1
|
Sanchez C, Ramirez A, Hodgson L. Unravelling molecular dynamics in living cells: Fluorescent protein biosensors for cell biology. J Microsc 2025; 298:123-184. [PMID: 38357769 PMCID: PMC11324865 DOI: 10.1111/jmi.13270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 01/11/2024] [Accepted: 01/22/2024] [Indexed: 02/16/2024]
Abstract
Genetically encoded, fluorescent protein (FP)-based Förster resonance energy transfer (FRET) biosensors are microscopy imaging tools tailored for the precise monitoring and detection of molecular dynamics within subcellular microenvironments. They are characterised by their ability to provide an outstanding combination of spatial and temporal resolutions in live-cell microscopy. In this review, we begin by tracing back on the historical development of genetically encoded FP labelling for detection in live cells, which lead us to the development of early biosensors and finally to the engineering of single-chain FRET-based biosensors that have become the state-of-the-art today. Ultimately, this review delves into the fundamental principles of FRET and the design strategies underpinning FRET-based biosensors, discusses their diverse applications and addresses the distinct challenges associated with their implementation. We place particular emphasis on single-chain FRET biosensors for the Rho family of guanosine triphosphate hydrolases (GTPases), pointing to their historical role in driving our understanding of the molecular dynamics of this important class of signalling proteins and revealing the intricate relationships and regulatory mechanisms that comprise Rho GTPase biology in living cells.
Collapse
Affiliation(s)
- Colline Sanchez
- Gruss-Lipper Biophotonics Center, Albert Einstein College of Medicine, Bronx, NY, USA
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Andrea Ramirez
- Gruss-Lipper Biophotonics Center, Albert Einstein College of Medicine, Bronx, NY, USA
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Louis Hodgson
- Gruss-Lipper Biophotonics Center, Albert Einstein College of Medicine, Bronx, NY, USA
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, USA
| |
Collapse
|
2
|
Armstrong MC, Weiß YR, Hoachlander-Hobby LE, Roy AA, Visco I, Moe A, Golding AE, Hansen SD, Bement WM, Bieling P. The biochemical mechanism of Rho GTPase membrane binding, activation and retention in activity patterning. EMBO J 2025; 44:2620-2657. [PMID: 40164947 PMCID: PMC12048676 DOI: 10.1038/s44318-025-00418-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 03/04/2025] [Accepted: 03/07/2025] [Indexed: 04/02/2025] Open
Abstract
Rho GTPases form plasma membrane-associated patterns that control the cytoskeleton during cell division, morphogenesis, migration, and wound repair. Their patterning involves transitions between inactive cytosolic and active membrane-bound states, regulated by guanine nucleotide exchange factors (GEFs), GTPase-activating proteins (GAPs), and guanine nucleotide dissociation inhibitors (GDIs). However, the relationships between these transitions and role of different regulators remain unclear. We developed a novel reconstitution approach to study Rho GTPase patterning with all major GTPase regulators in a biochemically defined system. We show that Rho GTPase dissociation from RhoGDI is rate-limiting for its membrane association. Rho GTPase activation occurs after membrane insertion, which is unaffected by GEF activity. Once activated, Rho GTPases are retained at the membrane through effector interactions, essential for their enrichment at activation sites. Thus, high cytosolic levels of RhoGDI-bound GTPases ensure a constant supply of inactive GTPases for the membrane, where GEF-mediated activation and effector binding stabilize them. These results delineate the route by which Rho GTPase patterns are established and define stage-dependent roles of its regulators.
Collapse
Affiliation(s)
- Michael C Armstrong
- Department of Systemic Cell Biology, Max Planck Institute of Molecular Physiology, Dortmund, Germany
| | - Yannic R Weiß
- Department of Systemic Cell Biology, Max Planck Institute of Molecular Physiology, Dortmund, Germany
| | - Lila E Hoachlander-Hobby
- Graduate Program in Cellular and Molecular Biology, University of Wisconsin-Madison, Madison, WI, USA
- Department of Integrative Biology, University of Wisconsin-Madison, Madison, WI, USA
- Center for Quantitative Cell Imaging, University of Wisconsin-Madison, Madison, WI, USA
| | - Ankit A Roy
- Department of Systemic Cell Biology, Max Planck Institute of Molecular Physiology, Dortmund, Germany
- Department of Biological Sciences, Columbia University, New York, NY, USA
| | - Ilaria Visco
- Department of Systemic Cell Biology, Max Planck Institute of Molecular Physiology, Dortmund, Germany
| | - Alison Moe
- Graduate Program in Cellular and Molecular Biology, University of Wisconsin-Madison, Madison, WI, USA
- Department of Integrative Biology, University of Wisconsin-Madison, Madison, WI, USA
- Center for Quantitative Cell Imaging, University of Wisconsin-Madison, Madison, WI, USA
- Department of Medicine, Medical College of Wisconsin, Milwaukee, WI, 53226, USA
| | - Adriana E Golding
- Graduate Program in Cellular and Molecular Biology, University of Wisconsin-Madison, Madison, WI, USA
- Department of Integrative Biology, University of Wisconsin-Madison, Madison, WI, USA
- Center for Quantitative Cell Imaging, University of Wisconsin-Madison, Madison, WI, USA
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Scott D Hansen
- Department of Chemistry and Biochemistry, University of Oregon, Eugene, OR, USA
- Institute of Molecular Biology, University of Oregon, Eugene, OR, USA
| | - William M Bement
- Department of Integrative Biology, University of Wisconsin-Madison, Madison, WI, USA.
- Center for Quantitative Cell Imaging, University of Wisconsin-Madison, Madison, WI, USA.
| | - Peter Bieling
- Department of Systemic Cell Biology, Max Planck Institute of Molecular Physiology, Dortmund, Germany.
| |
Collapse
|
3
|
de Castro Sampaio SS, Ramalho MCC, de Souza CS, de Almeida Rodrigues B, de Mendonça GRS, Lazarini M. RHO subfamily of small GTPases in the development and function of hematopoietic cells. J Cell Physiol 2025; 240:e31469. [PMID: 39434451 DOI: 10.1002/jcp.31469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 09/16/2024] [Accepted: 10/03/2024] [Indexed: 10/23/2024]
Abstract
RHOA, RHOB, and RHOC comprise a subfamily of RHO GTPase proteins famed for controlling cytoskeletal dynamics. RHO proteins operate downstream of multiple signals emerging from the microenvironment, leading to diverse cell responses, such as proliferation, adhesion, and migration. Therefore, RHO signaling has been centrally placed in the regulation of blood cells. Despite their high homology, unique roles of RHOA, RHOB, and RHOC have been described in hematopoietic cells. In this article, we overview the contribution of RHO proteins in the development and function of each blood cell lineage. Additionally, we highlight the aberrations of the RHO signaling pathways found in hematological malignancies, providing clues for the identification of new therapeutic targets.
Collapse
Affiliation(s)
| | | | - Caroline Santos de Souza
- Department of Clinical and Experimental Oncology, Federal University of São Paulo, São Paulo, Brazil
| | | | | | - Mariana Lazarini
- Department of Clinical and Experimental Oncology, Federal University of São Paulo, São Paulo, Brazil
| |
Collapse
|
4
|
Šoštar M, Marinović M, Filić V, Pavin N, Weber I. Oscillatory dynamics of Rac1 activity in Dictyostelium discoideum amoebae. PLoS Comput Biol 2024; 20:e1012025. [PMID: 39652619 DOI: 10.1371/journal.pcbi.1012025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 12/19/2024] [Accepted: 11/21/2024] [Indexed: 12/21/2024] Open
Abstract
Small GTPases of the Rho family play a central role in the regulation of cell motility by controlling the remodeling of the actin cytoskeleton. In the amoeboid cells of Dictyostelium discoideum, the active form of the Rho GTPase Rac1 regulates actin polymerases at the leading edge and actin filament bundling proteins at the posterior cortex of polarized cells. We monitored the spatiotemporal dynamics of Rac1 and its effector DGAP1 in vegetative amoebae using specific fluorescent probes. We observed that plasma membrane domains enriched in active Rac1 not only exhibited stable polarization, but also showed rotations and oscillations, whereas DGAP1 was depleted from these regions. To simulate the observed dynamics of the two proteins, we developed a mass-conserving reaction-diffusion model based on the circulation of Rac1 between the membrane and the cytoplasm coupled with its activation by GEFs, deactivation by GAPs and interaction with DGAP1. Our theoretical model accurately reproduced the experimentally observed dynamic patterns, including the predominant anti-correlation between active Rac1 and DGAP1. Significantly, the model predicted a new colocalization regime of these two proteins in polarized cells, which we confirmed experimentally. In summary, our results improve the understanding of Rac1 dynamics and reveal how the occurrence and transitions between different regimes depend on biochemical reaction rates, protein levels and cell size. This study not only expands our knowledge of the behavior of Rac1 GTPases in D. discoideum amoebae but also demonstrates how specific modes of interaction between Rac1 and its effector DGAP1 lead to their counterintuitively anti-correlated dynamics.
Collapse
Affiliation(s)
- Marko Šoštar
- Division of Molecular Biology, Ruđer Bošković Institute, Zagreb, Croatia
| | - Maja Marinović
- Division of Molecular Biology, Ruđer Bošković Institute, Zagreb, Croatia
| | - Vedrana Filić
- Division of Molecular Biology, Ruđer Bošković Institute, Zagreb, Croatia
| | - Nenad Pavin
- Department of Physics, Faculty of Science, University of Zagreb, Zagreb, Croatia
| | - Igor Weber
- Division of Molecular Biology, Ruđer Bošković Institute, Zagreb, Croatia
| |
Collapse
|
5
|
Bhat SA, Vasi Z, Jiang L, Selvaraj S, Ferguson R, Salarvand S, Gudur A, Adhikari R, Castillo V, Ismail H, Dhabaria A, Ueberheide B, Kuchay S. Geranylgeranylated SCF FBXO10 regulates selective outer mitochondrial membrane proteostasis and function. Cell Rep 2024; 43:114783. [PMID: 39306844 PMCID: PMC11573457 DOI: 10.1016/j.celrep.2024.114783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 07/21/2024] [Accepted: 09/05/2024] [Indexed: 09/25/2024] Open
Abstract
Compartment-specific cellular membrane protein turnover is not well understood. We show that FBXO10, the interchangeable component of the cullin-RING-ligase 1 complex, undergoes lipid modification with geranylgeranyl isoprenoid at cysteine953, facilitating its dynamic trafficking to the outer mitochondrial membrane (OMM). FBXO10 polypeptide lacks a canonical mitochondrial targeting sequence (MTS); instead, its geranylgeranylation at C953 and interaction with two cytosolic factors, cytosolic factor-like δ subunit of type 6 phosphodiesterase (PDE6δ; a prenyl-group-binding protein) and heat shock protein 90 (HSP90; a chaperone), orchestrate specific OMM targeting of prenyl-FBXO10. The FBXO10(C953S) mutant redistributes away from the OMM, impairs mitochondrial ATP production and membrane potential, and increases fragmentation. Phosphoglycerate mutase-5 (PGAM5) was identified as a potential substrate of FBXO10 at the OMM using comparative quantitative proteomics of enriched mitochondria. FBXO10 loss or expression of prenylation-deficient FBXO10(C953S) inhibited PGAM5 degradation, disrupted mitochondrial homeostasis, and impaired myogenic differentiation of human induced pluripotent stem cells (iPSCs) and murine myoblasts. Our studies identify a mechanism for FBXO10-mediated regulation of selective mitochondrial proteostasis potentially amenable to therapeutic intervention.
Collapse
Affiliation(s)
- Sameer Ahmed Bhat
- Department of Biochemistry and Molecular Genetics, University of Illinois at Chicago, MBRB 1252, Chicago, IL 60607, USA
| | - Zahra Vasi
- Department of Biochemistry and Molecular Genetics, University of Illinois at Chicago, MBRB 1252, Chicago, IL 60607, USA
| | - Liping Jiang
- Department of Biochemistry and Molecular Genetics, University of Illinois at Chicago, MBRB 1252, Chicago, IL 60607, USA
| | - Shruthi Selvaraj
- Department of Biochemistry and Molecular Genetics, University of Illinois at Chicago, MBRB 1252, Chicago, IL 60607, USA
| | - Rachel Ferguson
- Department of Biochemistry and Molecular Genetics, University of Illinois at Chicago, MBRB 1252, Chicago, IL 60607, USA
| | - Sanaz Salarvand
- Department of Biochemistry and Molecular Genetics, University of Illinois at Chicago, MBRB 1252, Chicago, IL 60607, USA
| | - Anish Gudur
- Department of Biochemistry and Molecular Genetics, University of Illinois at Chicago, MBRB 1252, Chicago, IL 60607, USA
| | - Ritika Adhikari
- Department of Biochemistry and Molecular Genetics, University of Illinois at Chicago, MBRB 1252, Chicago, IL 60607, USA
| | - Veronica Castillo
- Department of Biochemistry and Molecular Genetics, University of Illinois at Chicago, MBRB 1252, Chicago, IL 60607, USA
| | - Hagar Ismail
- Department of Biochemistry and Molecular Genetics, University of Illinois at Chicago, MBRB 1252, Chicago, IL 60607, USA
| | - Avantika Dhabaria
- Department of Biochemistry and Molecular Pharmacology, New York University Langone Medical Center, New York, NY 10013, USA
| | - Beatrix Ueberheide
- Department of Biochemistry and Molecular Pharmacology, New York University Langone Medical Center, New York, NY 10013, USA
| | - Shafi Kuchay
- Department of Biochemistry and Molecular Genetics, University of Illinois at Chicago, MBRB 1252, Chicago, IL 60607, USA; Cancer Center, University of Illinois at Chicago, Chicago, IL, USA.
| |
Collapse
|
6
|
Kulle A, Li Z, Kwak A, Mancini M, Young D, Avizonis DZ, Groleau M, Baglole CJ, Behr MA, King IL, Divangahi M, Langlais D, Wang J, Blagih J, Penz E, Dufour A, Thanabalasuriar A. Alveolar macrophage function is impaired following inhalation of berry e-cigarette vapor. Proc Natl Acad Sci U S A 2024; 121:e2406294121. [PMID: 39312670 PMCID: PMC11459156 DOI: 10.1073/pnas.2406294121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 08/06/2024] [Indexed: 09/25/2024] Open
Abstract
In the lower respiratory tract, the alveolar spaces are divided from the bloodstream and the external environment by only a few microns of interstitial tissue. Alveolar macrophages (AMs) defend this delicate mucosal surface from invading infections by regularly patrolling the site. AMs have three behavior modalities to achieve this goal: extending cell protrusions to probe and sample surrounding areas, squeezing the whole cell body between alveoli, and patrolling by moving the cell body around each alveolus. In this study, we found Rho GTPase, cell division control protein 42 (CDC42) expression significantly decreased after berry-flavored e-cigarette (e-cig) exposure. This shifted AM behavior from squeezing to probing. Changes in AM behavior led to a reduction in the clearance of inhaled bacteria, Pseudomonas aeruginosa. These findings shed light on pathways involved in AM migration and highlight the harmful impact of e-cig vaping on AM function.
Collapse
Affiliation(s)
- Amelia Kulle
- Department of Microbiology and Immunology, McGill University, Montréal, QCH3A 2B4, Canada
| | - Ziyi Li
- Department of Pharmacology and Therapeutics, McGill University, Montréal, QCH3G 1Y6, Canada
| | - Ashley Kwak
- Department of Microbiology and Immunology, McGill University, Montréal, QCH3A 2B4, Canada
| | - Mathieu Mancini
- Department of Microbiology and Immunology, McGill University, Montréal, QCH3A 2B4, Canada
- Dahdaleh Institute for Genomic Medicine, Montréal, QCH3A 0G1, Canada
| | - Daniel Young
- Department of Physiology and Pharmacology, University of Calgary, Calgary, ABT2N 4N1, Canada
| | | | - Marc Groleau
- Department of Microbiology and Immunology, McGill University, Montréal, QCH3A 2B4, Canada
| | - Carolyn J. Baglole
- Department of Pharmacology and Therapeutics, McGill University, Montréal, QCH3G 1Y6, Canada
- Meakins-Christie Laboratories, Research Institute of the McGill University Health Centre, Montréal, QCH4A 3J1, Canada
| | - Marcel A. Behr
- Department of Microbiology and Immunology, McGill University, Montréal, QCH3A 2B4, Canada
| | - Irah L. King
- Department of Microbiology and Immunology, McGill University, Montréal, QCH3A 2B4, Canada
- Meakins-Christie Laboratories, Research Institute of the McGill University Health Centre, Montréal, QCH4A 3J1, Canada
- McGill Interdisciplinary Initiative in Infection and Immunity, Montréal, QCH3A 1Y2, Canada
- McGill Centre for Microbiome Research, Montréal, QCH4A 3J1, Canada
| | - Maziar Divangahi
- Department of Microbiology and Immunology, McGill University, Montréal, QCH3A 2B4, Canada
- Meakins-Christie Laboratories, Research Institute of the McGill University Health Centre, Montréal, QCH4A 3J1, Canada
| | - David Langlais
- Department of Microbiology and Immunology, McGill University, Montréal, QCH3A 2B4, Canada
- Dahdaleh Institute for Genomic Medicine, Montréal, QCH3A 0G1, Canada
- Department of Human Genetics, McGill University, Montréal, QCH3A 0C7, Canada
| | - Jing Wang
- Department of Immunology and Microbiology, Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai20025, China
| | - Julianna Blagih
- Department of Obstetrics and Gynecology, University of Montréal, Montréal, QCH3C 3J7, Canada
| | - Erika Penz
- Department of Medicine, University of Saskatchewan, Saskatoon, SKS7N 5E5, Canada
| | - Antoine Dufour
- Department of Physiology and Pharmacology, University of Calgary, Calgary, ABT2N 4N1, Canada
| | - Ajitha Thanabalasuriar
- Department of Microbiology and Immunology, McGill University, Montréal, QCH3A 2B4, Canada
- Department of Pharmacology and Therapeutics, McGill University, Montréal, QCH3G 1Y6, Canada
| |
Collapse
|
7
|
Bou Malhab LJ, Schmidt S, Fagotto-Kaufmann C, Pion E, Gadea G, Roux P, Fagotto F, Debant A, Xirodimas DP. An Anti-Invasive Role for Mdmx through the RhoA GTPase under the Control of the NEDD8 Pathway. Cells 2024; 13:1625. [PMID: 39404389 PMCID: PMC11475522 DOI: 10.3390/cells13191625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 09/23/2024] [Accepted: 09/24/2024] [Indexed: 10/19/2024] Open
Abstract
Mdmx (Mdm4) is established as an oncogene mainly through repression of the p53 tumour suppressor. On the other hand, anti-oncogenic functions for Mdmx have also been proposed, but the underlying regulatory pathways remain unknown. Investigations into the effect of inhibitors for the NEDD8 pathway in p53 activation, human cell morphology, and in cell motility during gastrulation in Xenopus embryos revealed an anti-invasive function of Mdmx. Through stabilisation and activation of the RhoA GTPase, Mdmx is required for the anti-invasive effects of NEDDylation inhibitors. Mechanistically, through its Zn finger domain, Mdmx preferentially interacts with the inactive GDP-form of RhoA. This protects RhoA from degradation and allows for RhoA targeting to the plasma membrane for its subsequent activation. The effect is transient, as prolonged NEDDylation inhibition targets Mdmx for degradation, which subsequently leads to RhoA destabilisation. Surprisingly, Mdmx degradation requires non-NEDDylated (inactive) Culin4A and the Mdm2 E3-ligase. This study reveals that Mdmx can control cell invasion through RhoA stabilisation/activation, which is potentially linked to the reported anti-oncogenic functions of Mdmx. As inhibitors of the NEDD8 pathway are in clinical trials, the status of Mdmx may be a critical determinant for the anti-tumour effects of these inhibitors.
