionally, 106 patients with sporadic NMOSD and 212 healthy controls (HCs) underwent screening for mutant Necl2. Finally, the molecular weight and cellular localization of mutant NECL2 was examined in transfected HeLa cells. RESULTS We identified a novel deletion mutation in Necl2 (c.1052_1060delCCACCACCA; p. Thr351_Thr353del), which was associated with disease manifestation in the NMOSD familial cases. The frequency at which the mutation occurred in patients with sporadic NMOSD was significantly higher than for HCs (5.7% and 0, respectively; p<0.01). The mutation was located in the extracellular domain close to the transmembrane region, at a point in the protein sequence characterized by threonine enrichment. The mutant NECL2 had a lower molecular weight and exhibited defective trafficking to the cell surface. CONCLUSIONS Our results suggest that the Necl2 mutation identified herein may be associated with the risk of developing NMOSD. Furthermore, mutated NECL2 may play a role in the pathogenesis of the disease, potentially through its roles in axonal regeneration and/or via neuron-glia interactions that are relevant to myelination.
Collapse
Affiliation(s)
- Yan Xu
- Department of Neurology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS & PUMC), Beijing, China
| | - Liang Li
- State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, CAMS & PUMC, Beijing, China; Neuroscience Center, CAMS, Beijing, China
| | - Hai-Tao Ren
- Department of Neurology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS & PUMC), Beijing, China
| | - Bin Yin
- State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, CAMS & PUMC, Beijing, China; Neuroscience Center, CAMS, Beijing, China
| | - Jian-Gang Yuan
- State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, CAMS & PUMC, Beijing, China; Neuroscience Center, CAMS, Beijing, China
| | - Xiao-Zhong Peng
- State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, CAMS & PUMC, Beijing, China; Neuroscience Center, CAMS, Beijing, China.
| | - Bo-Qin Qiang
- State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, CAMS & PUMC, Beijing, China; Neuroscience Center, CAMS, Beijing, China
| | - Li-Ying Cui
- Department of Neurology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS & PUMC), Beijing, China; Neuroscience Center, CAMS, Beijing, China.
| |
Collapse
|
7
|
Hernández NV, López-Ramírez LA, Díaz-Jiménez DF, Mellado-Mojica E, Martínez-Duncker I, López MG, Mora-Montes HM. Saccharomyces cerevisiae KTR4 , KTR5 and KTR7 encode mannosyltransferases differentially involved in the N - and O -linked glycosylation pathways. Res Microbiol 2017; 168:740-750. [DOI: 10.1016/j.resmic.2017.07.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Revised: 07/21/2017] [Accepted: 07/22/2017] [Indexed: 12/23/2022]
|
8
|
Zatorska E, Gal L, Schmitt J, Bausewein D, Schuldiner M, Strahl S. Cellular Consequences of Diminished Protein O-Mannosyltransferase Activity in Baker's Yeast. Int J Mol Sci 2017; 18:ijms18061226. [PMID: 28598353 PMCID: PMC5486049 DOI: 10.3390/ijms18061226] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2017] [Revised: 05/31/2017] [Accepted: 06/01/2017] [Indexed: 01/08/2023] Open
Abstract
O-Mannosylation is a type of protein glycosylation initiated in the endoplasmic reticulum (ER) by the protein O-mannosyltransferase (PMT) family. Despite the vital role of O-mannosylation, its molecular functions and regulation are not fully characterized. To further explore the cellular impact of protein O-mannosylation, we performed a genome-wide screen to identify Saccharomyces cerevisiae mutants with increased sensitivity towards the PMT-specific inhibitor compound R3A-5a. We identified the cell wall and the ER as the cell compartments affected most upon PMT inhibition. Especially mutants with defects in N-glycosylation, biosynthesis of glycosylphosphatidylinositol-anchored proteins and cell wall β-1,6-glucan showed impaired growth when O-mannosylation became limiting. Signaling pathways that counteract cell wall defects and unbalanced ER homeostasis, namely the cell wall integrity pathway and the unfolded protein response, were highly crucial for the cell growth. Moreover, among the most affected mutants, we identified Ost3, one of two homologous subunits of the oligosaccharyltransferase complexes involved in N-glycosylation, suggesting a functional link between the two pathways. Indeed, we identified Pmt2 as a substrate for Ost3 suggesting that the reduced function of Pmt2 in the absence of N-glycosylation promoted sensitivity to the drug. Interestingly, even though S. cerevisiae Pmt1 and Pmt2 proteins are highly similar on the sequence, as well as the structural level and act as a complex, we identified only Pmt2, but not Pmt1, as an Ost3-specific substrate protein.
Collapse
Affiliation(s)
- Ewa Zatorska
- Centre for Organismal Studies (COS), Heidelberg University, 69120 Heidelberg, Germany.
| | - Lihi Gal
- Department of Molecular Genetics, Weizmann Institute of Science, 7610001 Rehovot, Israel.
| | - Jaro Schmitt
- Centre for Organismal Studies (COS), Heidelberg University, 69120 Heidelberg, Germany.
| | - Daniela Bausewein
- Centre for Organismal Studies (COS), Heidelberg University, 69120 Heidelberg, Germany.
| | - Maya Schuldiner
- Department of Molecular Genetics, Weizmann Institute of Science, 7610001 Rehovot, Israel.
| | - Sabine Strahl
- Centre for Organismal Studies (COS), Heidelberg University, 69120 Heidelberg, Germany.
| |
Collapse
|
9
|
Kurotani A, Sakurai T. In Silico Analysis of Correlations between Protein Disorder and Post-Translational Modifications in Algae. Int J Mol Sci 2015; 16:19812-35. [PMID: 26307970 PMCID: PMC4581327 DOI: 10.3390/ijms160819812] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2015] [Revised: 08/12/2015] [Accepted: 08/13/2015] [Indexed: 12/23/2022] Open
Abstract
Recent proteome analyses have reported that intrinsically disordered regions (IDRs) of proteins play important roles in biological processes. In higher plants whose genomes have been sequenced, the correlation between IDRs and post-translational modifications (PTMs) has been reported. The genomes of various eukaryotic algae as common ancestors of plants have also been sequenced. However, no analysis of the relationship to protein properties such as structure and PTMs in algae has been reported. Here, we describe correlations between IDR content and the number of PTM sites for phosphorylation, glycosylation, and ubiquitination, and between IDR content and regions rich in proline, glutamic acid, serine, and threonine (PEST) and transmembrane helices in the sequences of 20 algae proteomes. Phosphorylation, O-glycosylation, ubiquitination, and PEST preferentially occurred in disordered regions. In contrast, transmembrane helices were favored in ordered regions. N-glycosylation tended to occur in ordered regions in most of the studied algae; however, it correlated positively with disordered protein content in diatoms. Additionally, we observed that disordered protein content and the number of PTM sites were significantly increased in the species-specific protein clusters compared to common protein clusters among the algae. Moreover, there were specific relationships between IDRs and PTMs among the algae from different groups.
Collapse
Affiliation(s)
- Atsushi Kurotani
- RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Japan.
| | - Tetsuya Sakurai
- RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Japan.
| |
Collapse
|
10
|
Kim H, Thak EJ, Lee DJ, Agaphonov MO, Kang HA. Hansenula polymorpha Pmt4p Plays Critical Roles in O-Mannosylation of Surface Membrane Proteins and Participates in Heteromeric Complex Formation. PLoS One 2015; 10:e0129914. [PMID: 26134523 PMCID: PMC4489896 DOI: 10.1371/journal.pone.0129914] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2015] [Accepted: 05/14/2015] [Indexed: 01/09/2023] Open
Abstract
O-mannosylation, the addition of mannose to serine and threonine residues of secretory proteins, is a highly conserved post-translational modification found in organisms ranging from bacteria to humans. Here, we report the functional and molecular characterization of the HpPMT4 gene encoding a protein O-mannosyltransferase in the thermotolerant methylotrophic yeast Hansenula polymorpha, an emerging host for the production of therapeutic recombinant proteins. Compared to the deletion of HpPMT1, deletion of another major PMT gene, HpPMT4, resulted in more increased sensitivity to the antibiotic hygromycin B, caffeine, and osmotic stresses, but did not affect the thermotolerance of H. polymorpha. Notably, the deletion of HpPMT4 generated severe defects in glycosylation of the surface sensor proteins HpWsc1p and HpMid2p, with marginal effects on secreted glycoproteins such as chitinase and HpYps1p lacking a GPI anchor. However, despite the severely impaired mannosylation of surface sensor proteins in the Hppmt4∆ mutant, the phosphorylation of HpMpk1p and HpHog1p still showed a high increase upon treatment with cell wall disturbing agents or high concentrations of salts. The conditional Hppmt1pmt4∆ double mutant strains displayed severely impaired growth, enlarged cell size, and aberrant cell separation, implying that the loss of HpPMT4 function might be lethal to cells in the absence of HpPmt1p. Moreover, the HpPmt4 protein was found to form not only a homomeric complex but also a heteromeric complex with either HpPmt1p or HpPmt2p. Altogether, our results support the function of HpPmt4p as a key player in O-mannosylation of cell surface proteins and its participation in the formation of heterodimers with other PMT members, besides homodimer formation, in H. polymorpha.
