1
|
Huang PJ, Lin YL, Chen CH, Lin HY, Fang SC. A chloroplast sulphate transporter modulates glutathione-mediated redox cycling to regulate cell division. PLANT, CELL & ENVIRONMENT 2024; 47:5391-5410. [PMID: 39189939 DOI: 10.1111/pce.15113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 08/07/2024] [Accepted: 08/12/2024] [Indexed: 08/28/2024]
Abstract
Glutathione redox cycling is important for cell cycle regulation, but its mechanisms are not well understood. We previously identified a small-sized mutant, suppressor of mat3 15-1 (smt15-1) that has elevated cellular glutathione. Here, we demonstrated that SMT15 is a chloroplast sulphate transporter. Reducing expression of γ-GLUTAMYLCYSTEINE SYNTHETASE, encoding the rate-limiting enzyme required for glutathione biosynthesis, corrected the size defect of smt15-1 cells. Overexpressing GLUTATHIONE SYNTHETASE (GSH2) recapitulated the small-size phenotype of smt15-1 mutant, confirming the role of glutathione in cell division. Hence, SMT15 may regulate chloroplast sulphate concentration to modulate cellular glutathione levels. In wild-type cells, glutathione and/or thiol-containing molecules (GSH/thiol) accumulated in the cytosol at the G1 phase and decreased as cells entered the S/M phase. While the cytosolic GSH/thiol levels in the small-sized mutants, smt15-1 and GSH2 overexpressors, mirrored those of wild-type cells (accumulating during G1 and declining at early S/M phase), GSH/thiol was specifically accumulated in the basal bodies at early S/M phase in the small-sized mutants. Therefore, we propose that GSH/thiol-mediated redox signalling in the basal bodies may regulate mitotic division number in Chlamydomonas reinhardtii. Our findings suggest a new mechanism by which glutathione regulates the multiple fission cell cycle in C. reinhardtii.
Collapse
Affiliation(s)
- Pin-Jui Huang
- Biotechnology Center in Southern Taiwan, Academia Sinica, Tainan, Taiwan
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei, Taiwan
- Institute of Tropical Plant Sciences and Microbiology, National Cheng Kung University, Tainan, Taiwan
| | - Yen-Ling Lin
- Biotechnology Center in Southern Taiwan, Academia Sinica, Tainan, Taiwan
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei, Taiwan
| | - Chun-Han Chen
- Biotechnology Center in Southern Taiwan, Academia Sinica, Tainan, Taiwan
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei, Taiwan
| | - Hsiang-Yin Lin
- Biotechnology Center in Southern Taiwan, Academia Sinica, Tainan, Taiwan
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei, Taiwan
| | - Su-Chiung Fang
- Biotechnology Center in Southern Taiwan, Academia Sinica, Tainan, Taiwan
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei, Taiwan
- Institute of Tropical Plant Sciences and Microbiology, National Cheng Kung University, Tainan, Taiwan
| |
Collapse
|
2
|
Sun X, LaVoie M, Lefebvre PA, Gallaher SD, Glaesener AG, Strenkert D, Mehta R, Merchant SS, Silflow CD. Mutation of negative regulatory gene CEHC1 encoding an FBXO3 protein results in normoxic expression of HYDA genes in Chlamydomonas reinhardtii. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.22.586359. [PMID: 38586028 PMCID: PMC10996464 DOI: 10.1101/2024.03.22.586359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/09/2024]
Abstract
Oxygen is known to prevent hydrogen production in Chlamydomonas, both by inhibiting the hydrogenase enzyme and by preventing the accumulation of HYDA-encoding transcripts. We developed a screen for mutants showing constitutive accumulation of HYDA1 transcripts in the presence of oxygen. A reporter gene required for ciliary motility, placed under the control of the HYDA1 promoter, conferred motility only in hypoxic conditions. By selecting for mutants able to swim even in the presence of oxygen we obtained strains that express the reporter gene constitutively. One mutant identified a gene encoding an F-box only protein 3 (FBXO3), known to participate in ubiquitylation and proteasomal degradation pathways in other eukaryotes. Transcriptome profiles revealed that the mutation, termed cehc1-1 , leads to constitutive expression of HYDA1 and other genes regulated by hypoxia, and of many genes known to be targets of CRR1, a transcription factor in the nutritional copper signaling pathway. CRR1 was required for the constitutive expression of the HYDA1 reporter gene in cehc1-1 mutants. The CRR1 protein, which is normally degraded in Cu-supplemented cells, was stabilized in cehc1-1 cells, supporting the conclusion that CEHC1 acts to facilitate the degradation of CRR1. Our results reveal a novel negative regulator in the CRR1 pathway and possibly other pathways leading to complex metabolic changes associated with response to hypoxia.
Collapse
|
3
|
Hou Y, Cheng X, Witman GB. Direct in situ protein tagging in Chlamydomonas reinhardtii utilizing TIM, a method for CRISPR/Cas9-based targeted insertional mutagenesis. PLoS One 2022; 17:e0278972. [PMID: 36490276 PMCID: PMC9733891 DOI: 10.1371/journal.pone.0278972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 11/28/2022] [Indexed: 12/13/2022] Open
Abstract
Chlamydomonas reinhardtii is an important model organism for the study of many cellular processes, and protein tagging is an increasingly indispensable tool for these studies. To circumvent the disadvantages of conventional approaches in creating a tagged cell line, which involve transforming either a wild-type or null-mutant cell line with an exogenous DNA construct that inserts randomly into the genome, we developed a strategy to tag the endogenous gene in situ. The strategy utilizes TIM, a CRISPR/Cas9-based method for targeted insertional mutagenesis in C. reinhardtii. We have tested the strategy on two genes: LF5/CDKL5, lack of which causes a long-flagella phenotype, and Cre09.g416350/NAP1L1, which has not been studied previously in C. reinhardtii. We successfully tagged the C-terminus of wild-type LF5 with the hemagglutinin (HA) tag with an efficiency of 7.4%. Sequencing confirmed that these strains are correctly edited. Western blotting confirmed the expression of HA-tagged LF5, and immunofluorescence microscopy showed that LF5-HA is localized normally. These strains have normal length flagella and appear wild type. We successfully tagged the N-terminus of Cre09.g416350 with mNeonGreen-3xFLAG with an efficiency of 9%. Sequencing showed that the tag region in these strains is as expected. Western blotting confirmed the expression of tagged protein of the expected size in these strains, which appeared to have normal cell size, growth rate, and swimming speed. This is the first time that C. reinhardtii endogenous genes have been edited in situ to express a wild-type tagged protein. This effective, efficient, and convenient TIM-tagging strategy promises to be a useful tool for the study of nuclear genes, including essential genes, in C. reinhardtii.
Collapse
Affiliation(s)
- Yuqing Hou
- Division of Cell Biology and Imaging, Department of Radiology, University of Massachusetts Chan Medical School, Worcester, Massachusetts, United States of America
| | - Xi Cheng
- Division of Cell Biology and Imaging, Department of Radiology, University of Massachusetts Chan Medical School, Worcester, Massachusetts, United States of America
| | - George B. Witman
- Division of Cell Biology and Imaging, Department of Radiology, University of Massachusetts Chan Medical School, Worcester, Massachusetts, United States of America
| |
Collapse
|
4
|
Noga A, Horii M, Goto Y, Toyooka K, Ishikawa T, Hirono M. Bld10p/Cep135 determines the number of triplets in the centriole independently of the cartwheel. EMBO J 2022; 41:e104582. [PMID: 36093892 PMCID: PMC9574746 DOI: 10.15252/embj.2020104582] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 08/06/2022] [Accepted: 08/22/2022] [Indexed: 09/14/2023] Open
Abstract
The conserved nine-fold structural symmetry of the centriole is thought to be generated by cooperation between two mechanisms, one dependent on and the other independent of the cartwheel, a sub-centriolar structure consisting of a hub and nine spokes. However, the molecular entity of the cartwheel-independent mechanism has not been elucidated. Here, using Chlamydomonas reinhardtii mutants, we show that Bld10p/Cep135, a conserved centriolar protein that connects cartwheel spokes and triplet microtubules, plays a central role in this mechanism. Using immunoelectron microscopy, we localized hemagglutinin epitopes attached to distinct regions of Bld10p along two lines that connect adjacent triplets. Consistently, conventional and cryo-electron microscopy identified crosslinking structures at the same positions. In centrioles formed in the absence of the cartwheel, truncated Bld10p was found to significantly reduce the inter-triplet distance and frequently form eight-microtubule centrioles. These results suggest that the newly identified crosslinks are comprised of part of Bld10p/Cep135. We propose that Bld10p determines the inter-triplet distance in the centriole and thereby regulates the number of triplets in a cartwheel-independent manner.
Collapse
Affiliation(s)
- Akira Noga
- Department of Frontier BioscienceHosei UniversityTokyoJapan
- Department of Biological SciencesUniversity of TokyoTokyoJapan
- Division of Biology and ChemistryPaul Scherrer InstituteVilligenSwitzerland
| | - Mao Horii
- Department of Biological SciencesUniversity of TokyoTokyoJapan
| | - Yumi Goto
- RIKEN Center for Sustainable Resource ScienceYokohamaJapan
| | | | - Takashi Ishikawa
- Division of Biology and ChemistryPaul Scherrer InstituteVilligenSwitzerland
- Department of BiologyETH ZurichZurichSwitzerland
| | | |
Collapse
|
5
|
Cavalier-Smith T. Ciliary transition zone evolution and the root of the eukaryote tree: implications for opisthokont origin and classification of kingdoms Protozoa, Plantae, and Fungi. PROTOPLASMA 2022; 259:487-593. [PMID: 34940909 PMCID: PMC9010356 DOI: 10.1007/s00709-021-01665-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Accepted: 05/03/2021] [Indexed: 05/19/2023]
Abstract
I thoroughly discuss ciliary transition zone (TZ) evolution, highlighting many overlooked evolutionarily significant ultrastructural details. I establish fundamental principles of TZ ultrastructure and evolution throughout eukaryotes, inferring unrecognised ancestral TZ patterns for Fungi, opisthokonts, and Corticata (i.e., kingdoms Plantae and Chromista). Typical TZs have a dense transitional plate (TP), with a previously overlooked complex lattice as skeleton. I show most eukaryotes have centriole/TZ junction acorn-V filaments (whose ancestral function was arguably supporting central pair microtubule-nucleating sites; I discuss their role in centriole growth). Uniquely simple malawimonad TZs (without TP, simpler acorn) pinpoint the eukaryote tree's root between them and TP-bearers, highlighting novel superclades. I integrate TZ/ciliary evolution with the best multiprotein trees, naming newly recognised major eukaryote clades and revise megaclassification of basal kingdom Protozoa. Recent discovery of non-photosynthetic phagotrophic flagellates with genome-free plastids (Rhodelphis), the sister group to phylum Rhodophyta (red algae), illuminates plant and chromist early evolution. I show previously overlooked marked similarities in cell ultrastructure between Rhodelphis and Picomonas, formerly considered an early diverging chromist. In both a nonagonal tube lies between their TP and an annular septum surrounding their 9+2 ciliary axoneme. Mitochondrial dense condensations and mitochondrion-linked smooth endomembrane cytoplasmic partitioning cisternae further support grouping Picomonadea and Rhodelphea as new plant phylum Pararhoda. As Pararhoda/Rhodophyta form a robust clade on site-heterogeneous multiprotein trees, I group Pararhoda and Rhodophyta as new infrakingdom Rhodaria of Plantae within subkingdom Biliphyta, which also includes Glaucophyta with fundamentally similar TZ, uniquely in eukaryotes. I explain how biliphyte TZs generated viridiplant stellate-structures.