Collapse
Affiliation(s)
- Lara J. Bou Malhab
- CRBM, Cell Biology Research Centre of Montpellier, Université de Montpellier, CNRS, 34293 Montpellier, France; (S.S.); (C.F.-K.); (E.P.); (G.G.); (P.R.); (F.F.)
- Research Institute of Medical and Health Sciences, University of Sharjah, Sharjah 27272, United Arab Emirates
| | - Susanne Schmidt
- CRBM, Cell Biology Research Centre of Montpellier, Université de Montpellier, CNRS, 34293 Montpellier, France; (S.S.); (C.F.-K.); (E.P.); (G.G.); (P.R.); (F.F.)
| | - Christine Fagotto-Kaufmann
- CRBM, Cell Biology Research Centre of Montpellier, Université de Montpellier, CNRS, 34293 Montpellier, France; (S.S.); (C.F.-K.); (E.P.); (G.G.); (P.R.); (F.F.)
| | - Emmanuelle Pion
- CRBM, Cell Biology Research Centre of Montpellier, Université de Montpellier, CNRS, 34293 Montpellier, France; (S.S.); (C.F.-K.); (E.P.); (G.G.); (P.R.); (F.F.)
| | - Gilles Gadea
- CRBM, Cell Biology Research Centre of Montpellier, Université de Montpellier, CNRS, 34293 Montpellier, France; (S.S.); (C.F.-K.); (E.P.); (G.G.); (P.R.); (F.F.)
| | - Pierre Roux
- CRBM, Cell Biology Research Centre of Montpellier, Université de Montpellier, CNRS, 34293 Montpellier, France; (S.S.); (C.F.-K.); (E.P.); (G.G.); (P.R.); (F.F.)
| | - Francois Fagotto
- CRBM, Cell Biology Research Centre of Montpellier, Université de Montpellier, CNRS, 34293 Montpellier, France; (S.S.); (C.F.-K.); (E.P.); (G.G.); (P.R.); (F.F.)
| | - Anne Debant
- CRBM, Cell Biology Research Centre of Montpellier, Université de Montpellier, CNRS, 34293 Montpellier, France; (S.S.); (C.F.-K.); (E.P.); (G.G.); (P.R.); (F.F.)
| | - Dimitris P. Xirodimas
- CRBM, Cell Biology Research Centre of Montpellier, Université de Montpellier, CNRS, 34293 Montpellier, France; (S.S.); (C.F.-K.); (E.P.); (G.G.); (P.R.); (F.F.)
| |
Collapse
|
8
|
Williams DM, Peden AA. S-acylation of NLRP3 provides a nigericin sensitive gating mechanism that controls access to the Golgi. eLife 2024; 13:RP94302. [PMID: 39263961 PMCID: PMC11392533 DOI: 10.7554/elife.94302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/13/2024] Open
Abstract
NLRP3 is an inflammasome seeding pattern recognition receptor activated in response to multiple danger signals which perturb intracellular homeostasis. Electrostatic interactions between the NLRP3 polybasic (PB) region and negatively charged lipids on the trans-Golgi network (TGN) have been proposed to recruit NLRP3 to the TGN. In this study, we demonstrate that membrane association of NLRP3 is critically dependant on S-acylation of a highly conserved cysteine residue (Cys-130), which traps NLRP3 in a dynamic S-acylation cycle at the Golgi, and a series of hydrophobic residues preceding Cys-130 which act in conjunction with the PB region to facilitate Cys-130 dependent Golgi enrichment. Due to segregation from Golgi localised thioesterase enzymes caused by a nigericin induced breakdown in Golgi organisation and function, NLRP3 becomes immobilised on the Golgi through reduced de-acylation of its Cys-130 lipid anchor, suggesting that disruptions in Golgi homeostasis are conveyed to NLRP3 through its acylation state. Thus, our work defines a nigericin sensitive S-acylation cycle that gates access of NLRP3 to the Golgi.
Collapse
Affiliation(s)
- Daniel M Williams
- School of Bioscience, University of SheffieldSheffieldUnited Kingdom
| | - Andrew A Peden
- School of Bioscience, University of SheffieldSheffieldUnited Kingdom
| |
Collapse
|
9
|
Marshall-Burghardt S, Migueles-Ramírez RA, Lin Q, El Baba N, Saada R, Umar M, Mavalwala K, Hayer A. Excitable Rho dynamics control cell shape and motility by sequentially activating ERM proteins and actomyosin contractility. SCIENCE ADVANCES 2024; 10:eadn6858. [PMID: 39241071 PMCID: PMC11378911 DOI: 10.1126/sciadv.adn6858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 07/31/2024] [Indexed: 09/08/2024]
Abstract
Migration of endothelial and many other cells requires spatiotemporal regulation of protrusive and contractile cytoskeletal rearrangements that drive local cell shape changes. Unexpectedly, the small GTPase Rho, a crucial regulator of cell movement, has been reported to be active in both local cell protrusions and retractions, raising the question of how Rho activity can coordinate cell migration. Here, we show that Rho activity is absent in local protrusions and active during retractions. During retractions, Rho rapidly activated ezrin-radixin-moesin proteins (ERMs) to increase actin-membrane attachment, and, with a delay, nonmuscle myosin 2 (NM2). Rho activity was excitable, with NM2 acting as a slow negative feedback regulator. Strikingly, inhibition of SLK/LOK kinases, through which Rho activates ERMs, caused elongated cell morphologies, impaired Rho-induced cell contractions, and reverted Rho-induced blebbing. Together, our study demonstrates that Rho activity drives retractions by sequentially enhancing ERM-mediated actin-membrane attachment for force transmission and NM2-dependent contractility.
Collapse
Affiliation(s)
- Seph Marshall-Burghardt
- Department of Biology, Stewart Biology Building, McGill University, Montréal, Québec H3A 1B1, Canada
- Graduate Program in Biology, McGill University, Montréal, Québec, Canada
| | - Rodrigo A Migueles-Ramírez
- Department of Biology, Stewart Biology Building, McGill University, Montréal, Québec H3A 1B1, Canada
- PhD Program in Quantitative Life Sciences, McGill University, Montréal, Québec, Canada
| | - Qiyao Lin
- Department of Biology, Stewart Biology Building, McGill University, Montréal, Québec H3A 1B1, Canada
- Graduate Program in Biology, McGill University, Montréal, Québec, Canada
| | - Nada El Baba
- Department of Biology, Stewart Biology Building, McGill University, Montréal, Québec H3A 1B1, Canada
- Graduate Program in Biology, McGill University, Montréal, Québec, Canada
| | - Rayan Saada
- Department of Biology, Stewart Biology Building, McGill University, Montréal, Québec H3A 1B1, Canada
| | - Mustakim Umar
- Department of Biology, Stewart Biology Building, McGill University, Montréal, Québec H3A 1B1, Canada
| | - Kian Mavalwala
- Department of Biology, Stewart Biology Building, McGill University, Montréal, Québec H3A 1B1, Canada
| | - Arnold Hayer
- Department of Biology, Stewart Biology Building, McGill University, Montréal, Québec H3A 1B1, Canada
| |
Collapse
|
10
|
Brandt N, Köper F, Hausmann J, Bräuer AU. Spotlight on plasticity-related genes: Current insights in health and disease. Pharmacol Ther 2024; 260:108687. [PMID: 38969308 DOI: 10.1016/j.pharmthera.2024.108687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 06/07/2024] [Accepted: 07/02/2024] [Indexed: 07/07/2024]
Abstract
The development of the central nervous system is highly complex, involving numerous developmental processes that must take place with high spatial and temporal precision. This requires a series of complex and well-coordinated molecular processes that are tighly controlled and regulated by, for example, a variety of proteins and lipids. Deregulations in these processes, including genetic mutations, can lead to the most severe maldevelopments. The present review provides an overview of the protein family Plasticity-related genes (PRG1-5), including their role during neuronal differentiation, their molecular interactions, and their participation in various diseases. As these proteins can modulate the function of bioactive lipids, they are able to influence various cellular processes. Furthermore, they are dynamically regulated during development, thus playing an important role in the development and function of synapses. First studies, conducted not only in mouse experiments but also in humans, revealed that mutations or dysregulations of these proteins lead to changes in lipid metabolism, resulting in severe neurological deficits. In recent years, as more and more studies have shown their involvement in a broad range of diseases, the complexity and broad spectrum of known and as yet unknown interactions between PRGs, lipids, and proteins make them a promising and interesting group of potential novel therapeutic targets.
Collapse
Affiliation(s)
- Nicola Brandt
- Research Group Anatomy, Department of Human Medicine, School of Medicine and Health Sciences, Carl von Ossietzky University Oldenburg, Oldenburg, Germany
| | - Franziska Köper
- Research Group Anatomy, Department of Human Medicine, School of Medicine and Health Sciences, Carl von Ossietzky University Oldenburg, Oldenburg, Germany
| | - Jens Hausmann
- Research Group Anatomy, Department of Human Medicine, School of Medicine and Health Sciences, Carl von Ossietzky University Oldenburg, Oldenburg, Germany
| | - Anja U Bräuer
- Research Group Anatomy, Department of Human Medicine, School of Medicine and Health Sciences, Carl von Ossietzky University Oldenburg, Oldenburg, Germany; Research Center for Neurosensory Science, Carl von Ossietzky University Oldenburg, Oldenburg, Germany.
| |
Collapse
|
11
|
Hutchins CM, Gorfe AA. From disorder comes function: Regulation of small GTPase function by intrinsically disordered lipidated membrane anchor. Curr Opin Struct Biol 2024; 87:102869. [PMID: 38943706 PMCID: PMC11283958 DOI: 10.1016/j.sbi.2024.102869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 05/23/2024] [Accepted: 06/04/2024] [Indexed: 07/01/2024]
Abstract
The intrinsically disordered, lipid-modified membrane anchor of small GTPases is emerging as a critical modulator of function through its ability to sort lipids in a conformation-dependent manner. We reviewed recent computational and experimental studies that have begun to shed light on the sequence-ensemble-function relationship in this unique class of lipidated intrinsically disordered regions (LIDRs).
Collapse
Affiliation(s)
- Chase M Hutchins
- Department of Integrative Biology and Pharmacology, McGovern Medical School, University of Texas Health Science Center at Houston, 6431 Fannin St., Houston, TX 77030, USA; Biochemistry and Cell Biology Program & Therapeutics and Pharmacology Program, MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, 6431 Fannin St., Houston, TX 77030, USA. https://twitter.com/chasedsims
| | - Alemayehu A Gorfe
- Department of Integrative Biology and Pharmacology, McGovern Medical School, University of Texas Health Science Center at Houston, 6431 Fannin St., Houston, TX 77030, USA; Biochemistry and Cell Biology Program & Therapeutics and Pharmacology Program, MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, 6431 Fannin St., Houston, TX 77030, USA.
| |
Collapse
|
12
|
Choi S, Lee Y, Park S, Jang SY, Park J, Oh DW, Kim SM, Kim TH, Lee GS, Cho C, Kim BS, Lee D, Kim EH, Cheong HK, Moon JH, Song JJ, Hwang J, Kim MH. Dissemination of pathogenic bacteria is reinforced by a MARTX toxin effector duet. Nat Commun 2024; 15:6218. [PMID: 39043696 PMCID: PMC11266601 DOI: 10.1038/s41467-024-50650-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 07/15/2024] [Indexed: 07/25/2024] Open
Abstract
Multiple bacterial genera take advantage of the multifunctional autoprocessing repeats-in-toxin (MARTX) toxin to invade host cells. Secretion of the MARTX toxin by Vibrio vulnificus, a deadly opportunistic pathogen that causes primary septicemia, the precursor of sepsis, is a major driver of infection; however, the molecular mechanism via which the toxin contributes to septicemia remains unclear. Here, we report the crystal and cryo-electron microscopy (EM) structures of a toxin effector duet comprising the domain of unknown function in the first position (DUF1)/Rho inactivation domain (RID) complexed with human targets. These structures reveal how the duet is used by bacteria as a potent weapon. The data show that DUF1 acts as a RID-dependent transforming NADase domain (RDTND) that disrupts NAD+ homeostasis by hijacking calmodulin. The cryo-EM structure of the RDTND-RID duet complexed with calmodulin and Rac1, together with immunological analyses in vitro and in mice, provide mechanistic insight into how V. vulnificus uses the duet to suppress ROS generation by depleting NAD(P)+ and modifying Rac1 in a mutually-reinforcing manner that ultimately paralyzes first line immune responses, promotes dissemination of invaders, and induces sepsis. These data may allow development of tools or strategies to combat MARTX toxin-related human diseases.
Collapse
Affiliation(s)
- Sanghyeon Choi
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Korea
- Microbiome Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, 34141, Korea
| | - Youngjin Lee
- Microbiome Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, 34141, Korea
| | - Shinhye Park
- Microbiome Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, 34141, Korea
- Department of Microbiology and Molecular Biology, Chungnam National University, Daejeon, 34134, Korea
| | - Song Yee Jang
- Microbiome Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, 34141, Korea
- Core Research Facility & Analysis Center, KRIBB, Daejeon, 34141, Korea
| | - Jongbin Park
- Microbiome Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, 34141, Korea
| | - Do Won Oh
- Microbiome Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, 34141, Korea
- Graduate School of Medical Science and Engineering, KAIST, Daejeon, 34141, Korea
| | - Su-Man Kim
- Microbiome Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, 34141, Korea
- Department of Biology Education, Chonnam National University, Gwangju, 61186, Korea
| | - Tae-Hwan Kim
- Microbiome Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, 34141, Korea
- College of Veterinary Medicine, Chungnam National University, Daejeon, 34134, Korea
| | - Ga Seul Lee
- Core Research Facility & Analysis Center, KRIBB, Daejeon, 34141, Korea
- College of Pharmacy, Chungbuk National University, Cheongju, Chungbuk, 28644, Korea
| | - Changyi Cho
- Department of Food Science and Biotechnology, Ewha Womans University, Seoul, 03760, Korea
| | - Byoung Sik Kim
- Department of Food Science and Biotechnology, Ewha Womans University, Seoul, 03760, Korea
| | - Donghan Lee
- Korea Basic Science Institute, Cheongju, Chungbuk, 28119, Korea
| | - Eun-Hee Kim
- Korea Basic Science Institute, Cheongju, Chungbuk, 28119, Korea
| | - Hae-Kap Cheong
- Korea Basic Science Institute, Cheongju, Chungbuk, 28119, Korea
| | - Jeong Hee Moon
- Core Research Facility & Analysis Center, KRIBB, Daejeon, 34141, Korea
| | - Ji-Joon Song
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Korea
| | - Jungwon Hwang
- Microbiome Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, 34141, Korea.
| | - Myung Hee Kim
- Microbiome Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, 34141, Korea.
| |
Collapse
|
13
|
Wahoski CC, Singh B. The Roles of RAC1 and RAC1B in Colorectal Cancer and Their Potential Contribution to Cetuximab Resistance. Cancers (Basel) 2024; 16:2472. [PMID: 39001533 PMCID: PMC11240352 DOI: 10.3390/cancers16132472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 07/03/2024] [Accepted: 07/04/2024] [Indexed: 07/16/2024] Open
Abstract
Colorectal cancer (CRC) is one of the most diagnosed cancers and a leading contributor to cancer-related deaths in the United States. Clinically, standard treatment regimens include surgery, radiation, and chemotherapy; however, there has been increasing development and clinical use of targeted therapies for CRC. Unfortunately, many patients develop resistance to these treatments. Cetuximab, the first targeted therapy approved to treat advanced CRC, is a monoclonal antibody that targets the epidermal growth factor receptor and inhibits downstream pathway activation to restrict tumor cell growth and proliferation. CRC resistance to cetuximab has been well studied, and common resistance mechanisms include constitutive signal transduction through downstream protein mutations and promotion of the epithelial-to-mesenchymal transition. While the most common resistance mechanisms are known, a proportion of patients develop resistance through unknown mechanisms. One protein predicted to contribute to therapy resistance is RAC1, a small GTPase that is involved in cytoskeleton rearrangement, cell migration, motility, and proliferation. RAC1 has also been shown to be overexpressed in CRC. Despite evidence that RAC1 and its alternative splice isoform RAC1B play important roles in CRC and the pathways known to contribute to cetuximab resistance, there is a need to directly study the relationship between RAC1 and RAC1B and cetuximab resistance. This review highlights the recent studies investigating RAC1 and RAC1B in the context of CRC and suggests that these proteins could play a role in resistance to cetuximab.