Collapse
Affiliation(s)
- Hyunah Kim
- Department of Life Science, Chung-Ang University, Seoul 156–756, Korea
| | - Eun Jung Thak
- Department of Life Science, Chung-Ang University, Seoul 156–756, Korea
| | - Dong-Jik Lee
- Department of Life Science, Chung-Ang University, Seoul 156–756, Korea
| | - Michael O. Agaphonov
- A.N. Bach Institute of Biochemistry of the Russian Academy of Sciences, Moscow, Russia
| | - Hyun Ah Kang
- Department of Life Science, Chung-Ang University, Seoul 156–756, Korea
- * E-mail:
| |
Collapse
|
11
|
Smith SE, Rubinstein B, Mendes Pinto I, Slaughter BD, Unruh JR, Li R. Independence of symmetry breaking on Bem1-mediated autocatalytic activation of Cdc42. ACTA ACUST UNITED AC 2013; 202:1091-106. [PMID: 24062340 PMCID: PMC3787378 DOI: 10.1083/jcb.201304180] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
Rather than acting directly on Cdc42, Bem1 works in concert with the Cdc42 binding partner Rdi1 to relocalize Cdc42 to the cytosol during symmetry breaking in the absence of an intact actin cytoskeleton. The ability to break symmetry and polarize through self-organization is a fundamental feature of cellular systems. A prevailing theory in yeast posits that symmetry breaking occurs via a positive feedback loop, wherein the adaptor protein Bem1 promotes local activation and accumulation of Cdc42 by directly tethering Cdc42GTP with its guanine nucleotide exchange factor (GEF) Cdc24. In this paper, we find that neither Bem1 nor the ability of Bem1 to bind Cdc42GTP is required for cell polarization. Instead, Bem1 functions primarily by boosting GEF activity, a role critical for polarization without actin filaments. In the absence of actin-based transport, polarization of Cdc42 is accomplished through Rdi1, the Cdc42 guanine nucleotide dissociation inhibitor. A mathematical model is constructed describing cell polarization as a product of distinct pathways controlling Cdc42 activation and protein localization. The model predicts a nonmonotonic dependence of cell polarization on the concentration of Rdi1 relative to that of Cdc42.
Collapse
Affiliation(s)
- Sarah E Smith
- Stowers Institute for Medical Research, Kansas City, MO, 64110
| | | | | | | | | | | |
Collapse
|
12
|
González M, Brito N, Frías M, González C. Botrytis cinerea protein O-mannosyltransferases play critical roles in morphogenesis, growth, and virulence. PLoS One 2013; 8:e65924. [PMID: 23762450 PMCID: PMC3675079 DOI: 10.1371/journal.pone.0065924] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2013] [Accepted: 04/30/2013] [Indexed: 12/22/2022] Open
Abstract
Protein O-glycosylation is crucial in determining the structure and function of numerous secreted and membrane-bound proteins. In fungi, this process begins with the addition of a mannose residue by protein O-mannosyltransferases (PMTs) in the lumen side of the ER membrane. We have generated mutants of the three Botrytis cinerea pmt genes to study their role in the virulence of this wide-range plant pathogen. B. cinerea PMTs, especially PMT2, are critical for the stability of the cell wall and are necessary for sporulation and for the generation of the extracellular matrix. PMTs are also individually required for full virulence in a variety of hosts, with a special role in the penetration of intact plant leaves. The most significant case is that of grapevine leaves, whose penetration requires the three functional PMTs. Furthermore, PMT2 also contributes significantly to fungal adherence on grapevine and tobacco leaves. Analysis of extracellular and membrane proteins showed significant changes in the pattern of protein secretion and glycosylation by the pmt mutants, and allowed the identification of new protein substrates putatively glycosylated by specific PMTs. Since plants do no possess these enzymes, PMTs constitute a promising target in the development of novel control strategies against B. cinerea.
Collapse
Affiliation(s)
- Mario González
- Departamento de Bioquímica y Biología Molecular, Universidad de La Laguna, La Laguna (Tenerife), Spain
| | - Nélida Brito
- Departamento de Bioquímica y Biología Molecular, Universidad de La Laguna, La Laguna (Tenerife), Spain
| | - Marcos Frías
- Departamento de Bioquímica y Biología Molecular, Universidad de La Laguna, La Laguna (Tenerife), Spain
| | - Celedonio González
- Departamento de Bioquímica y Biología Molecular, Universidad de La Laguna, La Laguna (Tenerife), Spain
| |
Collapse
|
13
|
Delic M, Valli M, Graf AB, Pfeffer M, Mattanovich D, Gasser B. The secretory pathway: exploring yeast diversity. FEMS Microbiol Rev 2013; 37:872-914. [PMID: 23480475 DOI: 10.1111/1574-6976.12020] [Citation(s) in RCA: 143] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2012] [Revised: 02/14/2013] [Accepted: 02/17/2013] [Indexed: 12/11/2022] Open
Abstract
Protein secretion is an essential process for living organisms. In eukaryotes, this encompasses numerous steps mediated by several hundred cellular proteins. The core functions of translocation through the endoplasmic reticulum membrane, primary glycosylation, folding and quality control, and vesicle-mediated secretion are similar from yeasts to higher eukaryotes. However, recent research has revealed significant functional differences between yeasts and mammalian cells, and even among diverse yeast species. This review provides a current overview of the canonical protein secretion pathway in the model yeast Saccharomyces cerevisiae, highlighting differences to mammalian cells as well as currently unresolved questions, and provides a genomic comparison of the S. cerevisiae pathway to seven other yeast species where secretion has been investigated due to their attraction as protein production platforms, or for their relevance as pathogens. The analysis of Candida albicans, Candida glabrata, Kluyveromyces lactis, Pichia pastoris, Hansenula polymorpha, Yarrowia lipolytica, and Schizosaccharomyces pombe reveals that many - but not all - secretion steps are more redundant in S. cerevisiae due to duplicated genes, while some processes are even absent in this model yeast. Recent research obviates that even where homologous genes are present, small differences in protein sequence and/or differences in the regulation of gene expression may lead to quite different protein secretion phenotypes.
Collapse
Affiliation(s)
- Marizela Delic
- Department of Biotechnology, University of Natural Resources and Life Sciences (BOKU), Vienna, Austria; Austrian Centre of Industrial Biotechnology (ACIB GmbH), Vienna, Austria
| | | | | | | | | | | |
Collapse
|
14
|
Loibl M, Strahl S. Protein O-mannosylation: what we have learned from baker's yeast. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2013; 1833:2438-46. [PMID: 23434682 DOI: 10.1016/j.bbamcr.2013.02.008] [Citation(s) in RCA: 91] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2012] [Revised: 02/05/2013] [Accepted: 02/10/2013] [Indexed: 01/06/2023]
Abstract
BACKGROUND Protein O-mannosylation is a vital type of glycosylation that is conserved among fungi, animals, and humans. It is initiated in the endoplasmic reticulum (ER) where the synthesis of the mannosyl donor substrate and the mannosyltransfer to proteins take place. O-mannosylation defects interfere with cell wall integrity and ER homeostasis in yeast, and define a pathomechanism of severe neuromuscular diseases in humans. SCOPE OF REVIEW On the molecular level, the O-mannosylation pathway and the function of O-mannosyl glycans have been characterized best in the eukaryotic model yeast Saccharomyces cerevisiae. In this review we summarize general features of protein O-mannosylation, including biosynthesis of the mannosyl donor, characteristics of acceptor substrates, and the protein O-mannosyltransferase machinery in the yeast ER. Further, we discuss the role of O-mannosyl glycans and address the question why protein O-mannosylation is essential for viability of yeast cells. GENERAL SIGNIFICANCE Understanding of the molecular mechanisms of protein O-mannosylation in yeast could lead to the development of novel antifungal drugs. In addition, transfer of the knowledge from yeast to mammals could help to develop diagnostic and therapeutic approaches in the frame of neuromuscular diseases. This article is part of a Special Issue entitled: Functional and structural diversity of endoplasmic reticulum.
Collapse
|
15
|
Bi E, Park HO. Cell polarization and cytokinesis in budding yeast. Genetics 2012; 191:347-87. [PMID: 22701052 PMCID: PMC3374305 DOI: 10.1534/genetics.111.132886] [Citation(s) in RCA: 223] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2011] [Accepted: 11/04/2011] [Indexed: 12/26/2022] Open
Abstract
Asymmetric cell division, which includes cell polarization and cytokinesis, is essential for generating cell diversity during development. The budding yeast Saccharomyces cerevisiae reproduces by asymmetric cell division, and has thus served as an attractive model for unraveling the general principles of eukaryotic cell polarization and cytokinesis. Polarity development requires G-protein signaling, cytoskeletal polarization, and exocytosis, whereas cytokinesis requires concerted actions of a contractile actomyosin ring and targeted membrane deposition. In this chapter, we discuss the mechanics and spatial control of polarity development and cytokinesis, emphasizing the key concepts, mechanisms, and emerging questions in the field.
Collapse
Affiliation(s)
- Erfei Bi
- Department of Cell and Developmental Biology, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104-6058, USA.
| | | |
Collapse
|
16
|
Axl2 integrates polarity establishment, maintenance, and environmental stress response in the filamentous fungus Ashbya gossypii. EUKARYOTIC CELL 2011; 10:1679-93. [PMID: 21984708 DOI: 10.1128/ec.05183-11] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
In budding yeast, new sites of polarity are chosen with each cell cycle and polarization is transient. In filamentous fungi, sites of polarity persist for extended periods of growth and new polarity sites can be established while existing sites are maintained. How the polarity establishment machinery functions in these distinct growth forms found in fungi is still not well understood. We have examined the function of Axl2, a transmembrane bud site selection protein discovered in Saccharomyces cerevisiae, in the filamentous fungus Ashbya gossypii. A. gossypii does not divide by budding and instead exhibits persistent highly polarized growth, and multiple axes of polarity coexist in one cell. A. gossypii axl2Δ (Agaxl2Δ) cells have wavy hyphae, bulbous tips, and a high frequency of branch initiations that fail to elongate, indicative of a polarity maintenance defect. Mutant colonies also have significantly lower radial growth and hyphal tip elongation speeds than wild-type colonies, and Agaxl2Δ hyphae have depolarized actin patches. Consistent with a function in polarity, AgAxl2 localizes to hyphal tips, branches, and septin rings. Unlike S. cerevisiae Axl2, AgAxl2 contains a Mid2 homology domain and may function to sense or respond to environmental stress. In support of this idea, hyphae lacking AgAxl2 also display hypersensitivity to heat, osmotic, and cell wall stresses. Axl2 serves to integrate polarity establishment, polarity maintenance, and environmental stress response for optimal polarized growth in A. gossypii.