Collapse
|
6
|
Gaudin N, Martin Gil P, Boumendjel M, Ershov D, Pioche-Durieu C, Bouix M, Delobelle Q, Maniscalco L, Phan TBN, Heyer V, Reina-San-Martin B, Azimzadeh J. Evolutionary conservation of centriole rotational asymmetry in the human centrosome. eLife 2022; 11:72382. [PMID: 35319462 PMCID: PMC8983040 DOI: 10.7554/elife.72382] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Accepted: 03/22/2022] [Indexed: 11/13/2022] Open
Abstract
Centrioles are formed by microtubule triplets in a nine-fold symmetric arrangement. In flagellated protists and in animal multiciliated cells, accessory structures tethered to specific triplets render the centrioles rotationally asymmetric, a property that is key to cytoskeletal and cellular organization in these contexts. In contrast, centrioles within the centrosome of animal cells display no conspicuous rotational asymmetry. Here, we uncover rotationally asymmetric molecular features in human centrioles. Using ultrastructure expansion microscopy, we show that LRRCC1, the ortholog of a protein originally characterized in flagellate green algae, associates preferentially to two consecutive triplets in the distal lumen of human centrioles. LRRCC1 partially co-localizes and affects the recruitment of another distal component, C2CD3, which also has an asymmetric localization pattern in the centriole lumen. Together, LRRCC1 and C2CD3 delineate a structure reminiscent of a filamentous density observed by electron microscopy in flagellates, termed the 'acorn'. Functionally, the depletion of LRRCC1 in human cells induced defects in centriole structure, ciliary assembly and ciliary signaling, supporting that LRRCC1 cooperates with C2CD3 to organizing the distal region of centrioles. Since a mutation in the LRRCC1 gene has been identified in Joubert syndrome patients, this finding is relevant in the context of human ciliopathies. Taken together, our results demonstrate that rotational asymmetry is an ancient property of centrioles that is broadly conserved in human cells. Our work also reveals that asymmetrically localized proteins are key for primary ciliogenesis and ciliary signaling in human cells.
Collapse
Affiliation(s)
| | | | | | - Dmitry Ershov
- Département Biologie Computationnelle, Institut Pasteur, USR 3756 CNRS, France, France
| | | | | | | | | | | | - Vincent Heyer
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Ilkirch, France
| | | | | |
Collapse
|
7
|
Nommick A, Boutin C, Rosnet O, Schirmer C, Bazellières E, Thomé V, Loiseau E, Viallat A, Kodjabachian L. Lrrcc1 and Ccdc61 are conserved effectors of multiciliated cell function. J Cell Sci 2022; 135:274401. [DOI: 10.1242/jcs.258960] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Accepted: 01/05/2022] [Indexed: 11/20/2022] Open
Abstract
Ciliated epithelia perform essential functions across animal evolution, ranging from locomotion of marine organisms to mucociliary clearance of airways in mammals. These epithelia are composed of multiciliated cells (MCCs) harbouring myriads of motile cilia, which rest on modified centrioles called basal bodies (BBs), and beat coordinately to generate directed fluid flows. Thus, BB biogenesis and organization is central to MCC function. In basal eukaryotes, the coiled-coil domain proteins Lrrcc1 and Ccdc61 were shown to be required for proper BB construction and function. Here, we used the Xenopus embryonic ciliated epidermis to characterize Lrrcc1 and Ccdc61 in vertebrate MCCs. We found that they both encode BB components, localized proximally at the junction with striated rootlets. Knocking down either gene caused defects in BB docking, spacing, and polarization. Moreover, their depletion impaired the apical cytoskeleton, and altered ciliary beating. Consequently, cilia-powered fluid flow was greatly reduced in morphant tadpoles, which displayed enhanced mortality when exposed to pathogenic bacteria. This work illustrates how integration across organizational scales make elementary BB components essential for the emergence of the physiological function of ciliated epithelia.
Collapse
Affiliation(s)
- Aude Nommick
- Aix Marseille Univ, CNRS, IBDM, Turing Center for Living Systems, Marseille, France
| | - Camille Boutin
- Aix Marseille Univ, CNRS, IBDM, Turing Center for Living Systems, Marseille, France
| | - Olivier Rosnet
- Aix Marseille Univ, CNRS, IBDM, Turing Center for Living Systems, Marseille, France
| | - Claire Schirmer
- Aix Marseille Univ, CNRS, IBDM, Turing Center for Living Systems, Marseille, France
| | - Elsa Bazellières
- Aix Marseille Univ, CNRS, IBDM, Turing Center for Living Systems, Marseille, France
| | - Virginie Thomé
- Aix Marseille Univ, CNRS, IBDM, Turing Center for Living Systems, Marseille, France
| | - Etienne Loiseau
- Aix Marseille Univ, CNRS, CINaM, Turing Center for Living Systems, Marseille, France
| | - Annie Viallat
- Aix Marseille Univ, CNRS, CINaM, Turing Center for Living Systems, Marseille, France
| | - Laurent Kodjabachian
- Aix Marseille Univ, CNRS, IBDM, Turing Center for Living Systems, Marseille, France
| |
Collapse
|
8
|
Basquin C, Gaudin N, Azimzadeh J. [Generating bilateral symmetry from asymmetrical components]. Med Sci (Paris) 2021; 37:213-215. [PMID: 33739264 DOI: 10.1051/medsci/2021004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Cyril Basquin
- Université de Paris, CNRS, Institut Jacques Monod, 15 rue Hélène Brion, 75205 Paris Cedex 13, France
| | - Noémie Gaudin
- Université de Paris, CNRS, Institut Jacques Monod, 15 rue Hélène Brion, 75205 Paris Cedex 13, France
| | - Juliette Azimzadeh
- Université de Paris, CNRS, Institut Jacques Monod, 15 rue Hélène Brion, 75205 Paris Cedex 13, France
| |
Collapse
|
9
|
Evolution of the centrosome, from the periphery to the center. Curr Opin Struct Biol 2020; 66:96-103. [PMID: 33242728 DOI: 10.1016/j.sbi.2020.10.020] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 10/13/2020] [Accepted: 10/18/2020] [Indexed: 11/24/2022]
Abstract
Centrosomes are central organelles that organize microtubules (MTs) in animals, fungi and several other eukaryotic lineages. Despite an important diversity of structure, the centrosomes of different lineages share the same functions and part of their molecular components. To uncover how divergent centrosomes are related to each other, we need to trace the evolutionary history of MT organization. Careful assessment of cytoskeletal architecture in extant eukaryotic species can help us infer the ancestral state and identify the subsequent changes that took place during evolution. This led to the finding that the last common ancestor of all eukaryotes was very likely a biflagellate cell with a surprisingly complex cytoskeletal organization. Centrosomes are likely derived from the basal bodies of such flagellate, but when and how many times this happened remains unclear. Here, we discuss different hypotheses for how centrosomes evolved in a eukaryotic lineage called Amorphea, to which animals, fungi and amoebozoans belong.
Collapse
|
10
|
Basquin C, Ershov D, Gaudin N, Vu HTK, Louis B, Papon JF, Orfila AM, Mansour S, Rink JC, Azimzadeh J. Emergence of a Bilaterally Symmetric Pattern from Chiral Components in the Planarian Epidermis. Dev Cell 2019; 51:516-525.e5. [DOI: 10.1016/j.devcel.2019.10.021] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Revised: 09/06/2019] [Accepted: 10/21/2019] [Indexed: 01/22/2023]
|
11
|
Zhao L, Hou Y, Picariello T, Craige B, Witman GB. Proteome of the central apparatus of a ciliary axoneme. J Cell Biol 2019; 218:2051-2070. [PMID: 31092556 PMCID: PMC6548120 DOI: 10.1083/jcb.201902017] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2019] [Revised: 04/13/2019] [Accepted: 04/17/2019] [Indexed: 12/15/2022] Open
Abstract
The central apparatus is an essential component of “9+2” cilia. Zhao et al. identify more than 40 new potential components of the central apparatus of Chlamydomonas. Many are conserved and will facilitate genetic screening of patients with a form of primary ciliary dyskinesia that is difficult to diagnose. Nearly all motile cilia have a “9+2” axoneme containing a central apparatus (CA), consisting of two central microtubules with projections, that is essential for motility. To date, only 22 proteins are known to be CA components. To identify new candidate CA proteins, we used mass spectrometry to compare axonemes of wild-type Chlamydomonas and a CA-less mutant. We identified 44 novel candidate CA proteins, of which 13 are conserved in humans. Five of the latter were studied more closely, and all five localized to the CA; therefore, most of the other candidates are likely to also be CA components. Our results reveal that the CA is far more compositionally complex than previously recognized and provide a greatly expanded knowledge base for studies to understand the architecture of the CA and how it functions. The discovery of the new conserved CA proteins will facilitate genetic screening to identify patients with a form of primary ciliary dyskinesia that has been difficult to diagnose.
Collapse
Affiliation(s)
- Lei Zhao
- Division of Cell Biology and Imaging, Department of Radiology, University of Massachusetts Medical School, Worcester, MA
| | - Yuqing Hou
- Division of Cell Biology and Imaging, Department of Radiology, University of Massachusetts Medical School, Worcester, MA
| | - Tyler Picariello
- Division of Cell Biology and Imaging, Department of Radiology, University of Massachusetts Medical School, Worcester, MA
| | - Branch Craige
- Division of Cell Biology and Imaging, Department of Radiology, University of Massachusetts Medical School, Worcester, MA
| | - George B Witman
- Division of Cell Biology and Imaging, Department of Radiology, University of Massachusetts Medical School, Worcester, MA
| |
Collapse
|
12
|
Abstract
'Does the geometric design of centrioles imply their function? Several principles of construction of a microscopically small device for locating the directions of signal sources in microscopic dimensions: it appears that the simplest and smallest device that is compatible with the scrambling influence of thermal fluctuations, as are demonstrated by Brownian motion, is a pair of cylinders oriented at right angles to each other. Centrioles locate the direction of hypothetical signals inside cells' (Albrecht-Buehler G, Cell Motil, 1:237-245; 1981).Despite a century of devoted efforts (articles on the centrosome always begin like this) its role remains vague and nebulous: does the centrosome suffer from bad press? Likely it does, it has an unfair image problem. It is dispensable in mitosis, but a fly zygote, artificially deprived of centrosomes, cannot start its development; its sophisticated architecture (200 protein types, highly conserved during evolution) constitutes an enigmatic puzzle; centrosome reduction in gametogenesis is a challenging brainteaser; its duplication cycle (only one centrosome per cell) is more complicated than chromosomes. Its striking geometric design (two ninefold symmetric orthogonal centrioles) shows an interesting correspondence with the requirements of a cellular compass: a reference system organizer based on a pair of orthogonal goniometers; through its two orthogonal centrioles, the centrosome may play the role of a cell geometry organizer: it can establish a finely tuned geometry, inherited and shared by all cells. Indeed, a geometrical and informational primary role for the centrosome has been ascertained in Caenorhabditis elegans zygote: the sperm centrosome locates its polarity factors. The centrosome, through its aster of microtubules, possesses all the characteristics necessary to operate as a biophysical geometric compass: it could recognize cargoes equipped with topogenic sequences and drive them precisely to where they are addressed (as hypothesized by Albrecht-Buehler nearly 40 years ago). Recently, this geometric role of the centrosome has been rediscovered by two important findings; in the Kupffer's vesicle (the laterality organ of zebrafish), chiral cilia orientation and rotational movement have been described: primary cilia, in left and right halves of the Kupffer's vesicle, are symmetrically oriented relative to the midline and rotate in reverse direction. In mice node (laterality organ) left and right perinodal cells can distinguish flow directionality through their primary cilia: primary cilium, ninefold symmetric, is strictly connected to the centrosome that is located immediately under it (basal body). Kupffer's vesicle histology and mirror behaviour of mice perinodal cells suggest primary cilia are enantiomeric geometric organelles. What is the meaning of the geometric design of centrioles and centrosomes? Does it imply their function?
Collapse
|
13
|
Hunter EL, Lechtreck K, Fu G, Hwang J, Lin H, Gokhale A, Alford LM, Lewis B, Yamamoto R, Kamiya R, Yang F, Nicastro D, Dutcher SK, Wirschell M, Sale WS. The IDA3 adapter, required for intraflagellar transport of I1 dynein, is regulated by ciliary length. Mol Biol Cell 2018; 29:886-896. [PMID: 29467251 PMCID: PMC5896928 DOI: 10.1091/mbc.e17-12-0729] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Revised: 02/09/2018] [Accepted: 02/16/2018] [Indexed: 11/18/2022] Open
Abstract
We determined how the ciliary motor I1 dynein is transported. A specialized adapter, IDA3, facilitates I1 dynein attachment to the ciliary transporter called intraflagellar transport (IFT). Loading of IDA3 and I1 dynein on IFT is regulated by ciliary length.