Collapse
Affiliation(s)
- Claudia C. Wahoski
- Program in Cancer Biology, Vanderbilt University, Nashville, TN 37232, USA
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Bhuminder Singh
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| |
Collapse
|
14
|
Bhat SA, Vasi Z, Jiang L, Selvaraj S, Ferguson R, Gudur A, Ismail H, Adhikari R, Dhabaria A, Ueberheide B, Kuchay S. Geranylgeranylated-SCF FBXO10 Regulates Selective Outer Mitochondrial Membrane Proteostasis and Function. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.16.589745. [PMID: 38659932 PMCID: PMC11042265 DOI: 10.1101/2024.04.16.589745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
E3-ubiquitin ligases (E3s) are main components of the ubiquitin-proteasome system (UPS), as they determine substrate specificity in response to internal and external cues to regulate protein homeostasis. However, the regulation of membrane protein ubiquitination by E3s within distinct cell membrane compartments or organelles is not well understood. We show that FBXO10, the interchangeable component of the SKP1/CUL1/F-box ubiquitin ligase complex (SCF-E3), undergoes lipid-modification with geranylgeranyl isoprenoid at Cysteine953 (C953), facilitating its dynamic trafficking to the outer mitochondrial membrane (OMM). FBXO10 polypeptide does not contain a canonical mitochondrial targeting sequence (MTS); instead, its geranylgeranylation at C953 and the interaction with two cytosolic factors, PDE6δ (a prenyl group-binding protein), and HSP90 (a mitochondrial chaperone) orchestrate specific OMM targeting of prenyl-FBXO10 across diverse membrane compartments. The geranylgeranylation-deficient FBXO10(C953S) mutant redistributes away from the OMM, leading to impaired mitochondrial ATP production, decreased mitochondrial membrane potential, and increased mitochondrial fragmentation. Phosphoglycerate mutase 5 (PGAM5) was identified as a potential substrate of FBXO10 at the OMM using comparative quantitative mass spectrometry analyses of enriched mitochondria (LFQ-MS/MS), leveraging the redistribution of FBXO10(C953S). FBXO10, but not FBXO10(C953S), promoted polyubiquitylation and degradation of PGAM5. Examination of the role of this pathway in a physiological context revealed that the loss of FBXO10 or expression of prenylation-deficient-FBXO10(C953S) inhibited PGAM5 degradation, disrupted mitochondrial homeostasis, and impaired myogenic differentiation of human iPSCs and murine myoblasts. Our studies identify a mechanism for selective E3-ligase mediated regulation of mitochondrial membrane proteostasis and metabolic health, potentially amenable to therapeutic intervention.
Collapse
Affiliation(s)
- Sameer Ahmed Bhat
- Department of Biochemistry and Molecular Genetics, University of Illinois at Chicago, MBRB #1252, Chicago, IL 60607, USA
| | - Zahra Vasi
- Department of Biochemistry and Molecular Genetics, University of Illinois at Chicago, MBRB #1252, Chicago, IL 60607, USA
| | - Liping Jiang
- Department of Biochemistry and Molecular Genetics, University of Illinois at Chicago, MBRB #1252, Chicago, IL 60607, USA
| | - Shruthi Selvaraj
- Department of Biochemistry and Molecular Genetics, University of Illinois at Chicago, MBRB #1252, Chicago, IL 60607, USA
| | - Rachel Ferguson
- Department of Biochemistry and Molecular Genetics, University of Illinois at Chicago, MBRB #1252, Chicago, IL 60607, USA
| | - Anish Gudur
- Department of Biochemistry and Molecular Genetics, University of Illinois at Chicago, MBRB #1252, Chicago, IL 60607, USA
| | - Hagar Ismail
- Department of Biochemistry and Molecular Genetics, University of Illinois at Chicago, MBRB #1252, Chicago, IL 60607, USA
| | - Ritika Adhikari
- Department of Biochemistry and Molecular Genetics, University of Illinois at Chicago, MBRB #1252, Chicago, IL 60607, USA
| | - Avantika Dhabaria
- Department of Biochemistry and Molecular Pharmacology, New York University Langone Medical Center, New York, NY 10013, USA
| | - Beatrix Ueberheide
- Department of Biochemistry and Molecular Pharmacology, New York University Langone Medical Center, New York, NY 10013, USA
| | - ShaFi Kuchay
- Department of Biochemistry and Molecular Genetics, University of Illinois at Chicago, MBRB #1252, Chicago, IL 60607, USA
- Cancer Center, University of Illinois at Chicago
- Lead Contact
| |
Collapse
|
15
|
Hu X, Gan L, Tang Z, Lin R, Liang Z, Li F, Zhu C, Han X, Zheng R, Shen J, Yu J, Luo N, Peng W, Tan J, Li X, Fan J, Wen Q, Wang X, Li J, Zheng X, Liu Q, Guo J, Shi G, Mao H, Chen W, Yin S, Zhou Y. A Natural Small Molecule Mitigates Kidney Fibrosis by Targeting Cdc42-mediated GSK-3β/β-catenin Signaling. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2307850. [PMID: 38240457 PMCID: PMC10987128 DOI: 10.1002/advs.202307850] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 01/08/2024] [Indexed: 04/04/2024]
Abstract
Kidney fibrosis is a common fate of chronic kidney diseases (CKDs), eventually leading to renal dysfunction. Yet, no effective treatment for this pathological process has been achieved. During the bioassay-guided chemical investigation of the medicinal plant Wikstroemia chamaedaphne, a daphne diterpenoid, daphnepedunin A (DA), is characterized as a promising anti-renal fibrotic lead. DA shows significant anti-kidney fibrosis effects in cultured renal fibroblasts and unilateral ureteral obstructed mice, being more potent than the clinical trial drug pirfenidone. Leveraging the thermal proteome profiling strategy, cell division cycle 42 (Cdc42) is identified as the direct target of DA. Mechanistically, DA targets to reduce Cdc42 activity and down-regulates its downstream phospho-protein kinase Cζ(p-PKCζ)/phospho-glycogen synthase kinase-3β (p-GSK-3β), thereby promoting β-catenin Ser33/37/Thr41 phosphorylation and ubiquitin-dependent proteolysis to block classical pro-fibrotic β-catenin signaling. These findings suggest that Cdc42 is a promising therapeutic target for kidney fibrosis, and highlight DA as a potent Cdc42 inhibitor for combating CKDs.
Collapse
Affiliation(s)
- Xinrong Hu
- Department of NephrologyThe First Affiliated HospitalSun Yat‐sen UniversityNHC Key Laboratory of Clinical NephrologyGuangdong Provincial Key Laboratory of NephrologySun Yat‐Sen UniversityGuangzhou510080China
| | - Lu Gan
- School of Pharmaceutical SciencesSun Yat‐sen UniversityGuangzhou510006China
| | - Ziwen Tang
- Department of NephrologyThe First Affiliated HospitalSun Yat‐sen UniversityNHC Key Laboratory of Clinical NephrologyGuangdong Provincial Key Laboratory of NephrologySun Yat‐Sen UniversityGuangzhou510080China
| | - Ruoni Lin
- Department of NephrologyThe First Affiliated HospitalSun Yat‐sen UniversityNHC Key Laboratory of Clinical NephrologyGuangdong Provincial Key Laboratory of NephrologySun Yat‐Sen UniversityGuangzhou510080China
| | - Zhou Liang
- Department of NephrologyThe First Affiliated HospitalSun Yat‐sen UniversityNHC Key Laboratory of Clinical NephrologyGuangdong Provincial Key Laboratory of NephrologySun Yat‐Sen UniversityGuangzhou510080China
| | - Feng Li
- Department of NephrologyThe First Affiliated HospitalSun Yat‐sen UniversityNHC Key Laboratory of Clinical NephrologyGuangdong Provincial Key Laboratory of NephrologySun Yat‐Sen UniversityGuangzhou510080China
| | - Changjian Zhu
- Department of NephrologyThe First Affiliated HospitalSun Yat‐sen UniversityNHC Key Laboratory of Clinical NephrologyGuangdong Provincial Key Laboratory of NephrologySun Yat‐Sen UniversityGuangzhou510080China
| | - Xu Han
- Department of NephrologyThe First Affiliated HospitalSun Yat‐sen UniversityNHC Key Laboratory of Clinical NephrologyGuangdong Provincial Key Laboratory of NephrologySun Yat‐Sen UniversityGuangzhou510080China
| | - Ruilin Zheng
- Department of NephrologyThe First Affiliated HospitalSun Yat‐sen UniversityNHC Key Laboratory of Clinical NephrologyGuangdong Provincial Key Laboratory of NephrologySun Yat‐Sen UniversityGuangzhou510080China
| | - Jiani Shen
- Department of NephrologyThe First Affiliated HospitalSun Yat‐sen UniversityNHC Key Laboratory of Clinical NephrologyGuangdong Provincial Key Laboratory of NephrologySun Yat‐Sen UniversityGuangzhou510080China
| | - Jing Yu
- Department of NephrologyThe First Affiliated HospitalSun Yat‐sen UniversityNHC Key Laboratory of Clinical NephrologyGuangdong Provincial Key Laboratory of NephrologySun Yat‐Sen UniversityGuangzhou510080China
| | - Ning Luo
- Department of NephrologyThe First Affiliated HospitalSun Yat‐sen UniversityNHC Key Laboratory of Clinical NephrologyGuangdong Provincial Key Laboratory of NephrologySun Yat‐Sen UniversityGuangzhou510080China
| | - Wenxing Peng
- Department of NephrologyThe First Affiliated HospitalSun Yat‐sen UniversityNHC Key Laboratory of Clinical NephrologyGuangdong Provincial Key Laboratory of NephrologySun Yat‐Sen UniversityGuangzhou510080China
| | - Jiaqing Tan
- Department of NephrologyThe First Affiliated HospitalSun Yat‐sen UniversityNHC Key Laboratory of Clinical NephrologyGuangdong Provincial Key Laboratory of NephrologySun Yat‐Sen UniversityGuangzhou510080China
| | - Xiaoyan Li
- Department of NephrologyThe First Affiliated HospitalSun Yat‐sen UniversityNHC Key Laboratory of Clinical NephrologyGuangdong Provincial Key Laboratory of NephrologySun Yat‐Sen UniversityGuangzhou510080China
| | - Jinjin Fan
- Department of NephrologyThe First Affiliated HospitalSun Yat‐sen UniversityNHC Key Laboratory of Clinical NephrologyGuangdong Provincial Key Laboratory of NephrologySun Yat‐Sen UniversityGuangzhou510080China
| | - Qiong Wen
- Department of NephrologyThe First Affiliated HospitalSun Yat‐sen UniversityNHC Key Laboratory of Clinical NephrologyGuangdong Provincial Key Laboratory of NephrologySun Yat‐Sen UniversityGuangzhou510080China
| | - Xin Wang
- Department of NephrologyThe First Affiliated HospitalSun Yat‐sen UniversityNHC Key Laboratory of Clinical NephrologyGuangdong Provincial Key Laboratory of NephrologySun Yat‐Sen UniversityGuangzhou510080China
| | - Jianbo Li
- Department of NephrologyThe First Affiliated HospitalSun Yat‐sen UniversityNHC Key Laboratory of Clinical NephrologyGuangdong Provincial Key Laboratory of NephrologySun Yat‐Sen UniversityGuangzhou510080China
| | - Xunhua Zheng
- Department of NephrologyThe First Affiliated HospitalSun Yat‐sen UniversityNHC Key Laboratory of Clinical NephrologyGuangdong Provincial Key Laboratory of NephrologySun Yat‐Sen UniversityGuangzhou510080China
| | - Qinghua Liu
- Department of NephrologyThe First Affiliated HospitalSun Yat‐sen UniversityNHC Key Laboratory of Clinical NephrologyGuangdong Provincial Key Laboratory of NephrologySun Yat‐Sen UniversityGuangzhou510080China
| | - Jianping Guo
- Institute of Precision MedicineThe First Affiliated HospitalSun Yat‐sen UniversityGuangzhou510080China
| | - Guo‐Ping Shi
- Department of MedicineBrigham and Women's Hospital and Harvard Medical SchoolBostonMA02115USA
| | - Haiping Mao
- Department of NephrologyThe First Affiliated HospitalSun Yat‐sen UniversityNHC Key Laboratory of Clinical NephrologyGuangdong Provincial Key Laboratory of NephrologySun Yat‐Sen UniversityGuangzhou510080China
| | - Wei Chen
- Department of NephrologyThe First Affiliated HospitalSun Yat‐sen UniversityNHC Key Laboratory of Clinical NephrologyGuangdong Provincial Key Laboratory of NephrologySun Yat‐Sen UniversityGuangzhou510080China
| | - Sheng Yin
- School of Pharmaceutical SciencesSun Yat‐sen UniversityGuangzhou510006China
| | - Yi Zhou
- Department of NephrologyThe First Affiliated HospitalSun Yat‐sen UniversityNHC Key Laboratory of Clinical NephrologyGuangdong Provincial Key Laboratory of NephrologySun Yat‐Sen UniversityGuangzhou510080China
| |
Collapse
|
16
|
Bement WM, Goryachev AB, Miller AL, von Dassow G. Patterning of the cell cortex by Rho GTPases. Nat Rev Mol Cell Biol 2024; 25:290-308. [PMID: 38172611 DOI: 10.1038/s41580-023-00682-z] [Citation(s) in RCA: 45] [Impact Index Per Article: 45.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/20/2023] [Indexed: 01/05/2024]
Abstract
The Rho GTPases - RHOA, RAC1 and CDC42 - are small GTP binding proteins that regulate basic biological processes such as cell locomotion, cell division and morphogenesis by promoting cytoskeleton-based changes in the cell cortex. This regulation results from active (GTP-bound) Rho GTPases stimulating target proteins that, in turn, promote actin assembly and myosin 2-based contraction to organize the cortex. This basic regulatory scheme, well supported by in vitro studies, led to the natural assumption that Rho GTPases function in vivo in an essentially linear matter, with a given process being initiated by GTPase activation and terminated by GTPase inactivation. However, a growing body of evidence based on live cell imaging, modelling and experimental manipulation indicates that Rho GTPase activation and inactivation are often tightly coupled in space and time via signalling circuits and networks based on positive and negative feedback. In this Review, we present and discuss this evidence, and we address one of the fundamental consequences of coupled activation and inactivation: the ability of the Rho GTPases to self-organize, that is, direct their own transition from states of low order to states of high order. We discuss how Rho GTPase self-organization results in the formation of diverse spatiotemporal cortical patterns such as static clusters, oscillatory pulses, travelling wave trains and ring-like waves. Finally, we discuss the advantages of Rho GTPase self-organization and pattern formation for cell function.
Collapse
Affiliation(s)
- William M Bement
- Center for Quantitative Cell Imaging, Department of Integrative Biology, University of Wisconsin-Madison, Madison, WI, USA.
| | - Andrew B Goryachev
- Center for Engineering Biology, School of Biological Sciences, University of Edinburgh, Edinburgh, UK.
| | - Ann L Miller
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI, USA.
| | | |
Collapse
|
17
|
Bischof L, Schweitzer F, Heinisch JJ. Functional Conservation of the Small GTPase Rho5/Rac1-A Tale of Yeast and Men. Cells 2024; 13:472. [PMID: 38534316 PMCID: PMC10969153 DOI: 10.3390/cells13060472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Revised: 03/02/2024] [Accepted: 03/06/2024] [Indexed: 03/28/2024] Open
Abstract
Small GTPases are molecular switches that participate in many essential cellular processes. Amongst them, human Rac1 was first described for its role in regulating actin cytoskeleton dynamics and cell migration, with a close relation to carcinogenesis. More recently, the role of Rac1 in regulating the production of reactive oxygen species (ROS), both as a subunit of NADPH oxidase complexes and through its association with mitochondrial functions, has drawn attention. Malfunctions in this context affect cellular plasticity and apoptosis, related to neurodegenerative diseases and diabetes. Some of these features of Rac1 are conserved in its yeast homologue Rho5. Here, we review the structural and functional similarities and differences between these two evolutionary distant proteins and propose yeast as a useful model and a device for high-throughput screens for specific drugs.
Collapse
Affiliation(s)
| | | | - Jürgen J. Heinisch
- AG Genetik, Fachbereich Biologie/Chemie, University of Osnabrück, Barbarastrasse 11, D-49076 Osnabrück, Germany; (L.B.); (F.S.)
| |
Collapse
|
18
|
Huang H, Wang S, Guan Y, Ren J, Liu X. Molecular basis and current insights of atypical Rho small GTPase in cancer. Mol Biol Rep 2024; 51:141. [PMID: 38236467 DOI: 10.1007/s11033-023-09140-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Accepted: 12/11/2023] [Indexed: 01/19/2024]
Abstract
Atypical Rho GTPases are a subtype of the Rho GTPase family that are involved in diverse cellular processes. The typical Rho GTPases, led by RhoA, Rac1 and Cdc42, have been well studied, while relative studies on atypical Rho GTPases are relatively still limited and have great exploration potential. With the increase in studies, current evidence suggests that atypical Rho GTPases regulate multiple biological processes and play important roles in the occurrence and development of human cancers. Therefore, this review mainly discusses the molecular basis of atypical Rho GTPases and their roles in cancer. We summarize the sequence characteristics, subcellular localization and biological functions of each atypical Rho GTPase. Moreover, we review the recent advances and potential mechanisms of atypical Rho GTPases in the development of multiple cancers. A comprehensive understanding and extensive exploration of the biological functions of atypical Rho GTPases and their molecular mechanisms in tumors will provide important insights into the pathophysiology of tumors and the development of cancer therapeutic strategies.