Collapse
|
17
|
Arroyo J, Hutzler J, Bermejo C, Ragni E, García-Cantalejo J, Botías P, Piberger H, Schott A, Sanz AB, Strahl S. Functional and genomic analyses of blocked protein O-mannosylation in baker's yeast. Mol Microbiol 2011; 79:1529-46. [DOI: 10.1111/j.1365-2958.2011.07537.x] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
18
|
Mouyna I, Kniemeyer O, Jank T, Loussert C, Mellado E, Aimanianda V, Beauvais A, Wartenberg D, Sarfati J, Bayry J, Prévost MC, Brakhage AA, Strahl S, Huerre M, Latgé JP. Members of protein O-mannosyltransferase family in Aspergillus fumigatus differentially affect growth, morphogenesis and viability. Mol Microbiol 2010; 76:1205-21. [PMID: 20398215 DOI: 10.1111/j.1365-2958.2010.07164.x] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
O-mannosylation is an essential protein modification in eukaryotes. It is initiated at the endoplasmic reticulum by O-mannosyltransferases (PMT) that are evolutionary conserved from yeast to humans. The PMT family is phylogenetically classified into PMT1, PMT2 and PMT4 subfamilies, which differ in protein substrate specificity and number of genes per subfamily. In this study, we characterized for the first time the whole PMT family of a pathogenic filamentous fungus, Aspergillus fumigatus. Genome analysis showed that only one member of each subfamily is present in A. fumigatus, PMT1, PMT2 and PMT4. Despite the fact that all PMTs are transmembrane proteins with conserved peptide motifs, the phenotype of each PMT deletion mutant was very different in A. fumigatus. If disruption of PMT1 did not reveal any phenotype, deletion of PMT2 was lethal. Disruption of PMT4 resulted in abnormal mycelial growth and highly reduced conidiation associated to significant proteomic changes. The double pmt1pmt4 mutant was lethal. The single pmt4 mutant exhibited an exquisite sensitivity to echinocandins that is associated to major changes in the expression of signal transduction cascade genes. These results indicate that the PMT family members play a major role in growth, morphogenesis and viability of A. fumigatus.
Collapse
Affiliation(s)
- Isabelle Mouyna
- Unité des Aspergillus, Institut Pasteur, 25 rue du Docteur Roux 75724 Paris Cedex 15, France.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Kriangkripipat T, Momany M. Aspergillus nidulans protein O-mannosyltransferases play roles in cell wall integrity and developmental patterning. EUKARYOTIC CELL 2009; 8:1475-85. [PMID: 19666781 PMCID: PMC2756865 DOI: 10.1128/ec.00040-09] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2009] [Accepted: 07/27/2009] [Indexed: 11/20/2022]
Abstract
Protein O-mannosyltransferases (Pmts) initiate O-mannosyl glycan biosynthesis from Ser and Thr residues of target proteins. Fungal Pmts are divided into three subfamilies, Pmt1, -2, and -4. Aspergillus nidulans possesses a single representative of each Pmt subfamily, pmtA (subfamily 2), pmtB (subfamily 1), and pmtC (subfamily 4). In this work, we show that single Deltapmt mutants are viable and have unique phenotypes and that the DeltapmtA DeltapmtB double mutant is the only viable double mutant. This makes A. nidulans the first fungus in which all members of individual Pmt subfamilies can be deleted without loss of viability. At elevated temperatures, all A. nidulans Deltapmt mutants show cell wall-associated defects and increased sensitivity to cell wall-perturbing agents. The Deltapmt mutants also show defects in developmental patterning. Germ tube emergence is early in DeltapmtA and more frequent in DeltapmtC mutants than in the wild type. In DeltapmtB mutants, intrahyphal hyphae develop. All Deltapmt mutants show distinct conidiophore defects. The DeltapmtA strain has swollen vesicles and conidiogenous cells, the DeltapmtB strain has swollen conidiophore stalks, and the DeltapmtC strain has dramatically elongated conidiophore stalks. We also show that AN5660, an ortholog of Saccharomyces cerevisiae Wsc1p, is modified by PmtA and PmtC. The Deltapmt phenotypes at elevated temperatures, increased sensitivity to cell wall-perturbing agents and restoration to wild-type growth with osmoticum suggest that A. nidulans Pmts modify proteins in the cell wall integrity pathway. The altered developmental patterns in Deltapmt mutants suggest that A. nidulans Pmts modify proteins that serve as spatial cues.
Collapse
Affiliation(s)
- Thanyanuch Kriangkripipat
- Department of Plant Biology, Miller Plant Sciences, 120 Carlton Street, University of Georgia, Athens, GA 30602, USA
| | | |
Collapse
|
20
|
Protein O-mannosyltransferases B and C support hyphal development and differentiation in Aspergillus nidulans. EUKARYOTIC CELL 2009; 8:1465-74. [PMID: 19648468 DOI: 10.1128/ec.00371-08] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Aspergillus nidulans possesses three pmt genes encoding protein O-d-mannosyltransferases (Pmt). Previously, we reported that PmtA, a member of the PMT2 subfamily, is involved in the proper maintenance of fungal morphology and formation of conidia (T. Oka, T. Hamaguchi, Y. Sameshima, M. Goto, and K. Furukawa, Microbiology 150:1973-1982, 2004). In the present paper, we describe the characterization of the pmtA paralogues pmtB and pmtC. PmtB and PmtC were classified as members of the PMT1 and PMT4 subfamilies, respectively. A pmtB disruptant showed wild-type (wt) colony formation at 30 degrees C but slightly repressed growth at 42 degrees C. Conidiation of the pmtB disruptant was reduced to approximately 50% of that of the wt strain; in addition, hyperbranching of hyphae indicated that PmtB is involved in polarity maintenance. A pmtA and pmtB double disruptant was viable but very slow growing, with morphological characteristics that were cumulative with respect to either single disruptant. Of the three single pmt mutants, the pmtC disruptant showed the highest growth repression; the hyphae were swollen and frequently branched, and the ability to form conidia under normal growth conditions was lost. Recovery from the aberrant hyphal structures occurred in the presence of osmotic stabilizer, implying that PmtC is responsible for the maintenance of cell wall integrity. Osmotic stabilization at 42 degrees C further enabled the pmtC disruptant to form conidiophores and conidia, but they were abnormal and much fewer than those of the wt strain. Apart from the different, abnormal phenotypes, the three pmt disruptants exhibited differences in their sensitivities to antifungal reagents, mannosylation activities, and glycoprotein profiles, indicating that PmtA, PmtB, and PmtC perform unique functions during cell growth.
Collapse
|
21
|
Abstract
Protein O-mannosylation is an essential modification in fungi and animals. Different from most other types of O-glycosylation, protein O-mannosylation is initiated in the endoplasmic reticulum by the transfer of mannose from dolichol monophosphate-activated mannose to serine and threonine residues of secretory proteins. In recent years, it has emerged that even bacteria are capable of O-mannosylation and that the biosynthetic pathway of O-mannosyl glycans is conserved between pro- and eukaryotes. In this review, we summarize the observations that have opened up the field and highlight characteristics of O-mannosylation in the different domains/kingdoms of life.
Collapse
Affiliation(s)
- Mark Lommel
- Department V Cell Chemistry, Heidelberg Institute for Plant Sciences, University of Heidelberg, Heidelberg, Germany
| | | |
Collapse
|
22
|
Murakami-Sekimata A, Sato K, Sato K, Takashima A, Nakano A. O-Mannosylation is required for the solubilization of heterologously expressed human beta-amyloid precursor protein in Saccharomyces cerevisiae. Genes Cells 2009; 14:205-215. [PMID: 19170767 DOI: 10.1111/j.1365-2443.2008.01263.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2024]
Abstract
In an attempt to express human beta-amyloid precursor protein (APP) in yeast, we fortuitously found that this protein is only O-glycosylated in yeast. APP was effectively expressed in yeast, processed by yeast alpha-secretases, members of the Yapsin family, to produce N-terminal (sAPPalpha) and C-terminal (CTFalpha) domains, when its signal sequence was replaced by that of the yeast alpha-mating factor. APP is known to acquire N- and O-glycosylation through the endoplasmic reticulum (ER) and the Golgi apparatus and is transported to the plasma membrane in mammalian cells. In spite of the presence of canonical N-glycosylation consensus sequences, APP was not N-glycosylated in the yeast system. Pulse-chase experiments demonstrated that APP received only O-mannosylation in yeast. Examination of yeast pmt mutants, which are defective in the initiation of O-mannosylation in the ER, revealed that Pmt4p is most responsible for the oligosaccharide modification of APP. Maturation of APP was slowed down and aggregated forms of APP were observed by sucrose density gradient fractionation of the Deltapmt4 mutant lysate. This caused decreased production of CTFalpha. We conclude that O-mannosylation is required for the solubilization of exogenously expressed human APP.