Collapse
Affiliation(s)
- Emily L. Hunter
- Department of Cell Biology, Emory University, Atlanta, GA 30322
| | - Karl Lechtreck
- Department of Cellular Biology, University of Georgia, Athens, GA 30602
| | - Gang Fu
- Departments of Cell Biology and Biophysics, University of Texas Southwestern Medical Center, Dallas, TX 75390
| | - Juyeon Hwang
- Department of Cell Biology, Emory University, Atlanta, GA 30322
| | - Huawen Lin
- Department of Genetics, Washington University School of Medicine, St. Louis, MO 63110
| | - Avanti Gokhale
- Department of Cell Biology, Emory University, Atlanta, GA 30322
| | - Lea M. Alford
- Department of Biology, Oglethorpe University, Atlanta, GA 30319
| | - Brian Lewis
- Department of Genetics, Washington University School of Medicine, St. Louis, MO 63110
| | - Ryosuke Yamamoto
- Department of Biological Sciences, Osaka University, Osaka 560-0043, Japan
| | - Ritsu Kamiya
- Department of Biological Sciences, Chuo University, Tokyo 112-8551, Japan
| | - Fan Yang
- Department of Biochemistry, University of Mississippi Medical Center, Jackson, MS 39216
| | - Daniela Nicastro
- Departments of Cell Biology and Biophysics, University of Texas Southwestern Medical Center, Dallas, TX 75390
| | - Susan K. Dutcher
- Department of Genetics, Washington University School of Medicine, St. Louis, MO 63110
| | - Maureen Wirschell
- Department of Biochemistry, University of Mississippi Medical Center, Jackson, MS 39216
| | | |
Collapse
|
14
|
Bengueddach H, Lemullois M, Aubusson-Fleury A, Koll F. Basal body positioning and anchoring in the multiciliated cell Paramecium tetraurelia: roles of OFD1 and VFL3. Cilia 2017; 6:6. [PMID: 28367320 PMCID: PMC5374602 DOI: 10.1186/s13630-017-0050-z] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Accepted: 03/23/2017] [Indexed: 01/01/2023] Open
Abstract
Background The development of a ciliary axoneme requires the correct docking of the basal body at cytoplasmic vesicles or plasma membrane. In the multiciliated cell Paramecium, three conserved proteins, FOR20, Centrin 2, and Centrin 3 participate in this process, FOR20 and Centrin 2 being involved in the assembly of the transition zone. We investigated the function of two other evolutionary conserved proteins, OFD1 and VFL3, likely involved in this process. Results In Paramecium tetraurelia, a single gene encodes OFD1, while four genes encode four isoforms of VFL3, grouped into two families, VFL3-A and VFL3-B. Depletion of OFD1 and the sole VFL3-A family impairs basal body docking. Loss of OFD1 yields a defective assembly of the basal body distal part. Like FOR20, OFD1 is recruited early during basal body assembly and localizes at the transition zone between axoneme and membrane at the level of the microtubule doublets. While the recruitment of OFD1 and Centrin 2 proceed independently, the localizations of OFD1 and FOR20 at the basal body are interdependent. In contrast, in VFL3-A depleted cells, the unanchored basal bodies harbor a fully organized distal part but display an abnormal distribution of their associated rootlets which mark their rotational asymmetry. VFL3-A, which is required for the recruitment of Centrin 3, is transiently present near the basal bodies at an early step of their duplication. VFL3-A localizes at the junction between the striated rootlet and the basal body. Conclusion Our results demonstrate the conserved role of OFD1 in the anchoring mechanisms of motile cilia and establish its relations with FOR20 and Centrin 2. They support the hypothesis of its association with microtubule doublets. They suggest that the primary defect of VFL3 depletion is a loss of the rotational asymmetry of the basal body which specifies the sites of assembly of the appendages which guide the movement of basal bodies toward the cell surface. The localization of VFL3 outside of the basal body suggests that extrinsic factors could control this asymmetry. Electronic supplementary material The online version of this article (doi:10.1186/s13630-017-0050-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Hakim Bengueddach
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris Sud, Université Paris-Saclay, 1 Avenue de la Terrasse, 91198 Gif sur Yvette, France
| | - Michel Lemullois
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris Sud, Université Paris-Saclay, 1 Avenue de la Terrasse, 91198 Gif sur Yvette, France
| | - Anne Aubusson-Fleury
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris Sud, Université Paris-Saclay, 1 Avenue de la Terrasse, 91198 Gif sur Yvette, France
| | - France Koll
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris Sud, Université Paris-Saclay, 1 Avenue de la Terrasse, 91198 Gif sur Yvette, France
| |
Collapse
|
15
|
Kubo T, Brown JM, Bellve K, Craige B, Craft JM, Fogarty K, Lechtreck KF, Witman GB. Together, the IFT81 and IFT74 N-termini form the main module for intraflagellar transport of tubulin. J Cell Sci 2016; 129:2106-19. [PMID: 27068536 DOI: 10.1242/jcs.187120] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Accepted: 04/03/2016] [Indexed: 11/20/2022] Open
Abstract
The assembly and maintenance of most cilia and flagella rely on intraflagellar transport (IFT). Recent in vitro studies have suggested that, together, the calponin-homology domain within the IFT81 N-terminus and the highly basic N-terminus of IFT74 form a module for IFT of tubulin. By using Chlamydomonas mutants for IFT81 and IFT74, we tested this hypothesis in vivo. Modification of the predicted tubulin-binding residues in IFT81 did not significantly affect basic anterograde IFT and length of steady-state flagella but slowed down flagellar regeneration, a phenotype similar to that seen in a strain that lacks the IFT74 N-terminus. In both mutants, the frequency of tubulin transport by IFT was greatly reduced. A double mutant that combined the modifications to IFT81 and IFT74 was able to form only very short flagella. These results indicate that, together, the IFT81 and IFT74 N-termini are crucial for flagellar assembly, and are likely to function as the main module for IFT of tubulin.
Collapse
Affiliation(s)
- Tomohiro Kubo
- Department of Cell and Developmental Biology, University of Massachusetts Medical School, Worcester, MA 01655, USA
| | - Jason M Brown
- Department of Cell and Developmental Biology, University of Massachusetts Medical School, Worcester, MA 01655, USA Biology Department, Salem State University, Salem, MA 01970, USA
| | - Karl Bellve
- Biomedical Imaging Group, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Branch Craige
- Department of Cell and Developmental Biology, University of Massachusetts Medical School, Worcester, MA 01655, USA
| | - Julie M Craft
- Department of Cellular Biology, University of Georgia, Athens, GA 30602, USA
| | - Kevin Fogarty
- Biomedical Imaging Group, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Karl F Lechtreck
- Department of Cellular Biology, University of Georgia, Athens, GA 30602, USA
| | - George B Witman
- Department of Cell and Developmental Biology, University of Massachusetts Medical School, Worcester, MA 01655, USA
| |
Collapse
|
16
|
Francia ME, Dubremetz JF, Morrissette NS. Basal body structure and composition in the apicomplexans Toxoplasma and Plasmodium. Cilia 2016; 5:3. [PMID: 26855772 PMCID: PMC4743101 DOI: 10.1186/s13630-016-0025-5] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2015] [Accepted: 01/20/2016] [Indexed: 11/22/2022] Open
Abstract
The phylum Apicomplexa encompasses numerous important human and animal disease-causing parasites, including the Plasmodium species, and Toxoplasma gondii, causative agents of malaria and toxoplasmosis, respectively. Apicomplexans proliferate by asexual replication and can also undergo sexual recombination. Most life cycle stages of the parasite lack flagella; these structures only appear on male gametes. Although male gametes (microgametes) assemble a typical 9+2 axoneme, the structure of the templating basal body is poorly defined. Moreover, the relationship between asexual stage centrioles and microgamete basal bodies remains unclear. While asexual stages of Plasmodium lack defined centriole structures, the asexual stages of Toxoplasma and closely related coccidian apicomplexans contain centrioles that consist of nine singlet microtubules and a central tubule. There are relatively few ultra-structural images of Toxoplasma microgametes, which only develop in cat intestinal epithelium. Only a subset of these include sections through the basal body: to date, none have unambiguously captured organization of the basal body structure. Moreover, it is unclear whether this basal body is derived from pre-existing asexual stage centrioles or is synthesized de novo. Basal bodies in Plasmodium microgametes are thought to be synthesized de novo, and their assembly remains ill-defined. Apicomplexan genomes harbor genes encoding δ- and ε-tubulin homologs, potentially enabling these parasites to assemble a typical triplet basal body structure. Moreover, the UNIMOD components (SAS6, SAS4/CPAP, and BLD10/CEP135) are conserved in these organisms. However, other widely conserved basal body and flagellar biogenesis elements are missing from apicomplexan genomes. These differences may indicate variations in flagellar biogenesis pathways and in basal body arrangement within the phylum. As apicomplexan basal bodies are distinct from their metazoan counterparts, it may be possible to selectively target parasite structures in order to inhibit microgamete motility which drives generation of genetic diversity in Toxoplasma and transmission for Plasmodium.
Collapse
|
17
|
Tulin F, Cross FR. Cyclin-Dependent Kinase Regulation of Diurnal Transcription in Chlamydomonas. THE PLANT CELL 2015; 27:2727-42. [PMID: 26475866 PMCID: PMC4682320 DOI: 10.1105/tpc.15.00400] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2015] [Revised: 08/01/2015] [Accepted: 09/18/2015] [Indexed: 05/18/2023]
Abstract
We analyzed global transcriptome changes during synchronized cell division in the green alga Chlamydomonas reinhardtii. The Chlamydomonas cell cycle consists of a long G1 phase, followed by an S/M phase with multiple rapid, alternating rounds of DNA replication and segregation. We found that the S/M period is associated with strong induction of ∼2300 genes, many with conserved roles in DNA replication or cell division. Other genes, including many involved in photosynthesis, are reciprocally downregulated in S/M, suggesting a gene expression split correlating with the temporal separation between G1 and S/M. The Chlamydomonas cell cycle is synchronized by light-dark cycles, so in principle, these transcriptional changes could be directly responsive to light or to metabolic cues. Alternatively, cell-cycle-periodic transcription may be directly regulated by cyclin-dependent kinases. To distinguish between these possibilities, we analyzed transcriptional profiles of mutants in the kinases CDKA and CDKB, as well as other mutants with distinct cell cycle blocks. Initial cell-cycle-periodic expression changes are largely CDK independent, but later regulation (induction and repression) is under differential control by CDKA and CDKB. Deviation from the wild-type transcriptional program in diverse cell cycle mutants will be an informative phenotype for further characterization of the Chlamydomonas cell cycle.
Collapse
Affiliation(s)
- Frej Tulin
- The Rockefeller University, New York, NY
| | | |
Collapse
|
18
|
Awata J, Song K, Lin J, King SM, Sanderson MJ, Nicastro D, Witman GB. DRC3 connects the N-DRC to dynein g to regulate flagellar waveform. Mol Biol Cell 2015; 26:2788-800. [PMID: 26063732 PMCID: PMC4571338 DOI: 10.1091/mbc.e15-01-0018] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2015] [Revised: 05/26/2015] [Accepted: 06/03/2015] [Indexed: 01/30/2023] Open
Abstract
The nexin-dynein regulatory complex (N-DRC), which is a major hub for the control of flagellar motility, contains at least 11 different subunits. A major challenge is to determine the location and function of each of these subunits within the N-DRC. We characterized a Chlamydomonas mutant defective in the N-DRC subunit DRC3. Of the known N-DRC subunits, the drc3 mutant is missing only DRC3. Like other N-DRC mutants, the drc3 mutant has a defect in flagellar motility. However, in contrast to other mutations affecting the N-DRC, drc3 does not suppress flagellar paralysis caused by loss of radial spokes. Cryo-electron tomography revealed that the drc3 mutant lacks a portion of the N-DRC linker domain, including the L1 protrusion, part of the distal lobe, and the connection between these two structures, thus localizing DRC3 to this part of the N-DRC. This and additional considerations enable us to assign DRC3 to the L1 protrusion. Because the L1 protrusion is the only non-dynein structure in contact with the dynein g motor domain in wild-type axonemes and this is the only N-DRC-dynein connection missing in the drc3 mutant, we conclude that DRC3 interacts with dynein g to regulate flagellar waveform.