Collapse
Affiliation(s)
- Hua Huang
- Center of Excellence for Environmental Safety and Biological Effects, Faculty of Environment and Life, Beijing International Science and Technology Cooperation Base for Antiviral Drugs, Beijing University of Technology, Beijing, 100124, China
| | - Sijia Wang
- Center of Excellence for Environmental Safety and Biological Effects, Faculty of Environment and Life, Beijing International Science and Technology Cooperation Base for Antiviral Drugs, Beijing University of Technology, Beijing, 100124, China
| | - Yifei Guan
- Center of Excellence for Environmental Safety and Biological Effects, Faculty of Environment and Life, Beijing International Science and Technology Cooperation Base for Antiviral Drugs, Beijing University of Technology, Beijing, 100124, China
| | - Jing Ren
- Department of Plastic and Reconstructive Surgery, The First Medical Center, Chinese PLA (People's Liberation Army) General Hospital, Beijing, 100853, China.
| | - Xinhui Liu
- Center of Excellence for Environmental Safety and Biological Effects, Faculty of Environment and Life, Beijing International Science and Technology Cooperation Base for Antiviral Drugs, Beijing University of Technology, Beijing, 100124, China.
- Faculty of Environment and Life, Beijing University of Technology, Beijing, 100124, China.
| |
Collapse
|
19
|
Qin K, Yu M, Fan J, Wang H, Zhao P, Zhao G, Zeng W, Chen C, Wang Y, Wang A, Schwartz Z, Hong J, Song L, Wagstaff W, Haydon RC, Luu HH, Ho SH, Strelzow J, Reid RR, He TC, Shi LL. Canonical and noncanonical Wnt signaling: Multilayered mediators, signaling mechanisms and major signaling crosstalk. Genes Dis 2024; 11:103-134. [PMID: 37588235 PMCID: PMC10425814 DOI: 10.1016/j.gendis.2023.01.030] [Citation(s) in RCA: 55] [Impact Index Per Article: 55.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 11/01/2022] [Accepted: 01/29/2023] [Indexed: 08/18/2023] Open
Abstract
Wnt signaling plays a major role in regulating cell proliferation and differentiation. The Wnt ligands are a family of 19 secreted glycoproteins that mediate their signaling effects via binding to Frizzled receptors and LRP5/6 coreceptors and transducing the signal either through β-catenin in the canonical pathway or through a series of other proteins in the noncanonical pathway. Many of the individual components of both canonical and noncanonical Wnt signaling have additional functions throughout the body, establishing the complex interplay between Wnt signaling and other signaling pathways. This crosstalk between Wnt signaling and other pathways gives Wnt signaling a vital role in many cellular and organ processes. Dysregulation of this system has been implicated in many diseases affecting a wide array of organ systems, including cancer and embryological defects, and can even cause embryonic lethality. The complexity of this system and its interacting proteins have made Wnt signaling a target for many therapeutic treatments. However, both stimulatory and inhibitory treatments come with potential risks that need to be addressed. This review synthesized much of the current knowledge on the Wnt signaling pathway, beginning with the history of Wnt signaling. It thoroughly described the different variants of Wnt signaling, including canonical, noncanonical Wnt/PCP, and the noncanonical Wnt/Ca2+ pathway. Further description involved each of its components and their involvement in other cellular processes. Finally, this review explained the various other pathways and processes that crosstalk with Wnt signaling.
Collapse
Affiliation(s)
- Kevin Qin
- Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, IL 60064, USA
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Michael Yu
- Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, IL 60064, USA
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Jiaming Fan
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
- Ministry of Education Key Laboratory of Diagnostic Medicine, and Department of Clinical Biochemistry, The School of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, China
| | - Hongwei Wang
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Piao Zhao
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
- Departments of Orthopaedic Surgery and Urology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Guozhi Zhao
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
- Departments of Orthopaedic Surgery and Urology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Wei Zeng
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
- Department of Interventional Neurology, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, Guangdong 523475, China
| | - Connie Chen
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Yonghui Wang
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
- Department of Clinical Laboratory Medicine, Shanghai Jiaotong University School of Medicine, Shanghai 200000, China
| | - Annie Wang
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
- Laboratory of Craniofacial Biology and Development, Department of Surgery Section of Plastic Surgery, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Zander Schwartz
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
- School of Biomedical Engineering, Vanderbilt University, Nashville, TN 37235, USA
| | - Jeffrey Hong
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Lily Song
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - William Wagstaff
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Rex C. Haydon
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Hue H. Luu
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Sherwin H. Ho
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Jason Strelzow
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Russell R. Reid
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
- Laboratory of Craniofacial Biology and Development, Department of Surgery Section of Plastic Surgery, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Tong-Chuan He
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
- Laboratory of Craniofacial Biology and Development, Department of Surgery Section of Plastic Surgery, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Lewis L. Shi
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| |
Collapse
|
20
|
Schaefer A, Hodge RG, Zhang H, Hobbs GA, Dilly J, Huynh M, Goodwin CM, Zhang F, Diehl JN, Pierobon M, Baldelli E, Javaid S, Guthrie K, Rashid NU, Petricoin EF, Cox AD, Hahn WC, Aguirre AJ, Bass AJ, Der CJ. RHOA L57V drives the development of diffuse gastric cancer through IGF1R-PAK1-YAP1 signaling. Sci Signal 2023; 16:eadg5289. [PMID: 38113333 PMCID: PMC10791543 DOI: 10.1126/scisignal.adg5289] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 11/03/2023] [Indexed: 12/21/2023]
Abstract
Cancer-associated mutations in the guanosine triphosphatase (GTPase) RHOA are found at different locations from the mutational hotspots in the structurally and biochemically related RAS. Tyr42-to-Cys (Y42C) and Leu57-to-Val (L57V) substitutions are the two most prevalent RHOA mutations in diffuse gastric cancer (DGC). RHOAY42C exhibits a gain-of-function phenotype and is an oncogenic driver in DGC. Here, we determined how RHOAL57V promotes DGC growth. In mouse gastric organoids with deletion of Cdh1, which encodes the cell adhesion protein E-cadherin, the expression of RHOAL57V, but not of wild-type RHOA, induced an abnormal morphology similar to that of patient-derived DGC organoids. RHOAL57V also exhibited a gain-of-function phenotype and promoted F-actin stress fiber formation and cell migration. RHOAL57V retained interaction with effectors but exhibited impaired RHOA-intrinsic and GAP-catalyzed GTP hydrolysis, which favored formation of the active GTP-bound state. Introduction of missense mutations at KRAS residues analogous to Tyr42 and Leu57 in RHOA did not activate KRAS oncogenic potential, indicating distinct functional effects in otherwise highly related GTPases. Both RHOA mutants stimulated the transcriptional co-activator YAP1 through actin dynamics to promote DGC progression; however, RHOAL57V additionally did so by activating the kinases IGF1R and PAK1, distinct from the FAK-mediated mechanism induced by RHOAY42C. Our results reveal that RHOAL57V and RHOAY42C drive the development of DGC through distinct biochemical and signaling mechanisms.
Collapse
Affiliation(s)
- Antje Schaefer
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Richard G. Hodge
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Haisheng Zhang
- Division of Molecular and Cellular Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - G. Aaron Hobbs
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Julien Dilly
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Minh Huynh
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Craig M. Goodwin
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Feifei Zhang
- Division of Molecular and Cellular Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - J. Nathaniel Diehl
- Curriculum in Genetics and Molecular Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Mariaelena Pierobon
- Center for Applied Proteomics and Molecular Medicine, School of Systems Biology, George Mason University, Manassas, VA 20110, USA
| | - Elisa Baldelli
- Center for Applied Proteomics and Molecular Medicine, School of Systems Biology, George Mason University, Manassas, VA 20110, USA
| | - Sehrish Javaid
- Program in Oral and Craniofacial Biomedicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Karson Guthrie
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Naim U. Rashid
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Department of Biostatistics, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Emanuel F. Petricoin
- Center for Applied Proteomics and Molecular Medicine, School of Systems Biology, George Mason University, Manassas, VA 20110, USA
| | - Adrienne D. Cox
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Program in Oral and Craniofacial Biomedicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Department of Radiation Oncology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - William C. Hahn
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
- Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA 02115, USA
- Harvard Medical School, Boston, MA 02115, USA
- Cancer Program, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Andrew J. Aguirre
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
- Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA 02115, USA
- Harvard Medical School, Boston, MA 02115, USA
- Cancer Program, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Adam J. Bass
- Division of Molecular and Cellular Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
- Cancer Program, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- Herbert Irving Comprehensive Cancer Center at Columbia University, New York, NY 10032, USA
| | - Channing J. Der
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Curriculum in Genetics and Molecular Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Program in Oral and Craniofacial Biomedicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| |
Collapse
|
21
|
Poku R, Amissah F, Alan JK. PI3K Functions Downstream of Cdc42 to Drive Cancer phenotypes in a Melanoma Cell Line. Small GTPases 2023; 14:1-13. [PMID: 37114375 PMCID: PMC10150613 DOI: 10.1080/21541248.2023.2202612] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/29/2023] Open
Abstract
Rho proteins are part of the Ras superfamily, which function to modulate cytoskeletal dynamics including cell adhesion and motility. Recently, an activating mutation in Cdc42, a Rho family GTPase, was found in a patient sample of melanoma. Previously, our work had shown the PI3K was important downstream of mutationally active Cdc42. Our present study sought to determine whether PI3K was a crucial downstream partner for Cdc42 in a melanoma cells line with a BRAF mutation, which is the most common mutation in cutaneous melanoma. In this work we were able to show that Cdc42 contributes to proliferation, anchorage-independent growth, cell motility and invasion. Treatment with a pan-PI3K inhibitor was able to effectively ameliorate all these cancer phenotypes. These data suggest that PI3K may be an important target downstream of Cdc42 in melanoma.
Collapse
Affiliation(s)
- Rosemary Poku
- College of Medicine, Central Michigan University, Mt. Pleasant, MI, USA
| | - Felix Amissah
- Department of Pharmaceutical Science, Ferris State University, Big Rapids, MI, USA
| | - Jamie K Alan
- Department of Pharmacology and Toxicology, College of Human Medicine, Michigan State University, East Lansing, MI, USA
| |
Collapse
|
22
|
Kirchenwitz M, Halfen J, von Peinen K, Prettin S, Kollasser J, Zur Lage S, Blankenfeldt W, Brakebusch C, Rottner K, Steffen A, Stradal TEB. RhoB promotes Salmonella survival by regulating autophagy. Eur J Cell Biol 2023; 102:151358. [PMID: 37703749 DOI: 10.1016/j.ejcb.2023.151358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 07/05/2023] [Accepted: 08/29/2023] [Indexed: 09/15/2023] Open
Abstract
Salmonella enterica serovar Typhimurium manipulates cellular Rho GTPases for host cell invasion by effector protein translocation via the Type III Secretion System (T3SS). The two Guanine nucleotide exchange (GEF) mimicking factors SopE and -E2 and the inositol phosphate phosphatase (PiPase) SopB activate the Rho GTPases Rac1, Cdc42 and RhoA, thereby mediating bacterial invasion. S. Typhimurium lacking these three effector proteins are largely invasion-defective. Type III secretion is crucial for both early and later phases of the intracellular life of S. Typhimurium. Here we investigated whether and how the small GTPase RhoB, known to localize on endomembrane vesicles and at the invasion site of S. Typhimurium, contributes to bacterial invasion and to subsequent steps relevant for S. Typhimurium lifestyle. We show that RhoB is significantly upregulated within hours of Salmonella infection. This effect depends on the presence of the bacterial effector SopB, but does not require its phosphatase activity. Our data reveal that SopB and RhoB bind to each other, and that RhoB localizes on early phagosomes of intracellular S. Typhimurium. Whereas both SopB and RhoB promote intracellular survival of Salmonella, RhoB is specifically required for Salmonella-induced upregulation of autophagy. Finally, in the absence of RhoB, vacuolar escape and cytosolic hyper-replication of S. Typhimurium is diminished. Our findings thus uncover a role for RhoB in Salmonella-induced autophagy, which supports intracellular survival of the bacterium and is promoted through a positive feedback loop by the Salmonella effector SopB.
Collapse
Affiliation(s)
- Marco Kirchenwitz
- Department of Cell Biology, Helmholtz Centre for Infection Research, Inhoffenstrasse 7, 38124 Braunschweig, Germany
| | - Jessica Halfen
- Department of Cell Biology, Helmholtz Centre for Infection Research, Inhoffenstrasse 7, 38124 Braunschweig, Germany
| | - Kristin von Peinen
- Department of Cell Biology, Helmholtz Centre for Infection Research, Inhoffenstrasse 7, 38124 Braunschweig, Germany
| | - Silvia Prettin
- Department of Cell Biology, Helmholtz Centre for Infection Research, Inhoffenstrasse 7, 38124 Braunschweig, Germany
| | - Jana Kollasser
- Department of Cell Biology, Helmholtz Centre for Infection Research, Inhoffenstrasse 7, 38124 Braunschweig, Germany
| | - Susanne Zur Lage
- Department Structure and Function of Proteins, Helmholtz Centre for Infection Research, Inhoffenstrasse 7, 38124 Braunschweig, Germany
| | - Wulf Blankenfeldt
- Department Structure and Function of Proteins, Helmholtz Centre for Infection Research, Inhoffenstrasse 7, 38124 Braunschweig, Germany
| | - Cord Brakebusch
- Biotech Research and Innovation Centre, University of Copenhagen, Copenhagen, Denmark
| | - Klemens Rottner
- Department of Cell Biology, Helmholtz Centre for Infection Research, Inhoffenstrasse 7, 38124 Braunschweig, Germany; Division of Molecular Cell Biology, Zoological Institute, Technische Universität Braunschweig, Spielmannstrasse 7, 38106 Braunschweig, Germany
| | - Anika Steffen
- Department of Cell Biology, Helmholtz Centre for Infection Research, Inhoffenstrasse 7, 38124 Braunschweig, Germany
| | - Theresia E B Stradal
- Department of Cell Biology, Helmholtz Centre for Infection Research, Inhoffenstrasse 7, 38124 Braunschweig, Germany.
| |
Collapse
|
23
|
Castillo S, Gence R, Pagan D, Koraïchi F, Bouchenot C, Pons BJ, Boëlle B, Olichon A, Lajoie-Mazenc I, Favre G, Pédelacq JD, Cabantous S. Visualizing the subcellular localization of RHOB-GTP and GTPase-Effector complexes using a split-GFP/nanobody labelling assay. Eur J Cell Biol 2023; 102:151355. [PMID: 37639782 DOI: 10.1016/j.ejcb.2023.151355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 08/04/2023] [Accepted: 08/20/2023] [Indexed: 08/31/2023] Open
Abstract
Small GTPases are highly regulated proteins that control essential signaling pathways through the activity of their effector proteins. Among the RHOA subfamily, RHOB regulates peculiar functions that could be associated with the control of the endocytic trafficking of signaling proteins. Here, we used an optimized assay based on tripartite split-GFP complementation to localize GTPase-effector complexes with high-resolution. The detection of RHOB interaction with the Rhotekin Rho binding domain (RBD) that specifically recognizes the active GTP-bound GTPase, is performed in vitro by the concomitant addition of recombinant GFP1-9 and a GFP nanobody. Analysis of RHOB-RBD complexes localization profiles combined with immunostaining and live cell imaging indicated a serum-dependent reorganization of the endosomal and membrane pool of active RHOB. We further applied this technology to the detection of RHO-effector complexes that highlighted their subcellular localization with high resolution among the different cellular compartments.