Collapse
|
23
|
Li Y, Chen Y, Huang X, Zhou M, Wu R, Dong S, Pritchard DG, Fives-Taylor P, Wu H. A conserved domain of previously unknown function in Gap1 mediates protein-protein interaction and is required for biogenesis of a serine-rich streptococcal adhesin. Mol Microbiol 2008; 70:1094-104. [PMID: 18826412 DOI: 10.1111/j.1365-2958.2008.06456.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Fap1-like serine-rich proteins are a new family of bacterial adhesins found in a variety of streptococci and staphylococci that have been implicated in bacterial pathogenesis. A gene cluster encoding glycosyltransferases and accessory Sec components is required for Fap1 glycosylation and biogenesis in Streptococcus parasanguinis. Here we report that the glycosylation-associated protein, Gap1, contributes to glycosylation and biogenesis of Fap1 by interacting with another glycosylation-associated protein, Gap3. Gap1 shares structural homology with glycosyltransferases. The gap1 mutant, like the gap3 mutant, produced an aberrantly glycosylated Fap1 precursor and failed to produce mature Fap1, suggesting that Gap1 and Gap3 might function in concert in the Fap1 glycosylation and biogenesis. Indeed, Gap1 interacted with Gap3 in vitro and in vivo. A Gap1 N-terminal motif, within a highly conserved domain of unknown function (DUF1975) identified in many bacterial glycosyltransferases, was required for the Gap1-Gap3 interaction. Deletion of one, four and nine amino acids within the conserved motif gradually inhibited the Gap1-Gap3 interaction and diminished production of mature Fap1 and concurrently increased production of the Fap1 precursor. Consequently, bacterial adhesion to an in vitro tooth model was also reduced. These data demonstrate that the Gap1-Gap3 interaction is required for Fap1 biogenesis and Fap1-dependent bacterial adhesion.
Collapse
Affiliation(s)
- Yirong Li
- Department of Pediatric Dentistry, Schools of Dentistry and Medicine, University of Alabama, Birmingham, AL 35294, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Luo Z, Van Vuuren HJ. Stress-induced production, processing and stability of a seripauperin protein, Pau5p, in Saccharomyces cerevisiae. FEMS Yeast Res 2008; 8:374-85. [DOI: 10.1111/j.1567-1364.2008.00355.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
25
|
Goto M. Protein O-glycosylation in fungi: diverse structures and multiple functions. Biosci Biotechnol Biochem 2007; 71:1415-27. [PMID: 17587671 DOI: 10.1271/bbb.70080] [Citation(s) in RCA: 135] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Protein glycosylation is essential for eukaryotic cells from yeasts to humans. When compared to N-glycosylation, O-glycosylation is variable in sugar components and the mode of linkages connecting the sugars. In fungi, secretory proteins are commonly mannosylated by protein O-mannosyltransferase (PMT) in the endoplasmic reticulum, and subsequently glycosylated by several glycosyltransferases in the Golgi apparatus to form glycoproteins with diverse O-glycan structures. Protein O-glycosylation has roles in modulating the function of secretory proteins by enhancing the stability and solubility of the proteins, by affording protection from protease degradation, and by acting as a sorting determinant in yeasts. In filamentous fungi, protein O-glycosylation contributes to proper maintenance of fungal morphology, hyphal development, and differentiation. This review describes recent studies of the structure and function of protein O-glycosylation in industrially and medically important fungi.
Collapse
Affiliation(s)
- Masatoshi Goto
- Department of Bioscience and Biotechnology, Faculty of Agriculture, Kyushu University, Japan.
| |
Collapse
|
26
|
Hutzler J, Schmid M, Bernard T, Henrissat B, Strahl S. Membrane association is a determinant for substrate recognition by PMT4 protein O-mannosyltransferases. Proc Natl Acad Sci U S A 2007; 104:7827-32. [PMID: 17470820 PMCID: PMC1876532 DOI: 10.1073/pnas.0700374104] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Protein O-mannosylation represents an evolutionarily conserved, essential posttranslational modification with immense impact on a variety of cellular processes. In humans, O-mannosylation defects result in Walker-Warburg syndrome, a severe recessive congenital muscular dystrophy associated with defects in neuronal migration that produce complex brain and eye abnormalities. In mouse and yeasts, loss of O-mannosylation causes lethality. Protein O-mannosyltransferases (PMTs) initiate the assembly of O-mannosyl glycans. The evolutionarily conserved PMT family is classified into PMT1, PMT2, and PMT4 subfamilies, which mannosylate distinct target proteins. In contrast to other types of glycosylation, signal sequences for O-mannosylation have not been identified to date. In the present study, we identified signals that determine PMT4-dependent O-mannosylation. Using specific model proteins, we demonstrate that in yeast Pmt4p mediates O-mannosylation of Ser/Thr-rich membrane-attached proteins. The nature of the membrane-anchoring sequence is nonrelevant, as long as it is flanked by a Ser/Thr-rich domain facing the endoplasmic reticulum lumen. Our work shows that, in contrast to several other types of glycosylation, PMT4 O-mannosylation signals are not just linear protein's primary structure sequences but rather are highly complex. Based on these findings, we performed in silico analyses of the Saccharomyces cerevisiae proteome and identified previously undescribed Pmt4p substrates. This tool for proteome-wide identification of O-mannosylated proteins is of general interest because several of these proteins are major players of a wide variety of cellular processes.
Collapse
Affiliation(s)
- Johannes Hutzler
- *Department of Cell Chemistry, Institute of Plant Sciences, University of Heidelberg, 69120 Heidelberg, Germany; and
| | - Maria Schmid
- *Department of Cell Chemistry, Institute of Plant Sciences, University of Heidelberg, 69120 Heidelberg, Germany; and
| | - Thomas Bernard
- Architecture et Fonction des Macromolécules Biologiques, Centre National de la Recherche Scientifique, Universités Aix-Marseille I and II, 13288 Marseille Cedex 9, France
| | - Bernard Henrissat
- Architecture et Fonction des Macromolécules Biologiques, Centre National de la Recherche Scientifique, Universités Aix-Marseille I and II, 13288 Marseille Cedex 9, France
| | - Sabine Strahl
- *Department of Cell Chemistry, Institute of Plant Sciences, University of Heidelberg, 69120 Heidelberg, Germany; and
- To whom correspondence should be addressed at:
Heidelberger Institut für Pflanzenwissenschaften, Abteilung Zellchemie, Ruprecht-Karls-Universität Heidelberg, Im Neuenheimer Feld 360, 69120 Heidelberg, Germany. E-mail:
| |
Collapse
|
27
|
Park HO, Bi E. Central roles of small GTPases in the development of cell polarity in yeast and beyond. Microbiol Mol Biol Rev 2007; 71:48-96. [PMID: 17347519 PMCID: PMC1847380 DOI: 10.1128/mmbr.00028-06] [Citation(s) in RCA: 329] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
SUMMARY The establishment of cell polarity is critical for the development of many organisms and for the function of many cell types. A large number of studies of diverse organisms from yeast to humans indicate that the conserved, small-molecular-weight GTPases function as key signaling proteins involved in cell polarization. The budding yeast Saccharomyces cerevisiae is a particularly attractive model because it displays pronounced cell polarity in response to intracellular and extracellular cues. Cells of S. cerevisiae undergo polarized growth during various phases of their life cycle, such as during vegetative growth, mating between haploid cells of opposite mating types, and filamentous growth upon deprivation of nutrition such as nitrogen. Substantial progress has been made in deciphering the molecular basis of cell polarity in budding yeast. In particular, it becomes increasingly clear how small GTPases regulate polarized cytoskeletal organization, cell wall assembly, and exocytosis at the molecular level and how these GTPases are regulated. In this review, we discuss the key signaling pathways that regulate cell polarization during the mitotic cell cycle and during mating.
Collapse
Affiliation(s)
- Hay-Oak Park
- Department of Molecular Genetics, The Ohio State University, 484 West 12th Avenue, Columbus, OH 43210-1292, USA.
| | | |
Collapse
|
28
|
Górka-Nieć W, Bańkowska R, Palamarczyk G, Krotkiewski H, Kruszewska JS. Protein glycosylation in pmt mutants of Saccharomyces cerevisiae. Influence of heterologously expressed cellobiohydrolase II of Trichoderma reesei and elevated levels of GDP-mannose and cis-prenyltransferase activity. Biochim Biophys Acta Gen Subj 2007; 1770:774-80. [PMID: 17343985 DOI: 10.1016/j.bbagen.2007.01.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2006] [Revised: 01/09/2007] [Accepted: 01/19/2007] [Indexed: 10/23/2022]
Abstract
Protein O-mannosylation has been postulated to be critical for production and secretion of glycoproteins in fungi. Therefore, understanding the regulation of this process and the influence of heterologous expression of glycoproteins on the activity of enzymes engaged in O-glycosylation are of considerable interest. In this study we expressed cellobiohydrolase II (CBHII) of T. reesei, which is normally highly O-mannosylated, in Saccharomyces cerevisiae pmt mutants partially blocked in O-mannosylation. We found that the lack of Pmt1 or Pmt2 protein O-mannosyltransferase activity limited the glycosylation of CBHII, but it did not affect its secretion. The S. cerevisiae pmt1Delta and pmt2Delta mutants expressing T. reesei cbh2 gene showed a decrease of GDP-mannose level and a very high activity of cis-prenyltransferase compared to untransformed strains. On the other hand, elevation of cis-prenyltransferase activity by overexpression of the S. cerevisiae RER2 gene in these mutants led to an increase of dolichyl phosphate mannose synthase activity, but it did not influence the activity of O-mannosyltransferases. Overexpression of the MPG1 gene increased the level of GDP-mannose and stimulated the activity of mannosyltransferases elongating O-linked sugar chains, leading to partial restoration of CBHII glycosylation.