Collapse
Affiliation(s)
- Junya Awata
- Department of Cell and Developmental Biology, University of Massachusetts Medical School, Worcester, MA 01655
| | - Kangkang Song
- Biology Department and Rosenstiel Basic Medical Sciences Research Center, Brandeis University, Waltham, MA 02454
| | - Jianfeng Lin
- Biology Department and Rosenstiel Basic Medical Sciences Research Center, Brandeis University, Waltham, MA 02454
| | - Stephen M King
- Department of Molecular Biology and Biophysics and Institute for Systems Genomics, University of Connecticut Health Center, Farmington, CT 06030
| | - Michael J Sanderson
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, MA 01655
| | - Daniela Nicastro
- Biology Department and Rosenstiel Basic Medical Sciences Research Center, Brandeis University, Waltham, MA 02454
| | - George B Witman
- Department of Cell and Developmental Biology, University of Massachusetts Medical School, Worcester, MA 01655
| |
Collapse
|
19
|
TCTEX1D2 mutations underlie Jeune asphyxiating thoracic dystrophy with impaired retrograde intraflagellar transport. Nat Commun 2015; 6:7074. [PMID: 26044572 PMCID: PMC4468853 DOI: 10.1038/ncomms8074] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2014] [Accepted: 03/31/2015] [Indexed: 02/06/2023] Open
Abstract
The analysis of individuals with ciliary chondrodysplasias can shed light on sensitive mechanisms controlling ciliogenesis and cell signalling that are essential to embryonic development and survival. Here we identify TCTEX1D2 mutations causing Jeune asphyxiating thoracic dystrophy with partially penetrant inheritance. Loss of TCTEX1D2 impairs retrograde intraflagellar transport (IFT) in humans and the protist Chlamydomonas, accompanied by destabilization of the retrograde IFT dynein motor. We thus define TCTEX1D2 as an integral component of the evolutionarily conserved retrograde IFT machinery. In complex with several IFT dynein light chains, it is required for correct vertebrate skeletal formation but may be functionally redundant under certain conditions. Severe congenital development defects such as Jeune syndrome can result from the malfunction of primary cilia and dynein. Here Schmidts et al. report unique biallelic null mutations in a gene encoding a dynein light chain, helping to explain the nature of ciliopathies in human patients.
Collapse
|
20
|
Jinkerson RE, Jonikas MC. Molecular techniques to interrogate and edit the Chlamydomonas nuclear genome. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2015; 82:393-412. [PMID: 25704665 DOI: 10.1111/tpj.12801] [Citation(s) in RCA: 85] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2014] [Revised: 02/13/2015] [Accepted: 02/16/2015] [Indexed: 05/23/2023]
Abstract
The success of the green alga Chlamydomonas reinhardtii as a model organism is to a large extent due to the wide range of molecular techniques that are available for its characterization. Here, we review some of the techniques currently used to modify and interrogate the C. reinhardtii nuclear genome and explore several technologies under development. Nuclear mutants can be generated with ultraviolet (UV) light and chemical mutagens, or by insertional mutagenesis. Nuclear transformation methods include biolistic delivery, agitation with glass beads, and electroporation. Transforming DNA integrates into the genome at random sites, and multiple strategies exist for mapping insertion sites. A limited number of studies have demonstrated targeted modification of the nuclear genome by approaches such as zinc-finger nucleases and homologous recombination. RNA interference is widely used to knock down expression levels of nuclear genes. A wide assortment of transgenes has been successfully expressed in the Chlamydomonas nuclear genome, including transformation markers, fluorescent proteins, reporter genes, epitope tagged proteins, and even therapeutic proteins. Optimized expression constructs and strains help transgene expression. Emerging technologies such as the CRISPR/Cas9 system, high-throughput mutant identification, and a whole-genome knockout library are being developed for this organism. We discuss how these advances will propel future investigations.
Collapse
Affiliation(s)
- Robert E Jinkerson
- Department of Plant Biology, Carnegie Institution for Science, 260 Panama Street, Stanford, CA, 94305, USA
| | - Martin C Jonikas
- Department of Plant Biology, Carnegie Institution for Science, 260 Panama Street, Stanford, CA, 94305, USA
| |
Collapse
|
21
|
Cross FR, Umen JG. The Chlamydomonas cell cycle. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2015; 82:370-392. [PMID: 25690512 PMCID: PMC4409525 DOI: 10.1111/tpj.12795] [Citation(s) in RCA: 133] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2014] [Revised: 02/03/2015] [Accepted: 02/04/2015] [Indexed: 05/18/2023]
Abstract
The position of Chlamydomonas within the eukaryotic phylogeny makes it a unique model in at least two important ways: as a representative of the critically important, early-diverging lineage leading to plants; and as a microbe retaining important features of the last eukaryotic common ancestor (LECA) that has been lost in the highly studied yeast lineages. Its cell biology has been studied for many decades and it has well-developed experimental genetic tools, both classical (Mendelian) and molecular. Unlike land plants, it is a haploid with very few gene duplicates, making it ideal for loss-of-function genetic studies. The Chlamydomonas cell cycle has a striking temporal and functional separation between cell growth and rapid cell division, probably connected to the interplay between diurnal cycles that drive photosynthetic cell growth and the cell division cycle; it also exhibits a highly choreographed interaction between the cell cycle and its centriole-basal body-flagellar cycle. Here, we review the current status of studies of the Chlamydomonas cell cycle. We begin with an overview of cell-cycle control in the well-studied yeast and animal systems, which has yielded a canonical, well-supported model. We discuss briefly what is known about similarities and differences in plant cell-cycle control, compared with this model. We next review the cytology and cell biology of the multiple-fission cell cycle of Chlamydomonas. Lastly, we review recent genetic approaches and insights into Chlamydomonas cell-cycle regulation that have been enabled by a new generation of genomics-based tools.
Collapse
Affiliation(s)
| | - James G Umen
- Donald Danforth Plant Science Center, St. Louis, MO, 63132, USA
| |
Collapse
|
22
|
Targeting Toxoplasma tubules: tubulin, microtubules, and associated proteins in a human pathogen. EUKARYOTIC CELL 2014; 14:2-12. [PMID: 25380753 DOI: 10.1128/ec.00225-14] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Toxoplasma gondii is an obligate intracellular parasite that causes serious opportunistic infections, birth defects, and blindness in humans. Microtubules are critically important components of diverse structures that are used throughout the Toxoplasma life cycle. As in other eukaryotes, spindle microtubules are required for chromosome segregation during replication. Additionally, a set of membrane-associated microtubules is essential for the elongated shape of invasive "zoites," and motility follows a spiral trajectory that reflects the path of these microtubules. Toxoplasma zoites also construct an intricate, tubulin-based apical structure, termed the conoid, which is important for host cell invasion and associates with proteins typically found in the flagellar apparatus. Last, microgametes specifically construct a microtubule-containing flagellar axoneme in order to fertilize macrogametes, permitting genetic recombination. The specialized roles of these microtubule populations are mediated by distinct sets of associated proteins. This review summarizes our current understanding of the role of tubulin, microtubule populations, and associated proteins in Toxoplasma; these components are used for both novel and broadly conserved processes that are essential for parasite survival.
Collapse
|
23
|
Awata J, Takada S, Standley C, Lechtreck KF, Bellvé KD, Pazour GJ, Fogarty KE, Witman GB. NPHP4 controls ciliary trafficking of membrane proteins and large soluble proteins at the transition zone. J Cell Sci 2014; 127:4714-27. [PMID: 25150219 DOI: 10.1242/jcs.155275] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The protein nephrocystin-4 (NPHP4) is widespread in ciliated organisms, and defects in NPHP4 cause nephronophthisis and blindness in humans. To learn more about the function of NPHP4, we have studied it in Chlamydomonas reinhardtii. NPHP4 is stably incorporated into the distal part of the flagellar transition zone, close to the membrane and distal to CEP290, another transition zone protein. Therefore, these two proteins, which are incorporated into the transition zone independently of each other, define different domains of the transition zone. An nphp4-null mutant forms flagella with nearly normal length, ultrastructure and intraflagellar transport. When fractions from isolated wild-type and nphp4 flagella were compared, few differences were observed between the axonemes, but the amounts of certain membrane proteins were greatly reduced in the mutant flagella, and cellular housekeeping proteins >50 kDa were no longer excluded from mutant flagella. Therefore, NPHP4 functions at the transition zone as an essential part of a barrier that regulates both membrane and soluble protein composition of flagella. The phenotypic consequences of NPHP4 mutations in humans likely follow from protein mislocalization due to defects in the transition zone barrier.
Collapse
Affiliation(s)
- Junya Awata
- Department of Cell and Developmental Biology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Saeko Takada
- Department of Cell and Developmental Biology, University of Massachusetts Medical School, Worcester, MA 01605, USA Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN 55455, USA
| | - Clive Standley
- Biomedical Imaging Group, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Karl F Lechtreck
- Department of Cell and Developmental Biology, University of Massachusetts Medical School, Worcester, MA 01605, USA Department of Cellular Biology, University of Georgia, Athens, GA 30602, USA
| | - Karl D Bellvé
- Biomedical Imaging Group, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Gregory J Pazour
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Kevin E Fogarty
- Biomedical Imaging Group, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - George B Witman
- Department of Cell and Developmental Biology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| |
Collapse
|
24
|
Yanagisawa HA, Mathis G, Oda T, Hirono M, Richey EA, Ishikawa H, Marshall WF, Kikkawa M, Qin H. FAP20 is an inner junction protein of doublet microtubules essential for both the planar asymmetrical waveform and stability of flagella in Chlamydomonas. Mol Biol Cell 2014; 25:1472-83. [PMID: 24574454 PMCID: PMC4004596 DOI: 10.1091/mbc.e13-08-0464] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
The question of what proteins compose the junctions between two tubules in doublet microtubules is long-standing. Here a conserved flagellar protein, FAP20, is shown to be an inner junction component important for stabilizing the axoneme and scaffolding intra–B-tubular structures required for a planar asymmetrical waveform. The axoneme—the conserved core of eukaryotic cilia and flagella—contains highly specialized doublet microtubules (DMTs). A long-standing question is what protein(s) compose the junctions between two tubules in DMT. Here we identify a highly conserved flagellar-associated protein (FAP), FAP20, as an inner junction (IJ) component. The flagella of Chlamydomonas FAP20 mutants have normal length but beat with an abnormal symmetrical three-dimensional pattern. In addition, the mutant axonemes are liable to disintegrate during beating, implying that interdoublet connections may be weakened. Conventional electron microscopy shows that the mutant axonemes lack the IJ, and cryo–electron tomography combined with a structural labeling method reveals that the labeled FAP20 localizes at the IJ. The mutant axonemes also lack doublet-specific beak structures, which are localized in the proximal portion of the axoneme and may be involved in planar asymmetric flagellar bending. FAP20 itself, however, may not be a beak component, because uniform localization of FAP20 along the entire length of all nine DMTs is inconsistent with the beak's localization. FAP20 is the first confirmed component of the IJ. Our data also suggest that the IJ is important for both stabilizing the axoneme and scaffolding intra–B-tubular substructures required for a planar asymmetrical waveform.