Collapse
Affiliation(s)
- Sebastian Castillo
- Centre de Recherche en Cancérologie de Toulouse (CRCT), INSERM, Université de Toulouse, UPS, CNRS, 31037 Toulouse, France
| | - Rémi Gence
- Centre de Recherche en Cancérologie de Toulouse (CRCT), INSERM, Université de Toulouse, UPS, CNRS, 31037 Toulouse, France
| | - Delphine Pagan
- Centre de Recherche en Cancérologie de Toulouse (CRCT), INSERM, Université de Toulouse, UPS, CNRS, 31037 Toulouse, France
| | - Faten Koraïchi
- Centre de Recherche en Cancérologie de Toulouse (CRCT), INSERM, Université de Toulouse, UPS, CNRS, 31037 Toulouse, France
| | | | - Benoit J Pons
- Environment and Sustainability Institute, Biosciences, University of Exeter, Penryn TR10 9FE, United Kingdom
| | - Betty Boëlle
- Centre de Recherche en Cancérologie de Toulouse (CRCT), INSERM, Université de Toulouse, UPS, CNRS, 31037 Toulouse, France
| | - Aurélien Olichon
- Université de la Réunion, INSERM, UMR 1188 Diabète Athérothrombose Thérapies Réunion Océan Indien (DéTROI), 97410 Saint-Pierre, La Réunion, France
| | - Isabelle Lajoie-Mazenc
- Centre de Recherche en Cancérologie de Toulouse (CRCT), INSERM, Université de Toulouse, UPS, CNRS, 31037 Toulouse, France
| | - Gilles Favre
- Centre de Recherche en Cancérologie de Toulouse (CRCT), INSERM, Université de Toulouse, UPS, CNRS, 31037 Toulouse, France
| | - Jean-Denis Pédelacq
- Institut de Pharmacologie et de Biologie Structurale (IPBS), Université de Toulouse, CNRS, Université Toulouse III - Paul Sabatier (UPS), Toulouse, France
| | - Stéphanie Cabantous
- Centre de Recherche en Cancérologie de Toulouse (CRCT), INSERM, Université de Toulouse, UPS, CNRS, 31037 Toulouse, France.
| |
Collapse
|
24
|
Araya MK, Gorfe AA. Conformational ensemble-dependent lipid recognition and segregation by prenylated intrinsically disordered regions in small GTPases. Commun Biol 2023; 6:1111. [PMID: 37919400 PMCID: PMC10622456 DOI: 10.1038/s42003-023-05487-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 10/19/2023] [Indexed: 11/04/2023] Open
Abstract
We studied diverse prenylated intrinsically disordered regions (PIDRs) of Ras and Rho family small GTPases using long timescale atomistic molecular dynamics simulations in an asymmetric model membrane of phosphatidylcholine (PC) and phosphatidylserine (PS) lipids. Here we show that conformational plasticity is a key determinant of lipid sorting by polybasic PIDRs and provide evidence for lipid sorting based on both headgroup and acyl chain structures. We further show that conformational ensemble-based lipid recognition is generalizable to all polybasic PIDRs, and that the sequence outside the polybasic domain (PBD) modulates the conformational plasticity, bilayer adsorption, and interactions of PIDRs with membrane lipids. Specifically, we find that palmitoylation, the ratio of basic to acidic residues, and the hydrophobic content of the sequence outside the PBD significantly impact the diversity of conformational substates and hence the extent of conformation-dependent lipid interactions. We thus propose that the PBD is required but not sufficient for the full realization of lipid sorting by prenylated PBD-containing membrane anchors, and that the membrane anchor is not only responsible for high affinity membrane binding but also directs the protein to the right target membrane where it participates in lipid sorting.
Collapse
Affiliation(s)
- Mussie K Araya
- McGovern Medical School, University of Texas Health Science Center at Houston, Department of Integrative Biology and Pharmacology, 6431 Fannin St., Houston, TX, 77030, USA
| | - Alemayehu A Gorfe
- McGovern Medical School, University of Texas Health Science Center at Houston, Department of Integrative Biology and Pharmacology, 6431 Fannin St., Houston, TX, 77030, USA.
- Biochemistry and Cell Biology Program & Therapeutics and Pharmacology Program, UTHealth MD Anderson Cancer Center Graduate School of Biomedical Sciences, Houston, 6431 Fannin St., TX, 77030, USA.
| |
Collapse
|
25
|
Nair A, Chakraborty S, Saha B. CD40 induces selective routing of Ras isoforms to subcellular compartments. J Cell Commun Signal 2023; 17:1009-1021. [PMID: 37126117 PMCID: PMC10409697 DOI: 10.1007/s12079-023-00747-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Accepted: 04/10/2023] [Indexed: 05/02/2023] Open
Abstract
Ras GTPases are central to cellular signaling and oncogenesis. The three loci of the Ras gene encode for four protein isoforms namely Harvey-Ras (H-Ras), Kirsten-Ras (K-Ras 4A and 4B), and Neuroblastoma-Ras (N-Ras) which share ~ 80% sequence similarity and used to be considered functionally redundant. The small molecule inhibitors of Ras lack specificity for the isoforms leading to widespread toxicity in Ras-targeted therapeutics. Ras isoforms' tissue-specific expression and selective association with carcinogenesis, embryonic development, and infection suggested their non-redundancy. We show that CD40, an antigen-presenting cell (APC)-expressed immune receptor, induces selective relocation of H-Ras, K-Ras, and N-Ras to the Plasma membrane (PM) lipid rafts, mitochondria, endoplasmic reticulum (ER), but not to the Golgi complex (GC). The two palmitoylated Ras isoforms-H-Ras and N-Ras-have a similar pattern of colocalization into the lipid-rich raft microdomain of the PM at early time points when compared to non-palmitoylated K-Ras (4B) with polylysine residues. CD40-induced trafficking of H-Ras and K-Ras to mitochondria and ER was found to be similar but different from that of N-Ras. Trafficking of all the Ras isoforms to the GC was independent of CD40 stimulation. The receptor-driven trafficking and spatial segregation of H-Ras, K-Ras, and N-Ras imply isoform-specific subcellular signaling platforms for the functional non-redundancy of Ras isoforms. PDB structures have been modified to illustrate various signaling proteins.
Collapse
Affiliation(s)
- Arathi Nair
- National Centre for Cell Science, Ganeshkhind, Pune, 411007, India.
| | - Sushmita Chakraborty
- Department of Transplant Immunology and Immunogenetics, All India Institute of Medical Sciences, New Delhi, 1100029, India
| | - Bhaskar Saha
- National Centre for Cell Science, Ganeshkhind, Pune, 411007, India.
| |
Collapse
|
26
|
Araya MK, Gorfe AA. Conformational ensemble dependent lipid recognition and segregation by prenylated intrinsically disordered regions in small GTPases. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.11.553039. [PMID: 37609330 PMCID: PMC10441427 DOI: 10.1101/2023.08.11.553039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/24/2023]
Abstract
We studied diverse prenylated intrinsically disordered regions (PIDRs) of Ras and Rho family small GTPases using long timescale atomistic molecular dynamics simulations in an asymmetric model membrane of phosphatidylcholine (PC) and phosphatidylserine (PS) lipids. We show that conformational plasticity is a key determinant of lipid sorting by polybasic PIDRs and provide evidence for lipid sorting based on both headgroup and acyl chain structures. We further show that conformational ensemble-based lipid recognition is generalizable to all polybasic PIDRs, and that the sequence outside the polybasic domain (PBD) modulates the conformational plasticity, bilayer adsorption, and interactions of PIDRs with membrane lipids. Specifically, we found that palmitoylation, the ratio of basic to acidic residues, and the hydrophobic content of the sequence outside the PBD significantly impact the diversity of conformational substates and hence the extent of conformation-dependent lipid interactions. We thus propose that the PBD is required but not sufficient for the full realization of lipid sorting by prenylated PBD-containing membrane anchors, and that the membrane anchor is not only responsible for high affinity membrane binding but also directs the protein to the right target membrane where it participates in lipid sorting.
Collapse
|
27
|
Avard RC, Broad ML, Zandkarimi F, Devanny AJ, Hammer JL, Yu K, Guzman A, Kaufman LJ. DISC-3D: dual-hydrogel system enhances optical imaging and enables correlative mass spectrometry imaging of invading multicellular tumor spheroids. Sci Rep 2023; 13:12383. [PMID: 37524722 PMCID: PMC10390472 DOI: 10.1038/s41598-023-38699-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 07/13/2023] [Indexed: 08/02/2023] Open
Abstract
Multicellular tumor spheroids embedded in collagen I matrices are common in vitro systems for the study of solid tumors that reflect the physiological environment and complexities of the in vivo environment. While collagen I environments are physiologically relevant and permissive of cell invasion, studying spheroids in such hydrogels presents challenges to key analytical assays and to a wide array of imaging modalities. While this is largely due to the thickness of the 3D hydrogels that in other samples can typically be overcome by sectioning, because of their highly porous nature, collagen I hydrogels are very challenging to section, especially in a manner that preserves the hydrogel network including cell invasion patterns. Here, we describe a novel method for preparing and cryosectioning invasive spheroids in a two-component (collagen I and gelatin) matrix, a technique we term dual-hydrogel in vitro spheroid cryosectioning of three-dimensional samples (DISC-3D). DISC-3D does not require cell fixation, preserves the architecture of invasive spheroids and their surroundings, eliminates imaging challenges, and allows for use of techniques that have infrequently been applied in three-dimensional spheroid analysis, including super-resolution microscopy and mass spectrometry imaging.
Collapse
Affiliation(s)
- Rachel C Avard
- Department of Chemistry, Columbia University, New York, NY, 10027, USA
| | - Megan L Broad
- Department of Chemistry, Columbia University, New York, NY, 10027, USA
- Department of Chemistry, Cardiff University, Cardiff, CF10 3AT, Wales, UK
| | | | | | - Joseph L Hammer
- Department of Chemistry, Columbia University, New York, NY, 10027, USA
| | - Karen Yu
- Department of Chemistry, Columbia University, New York, NY, 10027, USA
- Department of Physics, Columbia University, New York, NY, 10027, USA
| | - Asja Guzman
- Department of Biological Sciences, Columbia University, New York, NY, 10027, USA
| | - Laura J Kaufman
- Department of Chemistry, Columbia University, New York, NY, 10027, USA.
| |
Collapse
|
28
|
Zaoui K, Duhamel S. RhoB as a tumor suppressor: It’s all about localization. Eur J Cell Biol 2023; 102:151313. [PMID: 36996579 DOI: 10.1016/j.ejcb.2023.151313] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 02/15/2023] [Accepted: 03/23/2023] [Indexed: 03/30/2023] Open
Abstract
The small GTPase RhoB is distinguished from other Rho proteins by its unique subcellular localization in endosomes, multivesicular bodies, and nucleus. Despite high sequence homology with RhoA and RhoC, RhoB is mainly associated with tumor suppressive function, while RhoA and RhoC support oncogenic transformation in most malignancies. RhoB regulates the endocytic trafficking of signaling molecules and cytoskeleton remodeling, thereby controlling growth, apoptosis, stress response, immune function, and cell motility in various contexts. Some of these functions may be ascribed to RhoB's unique subcellular localization to endocytic compartments. Here we describe the pleiotropic roles of RhoB in cancer suppression in the context of its subcellular localization, and we discuss possible therapeutic avenues to pursue and highlight priorities for future research.
Collapse
|
29
|
Cui H, Liu Y, Zheng Y, Li H, Zhang M, Wang X, Zhao X, Cheng H, Xu J, Chen X, Ding Z. Intelectin enhances the phagocytosis of macrophages via CDC42-WASF2-ARPC2 signaling axis in Megalobrama amblycephala. Int J Biol Macromol 2023; 236:124027. [PMID: 36907302 DOI: 10.1016/j.ijbiomac.2023.124027] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Revised: 03/07/2023] [Accepted: 03/08/2023] [Indexed: 03/14/2023]
Abstract
Intelectin has been identified in various vertebrates and plays an important role in the host immune system. In our previous studies, recombinant Megalobrama amblycephala intelectin (rMaINTL) protein with excellent bacterial binding and agglutination activities enhances the phagocytic and killing activities of macrophages in M. amblycephala; however, the underlying regulatory mechanisms remain unclear. The present study showed that treatment with Aeromonas hydrophila and LPS induced the expression of rMaINTL in macrophages, and its level and distribution in macrophages or kidney tissue markedly increased after incubation or injection with rMaINTL. The cellular structure of macrophages was significantly affected after incubation with rMaINTL, resulting in an increased surface area and pseudopodia extension, which might contribute to enhancing the phagocytic ability of macrophages. Then, digital gene expression profiling analysis of the kidneys from rMaINTL-treated juvenile M. amblycephala identified some phagocytosis-related signaling factors that were enriched in pathways involved in the regulation of the actin cytoskeleton. In addition, qRT-PCR and western blotting verified that rMaINTL upregulated the expression of CDC42, WASF2, and ARPC2 in vitro and in vivo; however, the expression of these proteins was inhibited by a CDC42 inhibitor in macrophages. Moreover, CDC42 mediated the promotion of rMaINTL on actin polymerization by increasing the F-actin/G-actin ratio, which led to the extension of pseudopodia and remodeling of the macrophage cytoskeleton. Furthermore, the enhancement of macrophage phagocytosis by rMaINTL was blocked by the CDC42 inhibitor. These results suggested that rMaINTL induced the expression of CDC42 as well as the downstream signaling molecules WASF2 and ARPC2, thereby facilitating actin polymerization to promote cytoskeletal remodeling and phagocytosis. Overall, MaINTL enhanced the phagocytosis activity of macrophages in M. amblycephala via activation of the CDC42-WASF2-ARPC2 signaling axis.
Collapse
Affiliation(s)
- Hujun Cui
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang 222005, China; School of Marine Science and Fisheries, Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang 222005, China
| | - Yunlong Liu
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang 222005, China; School of Marine Science and Fisheries, Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang 222005, China
| | - Yancui Zheng
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang 222005, China; School of Marine Science and Fisheries, Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang 222005, China
| | - Hongping Li
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang 222005, China; School of Marine Science and Fisheries, Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang 222005, China
| | - Minying Zhang
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang 222005, China; School of Marine Science and Fisheries, Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang 222005, China
| | - Xu Wang
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang 222005, China; School of Marine Science and Fisheries, Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang 222005, China
| | - Xiaoheng Zhao
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang 222005, China; School of Marine Science and Fisheries, Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang 222005, China
| | - Hanliang Cheng
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang 222005, China; School of Marine Science and Fisheries, Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang 222005, China
| | - Jianhe Xu
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang 222005, China; School of Marine Science and Fisheries, Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang 222005, China
| | - Xiangning Chen
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang 222005, China; School of Marine Science and Fisheries, Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang 222005, China
| | - Zhujin Ding
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang 222005, China; School of Marine Science and Fisheries, Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang 222005, China.
| |
Collapse
|
30
|
Podieh F, Wensveen R, Overboom M, Abbas L, Majolée J, Hordijk P. Differential role for rapid proteostasis in Rho GTPase-mediated control of quiescent endothelial integrity. J Biol Chem 2023; 299:104593. [PMID: 36894017 PMCID: PMC10124901 DOI: 10.1016/j.jbc.2023.104593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 02/22/2023] [Accepted: 02/27/2023] [Indexed: 03/09/2023] Open
Abstract
Endothelial monolayer permeability is regulated by actin dynamics and vesicular traffic. Recently, ubiquitination was also implicated in the integrity of quiescent endothelium, as it differentially controls the localization and stability of adhesion- and signaling proteins. However, the more general effect of fast protein turnover on endothelial integrity is not clear. Here, we found that inhibition of E1 ubiquitin ligases induces a rapid, reversible loss of integrity in quiescent, primary human endothelial monolayers, accompanied by increased F-actin stress fibers and the formation of intercellular gaps. Concomitantly, total protein and activity of the actin-regulating GTPase RhoB, but not its close homologue RhoA, increase ∼10-fold in 5-8 h. We determined that, the depletion of RhoB, but not of RhoA, the inhibition of actin contractility and the inhibition of protein synthesis all significantly rescue the loss of cell-cell contact induced by E1 ligase inhibition. Collectively, our data suggest that in quiescent human endothelial cells, the continuous and fast turnover of short-lived proteins that negatively regulate cell-cell contact, is essential to preserve monolayer integrity.
Collapse
Affiliation(s)
- Fabienne Podieh
- Amsterdam UMC, location Vrije Universiteit Amsterdam, Physiology, De Boelelaan 1117, Amsterdam, Netherlands; Amsterdam Cardiovascular Sciences, Microcirculation, Amsterdam, The Netherlands
| | - Roos Wensveen
- Amsterdam UMC, location Vrije Universiteit Amsterdam, Physiology, De Boelelaan 1117, Amsterdam, Netherlands; Amsterdam Cardiovascular Sciences, Microcirculation, Amsterdam, The Netherlands
| | - MaxC Overboom
- Amsterdam UMC, location Vrije Universiteit Amsterdam, Physiology, De Boelelaan 1117, Amsterdam, Netherlands; Amsterdam Cardiovascular Sciences, Microcirculation, Amsterdam, The Netherlands
| | - Lotte Abbas
- Amsterdam UMC, location Vrije Universiteit Amsterdam, Physiology, De Boelelaan 1117, Amsterdam, Netherlands; Amsterdam Cardiovascular Sciences, Microcirculation, Amsterdam, The Netherlands
| | - Jisca Majolée
- Amsterdam UMC, location Vrije Universiteit Amsterdam, Physiology, De Boelelaan 1117, Amsterdam, Netherlands; Amsterdam Cardiovascular Sciences, Microcirculation, Amsterdam, The Netherlands; Developmental Biology and Stem Cell Research, Hubrecht Institute, 3584 CT, Utrecht, The Netherlands
| | - PeterL Hordijk
- Amsterdam UMC, location Vrije Universiteit Amsterdam, Physiology, De Boelelaan 1117, Amsterdam, Netherlands; Amsterdam Cardiovascular Sciences, Microcirculation, Amsterdam, The Netherlands.
| |
Collapse
|
31
|
Argueta CE, Figy C, Bouali S, Guo A, Yeung KC, Fenteany G. RKIP localizes to the nucleus through a bipartite nuclear localization signal and interaction with importin α to regulate mitotic progression. J Biol Chem 2023; 299:103023. [PMID: 36805338 PMCID: PMC10060766 DOI: 10.1016/j.jbc.2023.103023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 01/13/2023] [Accepted: 02/02/2023] [Indexed: 02/17/2023] Open
Abstract
Raf kinase inhibitor protein (RKIP) is a multifunctional modulator of intracellular signal transduction. Although most of its functions have been considered cytosolic, we show here that the localization of RKIP is primarily nuclear in both growing and quiescent Madin-Darby canine kidney epithelial cells and in Cal-51 and BT-20 human breast cancer cells. We have identified a putative bipartite nuclear localization signal (NLS) in RKIP that maps to the surface of the protein surrounding a known regulatory region. Like classical NLS sequences, the putative NLS of RKIP is rich in arginine and lysine residues. Deletion of and point mutations in the putative NLS lead to decreased nuclear localization. Point mutation of all the basic residues in the putative NLS of RKIP particularly strongly reduces nuclear localization. We found consistent results in reexpression experiments with wildtype or mutant RKIP in RKIP-silenced cells. A fusion construct of the putative NLS of RKIP alone to a heterologous reporter protein leads to nuclear localization of the fusion protein, demonstrating that this sequence alone is sufficient for import into the nucleus. We found that RKIP interacts with the nuclear transport factor importin α in BT-20 and MDA-MB-231 human breast cancer cells, suggesting importin-mediated active nuclear translocation. Taken together, these findings suggest that a bipartite NLS in RKIP interacts with importin α for active transport of RKIP into the nucleus and that this process may be involved in the regulation of mitotic progression. Evaluating the biological function of nuclear localization of RKIP, we found that the presence of the putative NLS is important for the role of RKIP in mitotic checkpoint regulation in MCF-7 human breast cancer cells.