Collapse
Affiliation(s)
- Wioletta Górka-Nieć
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawińskiego 5a, 02-106 Warsaw, Poland
| | | | | | | | | |
Collapse
|
29
|
Olson GM, Fox DS, Wang P, Alspaugh JA, Buchanan KL. Role of protein O-mannosyltransferase Pmt4 in the morphogenesis and virulence of Cryptococcus neoformans. EUKARYOTIC CELL 2006; 6:222-34. [PMID: 17142566 PMCID: PMC1797945 DOI: 10.1128/ec.00182-06] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Protein O mannosylation is initiated in the endoplasmic reticulum by protein O-mannosyltransferases (Pmt proteins) and plays an important role in the secretion, localization, and function of many proteins, as well as in cell wall integrity and morphogenesis in fungi. Three Pmt proteins, each belonging to one of the three respective Pmt subfamilies, are encoded in the genome of the human fungal pathogen Cryptococcus neoformans. Disruption of the C. neoformans PMT4 gene resulted in abnormal growth morphology and defective cell separation. Transmission electron microscopy revealed defective cell wall septum degradation during mother-daughter cell separation in the pmt4 mutant compared to wild-type cells. The pmt4 mutant also demonstrated sensitivity to elevated temperature, sodium dodecyl sulfate, and amphotericin B, suggesting cell wall defects. Further analysis of cell wall protein composition revealed a cell wall proteome defect in the pmt4 mutant, as well as a global decrease in protein mannosylation. Heterologous expression of C. neoformans PMT4 in a Saccharomyces cerevisiae pmt1pmt4 mutant strain functionally complemented the deficient Pmt activity. Furthermore, Pmt4 activity in C. neoformans was required for full virulence in two murine models of disseminated cryptococcal infection. Taken together, these results indicate a central role for Pmt4-mediated protein O mannosylation in growth, cell wall integrity, and virulence of C. neoformans.
Collapse
Affiliation(s)
- Gillian M Olson
- Department of Microbiology and Immunology, Tulane University Health Sciences Center, New Orleans, Louisiana, USA.
| | | | | | | | | |
Collapse
|
30
|
Upadhyay S, Shaw BD. A phosphoglucose isomerase mutant in Aspergillus nidulans is defective in hyphal polarity and conidiation. Fungal Genet Biol 2006; 43:739-51. [PMID: 16798030 DOI: 10.1016/j.fgb.2006.05.002] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2006] [Revised: 05/09/2006] [Accepted: 05/15/2006] [Indexed: 10/24/2022]
Abstract
Upon germination Aspergillus nidulans swoM1 exhibits abnormal development by extending a primary germ tube that quickly reverts to isotropic growth and results in an enlarged, swollen apex with pronounced wall thickenings. Apical lysis occurs in 38% of the germlings. A point mutation in the AN6037.3 gene encoding the only phosphoglucose isomerase in A. nidulans is responsible for the defect. Loss of polarity is bypassed when glucose is replaced with alternate carbon sources but in all cases the mutant is unable to conidiate due to a block in conidiophore development at vesicle formation. In conidiophores SwoM::GFP localizes to multiple punctate, foci within each actively growing cell type, and to multiple foci in mature dormant conidia. In hyphae SwoM::GFP localized to two rings spanning the center of mature septa. In hyphae localization is concentrated at actively growing hyphal tips.
Collapse
Affiliation(s)
- Srijana Upadhyay
- Program for Biology of Filamentous Fungi, Department of Plant Pathology and Microbiology, Texas A&M University, 2132 TAMU, College Station, TX 77843, USA
| | | |
Collapse
|
31
|
Abstract
The formation of highly polarized hyphae that grow by apical extension is a defining feature of the filamentous fungi. High-resolution microscopy and mathematical modeling have revealed the importance of the cytoskeleton and the Spitzenkorper (an apical vesicle cluster) in hyphal morphogenesis. However, the underlying molecular mechanisms remain poorly characterized. In this review, the pathways and functions known to be involved in polarized hyphal growth are summarized. A central theme is the notion that the polarized growth of hyphae is more complex than in yeast, though similar sets of core pathways are likely utilized. In addition, a model for the establishment and maintenance of hyphal polarity is presented. Key features of the model include the idea that polarity establishment is a stochastic process that occurs independent of internal landmarks. Moreover, the stabilization of nascent polarity axes may be the critical step that permits the emergence of a new hypha.
Collapse
Affiliation(s)
- Steven D Harris
- Plant Science Initiative and Department of Plant Pathology, University of Nebraska, Lincoln, NE 68588, USA
| |
Collapse
|
32
|
Willer T, Brandl M, Sipiczki M, Strahl S. Protein O-mannosylation is crucial for cell wall integrity, septation and viability in fission yeast. Mol Microbiol 2005; 57:156-70. [PMID: 15948957 DOI: 10.1111/j.1365-2958.2005.04692.x] [Citation(s) in RCA: 78] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Protein O-mannosyltransferases (PMTs) initiate the assembly of O-mannosyl glycans, which are of fundamental importance in eukaryotes. The PMT family, which is classified into PMT1, PMT2 and PMT4 subfamilies, is evolutionarily conserved. Despite the fact that PMTs are crucial for viability of baker's yeast as well as of mouse, recent studies suggested that there are significant differences in the organization and properties of the O-mannosylation machinery between yeasts and mammals. In this study we identified and characterized the PMT family of the archaeascomycete Schizosaccharomyces pombe. Unlike Saccharomyces cerevisiae where the PMT family is highly redundant, in S. pombe only one member of each PMT subfamily is present, namely, oma1+ (protein O-mannosyltransferase), oma2+ and oma4+. They all act as protein O-mannosyltransferases in vivo. oma1+ and oma2+ form heteromeric protein complexes and recognize different protein substrates compared to oma4+, suggesting that similar principles underlie mannosyltransfer reaction in S. pombe and budding yeast. Deletion of oma2+, as well as simultaneous deletion of oma1+ and oma4+ is lethal. Characterization of the viable S. pombe oma1Delta and oma4Delta single mutants showed that a lack of O-mannosylation results in abnormal cell wall and septum formation, thereby severely affecting cell morphology and cell-cell separation.
Collapse
Affiliation(s)
- Tobias Willer
- Heidelberg Institute of Plant Sciences, Department V Cell Chemistry, University of Heidelberg, Im Neuenheimer Feld 360, D-69120 Heidelberg, Germany
| | | | | | | |
Collapse
|
33
|
Tanaka N, Fujita Y, Suzuki S, Morishita M, Giga-Hama Y, Shimoda C, Takegawa K. Characterization of O-mannosyltransferase family in Schizosaccharomyces pombe. Biochem Biophys Res Commun 2005; 330:813-20. [PMID: 15809069 DOI: 10.1016/j.bbrc.2005.03.033] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2005] [Indexed: 11/30/2022]
Abstract
Protein O-glycosylation is an essential protein modification in eukaryotic cells. In Saccharomyces cerevisiae, O-mannosylation is initiated in the lumen of the endoplasmic reticulum by O-mannosyltransferase gene products (Pmt1p-7p). A search of the Schizosaccharomyces pombe genome database revealed a total of three O-glycoside mannosyltransferase homologs (ogm1+, ogm2+, and ogm4+), closely related to Saccharomyces cerevisiae PMT1, PMT2, and PMT4. Although individual ogm genes were not found to be essential, ogm1Delta and ogm4Delta mutants exhibited aberrant morphology and failed to agglutinate during mating. The phenotypes of the ogm4Delta mutant were not complemented by overexpression of ogm1+ or ogm2+, suggesting that each of the Ogm proteins does not have overlapping functions. Heterologous expression of a chitinase from S. cerevisiae in the ogm mutants revealed that O-glycosylation of chitinase had decreased in ogm1Delta cells. A GFP-tagged Fus1p from S. cerevisiae was specifically not glycosylated and accumulated in the Golgi in ogm4Delta cells. These results indicate that O-glycosylation initiated by Ogm proteins plays crucial physiological roles and can serve as a sorting determinant for protein transport of membrane glycoproteins in S. pombe.
Collapse
Affiliation(s)
- Naotaka Tanaka
- Department of Life Sciences, Faculty of Agriculture, Kagawa University, Miki-cho, Kagawa 761-0795, Japan
| | | | | | | | | | | | | |
Collapse
|
34
|
Prill SKH, Klinkert B, Timpel C, Gale CA, Schröppel K, Ernst JF. PMT family of Candida albicans: five protein mannosyltransferase isoforms affect growth, morphogenesis and antifungal resistance. Mol Microbiol 2005; 55:546-60. [PMID: 15659169 DOI: 10.1111/j.1365-2958.2004.04401.x] [Citation(s) in RCA: 128] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Protein O-mannosyltransferases (Pmt proteins) initiate O-mannosylation of secretory proteins. The PMT gene family of the human fungal pathogen Candida albicans consists of PMT1 and PMT6, as well as three additional PMT genes encoding Pmt2, Pmt4 and Pmt5 isoforms described here. Both PMT2 alleles could not be deleted and growth of conditional strains, containing PMT2 controlled by the MET3- or tetOScHOP1-promoters, was blocked in non-permissive conditions, indicating that PMT2 is essential for growth. A homozygous pmt4 mutant was viable, but synthetic lethality of pmt4 was observed in combination with pmt1 mutations. Hyphal morphogenesis of a pmt4 mutant was defective under aerobic induction conditions, yet increased in embedded or hypoxic conditions, suggesting a role of Pmt4p-mediated O-glycosylation for environment-specific morphogenetic signalling. Although a PMT5 transcript was detected, a homozygous pmt5 mutant was phenotypically silent. All other pmt mutants showed variable degrees of supersensitivity to antifungals and to cell wall-destabilizing agents. Cell wall composition was markedly affected in pmt1 and pmt4 mutants, showing a significant decrease in wall mannoproteins. In a mouse model of haematogenously disseminated infection, PMT4 was required for full virulence of C. albicans. Functional analysis of the first complete PMT gene family in a fungal pathogen indicates that Pmt isoforms have variable and specific roles for in vitro and in vivo growth, morphogenesis and antifungal resistance.