Collapse
Affiliation(s)
- Haru-aki Yanagisawa
- Department of Cell Biology and Anatomy, Graduate School of Medicine, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan Department of Biological Sciences, Graduate School of Science, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan Department of Biology, Texas A&M University, College Station, TX 77843 Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA 94158
| | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Dutcher SK. The awesome power of dikaryons for studying flagella and basal bodies in Chlamydomonas reinhardtii. Cytoskeleton (Hoboken) 2013; 71:79-94. [PMID: 24272949 DOI: 10.1002/cm.21157] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2013] [Accepted: 11/19/2013] [Indexed: 11/08/2022]
Abstract
Cilia/flagella and basal bodies/centrioles play key roles in human health and homeostasis. Among the organisms used to study these microtubule-based organelles, the green alga Chlamydomonas reinhardtii has several advantages. One is the existence of a temporary phase of the life cycle, termed the dikaryon. These cells are formed during mating when the cells fuse and the behavior of flagella from two genetically distinguishable parents can be observed. During this stage, the cytoplasms mix allowing for a defect in the flagella of one parent to be rescued by proteins from the other parent. This offers the unique advantage of adding back wild-type gene product or labeled protein at endogenous levels that can used to monitor various flagellar and basal body phenotypes. Mutants that show rescue and ones that fail to show rescue are both informative about the nature of the flagella and basal body defects. When rescue occurs, it can be used to determine the mutant gene product and to follow the temporal and spatial patterns of flagellar assembly. This review describes many examples of insights into basal body and flagellar proteins' function and assembly that have been discovered using dikaryons and discusses the potential for further analyses.
Collapse
Affiliation(s)
- Susan K Dutcher
- Department of Genetics, Washington University School of Medicine, St. Louis, Missouri
| |
Collapse
|
26
|
O'Toole ET, Dutcher SK. Site-specific basal body duplication in Chlamydomonas. Cytoskeleton (Hoboken) 2013; 71:108-18. [PMID: 24166861 DOI: 10.1002/cm.21155] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2013] [Revised: 10/16/2013] [Accepted: 10/22/2013] [Indexed: 11/12/2022]
Abstract
Correct centriole/basal body positioning is required for numerous biological processes, yet how the cell establishes this positioning is poorly understood. Analysis of centriolar/basal body duplication provides a key to understanding basal body positioning and function. Chlamydomonas basal bodies contain structural features that enable specific triplet microtubules to be specified. Electron tomography of cultures enriched in mitotic cells allowed us to follow basal body duplication and identify a specific triplet at which duplication occurs. Probasal bodies elongate in prophase, assemble transitional fibers (TF) and are segregated with a mature basal body near the poles of the mitotic spindle. A ring of nine-singlet microtubules is initiated at metaphase, orthogonal to triplet eight. At telophase/cytokinesis, triplet microtubule blades assemble first at the distal end, rather than at the proximal cartwheel. The cartwheel undergoes significant changes in length during duplication, which provides further support for its scaffolding role. The uni1-1 mutant contains short basal bodies with reduced or absent TF and defective transition zones, suggesting that the UNI1 gene product is important for coordinated probasal body elongation and maturation. We suggest that this site-specific basal body duplication ensures the correct positioning of the basal body to generate landmarks for intracellular patterning in the next generation.
Collapse
Affiliation(s)
- Eileen T O'Toole
- Department of Molecular, Cellular, and Developmental Biology, Boulder Laboratory for 3-D Electron Microscopy of Cells, University of Colorado, Boulder, Colorado
| | | |
Collapse
|
27
|
Nguyen HM, Cuiné S, Beyly-Adriano A, Légeret B, Billon E, Auroy P, Beisson F, Peltier G, Li-Beisson Y. The green microalga Chlamydomonas reinhardtii has a single ω-3 fatty acid desaturase that localizes to the chloroplast and impacts both plastidic and extraplastidic membrane lipids. PLANT PHYSIOLOGY 2013; 163:914-28. [PMID: 23958863 PMCID: PMC3793068 DOI: 10.1104/pp.113.223941] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2013] [Accepted: 08/16/2013] [Indexed: 05/03/2023]
Abstract
The ω-3 polyunsaturated fatty acids account for more than 50% of total fatty acids in the green microalga Chlamydomonas reinhardtii, where they are present in both plastidic and extraplastidic membranes. In an effort to elucidate the lipid desaturation pathways in this model alga, a mutant with more than 65% reduction in total ω-3 fatty acids was isolated by screening an insertional mutant library using gas chromatography-based analysis of total fatty acids of cell pellets. Molecular genetics analyses revealed the insertion of a TOC1 transposon 113 bp upstream of the ATG start codon of a putative ω-3 desaturase (CrFAD7; locus Cre01.g038600). Nuclear genetic complementation of crfad7 using genomic DNA containing CrFAD7 restored the wild-type fatty acid profile. Under standard growth conditions, the mutant is indistinguishable from the wild type except for the fatty acid difference, but when exposed to short-term heat stress, its photosynthesis activity is more thermotolerant than the wild type. A comparative lipidomic analysis of the crfad7 mutant and the wild type revealed reductions in all ω-3 fatty acid-containing plastidic and extraplastidic glycerolipid molecular species. CrFAD7 was localized to the plastid by immunofluorescence in situ hybridization. Transformation of the crfad7 plastidial genome with a codon-optimized CrFAD7 restored the ω-3 fatty acid content of both plastidic and extraplastidic lipids. These results show that CrFAD7 is the only ω-3 fatty acid desaturase expressed in C. reinhardtii, and we discuss possible mechanisms of how a plastid-located desaturase may impact the ω-3 fatty acid content of extraplastidic lipids.
Collapse
MESH Headings
- Adaptation, Physiological/genetics
- Adaptation, Physiological/radiation effects
- Amino Acid Sequence
- Cell Nucleus/genetics
- Chlamydomonas reinhardtii/enzymology
- Chlamydomonas reinhardtii/genetics
- Chlamydomonas reinhardtii/radiation effects
- Chloroplasts/enzymology
- Chloroplasts/genetics
- Chloroplasts/radiation effects
- DNA Transposable Elements/genetics
- DNA, Plant/genetics
- Fatty Acid Desaturases/chemistry
- Fatty Acid Desaturases/genetics
- Fatty Acid Desaturases/metabolism
- Fatty Acids, Omega-3/biosynthesis
- Fluorescent Antibody Technique
- Genetic Complementation Test
- Genetic Loci/genetics
- In Situ Hybridization
- Light
- Membrane Lipids/metabolism
- Microalgae/enzymology
- Microalgae/genetics
- Microalgae/radiation effects
- Models, Biological
- Molecular Sequence Data
- Mutagenesis, Insertional/genetics
- Mutation/genetics
- Promoter Regions, Genetic/genetics
- Sequence Homology, Nucleic Acid
- Subcellular Fractions/enzymology
- Temperature
- Transcription, Genetic/radiation effects
- Transformation, Genetic
Collapse
Affiliation(s)
- Hoa Mai Nguyen
- Commissariat à l’Energie Atomique Cadarache, Institut de Biologie Environnementale et Biotechnologie, Laboratoire de Bioénergétique et Biotechnologie des Bactéries et Microalgues, Saint-Paul-lez-Durance F–13108, France (H.M.N., S.C., A.B.-A., B.L., E.B., P.A., F.B., G.P., Y.L.-B.)
- CNRS, UMR Biologie Végétale et Microbiologie Environnementales, Saint-Paul-lez-Durance F–13108, France (H.M.N., S.C., A.B.-A., B.L., E.B., P.A., F.B., G.P., Y.L.-B.); and
- Aix-Marseille Université, Saint-Paul-lez-Durance F–13108, France (H.M.N., S.C., A.B.-A., B.L., E.B., P.A., F.B., G.P., Y.L.-B.)
| | - Stéphan Cuiné
- Commissariat à l’Energie Atomique Cadarache, Institut de Biologie Environnementale et Biotechnologie, Laboratoire de Bioénergétique et Biotechnologie des Bactéries et Microalgues, Saint-Paul-lez-Durance F–13108, France (H.M.N., S.C., A.B.-A., B.L., E.B., P.A., F.B., G.P., Y.L.-B.)
- CNRS, UMR Biologie Végétale et Microbiologie Environnementales, Saint-Paul-lez-Durance F–13108, France (H.M.N., S.C., A.B.-A., B.L., E.B., P.A., F.B., G.P., Y.L.-B.); and
- Aix-Marseille Université, Saint-Paul-lez-Durance F–13108, France (H.M.N., S.C., A.B.-A., B.L., E.B., P.A., F.B., G.P., Y.L.-B.)
| | - Audrey Beyly-Adriano
- Commissariat à l’Energie Atomique Cadarache, Institut de Biologie Environnementale et Biotechnologie, Laboratoire de Bioénergétique et Biotechnologie des Bactéries et Microalgues, Saint-Paul-lez-Durance F–13108, France (H.M.N., S.C., A.B.-A., B.L., E.B., P.A., F.B., G.P., Y.L.-B.)
- CNRS, UMR Biologie Végétale et Microbiologie Environnementales, Saint-Paul-lez-Durance F–13108, France (H.M.N., S.C., A.B.-A., B.L., E.B., P.A., F.B., G.P., Y.L.-B.); and
- Aix-Marseille Université, Saint-Paul-lez-Durance F–13108, France (H.M.N., S.C., A.B.-A., B.L., E.B., P.A., F.B., G.P., Y.L.-B.)
| | - Bertrand Légeret
- Commissariat à l’Energie Atomique Cadarache, Institut de Biologie Environnementale et Biotechnologie, Laboratoire de Bioénergétique et Biotechnologie des Bactéries et Microalgues, Saint-Paul-lez-Durance F–13108, France (H.M.N., S.C., A.B.-A., B.L., E.B., P.A., F.B., G.P., Y.L.-B.)
- CNRS, UMR Biologie Végétale et Microbiologie Environnementales, Saint-Paul-lez-Durance F–13108, France (H.M.N., S.C., A.B.-A., B.L., E.B., P.A., F.B., G.P., Y.L.-B.); and
- Aix-Marseille Université, Saint-Paul-lez-Durance F–13108, France (H.M.N., S.C., A.B.-A., B.L., E.B., P.A., F.B., G.P., Y.L.-B.)
| | - Emmanuelle Billon
- Commissariat à l’Energie Atomique Cadarache, Institut de Biologie Environnementale et Biotechnologie, Laboratoire de Bioénergétique et Biotechnologie des Bactéries et Microalgues, Saint-Paul-lez-Durance F–13108, France (H.M.N., S.C., A.B.-A., B.L., E.B., P.A., F.B., G.P., Y.L.-B.)
- CNRS, UMR Biologie Végétale et Microbiologie Environnementales, Saint-Paul-lez-Durance F–13108, France (H.M.N., S.C., A.B.-A., B.L., E.B., P.A., F.B., G.P., Y.L.-B.); and
- Aix-Marseille Université, Saint-Paul-lez-Durance F–13108, France (H.M.N., S.C., A.B.-A., B.L., E.B., P.A., F.B., G.P., Y.L.-B.)
| | - Pascaline Auroy
- Commissariat à l’Energie Atomique Cadarache, Institut de Biologie Environnementale et Biotechnologie, Laboratoire de Bioénergétique et Biotechnologie des Bactéries et Microalgues, Saint-Paul-lez-Durance F–13108, France (H.M.N., S.C., A.B.-A., B.L., E.B., P.A., F.B., G.P., Y.L.-B.)
- CNRS, UMR Biologie Végétale et Microbiologie Environnementales, Saint-Paul-lez-Durance F–13108, France (H.M.N., S.C., A.B.-A., B.L., E.B., P.A., F.B., G.P., Y.L.-B.); and
- Aix-Marseille Université, Saint-Paul-lez-Durance F–13108, France (H.M.N., S.C., A.B.-A., B.L., E.B., P.A., F.B., G.P., Y.L.-B.)
| | - Fred Beisson
- Commissariat à l’Energie Atomique Cadarache, Institut de Biologie Environnementale et Biotechnologie, Laboratoire de Bioénergétique et Biotechnologie des Bactéries et Microalgues, Saint-Paul-lez-Durance F–13108, France (H.M.N., S.C., A.B.-A., B.L., E.B., P.A., F.B., G.P., Y.L.-B.)
- CNRS, UMR Biologie Végétale et Microbiologie Environnementales, Saint-Paul-lez-Durance F–13108, France (H.M.N., S.C., A.B.-A., B.L., E.B., P.A., F.B., G.P., Y.L.-B.); and
- Aix-Marseille Université, Saint-Paul-lez-Durance F–13108, France (H.M.N., S.C., A.B.-A., B.L., E.B., P.A., F.B., G.P., Y.L.-B.)
| | - Gilles Peltier
- Commissariat à l’Energie Atomique Cadarache, Institut de Biologie Environnementale et Biotechnologie, Laboratoire de Bioénergétique et Biotechnologie des Bactéries et Microalgues, Saint-Paul-lez-Durance F–13108, France (H.M.N., S.C., A.B.-A., B.L., E.B., P.A., F.B., G.P., Y.L.-B.)