Collapse
Affiliation(s)
- Christian E Argueta
- Department of Chemistry, University of Connecticut, Storrs, Connecticut, USA
| | - Christopher Figy
- Department of Cell and Cancer Biology, University of Toledo College of Medicine, Toledo, Ohio, USA
| | - Sawssen Bouali
- Department of Medical Chemistry, University of Szeged, Szeged, Hungary
| | - Anna Guo
- Department of Cell and Cancer Biology, University of Toledo College of Medicine, Toledo, Ohio, USA
| | - Kam C Yeung
- Department of Cell and Cancer Biology, University of Toledo College of Medicine, Toledo, Ohio, USA
| | - Gabriel Fenteany
- Department of Medical Chemistry, University of Szeged, Szeged, Hungary; ELKH-SZTE Biomimetic Systems Research Group, Eötvös Loránd Research Network, Szeged, Hungary.
| |
Collapse
|
32
|
Liang D, Jiang L, Bhat SA, Missiroli S, Perrone M, Lauriola A, Adhikari R, Gudur A, Vasi Z, Ahearn I, Guardavaccaro D, Giorgi C, Philips M, Kuchay S. Palmitoylation and PDE6δ regulate membrane-compartment-specific substrate ubiquitylation and degradation. Cell Rep 2023; 42:111999. [PMID: 36662618 PMCID: PMC9988375 DOI: 10.1016/j.celrep.2023.111999] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 11/11/2022] [Accepted: 01/04/2023] [Indexed: 01/20/2023] Open
Abstract
Substrate degradation by the ubiquitin proteasome system (UPS) in specific membrane compartments remains elusive. Here, we show that the interplay of two lipid modifications and PDE6δ regulates compartmental substrate targeting via the SCFFBXL2. FBXL2 is palmitoylated in a prenylation-dependent manner on cysteines 417 and 419 juxtaposed to the CaaX motif. Palmitoylation/depalmitoylation regulates its subcellular trafficking for substrate engagement and degradation. To control its subcellular distribution, lipid-modified FBXL2 interacts with PDE6δ. Perturbing the equilibrium between FBXL2 and PDE6δ disrupts the delivery of FBXL2 to all membrane compartments, whereas depalmitoylated FBXL2 is enriched on the endoplasmic reticulum (ER). Depalmitoylated FBXL2(C417S/C419S) promotes the degradation of IP3R3 at the ER, inhibits IP3R3-dependent mitochondrial calcium overload, and counteracts calcium-dependent cell death upon oxidative stress. In contrast, disrupting the PDE6δ-FBXL2 equilibrium has the opposite effect. These findings describe a mechanism underlying spatially-restricted substrate degradation and suggest that inhibition of FBXL2 palmitoylation and/or binding to PDE6δ may offer therapeutic benefits.
Collapse
Affiliation(s)
- David Liang
- Department of Biochemistry and Molecular Genetics, University of Illinois at Chicago, MBRB #1157, Chicago, IL 60607, USA
| | - Liping Jiang
- Department of Biochemistry and Molecular Genetics, University of Illinois at Chicago, MBRB #1157, Chicago, IL 60607, USA
| | - Sameer Ahmed Bhat
- Department of Biochemistry and Molecular Genetics, University of Illinois at Chicago, MBRB #1157, Chicago, IL 60607, USA
| | - Sonia Missiroli
- Department of Medical Sciences, Section of Experimental Medicine, University of Ferrara, 44121 Ferrara, Italy
| | - Mariasole Perrone
- Department of Medical Sciences, Section of Experimental Medicine, University of Ferrara, 44121 Ferrara, Italy
| | - Angela Lauriola
- Department of Biotechnology, University of Verona, 37134 Verona, Italy
| | - Ritika Adhikari
- Department of Biochemistry and Molecular Genetics, University of Illinois at Chicago, MBRB #1157, Chicago, IL 60607, USA
| | - Anish Gudur
- Department of Biochemistry and Molecular Genetics, University of Illinois at Chicago, MBRB #1157, Chicago, IL 60607, USA
| | - Zahra Vasi
- Department of Biochemistry and Molecular Genetics, University of Illinois at Chicago, MBRB #1157, Chicago, IL 60607, USA
| | - Ian Ahearn
- Department of Dermatology and Perlmutter Cancer Center, New York University Grossman School of Medicine, New York, NY 10016, USA
| | | | - Carlotta Giorgi
- Department of Medical Sciences, Section of Experimental Medicine, University of Ferrara, 44121 Ferrara, Italy
| | - Mark Philips
- Department of Medicine and Perlmutter Cancer Center, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Shafi Kuchay
- Department of Biochemistry and Molecular Genetics, University of Illinois at Chicago, MBRB #1157, Chicago, IL 60607, USA.
| |
Collapse
|
33
|
de Seze J, Gatin J, Coppey M. RhoA regulation in space and time. FEBS Lett 2023; 597:836-849. [PMID: 36658753 DOI: 10.1002/1873-3468.14578] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 12/22/2022] [Accepted: 12/29/2022] [Indexed: 01/21/2023]
Abstract
RhoGTPases are well known for being controllers of cell cytoskeleton and share common features in the way they act and are controlled. These include their switch from GDP to GTP states, their regulations by different guanine exchange factors (GEFs), GTPase-activating proteins and guanosine dissociation inhibitors (GDIs), and their similar structure of active sites/membrane anchors. These very similar features often lead to the common consideration that the differences in their biological effects mainly arise from the different types of regulators and specific effectors associated with each GTPase. Focusing on data obtained through biosensors, live cell microscopy and recent optogenetic approaches, we highlight in this review that the regulation of RhoA appears to depart from Cdc42 and Rac1 modes of regulation through its enhanced lability at the plasma membrane. RhoA presents a high dynamic turnover at the membrane that is regulated not only by GDIs but also by GEFs, effectors and a possible soluble conformational state. This peculiarity of RhoA regulation may be important for the specificities of its functions, such as the existence of activity waves or its putative dual role in the initiation of protrusions and contractions.
Collapse
Affiliation(s)
- Jean de Seze
- Institut Curie, Université PSL, Sorbonne Université, CNRS UMR168, Laboratoire Physico-Chimie Curie, Paris, France
| | - Joséphine Gatin
- Institut Curie, Université PSL, Sorbonne Université, CNRS UMR168, Laboratoire Physico-Chimie Curie, Paris, France
| | - Mathieu Coppey
- Institut Curie, Université PSL, Sorbonne Université, CNRS UMR168, Laboratoire Physico-Chimie Curie, Paris, France
| |
Collapse
|
34
|
Abstract
Immune responses are governed by signals from the tissue microenvironment, and in addition to biochemical signals, mechanical cues and forces arising from the tissue, its extracellular matrix and its constituent cells shape immune cell function. Indeed, changes in biophysical properties of tissue alter the mechanical signals experienced by cells in many disease conditions, in inflammatory states and in the context of ageing. These mechanical cues are converted into biochemical signals through the process of mechanotransduction, and multiple pathways of mechanotransduction have been identified in immune cells. Such pathways impact important cellular functions including cell activation, cytokine production, metabolism, proliferation and trafficking. Changes in tissue mechanics may also represent a new form of 'danger signal' that alerts the innate and adaptive immune systems to the possibility of injury or infection. Tissue mechanics can change temporally during an infection or inflammatory response, offering a novel layer of dynamic immune regulation. Here, we review the emerging field of mechanoimmunology, focusing on how mechanical cues at the scale of the tissue environment regulate immune cell behaviours to initiate, propagate and resolve the immune response.
Collapse
|
35
|
Chen S, Zhang Z, Zhang Y, Choi T, Zhao Y. Activation Mechanism of RhoA Caused by Constitutively Activating Mutations G14V and Q63L. Int J Mol Sci 2022; 23:ijms232415458. [PMID: 36555100 PMCID: PMC9778661 DOI: 10.3390/ijms232415458] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 11/23/2022] [Accepted: 11/30/2022] [Indexed: 12/12/2022] Open
Abstract
RhoA, a member of Rho GTPases, regulates myriad cellular processes. Abnormal expression of RhoA has been implicated in various diseases, including cancers, developmental disorders and bacterial infections. RhoA mutations G14V and Q63L have been reported to constitutively activate RhoA. To figure out the mechanisms, in total, 1.8 μs molecular dynamics (MD) simulations were performed here on RhoAWT and mutants G14V and Q63L in GTP-bound forms, followed by dynamic analysis. Both mutations were found to affect the conformational dynamics of RhoA switch regions, especially switch I, shifting the whole ensemble from the wild type's open inactive state to different active-like states, where T37 and Mg2+ played important roles. In RhoAG14V, both switches underwent thorough state transition, whereas in RhoAQ63L, only switch I was sustained in a much more closed conformation with additional hydrophobic interactions introduced by L63. Moreover, significantly decreased solvent exposure of the GTP-binding site was observed in both mutants with the surrounding hydrophobic regions expanded, which furnished access to water molecules required for hydrolysis more difficult and thereby impaired GTP hydrolysis. These structural and dynamic differences first suggested the potential activation mechanism of RhoAG14V and RhoAQ63L. Together, our findings complemented the understanding of RhoA activation at the atomic level and can be utilized in the development of novel therapies for RhoA-related diseases.
Collapse
|
36
|
Yuliani FS, Chen JY, Cheng WH, Wen HC, Chen BC, Lin CH. Thrombin induces IL-8/CXCL8 expression by DCLK1-dependent RhoA and YAP activation in human lung epithelial cells. J Biomed Sci 2022; 29:95. [PMID: 36369000 PMCID: PMC9650896 DOI: 10.1186/s12929-022-00877-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Accepted: 10/28/2022] [Indexed: 11/13/2022] Open
Abstract
Background Doublecortin-like kinase 1 (DCLK1) has been recognized as a marker of cancer stem cell in several malignancies. Thrombin is crucial in asthma severity as it can promote IL-8/CXCL8 production in lung epithelial cells, which is a potent chemoattractant for neutrophils. However, the pathologic role of DCLK1 in asthma and its involvement in thrombin-stimulated IL-8/CXCL8 expression remain unknown. Methods IL-8/CXCL8, thrombin, and DCLK1 expression were observed in the lung tissues of severe asthma patients and ovalbumin (OVA)-induced asthmatic mice model. A549 and BEAS-2B cells were either pretreated with inhibitors or small interfering RNAs (siRNAs) before being treated with thrombin. IL-8/CXCL8 expression and the molecules involved in signaling pathway were performed using ELISA, luciferase activity assay, Western blot, or ChIP assay. Results IL-8/CXCL8, thrombin, and DCLK1 were overexpressed in the lung tissues of severe asthma patients and ovalbumin (OVA)-induced asthmatic mice model. Our in vitro study found that DCLK siRNA or LRKK2-IN-1 (DCLK1 inhibitor) attenuated IL-8/CXCL8 release after thrombin induction in A549 and BEAS-2B cells. Thrombin activated DCLK1, RhoA, and YAP in a time-dependent manner, in which DCLK1 siRNA inhibited RhoA and YAP activation. YAP was dephosphorylated on the Ser127 site after thrombin stimulation, resulting in YAP translocation to the nucleus from the cytosol. DCLK1, RhoA and YAP activation following thrombin stimulation were inhibited by U0126 (ERK inhibitor). Moreover, DCLK1 and YAP siRNA inhibited κB-luciferase activity. Thrombin stimulated the recruitment of YAP and p65 to the NF-κB site of the IL-8/CXCL8 promoter and was inhibited by DCLK1 siRNA. Conclusions Thrombin activates the DCLK1/RhoA signaling pathway, which promotes YAP activation and translocation to the nucleus from the cytosol, resulting in YAP/p65 formation, and binding to the NF-κB site, which enhances IL-8/CXCL8 expression. DCLK1 might be essential in thrombin-stimulated IL-8/CXCL8 expression in asthmatic lungs and indicates a potential therapeutic strategy for severe asthma treatment.
Collapse
|
37
|
Huang Q, Xie J, Seetharaman J. Crystal Structure of Schizosaccharomyces pombe Rho1 Reveals Its Evolutionary Relationship with Other Rho GTPases. BIOLOGY 2022; 11:biology11111627. [PMID: 36358328 PMCID: PMC9687936 DOI: 10.3390/biology11111627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 10/23/2022] [Accepted: 11/01/2022] [Indexed: 11/09/2022]
Abstract
Simple Summary Rho family of proteins are involved in cytoskeletal organization, cell mobility and polarity, and are implicated in cancer morphogenesis. The structure and function of the Rho homologs from higher-level organisms are well studied, but not from the lower-level organisms. Such as over 95% of the known structures of Rho GTPases are from higher-order mammalian organisms, with only three structures of Rho homologs reported to date from lower-level, single-celled organisms. In this paper we report the crystal structure of Rho1 from Schizosaccharomyces pombe, also called fission yeast (SpRho1), in complex with GDP in the presence of Mg2+ at 2.63-Å resolution, to broaden our understanding of Rho homologs in lower-level organisms. Although the overall structure is similar to that of known Rho homologs, we observed subtle differences at the Switch I and II regions, in β2 and β3, and in the Rho insert domain and loop from Phe107 to Pro112. Combined with literature and sequence analyses, we suggest that the Switch regions and Rho insert domain may contribute to downstream kinase activation in different species through their interactions with different effectors and regulators; and the conservation and divergence of Rho GTPases among difference species and provide evolutionary insight for SpRho1. While many studies have reported the evolutionary development of Rho GTPases based on their amino acid sequences, the present study, for the first time, explores these evolutionary aspects based on structure. Our analysis indicates that SpRho is evolutionarily closer to HsRhoC than HsRhoA, as previously believed. Abstract The Rho protein, a homolog of Ras, is a member of the Ras superfamily of small GTPases. Rho family proteins are involved in cytoskeletal organization, cell mobility, and polarity, and are implicated in cancer morphogenesis. Although Rho homologs from higher-order mammalian organisms are well studied, there are few studies examining Rho proteins in lower-level single-celled organisms. Here, we report on the crystal structure of Rho1 from Schizosaccharomyces pombe (SpRho1) in complex with GDP in the presence of Mg2+ at a 2.78 Å resolution. The overall structure is similar to that of known Rho homologs, including human RhoA, human RhoC, and Aspergillus fumigatus Rho1 (AfRho1), with some exceptions. We observed subtle differences at the Switch I and II regions, in β2 and β3, and in the Rho insert domain and loop from Phe107 to Pro112. Our analysis suggests that SpRho is evolutionarily closer to HsRhoC than HsRhoA, as previously believed.
Collapse
Affiliation(s)
- Qingqing Huang
- Department of Biological Sciences, 14 Science Drive 4, National University of Singapore, Singapore 117543, Singapore
| | - Jiarong Xie
- Department of Biological Sciences, 14 Science Drive 4, National University of Singapore, Singapore 117543, Singapore
| | - Jayaraman Seetharaman
- Department of Structural Biology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
- Correspondence:
| |
Collapse
|
38
|
The brain-specific splice variant of the CDC42 GTPase works together with the kinase ACK to downregulate the EGF receptor in promoting neurogenesis. J Biol Chem 2022; 298:102564. [PMID: 36206843 PMCID: PMC9663532 DOI: 10.1016/j.jbc.2022.102564] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 09/23/2022] [Accepted: 09/24/2022] [Indexed: 11/12/2022] Open
Abstract
The small GTPase CDC42 plays essential roles in neurogenesis and brain development. Previously, we showed that a CDC42 splice variant that has a ubiquitous tissue distribution specifically stimulates the formation of neural progenitor cells, whereas a brain-specific CDC42 variant, CDC42b, is essential for promoting the transition of neural progenitor cells to neurons. These specific roles of CDC42 and CDC42b in neurogenesis are ascribed to their opposing effects on mTORC1 activity. Specifically, the ubiquitous form of CDC42 stimulates mTORC1 activity and thereby upregulates tissue-specific transcription factors that are essential for neuroprogenitor formation, whereas CDC42b works together with activated CDC42-associated kinase (ACK) to downregulate mTOR expression. Here, we demonstrate that the EGF receptor (EGFR) is an additional and important target of CDC42b and ACK, which is downregulated by their combined actions in promoting neurogenesis. The activation status of the EGFR determines the timing by which neural progenitor cells derived from P19 embryonal carcinoma terminally differentiate into neurons. By promoting EGFR degradation, we found that CDC42b and ACK stimulate autophagy, which protects emerging neurons from apoptosis and helps trigger neural progenitor cells to differentiate into neurons. Moreover, our results reveal that CDC42b is localized in phosphatidylinositol (3,4,5)-triphosphate-enriched microdomains on the plasma membrane, mediated through its polybasic sequence 185KRK187, which is essential for determining its distinct functions. Overall, these findings now highlight a molecular mechanism by which CDC42b and ACK regulate neuronal differentiation and provide new insights into the functional interplay between EGFR degradation and autophagy that occurs during embryonic neurogenesis.