Collapse
Affiliation(s)
- Stephan K-H Prill
- Institut für Mikrobiologie, Heinrich-Heine-Universität, 40225 Düsseldorf, Germany
| | | | | | | | | | | |
Collapse
|
35
|
Weber Y, Prill SKH, Ernst JF. Pmt-mediated O mannosylation stabilizes an essential component of the secretory apparatus, Sec20p, in Candida albicans. EUKARYOTIC CELL 2005; 3:1164-8. [PMID: 15470244 PMCID: PMC522601 DOI: 10.1128/ec.3.5.1164-1168.2004] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Sec20p is an essential endoplasmic reticulum (ER) membrane protein in yeasts, functioning as a tSNARE component in retrograde vesicle traffic. We show that Sec20p in the human fungal pathogen Candida albicans is extensively O mannosylated by protein mannosyltransferases (Pmt proteins). Surprisingly, Sec20p occurs at wild-type levels in a pmt6 mutant but at very low levels in pmt1 and pmt4 mutants and also after replacement of specific Ser/Thr residues in the lumenal domain of Sec20p. Pulse-chase experiments revealed rapid degradation of unmodified Sec20p (38.6 kDa) following its biosynthesis, while the stable O-glycosylated form (50 kDa) was not formed in a pmt1 mutant. These results suggest a novel function of O mannosylation in eukaryotes, in that modification by specific Pmt proteins will prevent degradation of ER-resident membrane proteins via ER-associated degradation or a proteasome-independent pathway.
Collapse
Affiliation(s)
- Yvonne Weber
- Institut für Mikrobiologie Heinrich-Heine-Universität Düsseldorf, Universitätsstr. 1/Geb. 26.12, D-40225 Düsseldorf, Germany
| | | | | |
Collapse
|
36
|
Agaphonov MO, Sokolov SS, Romanova NV, Sohn JH, Kim SY, Kalebina TS, Choi ES, Ter-Avanesyan MD. Mutation of the protein-O-mannosyltransferase enhances secretion of the human urokinase-type plasminogen activator inHansenula polymorpha. Yeast 2005; 22:1037-47. [PMID: 16200504 DOI: 10.1002/yea.1297] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Human urokinase-type plasminogen activator (uPA) is poorly secreted and aggregates in the endoplasmic reticulum of yeast cells due to inefficient folding. A screen for Hansenula polymorpha mutants with improved uPA secretion revealed a gene encoding a homologue of the Saccharomyces cerevisiae protein-O-mannosyltransferase Pmt1p. Expression of the H. polymorpha PMT1 gene (HpPMT1) abolished temperature sensitivity of the S. cerevisiae pmt1 pmt2 double mutant. As in S. cerevisiae, inactivation of the HpPMT1 gene affected electrophoretic mobility of the O-glycosylated protein, extracellular chitinase. In contrast to S. cerevisiae, disruption of HpPMT1 alone caused temperature sensitivity. Inactivation of the HpPMT1 gene decreased intracellular aggregation of uPA, suggesting that enhanced secretion of uPA was due to improvement of its folding in the endoplasmic reticulum. Unlike most of the endoplasmic reticulum membrane proteins, HpPmt1p possesses the C-terminal KDEL retention signal.
Collapse
Affiliation(s)
- Michael O Agaphonov
- Institute of Experimental Cardiology, Cardiology Research Center, 3rd Cherepkovskaya Str. 15A, Moscow 121552, Russia.
| | | | | | | | | | | | | | | |
Collapse
|
37
|
Nakatsukasa K, Okada S, Umebayashi K, Fukuda R, Nishikawa SI, Endo T. Roles of O-Mannosylation of Aberrant Proteins in Reduction of the Load for Endoplasmic Reticulum Chaperones in Yeast. J Biol Chem 2004; 279:49762-72. [PMID: 15377669 DOI: 10.1074/jbc.m403234200] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
The protein quality control system in the endoplasmic reticulum (ER) ensures that only properly folded proteins are deployed throughout the cells. When nonnative proteins accumulate in the ER, the unfolded protein response is triggered to limit further accumulation of nonnative proteins and the ER is cleared of accumulated nonnative proteins by the ER-associated degradation (ERAD). In the yeast ER, aberrant nonnative proteins are mainly directed for the ERAD, but a distinct fraction of them instead receive O-mannosylation. In order to test whether O-mannosylation might also be a mechanism to process aberrant proteins in the ER, here we analyzed the effect of O-mannosylation on two kinds of model aberrant proteins, a series of N-glycosylation site mutants of prepro-alpha-factor and a pro-region-deleted derivative of Rhizopus niveus aspartic proteinase-I (Deltapro) both in vitro and in vivo. O-Mannosylation increases solubilities of the aberrant proteins and renders them less dependent on the ER chaperone, BiP, for being soluble. The release from ER chaperones allows the aberrant proteins to exit out of the ER for the normal secretory pathway transport. When the gene for Pmt2p, responsible for the O-mannosylation of these aberrant proteins, and that for the ERAD were simultaneously deleted, the cell exhibited enhanced unfolded protein response. O-Mannosylation may therefore function as a fail-safe mechanism for the ERAD by solubilizing the aberrant proteins that overflowed from the ERAD pathway and reducing the load for ER chaperones.
Collapse
Affiliation(s)
- Kunio Nakatsukasa
- Department of Chemistry, Graduate School of Science, Nagoya University, Chikusa-ku, Nagoya 464-8602, Japan
| | | | | | | | | | | |
Collapse
|
38
|
Ichimiya T, Manya H, Ohmae Y, Yoshida H, Takahashi K, Ueda R, Endo T, Nishihara S. The twisted abdomen phenotype of Drosophila POMT1 and POMT2 mutants coincides with their heterophilic protein O-mannosyltransferase activity. J Biol Chem 2004; 279:42638-47. [PMID: 15271988 DOI: 10.1074/jbc.m404900200] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Walker-Warburg syndrome, caused by mutations in protein O-mannosyltransferase-1 (POMT1), is an autosomal recessive disorder characterized by severe brain malformation, muscular dystrophy, and structural eye abnormalities. As humans have a second POMT, POMT2, we cloned each Drosophila ortholog of the human POMT genes and carried out RNA interference (RNAi) knock-down to investigate the function of these proteins in vivo. Drosophila POMT2 (dPOMT2) RNAi mutant flies showed a "twisted abdomen phenotype," in which the abdomen is twisted 30-60 degrees , similar to the dPOMT1 mutant. Moreover, dPOMT2 interacted genetically with dPOMT1, suggesting that the dPOMTs function in collaboration with each other in vivo. We expressed dPOMTs in Sf21 cells and measured POMT activity. dPOMT2 transferred a mannose to the dystroglycan protein only when it was coexpressed with dPOMT1. Likewise, dPOMT1 showed POMT activity only when coexpressed with dPOMT2, and neither dPOMT showed any activity by itself. Each dPOMT RNAi fly totally reduced POMT activity, despite the specific reduction in the level of each dPOMT mRNA. The expression pattern of dPOMT2 mRNA was found to be similar to that of dPOMT1 mRNA using whole mount in situ hybridization. These results demonstrate that the two dPOMTs function as a protein O-mannosyltransferase in association with each other, in vitro and in vivo, to generate and maintain normal muscle development.
Collapse
Affiliation(s)
- Tomomi Ichimiya
- Laboratory of Cell Biology, Department of Bioinformatics, Faculty of Engineering, Soka University, 1-236 Tangi-cho, Hachioji Tokyo 192-8577, Japan
| | | | | | | | | | | | | | | |
Collapse
|
39
|
Huang G, Zhang M, Erdman SE. Posttranslational modifications required for cell surface localization and function of the fungal adhesin Aga1p. EUKARYOTIC CELL 2004; 2:1099-114. [PMID: 14555493 PMCID: PMC219368 DOI: 10.1128/ec.2.5.1099-1114.2003] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Adherence of fungal cells to host substrates and each other affects their access to nutrients, sexual conjugation, and survival in hosts. Adhesins are cell surface proteins that mediate these different cell adhesion interactions. In this study, we examine the in vivo functional requirements for specific posttranslational modifications to these proteins, including glycophosphatidylinositol (GPI) anchor addition and O-linked glycosylation. The processing of some fungal GPI anchors, creating links to cell wall beta-1,6 glucans, is postulated to facilitate postsecretory traffic of proteins to cell wall domains conducive to their functions. By studying the yeast sexual adhesin subunit Aga1p, we found that deletion of its signal sequence for GPI addition eliminated its activity, while deletions of different internal domains had various effects on function. Substitution of the Aga1p GPI signal domain with those of other GPI-anchored proteins, a single transmembrane domain, or a cysteine capable of forming a disulfide all produced functional adhesins. A portion of the cellular pool of Aga1p was determined to be cell wall resident. Aga1p and the alpha-agglutinin Agalpha1p were shown to be under glycosylated in cells lacking the protein mannosyltransferase genes PMT1 and PMT2, with phenotypes manifested only in MATalpha cells for single mutants but in both cell types when both genes are absent. We conclude that posttranslational modifications to Aga1p are necessary for its biogenesis and activity. Our studies also suggest that in addition to GPI-glucan linkages, other cell surface anchorage mechanisms, such as transmembrane domains or disulfides, may be employed by fungal species to localize adhesins.