- CNRS, UMR Biologie Végétale et Microbiologie Environnementales, Saint-Paul-lez-Durance F–13108, France (H.M.N., S.C., A.B.-A., B.L., E.B., P.A., F.B., G.P., Y.L.-B.); and
- Aix-Marseille Université, Saint-Paul-lez-Durance F–13108, France (H.M.N., S.C., A.B.-A., B.L., E.B., P.A., F.B., G.P., Y.L.-B.)
| | | |
Collapse
|
28
|
A Centrin3-dependent, Transient, Appendage of the Mother Basal Body Guides the Positioning of the Daughter Basal Body in Paramecium. Protist 2013; 164:352-68. [DOI: 10.1016/j.protis.2012.11.003] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2012] [Revised: 11/13/2012] [Accepted: 11/15/2012] [Indexed: 11/30/2022]
|
29
|
Sivadas P, Dienes JM, St Maurice M, Meek WD, Yang P. A flagellar A-kinase anchoring protein with two amphipathic helices forms a structural scaffold in the radial spoke complex. ACTA ACUST UNITED AC 2013; 199:639-51. [PMID: 23148234 PMCID: PMC3494852 DOI: 10.1083/jcb.201111042] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Amphipathic helices in the A-kinase anchoring protein RSP3 bind to spoke proteins involved in the assembly and modulation of the flagellar radial spoke complex, expanding the repertoire of these versatile helical protein motifs. A-kinase anchoring proteins (AKAPs) contain an amphipathic helix (AH) that binds the dimerization and docking (D/D) domain, RIIa, in cAMP-dependent protein kinase A (PKA). Many AKAPs were discovered solely based on the AH–RIIa interaction in vitro. An RIIa or a similar Dpy-30 domain is also present in numerous diverged molecules that are implicated in critical processes as diverse as flagellar beating, membrane trafficking, histone methylation, and stem cell differentiation, yet these molecules remain poorly characterized. Here we demonstrate that an AKAP, RSP3, forms a dimeric structural scaffold in the flagellar radial spoke complex, anchoring through two distinct AHs, the RIIa and Dpy-30 domains, in four non-PKA spoke proteins involved in the assembly and modulation of the complex. Interestingly, one AH can bind both RIIa and Dpy-30 domains in vitro. Thus, AHs and D/D domains constitute a versatile yet potentially promiscuous system for localizing various effector mechanisms. These results greatly expand the current concept about anchoring mechanisms and AKAPs.
Collapse
Affiliation(s)
- Priyanka Sivadas
- Department of Biological Sciences, Marquette University, Milwaukee, WI 53201, USA
| | | | | | | | | |
Collapse
|
30
|
Esparza JM, O’Toole E, Li L, Giddings TH, Kozak B, Albee AJ, Dutcher SK. Katanin localization requires triplet microtubules in Chlamydomonas reinhardtii. PLoS One 2013; 8:e53940. [PMID: 23320108 PMCID: PMC3540033 DOI: 10.1371/journal.pone.0053940] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2012] [Accepted: 12/04/2012] [Indexed: 12/26/2022] Open
Abstract
Centrioles and basal bodies are essential for a variety of cellular processes that include the recruitment of proteins to these structures for both centrosomal and ciliary function. This recruitment is compromised when centriole/basal body assembly is defective. Mutations that cause basal body assembly defects confer supersensitivity to Taxol. These include bld2, bld10, bld12, uni3, vfl1, vfl2, and vfl3. Flagellar motility mutants do not confer sensitivity with the exception of mutations in the p60 (pf19) and p80 (pf15) subunits of the microtubule severing protein katanin. We have identified additional pf15 and bld2 (ε-tubulin) alleles in screens for Taxol sensitivity. Null pf15 and bld2 alleles are viable and are not essential genes in Chlamydomonas. Analysis of double mutant strains with the pf15-3 and bld2-6 null alleles suggests that basal bodies in Chlamydomonas may recruit additional proteins beyond katanin that affect spindle microtubule stability. The bld2-5 allele is a hypomorphic allele and its phenotype is modulated by nutritional cues. Basal bodies in bld2-5 cells are missing proximal ends. The basal body mutants show aberrant localization of an epitope-tagged p80 subunit of katanin. Unlike IFT proteins, katanin p80 does not localize to the transition fibers of the basal bodies based on an analysis of the uni1 mutant as well as the lack of colocalization of katanin p80 with IFT74. We suggest that the triplet microtubules are likely to play a key role in katanin p80 recruitment to the basal body of Chlamydomonas rather than the transition fibers that are needed for IFT localization.
Collapse
Affiliation(s)
- Jessica M. Esparza
- Department of Genetics, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Eileen O’Toole
- Department of Genetics, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Linya Li
- Department of Genetics, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Thomas H. Giddings
- Department of Genetics, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Benjamin Kozak
- Department of Genetics, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Alison J. Albee
- Department of Genetics, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Susan K. Dutcher
- Department of Genetics, Washington University School of Medicine, St. Louis, Missouri, United States of America
- * E-mail:
| |
Collapse
|
31
|
Marshall WF. Centriole asymmetry determines algal cell geometry. CURRENT OPINION IN PLANT BIOLOGY 2012; 15:632-637. [PMID: 23026116 PMCID: PMC3518594 DOI: 10.1016/j.pbi.2012.09.011] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2012] [Revised: 09/07/2012] [Accepted: 09/11/2012] [Indexed: 06/01/2023]
Abstract
The mechanisms that determine the shape and organization of cells remain largely unknown. Green algae such as Chlamydomonas provide excellent model systems for studying cell geometry owing to their highly reproducible cell organization. Structural and genetic studies suggest that asymmetry of the centriole (basal body) plays a critical determining role in organizing the internal organization of algal cells, through the attachment of microtubule rootlets and other large fiber systems to specific sets of microtubule triplets on the centriole. Thus to understand cell organization, it will be critical to understand how the different triplets of the centriole come to have distinct molecular identities.
Collapse
Affiliation(s)
- Wallace F Marshall
- Department of Biochemistry and Biophysics, UCSF, San Francisco, CA 94158, United States.
| |
Collapse
|
32
|
Abstract
Eukaryotic cilia/flagella are ancient organelles with motility and sensory functions. Cilia display significant ultrastructural conservation where present across the eukaryotic phylogeny; however, diversity in ciliary biology exists and the ability to produce cilia has been lost independently on a number of occasions. Land plants provide an excellent system for the investigation of cilia evolution and loss across a broad phylogeny, because early divergent land plant lineages produce cilia, whereas most seed plants do not. This review highlights the differences in cilia form and function across land plants and discusses how recent advances in genomics are providing novel insights into the evolutionary trajectory of ciliary proteins. We propose a renewed effort to adopt ciliated land plants as models to investigate the mechanisms underpinning complex ciliary processes, such as number control, the coordination of basal body placement and the regulation of beat patterns.
Collapse
Affiliation(s)
- Matthew E Hodges
- Department of Plant Sciences, South Parks Road, University of Oxford, Oxford OX1 3RB, UK
| | - Bill Wickstead
- Centre for Genetics and Genomics, University of Nottingham, Nottingham NG7 2UH, UK
| | - Keith Gull
- Sir William Dunn School of Pathology, South Parks Road, University of Oxford, Oxford OX1 3RE, UK
| | - Jane A Langdale
- Department of Plant Sciences, South Parks Road, University of Oxford, Oxford OX1 3RB, UK
| |
Collapse
|
33
|
The DPY-30 domain and its flanking sequence mediate the assembly and modulation of flagellar radial spoke complexes. Mol Cell Biol 2012; 32:4012-24. [PMID: 22851692 DOI: 10.1128/mcb.06602-11] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
RIIa is known as the dimerization and docking (D/D) domain of the cyclic AMP (cAMP)-dependent protein kinase. However, numerous molecules, including radial spoke protein 2 (RSP2) in Chlamydomonas flagella, also contain an RIIa or a similar DPY-30 domain. To elucidate new roles of D/D domain-containing proteins, we investigated a panel of RSP2 mutants. An RSP2 mutant had paralyzed flagella defective in RSP2 and multiple subunits near the spokehead. New transgenic strains lacking only the DPY-30 domain in RSP2 were also paralyzed. In contrast, motility was restored in strains that lacked only RSP2's calmodulin-binding C-terminal region. These cells swam normally in dim light but could not maintain typical swimming trajectories under bright illumination. In both deletion transgenic strains, the subunits near the spokehead were restored, but their firm attachment to the spokestalk required the DPY-30 domain. We postulate that the DPY-30-helix dimer is a conserved two-prong linker, required for normal motility, organizing duplicated subunits in the radial spoke stalk and formation of a symmetrical spokehead. Further, the dispensable calmodulin-binding region appears to fine-tune the spokehead for regulation of "steering" motility in the green algae. Thus, in general, D/D domains may function to localize molecular modules for both the assembly and modulation of macromolecular complexes.
Collapse
|
34
|
The transcriptional regulator CzcR modulates antibiotic resistance and quorum sensing in Pseudomonas aeruginosa. PLoS One 2012; 7:e38148. [PMID: 22666466 PMCID: PMC3362554 DOI: 10.1371/journal.pone.0038148] [Citation(s) in RCA: 88] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2012] [Accepted: 04/30/2012] [Indexed: 11/20/2022] Open
Abstract
The opportunistic pathogen Pseudomonas aeruginosa responds to zinc, cadmium and cobalt by way of the CzcRS two-component system. In presence of these metals the regulatory protein CzcR induces the expression of the CzcCBA efflux pump, expelling and thereby inducing resistance to Zn, Cd and Co. Importantly, CzcR co-regulates carbapenem antibiotic resistance by repressing the expression of the OprD porin, the route of entry for these antibiotics. This unexpected co-regulation led us to address the role of CzcR in other cellular processes unrelated to the metal response. We found that CzcR affected the expression of numerous genes directly involved in the virulence of P. aeruginosa even in the absence of the inducible metals. Notably the full expression of quorum sensing 3-oxo-C12-HSL and C4-HSL autoinducer molecules is impaired in the absence of CzcR. In agreement with this, the virulence of the czcRS deletion mutant is affected in a C. elegans animal killing assay. Additionally, chromosome immunoprecipitation experiments allowed us to localize CzcR on the promoter of several regulated genes, suggesting a direct control of target genes such as oprD, phzA1 and lasI. All together our data identify CzcR as a novel regulator involved in the control of several key genes for P. aeruginosa virulence processes.
Collapse
|
35
|
Shiratsuchi G, Kamiya R, Hirono M. Scaffolding function of the Chlamydomonas procentriole protein CRC70, a member of the conserved Cep70 family. J Cell Sci 2012; 124:2964-75. [PMID: 21878503 DOI: 10.1242/jcs.084715] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Centriole duplication occurs once per cell cycle through the assembly of daughter centrioles on the side wall of pre-existing centrioles. Little is known about the molecules involved in the assembly of new centrioles. Here, we identify CRC70 as a Chlamydomonas protein with an important role in the accumulation of centriole proteins at the site of assembly. CRC70 contains a highly conserved ~50-amino-acid sequence shared by mammalian Cep70 and preferentially localizes to immature centrioles (the procentrioles). This localization is maintained in the mutant bld10, in which centriole formation is blocked before the assembly of centriolar microtubules. RNA interference (RNAi)-mediated knockdown of CRC70 produces flagella-less cells and inhibits the recruitment of other centriole components, such as SAS-6 and Bld10p to the centriole. Overexpression of CRC70 induces an accumulation of these proteins in discrete spots in the cytoplasm. Overexpression of EGFP-tagged CRC70 in mouse NIH3T3 cells causes the formation of structures apparently related to centrioles. These findings suggest that CRC70 is a member of a conserved protein family and functions as a scaffold for the assembly of the centriole precursor.