Collapse
|
39
|
Kitzinger R, Fritz G, Henninger C. Nuclear RAC1 is a modulator of the doxorubicin-induced DNA damage response. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2022; 1869:119320. [PMID: 35817175 DOI: 10.1016/j.bbamcr.2022.119320] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 06/17/2022] [Accepted: 06/22/2022] [Indexed: 06/15/2023]
Abstract
Rho GTPases like RAC1 are localized on the inner side of the outer cell membrane where they act as molecular switches that can trigger signal transduction pathways in response to various extracellular stimuli. Nuclear functions of RAC1 were identified that are related to mitosis, cell cycle arrest and apoptosis. Previously, we showed that RAC1 plays a role in the doxorubicin (Dox)-induced DNA damage response (DDR). In this context it is still unknown whether cytosolic RAC1 modulates the Dox-induced DDR or if a nuclear fraction of RAC1 is involved. Here, we silenced RAC1 in mouse embryonic fibroblasts (MEF) pharmacologically with EHT1864 or by using siRNA against Rac1. Additionally, we transfected MEF with RAC1 mutants (wild-type, dominant-negative, constitutively active) containing a nuclear localization sequence (NLS). Afterwards, we analysed the Dox-induced DDR by evaluation of fluorescent nuclear γH2AX and 53BP1 foci formation, as well as by detection of activated proteins of the DDR by western blot to elucidate the role of nuclear RAC1 in the DDR. Treatment with EHT1864 as well as Rac1 knock-down reduced the Dox-induced DSB-formation to a similar extent. Enhanced nuclear localization of dominant-negative as well as constitutively active RAC1 mimicked these effects. Expression of the RAC1 mutants altered the Dox-induced amount of pP53 and pKAP1 protein. The observed effects were independent of S1981 ATM phosphorylation. We conclude that RAC1 is required for a substantial activation of the Dox-induced DDR and balanced levels of active/inactive RAC1 inside the nucleus are a prerequisite for this response.
Collapse
Affiliation(s)
- Rebekka Kitzinger
- Institute of Toxicology, Medical Faculty of the Heinrich Heine University Düsseldorf, Moorenstr. 5, 40225 Düsseldorf, Germany
| | - Gerhard Fritz
- Institute of Toxicology, Medical Faculty of the Heinrich Heine University Düsseldorf, Moorenstr. 5, 40225 Düsseldorf, Germany
| | - Christian Henninger
- Institute of Toxicology, Medical Faculty of the Heinrich Heine University Düsseldorf, Moorenstr. 5, 40225 Düsseldorf, Germany.
| |
Collapse
|
40
|
Englert M, Aurbach K, Becker IC, Gerber A, Heib T, Wackerbarth LM, Kusch C, Mott K, Araujo GHM, Baig AA, Dütting S, Knaus UG, Stigloher C, Schulze H, Nieswandt B, Pleines I, Nagy Z. Impaired microtubule dynamics contribute to microthrombocytopenia in RhoB-deficient mice. Blood Adv 2022; 6:5184-5197. [PMID: 35819450 PMCID: PMC9631634 DOI: 10.1182/bloodadvances.2021006545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Accepted: 06/30/2022] [Indexed: 11/30/2022] Open
Abstract
Megakaryocytes are large cells in the bone marrow that give rise to blood platelets. Platelet biogenesis involves megakaryocyte maturation, the localization of the mature cells in close proximity to bone marrow sinusoids, and the formation of protrusions, which are elongated and shed within the circulation. Rho GTPases play important roles in platelet biogenesis and function. RhoA-deficient mice display macrothrombocytopenia and a striking mislocalization of megakaryocytes into bone marrow sinusoids and a specific defect in G-protein signaling in platelets. However, the role of the closely related protein RhoB in megakaryocytes or platelets remains unknown. In this study, we show that, in contrast to RhoA deficiency, genetic ablation of RhoB in mice results in microthrombocytopenia (decreased platelet count and size). RhoB-deficient platelets displayed mild functional defects predominantly upon induction of the collagen/glycoprotein VI pathway. Megakaryocyte maturation and localization within the bone marrow, as well as actin dynamics, were not affected in the absence of RhoB. However, in vitro-generated proplatelets revealed pronouncedly impaired microtubule organization. Furthermore, RhoB-deficient platelets and megakaryocytes displayed selective defects in microtubule dynamics/stability, correlating with reduced levels of acetylated α-tubulin. Our findings imply that the reduction of this tubulin posttranslational modification results in impaired microtubule dynamics, which might contribute to microthrombocytopenia in RhoB-deficient mice. Importantly, we demonstrate that RhoA and RhoB are localized differently and have selective, nonredundant functions in the megakaryocyte lineage.
Collapse
Affiliation(s)
- Maximilian Englert
- Institute of Experimental Biomedicine, University Hospital, University of Würzburg, Würzburg, Germany
- Rudolf Virchow Center for Integrative and Translational Bioimaging, University of Würzburg, Würzburg, Germany
| | - Katja Aurbach
- Institute of Experimental Biomedicine, University Hospital, University of Würzburg, Würzburg, Germany
- Rudolf Virchow Center for Integrative and Translational Bioimaging, University of Würzburg, Würzburg, Germany
| | - Isabelle C. Becker
- Institute of Experimental Biomedicine, University Hospital, University of Würzburg, Würzburg, Germany
- Rudolf Virchow Center for Integrative and Translational Bioimaging, University of Würzburg, Würzburg, Germany
| | - Annika Gerber
- Institute of Experimental Biomedicine, University Hospital, University of Würzburg, Würzburg, Germany
- Rudolf Virchow Center for Integrative and Translational Bioimaging, University of Würzburg, Würzburg, Germany
| | - Tobias Heib
- Institute of Experimental Biomedicine, University Hospital, University of Würzburg, Würzburg, Germany
- Rudolf Virchow Center for Integrative and Translational Bioimaging, University of Würzburg, Würzburg, Germany
| | - Lou M. Wackerbarth
- Institute of Experimental Biomedicine, University Hospital, University of Würzburg, Würzburg, Germany
- Rudolf Virchow Center for Integrative and Translational Bioimaging, University of Würzburg, Würzburg, Germany
| | - Charly Kusch
- Institute of Experimental Biomedicine, University Hospital, University of Würzburg, Würzburg, Germany
- Rudolf Virchow Center for Integrative and Translational Bioimaging, University of Würzburg, Würzburg, Germany
| | - Kristina Mott
- Institute of Experimental Biomedicine, University Hospital, University of Würzburg, Würzburg, Germany
| | - Gabriel H. M. Araujo
- Institute of Experimental Biomedicine, University Hospital, University of Würzburg, Würzburg, Germany
- Rudolf Virchow Center for Integrative and Translational Bioimaging, University of Würzburg, Würzburg, Germany
| | - Ayesha A. Baig
- Institute of Experimental Biomedicine, University Hospital, University of Würzburg, Würzburg, Germany
- Rudolf Virchow Center for Integrative and Translational Bioimaging, University of Würzburg, Würzburg, Germany
| | - Sebastian Dütting
- Institute of Experimental Biomedicine, University Hospital, University of Würzburg, Würzburg, Germany
- Rudolf Virchow Center for Integrative and Translational Bioimaging, University of Würzburg, Würzburg, Germany
| | - Ulla G. Knaus
- Conway Institute, School of Medicine, University College Dublin, Dublin, Ireland; and
| | | | - Harald Schulze
- Institute of Experimental Biomedicine, University Hospital, University of Würzburg, Würzburg, Germany
| | - Bernhard Nieswandt
- Institute of Experimental Biomedicine, University Hospital, University of Würzburg, Würzburg, Germany
- Rudolf Virchow Center for Integrative and Translational Bioimaging, University of Würzburg, Würzburg, Germany
| | - Irina Pleines
- Institute of Experimental Biomedicine, University Hospital, University of Würzburg, Würzburg, Germany
- Rudolf Virchow Center for Integrative and Translational Bioimaging, University of Würzburg, Würzburg, Germany
| | - Zoltan Nagy
- Institute of Experimental Biomedicine, University Hospital, University of Würzburg, Würzburg, Germany
- Rudolf Virchow Center for Integrative and Translational Bioimaging, University of Würzburg, Würzburg, Germany
| |
Collapse
|
41
|
Koganti PP, Zhao AH, Selvaraj V. Exogenous cholesterol acquisition signaling in LH-responsive MA-10 Leydig cells and in adult mice. J Endocrinol 2022; 254:187-199. [PMID: 35900012 PMCID: PMC9840751 DOI: 10.1530/joe-22-0043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 07/27/2022] [Indexed: 01/17/2023]
Abstract
MA-10 cells, established 4 decades ago from a murine Leydig cell tumor, has served as a key model system for studying steroidogenesis. Despite a precipitous loss in their innate ability to respond to luteinizing hormone (LH), the use of a cell-permeable cAMP analog for induction ensured their continued use. In parallel, a paradigm that serum-free conditions are essential for trophic steroidogenic stimulation was rationalized. Through the selection of LH-responsive single-cell MA-10Slip clones, we uncovered that Leydig cells remain responsive in the presence of serum in vitro and that exogenous cholesterol delivery by lipoproteins provided a significantly elevated steroid biosynthetic response (>2-fold). In scrutinizing the underlying regulation, systems biology of the MA-10 cell proteome identified multiple Rho-GTPase signaling pathways as highly enriched. Testing Rho function in steroidogenesis revealed that its modulation can negate the specific elevation in steroid biosynthesis observed in the presence of lipoproteins/serum. This signaling modality primarily linked to the regulation of endocytic traffic is evident only in the presence of exogenous cholesterol. Inhibiting Rho function in vivo also decreased hCG-induced testosterone production in mice. Collectively, our findings dispel a long-held view that the use of serum could confound or interfere with trophic stimulation and underscore the need for exogenous lipoproteins when dissecting physiological signaling and cholesterol trafficking for steroid biosynthesis in vitro. The LH-responsive MA-10Slip clones derived in this study present a reformed platform enabling biomimicry to study the cellular and molecular basis of mammalian steroidogenesis.
Collapse
Affiliation(s)
- Prasanthi P. Koganti
- Department of Animal Science, College of Agriculture and Life Sciences, Cornell University, Ithaca, NY 14853, USA
| | - Amy H. Zhao
- Department of Animal Science, College of Agriculture and Life Sciences, Cornell University, Ithaca, NY 14853, USA
| | - Vimal Selvaraj
- Department of Animal Science, College of Agriculture and Life Sciences, Cornell University, Ithaca, NY 14853, USA
- Correspondence should be addressed to: Vimal Selvaraj, Department of Animal Science, College of Agriculture and Life Sciences, Cornell University, Ithaca, NY 14853; ; Tel. 607-255-6138; Fax. 607-255-9829
| |
Collapse
|
42
|
Imam N, Choudhury S, Heinze KG, Schindelin H. Differential modulation of collybistin conformational dynamics by the closely related GTPases Cdc42 and TC10. Front Synaptic Neurosci 2022; 14:959875. [PMID: 35989712 PMCID: PMC9386560 DOI: 10.3389/fnsyn.2022.959875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Accepted: 07/06/2022] [Indexed: 11/13/2022] Open
Abstract
Interneuronal synaptic transmission relies on the proper spatial organization of presynaptic neurotransmitter release and its reception on the postsynaptic side by cognate neurotransmitter receptors. Neurotransmitter receptors are incorporated into and arranged within the plasma membrane with the assistance of scaffolding and adaptor proteins. At inhibitory GABAergic postsynapses, collybistin, a neuronal adaptor protein, recruits the scaffolding protein gephyrin and interacts with various neuronal factors including cell adhesion proteins of the neuroligin family, the GABA A receptor α2-subunit and the closely related small GTPases Cdc42 and TC10 (RhoQ). Most collybistin splice variants harbor an N-terminal SH3 domain and exist in an autoinhibited/closed state. Cdc42 and TC10, despite sharing 67.4% amino acid sequence identity, interact differently with collybistin. Here, we delineate the molecular basis of the collybistin conformational activation induced by TC10 with the aid of recently developed collybistin FRET sensors. Time-resolved fluorescence-based FRET measurements reveal that TC10 binds to closed/inactive collybistin leading to relief of its autoinhibition, contrary to Cdc42, which only interacts with collybistin when forced into an open state by the introduction of mutations destabilizing the closed state of collybistin. Taken together, our data describe a TC10-driven signaling mechanism in which collybistin switches from its autoinhibited closed state to an open/active state.
Collapse
Affiliation(s)
- Nasir Imam
- Institute of Structural Biology, Rudolf Virchow Center for Integrative and Translational Bioimaging, University of Würzburg, Würzburg, Germany
| | - Susobhan Choudhury
- Molecular Microscopy, Rudolf Virchow Center for Integrative and Translational Bioimaging, University of Würzburg, Würzburg, Germany
| | - Katrin G. Heinze
- Molecular Microscopy, Rudolf Virchow Center for Integrative and Translational Bioimaging, University of Würzburg, Würzburg, Germany
| | - Hermann Schindelin
- Institute of Structural Biology, Rudolf Virchow Center for Integrative and Translational Bioimaging, University of Würzburg, Würzburg, Germany
| |
Collapse
|
43
|
Pillay LM, Yano JJ, Davis AE, Butler MG, Ezeude MO, Park JS, Barnes KA, Reyes VL, Castranova D, Gore AV, Swift MR, Iben JR, Kenton MI, Stratman AN, Weinstein BM. In vivo dissection of Rhoa function in vascular development using zebrafish. Angiogenesis 2022; 25:411-434. [PMID: 35320450 DOI: 10.1007/s10456-022-09834-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2021] [Accepted: 02/22/2022] [Indexed: 12/27/2022]
Abstract
The small monomeric GTPase RHOA acts as a master regulator of signal transduction cascades by activating effectors of cellular signaling, including the Rho-associated protein kinases ROCK1/2. Previous in vitro cell culture studies suggest that RHOA can regulate many critical aspects of vascular endothelial cell (EC) biology, including focal adhesion, stress fiber formation, and angiogenesis. However, the specific in vivo roles of RHOA during vascular development and homeostasis are still not well understood. In this study, we examine the in vivo functions of RHOA in regulating vascular development and integrity in zebrafish. We use zebrafish RHOA-ortholog (rhoaa) mutants, transgenic embryos expressing wild type, dominant negative, or constitutively active forms of rhoaa in ECs, pharmacological inhibitors of RHOA and ROCK1/2, and Rock1 and Rock2a/b dgRNP-injected zebrafish embryos to study the in vivo consequences of RHOA gain- and loss-of-function in the vascular endothelium. Our findings document roles for RHOA in vascular integrity, developmental angiogenesis, and vascular morphogenesis in vivo, showing that either too much or too little RHOA activity leads to vascular dysfunction.
Collapse
Affiliation(s)
- Laura M Pillay
- Division of Developmental Biology, National Institute of Child Health and Human Development, National Institutes of Health, 6 Center Dr. Bethesda, Bethesda, MD, 20892, USA
| | - Joseph J Yano
- Division of Developmental Biology, National Institute of Child Health and Human Development, National Institutes of Health, 6 Center Dr. Bethesda, Bethesda, MD, 20892, USA
- Department of Cell and Molecular Biology, University of Pennsylvania, 440 Curie Blvd, Philadelphia, PA, 19104, USA
| | - Andrew E Davis
- Division of Developmental Biology, National Institute of Child Health and Human Development, National Institutes of Health, 6 Center Dr. Bethesda, Bethesda, MD, 20892, USA
| | - Matthew G Butler
- Division of Developmental Biology, National Institute of Child Health and Human Development, National Institutes of Health, 6 Center Dr. Bethesda, Bethesda, MD, 20892, USA
| | - Megan O Ezeude
- Division of Developmental Biology, National Institute of Child Health and Human Development, National Institutes of Health, 6 Center Dr. Bethesda, Bethesda, MD, 20892, USA
| | - Jong S Park
- Division of Developmental Biology, National Institute of Child Health and Human Development, National Institutes of Health, 6 Center Dr. Bethesda, Bethesda, MD, 20892, USA
| | - Keith A Barnes
- Division of Developmental Biology, National Institute of Child Health and Human Development, National Institutes of Health, 6 Center Dr. Bethesda, Bethesda, MD, 20892, USA
| | - Vanessa L Reyes
- Division of Developmental Biology, National Institute of Child Health and Human Development, National Institutes of Health, 6 Center Dr. Bethesda, Bethesda, MD, 20892, USA
| | - Daniel Castranova
- Division of Developmental Biology, National Institute of Child Health and Human Development, National Institutes of Health, 6 Center Dr. Bethesda, Bethesda, MD, 20892, USA
| | - Aniket V Gore
- Division of Developmental Biology, National Institute of Child Health and Human Development, National Institutes of Health, 6 Center Dr. Bethesda, Bethesda, MD, 20892, USA
| | - Matthew R Swift
- Division of Developmental Biology, National Institute of Child Health and Human Development, National Institutes of Health, 6 Center Dr. Bethesda, Bethesda, MD, 20892, USA
| | - James R Iben
- Division of Developmental Biology, National Institute of Child Health and Human Development, National Institutes of Health, 6 Center Dr. Bethesda, Bethesda, MD, 20892, USA
| | - Madeleine I Kenton
- Division of Developmental Biology, National Institute of Child Health and Human Development, National Institutes of Health, 6 Center Dr. Bethesda, Bethesda, MD, 20892, USA
| | - Amber N Stratman
- Division of Developmental Biology, National Institute of Child Health and Human Development, National Institutes of Health, 6 Center Dr. Bethesda, Bethesda, MD, 20892, USA
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Brant M Weinstein
- Division of Developmental Biology, National Institute of Child Health and Human Development, National Institutes of Health, 6 Center Dr. Bethesda, Bethesda, MD, 20892, USA.
| |
Collapse
|
44
|
Ju J, Lee HN, Ning L, Ryu H, Zhou XX, Chun H, Lee YW, Lee-Richerson AI, Jeong C, Lin MZ, Seong J. Optical regulation of endogenous RhoA reveals selection of cellular responses by signal amplitude. Cell Rep 2022; 40:111080. [PMID: 35830815 DOI: 10.1016/j.celrep.2022.111080] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 05/19/2022] [Accepted: 06/21/2022] [Indexed: 11/15/2022] Open
Abstract
How protein signaling networks respond to different input strengths is an important but poorly understood problem in cell biology. For example, RhoA can promote focal adhesion (FA) growth or disassembly, but how RhoA activity mediates these opposite outcomes is not clear. Here, we develop a photoswitchable RhoA guanine nucleotide exchange factor (GEF), psRhoGEF, to precisely control endogenous RhoA activity. Using this optical tool, we discover that peak FA disassembly selectively occurs upon activation of RhoA to submaximal levels. We also find that Src activation at FAs selectively occurs upon submaximal RhoA activation, identifying Src as an amplitude-dependent RhoA effector. Finally, a pharmacological Src inhibitor reverses the direction of the FA response to RhoA activation from disassembly to growth, demonstrating that Src functions to suppress FA growth upon RhoA activation. Thus, rheostatic control of RhoA activation by psRhoGEF reveals that cells can use signal amplitude to produce multiple responses to a single biochemical signal.