Collapse
Affiliation(s)
- Guohong Huang
- Department of Biology, Syracuse University, Syracuse, New York 13244, USA.
| | | | | |
Collapse
|
40
|
Proszynski TJ, Simons K, Bagnat M. O-glycosylation as a sorting determinant for cell surface delivery in yeast. Mol Biol Cell 2004; 15:1533-43. [PMID: 14742720 PMCID: PMC379253 DOI: 10.1091/mbc.e03-07-0511] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Little is known about the mechanisms that determine localization of proteins to the plasma membrane in Saccharomyces cerevisiae. The length of the transmembrane domains and association of proteins with lipid rafts have been proposed to play a role in sorting to the cell surface. Here, we report that Fus1p, an O-glycosylated integral membrane protein involved in cell fusion during yeast mating, requires O-glycosylation for cell surface delivery. In cells lacking PMT4, encoding a mannosyltransferase involved in the initial step of O-glycosylation, Fus1p was not glycosylated and accumulated in late Golgi structures. A chimeric protein lacking O-glycosylation motif was missorted to the vacuole and accumulated in late Golgi in wild-type cells. Exocytosis of this protein could be restored by addition of a 33-amino acid portion of an O-glycosylated sequence from Fus1p. Our data suggest that O-glycosylation functions as a sorting determinant for cell surface delivery of Fus1p.
Collapse
Affiliation(s)
- Tomasz J Proszynski
- Max Planck Institute for Molecular Cell Biology and Genetics, Pfotenhauerstrasse 108, 01307 Dresden, Germany
| | | | | |
Collapse
|
41
|
Lommel M, Bagnat M, Strahl S. Aberrant processing of the WSC family and Mid2p cell surface sensors results in cell death of Saccharomyces cerevisiae O-mannosylation mutants. Mol Cell Biol 2004; 24:46-57. [PMID: 14673142 PMCID: PMC303345 DOI: 10.1128/mcb.24.1.46-57.2004] [Citation(s) in RCA: 91] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Protein O mannosylation is a crucial protein modification in uni- and multicellular eukaryotes. In humans, a lack of O-mannosyl glycans causes congenital muscular dystrophies that are associated with brain abnormalities. In yeast, protein O mannosylation is vital; however, it is not known why impaired O mannosylation results in cell death. To address this question, we analyzed the conditionally lethal Saccharomyces cerevisiae protein O-mannosyltransferase pmt2 pmt4Delta mutant. We found that pmt2 pmt4Delta cells lyse as small-budded cells in the absence of osmotic stabilization and that treatment with mating pheromone causes pheromone-induced cell death. These phenotypes are partially suppressed by overexpression of upstream elements of the protein kinase C (PKC1) cell integrity pathway, suggesting that the PKC1 pathway is defective in pmt2 pmt4Delta mutants. Congruently, induction of Mpk1p/Slt2p tyrosine phosphorylation does not occur in pmt2 pmt4Delta mutants during exposure to mating pheromone or elevated temperature. Detailed analyses of the plasma membrane sensors of the PKC1 pathway revealed that Wsc1p, Wsc2p, and Mid2p are aberrantly processed in pmt mutants. Our data suggest that in yeast, O mannosylation increases the activity of Wsc1p, Wsc2p, and Mid2p by enhancing their stability. Reduced O mannosylation leads to incorrect proteolytic processing of these proteins, which in turn results in impaired activation of the PKC1 pathway and finally causes cell death in the absence of osmotic stabilization.
Collapse
Affiliation(s)
- Mark Lommel
- Institute of Cell Biology and Plant Physiology, University of Regensburg, 93040 Regensburg. Max Planck Institute of Molecular Cell Biology and Genetics, 01307 Dresden, Germany
| | | | | |
Collapse
|
42
|
Ecker M, Mrsa V, Hagen I, Deutzmann R, Strahl S, Tanner W. O-mannosylation precedes and potentially controls the N-glycosylation of a yeast cell wall glycoprotein. EMBO Rep 2003; 4:628-32. [PMID: 12776183 PMCID: PMC1319204 DOI: 10.1038/sj.embor.embor864] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2003] [Revised: 04/14/2003] [Accepted: 04/16/2003] [Indexed: 11/09/2022] Open
Abstract
Secretory proteins in yeast are N- and O-glycosylated while they enter the endoplasmic reticulum. N-glycosylation is initiated by the oligosaccharyl transferase complex and O-mannosylation is initiated by distinct O-mannosyltransferase complexes of the protein mannosyl transferase Pmt1/Pmt2 and Pmt4 families. Using covalently linked cell-wall protein 5 (Ccw5) as a model, we show that the Pmt4 and Pmt1/Pmt2 mannosyltransferases glycosylate different domains of the Ccw5 protein, thereby mannosylating several consecutive serine and threonine residues. In addition, it is shown that O-mannosylation by Pmt4 prevents N-glycosylation by blocking the hydroxy amino acid of the single N-glycosylation site present in Ccw5. These data prove that the O- and N-glycosylation machineries compete for Ccw5; therefore O-mannosylation by Pmt4 precedes N-glycosylation.
Collapse
Affiliation(s)
- Margit Ecker
- Lehrstuhl für Zellbiologie und Pflanzenphysiologie, Universität Regensburg, 93040 Regensburg, Germany
| | - Vladimir Mrsa
- Laboratory of Biochemistry, Faculty of Food Technology and Biotechnology, University of Zagreb, Pierottijeva 6, 10000 Zagreb, Croatia
| | - Ilja Hagen
- Lehrstuhl für Zellbiologie und Pflanzenphysiologie, Universität Regensburg, 93040 Regensburg, Germany
| | - Rainer Deutzmann
- Institut für Biochemie I, Universität Regensburg, Universitätstrasse 31, 93040 Regensburg, Germany
| | - Sabine Strahl
- Lehrstuhl für Zellbiologie und Pflanzenphysiologie, Universität Regensburg, 93040 Regensburg, Germany
| | - Widmar Tanner
- Lehrstuhl für Zellbiologie und Pflanzenphysiologie, Universität Regensburg, 93040 Regensburg, Germany
- Tel: +49 941 943 3018; Fax: +49 941 943 3352;
| |
Collapse
|
43
|
Girrbach V, Strahl S. Members of the evolutionarily conserved PMT family of protein O-mannosyltransferases form distinct protein complexes among themselves. J Biol Chem 2003; 278:12554-62. [PMID: 12551906 DOI: 10.1074/jbc.m212582200] [Citation(s) in RCA: 119] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Protein O-mannosyltransferases (PMTs) initiate the assembly of O-mannosyl glycans, an essential protein modification. Since PMTs are evolutionarily conserved in fungi but are absent in green plants, the PMT family is a putative target for new antifungal drugs, particularly in fighting the threat of phytopathogenic fungi. The PMT family is phylogenetically classified into PMT1, PMT2, and PMT4 subfamilies, which differ in protein substrate specificity. In the model organism Saccharomyces cerevisiae as well as in many other fungi the PMT family is highly redundant, and only the simultaneous deletion of PMT1/PMT2 and PMT4 subfamily members is lethal. In this study we analyzed the molecular organization of PMT family members in S. cerevisiae. We show that members of the PMT1 subfamily (Pmt1p and Pmt5p) interact in pairs with members of the PMT2 subfamily (Pmt2p and Pmt3p) and that Pmt1p-Pmt2p and Pmt5p-Pmt3p complexes represent the predominant forms. Under certain physiological conditions, however, Pmt1p interacts also with Pmt3p, and Pmt5p with Pmt2p, suggesting a compensatory cooperation that guarantees the maintenance of O-mannosylation. Unlike the PMT1/PMT2 subfamily members, the single member of the PMT4 subfamily (Pmt4p) acts as a homomeric complex. Using mutational analyses we demonstrate that the same conserved protein domains underlie both heteromeric and homomeric interactions, and we identify an invariant arginine residue of transmembrane domain two as essential for the formation and/or stability of PMT complexes in general. Our data suggest that protein-protein interactions between the PMT family members offer a point of attack to shut down overall protein O-mannosylation in fungi.
Collapse
Affiliation(s)
- Verena Girrbach
- Lehrstuhl für Zellbiologie und Pflanzenphysiologie, Universität Regensburg, 93040 Regensburg, Germany
| | | |
Collapse
|
44
|
Zakrzewska A, Migdalski A, Saloheimo M, Penttila ME, Palamarczyk G, Kruszewska JS. cDNA encoding protein O-mannosyltransferase from the filamentous fungus Trichoderma reesei; functional equivalence to Saccharomyces cerevisiae PMT2. Curr Genet 2003; 43:11-6. [PMID: 12684840 DOI: 10.1007/s00294-003-0368-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2002] [Revised: 12/09/2002] [Accepted: 12/18/2002] [Indexed: 10/25/2022]
Abstract
O-Mannosylation is suggested to be essential for protein secretion in Trichoderma reesei. In protein O-glycosylation, the first mannosyl residue is transferred to a serine or threonine hydroxyl group of the protein from dolichyl phosphate mannose by protein O-mannosyltransferase. In Saccharomyces cerevisiae, seven PMT genes have been cloned coding for these enzymes. In the present work, the characterisation of the pmt1 cDNA from T. reesei is reported. Sequence analysis of the predicted protein revealed the highest similarity to Schizosaccharomyces pombe Pmt and to Pmt4p of Saccharomyces cerevisiae. In contrast, expression of the T. reesei cDNA in various S. cerevisiae pmt mutants showed functional similarity to the yeast Pmt2 protein.