Collapse
Affiliation(s)
- Gen Shiratsuchi
- Department of Biological Sciences, University of Tokyo, Tokyo 113-0033, Japan
| | | | | |
Collapse
|
36
|
Aubusson-Fleury A, Lemullois M, de Loubresse NG, Laligné C, Cohen J, Rosnet O, Jerka-Dziadosz M, Beisson J, Koll F. FOR20, a conserved centrosomal protein, is required for assembly of the transition zone and basal body docking at the cell surface. J Cell Sci 2012; 125:4395-404. [DOI: 10.1242/jcs.108639] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Within the FOP family of centrosomal proteins, the conserved FOR20 protein has been implicated in the control of primary cilium assembly in human cells. To ascertain its role in ciliogenesis, we have investigated the function of its ortholog, PtFOR20p, in a multiciliated unicellular organism, Paramecium. By a combined functional and cytological analysis, we found that PtFOR20p specifically localizes at basal bodies and is required to build the transition zone, a prerequisite to their maturation and docking at the cell surface, hence to ciliogenesis. We also found that PtCen2p (one of the two basal body specific centrins, ortholog of HsCen2) is required to recruit PtFOR20p at the developing basal body and to control its length. In contrast, the other basal body specific centrin, PtCen3p, is not needed for assembly of the transition zone, but is required downstream, for basal body docking. Comparison of the structural defects induced by depletion of PtFOR20p, PtCen2p or PtCen3p respectively illustrates the dual role of the transition zone in the biogenesis of the basal body and in cilium assembly. The multiple potential roles of the transition zone during basal body biogenesis and the evolutionary conserved function of the FOP proteins in microtubule membrane interactions are discussed.
Collapse
|
37
|
Lauwaet T, Smith AJ, Reiner DS, Romijn EP, Wong CCL, Davids BJ, Shah SA, Yates JR, Gillin FD. Mining the Giardia genome and proteome for conserved and unique basal body proteins. Int J Parasitol 2011; 41:1079-92. [PMID: 21723868 DOI: 10.1016/j.ijpara.2011.06.001] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2011] [Revised: 05/25/2011] [Accepted: 06/01/2011] [Indexed: 12/27/2022]
Abstract
Giardia lamblia is a flagellated protozoan parasite and a major cause of diarrhoea in humans. Its microtubular cytoskeleton mediates trophozoite motility, attachment and cytokinesis, and is characterised by an attachment disk and eight flagella that are each nucleated in a basal body. To date, only 10 giardial basal body proteins have been identified, including universal signalling proteins that are important for regulating mitosis or differentiation. In this study, we have exploited bioinformatics and proteomic approaches to identify new Giardia basal body proteins and confocal microscopy to confirm their localisation in interphase trophozoites. This approach identified 75 homologs of conserved basal body proteins in the genome including 65 not previously known to be associated with Giardia basal bodies. Thirteen proteins were confirmed to co-localise with centrin to the Giardia basal bodies. We also demonstrate that most basal body proteins localise to additional cytoskeletal structures in interphase trophozoites. This might help to explain the roles of the four pairs of flagella and Giardia-specific organelles in motility and differentiation. A deeper understanding of the composition of the Giardia basal bodies will contribute insights into the complex signalling pathways that regulate its unique cytoskeleton and the biological divergence of these conserved organelles.
Collapse
Affiliation(s)
- Tineke Lauwaet
- Department of Pathology, University of California San Diego, San Diego, CA 92103, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Keller LC, Wemmer KA, Marshall WF. Influence of centriole number on mitotic spindle length and symmetry. Cytoskeleton (Hoboken) 2010; 67:504-18. [PMID: 20540087 DOI: 10.1002/cm.20462] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
The functional role of centrioles or basal bodies in mitotic spindle assembly and function is currently unclear. Although supernumerary centrioles have been associated with multipolar spindles in cancer cells, suggesting centriole number might dictate spindle polarity, bipolar spindles are able to assemble in the complete absence of centrioles, suggesting a level of centriole-independence in the spindle assembly pathway. In this report we perturb centriole number using mutations in Chlamydomonas reinhardtii, and measure the response of the mitotic spindle to these perturbations in centriole number. Although altered centriole number increased the frequency of monopolar and multipolar spindles, the majority of spindles remained bipolar regardless of the centriole number. But even when spindles were bipolar, abnormal centriole numbers led to asymmetries in tubulin distribution, half-spindle length and spindle pole focus. Half spindle length correlated directly with number of centrioles at a pole, such that an imbalance in centriole number between the two poles of a bipolar spindle correlated with increased asymmetry between half spindle lengths. These results are consistent with centrioles playing an active role in regulating mitotic spindle length. Mutants with centriole number alteration also show increased cytokinesis defects, but these do not correlate with centriole number in the dividing cell and may therefore reflect downstream consequences of defects in preceding cell divisions.
Collapse
Affiliation(s)
- Lani C Keller
- Department of Biochemistry and Biophysics, UCSF, San Francisco, California 94158, USA
| | | | | |
Collapse
|
39
|
Craige B, Tsao CC, Diener DR, Hou Y, Lechtreck KF, Rosenbaum JL, Witman GB. CEP290 tethers flagellar transition zone microtubules to the membrane and regulates flagellar protein content. J Cell Biol 2010; 190:927-40. [PMID: 20819941 PMCID: PMC2935561 DOI: 10.1083/jcb.201006105] [Citation(s) in RCA: 294] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2010] [Accepted: 08/11/2010] [Indexed: 11/22/2022] Open
Abstract
Mutations in human CEP290 cause cilia-related disorders that range in severity from isolated blindness to perinatal lethality. Here, we describe a Chlamydomonas reinhardtii mutant in which most of the CEP290 gene is deleted. Immunoelectron microscopy indicated that CEP290 is located in the flagellar transition zone in close association with the prominent microtubule-membrane links there. Ultrastructural analysis revealed defects in these microtubule-membrane connectors, resulting in loss of attachment of the flagellar membrane to the transition zone microtubules. Biochemical analysis of isolated flagella revealed that the mutant flagella have abnormal protein content, including abnormal levels of intraflagellar transport proteins and proteins associated with ciliopathies. Experiments with dikaryons showed that CEP290 at the transition zone is dynamic and undergoes rapid turnover. The results indicate that CEP290 is required to form microtubule-membrane linkers that tether the flagellar membrane to the transition zone microtubules, and is essential for controlling flagellar protein composition.
Collapse
Affiliation(s)
- Branch Craige
- Department of Cell Biology, University of Massachusetts Medical School, Worcester, MA 01655
| | - Che-Chia Tsao
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT 06520
| | - Dennis R. Diener
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT 06520
| | - Yuqing Hou
- Department of Cell Biology, University of Massachusetts Medical School, Worcester, MA 01655
| | | | - Joel L. Rosenbaum
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT 06520
| | - George B. Witman
- Department of Cell Biology, University of Massachusetts Medical School, Worcester, MA 01655
| |
Collapse
|
40
|
Affiliation(s)
- Susan K Dutcher
- Department of Genetics, Washington University School of Medicine, St. Louis, Missouri, USA
| |
Collapse
|
41
|
Liu Y, Misamore MJ, Snell WJ. Membrane fusion triggers rapid degradation of two gamete-specific, fusion-essential proteins in a membrane block to polygamy in Chlamydomonas. Development 2010; 137:1473-81. [PMID: 20335357 DOI: 10.1242/dev.044743] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
The plasma membranes of gametes are specialized for fusion, yet, once fusion occurs, in many organisms the new zygote becomes incapable of further membrane fusion reactions. The molecular mechanisms that underlie this loss of fusion capacity (block to polygamy) remain unknown. During fertilization in the green alga Chlamydomonas, the plus gamete-specific membrane protein FUS1 is required for adhesion between the apically localized sites on the plasma membranes of plus and minus gametes that are specialized for fusion, and the minus-specific membrane protein HAP2 is essential for completion of the membrane fusion reaction. HAP2 (GCS1) family members are also required for fertilization in Arabidopsis, and for the membrane fusion reaction in the malaria organism Plasmodium berghei. Here, we tested whether Chlamydomonas gamete fusion triggers alterations in FUS1 and HAP2 and renders the plasma membranes of the cells incapable of subsequent fusion. We find that, even though the fusogenic sites support multi-cell adhesions, triploid zygotes are rare, indicating a fusion-triggered block to the membrane fusion reaction. Consistent with the extinction of fusogenic capacity, both FUS1 and HAP2 are degraded upon fusion. The rapid, fusion-triggered cleavage of HAP2 in zygotes is distinct from degradation occurring during constitutive turnover in gametes. Thus, gamete fusion triggers specific degradation of fusion-essential proteins and renders the zygote incapable of fusion. Our results provide the first molecular explanation for a membrane block to polygamy in any organism.
Collapse
Affiliation(s)
- Yanjie Liu
- Department of Cell Biology, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390-9039, USA
| | | | | |
Collapse
|
42
|
Abstract
AbstractThe centrosome functions as the microtubule-organizing center and plays a vital role in organizing spindle poles during mitosis. Recently, we identified a centrosomal protein called CLERC (Centrosomal leucine-rich repeat and coiled-coil containing protein) which is a human ortholog of Chlamydomonas Vfl1 protein. The bibliography as well as database searches provided evidence that the human proteome contains at least seven centrosomal leucine-rich repeat proteins including CLERC. CLERC and four other centrosomal leucine-rich repeat proteins contain the SDS22-like leucine-rich repeat motifs, whereas the remaining two proteins contain the RI-like and the cysteine-containing leucine-rich repeat motifs. Individual leucine-rich repeat motifs are highly conserved and present in evolutionarily diverse organisms. Here, we provide an overview of CLERC and other centrosomal leucine-rich repeat proteins, their structures, their evolutionary relationships, and their functional properties.
Collapse
|
43
|
Duquesnoy P, Escudier E, Vincensini L, Freshour J, Bridoux AM, Coste A, Deschildre A, de Blic J, Legendre M, Montantin G, Tenreiro H, Vojtek AM, Loussert C, Clément A, Escalier D, Bastin P, Mitchell DR, Amselem S. Loss-of-function mutations in the human ortholog of Chlamydomonas reinhardtii ODA7 disrupt dynein arm assembly and cause primary ciliary dyskinesia. Am J Hum Genet 2009; 85:890-6. [PMID: 19944405 DOI: 10.1016/j.ajhg.2009.11.008] [Citation(s) in RCA: 121] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2009] [Revised: 10/28/2009] [Accepted: 11/09/2009] [Indexed: 11/20/2022] Open
Abstract
Cilia and flagella are evolutionarily conserved structures that play various physiological roles in diverse cell types. Defects in motile cilia result in primary ciliary dyskinesia (PCD), the most prominent ciliopathy, characterized by the association of respiratory symptoms, male infertility, and, in nearly 50% of cases, situs inversus. So far, most identified disease-causing mutations involve genes encoding various ciliary components, such those belonging to the dynein arms that are essential for ciliary motion. Following a candidate-gene approach based on data from a mutant strain of the biflagellated alga Chlamydomonas reinhardtii carrying an ODA7 defect, we identified four families with a PCD phenotype characterized by the absence of both dynein arms and loss-of-function mutations in the human orthologous gene called LRRC50. Functional analyses performed in Chlamydomonas reinhardtii and in another flagellated protist, Trypanosoma brucei, support a key role for LRRC50, a member of the leucine-rich-repeat superfamily, in cytoplasmic preassembly of dynein arms.