Collapse
Affiliation(s)
- Jeongmin Ju
- Brain Science Institute, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea; Division of Bio-Medical Science & Technology, KIST School, Korea University of Science and Technology, Seoul 02792, Republic of Korea
| | - Hae Nim Lee
- Brain Science Institute, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea; Department of Converging Science and Technology, Kyung Hee University, Seoul 02453, Republic of Korea
| | - Lin Ning
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA; Department of Neurobiology, Stanford University, Stanford, CA 94305, USA
| | - Hyunjoo Ryu
- Brain Science Institute, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea
| | - Xin X Zhou
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA; Department of Neurobiology, Stanford University, Stanford, CA 94305, USA
| | - Hyeyeon Chun
- Brain Science Institute, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea
| | - Yong Woo Lee
- Brain Science Institute, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea
| | | | - Cherlhyun Jeong
- Center for Theragnosis, Korea Institute of Science and Technology, Seoul 02792, South Korea
| | - Michael Z Lin
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA; Department of Neurobiology, Stanford University, Stanford, CA 94305, USA.
| | - Jihye Seong
- Brain Science Institute, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea; Division of Bio-Medical Science & Technology, KIST School, Korea University of Science and Technology, Seoul 02792, Republic of Korea; Department of Converging Science and Technology, Kyung Hee University, Seoul 02453, Republic of Korea; Department of Bioengineering, Stanford University, Stanford, CA 94305, USA.
| |
Collapse
|
45
|
Apte A, Manich M, Labruyère E, Datta S. PI Kinase-EhGEF2-EhRho5 axis contributes to LPA stimulated macropinocytosis in Entamoeba histolytica. PLoS Pathog 2022; 18:e1010550. [PMID: 35594320 PMCID: PMC9173640 DOI: 10.1371/journal.ppat.1010550] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 06/07/2022] [Accepted: 04/26/2022] [Indexed: 12/04/2022] Open
Abstract
Entamoeba histolytica is a protozoan responsible for several pathologies in humans. Trophozoites breach the intestinal site to enter the bloodstream and thus traverse to a secondary site. Macropinocytosis and phagocytosis, collectively accounting for heterophagy, are the two major processes responsible for sustenance of Entamoeba histolytica within the host. Both of these processes require significant rearrangements in the structure to entrap the target. Rho GTPases play an indispensable role in mustering proteins that regulate cytoskeletal remodelling. Unlike phagocytosis which has been studied in extensive detail, information on machinery of macropinocytosis in E. histolytica is still limited. In the current study, using site directed mutagenesis and RNAi based silencing, coupled with functional studies, we have demonstrated the involvement of EhRho5 in constitutive and LPA stimulated macropinocytosis. We also report that LPA, a bioactive phospholipid present in the bloodstream of the host, activates EhRho5 and translocates it from cytosol to plasma membrane and endomembrane compartments. Using biochemical and FRAP studies, we established that a PI Kinase acts upstream of EhRho5 in LPA mediated signalling. We further identified EhGEF2 as a guanine nucleotide exchange factor of EhRho5. In the amoebic trophozoites, EhGEF2 depletion leads to reduced macropinocytic efficiency of trophozoites, thus phenocopying its substrate. Upon LPA stimulation, EhGEF2 is found to sequester near the plasma membrane in a wortmannin sensitive fashion, explaining a possible mode for activation of EhRho5 in the amoebic trophozoites. Collectively, we propose that LPA stimulated macropinocytosis in E. histolytica is driven by the PI Kinase-EhGEF2-EhRho5 axis.
Collapse
Affiliation(s)
- Achala Apte
- Indian Institute of Science Education and Research, Bhopal, Madhya Pradesh, India
| | - Maria Manich
- Bioimage Analysis Unit, Institut Pasteur, Paris, France
| | | | - Sunando Datta
- Indian Institute of Science Education and Research, Bhopal, Madhya Pradesh, India
| |
Collapse
|
46
|
Hardin WR, Alas GCM, Taparia N, Thomas EB, Steele-Ogus MC, Hvorecny KL, Halpern AR, Tůmová P, Kollman JM, Vaughan JC, Sniadecki NJ, Paredez AR. The Giardia ventrolateral flange is a lamellar membrane protrusion that supports attachment. PLoS Pathog 2022; 18:e1010496. [PMID: 35482847 PMCID: PMC9089883 DOI: 10.1371/journal.ppat.1010496] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 05/10/2022] [Accepted: 04/04/2022] [Indexed: 12/01/2022] Open
Abstract
Attachment to the intestinal epithelium is critical to the lifestyle of the ubiquitous parasite Giardia lamblia. The ventrolateral flange is a sheet-like membrane protrusion at the interface between parasites and attached surfaces. This structure has been implicated in attachment, but its role has been poorly defined. Here, we identified a novel actin associated protein with putative WH2-like actin binding domains we named Flangin. Flangin complexes with Giardia actin (GlActin) and is enriched in the ventrolateral flange making it a valuable marker for studying the flanges' role in Giardia biology. Live imaging revealed that the flange grows to around 1 μm in width after cytokinesis, then remains uniform in size during interphase, grows in mitosis, and is resorbed during cytokinesis. A flangin truncation mutant stabilizes the flange and blocks cytokinesis, indicating that flange disassembly is necessary for rapid myosin-independent cytokinesis in Giardia. Rho family GTPases are important regulators of membrane protrusions and GlRac, the sole Rho family GTPase in Giardia, was localized to the flange. Knockdown of Flangin, GlActin, and GlRac result in flange formation defects. This indicates a conserved role for GlRac and GlActin in forming membrane protrusions, despite the absence of canonical actin binding proteins that link Rho GTPase signaling to lamellipodia formation. Flangin-depleted parasites had reduced surface contact and when challenged with fluid shear force in flow chambers they had a reduced ability to remain attached, confirming a role for the flange in attachment. This secondary attachment mechanism complements the microtubule based adhesive ventral disc, a feature that may be particularly important during mitosis when the parental ventral disc disassembles in preparation for cytokinesis. This work supports the emerging view that Giardia's unconventional actin cytoskeleton has an important role in supporting parasite attachment.
Collapse
Affiliation(s)
- William R. Hardin
- Department of Biology, University of Washington, Seattle, Washington, United States of America
| | - Germain C. M. Alas
- Department of Biology, University of Washington, Seattle, Washington, United States of America
| | - Nikita Taparia
- Department of Mechanical Engineering, University of Washington, Seattle, Washington, United States of America
| | - Elizabeth B. Thomas
- Department of Biology, University of Washington, Seattle, Washington, United States of America
| | - Melissa C. Steele-Ogus
- Department of Biology, University of Washington, Seattle, Washington, United States of America
| | - Kelli L. Hvorecny
- Department of Biochemistry, University of Washington, Seattle, Washington, United States of America
| | - Aaron R. Halpern
- Department of Chemistry, University of Washington, Seattle, Washington, United States of America
| | - Pavla Tůmová
- Institute of Immunology and Microbiology, 1 Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Justin M. Kollman
- Department of Biochemistry, University of Washington, Seattle, Washington, United States of America
| | - Joshua C. Vaughan
- Department of Chemistry, University of Washington, Seattle, Washington, United States of America
- Department of Physiology and Biophysics, University of Washington, Seattle, Washington, United States of America
| | - Nathan J. Sniadecki
- Department of Mechanical Engineering, University of Washington, Seattle, Washington, United States of America
- Bioengineering, University of Washington, Seattle, Washington, United States of America
- Lab Medicine & Pathology, University of Washington, Seattle, Washington, United States of America
- Center for Cardiovascular Biology, University of Washington, Seattle, Washington, United States of America
- Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, Washington, United States of America
| | - Alexander R. Paredez
- Department of Biology, University of Washington, Seattle, Washington, United States of America
| |
Collapse
|
47
|
Khan A, Ni W, Baltazar T, Lopez-Giraldez F, Pober JS, Pierce RW. ArhGEF12 activates Rap1A and not RhoA in human dermal microvascular endothelial cells to reduce tumor necrosis factor-induced leak. FASEB J 2022; 36:e22254. [PMID: 35294066 PMCID: PMC9103844 DOI: 10.1096/fj.202101873rr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 03/01/2022] [Accepted: 03/03/2022] [Indexed: 12/31/2022]
Abstract
Overwhelming inflammation in the setting of acute critical illness induces capillary leak resulting in hypovolemia, edema, tissue dysoxia, organ failure and even death. The tight junction (TJ)-dependent capillary barrier is regulated by small GTPases, but the specific regulatory molecules most active in this vascular segment under such circumstances are not well described. We set out to identify GTPase regulatory molecules specific to endothelial cells (EC) that form TJs. Transcriptional profiling of confluent monolayers of TJ-forming human dermal microvascular ECs (HDMECs) and adherens junction only forming-human umbilical vein EC (HUVECs) demonstrate ARHGEF12 is basally expressed at higher levels and is only downregulated in HDMECs by junction-disrupting tumor necrosis factor (TNF). HDMECs depleted of ArhGEF12 by siRNA demonstrate a significantly exacerbated TNF-induced decrease in trans-endothelial electrical resistance and disruption of TJ continuous staining. ArhGEF12 is established as a RhoA-GEF in HUVECs and its knock down would be expected to reduce RhoA activity and barrier disruption. Pulldown of active GEFs from HDMECs depleted of ArhGEF12 and treated with TNF show decreased GTP-bound Rap1A after four hours but increased GTP-bound RhoA after 12 h. In cell-free assays, ArhGEF12 immunoprecipitated from HDMECs is able to activate both Rap1A and RhoA, but not act on Rap2A-C, RhoB-C, or even Rap1B which shares 95% sequence identity with Rap1A. We conclude that in TJ-forming HDMECs, ArhGEF12 selectively activates Rap1A to limit capillary barrier disruption in a mechanism independent of cAMP-mediated Epac1 activation.
Collapse
Affiliation(s)
- Alamzeb Khan
- Department of Pediatrics, Yale School of Medicine, Yale University
| | - Weiming Ni
- Department of Pediatrics, Yale School of Medicine, Yale University
| | - Tania Baltazar
- Department of Immunobiology, Yale School of Medicine, Yale University
| | | | - Jordan S. Pober
- Department of Immunobiology, Yale School of Medicine, Yale University
| | | |
Collapse
|
48
|
De Ieso ML, Kuhn M, Bernatchez P, Elliott MH, Stamer WD. A Role of Caveolae in Trabecular Meshwork Mechanosensing and Contractile Tone. Front Cell Dev Biol 2022; 10:855097. [PMID: 35372369 PMCID: PMC8969750 DOI: 10.3389/fcell.2022.855097] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 03/03/2022] [Indexed: 11/13/2022] Open
Abstract
Polymorphisms in the CAV1/2 gene loci impart increased risk for primary open-angle glaucoma (POAG). CAV1 encodes caveolin-1 (Cav1), which is required for biosynthesis of plasma membrane invaginations called caveolae. Cav1 knockout mice exhibit elevated intraocular pressure (IOP) and decreased outflow facility, but the mechanistic role of Cav1 in IOP homeostasis is unknown. We hypothesized that caveolae sequester/inhibit RhoA, to regulate trabecular meshwork (TM) mechanosensing and contractile tone. Using phosphorylated myosin light chain (pMLC) as a surrogate indicator for Rho/ROCK activity and contractile tone, we found that pMLC was elevated in Cav1-deficient TM cells compared to control (131 ± 10%, n = 10, p = 0.016). Elevation of pMLC levels following Cav1 knockdown occurred in cells on a soft surface (137 ± 7%, n = 24, p < 0.0001), but not on a hard surface (122 ± 17%, n = 12, p = 0.22). In Cav1-deficient TM cells where pMLC was elevated, Rho activity was also increased (123 ± 7%, n = 6, p = 0.017), suggesting activation of the Rho/ROCK pathway. Cyclic stretch reduced pMLC/MLC levels in TM cells (69 ± 7% n = 9, p = 0.002) and in Cav1-deficient TM cells, although not significantly (77 ± 11% n = 10, p = 0.059). Treatment with the Cav1 scaffolding domain mimetic, cavtratin (1 μM) caused a reduction in pMLC (70 ± 5% n = 7, p = 0.001), as did treatment with the scaffolding domain mutant cavnoxin (1 μM) (82 ± 7% n = 7, p = 0.04). Data suggest that caveolae differentially regulate RhoA signaling, and that caveolae participate in TM mechanotransduction. Cav1 regulation of these key TM functions provide evidence for underlying mechanisms linking polymorphisms in the Cav1/2 gene loci with increased POAG risk.
Collapse
Affiliation(s)
- Michael L. De Ieso
- Department of Ophthalmology, Duke Eye Center, Duke University, Durham, NC, United States
| | - Megan Kuhn
- Department of Ophthalmology, Duke Eye Center, Duke University, Durham, NC, United States
| | - Pascal Bernatchez
- Department of Anesthesiology, Pharmacology and Therapeutics, Faculty of Medicine, University of British Columbia, Heart + Lung Innovation Centre, St. Paul’s Hospital, Vancouver, BC, Canada
| | - Michael H. Elliott
- Department of Ophthalmology, Dean McGee Eye Institute University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| | - W. Daniel Stamer
- Department of Ophthalmology, Duke Eye Center, Duke University, Durham, NC, United States
| |
Collapse
|
49
|
Koh SP, Pham NP, Piekny A. Seeing is believing: tools to study the role of Rho GTPases during cytokinesis. Small GTPases 2022; 13:211-224. [PMID: 34405757 PMCID: PMC9707540 DOI: 10.1080/21541248.2021.1957384] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Cytokinesis is required to cleave the daughter cells at the end of mitosis and relies on the spatiotemporal control of RhoA GTPase. Cytokinesis failure can lead to changes in cell fate or aneuploidy, which can be detrimental during development and/or can lead to cancer. However, our knowledge of the pathways that regulate RhoA during cytokinesis is limited, and the role of other Rho family GTPases is not clear. This is largely because the study of Rho GTPases presents unique challenges using traditional cell biological and biochemical methods, and they have pleiotropic functions making genetic studies difficult to interpret. The recent generation of optogenetic tools and biosensors that control and detect active Rho has overcome some of these challenges and is helping to elucidate the role of RhoA in cytokinesis. However, improvements are needed to reveal the role of other Rho GTPases in cytokinesis, and to identify the molecular mechanisms that control Rho activity. This review examines some of the outstanding questions in cytokinesis, and explores tools for the imaging and control of Rho GTPases.
Collapse
Affiliation(s)
- Su Pin Koh
- Department of Biology, Concordia University, Montreal, QC, Canada
| | - Nhat Phi Pham
- Department of Biology, Concordia University, Montreal, QC, Canada
| | - Alisa Piekny
- Department of Biology, Concordia University, Montreal, QC, Canada,CONTACT Alisa Piekny Department of Biology, Concordia University, 7141 Sherbrooke St. W, Montreal, QC, Canada
| |
Collapse
|
50
|
Abstract
The Ras homologous (Rho) protein family of GTPases (RhoA, RhoB and RhoC) are the members of the Ras superfamily and regulate cellular processes such as cell migration, proliferation, polarization, adhesion, gene transcription and cytoskeletal structure. Rho GTPases function as molecular switches that cycle between GTP-bound (active state) and GDP-bound (inactive state) forms. Leukaemia-associated RhoGEF (LARG) is a guanine nucleotide exchange factor (GEF) that activates RhoA subfamily GTPases by promoting the exchange of GDP for GTP. LARG is selective for RhoA subfamily GTPases and is an essential regulator of cell migration and invasion. Here, we describe the mechanisms by which LARG is regulated to facilitate the understanding of how LARG mediates functions like cell motility and to provide insight for better therapeutic targeting of these functions.
Collapse
Affiliation(s)
- Neda Z. Ghanem
- Cancer Biology Program, University of Hawaii Cancer Center, University of Hawaii at Mānoa, Honolulu, USA,Molecular Biosciences and BioEngineering Graduate Program, University of Hawaii at Mānoa, Honolulu, USA
| | - Michelle L. Matter
- Cancer Biology Program, University of Hawaii Cancer Center, University of Hawaii at Mānoa, Honolulu, USA,Molecular Biosciences and BioEngineering Graduate Program, University of Hawaii at Mānoa, Honolulu, USA
| | - Joe W. Ramos
- Cancer Biology Program, University of Hawaii Cancer Center, University of Hawaii at Mānoa, Honolulu, USA,Molecular Biosciences and BioEngineering Graduate Program, University of Hawaii at Mānoa, Honolulu, USA,CONTACT Joe W. Ramos Cancer Biology Program, University of Hawaii Cancer Center, University of Hawaii at Manoa, Honolulu, USA
| |
Collapse
|