Collapse
Affiliation(s)
- Anna Zakrzewska
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawińskiego 5a, 02-106 Warsaw, Poland
| | | | | | | | | | | |
Collapse
|
45
|
Shaw BD, Momany M. Aspergillus nidulans polarity mutant swoA is complemented by protein O-mannosyltransferase pmtA. Fungal Genet Biol 2002; 37:263-70. [PMID: 12431460 DOI: 10.1016/s1087-1845(02)00531-5] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Previously swoA was identified in Aspergillus nidulans as a single locus, temperature-sensitive (ts) mutant aberrant in polarity maintenance. swoA was complemented by transformation with a plasmid genomic library. The sequence of the complementing gene was identical to a previously submitted GenBank sequence for pmtA, a protein O-mannosyltransferase. The pmtA/swoA-2 gene hybridized to three cosmids that are located on chromosome V and the swoA mutation was mitotically mapped to chromosome V. PMTs are endoplasmic reticulum-resident proteins responsible for the first step of O-glycosylation. Structural predictions suggest that PmtA contains seven membrane spans similar to PMTs from Saccharomyces cerevisiae and other organisms. Phylogenetic analysis indicates that PmtA is most closely related to the S. cerevisiae sub-family of PMTs containing Pmt2, Pmt3 and Pmt6. The mutant pmtA/swoA-2 locus contained a lesion that changed Y662 to a stop codon, eliminating the final membrane spanning domain and interrupting a domain essential for function in other PMTs.
Collapse
Affiliation(s)
- Brian D Shaw
- Department of Plant Biology, University of Georgia, Athens, GA 30602, USA
| | | |
Collapse
|
46
|
Willer T, Amselgruber W, Deutzmann R, Strahl S. Characterization of POMT2, a novel member of the PMT protein O-mannosyltransferase family specifically localized to the acrosome of mammalian spermatids. Glycobiology 2002; 12:771-83. [PMID: 12460945 DOI: 10.1093/glycob/cwf086] [Citation(s) in RCA: 91] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Over the past few years it has emerged that O-mannosyl glycans are not restricted to yeasts and fungi but are also present in higher eukaryotes, including humans. They play a substantial role in the onset of muscular dystrophy and neuronal migration disorders, like muscle-eye-brain disease. Protein O-mannosyltransferase genes (PMTs) are evolutionarily conserved from yeast to human; however, little is known about these enzymes in higher eukaryotes. In this study, we cloned the first PMT2 subfamily members from human (hPOMT2), mouse (mPomt2), and Drosophila (DmPOMT2). A detailed characterization of the mammalian POMT2, with emphasis on mouse Pomt2, shows that mammalian POMT2 is predominantly expressed in testis tissue. Due to differential transcription initiation of the mPomt2 gene, two distinct mRNA species that vary in length are formed. The shorter transcript is present in all somatic tissues examined. Expression of the corresponding hPOMT2 cDNA in mammalian cells identified POMT2 as an integral membrane protein of the endoplasmic reticulum with an apparent molecular weight of 83 kDa. The longer mPomt2 transcript is restricted to testis and encodes a testis-specific mPOMT2 protein isoform. Using in situ hybridization and immunolocalization, we demonstrate that in testis tissue mPOMT2 localizes to maturing spermatids and is abundant within the acrosome, a sperm-specific organelle essential for fertilization. Our data suggest a novel and specific role for the putative protein O-mannosyltransferase POMT2 in the maturation and/or function of sperm in mammals.
Collapse
Affiliation(s)
- Tobias Willer
- Lehrstuhl für Zellbiologie und Pflanzenphysiologie, Universität Regensburg, 93040 Regensburg, Germany
| | | | | | | |
Collapse
|
47
|
Palecek SP, Parikh AS, Kron SJ. Sensing, signalling and integrating physical processes during Saccharomyces cerevisiae invasive and filamentous growth. MICROBIOLOGY (READING, ENGLAND) 2002; 148:893-907. [PMID: 11932437 DOI: 10.1099/00221287-148-4-893] [Citation(s) in RCA: 92] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Affiliation(s)
- Sean P Palecek
- Department of Chemical Engineering, University of Wisconsin - Madison, Madison, WI 53706, USA1
| | - Archita S Parikh
- Center for Molecular Oncology2 and Department of Molecular Genetics and Cell Biology3, The University of Chicago, Chicago, IL 60637, USA
| | - Stephen J Kron
- Center for Molecular Oncology2 and Department of Molecular Genetics and Cell Biology3, The University of Chicago, Chicago, IL 60637, USA
| |
Collapse
|
48
|
Dickens NJ, Beatson S, Ponting CP. Cadherin-like domains in alpha-dystroglycan, alpha/epsilon-sarcoglycan and yeast and bacterial proteins. Curr Biol 2002; 12:R197-9. [PMID: 11909544 DOI: 10.1016/s0960-9822(02)00748-0] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
49
|
Schenkman LR, Caruso C, Pagé N, Pringle JR. The role of cell cycle-regulated expression in the localization of spatial landmark proteins in yeast. J Cell Biol 2002; 156:829-41. [PMID: 11877459 PMCID: PMC2173311 DOI: 10.1083/jcb.200107041] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2001] [Revised: 01/18/2002] [Accepted: 01/23/2002] [Indexed: 11/22/2022] Open
Abstract
In Saccharomyces cerevisiae, Bud8p and Bud9p are homologous plasma membrane glycoproteins that appear to mark the distal and proximal cell poles, respectively, as potential sites for budding in the bipolar pattern. Here we provide evidence that Bud8p is delivered to the presumptive bud site (and thence to the distal pole of the bud) just before bud emergence, and that Bud9p is delivered to the bud side of the mother-bud neck (and thence to the proximal pole of the daughter cell) after activation of the mitotic exit network, just before cytokinesis. Like the delivery of Bud8p, that of Bud9p is actin dependent; unlike the delivery of Bud8p, that of Bud9p is also septin dependent. Interestingly, although the transcription of BUD8 and BUD9 appears to be cell cycle regulated, the abundance of BUD8 mRNA peaks in G2/M and that of BUD9 mRNA peaks in late G1, suggesting that the translation and/or delivery to the cell surface of each protein is delayed and presumably also cell cycle regulated. The importance of time of transcription in localization is supported by promoter-swap experiments: expression of Bud8p from the BUD9 promoter leads to its localization predominantly to the sites typical for Bud9p, and vice versa. Moreover, expression of Bud8p from the BUD9 promoter fails to rescue the budding-pattern defect of a bud8 mutant but fully rescues that of a bud9 mutant. However, although expression of Bud9p from the BUD8 promoter fails to rescue a bud9 mutant, it also rescues only partially the budding-pattern defect of a bud8 mutant, suggesting that some feature(s) of the Bud8p protein is also important for Bud8p function. Experiments with chimeric proteins suggest that the critical element(s) is somewhere in the extracytoplasmic domain of Bud8p.
Collapse
Affiliation(s)
- Laura R Schenkman
- Department of Biology and Program in Molecular Biology and Biotechnology, University of North Carolina, Chapel Hill, NC 27599, USA
| | | | | | | |
Collapse
|
50
|
Harkins HA, Pagé N, Schenkman LR, De Virgilio C, Shaw S, Bussey H, Pringle JR. Bud8p and Bud9p, proteins that may mark the sites for bipolar budding in yeast. Mol Biol Cell 2001; 12:2497-518. [PMID: 11514631 PMCID: PMC58609 DOI: 10.1091/mbc.12.8.2497] [Citation(s) in RCA: 84] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2000] [Revised: 04/10/2001] [Accepted: 04/25/2001] [Indexed: 11/11/2022] Open
Abstract
The bipolar budding pattern of a/alpha Saccharomyces cerevisiae cells appears to depend on persistent spatial markers in the cell cortex at the two poles of the cell. Previous analysis of mutants with specific defects in bipolar budding identified BUD8 and BUD9 as potentially encoding components of the markers at the poles distal and proximal to the birth scar, respectively. Further genetic analysis reported here supports this hypothesis. Mutants deleted for BUD8 or BUD9 grow normally but bud exclusively from the proximal and distal poles, respectively, and the double-mutant phenotype suggests that the bipolar budding pathway has been totally disabled. Moreover, overexpression of these genes can cause either an increased bias for budding at the distal (BUD8) or proximal (BUD9) pole or a randomization of bud position, depending on the level of expression. The structures and localizations of Bud8p and Bud9p are also consistent with their postulated roles as cortical markers. Both proteins appear to be integral membrane proteins of the plasma membrane, and they have very similar overall structures, with long N-terminal domains that are both N- and O-glycosylated followed by a pair of putative transmembrane domains surrounding a short hydrophilic domain that is presumably cytoplasmic. The putative transmembrane and cytoplasmic domains of the two proteins are very similar in sequence. When Bud8p and Bud9p were localized by immunofluorescence and tagging with GFP, each protein was found predominantly in the expected location, with Bud8p at presumptive bud sites, bud tips, and the distal poles of daughter cells and Bud9p at the necks of large-budded cells and the proximal poles of daughter cells. Bud8p localized approximately normally in several mutants in which daughter cells are competent to form their first buds at the distal pole, but it was not detected in a bni1 mutant, in which such distal-pole budding is lost. Surprisingly, Bud8p localization to the presumptive bud site and bud tip also depends on actin but is independent of the septins.
Collapse
Affiliation(s)
- H A Harkins
- Department of Biology, University of North Carolina, Chapel Hill, North Carolina 27599, USA
| | | | | | | | | | | | | |
Collapse
|