Collapse
Affiliation(s)
- Philippe Duquesnoy
- Institut National de Santé et de Recherche Médicale (INSERM) U.933, Université Pierre et Marie Curie-Paris 6 and Assistance Publique-Hôpitaux de Paris, Hôpital Armand-Trousseau, 75571 Paris cedex 12, France
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Feldman JL, Marshall WF. ASQ2 encodes a TBCC-like protein required for mother-daughter centriole linkage and mitotic spindle orientation. Curr Biol 2009; 19:1238-43. [PMID: 19631545 DOI: 10.1016/j.cub.2009.05.071] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2008] [Revised: 05/05/2009] [Accepted: 05/06/2009] [Indexed: 10/20/2022]
Abstract
An intriguing feature of centrioles is that these highly complicated microtubule-based structures duplicate once per cell cycle, affording the cell precise control over their number. Each cell contains exactly two centrioles, linked together as a pair, one of which is a mother centriole formed in a previous cell cycle and the other of which is a daughter centriole whose assembly is templated by the mother. Neither the molecular basis nor the functional role of mother-daughter centriole linkage is understood. We have identified a mutant, asq2, with defects in centriole linkage. asq2 mutant cells have variable numbers of centrioles and centriole positioning defects. Here, we show that ASQ2 encodes the conserved protein Tbccd1, a member of a protein family including a tubulin folding cochaperone and the retinitis pigmentosa protein RP2, involved in tubulin quality control during ciliogenesis. We characterize mitosis in asq2 cells and show that the majority of cells establish a bipolar spindle but have defects in spindle orientation. Few asq2 cells have centrioles at both poles, and these cells have properly positioned spindles, indicating that centrioles at the poles might be important for spindle orientation. The defects in centriole number control, centriole positioning, and spindle orientation appear to arise from perturbation of centriole linkage mediated by Tbccd1/Asq2p.
Collapse
Affiliation(s)
- Jessica L Feldman
- Department of Biochemistry & Biophysics, University of California, San Francisco, San Francisco, CA 94143, USA
| | | |
Collapse
|
45
|
Lechtreck KF, Luro S, Awata J, Witman GB. HA-tagging of putative flagellar proteins in Chlamydomonas reinhardtii identifies a novel protein of intraflagellar transport complex B. ACTA ACUST UNITED AC 2009; 66:469-82. [PMID: 19382199 DOI: 10.1002/cm.20369] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Proteomic analysis of flagella from the green alga Chlamydomonas reinhardtii has identified over 600 putative flagellar proteins. The genes encoding nine of these not previously characterized plus the previously described PACRG protein were cloned, inserted into a vector adding a triple-HA tag to the C-terminus of the gene product, and transformed into C. reinhardtii. Expression was confirmed by western blotting. Indirect immunofluorescence located all 10 fusion proteins in the flagellum; PACRG was localized to a subset of outer doublet microtubules. For some proteins, additional signal was observed in the cell body. Among the latter was FAP232-HA, which showed a spotted distribution along the flagella and an accumulation at the basal bodies. This pattern is characteristic for intraflagellar transport (IFT) proteins. FAP232-HA co-localized with the IFT protein IFT46 and co-sedimented with IFT particles in sucrose gradients. Furthermore, it co-immunoprecipitated with IFT complex B protein IFT46, but not with IFT complex A protein IFT139. We conclude that FAP232 is a novel component of IFT complex B and rename it IFT25. Homologues of IFT25 are encoded in the genomes of a subset of organisms that assemble cilia or flagella; C. reinhardtii IFT25 is 37% identical to the corresponding human protein. Genes encoding IFT25 homologues are absent from the genomes of organisms that lack cilia and flagella and, interestingly, also from those of Drosophila melanogaster and Caenorhabditis elegans, suggesting that IFT25 has a specialized role in IFT that is not required for the assembly of cilia or flagella in the worm and fly. Cell Motil. Cytoskeleton 2009. (c) 2009 Wiley-Liss, Inc.
Collapse
Affiliation(s)
- Karl-Ferdinand Lechtreck
- Department of Cell Biology, University of Massachusetts Medical School, Worcester, Massachusetts, USA.
| | | | | | | |
Collapse
|
46
|
Keller LC, Geimer S, Romijn E, Yates J, Zamora I, Marshall WF. Molecular architecture of the centriole proteome: the conserved WD40 domain protein POC1 is required for centriole duplication and length control. Mol Biol Cell 2009; 20:1150-66. [PMID: 19109428 PMCID: PMC2642750 DOI: 10.1091/mbc.e08-06-0619] [Citation(s) in RCA: 113] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2008] [Revised: 11/12/2008] [Accepted: 12/08/2008] [Indexed: 12/11/2022] Open
Abstract
Centrioles are intriguing cylindrical organelles composed of triplet microtubules. Proteomic data suggest that a large number of proteins besides tubulin are necessary for the formation and maintenance of a centriole's complex structure. Expansion of the preexisting centriole proteome from the green alga Chlamydomonas reinhardtii revealed additional human disease genes, emphasizing the significance of centrioles in normal human tissue homeostasis. We found that two classes of ciliary disease genes were highly represented among the basal body proteome: cystic kidney disease (especially nephronophthisis) syndromes, including Meckel/Joubert-like and oral-facial-digital syndrome, caused by mutations in CEP290, MKS1, OFD1, and AHI1/Jouberin proteins and cone-rod dystrophy syndrome genes, including UNC-119/HRG4, NPHP4, and RPGR1. We further characterized proteome of the centriole (POC) 1, a highly abundant WD40 domain-containing centriole protein. We found that POC1 is recruited to nascent procentrioles and localizes in a highly asymmetrical pattern in mature centrioles corresponding to sites of basal-body fiber attachment. Knockdown of POC1 in human cells caused a reduction in centriole duplication, whereas overexpression caused the appearance of elongated centriole-like structures. Together, these data suggest that POC1 is involved in early steps of centriole duplication as well as in the later steps of centriole length control.
Collapse
Affiliation(s)
- Lani C. Keller
- *Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA 94158
| | - Stefan Geimer
- Zellbiologie/Elektronenmikroskopie, Universitaet Bayreuth, 95440 Bayreuth, Germany; and
| | - Edwin Romijn
- Department of Cell Biology, The Scripps Research Institute, La Jolla, CA 92037
| | - John Yates
- Department of Cell Biology, The Scripps Research Institute, La Jolla, CA 92037
| | - Ivan Zamora
- *Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA 94158
| | - Wallace F. Marshall
- *Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA 94158
| |
Collapse
|
47
|
Piasecki BP, Silflow CD. The UNI1 and UNI2 genes function in the transition of triplet to doublet microtubules between the centriole and cilium in Chlamydomonas. Mol Biol Cell 2008; 20:368-78. [PMID: 19005206 DOI: 10.1091/mbc.e08-09-0900] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
One fundamental role of the centriole in eukaryotic cells is to nucleate the growth of cilia. The unicellular alga Chlamydomonas reinhardtii provides a simple genetic system to study the role of the centriole in ciliogenesis. Wild-type cells are biflagellate, but "uni" mutations result in failure of some centrioles (basal bodies) to assemble cilia (flagella). Serial transverse sections through basal bodies in uni1 and uni2 single and double mutant cells revealed a previously undescribed defect in the transition of triplet microtubules to doublet microtubules, a defect correlated with failure to assemble flagella. Phosphorylation of the Uni2 protein is reduced in uni1 mutant cells. Immunogold electron microscopy showed that the Uni2 protein localizes at the distal end of the basal body where microtubule transition occurs. These results provide the first mechanistic insights into the function of UNI1 and UNI2 genes in the pathway mediating assembly of doublet microtubules in the axoneme from triplet microtubules in the basal body template.
Collapse
Affiliation(s)
- Brian P Piasecki
- Department of Plant Biology, University of Minnesota, St. Paul, MN 55108, USA
| | | |
Collapse
|
48
|
van Rooijen E, Giles RH, Voest EE, van Rooijen C, Schulte-Merker S, van Eeden FJ. LRRC50, a conserved ciliary protein implicated in polycystic kidney disease. J Am Soc Nephrol 2008; 19:1128-38. [PMID: 18385425 DOI: 10.1681/asn.2007080917] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
Cilia perform essential motile and sensory functions central to many developmental and physiological processes. Disruption of their structure or function can have profound phenotypic consequences, and has been linked to left-right patterning and polycystic kidney disease. In a forward genetic screen for mutations affecting ciliary motility, we isolated zebrafish mutant hu255H. The mutation was found to disrupt an ortholog of the uncharacterized highly conserved human SDS22-like leucine-rich repeat(LRR)-containing protein LRRC50 (16q24.1) and Chlamydomonas Oda7p. Zebrafish lrrc50 is specifically expressed in all ciliated tissues. lrrc50(hu255H) mutants develop pronephric cysts with an increased proliferative index, severely reduced brush border, and disorganized pronephric cilia manifesting impaired localized fluid flow consistent with ciliary dysfunction. Electron microscopy analysis revealed ultrastructural irregularities of the dynein arms and misalignments of the outer-doublet microtubules on the ciliary axonemes, suggesting instability of the ciliary architecture in lrrc50(hu255H) mutants. TheSDS22-like leucine-rich repeats present in Lrrc50 are necessary for proper protein function, since injection of a deletion construct of the first LRR did not rescue the zebrafish mutant phenotype. Subcellular distribution of human LRRC50-EGFP in MDCK and HEK293T cells is diffusely cytoplasmic and concentrated at the mitotic spindle poles and cilium. LRRC50 RNAi knock-down in human proximal tubule HK-2 cells thoroughly recapitulated the zebrafish brush border and cilia phenotype, suggesting conservation of LRRC50 function between both species. In summary, we present the first genetic vertebrate model for lrrc50 function and propose LRRC50 to be a novel candidate gene for human cystic kidney disease, involved in regulation of microtubule-based cilia and actin-based brush border microvilli.
Collapse
Affiliation(s)
- Ellen van Rooijen
- Hubrecht Institute, Developmental Biology and Stem Cell Research, University Medical Center Utrecht, Utrecht, Netherlands
| | | | | | | | | | | |
Collapse
|
49
|
Liu Y, Tewari R, Ning J, Blagborough AM, Garbom S, Pei J, Grishin NV, Steele RE, Sinden RE, Snell WJ, Billker O. The conserved plant sterility gene HAP2 functions after attachment of fusogenic membranes in Chlamydomonas and Plasmodium gametes. Genes Dev 2008; 22:1051-68. [PMID: 18367645 DOI: 10.1101/gad.1656508] [Citation(s) in RCA: 239] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The cellular and molecular mechanisms that underlie species-specific membrane fusion between male and female gametes remain largely unknown. Here, by use of gene discovery methods in the green alga Chlamydomonas, gene disruption in the rodent malaria parasite Plasmodium berghei, and distinctive features of fertilization in both organisms, we report discovery of a mechanism that accounts for a conserved protein required for gamete fusion. A screen for fusion mutants in Chlamydomonas identified a homolog of HAP2, an Arabidopsis sterility gene. Moreover, HAP2 disruption in Plasmodium blocked fertilization and thereby mosquito transmission of malaria. HAP2 localizes at the fusion site of Chlamydomonas minus gametes, yet Chlamydomonas minus and Plasmodium hap2 male gametes retain the ability, using other, species-limited proteins, to form tight prefusion membrane attachments with their respective gamete partners. Membrane dye experiments show that HAP2 is essential for membrane merger. Thus, in two distantly related eukaryotes, species-limited proteins govern access to a conserved protein essential for membrane fusion.
Collapse
Affiliation(s)
- Yanjie Liu
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Piasecki BP, LaVoie M, Tam LW, Lefebvre PA, Silflow CD. The Uni2 phosphoprotein is a cell cycle regulated component of the basal body maturation pathway in Chlamydomonas reinhardtii. Mol Biol Cell 2007; 19:262-73. [PMID: 17942595 DOI: 10.1091/mbc.e07-08-0798] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Mutations in the UNI2 locus in Chlamydomonas reinhardtii result in a "uniflagellar" phenotype in which flagellar assembly occurs preferentially from the older basal body and ultrastructural defects reside in the transition zones. The UNI2 gene encodes a protein of 134 kDa that shares 20.5% homology with a human protein. Immunofluorescence microscopy localized the protein on both basal bodies and probasal bodies. The protein is present as at least two molecular-weight variants that can be converted to a single form with phosphatase treatment. Synthesis of Uni2 protein is induced during cell division cycles; accumulation of the phosphorylated form coincides with assembly of transition zones and flagella at the end of the division cycle. Using the Uni2 protein as a cell cycle marker of basal bodies, we observed migration of basal bodies before flagellar resorption in some cells, indicating that flagellar resorption is not required for mitotic progression. We observed the sequential assembly of new probasal bodies beginning at prophase. The uni2 mutants may be defective in the pathways leading to flagellar assembly and to basal body maturation.
Collapse
Affiliation(s)
- Brian P Piasecki
- Department of Plant Biology, The University of Minnesota, St. Paul, MN 55108, USA
| | | | | | | | | |
Collapse
|